convert_hf_to_gguf.py 414 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. dry_run: bool
  59. part_names: list[str]
  60. is_safetensors: bool
  61. hparams: dict[str, Any]
  62. tensor_names: set[str] | None
  63. gguf_writer: gguf.GGUFWriter
  64. model_name: str | None
  65. metadata_override: Path | None
  66. dir_model_card: Path
  67. remote_hf_model_id: str | None
  68. # subclasses should define this!
  69. model_arch: gguf.MODEL_ARCH
  70. # subclasses should initialize this!
  71. block_count: int
  72. tensor_map: gguf.TensorNameMap
  73. # Mistral format specifics
  74. is_mistral_format: bool = False
  75. disable_mistral_community_chat_template: bool = False
  76. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  77. use_temp_file: bool = False, eager: bool = False,
  78. metadata_override: Path | None = None, model_name: str | None = None,
  79. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  80. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  81. disable_mistral_community_chat_template: bool = False):
  82. if type(self) is ModelBase or \
  83. type(self) is TextModel or \
  84. type(self) is MmprojModel:
  85. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  86. self.dir_model = dir_model
  87. self.ftype = ftype
  88. self.fname_out = fname_out
  89. self.is_big_endian = is_big_endian
  90. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  91. self.use_temp_file = use_temp_file
  92. self.lazy = not eager or (remote_hf_model_id is not None)
  93. self.dry_run = dry_run
  94. self.remote_hf_model_id = remote_hf_model_id
  95. if remote_hf_model_id is not None:
  96. self.is_safetensors = True
  97. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  98. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  99. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  100. self.tensor_names = set(name for name in remote_tensors.keys())
  101. for name, remote_tensor in remote_tensors.items():
  102. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  103. self.get_tensors = get_remote_tensors
  104. else:
  105. prefix = "model" if not self.is_mistral_format else "consolidated"
  106. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  107. self.is_safetensors = len(self.part_names) > 0
  108. if not self.is_safetensors:
  109. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  110. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  111. self.tensor_names = None
  112. self.metadata_override = metadata_override
  113. self.model_name = model_name
  114. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  115. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  116. if self.ftype == gguf.LlamaFileType.GUESSED:
  117. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  118. _, first_tensor = next(self.get_tensors())
  119. if first_tensor.dtype == torch.float16:
  120. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  121. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  122. else:
  123. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. # Configure GGUF Writer
  126. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  127. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  128. # Mistral specific
  129. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  130. @classmethod
  131. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  132. stem, suffix = path.stem, path.suffix
  133. new_name = f"{prefix}{stem}{suffix}"
  134. return path.with_name(new_name)
  135. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  136. key = next((k for k in keys if k in self.hparams), None)
  137. if key is not None:
  138. return self.hparams[key]
  139. if optional:
  140. return None
  141. raise KeyError(f"could not find any of: {keys}")
  142. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  143. tensor_names_from_parts: set[str] = set()
  144. if not self.is_mistral_format:
  145. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  146. index_name += ".index.json"
  147. index_file = self.dir_model / index_name
  148. if index_file.is_file():
  149. self.tensor_names = set()
  150. logger.info(f"gguf: loading model weight map from '{index_name}'")
  151. with open(index_file, "r", encoding="utf-8") as f:
  152. index: dict[str, Any] = json.load(f)
  153. weight_map = index.get("weight_map")
  154. if weight_map is None or not isinstance(weight_map, dict):
  155. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  156. self.tensor_names.update(weight_map.keys())
  157. else:
  158. self.tensor_names = tensor_names_from_parts
  159. weight_map = {}
  160. else:
  161. self.tensor_names = tensor_names_from_parts
  162. weight_map = {}
  163. for part_name in self.part_names:
  164. logger.info(f"gguf: loading model part '{part_name}'")
  165. ctx: ContextManager[Any]
  166. if self.is_safetensors:
  167. from safetensors import safe_open
  168. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  169. else:
  170. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  171. with ctx as model_part:
  172. tensor_names_from_parts.update(model_part.keys())
  173. for name in model_part.keys():
  174. if self.is_safetensors:
  175. if self.lazy:
  176. data = model_part.get_slice(name)
  177. data = LazyTorchTensor.from_safetensors_slice(data)
  178. else:
  179. data = model_part.get_tensor(name)
  180. else:
  181. data = model_part[name]
  182. if self.lazy:
  183. data = LazyTorchTensor.from_eager(data)
  184. yield name, data
  185. # verify tensor name presence and identify potentially missing files
  186. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  187. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  188. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  189. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  190. if len(extra) == 0 and len(missing_files) > 0:
  191. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  192. f"Missing tensors: {missing}")
  193. else:
  194. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  195. f"Missing tensors: {missing}\n"
  196. f"Extra tensors: {extra}")
  197. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  198. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  199. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  200. name: str = gguf.TENSOR_NAMES[key]
  201. if "{bid}" in name:
  202. assert bid is not None
  203. name = name.format(bid=bid)
  204. return name + suffix
  205. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  206. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  207. return False
  208. key_name: str = gguf.TENSOR_NAMES[key]
  209. if "{bid}" in key_name:
  210. if bid is None:
  211. return False
  212. key_name = key_name.format(bid=bid)
  213. else:
  214. if bid is not None:
  215. return False
  216. return name == (key_name + suffix)
  217. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  218. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  219. if new_name is None:
  220. raise ValueError(f"Can not map tensor {name!r}")
  221. return new_name
  222. def set_gguf_parameters(self):
  223. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  225. del bid # unused
  226. return [(self.map_tensor_name(name), data_torch)]
  227. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  228. del name, new_name, bid, n_dims # unused
  229. return False
  230. # some models need extra generated tensors (like rope_freqs)
  231. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  232. return ()
  233. def prepare_tensors(self):
  234. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  235. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  236. # we don't need these
  237. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  238. continue
  239. old_dtype = data_torch.dtype
  240. # convert any unsupported data types to float32
  241. if data_torch.dtype not in (torch.float16, torch.float32):
  242. data_torch = data_torch.to(torch.float32)
  243. # use the first number-like part of the tensor name as the block id
  244. bid = None
  245. for part in name.split("."):
  246. if part.isdecimal():
  247. bid = int(part)
  248. break
  249. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  250. # TODO: why do we squeeze here?
  251. # data = data_torch.squeeze().numpy()
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  278. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  279. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  280. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  281. )
  282. )
  283. or not new_name.endswith(".weight")
  284. ):
  285. data_qtype = gguf.GGMLQuantizationType.F32
  286. if data_qtype is False and any(
  287. self.match_model_tensor_name(new_name, key, bid)
  288. for key in (
  289. gguf.MODEL_TENSOR.TOKEN_EMBD,
  290. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  291. gguf.MODEL_TENSOR.OUTPUT,
  292. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  293. gguf.MODEL_TENSOR.LAUREL_L,
  294. gguf.MODEL_TENSOR.LAUREL_R,
  295. )
  296. ):
  297. if self.ftype in (
  298. gguf.LlamaFileType.MOSTLY_TQ1_0,
  299. gguf.LlamaFileType.MOSTLY_TQ2_0,
  300. ):
  301. # TODO: use Q4_K and Q6_K
  302. data_qtype = gguf.GGMLQuantizationType.F16
  303. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  304. if isinstance(data_qtype, bool):
  305. if self.ftype == gguf.LlamaFileType.ALL_F32:
  306. data_qtype = gguf.GGMLQuantizationType.F32
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  308. data_qtype = gguf.GGMLQuantizationType.F16
  309. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  310. data_qtype = gguf.GGMLQuantizationType.BF16
  311. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  312. data_qtype = gguf.GGMLQuantizationType.Q8_0
  313. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  314. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  315. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  316. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  317. else:
  318. raise ValueError(f"Unknown file type: {self.ftype.name}")
  319. try:
  320. data = gguf.quants.quantize(data, data_qtype)
  321. except gguf.QuantError as e:
  322. logger.warning("%s, %s", e, "falling back to F16")
  323. data_qtype = gguf.GGMLQuantizationType.F16
  324. data = gguf.quants.quantize(data, data_qtype)
  325. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  326. # reverse shape to make it similar to the internal ggml dimension order
  327. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  328. # n_dims is implicit in the shape
  329. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  330. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  331. def set_type(self):
  332. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  333. def prepare_metadata(self, vocab_only: bool):
  334. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  335. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  336. # If we are using HF model id, set the metadata name to the model id
  337. if self.remote_hf_model_id:
  338. self.metadata.name = self.remote_hf_model_id
  339. # Fallback to model directory name if metadata name is still missing
  340. if self.metadata.name is None:
  341. self.metadata.name = self.dir_model.name
  342. # Generate parameter weight class (useful for leader boards) if not yet determined
  343. if self.metadata.size_label is None and total_params > 0:
  344. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  345. self.set_type()
  346. logger.info("Set meta model")
  347. self.metadata.set_gguf_meta_model(self.gguf_writer)
  348. logger.info("Set model parameters")
  349. self.set_gguf_parameters()
  350. logger.info("Set model quantization version")
  351. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  352. def write_vocab(self):
  353. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  354. def write(self):
  355. self.prepare_tensors()
  356. self.prepare_metadata(vocab_only=False)
  357. self.gguf_writer.write_header_to_file(path=self.fname_out)
  358. self.gguf_writer.write_kv_data_to_file()
  359. self.gguf_writer.write_tensors_to_file(progress=True)
  360. self.gguf_writer.close()
  361. @staticmethod
  362. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  363. part_names: list[str] = []
  364. for filename in os.listdir(dir_model):
  365. if filename.startswith(prefix) and filename.endswith(suffix):
  366. part_names.append(filename)
  367. part_names.sort()
  368. return part_names
  369. @staticmethod
  370. def load_hparams(dir_model: Path, is_mistral_format: bool):
  371. if is_mistral_format:
  372. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  373. config = json.load(f)
  374. return config
  375. try:
  376. # for security reason, we don't allow loading remote code by default
  377. # if a model need remote code, we will fallback to config.json
  378. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  379. except Exception as e:
  380. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  381. logger.warning("Trying to load config.json instead")
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. config = json.load(f)
  384. if "llm_config" in config:
  385. # rename for InternVL
  386. config["text_config"] = config["llm_config"]
  387. if "thinker_config" in config:
  388. # rename for Qwen2.5-Omni
  389. config["text_config"] = config["thinker_config"]["text_config"]
  390. return config
  391. @classmethod
  392. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  393. assert names
  394. def func(modelcls: AnyModel) -> AnyModel:
  395. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  396. for name in names:
  397. cls._model_classes[model_type][name] = modelcls
  398. return modelcls
  399. return func
  400. @classmethod
  401. def print_registered_models(cls):
  402. for model_type, model_classes in cls._model_classes.items():
  403. logger.error(f"{model_type.name} models:")
  404. for name in sorted(model_classes.keys()):
  405. logger.error(f" - {name}")
  406. @classmethod
  407. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  408. try:
  409. return cls._model_classes[model_type][arch]
  410. except KeyError:
  411. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  412. class TextModel(ModelBase):
  413. model_type = ModelType.TEXT
  414. hf_arch: str
  415. def __init__(self, *args, **kwargs):
  416. super().__init__(*args, **kwargs)
  417. if not self.is_mistral_format:
  418. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  419. else:
  420. self.hf_arch = ""
  421. if "text_config" in self.hparams:
  422. # move the text_config to the root level
  423. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  424. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  425. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  426. @classmethod
  427. def __init_subclass__(cls):
  428. # can't use an abstract property, because overriding it without type errors
  429. # would require using decorated functions instead of simply defining the property
  430. if "model_arch" not in cls.__dict__:
  431. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  432. def set_vocab(self):
  433. self._set_vocab_gpt2()
  434. def prepare_metadata(self, vocab_only: bool):
  435. super().prepare_metadata(vocab_only=vocab_only)
  436. total_params = self.gguf_writer.get_total_parameter_count()[0]
  437. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  438. output_type: str = self.ftype.name.partition("_")[2]
  439. # Filename Output
  440. if self.fname_out.is_dir():
  441. # Generate default filename based on model specification and available metadata
  442. if not vocab_only:
  443. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  444. else:
  445. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  446. # Use the default filename
  447. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  448. else:
  449. # Output path is a custom defined templated filename
  450. # Note: `not is_dir()` is used because `.is_file()` will not detect
  451. # file template strings as it doesn't actually exist as a file
  452. # Process templated file name with the output ftype, useful with the "auto" ftype
  453. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  454. logger.info("Set model tokenizer")
  455. self.set_vocab()
  456. def set_gguf_parameters(self):
  457. self.gguf_writer.add_block_count(self.block_count)
  458. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  459. self.gguf_writer.add_context_length(n_ctx)
  460. logger.info(f"gguf: context length = {n_ctx}")
  461. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  462. self.gguf_writer.add_embedding_length(n_embd)
  463. logger.info(f"gguf: embedding length = {n_embd}")
  464. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  465. self.gguf_writer.add_feed_forward_length(n_ff)
  466. logger.info(f"gguf: feed forward length = {n_ff}")
  467. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  468. self.gguf_writer.add_head_count(n_head)
  469. logger.info(f"gguf: head count = {n_head}")
  470. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  471. self.gguf_writer.add_head_count_kv(n_head_kv)
  472. logger.info(f"gguf: key-value head count = {n_head_kv}")
  473. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  474. self.gguf_writer.add_rope_freq_base(rope_theta)
  475. logger.info(f"gguf: rope theta = {rope_theta}")
  476. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  477. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  478. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  479. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  480. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  481. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  482. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  483. self.gguf_writer.add_expert_count(n_experts)
  484. logger.info(f"gguf: expert count = {n_experts}")
  485. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  486. self.gguf_writer.add_expert_used_count(n_experts_used)
  487. logger.info(f"gguf: experts used count = {n_experts_used}")
  488. if (head_dim := self.hparams.get("head_dim")) is not None:
  489. self.gguf_writer.add_key_length(head_dim)
  490. self.gguf_writer.add_value_length(head_dim)
  491. self.gguf_writer.add_file_type(self.ftype)
  492. logger.info(f"gguf: file type = {self.ftype}")
  493. def write_vocab(self):
  494. if len(self.gguf_writer.tensors) != 1:
  495. raise ValueError('Splitting the vocabulary is not supported')
  496. self.prepare_metadata(vocab_only=True)
  497. self.gguf_writer.write_header_to_file(path=self.fname_out)
  498. self.gguf_writer.write_kv_data_to_file()
  499. self.gguf_writer.close()
  500. def does_token_look_special(self, token: str | bytes) -> bool:
  501. if isinstance(token, (bytes, bytearray)):
  502. token_text = token.decode(encoding="utf-8")
  503. elif isinstance(token, memoryview):
  504. token_text = token.tobytes().decode(encoding="utf-8")
  505. else:
  506. token_text = token
  507. # Some models mark some added tokens which ought to be control tokens as not special.
  508. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  509. seems_special = token_text in (
  510. "<pad>", # deepseek-coder
  511. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  512. )
  513. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  514. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  515. # TODO: should these be marked as UNUSED instead? (maybe not)
  516. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  517. return seems_special
  518. # used for GPT-2 BPE and WordPiece vocabs
  519. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  520. tokens: list[str] = []
  521. toktypes: list[int] = []
  522. from transformers import AutoTokenizer
  523. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  524. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  525. assert max(tokenizer.vocab.values()) < vocab_size
  526. tokpre = self.get_vocab_base_pre(tokenizer)
  527. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  528. added_vocab = tokenizer.get_added_vocab()
  529. added_tokens_decoder = tokenizer.added_tokens_decoder
  530. for i in range(vocab_size):
  531. if i not in reverse_vocab:
  532. tokens.append(f"[PAD{i}]")
  533. toktypes.append(gguf.TokenType.UNUSED)
  534. else:
  535. token: str = reverse_vocab[i]
  536. if token in added_vocab:
  537. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  538. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  539. if not added_tokens_decoder[i].normalized:
  540. previous_token = token
  541. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  542. if previous_token != token:
  543. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  544. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  545. toktypes.append(gguf.TokenType.CONTROL)
  546. else:
  547. # NOTE: this was added for Gemma.
  548. # Encoding and decoding the tokens above isn't sufficient for this case.
  549. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  550. toktypes.append(gguf.TokenType.USER_DEFINED)
  551. else:
  552. toktypes.append(gguf.TokenType.NORMAL)
  553. tokens.append(token)
  554. return tokens, toktypes, tokpre
  555. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  556. # do not modify it manually!
  557. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  558. # Marker: Start get_vocab_base_pre
  559. def get_vocab_base_pre(self, tokenizer) -> str:
  560. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  561. # is specific for the BPE pre-tokenizer used by the model
  562. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  563. # use in llama.cpp to implement the same pre-tokenizer
  564. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  565. chktok = tokenizer.encode(chktxt)
  566. chkhsh = sha256(str(chktok).encode()).hexdigest()
  567. logger.debug(f"chktok: {chktok}")
  568. logger.debug(f"chkhsh: {chkhsh}")
  569. res = None
  570. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  571. # or pull the latest version of the model from Huggingface
  572. # don't edit the hashes manually!
  573. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  574. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  575. res = "chatglm-bpe"
  576. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  577. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  578. res = "chatglm-bpe"
  579. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  580. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  581. res = "glm4"
  582. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  583. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  584. res = "glm4"
  585. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  586. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  587. res = "minerva-7b"
  588. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  589. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  590. res = "hunyuan"
  591. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  592. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  593. res = "hunyuan-dense"
  594. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  595. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  596. res = "falcon-h1"
  597. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  598. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  599. res = "falcon-h1"
  600. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  601. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  602. res = "falcon-h1"
  603. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  604. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  605. res = "falcon-h1"
  606. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  607. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  608. res = "kimi-k2"
  609. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  610. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  611. res = "qwen2"
  612. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  613. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  614. res = "grok-2"
  615. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  616. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  617. res = "llama-bpe"
  618. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  619. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  620. res = "deepseek-llm"
  621. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  622. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  623. res = "deepseek-coder"
  624. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  625. # ref: https://huggingface.co/tiiuae/falcon-7b
  626. res = "falcon"
  627. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  628. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  629. res = "bert-bge"
  630. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  631. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  632. res = "falcon3"
  633. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  634. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  635. res = "bert-bge-large"
  636. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  637. # ref: https://huggingface.co/mosaicml/mpt-7b
  638. res = "mpt"
  639. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  640. # ref: https://huggingface.co/bigcode/starcoder2-3b
  641. res = "starcoder"
  642. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  643. # ref: https://huggingface.co/openai-community/gpt2
  644. res = "gpt-2"
  645. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  646. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  647. res = "stablelm2"
  648. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  649. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  650. res = "refact"
  651. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  652. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  653. res = "command-r"
  654. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  655. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  656. res = "qwen2"
  657. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  658. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  659. res = "olmo"
  660. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  661. # ref: https://huggingface.co/databricks/dbrx-base
  662. res = "dbrx"
  663. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  664. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  665. res = "jina-v1-en"
  666. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  667. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  668. res = "jina-v2-en"
  669. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  670. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  671. res = "jina-v2-es"
  672. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  673. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  674. res = "jina-v2-de"
  675. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  676. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  677. res = "smaug-bpe"
  678. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  679. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  680. res = "poro-chat"
  681. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  682. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  683. res = "jina-v2-code"
  684. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  685. # ref: https://huggingface.co/LumiOpen/Viking-7B
  686. res = "viking"
  687. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  688. # ref: https://huggingface.co/core42/jais-13b
  689. res = "jais"
  690. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  691. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  692. res = "codeshell"
  693. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  694. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  695. res = "tekken"
  696. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  697. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  698. res = "smollm"
  699. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  700. # ref: https://huggingface.co/bigscience/bloom
  701. res = "bloom"
  702. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  703. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  704. res = "gpt3-finnish"
  705. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  706. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  707. res = "exaone"
  708. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  709. # ref: https://huggingface.co/microsoft/phi-2
  710. res = "phi-2"
  711. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  712. # ref: https://huggingface.co/facebook/chameleon-7b
  713. res = "chameleon"
  714. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  715. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  716. res = "roberta-bpe"
  717. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  718. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  719. res = "gigachat"
  720. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  721. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  722. res = "megrez"
  723. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  724. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  725. res = "deepseek-v3"
  726. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  727. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  728. res = "deepseek-r1-qwen"
  729. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  730. # ref: https://huggingface.co/Xenova/gpt-4o
  731. res = "gpt-4o"
  732. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  733. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  734. res = "superbpe"
  735. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  736. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  737. res = "trillion"
  738. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  739. # ref: https://huggingface.co/inclusionAI/Ling-lite
  740. res = "bailingmoe"
  741. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  742. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  743. res = "llama4"
  744. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  745. # ref: https://huggingface.co/mistral-community/pixtral-12b
  746. res = "pixtral"
  747. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  748. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  749. res = "seed-coder"
  750. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  751. # ref: https://huggingface.co/skt/A.X-4.0
  752. res = "a.x-4.0"
  753. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  754. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  755. res = "midm-2.0"
  756. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  757. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  758. res = "lfm2"
  759. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  760. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  761. res = "exaone4"
  762. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  763. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  764. res = "mellum"
  765. if res is None:
  766. logger.warning("\n")
  767. logger.warning("**************************************************************************************")
  768. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  769. logger.warning("** There are 2 possible reasons for this:")
  770. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  771. logger.warning("** - the pre-tokenization config has changed upstream")
  772. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  773. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  774. logger.warning("**")
  775. logger.warning(f"** chkhsh: {chkhsh}")
  776. logger.warning("**************************************************************************************")
  777. logger.warning("\n")
  778. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  779. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  780. logger.debug(f"chkhsh: {chkhsh}")
  781. return res
  782. # Marker: End get_vocab_base_pre
  783. def _set_vocab_none(self) -> None:
  784. self.gguf_writer.add_tokenizer_model("none")
  785. def _set_vocab_gpt2(self) -> None:
  786. tokens, toktypes, tokpre = self.get_vocab_base()
  787. self.gguf_writer.add_tokenizer_model("gpt2")
  788. self.gguf_writer.add_tokenizer_pre(tokpre)
  789. self.gguf_writer.add_token_list(tokens)
  790. self.gguf_writer.add_token_types(toktypes)
  791. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  792. special_vocab.add_to_gguf(self.gguf_writer)
  793. def _set_vocab_qwen(self):
  794. dir_model = self.dir_model
  795. hparams = self.hparams
  796. tokens: list[str] = []
  797. toktypes: list[int] = []
  798. from transformers import AutoTokenizer
  799. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  800. vocab_size = hparams["vocab_size"]
  801. assert max(tokenizer.get_vocab().values()) < vocab_size
  802. tokpre = self.get_vocab_base_pre(tokenizer)
  803. merges = []
  804. vocab = {}
  805. mergeable_ranks = tokenizer.mergeable_ranks
  806. for token, rank in mergeable_ranks.items():
  807. vocab[QwenModel.token_bytes_to_string(token)] = rank
  808. if len(token) == 1:
  809. continue
  810. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  811. assert len(merged) == 2
  812. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  813. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  814. added_vocab = tokenizer.special_tokens
  815. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  816. for i in range(vocab_size):
  817. if i not in reverse_vocab:
  818. tokens.append(f"[PAD{i}]")
  819. toktypes.append(gguf.TokenType.UNUSED)
  820. elif reverse_vocab[i] in added_vocab:
  821. tokens.append(reverse_vocab[i])
  822. toktypes.append(gguf.TokenType.CONTROL)
  823. else:
  824. tokens.append(reverse_vocab[i])
  825. toktypes.append(gguf.TokenType.NORMAL)
  826. self.gguf_writer.add_tokenizer_model("gpt2")
  827. self.gguf_writer.add_tokenizer_pre(tokpre)
  828. self.gguf_writer.add_token_list(tokens)
  829. self.gguf_writer.add_token_types(toktypes)
  830. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  831. special_vocab.merges = merges
  832. # only add special tokens when they were not already loaded from config.json
  833. if len(special_vocab.special_token_ids) == 0:
  834. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  835. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  836. # this one is usually not in config.json anyway
  837. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  838. special_vocab.add_to_gguf(self.gguf_writer)
  839. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  840. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  841. self.gguf_writer.add_tokenizer_model("llama")
  842. self.gguf_writer.add_tokenizer_pre("default")
  843. self.gguf_writer.add_token_list(tokens)
  844. self.gguf_writer.add_token_scores(scores)
  845. self.gguf_writer.add_token_types(toktypes)
  846. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  847. special_vocab.add_to_gguf(self.gguf_writer)
  848. def _create_vocab_sentencepiece(self):
  849. from sentencepiece import SentencePieceProcessor
  850. tokenizer_path = self.dir_model / 'tokenizer.model'
  851. if not tokenizer_path.is_file():
  852. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  853. tokenizer = SentencePieceProcessor()
  854. tokenizer.LoadFromFile(str(tokenizer_path))
  855. vocab_size = self.find_hparam([
  856. "vocab_size_per_layer_input", # gemma3n
  857. "vocab_size",
  858. ], optional=True) or tokenizer.vocab_size()
  859. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  860. scores: list[float] = [-10000.0] * vocab_size
  861. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  862. for token_id in range(tokenizer.vocab_size()):
  863. if token_id >= vocab_size:
  864. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  865. break
  866. piece = tokenizer.IdToPiece(token_id)
  867. text = piece.encode("utf-8")
  868. score = tokenizer.GetScore(token_id)
  869. toktype = SentencePieceTokenTypes.NORMAL
  870. if tokenizer.IsUnknown(token_id):
  871. toktype = SentencePieceTokenTypes.UNKNOWN
  872. elif tokenizer.IsControl(token_id):
  873. toktype = SentencePieceTokenTypes.CONTROL
  874. elif tokenizer.IsUnused(token_id):
  875. toktype = SentencePieceTokenTypes.UNUSED
  876. elif tokenizer.IsByte(token_id):
  877. toktype = SentencePieceTokenTypes.BYTE
  878. tokens[token_id] = text
  879. scores[token_id] = score
  880. toktypes[token_id] = toktype
  881. added_tokens_file = self.dir_model / 'added_tokens.json'
  882. if added_tokens_file.is_file():
  883. with open(added_tokens_file, "r", encoding="utf-8") as f:
  884. added_tokens_json = json.load(f)
  885. for key in added_tokens_json:
  886. token_id = added_tokens_json[key]
  887. if token_id >= vocab_size:
  888. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  889. continue
  890. tokens[token_id] = key.encode("utf-8")
  891. scores[token_id] = -1000.0
  892. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  893. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  894. if tokenizer_config_file.is_file():
  895. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  896. tokenizer_config_json = json.load(f)
  897. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  898. for token_id, token_data in added_tokens_decoder.items():
  899. token_id = int(token_id)
  900. token: str = token_data["content"]
  901. if token_id >= vocab_size:
  902. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  903. continue
  904. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  905. if tokens[token_id] != token.encode("utf-8"):
  906. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  907. if token_data.get("special") or self.does_token_look_special(token):
  908. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  909. else:
  910. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  911. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  912. scores[token_id] = -1000.0
  913. tokens[token_id] = token.encode("utf-8")
  914. if vocab_size > len(tokens):
  915. pad_count = vocab_size - len(tokens)
  916. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  917. for i in range(1, pad_count + 1):
  918. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  919. scores.append(-1000.0)
  920. toktypes.append(SentencePieceTokenTypes.UNUSED)
  921. return tokens, scores, toktypes
  922. def _set_vocab_llama_hf(self):
  923. vocab = gguf.LlamaHfVocab(self.dir_model)
  924. tokens = []
  925. scores = []
  926. toktypes = []
  927. for text, score, toktype in vocab.all_tokens():
  928. tokens.append(text)
  929. scores.append(score)
  930. toktypes.append(toktype)
  931. assert len(tokens) == vocab.vocab_size
  932. self.gguf_writer.add_tokenizer_model("llama")
  933. self.gguf_writer.add_tokenizer_pre("default")
  934. self.gguf_writer.add_token_list(tokens)
  935. self.gguf_writer.add_token_scores(scores)
  936. self.gguf_writer.add_token_types(toktypes)
  937. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  938. special_vocab.add_to_gguf(self.gguf_writer)
  939. def _set_vocab_rwkv_world(self):
  940. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  941. vocab_size = self.hparams.get("vocab_size", 65536)
  942. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  943. toktypes: list[int] = [gguf.TokenType.CONTROL]
  944. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  945. lines = f.readlines()
  946. for line in lines:
  947. parts = line.split(' ')
  948. assert len(parts) >= 3
  949. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  950. token = token.encode("utf-8") if isinstance(token, str) else token
  951. assert isinstance(token, bytes)
  952. assert len(token) == token_len
  953. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  954. tokens.append(token_text.encode("utf-8"))
  955. toktypes.append(gguf.TokenType.NORMAL)
  956. remainder = vocab_size - len(tokens)
  957. assert remainder >= 0
  958. for i in range(len(tokens), vocab_size):
  959. tokens.append(f"[PAD{i}]".encode("utf-8"))
  960. toktypes.append(gguf.TokenType.UNUSED)
  961. self.gguf_writer.add_tokenizer_model("rwkv")
  962. self.gguf_writer.add_token_list(tokens)
  963. self.gguf_writer.add_token_types(toktypes)
  964. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  965. if special_vocab.chat_template is None:
  966. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  967. if template_path.is_file():
  968. with open(template_path, "r", encoding="utf-8") as f:
  969. template = f.read()
  970. else:
  971. template = "rwkv-world"
  972. special_vocab.chat_template = template
  973. # hack: Add '\n\n' as the EOT token to make it chat normally
  974. special_vocab._set_special_token("eot", 261)
  975. # hack: Override these as they have already been set (incorrectly)
  976. special_vocab.special_token_ids["bos"] = 0
  977. special_vocab.special_token_ids["eos"] = 0
  978. special_vocab.add_to_gguf(self.gguf_writer)
  979. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  980. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  981. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  982. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  983. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  984. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  985. assert field # tokenizer model
  986. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  987. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  988. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  989. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  990. assert field # token list
  991. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  992. if model_name == "llama-spm":
  993. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  994. assert field # token scores
  995. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  996. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  997. assert field # token types
  998. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  999. if model_name != "llama-spm":
  1000. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1001. assert field # token merges
  1002. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1003. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1004. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1005. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1006. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1007. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1008. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1009. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1010. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1011. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1012. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1013. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1014. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1015. def _try_set_pooling_type(self) -> None:
  1016. # get pooling path
  1017. pooling_path = None
  1018. module_path = self.dir_model / "modules.json"
  1019. if module_path.is_file():
  1020. with open(module_path, encoding="utf-8") as f:
  1021. modules = json.load(f)
  1022. for mod in modules:
  1023. if mod["type"] == "sentence_transformers.models.Pooling":
  1024. pooling_path = mod["path"]
  1025. break
  1026. # get pooling type
  1027. if pooling_path is not None:
  1028. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1029. pooling = json.load(f)
  1030. if pooling["pooling_mode_mean_tokens"]:
  1031. pooling_type = gguf.PoolingType.MEAN
  1032. elif pooling["pooling_mode_cls_token"]:
  1033. pooling_type = gguf.PoolingType.CLS
  1034. elif pooling["pooling_mode_lasttoken"]:
  1035. pooling_type = gguf.PoolingType.LAST
  1036. else:
  1037. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1038. self.gguf_writer.add_pooling_type(pooling_type)
  1039. def _set_vocab_interns1(self):
  1040. tokens: list[str] = []
  1041. toktypes: list[int] = []
  1042. from transformers import AutoTokenizer
  1043. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1044. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1045. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1046. assert max(vocab.values()) < vocab_size
  1047. tokpre = self.get_vocab_base_pre(tokenizer)
  1048. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1049. added_vocab = tokenizer.get_added_vocab()
  1050. added_tokens_decoder = tokenizer.added_tokens_decoder
  1051. for i in range(vocab_size):
  1052. if i not in reverse_vocab:
  1053. tokens.append(f"[PAD{i}]")
  1054. toktypes.append(gguf.TokenType.UNUSED)
  1055. else:
  1056. token: str = reverse_vocab[i]
  1057. if token in added_vocab:
  1058. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1059. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1060. if not added_tokens_decoder[i].normalized:
  1061. previous_token = token
  1062. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1063. if previous_token != token:
  1064. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1065. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1066. toktypes.append(gguf.TokenType.CONTROL)
  1067. else:
  1068. toktypes.append(gguf.TokenType.USER_DEFINED)
  1069. else:
  1070. toktypes.append(gguf.TokenType.NORMAL)
  1071. tokens.append(token)
  1072. self.gguf_writer.add_tokenizer_model("gpt2")
  1073. self.gguf_writer.add_tokenizer_pre(tokpre)
  1074. self.gguf_writer.add_token_list(tokens)
  1075. self.gguf_writer.add_token_types(toktypes)
  1076. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1077. special_vocab._set_special_token("bos", 151643)
  1078. special_vocab.add_to_gguf(self.gguf_writer)
  1079. class MmprojModel(ModelBase):
  1080. model_type = ModelType.MMPROJ
  1081. model_arch = gguf.MODEL_ARCH.MMPROJ
  1082. preprocessor_config: dict[str, Any]
  1083. global_config: dict[str, Any]
  1084. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1085. has_vision_encoder: bool = True # by default
  1086. has_audio_encoder: bool = False
  1087. # for models having multiple encoders, we need to separate their hparams
  1088. hparams_vision: dict[str, Any] | None = None
  1089. hparams_audio: dict[str, Any] | None = None
  1090. def __init__(self, *args, **kwargs):
  1091. super().__init__(*args, **kwargs)
  1092. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1093. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1094. # get n_embd of the text model
  1095. if not self.is_mistral_format:
  1096. if "text_config" not in self.hparams:
  1097. self.hparams["text_config"] = {}
  1098. if "audio_config" not in self.hparams:
  1099. self.hparams["audio_config"] = {}
  1100. text_config = {**self.hparams, **self.hparams["text_config"]}
  1101. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1102. else:
  1103. text_config = {
  1104. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1105. }
  1106. self.n_embd_text = text_config.get("hidden_dim", 0)
  1107. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1108. # move vision config to the top level, while preserving the original hparams in global_config
  1109. import copy
  1110. self.global_config = copy.deepcopy(self.hparams)
  1111. self.hparams_vision = self.get_vision_config()
  1112. self.hparams_audio = self.get_audio_config()
  1113. if self.hparams_vision is None and self.hparams_audio is None:
  1114. raise ValueError("vision_config / audio_config not found in hparams")
  1115. # for compat with vision-only models
  1116. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1117. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1118. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1119. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1120. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1121. # load preprocessor config
  1122. if not self.is_mistral_format:
  1123. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1124. self.preprocessor_config = json.load(f)
  1125. def get_vision_config(self) -> dict[str, Any] | None:
  1126. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1127. return self.global_config.get(config_name)
  1128. def get_audio_config(self) -> dict[str, Any] | None:
  1129. return self.global_config.get("audio_config")
  1130. def set_type(self):
  1131. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1132. def set_gguf_parameters(self):
  1133. self.gguf_writer.add_file_type(self.ftype)
  1134. if self.has_vision_encoder:
  1135. self.gguf_writer.add_clip_has_vision_encoder(True)
  1136. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1137. # vision config
  1138. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1139. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1140. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1141. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1142. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1143. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1144. # preprocessor config
  1145. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1146. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1147. self.gguf_writer.add_vision_image_mean(image_mean)
  1148. self.gguf_writer.add_vision_image_std(image_std)
  1149. if self.has_audio_encoder:
  1150. self.gguf_writer.add_clip_has_audio_encoder(True)
  1151. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1152. # audio config
  1153. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1154. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1155. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1156. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1157. if not self.has_vision_encoder and not self.has_audio_encoder:
  1158. raise ValueError("MmprojModel must have either vision or audio encoder")
  1159. def write_vocab(self):
  1160. raise ValueError("MmprojModel does not support vocab writing")
  1161. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1162. assert self.hparams_vision is not None
  1163. return self._find_param(self.hparams_vision, keys, optional)
  1164. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1165. assert self.hparams_audio is not None
  1166. return self._find_param(self.hparams_audio, keys, optional)
  1167. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1168. key = next((k for k in keys if k in obj), None)
  1169. if key is not None:
  1170. return obj[key]
  1171. if optional:
  1172. return None
  1173. raise KeyError(f"could not find any of: {keys}")
  1174. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1175. del bid, name, n_dims # unused
  1176. if ".patch_embd.weight" in new_name:
  1177. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1178. return False
  1179. @ModelBase.register("GPTNeoXForCausalLM")
  1180. class GPTNeoXModel(TextModel):
  1181. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1182. def set_gguf_parameters(self):
  1183. block_count = self.hparams["num_hidden_layers"]
  1184. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1185. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1186. self.gguf_writer.add_block_count(block_count)
  1187. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1188. self.gguf_writer.add_rope_dimension_count(
  1189. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1190. )
  1191. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1192. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1193. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1195. del bid # unused
  1196. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1197. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1198. tensors: list[tuple[str, Tensor]] = []
  1199. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1200. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1201. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1202. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1203. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1204. data_torch = torch.cat(
  1205. (
  1206. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1207. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1208. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1209. ),
  1210. dim=0,
  1211. )
  1212. logger.info("re-format attention.linear_qkv.weight")
  1213. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1214. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1215. data_torch = torch.cat(
  1216. (
  1217. qkv_bias[:, 0, :].reshape((n_embed,)),
  1218. qkv_bias[:, 1, :].reshape((n_embed,)),
  1219. qkv_bias[:, 2, :].reshape((n_embed,)),
  1220. ),
  1221. dim=0,
  1222. )
  1223. logger.info("re-format attention.linear_qkv.bias")
  1224. tensors.append((self.map_tensor_name(name), data_torch))
  1225. return tensors
  1226. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1227. class BloomModel(TextModel):
  1228. model_arch = gguf.MODEL_ARCH.BLOOM
  1229. def set_gguf_parameters(self):
  1230. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1231. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1232. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1233. self.gguf_writer.add_embedding_length(n_embed)
  1234. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1235. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1236. self.gguf_writer.add_head_count(n_head)
  1237. self.gguf_writer.add_head_count_kv(n_head)
  1238. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1239. self.gguf_writer.add_file_type(self.ftype)
  1240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1241. del bid # unused
  1242. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1243. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1244. name = re.sub(r'transformer\.', '', name)
  1245. tensors: list[tuple[str, Tensor]] = []
  1246. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1247. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1248. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1249. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1250. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1251. data_torch = torch.cat(
  1252. (
  1253. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1254. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1255. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1256. ),
  1257. dim=0,
  1258. )
  1259. logger.info("re-format attention.linear_qkv.weight")
  1260. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1261. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1262. data_torch = torch.cat(
  1263. (
  1264. qkv_bias[:, 0, :].reshape((n_embed,)),
  1265. qkv_bias[:, 1, :].reshape((n_embed,)),
  1266. qkv_bias[:, 2, :].reshape((n_embed,)),
  1267. ),
  1268. dim=0,
  1269. )
  1270. logger.info("re-format attention.linear_qkv.bias")
  1271. tensors.append((self.map_tensor_name(name), data_torch))
  1272. return tensors
  1273. @ModelBase.register("MPTForCausalLM")
  1274. class MPTModel(TextModel):
  1275. model_arch = gguf.MODEL_ARCH.MPT
  1276. def set_vocab(self):
  1277. try:
  1278. self._set_vocab_gpt2()
  1279. except Exception:
  1280. # Fallback for SEA-LION model
  1281. self._set_vocab_sentencepiece()
  1282. self.gguf_writer.add_add_bos_token(False)
  1283. self.gguf_writer.add_pad_token_id(3)
  1284. self.gguf_writer.add_eos_token_id(1)
  1285. self.gguf_writer.add_unk_token_id(0)
  1286. def set_gguf_parameters(self):
  1287. block_count = self.hparams["n_layers"]
  1288. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1289. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1290. self.gguf_writer.add_block_count(block_count)
  1291. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1292. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1293. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1294. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1295. self.gguf_writer.add_layer_norm_eps(1e-5)
  1296. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1297. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1298. if self.hparams["attn_config"]["alibi"]:
  1299. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1300. else:
  1301. self.gguf_writer.add_max_alibi_bias(0.0)
  1302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1303. del bid # unused
  1304. if "scales" in name:
  1305. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1306. new_name = new_name.replace("scales", "act.scales")
  1307. else:
  1308. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1309. return [(new_name, data_torch)]
  1310. @ModelBase.register("OrionForCausalLM")
  1311. class OrionModel(TextModel):
  1312. model_arch = gguf.MODEL_ARCH.ORION
  1313. def set_vocab(self):
  1314. self._set_vocab_sentencepiece()
  1315. def set_gguf_parameters(self):
  1316. block_count = self.hparams["num_hidden_layers"]
  1317. head_count = self.hparams["num_attention_heads"]
  1318. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1319. ctx_length = 0
  1320. if "max_sequence_length" in self.hparams:
  1321. ctx_length = self.hparams["max_sequence_length"]
  1322. elif "max_position_embeddings" in self.hparams:
  1323. ctx_length = self.hparams["max_position_embeddings"]
  1324. elif "model_max_length" in self.hparams:
  1325. ctx_length = self.hparams["model_max_length"]
  1326. else:
  1327. raise ValueError("gguf: can not find ctx length parameter.")
  1328. self.gguf_writer.add_file_type(self.ftype)
  1329. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1330. self.gguf_writer.add_context_length(ctx_length)
  1331. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1332. self.gguf_writer.add_block_count(block_count)
  1333. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1334. self.gguf_writer.add_head_count(head_count)
  1335. self.gguf_writer.add_head_count_kv(head_count_kv)
  1336. # note: config provides rms norm but it is actually layer norm
  1337. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1338. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1339. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1340. class BaichuanModel(TextModel):
  1341. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1342. def set_vocab(self):
  1343. self._set_vocab_sentencepiece()
  1344. def set_gguf_parameters(self):
  1345. block_count = self.hparams["num_hidden_layers"]
  1346. head_count = self.hparams["num_attention_heads"]
  1347. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1348. ctx_length = 0
  1349. if "max_sequence_length" in self.hparams:
  1350. ctx_length = self.hparams["max_sequence_length"]
  1351. elif "max_position_embeddings" in self.hparams:
  1352. ctx_length = self.hparams["max_position_embeddings"]
  1353. elif "model_max_length" in self.hparams:
  1354. ctx_length = self.hparams["model_max_length"]
  1355. else:
  1356. raise ValueError("gguf: can not find ctx length parameter.")
  1357. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1358. self.gguf_writer.add_context_length(ctx_length)
  1359. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1360. self.gguf_writer.add_block_count(block_count)
  1361. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1362. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1363. self.gguf_writer.add_head_count(head_count)
  1364. self.gguf_writer.add_head_count_kv(head_count_kv)
  1365. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1366. self.gguf_writer.add_file_type(self.ftype)
  1367. rope_scaling = self.hparams.get("rope_scaling") or {}
  1368. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1369. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1370. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1371. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1372. head_count = self.hparams["num_attention_heads"]
  1373. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1374. tensors: list[tuple[str, Tensor]] = []
  1375. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1376. logger.info(f"Unpacking and permuting layer {bid}")
  1377. tensors = [
  1378. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1379. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1380. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1381. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1382. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1383. self._reverse_hf_part(data_torch, 2)),
  1384. ]
  1385. else:
  1386. tensors = [(self.map_tensor_name(name), data_torch)]
  1387. return tensors
  1388. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1389. if n_kv_head is not None and n_head != n_kv_head:
  1390. n_head //= n_kv_head
  1391. return (
  1392. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1393. .swapaxes(1, 2)
  1394. .reshape(weights.shape)
  1395. )
  1396. def _reverse_hf_permute_part(
  1397. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1398. ) -> Tensor:
  1399. r = weights.shape[0] // 3
  1400. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1401. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1402. r = weights.shape[0] // 3
  1403. return weights[r * n_part:r * n_part + r, ...]
  1404. @ModelBase.register("XverseForCausalLM")
  1405. class XverseModel(TextModel):
  1406. model_arch = gguf.MODEL_ARCH.XVERSE
  1407. def set_vocab(self):
  1408. assert (self.dir_model / "tokenizer.json").is_file()
  1409. dir_model = self.dir_model
  1410. hparams = self.hparams
  1411. tokens: list[bytes] = []
  1412. toktypes: list[int] = []
  1413. from transformers import AutoTokenizer
  1414. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1415. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1416. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1417. # because vocab_size is the count of items, and indexes start at 0.
  1418. max_vocab_index = max(tokenizer.get_vocab().values())
  1419. if max_vocab_index >= vocab_size:
  1420. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1421. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1422. added_vocab = tokenizer.get_added_vocab()
  1423. for token_id in range(vocab_size):
  1424. token_text = reverse_vocab[token_id].encode('utf-8')
  1425. # replace "\x00" to string with length > 0
  1426. if token_text == b"\x00":
  1427. toktype = gguf.TokenType.BYTE # special
  1428. token_text = f"<{token_text}>".encode('utf-8')
  1429. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1430. toktype = gguf.TokenType.BYTE # special
  1431. elif reverse_vocab[token_id] in added_vocab:
  1432. if tokenizer.added_tokens_decoder[token_id].special:
  1433. toktype = gguf.TokenType.CONTROL
  1434. else:
  1435. toktype = gguf.TokenType.USER_DEFINED
  1436. else:
  1437. toktype = gguf.TokenType.NORMAL
  1438. tokens.append(token_text)
  1439. toktypes.append(toktype)
  1440. self.gguf_writer.add_tokenizer_model("llama")
  1441. self.gguf_writer.add_tokenizer_pre("default")
  1442. self.gguf_writer.add_token_list(tokens)
  1443. self.gguf_writer.add_token_types(toktypes)
  1444. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1445. special_vocab.add_to_gguf(self.gguf_writer)
  1446. def set_gguf_parameters(self):
  1447. block_count = self.hparams["num_hidden_layers"]
  1448. head_count = self.hparams["num_attention_heads"]
  1449. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1450. ctx_length = 0
  1451. if "max_sequence_length" in self.hparams:
  1452. ctx_length = self.hparams["max_sequence_length"]
  1453. elif "max_position_embeddings" in self.hparams:
  1454. ctx_length = self.hparams["max_position_embeddings"]
  1455. elif "model_max_length" in self.hparams:
  1456. ctx_length = self.hparams["model_max_length"]
  1457. else:
  1458. raise ValueError("gguf: can not find ctx length parameter.")
  1459. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1460. self.gguf_writer.add_context_length(ctx_length)
  1461. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1462. self.gguf_writer.add_block_count(block_count)
  1463. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1464. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1465. self.gguf_writer.add_head_count(head_count)
  1466. self.gguf_writer.add_head_count_kv(head_count_kv)
  1467. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1468. self.gguf_writer.add_file_type(self.ftype)
  1469. rope_scaling = self.hparams.get("rope_scaling") or {}
  1470. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1471. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1472. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1474. del bid # unused
  1475. head_count = self.hparams["num_attention_heads"]
  1476. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1477. # HF models permute some of the tensors, so we need to undo that
  1478. if name.endswith("q_proj.weight"):
  1479. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1480. if name.endswith("k_proj.weight"):
  1481. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1482. return [(self.map_tensor_name(name), data_torch)]
  1483. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1484. if n_kv_head is not None and n_head != n_kv_head:
  1485. n_head //= n_kv_head
  1486. return (
  1487. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1488. .swapaxes(1, 2)
  1489. .reshape(weights.shape)
  1490. )
  1491. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1492. class FalconModel(TextModel):
  1493. model_arch = gguf.MODEL_ARCH.FALCON
  1494. def set_gguf_parameters(self):
  1495. block_count = self.hparams.get("num_hidden_layers")
  1496. if block_count is None:
  1497. block_count = self.hparams["n_layer"] # old name
  1498. n_head = self.hparams.get("num_attention_heads")
  1499. if n_head is None:
  1500. n_head = self.hparams["n_head"] # old name
  1501. n_head_kv = self.hparams.get("num_kv_heads")
  1502. if n_head_kv is None:
  1503. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1504. self.gguf_writer.add_context_length(2048) # not in config.json
  1505. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1506. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1507. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1508. self.gguf_writer.add_block_count(block_count)
  1509. self.gguf_writer.add_head_count(n_head)
  1510. self.gguf_writer.add_head_count_kv(n_head_kv)
  1511. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1512. self.gguf_writer.add_file_type(self.ftype)
  1513. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1514. del bid # unused
  1515. # QKV tensor transform
  1516. # The original query_key_value tensor contains n_head_kv "kv groups",
  1517. # each consisting of n_head/n_head_kv query weights followed by one key
  1518. # and one value weight (shared by all query heads in the kv group).
  1519. # This layout makes it a big pain to work with in GGML.
  1520. # So we rearrange them here,, so that we have n_head query weights
  1521. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1522. # in contiguous fashion.
  1523. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1524. if "query_key_value" in name:
  1525. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1526. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1527. head_dim = self.hparams["hidden_size"] // n_head
  1528. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1529. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1530. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1531. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1532. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1533. return [(self.map_tensor_name(name), data_torch)]
  1534. @ModelBase.register("GPTBigCodeForCausalLM")
  1535. class StarCoderModel(TextModel):
  1536. model_arch = gguf.MODEL_ARCH.STARCODER
  1537. def set_gguf_parameters(self):
  1538. block_count = self.hparams["n_layer"]
  1539. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1540. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1541. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1542. self.gguf_writer.add_block_count(block_count)
  1543. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1544. self.gguf_writer.add_head_count_kv(1)
  1545. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1546. self.gguf_writer.add_file_type(self.ftype)
  1547. @ModelBase.register("GPTRefactForCausalLM")
  1548. class RefactModel(TextModel):
  1549. model_arch = gguf.MODEL_ARCH.REFACT
  1550. def set_vocab(self):
  1551. super().set_vocab()
  1552. # TODO: how to determine special FIM tokens automatically?
  1553. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1554. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1555. special_vocab._set_special_token("prefix", 1)
  1556. special_vocab._set_special_token("suffix", 3)
  1557. special_vocab._set_special_token("middle", 2)
  1558. special_vocab.chat_template = None # do not add it twice
  1559. special_vocab.add_to_gguf(self.gguf_writer)
  1560. def set_gguf_parameters(self):
  1561. hidden_dim = self.hparams["n_embd"]
  1562. inner_dim = 4 * hidden_dim
  1563. hidden_dim = int(2 * inner_dim / 3)
  1564. multiple_of = 256
  1565. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1566. block_count = self.hparams["n_layer"]
  1567. # refact uses Alibi. So this is from config.json which might be used by training.
  1568. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1569. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1570. self.gguf_writer.add_feed_forward_length(ff_dim)
  1571. self.gguf_writer.add_block_count(block_count)
  1572. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1573. self.gguf_writer.add_head_count_kv(1)
  1574. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1575. self.gguf_writer.add_file_type(self.ftype)
  1576. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1577. hidden_dim = self.hparams["n_embd"]
  1578. inner_dim = 4 * hidden_dim
  1579. hidden_dim = int(2 * inner_dim / 3)
  1580. multiple_of = 256
  1581. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1582. n_head = self.hparams["n_head"]
  1583. n_head_kv = 1
  1584. head_dim = self.hparams["n_embd"] // n_head
  1585. tensors: list[tuple[str, Tensor]] = []
  1586. if bid is not None:
  1587. if name == f"transformer.h.{bid}.attn.kv.weight":
  1588. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1589. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1590. elif name == f"transformer.h.{bid}.attn.q.weight":
  1591. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1592. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1593. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1594. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1595. if len(tensors) == 0:
  1596. tensors.append((self.map_tensor_name(name), data_torch))
  1597. return tensors
  1598. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1599. class StableLMModel(TextModel):
  1600. model_arch = gguf.MODEL_ARCH.STABLELM
  1601. def set_vocab(self):
  1602. if (self.dir_model / "tokenizer.json").is_file():
  1603. self._set_vocab_gpt2()
  1604. else:
  1605. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1606. self._set_vocab_qwen()
  1607. def set_gguf_parameters(self):
  1608. hparams = self.hparams
  1609. block_count = hparams["num_hidden_layers"]
  1610. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1611. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1612. self.gguf_writer.add_block_count(block_count)
  1613. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1614. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1615. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1616. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1617. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1618. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1619. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1620. self.gguf_writer.add_file_type(self.ftype)
  1621. _q_norms: list[dict[str, Tensor]] | None = None
  1622. _k_norms: list[dict[str, Tensor]] | None = None
  1623. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1624. n_head = self.hparams["num_attention_heads"]
  1625. n_kv_head = self.hparams["num_key_value_heads"]
  1626. if name.find("q_layernorm.norms") != -1:
  1627. assert bid is not None
  1628. if self._q_norms is None:
  1629. self._q_norms = [{} for _ in range(self.block_count)]
  1630. self._q_norms[bid][name] = data_torch
  1631. if len(self._q_norms[bid]) >= n_head:
  1632. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1633. else:
  1634. return []
  1635. if name.find("k_layernorm.norms") != -1:
  1636. assert bid is not None
  1637. if self._k_norms is None:
  1638. self._k_norms = [{} for _ in range(self.block_count)]
  1639. self._k_norms[bid][name] = data_torch
  1640. if len(self._k_norms[bid]) >= n_kv_head:
  1641. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1642. else:
  1643. return []
  1644. return [(self.map_tensor_name(name), data_torch)]
  1645. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1646. datas: list[Tensor] = []
  1647. # extract the norms in order
  1648. for xid in range(n_head):
  1649. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1650. datas.append(norms[ename])
  1651. del norms[ename]
  1652. data_torch = torch.stack(datas, dim=0)
  1653. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1654. new_name = self.map_tensor_name(merged_name)
  1655. return [(new_name, data_torch)]
  1656. def prepare_tensors(self):
  1657. super().prepare_tensors()
  1658. if self._q_norms is not None or self._k_norms is not None:
  1659. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1660. norms = (
  1661. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1662. ) + (
  1663. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1664. )
  1665. if len(norms) > 0:
  1666. raise ValueError(f"Unprocessed norms: {norms}")
  1667. @ModelBase.register(
  1668. "LLaMAForCausalLM",
  1669. "LlamaForCausalLM",
  1670. "MistralForCausalLM",
  1671. "MixtralForCausalLM",
  1672. "VLlama3ForCausalLM",
  1673. "LlavaForConditionalGeneration",
  1674. "VoxtralForConditionalGeneration",
  1675. "LlamaModel")
  1676. class LlamaModel(TextModel):
  1677. model_arch = gguf.MODEL_ARCH.LLAMA
  1678. undo_permute = True
  1679. def __init__(self, *args, **kwargs):
  1680. super().__init__(*args, **kwargs)
  1681. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1682. if self.hf_arch == "VLlama3ForCausalLM":
  1683. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1684. def _set_vocab_mistral(self):
  1685. vocab = MistralVocab(self.dir_model)
  1686. logger.info(
  1687. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1688. )
  1689. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1690. tokens = []
  1691. scores = []
  1692. toktypes = []
  1693. for text, score, toktype in vocab.all_tokens():
  1694. tokens.append(text)
  1695. scores.append(score)
  1696. toktypes.append(toktype)
  1697. assert len(tokens) == vocab.vocab_size, (
  1698. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1699. )
  1700. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1701. self.gguf_writer.add_tokenizer_pre("tekken")
  1702. self.gguf_writer.add_token_merges(
  1703. vocab.extract_vocab_merges_from_model()
  1704. )
  1705. logger.info(
  1706. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1707. )
  1708. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1709. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1710. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1711. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1712. self.gguf_writer.add_token_list(tokens)
  1713. self.gguf_writer.add_token_scores(scores)
  1714. self.gguf_writer.add_token_types(toktypes)
  1715. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1716. self.gguf_writer.add_add_bos_token(True)
  1717. self.gguf_writer.add_add_eos_token(False)
  1718. template_dir = Path(__file__).parent / "models/templates/"
  1719. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1720. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1721. if self.is_mistral_format:
  1722. logger.info(
  1723. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1724. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1725. )
  1726. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1727. self.gguf_writer.add_chat_template(template)
  1728. else:
  1729. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1730. def set_vocab(self):
  1731. if self.is_mistral_format:
  1732. return self._set_vocab_mistral()
  1733. path_tekken_json = self.dir_model / "tekken.json"
  1734. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1735. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1736. self._set_vocab_mistral()
  1737. try:
  1738. self._set_vocab_sentencepiece()
  1739. except FileNotFoundError:
  1740. try:
  1741. self._set_vocab_llama_hf()
  1742. except (FileNotFoundError, TypeError):
  1743. # Llama 3
  1744. self._set_vocab_gpt2()
  1745. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1746. if self.hparams.get("vocab_size", 32000) == 32016:
  1747. special_vocab = gguf.SpecialVocab(
  1748. self.dir_model, load_merges=False,
  1749. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1750. )
  1751. special_vocab._set_special_token("prefix", 32007)
  1752. special_vocab._set_special_token("suffix", 32008)
  1753. special_vocab._set_special_token("middle", 32009)
  1754. special_vocab._set_special_token("eot", 32010)
  1755. special_vocab.add_to_gguf(self.gguf_writer)
  1756. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1757. if tokenizer_config_file.is_file():
  1758. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1759. tokenizer_config_json = json.load(f)
  1760. if "add_prefix_space" in tokenizer_config_json:
  1761. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1762. # Apply to granite small models only
  1763. if self.hparams.get("vocab_size", 32000) == 49152:
  1764. self.gguf_writer.add_add_bos_token(False)
  1765. def set_gguf_parameters(self):
  1766. super().set_gguf_parameters()
  1767. hparams = self.hparams
  1768. if not self.is_mistral_format:
  1769. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1770. if (rope_dim := hparams.get("head_dim")) is None:
  1771. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1772. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1773. rope_scaling = self.hparams.get("rope_scaling") or {}
  1774. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1775. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1776. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1777. @staticmethod
  1778. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1779. if n_head_kv is not None and n_head != n_head_kv:
  1780. n_head = n_head_kv
  1781. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1782. .swapaxes(1, 2)
  1783. .reshape(weights.shape))
  1784. _experts: list[dict[str, Tensor]] | None = None
  1785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1786. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1787. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1788. vision_prefixes = [
  1789. "vision_encoder.",
  1790. "vision_language_adapter.",
  1791. "patch_merger.",
  1792. "pre_mm_projector_norm",
  1793. ]
  1794. is_multimodal_tensor = "vision_tower" in name \
  1795. or "vision_model" in name \
  1796. or "audio_tower" in name \
  1797. or "model.connector" in name \
  1798. or "multi_modal_projector" in name \
  1799. or any(
  1800. name.startswith(prefix)
  1801. for prefix in vision_prefixes
  1802. )
  1803. if is_multimodal_tensor:
  1804. return [] # skip vision tensors
  1805. elif self.hf_arch == "LlamaModel":
  1806. name = "model." + name
  1807. elif name.startswith("model.text_model"):
  1808. name = name.replace("text_model.", "") # for SmolVLM
  1809. elif name.startswith("language_model."):
  1810. name = name.replace("language_model.", "") # for the rest
  1811. if self.undo_permute:
  1812. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1813. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1814. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1815. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1816. # process the experts separately
  1817. if name.find("block_sparse_moe.experts") != -1:
  1818. n_experts = self.hparams["num_local_experts"]
  1819. assert bid is not None
  1820. if self._experts is None:
  1821. self._experts = [{} for _ in range(self.block_count)]
  1822. self._experts[bid][name] = data_torch
  1823. if len(self._experts[bid]) >= n_experts * 3:
  1824. tensors: list[tuple[str, Tensor]] = []
  1825. # merge the experts into a single 3d tensor
  1826. for wid in ["w1", "w2", "w3"]:
  1827. datas: list[Tensor] = []
  1828. for xid in range(n_experts):
  1829. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1830. datas.append(self._experts[bid][ename])
  1831. del self._experts[bid][ename]
  1832. data_torch = torch.stack(datas, dim=0)
  1833. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1834. new_name = self.map_tensor_name(merged_name)
  1835. tensors.append((new_name, data_torch))
  1836. return tensors
  1837. else:
  1838. return []
  1839. return [(self.map_tensor_name(name), data_torch)]
  1840. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1841. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1842. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1843. base = self.hparams.get("rope_theta", 10000.0)
  1844. if (dim := self.hparams.get("head_dim")) is None:
  1845. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1846. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1847. factor = rope_scaling.get("factor", 8.0)
  1848. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1849. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1850. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1851. low_freq_wavelen = old_context_len / low_freq_factor
  1852. high_freq_wavelen = old_context_len / high_freq_factor
  1853. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1854. rope_factors = []
  1855. for freq in freqs:
  1856. wavelen = 2 * math.pi / freq
  1857. if wavelen < high_freq_wavelen:
  1858. rope_factors.append(1)
  1859. elif wavelen > low_freq_wavelen:
  1860. rope_factors.append(factor)
  1861. else:
  1862. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1863. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1864. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1865. def prepare_tensors(self):
  1866. super().prepare_tensors()
  1867. if self._experts is not None:
  1868. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1869. experts = [k for d in self._experts for k in d.keys()]
  1870. if len(experts) > 0:
  1871. raise ValueError(f"Unprocessed experts: {experts}")
  1872. @ModelBase.register("ArceeForCausalLM")
  1873. class ArceeModel(LlamaModel):
  1874. model_arch = gguf.MODEL_ARCH.ARCEE
  1875. def set_gguf_parameters(self):
  1876. super().set_gguf_parameters()
  1877. self._try_set_pooling_type()
  1878. rope_scaling = self.hparams.get("rope_scaling") or {}
  1879. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1880. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1881. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1882. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1883. @ModelBase.register(
  1884. "LlavaForConditionalGeneration", # pixtral
  1885. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1886. )
  1887. class LlavaVisionModel(MmprojModel):
  1888. img_break_tok_id = -1
  1889. def __init__(self, *args, **kwargs):
  1890. super().__init__(*args, **kwargs)
  1891. if self.hparams.get("model_type") == "pixtral":
  1892. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1893. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1894. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1895. elif self.is_mistral_format:
  1896. # hparams is already vision config here so norm_eps is only defined in global_config.
  1897. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1898. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1899. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1900. else:
  1901. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1902. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1903. def get_token_id(self, token: str) -> int:
  1904. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1905. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1906. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1907. for id_, token_data in added_tokens_decoder.items():
  1908. if token_data["content"] == token:
  1909. return int(id_)
  1910. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1911. def set_gguf_parameters(self):
  1912. super().set_gguf_parameters()
  1913. hparams = self.hparams
  1914. if hparams.get("model_type") == "pixtral":
  1915. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1916. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1917. # hidden_act
  1918. if hparams["hidden_act"] == "silu":
  1919. self.gguf_writer.add_vision_use_silu(True)
  1920. elif hparams["hidden_act"] == "gelu":
  1921. self.gguf_writer.add_vision_use_gelu(True)
  1922. else:
  1923. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1924. # spatial_merge_size
  1925. if "spatial_merge_size" in self.global_config:
  1926. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1928. del bid # unused
  1929. n_head = (
  1930. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1931. )
  1932. n_kv_head = n_head
  1933. valid_prefixes = (
  1934. "multi_modal_projector.",
  1935. "vision_tower.",
  1936. "vision_encoder.",
  1937. "vision_language_adapter.",
  1938. "patch_merger.",
  1939. "pre_mm_projector_norm",
  1940. )
  1941. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1942. # process vision tensors
  1943. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1944. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1945. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1946. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1947. return [(self.map_tensor_name(name), data_torch)]
  1948. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1949. if self.img_break_tok_id > 0 and embed_key in name:
  1950. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1951. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1952. img_break_embd = data_torch[self.img_break_tok_id]
  1953. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1954. return [(self.map_tensor_name(name), img_break_embd)]
  1955. return [] # skip other tensors
  1956. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1957. class SmolVLMModel(MmprojModel):
  1958. def __init__(self, *args, **kwargs):
  1959. super().__init__(*args, **kwargs)
  1960. if self.hparams["model_type"] == "smolvlm_vision":
  1961. # fix for SmolVLM2, missing some keys in config.json
  1962. # default values are taken from transformers code
  1963. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1964. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1965. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1966. def set_gguf_parameters(self):
  1967. super().set_gguf_parameters()
  1968. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1969. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1970. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1971. self.gguf_writer.add_vision_use_gelu(True)
  1972. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1973. if ".embeddings." in name:
  1974. return gguf.GGMLQuantizationType.F32
  1975. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1977. del bid # unused
  1978. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1979. if is_vision_tensor:
  1980. return [(self.map_tensor_name(name), data_torch)]
  1981. return [] # skip other tensors
  1982. @ModelBase.register("Llama4ForConditionalGeneration")
  1983. class Llama4Model(LlamaModel):
  1984. model_arch = gguf.MODEL_ARCH.LLAMA4
  1985. undo_permute = False
  1986. def __init__(self, *args, **kwargs):
  1987. super().__init__(*args, **kwargs)
  1988. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1989. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1990. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1991. def set_vocab(self):
  1992. self._set_vocab_gpt2()
  1993. def set_gguf_parameters(self):
  1994. super().set_gguf_parameters()
  1995. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1996. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1998. if name.startswith("language_model."):
  1999. name = name.replace("language_model.", "")
  2000. # split the gate_up into gate and up
  2001. if "gate_up_proj" in name:
  2002. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2003. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2004. dim_half = data_torch.shape[-1] // 2
  2005. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2006. return [
  2007. (self.map_tensor_name(name_gate), gate_proj_weight),
  2008. (self.map_tensor_name(name_up), up_proj_weight)
  2009. ]
  2010. if name.endswith("down_proj"):
  2011. name += ".weight"
  2012. data_torch = data_torch.transpose(-1, -2)
  2013. if "multi_modal_projector" in name or "vision_model" in name:
  2014. return []
  2015. return super().modify_tensors(data_torch, name, bid)
  2016. @ModelBase.register("Llama4ForConditionalGeneration")
  2017. class Llama4VisionModel(MmprojModel):
  2018. def set_gguf_parameters(self):
  2019. super().set_gguf_parameters()
  2020. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2021. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2022. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2023. assert self.hparams["hidden_act"] == "gelu"
  2024. self.gguf_writer.add_vision_use_gelu(True)
  2025. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2026. del bid # unused
  2027. if "multi_modal_projector" in name or "vision_model" in name:
  2028. # process vision tensors
  2029. if "positional_embedding_vlm" in name and ".weight" not in name:
  2030. name += ".weight"
  2031. if "multi_modal_projector.linear_1" in name:
  2032. # despite the name with number postfix, this is a single fully connected layer
  2033. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2034. return [(self.map_tensor_name(name), data_torch)]
  2035. return []
  2036. @ModelBase.register("Mistral3ForConditionalGeneration")
  2037. class Mistral3Model(LlamaModel):
  2038. model_arch = gguf.MODEL_ARCH.LLAMA
  2039. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2040. name = name.replace("language_model.", "")
  2041. if "multi_modal_projector" in name or "vision_tower" in name:
  2042. return []
  2043. return super().modify_tensors(data_torch, name, bid)
  2044. @ModelBase.register("DeciLMForCausalLM")
  2045. class DeciModel(TextModel):
  2046. model_arch = gguf.MODEL_ARCH.DECI
  2047. @staticmethod
  2048. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2049. # DeciLM-specific code
  2050. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2051. return DeciModel._find_multiple(intermediate_size, 256)
  2052. @staticmethod
  2053. def _find_multiple(n: int, k: int) -> int:
  2054. # DeciLM-specific code
  2055. if n % k == 0:
  2056. return n
  2057. return n + k - (n % k)
  2058. def __init__(self, *args, **kwargs):
  2059. super().__init__(*args, **kwargs)
  2060. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2061. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2062. assert self.block_count == len(_block_configs)
  2063. self._num_kv_heads = list()
  2064. self._num_heads = list()
  2065. _ffn_multipliers = list()
  2066. # ***linear attention layer***
  2067. # if n_heads_in_group is None and replace_with_linear is True
  2068. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2069. # ***attention-free layer***
  2070. # if n_heads_in_group is None and replace_with_linear is False
  2071. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2072. # ***normal attention-layer***
  2073. # if n_heads_in_group is not None, then
  2074. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2075. # _num_heads[il] is num_attention_head
  2076. # ***dummy layer*** for nemotron 253B
  2077. # if n_heads_in_group is None and ffn_mult is None
  2078. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2079. for il in range(len(_block_configs)):
  2080. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2081. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2082. self._num_kv_heads.append(0)
  2083. self._num_heads.append(self.hparams["num_attention_heads"])
  2084. else:
  2085. self._num_kv_heads.append(0)
  2086. self._num_heads.append(0)
  2087. else:
  2088. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2089. self._num_heads.append(self.hparams["num_attention_heads"])
  2090. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2091. _ffn_multipliers.append(0.0)
  2092. else:
  2093. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2094. assert self.block_count == len(self._num_kv_heads)
  2095. assert self.block_count == len(self._num_heads)
  2096. assert self.block_count == len(_ffn_multipliers)
  2097. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2098. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2099. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2100. self._ffn_dims: list[int] = [
  2101. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2102. for multiplier in _ffn_multipliers
  2103. ]
  2104. def set_vocab(self):
  2105. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2106. # eos_token from '|eot_id|' to '|end_of_text|'
  2107. if self.hparams.get("vocab_size", 128256) == 128256:
  2108. tokens, toktypes, tokpre = self.get_vocab_base()
  2109. self.gguf_writer.add_tokenizer_model("gpt2")
  2110. self.gguf_writer.add_tokenizer_pre(tokpre)
  2111. self.gguf_writer.add_token_list(tokens)
  2112. self.gguf_writer.add_token_types(toktypes)
  2113. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2114. special_vocab.add_to_gguf(self.gguf_writer)
  2115. else:
  2116. # DeciLM-7B
  2117. self._set_vocab_llama_hf()
  2118. def set_gguf_parameters(self):
  2119. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2120. assert self.block_count == len(self._num_kv_heads)
  2121. assert self.block_count == len(self._num_heads)
  2122. assert self.block_count == len(self._ffn_dims)
  2123. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2124. self.gguf_writer.add_rope_freq_base(rope_theta)
  2125. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2126. self.gguf_writer.add_head_count(self._num_heads)
  2127. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2128. self.gguf_writer.add_block_count(self.block_count)
  2129. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2130. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2131. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2132. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2133. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2134. self.gguf_writer.add_file_type(self.ftype)
  2135. else: # DeciLM-7B
  2136. super().set_gguf_parameters()
  2137. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2138. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2139. assert self.block_count == len(self._num_kv_heads)
  2140. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2141. hparams = self.hparams
  2142. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2143. if (rope_dim := hparams.get("head_dim")) is None:
  2144. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2145. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2146. rope_scaling = self.hparams.get("rope_scaling") or {}
  2147. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2148. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2149. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2150. @staticmethod
  2151. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2152. if n_head_kv is not None and n_head != n_head_kv:
  2153. n_head = n_head_kv
  2154. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2155. .swapaxes(1, 2)
  2156. .reshape(weights.shape))
  2157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2158. n_head = self.hparams["num_attention_heads"]
  2159. if bid is not None:
  2160. if "num_key_value_heads_per_layer" in self.hparams:
  2161. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2162. elif "block_configs" in self.hparams:
  2163. n_kv_head = self._num_kv_heads[bid]
  2164. n_head = self._num_heads[bid]
  2165. else:
  2166. n_kv_head = self.hparams.get("num_key_value_heads")
  2167. else:
  2168. n_kv_head = self.hparams.get("num_key_value_heads")
  2169. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2170. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2171. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2172. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2173. return [(self.map_tensor_name(name), data_torch)]
  2174. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2175. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2176. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2177. base = self.hparams.get("rope_theta", 10000.0)
  2178. if (dim := self.hparams.get("head_dim")) is None:
  2179. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2180. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2181. factor = rope_scaling.get("factor", 8.0)
  2182. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2183. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2184. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2185. low_freq_wavelen = old_context_len / low_freq_factor
  2186. high_freq_wavelen = old_context_len / high_freq_factor
  2187. assert low_freq_wavelen != high_freq_wavelen
  2188. rope_factors = []
  2189. for freq in freqs:
  2190. wavelen = 2 * math.pi / freq
  2191. if wavelen < high_freq_wavelen:
  2192. rope_factors.append(1)
  2193. elif wavelen > low_freq_wavelen:
  2194. rope_factors.append(factor)
  2195. else:
  2196. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2197. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2198. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2199. def prepare_tensors(self):
  2200. super().prepare_tensors()
  2201. @ModelBase.register("BitnetForCausalLM")
  2202. class BitnetModel(TextModel):
  2203. model_arch = gguf.MODEL_ARCH.BITNET
  2204. def set_vocab(self):
  2205. self._set_vocab_sentencepiece()
  2206. def set_gguf_parameters(self):
  2207. super().set_gguf_parameters()
  2208. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2209. self.gguf_writer.add_rope_scaling_factor(1.0)
  2210. def weight_quant(self, weight: Tensor) -> Tensor:
  2211. dtype = weight.dtype
  2212. weight = weight.float()
  2213. scale = weight.abs().mean().clamp(min=1e-5)
  2214. iscale = 1 / scale
  2215. # TODO: multiply by the scale directly instead of inverting it twice
  2216. # (this is also unnecessarily doubly inverted upstream)
  2217. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2218. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2219. return result.type(dtype)
  2220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2221. new_name = self.map_tensor_name(name)
  2222. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2223. gguf.MODEL_TENSOR.ATTN_Q,
  2224. gguf.MODEL_TENSOR.ATTN_K,
  2225. gguf.MODEL_TENSOR.ATTN_V,
  2226. gguf.MODEL_TENSOR.ATTN_OUT,
  2227. gguf.MODEL_TENSOR.FFN_UP,
  2228. gguf.MODEL_TENSOR.FFN_DOWN,
  2229. gguf.MODEL_TENSOR.FFN_GATE,
  2230. ]):
  2231. # transform weight into 1/0/-1 (in fp32)
  2232. data_torch = self.weight_quant(data_torch)
  2233. yield (new_name, data_torch)
  2234. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2235. class GrokModel(TextModel):
  2236. model_arch = gguf.MODEL_ARCH.GROK
  2237. def set_vocab(self):
  2238. if (self.dir_model / 'tokenizer.model').is_file():
  2239. self._set_vocab_sentencepiece()
  2240. return
  2241. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2242. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2243. sys.exit(1)
  2244. self._set_vocab_gpt2()
  2245. def __init__(self, *args, **kwargs):
  2246. super().__init__(*args, **kwargs)
  2247. def set_gguf_parameters(self):
  2248. super().set_gguf_parameters()
  2249. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2250. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2251. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2252. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2253. if (rope_dim := self.hparams.get("head_dim")) is None:
  2254. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2255. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2256. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2257. # Treat "original" as "yarn", seems to have been a mistake
  2258. if self.hparams.get("rope_type") in ("yarn", "original"):
  2259. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2260. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2261. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2262. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2263. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2264. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2265. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2266. if temp_len := self.hparams.get("attn_temperature_len"):
  2267. self.gguf_writer.add_attn_temperature_length(temp_len)
  2268. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2269. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2270. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2271. _experts: list[dict[str, list[Tensor]]] | None = None
  2272. _cur_expert = ""
  2273. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2274. tensors: list[tuple[str, Tensor]] = []
  2275. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2276. if not is_expert:
  2277. tensors.append((self.map_tensor_name(name), data_torch))
  2278. # process the experts separately
  2279. if is_expert or self._cur_expert:
  2280. n_experts = self.hparams["num_local_experts"]
  2281. assert bid is not None
  2282. if self._experts is None:
  2283. self._experts = [{} for _ in range(self.block_count)]
  2284. # concatenate split tensors
  2285. if name in self._experts[bid]:
  2286. self._cur_expert = name
  2287. self._experts[bid][name].append(data_torch)
  2288. return []
  2289. elif is_expert:
  2290. self._cur_expert = name
  2291. self._experts[bid][name] = [data_torch]
  2292. return []
  2293. else:
  2294. self._cur_expert = ""
  2295. for bid in range(self.block_count):
  2296. if len(self._experts[bid]) >= n_experts * 3:
  2297. # merge the experts into a single 3d tensor
  2298. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2299. datas: list[Tensor] = []
  2300. for xid in range(n_experts):
  2301. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2302. if ename not in self._experts[bid]:
  2303. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2304. tensor_list = self._experts[bid][ename]
  2305. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2306. del self._experts[bid][ename]
  2307. data_torch = torch.stack(datas, dim=0)
  2308. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2309. new_name = self.map_tensor_name(merged_name)
  2310. yield (new_name, data_torch)
  2311. yield from tensors
  2312. @ModelBase.register("DbrxForCausalLM")
  2313. class DbrxModel(TextModel):
  2314. model_arch = gguf.MODEL_ARCH.DBRX
  2315. def set_gguf_parameters(self):
  2316. ffn_config = self.hparams["ffn_config"]
  2317. attn_config = self.hparams["attn_config"]
  2318. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2319. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2320. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2321. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2322. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2323. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2324. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2325. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2326. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2327. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2328. self.gguf_writer.add_layer_norm_eps(1e-5)
  2329. self.gguf_writer.add_file_type(self.ftype)
  2330. logger.info(f"gguf: file type = {self.ftype}")
  2331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2332. del bid # unused
  2333. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2334. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2335. n_embd = self.hparams["d_model"]
  2336. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2337. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2338. # But llama.cpp moe graph works differently
  2339. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2340. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2341. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2342. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2343. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2344. experts = False
  2345. for exp_tensor_name in exp_tensor_names.keys():
  2346. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2347. experts = True
  2348. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2349. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2350. data_torch = data_torch.permute(*permute_tensor)
  2351. break
  2352. # map tensor names
  2353. # In MoE models the ffn tensors are typically most of the model weights,
  2354. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2355. # Every other model has the weight names ending in .weight,
  2356. # let's assume that is the convention which is not the case for dbrx:
  2357. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2358. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2359. return [(new_name, data_torch)]
  2360. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2361. del name, new_name, bid # unused
  2362. return n_dims > 1
  2363. @ModelBase.register("MiniCPMForCausalLM")
  2364. class MiniCPMModel(TextModel):
  2365. model_arch = gguf.MODEL_ARCH.MINICPM
  2366. def set_gguf_parameters(self):
  2367. super().set_gguf_parameters()
  2368. embedding_scale = float(self.hparams["scale_emb"])
  2369. self.gguf_writer.add_embedding_scale(embedding_scale)
  2370. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2371. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2372. self.gguf_writer.add_residual_scale(residual_scale)
  2373. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2374. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2375. self.gguf_writer.add_logit_scale(logit_scale)
  2376. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2377. rope_scaling = self.hparams.get("rope_scaling") or {}
  2378. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2379. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2380. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2381. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2382. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2383. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2384. if rope_scaling is not None:
  2385. long_factors = rope_scaling.get('long_factor', None)
  2386. short_factors = rope_scaling.get('short_factor', None)
  2387. if long_factors is None or short_factors is None:
  2388. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2389. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2390. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2391. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2392. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2393. def set_vocab(self):
  2394. self._set_vocab_sentencepiece()
  2395. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2396. del bid # unused
  2397. n_head = self.hparams["num_attention_heads"]
  2398. n_kv_head = self.hparams.get("num_key_value_heads")
  2399. # HF models permute some of the tensors, so we need to undo that
  2400. if name.endswith(("q_proj.weight")):
  2401. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2402. if name.endswith(("k_proj.weight")):
  2403. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2404. return [(self.map_tensor_name(name), data_torch)]
  2405. @ModelBase.register("MiniCPM3ForCausalLM")
  2406. class MiniCPM3Model(TextModel):
  2407. model_arch = gguf.MODEL_ARCH.MINICPM3
  2408. def set_gguf_parameters(self):
  2409. hparams = self.hparams
  2410. self.gguf_writer.add_file_type(self.ftype)
  2411. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2412. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2413. self.gguf_writer.add_block_count(self.block_count)
  2414. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2415. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2416. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2417. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2418. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2419. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2420. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2421. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2422. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2423. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2424. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2425. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2426. if rope_scaling is not None:
  2427. rope_dims = self.hparams["qk_rope_head_dim"]
  2428. long_factors = rope_scaling.get('long_factor', None)
  2429. short_factors = rope_scaling.get('short_factor', None)
  2430. if long_factors is None or short_factors is None:
  2431. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2432. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2433. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2434. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2435. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2436. def set_vocab(self):
  2437. self._set_vocab_sentencepiece()
  2438. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2439. if n_kv_head is not None and n_head != n_kv_head:
  2440. n_head //= n_kv_head
  2441. return (
  2442. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2443. .swapaxes(1, 2)
  2444. .reshape(weights.shape)
  2445. )
  2446. @ModelBase.register("QWenLMHeadModel")
  2447. class QwenModel(TextModel):
  2448. model_arch = gguf.MODEL_ARCH.QWEN
  2449. @staticmethod
  2450. def token_bytes_to_string(b):
  2451. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2452. byte_encoder = bytes_to_unicode()
  2453. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2454. @staticmethod
  2455. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2456. parts = [bytes([b]) for b in token]
  2457. while True:
  2458. min_idx = None
  2459. min_rank = None
  2460. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2461. rank = mergeable_ranks.get(pair[0] + pair[1])
  2462. if rank is not None and (min_rank is None or rank < min_rank):
  2463. min_idx = i
  2464. min_rank = rank
  2465. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2466. break
  2467. assert min_idx is not None
  2468. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2469. return parts
  2470. def set_vocab(self):
  2471. self._set_vocab_qwen()
  2472. def set_gguf_parameters(self):
  2473. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2474. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2475. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2476. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2477. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2478. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2479. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2480. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2481. self.gguf_writer.add_file_type(self.ftype)
  2482. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2483. class Qwen2Model(TextModel):
  2484. model_arch = gguf.MODEL_ARCH.QWEN2
  2485. def set_vocab(self):
  2486. try:
  2487. self._set_vocab_sentencepiece()
  2488. except FileNotFoundError:
  2489. self._set_vocab_gpt2()
  2490. def set_gguf_parameters(self):
  2491. super().set_gguf_parameters()
  2492. self._try_set_pooling_type()
  2493. rope_scaling = self.hparams.get("rope_scaling") or {}
  2494. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2495. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2496. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2497. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2498. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2499. if self.hf_arch == "Qwen2Model":
  2500. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2501. if "language_model." in name:
  2502. name = name.replace("language_model.", "") # for InternVL
  2503. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2504. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2505. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2506. # skip vision and audio tensors
  2507. return []
  2508. yield from super().modify_tensors(data_torch, name, bid)
  2509. @ModelBase.register("DreamModel")
  2510. class DreamModel(TextModel):
  2511. model_arch = gguf.MODEL_ARCH.DREAM
  2512. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2513. tokens: list[str] = []
  2514. toktypes: list[int] = []
  2515. from transformers import AutoTokenizer
  2516. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2517. vocab_dict = tokenizer.get_vocab()
  2518. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2519. assert max(vocab_dict.values()) < vocab_size
  2520. tokpre = self.get_vocab_base_pre(tokenizer)
  2521. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2522. added_vocab = tokenizer.get_added_vocab()
  2523. for i in range(vocab_size):
  2524. if i not in reverse_vocab:
  2525. tokens.append(f"[PAD{i}]")
  2526. toktypes.append(gguf.TokenType.UNUSED)
  2527. elif reverse_vocab[i] in added_vocab:
  2528. tokens.append(reverse_vocab[i])
  2529. # Check if it's a special token - treat special tokens as CONTROL tokens
  2530. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2531. if tokenizer.added_tokens_decoder[i].special:
  2532. toktypes.append(gguf.TokenType.CONTROL)
  2533. else:
  2534. toktypes.append(gguf.TokenType.USER_DEFINED)
  2535. else:
  2536. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2537. toktypes.append(gguf.TokenType.CONTROL)
  2538. else:
  2539. tokens.append(reverse_vocab[i])
  2540. toktypes.append(gguf.TokenType.NORMAL)
  2541. return tokens, toktypes, tokpre
  2542. def set_vocab(self):
  2543. try:
  2544. self._set_vocab_sentencepiece()
  2545. except FileNotFoundError:
  2546. self._set_vocab_gpt2()
  2547. def set_gguf_parameters(self):
  2548. super().set_gguf_parameters()
  2549. self._try_set_pooling_type()
  2550. # Dream models use non-causal attention for diffusion
  2551. self.gguf_writer.add_causal_attention(False)
  2552. # Handle RoPE scaling similar to Qwen2
  2553. rope_scaling = self.hparams.get("rope_scaling") or {}
  2554. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2555. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2556. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2557. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2558. # Add Dream-specific parameters
  2559. mask_token_id = self.hparams.get("mask_token_id")
  2560. if mask_token_id is not None:
  2561. self.gguf_writer.add_mask_token_id(mask_token_id)
  2562. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2563. # Dream model tensors should be mapped directly since it's the base model
  2564. yield from super().modify_tensors(data_torch, name, bid)
  2565. @ModelBase.register("LLaDAModelLM")
  2566. class LLaDAModel(TextModel):
  2567. model_arch = gguf.MODEL_ARCH.LLADA
  2568. undo_permute = True
  2569. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2570. tokens: list[str] = []
  2571. toktypes: list[int] = []
  2572. from transformers import AutoTokenizer
  2573. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2574. vocab_dict = tokenizer.get_vocab()
  2575. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2576. assert max(vocab_dict.values()) < vocab_size
  2577. tokpre = self.get_vocab_base_pre(tokenizer)
  2578. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2579. added_vocab = tokenizer.get_added_vocab()
  2580. for i in range(vocab_size):
  2581. if i not in reverse_vocab:
  2582. tokens.append(f"[PAD{i}]")
  2583. toktypes.append(gguf.TokenType.UNUSED)
  2584. elif reverse_vocab[i] in added_vocab:
  2585. tokens.append(reverse_vocab[i])
  2586. # Check if it's a special token - treat special tokens as CONTROL tokens
  2587. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2588. if tokenizer.added_tokens_decoder[i].special:
  2589. toktypes.append(gguf.TokenType.CONTROL)
  2590. else:
  2591. toktypes.append(gguf.TokenType.USER_DEFINED)
  2592. else:
  2593. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2594. toktypes.append(gguf.TokenType.CONTROL)
  2595. else:
  2596. tokens.append(reverse_vocab[i])
  2597. toktypes.append(gguf.TokenType.NORMAL)
  2598. return tokens, toktypes, tokpre
  2599. def set_vocab(self):
  2600. self._set_vocab_gpt2()
  2601. # LLaDA specific parameters
  2602. self.gguf_writer.add_add_bos_token(True)
  2603. def set_gguf_parameters(self):
  2604. super().set_gguf_parameters()
  2605. self._try_set_pooling_type()
  2606. # Add parameters similar to LlamaModel
  2607. hparams = self.hparams
  2608. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2609. if (rope_dim := hparams.get("head_dim")) is None:
  2610. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2611. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2612. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2613. # Set context length for LLaDA
  2614. context_length = self.hparams.get("max_sequence_length", 4096)
  2615. self.gguf_writer.add_context_length(context_length)
  2616. # Set embedding length (dimension size)
  2617. embedding_length = self.hparams.get("d_model", 4096)
  2618. self.gguf_writer.add_embedding_length(embedding_length)
  2619. # Set feed forward length (MLP hidden size)
  2620. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2621. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2622. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2623. self.gguf_writer.add_causal_attention(False)
  2624. # LLaDA models don't shift their logits
  2625. self.gguf_writer.add_diffusion_shift_logits(False)
  2626. @staticmethod
  2627. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2628. if n_head_kv is not None and n_head != n_head_kv:
  2629. n_head = n_head_kv
  2630. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2631. .swapaxes(1, 2)
  2632. .reshape(weights.shape))
  2633. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2634. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2635. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2636. if self.undo_permute:
  2637. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2638. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2639. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2640. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2641. # LLaDA model tensors should be mapped directly since it's the base model
  2642. yield from super().modify_tensors(data_torch, name, bid)
  2643. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2644. class Ernie4_5Model(TextModel):
  2645. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2646. def set_vocab(self):
  2647. self._set_vocab_sentencepiece()
  2648. def set_gguf_parameters(self):
  2649. super().set_gguf_parameters()
  2650. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2651. num_heads = self.hparams["num_attention_heads"]
  2652. num_kv_heads = self.hparams["num_key_value_heads"]
  2653. if (head_dim := self.hparams.get("head_dim")) is None:
  2654. head_dim = self.hparams["hidden_size"] // num_heads
  2655. if "ernie." in name:
  2656. name = name.replace("ernie.", "model.")
  2657. # split the qkv weights
  2658. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2659. if "qkv_proj" in name:
  2660. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2661. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2662. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2663. total_q_dim = num_heads * head_dim
  2664. total_k_dim = num_kv_heads * head_dim
  2665. total_v_dim = num_kv_heads * head_dim
  2666. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2667. return [
  2668. (self.map_tensor_name(name_q), q_proj_weight),
  2669. (self.map_tensor_name(name_k), k_proj_weight),
  2670. (self.map_tensor_name(name_v), v_proj_weight)
  2671. ]
  2672. # split the up_gate_proj into gate and up
  2673. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2674. if "up_gate_proj" in name:
  2675. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2676. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2677. dim_half = data_torch.shape[0] // 2
  2678. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2679. return [
  2680. (self.map_tensor_name(name_gate), gate_proj_weight),
  2681. (self.map_tensor_name(name_up), up_proj_weight)
  2682. ]
  2683. return [(self.map_tensor_name(name), data_torch)]
  2684. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2685. class Ernie4_5MoeModel(Ernie4_5Model):
  2686. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2687. _experts: list[dict[str, Tensor]] | None = None
  2688. def __init__(self, *args, **kwargs):
  2689. super().__init__(*args, **kwargs)
  2690. self._experts = [{} for _ in range(self.block_count)]
  2691. def set_gguf_parameters(self):
  2692. super().set_gguf_parameters()
  2693. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2694. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2695. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2696. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2697. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2698. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2699. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2700. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2701. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2702. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2703. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2704. # Modify correction bias name as in DeepseekV2
  2705. if name.endswith("e_score_correction_bias"):
  2706. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2707. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2708. match = re.match(r"model.mtp_block.(\d+)", name)
  2709. if match:
  2710. return []
  2711. # skip all other MTP tensors for now
  2712. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2713. if match:
  2714. return []
  2715. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2716. if match:
  2717. return []
  2718. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2719. if match:
  2720. return []
  2721. # process the experts separately
  2722. if name.find("mlp.experts") != -1:
  2723. n_experts = self.hparams["moe_num_experts"]
  2724. assert bid is not None
  2725. if self._experts is None:
  2726. self._experts = [{} for _ in range(self.block_count)]
  2727. self._experts[bid][name] = data_torch
  2728. if len(self._experts[bid]) >= n_experts * 3:
  2729. tensors: list[tuple[str, Tensor]] = []
  2730. # merge the experts into a single 3d tensor
  2731. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2732. datas: list[Tensor] = []
  2733. for xid in range(n_experts):
  2734. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2735. datas.append(self._experts[bid][ename_to_retrieve])
  2736. del self._experts[bid][ename_to_retrieve]
  2737. data_torch = torch.stack(datas, dim=0)
  2738. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2739. new_name = self.map_tensor_name(merged_name)
  2740. tensors.append((new_name, data_torch))
  2741. return tensors
  2742. else:
  2743. return []
  2744. return [(self.map_tensor_name(name), data_torch)]
  2745. def prepare_tensors(self):
  2746. super().prepare_tensors()
  2747. if self._experts is not None:
  2748. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2749. experts = [k for d in self._experts for k in d.keys()]
  2750. if len(experts) > 0:
  2751. raise ValueError(f"Unprocessed experts: {experts}")
  2752. @ModelBase.register(
  2753. "Qwen2VLModel",
  2754. "Qwen2VLForConditionalGeneration",
  2755. "Qwen2_5_VLForConditionalGeneration",
  2756. "Qwen2_5OmniModel",
  2757. )
  2758. class Qwen2VLModel(TextModel):
  2759. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2760. def set_gguf_parameters(self):
  2761. super().set_gguf_parameters()
  2762. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2763. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2764. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2765. def set_vocab(self):
  2766. try:
  2767. self._set_vocab_sentencepiece()
  2768. except FileNotFoundError:
  2769. self._set_vocab_gpt2()
  2770. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2771. del bid # unused
  2772. if name.startswith("thinker."):
  2773. name = name.replace("thinker.", "")
  2774. if name.startswith("visual") or name.startswith("audio") or \
  2775. name.startswith("talker") or name.startswith("token2wav"):
  2776. # skip multimodal tensors
  2777. return []
  2778. return [(self.map_tensor_name(name), data_torch)]
  2779. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2780. class Qwen2VLVisionModel(MmprojModel):
  2781. def __init__(self, *args, **kwargs):
  2782. super().__init__(*args, **kwargs)
  2783. assert self.hparams_vision is not None
  2784. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2785. # rename config.json values
  2786. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2787. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2788. if "embed_dim" in self.hparams_vision: # qwen2vl
  2789. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2790. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2791. def set_gguf_parameters(self):
  2792. super().set_gguf_parameters()
  2793. assert self.hparams_vision is not None
  2794. hparams = self.hparams_vision
  2795. model_type = self.global_config['model_type']
  2796. if model_type == 'qwen2_vl':
  2797. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2798. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2799. if model_type == 'qwen2_5_omni':
  2800. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2801. else:
  2802. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2803. self.gguf_writer.add_vision_use_silu(True)
  2804. # find n_wa_pattern (window attention pattern)
  2805. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2806. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2807. n_wa_pattern = fullatt_block_indexes[0] + 1
  2808. # validate n_wa_pattern
  2809. for i in range(1, len(fullatt_block_indexes)):
  2810. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2811. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2812. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2813. else:
  2814. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2815. # default values below are taken from HF tranformers code
  2816. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2817. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2818. if ".position_embd." in new_name:
  2819. return gguf.GGMLQuantizationType.F32
  2820. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2821. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2822. del bid # unused
  2823. if name.startswith("visual."):
  2824. # process visual tensors
  2825. # split QKV tensors if needed
  2826. if ".qkv." in name:
  2827. if data_torch.ndim == 2: # weight
  2828. c3, _ = data_torch.shape
  2829. else: # bias
  2830. c3 = data_torch.shape[0]
  2831. assert c3 % 3 == 0
  2832. c = c3 // 3
  2833. wq = data_torch[:c]
  2834. wk = data_torch[c: c * 2]
  2835. wv = data_torch[c * 2:]
  2836. return [
  2837. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2838. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2839. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2840. ]
  2841. elif 'patch_embed.proj.weight' in name:
  2842. # split Conv3D into Conv2Ds
  2843. c1, c2, kt, kh, kw = data_torch.shape
  2844. del c1, c2, kh, kw # unused
  2845. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2846. return [
  2847. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2848. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2849. ]
  2850. else:
  2851. return [(self.map_tensor_name(name), data_torch)]
  2852. return [] # skip other tensors
  2853. @ModelBase.register("Qwen2_5OmniModel")
  2854. class Qwen25OmniModel(Qwen2VLVisionModel):
  2855. has_vision_encoder = True
  2856. has_audio_encoder = True
  2857. def __init__(self, *args, **kwargs):
  2858. super().__init__(*args, **kwargs)
  2859. assert self.hparams_audio is not None
  2860. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2861. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2862. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2863. def set_gguf_parameters(self):
  2864. super().set_gguf_parameters()
  2865. assert self.hparams_audio is not None
  2866. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2867. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2868. def get_vision_config(self) -> dict[str, Any] | None:
  2869. return self.global_config["thinker_config"].get("vision_config")
  2870. def get_audio_config(self) -> dict[str, Any] | None:
  2871. return self.global_config["thinker_config"].get("audio_config")
  2872. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2873. # SinusoidsPositionEmbedding
  2874. assert self.hparams_audio is not None
  2875. max_timescale = 10000
  2876. length = 1500
  2877. channels = self.hparams_audio["hidden_size"]
  2878. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2879. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2880. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2881. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2882. yield ("audio_tower.embed_positions.weight", pos_embd)
  2883. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2884. if ".conv" in name and ".weight" in name:
  2885. return gguf.GGMLQuantizationType.F16
  2886. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2888. if name.startswith("thinker."):
  2889. name = name.replace("thinker.", "")
  2890. if name.startswith("audio_tower"):
  2891. # process audio tensors
  2892. if "conv1.bias" in name or "conv2.bias" in name:
  2893. # transpose conv1 and conv2 bias
  2894. data_torch = data_torch.unsqueeze(-1)
  2895. if "audio_bos_eos_token" in name:
  2896. # this tensor is left unused in transformers code
  2897. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2898. return []
  2899. return [(self.map_tensor_name(name), data_torch)]
  2900. return super().modify_tensors(data_torch, name, bid)
  2901. @ModelBase.register("InternVisionModel")
  2902. class InternVisionModel(MmprojModel):
  2903. def set_gguf_parameters(self):
  2904. assert self.hparams_vision is not None
  2905. if isinstance(self.hparams_vision['image_size'], list):
  2906. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2907. if isinstance(self.hparams_vision['patch_size'], list):
  2908. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2909. super().set_gguf_parameters()
  2910. hparams = self.hparams
  2911. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2912. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2913. # hidden_act
  2914. if hparams["hidden_act"] == "silu":
  2915. self.gguf_writer.add_vision_use_silu(True)
  2916. elif hparams["hidden_act"] == "gelu":
  2917. self.gguf_writer.add_vision_use_gelu(True)
  2918. else:
  2919. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2920. # downsample_ratio
  2921. downsample_ratio = self.global_config.get("downsample_ratio")
  2922. assert downsample_ratio is not None
  2923. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2924. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2925. if ".position_embd." in new_name:
  2926. return gguf.GGMLQuantizationType.F32
  2927. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2928. def _mapping_interns1_name(self, name):
  2929. names_map = {
  2930. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2931. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2932. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2933. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2934. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2935. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2936. }
  2937. if name in names_map:
  2938. name = names_map[name]
  2939. return name
  2940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2941. del bid # unused
  2942. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2943. # deal with intern-s1 special case
  2944. name = self._mapping_interns1_name(name)
  2945. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2946. # process visual tensors
  2947. # correct name
  2948. if name.startswith("vision_model"):
  2949. name = "vision_tower." + name
  2950. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2951. name += ".weight"
  2952. # split QKV tensors if needed
  2953. if ".qkv." in name:
  2954. if data_torch.ndim == 2: # weight
  2955. c3, _ = data_torch.shape
  2956. else: # bias
  2957. c3 = data_torch.shape[0]
  2958. assert c3 % 3 == 0
  2959. c = c3 // 3
  2960. wq = data_torch[:c]
  2961. wk = data_torch[c: c * 2]
  2962. wv = data_torch[c * 2:]
  2963. return [
  2964. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2965. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2966. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2967. ]
  2968. return [(self.map_tensor_name(name), data_torch)]
  2969. return [] # skip other tensors
  2970. @ModelBase.register("WavTokenizerDec")
  2971. class WavTokenizerDecModel(TextModel):
  2972. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2974. del bid # unused
  2975. if \
  2976. name.endswith("codebook.cluster_size") or \
  2977. name.endswith("codebook.embed_avg") or \
  2978. name.endswith("codebook.inited"):
  2979. logger.debug(f"Skipping {name!r}")
  2980. return []
  2981. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2982. return [(self.map_tensor_name(name), data_torch)]
  2983. def set_vocab(self):
  2984. self._set_vocab_none()
  2985. def set_gguf_parameters(self):
  2986. super().set_gguf_parameters()
  2987. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2988. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2989. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2990. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2991. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2992. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2993. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2994. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2995. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2996. self.gguf_writer.add_causal_attention(False)
  2997. @ModelBase.register("Qwen2MoeForCausalLM")
  2998. class Qwen2MoeModel(TextModel):
  2999. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3000. def set_gguf_parameters(self):
  3001. super().set_gguf_parameters()
  3002. if (n_experts := self.hparams.get("num_experts")) is not None:
  3003. self.gguf_writer.add_expert_count(n_experts)
  3004. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3005. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3006. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3007. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3008. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3009. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3010. # YaRN is not enabled by default
  3011. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3012. rope_scaling = self.hparams.get("rope_scaling") or {}
  3013. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3014. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3015. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3016. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3017. _experts: list[dict[str, Tensor]] | None = None
  3018. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3019. # process the experts separately
  3020. name = name.replace("language_model.", "") # InternVL
  3021. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  3022. # skip visual tensors
  3023. return []
  3024. if name.find("experts") != -1:
  3025. n_experts = self.hparams["num_experts"]
  3026. assert bid is not None
  3027. if self._experts is None:
  3028. self._experts = [{} for _ in range(self.block_count)]
  3029. self._experts[bid][name] = data_torch
  3030. if len(self._experts[bid]) >= n_experts * 3:
  3031. tensors: list[tuple[str, Tensor]] = []
  3032. # merge the experts into a single 3d tensor
  3033. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3034. datas: list[Tensor] = []
  3035. for xid in range(n_experts):
  3036. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3037. datas.append(self._experts[bid][ename])
  3038. del self._experts[bid][ename]
  3039. data_torch = torch.stack(datas, dim=0)
  3040. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3041. new_name = self.map_tensor_name(merged_name)
  3042. tensors.append((new_name, data_torch))
  3043. return tensors
  3044. else:
  3045. return []
  3046. return [(self.map_tensor_name(name), data_torch)]
  3047. def prepare_tensors(self):
  3048. super().prepare_tensors()
  3049. if self._experts is not None:
  3050. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3051. experts = [k for d in self._experts for k in d.keys()]
  3052. if len(experts) > 0:
  3053. raise ValueError(f"Unprocessed experts: {experts}")
  3054. @ModelBase.register("Qwen3ForCausalLM")
  3055. class Qwen3Model(Qwen2Model):
  3056. model_arch = gguf.MODEL_ARCH.QWEN3
  3057. def __init__(self, *args, **kwargs):
  3058. super().__init__(*args, **kwargs)
  3059. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3060. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3061. def set_vocab(self):
  3062. # deal with intern-s1-mini
  3063. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3064. self._set_vocab_interns1()
  3065. return
  3066. super().set_vocab()
  3067. @ModelBase.register("Qwen3MoeForCausalLM")
  3068. class Qwen3MoeModel(Qwen2MoeModel):
  3069. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3070. def __init__(self, *args, **kwargs):
  3071. super().__init__(*args, **kwargs)
  3072. hparams = ModelBase.load_hparams(self.dir_model, False)
  3073. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3074. def set_vocab(self):
  3075. # deal with intern-s1
  3076. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3077. self._set_vocab_interns1()
  3078. return
  3079. super().set_vocab()
  3080. @ModelBase.register("GPT2LMHeadModel")
  3081. class GPT2Model(TextModel):
  3082. model_arch = gguf.MODEL_ARCH.GPT2
  3083. def set_gguf_parameters(self):
  3084. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3085. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3086. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3087. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3088. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3089. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3090. self.gguf_writer.add_file_type(self.ftype)
  3091. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3092. del bid # unused
  3093. tensors: list[tuple[str, Tensor]] = []
  3094. # we don't need these
  3095. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3096. return tensors
  3097. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3098. data_torch = data_torch.transpose(1, 0)
  3099. new_name = self.map_tensor_name(name)
  3100. tensors.append((new_name, data_torch))
  3101. return tensors
  3102. @ModelBase.register("PhiForCausalLM")
  3103. class Phi2Model(TextModel):
  3104. model_arch = gguf.MODEL_ARCH.PHI2
  3105. def set_gguf_parameters(self):
  3106. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3107. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3108. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3109. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3110. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3111. self.gguf_writer.add_embedding_length(n_embd)
  3112. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3113. self.gguf_writer.add_block_count(block_count)
  3114. self.gguf_writer.add_head_count(n_head)
  3115. self.gguf_writer.add_head_count_kv(n_head)
  3116. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3117. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3118. self.gguf_writer.add_file_type(self.ftype)
  3119. self.gguf_writer.add_add_bos_token(False)
  3120. @ModelBase.register("Phi3ForCausalLM")
  3121. class Phi3MiniModel(TextModel):
  3122. model_arch = gguf.MODEL_ARCH.PHI3
  3123. def set_vocab(self):
  3124. # Phi-4 model uses GPT2Tokenizer
  3125. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3126. if tokenizer_config_file.is_file():
  3127. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3128. tokenizer_config_json = json.load(f)
  3129. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3130. if tokenizer_class == 'GPT2Tokenizer':
  3131. return self._set_vocab_gpt2()
  3132. from sentencepiece import SentencePieceProcessor
  3133. tokenizer_path = self.dir_model / 'tokenizer.model'
  3134. if not tokenizer_path.is_file():
  3135. raise ValueError(f'Error: Missing {tokenizer_path}')
  3136. tokenizer = SentencePieceProcessor()
  3137. tokenizer.LoadFromFile(str(tokenizer_path))
  3138. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3139. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3140. scores: list[float] = [-10000.0] * vocab_size
  3141. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3142. for token_id in range(tokenizer.vocab_size()):
  3143. piece = tokenizer.IdToPiece(token_id)
  3144. text = piece.encode("utf-8")
  3145. score = tokenizer.GetScore(token_id)
  3146. toktype = SentencePieceTokenTypes.NORMAL
  3147. if tokenizer.IsUnknown(token_id):
  3148. toktype = SentencePieceTokenTypes.UNKNOWN
  3149. elif tokenizer.IsControl(token_id):
  3150. toktype = SentencePieceTokenTypes.CONTROL
  3151. elif tokenizer.IsUnused(token_id):
  3152. toktype = SentencePieceTokenTypes.UNUSED
  3153. elif tokenizer.IsByte(token_id):
  3154. toktype = SentencePieceTokenTypes.BYTE
  3155. tokens[token_id] = text
  3156. scores[token_id] = score
  3157. toktypes[token_id] = toktype
  3158. added_tokens_file = self.dir_model / 'added_tokens.json'
  3159. if added_tokens_file.is_file():
  3160. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3161. added_tokens_json = json.load(f)
  3162. for key in added_tokens_json:
  3163. token_id = added_tokens_json[key]
  3164. if token_id >= vocab_size:
  3165. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3166. continue
  3167. tokens[token_id] = key.encode("utf-8")
  3168. scores[token_id] = -1000.0
  3169. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3170. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3171. if tokenizer_config_file.is_file():
  3172. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3173. tokenizer_config_json = json.load(f)
  3174. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3175. for token_id, foken_data in added_tokens_decoder.items():
  3176. token_id = int(token_id)
  3177. token = foken_data["content"].encode("utf-8")
  3178. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3179. if tokens[token_id] != token:
  3180. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3181. tokens[token_id] = token
  3182. scores[token_id] = -1000.0
  3183. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3184. if foken_data.get("special"):
  3185. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3186. tokenizer_file = self.dir_model / 'tokenizer.json'
  3187. if tokenizer_file.is_file():
  3188. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3189. tokenizer_json = json.load(f)
  3190. added_tokens = tokenizer_json.get("added_tokens", [])
  3191. for foken_data in added_tokens:
  3192. token_id = int(foken_data["id"])
  3193. token = foken_data["content"].encode("utf-8")
  3194. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3195. if tokens[token_id] != token:
  3196. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3197. tokens[token_id] = token
  3198. scores[token_id] = -1000.0
  3199. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3200. if foken_data.get("special"):
  3201. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3202. self.gguf_writer.add_tokenizer_model("llama")
  3203. self.gguf_writer.add_tokenizer_pre("default")
  3204. self.gguf_writer.add_token_list(tokens)
  3205. self.gguf_writer.add_token_scores(scores)
  3206. self.gguf_writer.add_token_types(toktypes)
  3207. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3208. special_vocab.add_to_gguf(self.gguf_writer)
  3209. def set_gguf_parameters(self):
  3210. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3211. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3212. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3213. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3214. rms_eps = self.find_hparam(["rms_norm_eps"])
  3215. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3216. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3217. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3218. rope_dims = int(rot_pct * n_embd) // n_head
  3219. self.gguf_writer.add_context_length(max_pos_embds)
  3220. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3221. self.gguf_writer.add_embedding_length(n_embd)
  3222. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3223. self.gguf_writer.add_block_count(block_count)
  3224. self.gguf_writer.add_head_count(n_head)
  3225. self.gguf_writer.add_head_count_kv(n_head_kv)
  3226. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3227. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3228. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3229. self.gguf_writer.add_file_type(self.ftype)
  3230. sliding_window = self.hparams.get("sliding_window")
  3231. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3232. if sliding_window is None:
  3233. sliding_window = 0
  3234. self.gguf_writer.add_sliding_window(sliding_window)
  3235. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3236. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3237. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3238. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3239. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3240. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3241. rope_dims = int(rot_pct * n_embd) // n_head
  3242. # write rope scaling for long context (128k) model
  3243. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3244. if rope_scaling is None:
  3245. return
  3246. scale = max_pos_embds / orig_max_pos_embds
  3247. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3248. if len(rope_scaling_type) == 0:
  3249. raise KeyError('Missing the required key rope_scaling.type')
  3250. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3251. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3252. elif rope_scaling_type == 'yarn':
  3253. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3254. else:
  3255. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3256. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3257. long_factors = rope_scaling.get('long_factor', None)
  3258. short_factors = rope_scaling.get('short_factor', None)
  3259. if long_factors is None or short_factors is None:
  3260. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3261. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3262. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3263. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3264. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3265. @ModelBase.register("PhiMoEForCausalLM")
  3266. class PhiMoeModel(Phi3MiniModel):
  3267. model_arch = gguf.MODEL_ARCH.PHIMOE
  3268. _experts: list[dict[str, Tensor]] | None = None
  3269. def set_gguf_parameters(self):
  3270. super().set_gguf_parameters()
  3271. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3272. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3273. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3274. # process the experts separately
  3275. if name.find("block_sparse_moe.experts") != -1:
  3276. n_experts = self.hparams["num_local_experts"]
  3277. assert bid is not None
  3278. if self._experts is None:
  3279. self._experts = [{} for _ in range(self.block_count)]
  3280. self._experts[bid][name] = data_torch
  3281. if len(self._experts[bid]) >= n_experts * 3:
  3282. tensors: list[tuple[str, Tensor]] = []
  3283. # merge the experts into a single 3d tensor
  3284. for w_name in ["w1", "w2", "w3"]:
  3285. datas: list[Tensor] = []
  3286. for xid in range(n_experts):
  3287. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3288. datas.append(self._experts[bid][ename])
  3289. del self._experts[bid][ename]
  3290. data_torch = torch.stack(datas, dim=0)
  3291. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3292. new_name = self.map_tensor_name(merged_name)
  3293. tensors.append((new_name, data_torch))
  3294. return tensors
  3295. else:
  3296. return []
  3297. return [(self.map_tensor_name(name), data_torch)]
  3298. def prepare_tensors(self):
  3299. super().prepare_tensors()
  3300. if self._experts is not None:
  3301. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3302. experts = [k for d in self._experts for k in d.keys()]
  3303. if len(experts) > 0:
  3304. raise ValueError(f"Unprocessed experts: {experts}")
  3305. @ModelBase.register("PlamoForCausalLM")
  3306. class PlamoModel(TextModel):
  3307. model_arch = gguf.MODEL_ARCH.PLAMO
  3308. def set_vocab(self):
  3309. self._set_vocab_sentencepiece()
  3310. def set_gguf_parameters(self):
  3311. hparams = self.hparams
  3312. block_count = hparams["num_hidden_layers"]
  3313. self.gguf_writer.add_context_length(4096) # not in config.json
  3314. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3315. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3316. self.gguf_writer.add_block_count(block_count)
  3317. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3318. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3319. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3320. self.gguf_writer.add_file_type(self.ftype)
  3321. def shuffle_attn_q_weight(self, data_torch):
  3322. assert data_torch.size() == (5120, 5120)
  3323. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3324. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3325. data_torch = torch.reshape(data_torch, (5120, 5120))
  3326. return data_torch
  3327. def shuffle_attn_output_weight(self, data_torch):
  3328. assert data_torch.size() == (5120, 5120)
  3329. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3330. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3331. data_torch = torch.reshape(data_torch, (5120, 5120))
  3332. return data_torch
  3333. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3334. del bid # unused
  3335. new_name = self.map_tensor_name(name)
  3336. # shuffle for broadcasting of gqa in ggml_mul_mat
  3337. if new_name.endswith("attn_q.weight"):
  3338. data_torch = self.shuffle_attn_q_weight(data_torch)
  3339. elif new_name.endswith("attn_output.weight"):
  3340. data_torch = self.shuffle_attn_output_weight(data_torch)
  3341. return [(new_name, data_torch)]
  3342. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3343. class Plamo2Model(TextModel):
  3344. model_arch = gguf.MODEL_ARCH.PLAMO2
  3345. def set_vocab(self):
  3346. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3347. # We need to handle this specially
  3348. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3349. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3350. if not tokenizer_jsonl_path.is_file():
  3351. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3352. # Load tokenizer config
  3353. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3354. tokenizer_config = json.load(f)
  3355. # Load tokens from JSONL file (actually a list format)
  3356. tokens = []
  3357. scores = []
  3358. toktypes = []
  3359. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3360. for line_num, line in enumerate(f):
  3361. if line.strip():
  3362. token_data = json.loads(line)
  3363. # Format: [token, score, type, ?, ?, ?, ?]
  3364. token = token_data[0].encode("utf-8")
  3365. score = float(token_data[1])
  3366. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3367. tokens.append(token)
  3368. scores.append(score)
  3369. # Map token type strings to GGUF token types
  3370. if token_type_str == "UNKNOWN":
  3371. toktypes.append(gguf.TokenType.UNKNOWN)
  3372. elif token_type_str == "CONTROL":
  3373. toktypes.append(gguf.TokenType.CONTROL)
  3374. elif token_type_str == "BYTE":
  3375. toktypes.append(gguf.TokenType.BYTE)
  3376. else:
  3377. # Check for PLaMo-2 special tokens
  3378. token_str = token_data[0]
  3379. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3380. toktypes.append(gguf.TokenType.CONTROL)
  3381. else:
  3382. toktypes.append(gguf.TokenType.NORMAL)
  3383. vocab_size = self.hparams["vocab_size"]
  3384. if vocab_size > len(tokens):
  3385. pad_count = vocab_size - len(tokens)
  3386. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3387. for i in range(1, pad_count + 1):
  3388. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3389. scores.append(-1000.0)
  3390. toktypes.append(gguf.TokenType.UNUSED)
  3391. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3392. self.gguf_writer.add_tokenizer_model("plamo2")
  3393. self.gguf_writer.add_tokenizer_pre("default")
  3394. self.gguf_writer.add_token_list(tokens)
  3395. self.gguf_writer.add_token_scores(scores)
  3396. self.gguf_writer.add_token_types(toktypes)
  3397. # Add special tokens from config
  3398. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3399. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3400. self.gguf_writer.add_bos_token_id(token_id)
  3401. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3402. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3403. self.gguf_writer.add_eos_token_id(token_id)
  3404. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3405. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3406. self.gguf_writer.add_pad_token_id(token_id)
  3407. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3408. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3409. self.gguf_writer.add_sep_token_id(token_id)
  3410. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3411. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3412. self.gguf_writer.add_unk_token_id(token_id)
  3413. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3414. self.gguf_writer.add_eot_token_id(4)
  3415. self.gguf_writer.add_add_space_prefix(False)
  3416. def set_gguf_parameters(self):
  3417. hparams = self.hparams
  3418. block_count = hparams["num_hidden_layers"]
  3419. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3420. # Which layers are Mamba layers
  3421. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3422. # This logic matches modeling_plamo.py's is_mamba function
  3423. mamba_step = hparams.get("mamba_step", 2)
  3424. mamba_enabled = hparams.get("mamba_enabled", True)
  3425. mamba_layers = []
  3426. if mamba_enabled:
  3427. for i in range(block_count):
  3428. if block_count <= (mamba_step // 2):
  3429. # use attention in last layer
  3430. is_mamba = (i != block_count - 1)
  3431. else:
  3432. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3433. if is_mamba:
  3434. mamba_layers.append(0)
  3435. else:
  3436. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3437. if mamba_layers:
  3438. self.gguf_writer.add_head_count_kv(mamba_layers)
  3439. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3440. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3441. self.gguf_writer.add_block_count(block_count)
  3442. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3443. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3444. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3445. # Mamba parameters
  3446. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3447. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3448. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3449. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3450. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3451. self.gguf_writer.add_ssm_group_count(0)
  3452. # MLP feed forward parameters (for attention layers)
  3453. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3454. self.gguf_writer.add_file_type(self.ftype)
  3455. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3456. del bid # unused
  3457. if name.endswith(".A_log"):
  3458. data_torch = -torch.exp(data_torch)
  3459. elif name.endswith(".dt_bias"):
  3460. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3461. elif name.endswith(".dt_norm_weight"):
  3462. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3463. elif name.endswith(".B_norm_weight"):
  3464. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3465. elif name.endswith(".C_norm_weight"):
  3466. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3467. elif name.endswith(".k_weight"):
  3468. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3469. elif name.endswith(".q_weight"):
  3470. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3471. elif name.endswith(".conv1d.weight"):
  3472. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3473. assert data_torch.ndim == 2
  3474. elif name.endswith(".pre_mixer_norm.weight"):
  3475. data_torch += 1.0
  3476. elif name.endswith(".post_mixer_norm.weight"):
  3477. data_torch += 1.0 / 5
  3478. elif name.endswith(".pre_mlp_norm.weight"):
  3479. data_torch += 1.0
  3480. elif name.endswith(".post_mlp_norm.weight"):
  3481. data_torch += 1.0 / (5**1.5)
  3482. elif name.endswith(".norm.weight"):
  3483. data_torch += 1.0
  3484. new_name = self.map_tensor_name(name)
  3485. return [(new_name, data_torch)]
  3486. @ModelBase.register("CodeShellForCausalLM")
  3487. class CodeShellModel(TextModel):
  3488. model_arch = gguf.MODEL_ARCH.CODESHELL
  3489. def set_gguf_parameters(self):
  3490. block_count = self.hparams["n_layer"]
  3491. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3492. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3493. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3494. self.gguf_writer.add_block_count(block_count)
  3495. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3496. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3497. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3498. self.gguf_writer.add_file_type(self.ftype)
  3499. self.gguf_writer.add_rope_freq_base(10000.0)
  3500. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3501. self.gguf_writer.add_rope_scaling_factor(1.0)
  3502. _has_tok_embd = False
  3503. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3504. del bid # unused
  3505. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3506. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3507. new_name = self.map_tensor_name(name)
  3508. # assuming token_embd.weight is seen before output.weight
  3509. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3510. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3511. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3512. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3513. self.tensor_names.remove("transformer.wte.weight")
  3514. elif new_name == tok_embd_name:
  3515. self._has_tok_embd = True
  3516. return [(new_name, data_torch)]
  3517. @ModelBase.register("InternLM2ForCausalLM")
  3518. class InternLM2Model(TextModel):
  3519. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3520. def set_vocab(self):
  3521. # (TODO): Is there a better way?
  3522. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3523. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3524. # recognized as an empty string in C++.
  3525. from sentencepiece import SentencePieceProcessor
  3526. from sentencepiece import sentencepiece_model_pb2 as model
  3527. tokenizer_path = self.dir_model / 'tokenizer.model'
  3528. tokens: list[bytes] = []
  3529. scores: list[float] = []
  3530. toktypes: list[int] = []
  3531. if not tokenizer_path.is_file():
  3532. logger.error(f'Error: Missing {tokenizer_path}')
  3533. sys.exit(1)
  3534. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3535. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3536. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3537. tokenizer = SentencePieceProcessor()
  3538. tokenizer.LoadFromFile(str(tokenizer_path))
  3539. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3540. for token_id in range(vocab_size):
  3541. piece = tokenizer.IdToPiece(token_id)
  3542. text = piece.encode("utf-8")
  3543. score = tokenizer.GetScore(token_id)
  3544. if text == b"\x00":
  3545. # (TODO): fixme
  3546. # Hack here and replace the \x00 characters.
  3547. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3548. text = "🐉".encode("utf-8")
  3549. toktype = SentencePieceTokenTypes.NORMAL
  3550. if tokenizer.IsUnknown(token_id):
  3551. toktype = SentencePieceTokenTypes.UNKNOWN
  3552. elif tokenizer.IsControl(token_id):
  3553. toktype = SentencePieceTokenTypes.CONTROL
  3554. elif tokenizer.IsUnused(token_id):
  3555. toktype = SentencePieceTokenTypes.UNUSED
  3556. elif tokenizer.IsByte(token_id):
  3557. toktype = SentencePieceTokenTypes.BYTE
  3558. # take care of ununsed raw token
  3559. if piece.startswith('[UNUSED'):
  3560. toktype = SentencePieceTokenTypes.UNUSED
  3561. tokens.append(text)
  3562. scores.append(score)
  3563. toktypes.append(toktype)
  3564. added_tokens_file = self.dir_model / 'added_tokens.json'
  3565. if added_tokens_file.is_file():
  3566. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3567. added_tokens_json = json.load(f)
  3568. for key in added_tokens_json:
  3569. tokens.append(key.encode("utf-8"))
  3570. scores.append(-1000.0)
  3571. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3572. chat_eos_token = '<|im_end|>'
  3573. chat_eos_token_id = None
  3574. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3575. if tokenizer_config_file.is_file():
  3576. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3577. tokenizer_config_json = json.load(f)
  3578. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3579. for token_id, foken_data in added_tokens_decoder.items():
  3580. token_id = int(token_id)
  3581. token = foken_data["content"]
  3582. if token == chat_eos_token:
  3583. chat_eos_token_id = token_id
  3584. token = token.encode("utf-8")
  3585. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3586. if tokens[token_id] != token:
  3587. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3588. tokens[token_id] = token
  3589. scores[token_id] = -1000.0
  3590. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3591. if foken_data.get("special"):
  3592. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3593. tokenizer_file = self.dir_model / 'tokenizer.json'
  3594. if tokenizer_file.is_file():
  3595. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3596. tokenizer_json = json.load(f)
  3597. added_tokens = tokenizer_json.get("added_tokens", [])
  3598. for foken_data in added_tokens:
  3599. token_id = int(foken_data["id"])
  3600. token = foken_data["content"]
  3601. if token == chat_eos_token:
  3602. chat_eos_token_id = token_id
  3603. token = token.encode("utf-8")
  3604. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3605. if tokens[token_id] != token:
  3606. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3607. tokens[token_id] = token
  3608. scores[token_id] = -1000.0
  3609. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3610. if foken_data.get("special"):
  3611. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3612. self.gguf_writer.add_tokenizer_model("llama")
  3613. self.gguf_writer.add_tokenizer_pre("default")
  3614. self.gguf_writer.add_token_list(tokens)
  3615. self.gguf_writer.add_token_scores(scores)
  3616. self.gguf_writer.add_token_types(toktypes)
  3617. self.gguf_writer.add_add_space_prefix(add_prefix)
  3618. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3619. old_eos = special_vocab.special_token_ids["eos"]
  3620. if chat_eos_token_id is not None:
  3621. # For the chat model, we replace the eos with '<|im_end|>'.
  3622. # TODO: this is a hack, should be fixed
  3623. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3624. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3625. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3626. " in chat mode so that the conversation can end normally.")
  3627. special_vocab.add_to_gguf(self.gguf_writer)
  3628. def set_gguf_parameters(self):
  3629. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3630. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3631. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3632. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3633. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3634. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3635. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3636. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3637. self.gguf_writer.add_file_type(self.ftype)
  3638. rope_scaling = self.hparams.get("rope_scaling") or {}
  3639. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3640. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3641. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3642. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3643. num_heads = self.hparams["num_attention_heads"]
  3644. num_kv_heads = self.hparams["num_key_value_heads"]
  3645. n_embd = self.hparams["hidden_size"]
  3646. q_per_kv = num_heads // num_kv_heads
  3647. head_dim = n_embd // num_heads
  3648. num_groups = num_heads // q_per_kv
  3649. name = name.replace("language_model.", "") # InternVL
  3650. if name.startswith("mlp") or name.startswith("vision_model"):
  3651. # skip visual tensors
  3652. return []
  3653. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3654. qkv = data_torch
  3655. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3656. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3657. # The model weights of q and k equire additional reshape.
  3658. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3659. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3660. v = v.reshape((-1, v.shape[-1]))
  3661. return [
  3662. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3663. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3664. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3665. ]
  3666. else:
  3667. return [(self.map_tensor_name(name), data_torch)]
  3668. @ModelBase.register("InternLM3ForCausalLM")
  3669. class InternLM3Model(TextModel):
  3670. model_arch = gguf.MODEL_ARCH.LLAMA
  3671. def set_vocab(self):
  3672. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3673. self.gguf_writer.add_tokenizer_model("llama")
  3674. self.gguf_writer.add_tokenizer_pre("default")
  3675. self.gguf_writer.add_token_list(tokens)
  3676. self.gguf_writer.add_token_scores(scores)
  3677. self.gguf_writer.add_token_types(toktypes)
  3678. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3679. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3680. if tokenizer_config_file.is_file():
  3681. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3682. tokenizer_config_json = json.load(f)
  3683. if "add_prefix_space" in tokenizer_config_json:
  3684. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3685. if "added_tokens_decoder" in tokenizer_config_json:
  3686. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3687. if token_data.get("special"):
  3688. token_id = int(token_id)
  3689. token = token_data["content"]
  3690. special_vocab._set_special_token(token, token_id)
  3691. # update eos token
  3692. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3693. special_vocab.special_token_ids["eos"] = token_id
  3694. special_vocab.add_to_gguf(self.gguf_writer)
  3695. def set_gguf_parameters(self):
  3696. super().set_gguf_parameters()
  3697. hparams = self.hparams
  3698. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3699. if (rope_dim := hparams.get("head_dim")) is None:
  3700. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3701. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3702. rope_scaling = self.hparams.get("rope_scaling") or {}
  3703. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3704. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3705. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3707. n_head = self.hparams["num_attention_heads"]
  3708. n_kv_head = self.hparams.get("num_key_value_heads")
  3709. name = name.replace("language_model.", "") # InternVL
  3710. if name.startswith("mlp") or name.startswith("vision_model"):
  3711. # skip visual tensors
  3712. return []
  3713. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3714. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3715. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3716. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3717. return [(self.map_tensor_name(name), data_torch)]
  3718. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3719. class BertModel(TextModel):
  3720. model_arch = gguf.MODEL_ARCH.BERT
  3721. def __init__(self, *args, **kwargs):
  3722. super().__init__(*args, **kwargs)
  3723. self.vocab_size = None
  3724. if cls_out_labels := self.hparams.get("id2label"):
  3725. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3726. # Remove dummy labels added by AutoConfig
  3727. cls_out_labels = None
  3728. self.cls_out_labels = cls_out_labels
  3729. def set_gguf_parameters(self):
  3730. super().set_gguf_parameters()
  3731. self.gguf_writer.add_causal_attention(False)
  3732. self._try_set_pooling_type()
  3733. if self.cls_out_labels:
  3734. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3735. def set_vocab(self):
  3736. tokens, toktypes, tokpre = self.get_vocab_base()
  3737. self.vocab_size = len(tokens)
  3738. # we need this to validate the size of the token_type embeddings
  3739. # though currently we are passing all zeros to the token_type embeddings
  3740. # "Sequence A" or "Sequence B"
  3741. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3742. # convert to phantom space vocab
  3743. def phantom(tok):
  3744. if tok.startswith("[") and tok.endswith("]"):
  3745. return tok
  3746. if tok.startswith("##"):
  3747. return tok[2:]
  3748. return "\u2581" + tok
  3749. tokens = list(map(phantom, tokens))
  3750. # add vocab to gguf
  3751. self.gguf_writer.add_tokenizer_model("bert")
  3752. self.gguf_writer.add_tokenizer_pre(tokpre)
  3753. self.gguf_writer.add_token_list(tokens)
  3754. self.gguf_writer.add_token_types(toktypes)
  3755. # handle special tokens
  3756. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3757. special_vocab.add_to_gguf(self.gguf_writer)
  3758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3759. del bid # unused
  3760. if name.startswith("bert."):
  3761. name = name[5:]
  3762. if name.endswith(".gamma"):
  3763. name = name[:-6] + ".weight"
  3764. if name.endswith(".beta"):
  3765. name = name[:-5] + ".bias"
  3766. # we are only using BERT for embeddings so we don't need the pooling layer
  3767. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3768. return [] # we don't need these
  3769. if name.startswith("cls.predictions"):
  3770. return []
  3771. if name.startswith("cls.seq_relationship"):
  3772. return []
  3773. if self.cls_out_labels:
  3774. # For BertForSequenceClassification (direct projection layer)
  3775. if name == "classifier.weight":
  3776. name = "classifier.out_proj.weight"
  3777. if name == "classifier.bias":
  3778. name = "classifier.out_proj.bias"
  3779. return [(self.map_tensor_name(name), data_torch)]
  3780. def _xlmroberta_tokenizer_init(self) -> None:
  3781. # we need the pad_token_id to know how to chop down position_embd matrix
  3782. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3783. self._position_offset = 1 + pad_token_id
  3784. if "max_position_embeddings" in self.hparams:
  3785. self.hparams["max_position_embeddings"] -= self._position_offset
  3786. else:
  3787. self._position_offset = None
  3788. def _xlmroberta_set_vocab(self) -> None:
  3789. # to avoid TypeError: Descriptors cannot be created directly
  3790. # exception when importing sentencepiece_model_pb2
  3791. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3792. from sentencepiece import SentencePieceProcessor
  3793. from sentencepiece import sentencepiece_model_pb2 as model
  3794. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3795. tokenizer_json = {}
  3796. tokenizer_config_json = {}
  3797. if not tokenizer_path.is_file():
  3798. tokenizer_path = self.dir_model / 'tokenizer.json'
  3799. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3800. if not tokenizer_path.is_file():
  3801. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3802. from base64 import b64decode
  3803. from transformers import AutoTokenizer
  3804. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3805. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3806. tokenizer_json = json.load(fp)
  3807. if tokenizer_config_path.is_file():
  3808. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3809. tokenizer_config_json = json.load(fp)
  3810. add_prefix = tokenizer.add_prefix_space
  3811. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3812. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3813. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3814. else:
  3815. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3816. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3817. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3818. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3819. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3820. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3821. tokenizer = SentencePieceProcessor()
  3822. tokenizer.LoadFromFile(str(tokenizer_path))
  3823. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3824. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3825. scores: list[float] = [-10000.0] * vocab_size
  3826. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3827. if isinstance(tokenizer, SentencePieceProcessor):
  3828. for token_id in range(tokenizer.vocab_size()):
  3829. piece = tokenizer.IdToPiece(token_id)
  3830. text = piece.encode("utf-8")
  3831. score = tokenizer.GetScore(token_id)
  3832. toktype = SentencePieceTokenTypes.NORMAL
  3833. if tokenizer.IsUnknown(token_id):
  3834. toktype = SentencePieceTokenTypes.UNKNOWN
  3835. elif tokenizer.IsControl(token_id):
  3836. toktype = SentencePieceTokenTypes.CONTROL
  3837. elif tokenizer.IsUnused(token_id):
  3838. toktype = SentencePieceTokenTypes.UNUSED
  3839. elif tokenizer.IsByte(token_id):
  3840. toktype = SentencePieceTokenTypes.BYTE
  3841. tokens[token_id] = text
  3842. scores[token_id] = score
  3843. toktypes[token_id] = toktype
  3844. else:
  3845. added_vocab = tokenizer.get_added_vocab()
  3846. unk_token = tokenizer_config_json.get("unk_token")
  3847. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3848. for token_id in range(tokenizer.vocab_size):
  3849. piece = tokenizer._convert_id_to_token(token_id)
  3850. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3851. text = piece.encode("utf-8")
  3852. score = tokenizer_json["model"]["vocab"][token_id][1]
  3853. toktype = SentencePieceTokenTypes.NORMAL
  3854. if token_id == unk_token_id:
  3855. toktype = SentencePieceTokenTypes.UNKNOWN
  3856. elif token_id in tokenizer.all_special_ids:
  3857. toktype = SentencePieceTokenTypes.CONTROL
  3858. elif token_id in added_vocab.values():
  3859. toktype = SentencePieceTokenTypes.USER_DEFINED
  3860. # No reliable way to detect this, but jina doesn't have any
  3861. # elif tokenizer.IsByte(token_id):
  3862. # toktype = SentencePieceTokenTypes.BYTE
  3863. tokens[token_id] = text
  3864. scores[token_id] = score
  3865. toktypes[token_id] = toktype
  3866. if isinstance(tokenizer, SentencePieceProcessor):
  3867. # realign tokens (see HF tokenizer code)
  3868. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3869. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3870. toktypes = [
  3871. SentencePieceTokenTypes.CONTROL,
  3872. SentencePieceTokenTypes.CONTROL,
  3873. SentencePieceTokenTypes.CONTROL,
  3874. SentencePieceTokenTypes.UNKNOWN,
  3875. ] + toktypes[3:-1]
  3876. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3877. # Add mask token missing from sentencepiece.bpe.model
  3878. tokens[250001] = b'<mask>'
  3879. scores[250001] = 0.0
  3880. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3881. self.gguf_writer.add_tokenizer_model("t5")
  3882. self.gguf_writer.add_tokenizer_pre("default")
  3883. self.gguf_writer.add_token_list(tokens)
  3884. self.gguf_writer.add_token_scores(scores)
  3885. self.gguf_writer.add_token_types(toktypes)
  3886. self.gguf_writer.add_add_space_prefix(add_prefix)
  3887. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3888. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3889. if precompiled_charsmap:
  3890. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3891. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3892. special_vocab.add_to_gguf(self.gguf_writer)
  3893. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3894. class DistilBertModel(BertModel):
  3895. model_arch = gguf.MODEL_ARCH.BERT
  3896. def set_gguf_parameters(self):
  3897. self.gguf_writer.add_layer_norm_eps(1e-12)
  3898. logger.info("gguf: layer norm epsilon = 1e-12")
  3899. super().set_gguf_parameters()
  3900. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3901. if name.startswith("distilbert."):
  3902. name = name[11:]
  3903. # These layers act as MLM head, so we don't need them
  3904. if name.startswith("vocab_"):
  3905. return []
  3906. return super().modify_tensors(data_torch, name, bid)
  3907. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3908. class RobertaModel(BertModel):
  3909. model_arch = gguf.MODEL_ARCH.BERT
  3910. def __init__(self, *args, **kwargs):
  3911. super().__init__(*args, **kwargs)
  3912. # we need the pad_token_id to know how to chop down position_embd matrix
  3913. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3914. self._position_offset = 1 + pad_token_id
  3915. if "max_position_embeddings" in self.hparams:
  3916. self.hparams["max_position_embeddings"] -= self._position_offset
  3917. else:
  3918. self._position_offset = None
  3919. def set_vocab(self):
  3920. """Support BPE tokenizers for roberta models"""
  3921. bpe_tok_path = self.dir_model / "tokenizer.json"
  3922. if bpe_tok_path.exists():
  3923. self._set_vocab_gpt2()
  3924. # we need this to validate the size of the token_type embeddings
  3925. # though currently we are passing all zeros to the token_type embeddings
  3926. # "Sequence A" or "Sequence B"
  3927. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3928. else:
  3929. return super().set_vocab()
  3930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3931. # if name starts with "roberta.", remove the prefix
  3932. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3933. if name.startswith("roberta."):
  3934. name = name[8:]
  3935. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3936. if name == "embeddings.position_embeddings.weight":
  3937. if self._position_offset is not None:
  3938. data_torch = data_torch[self._position_offset:,:]
  3939. return super().modify_tensors(data_torch, name, bid)
  3940. @ModelBase.register("NomicBertModel")
  3941. class NomicBertModel(BertModel):
  3942. model_arch = gguf.MODEL_ARCH.BERT
  3943. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3944. hparams = kwargs.pop("hparams", None)
  3945. if hparams is None:
  3946. hparams = ModelBase.load_hparams(dir_model, False)
  3947. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3948. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3949. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3950. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3951. if self._tokenizer_is_xlmroberta:
  3952. self._xlmroberta_tokenizer_init()
  3953. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3954. if npos == 8192 and mtp == 2048:
  3955. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3956. elif npos == 2048 and mtp == 2048:
  3957. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3958. else:
  3959. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3960. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3961. # this doesn't do anything in the HF version
  3962. assert self.hparams["causal"] is False
  3963. # no bias tensors unless MoE
  3964. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3965. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3966. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3967. # norm at end of layer
  3968. assert self.hparams["prenorm"] is False
  3969. # standard RoPE
  3970. assert self.hparams["rotary_emb_fraction"] == 1.0
  3971. assert self.hparams["rotary_emb_interleaved"] is False
  3972. assert self.hparams["rotary_emb_scale_base"] is None
  3973. def set_vocab(self) -> None:
  3974. if self._tokenizer_is_xlmroberta:
  3975. return self._xlmroberta_set_vocab()
  3976. return super().set_vocab()
  3977. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3978. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3979. if "mlp.experts.bias" in name:
  3980. return [] # Explicitly return an empty list.
  3981. if "mlp.experts.mlp.w1" in name:
  3982. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3983. name += ".weight"
  3984. if "mlp.experts.mlp.w2" in name:
  3985. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3986. data_torch = data_torch.transpose(1, 2)
  3987. name += ".weight"
  3988. return [(self.map_tensor_name(name), data_torch)]
  3989. def set_gguf_parameters(self):
  3990. super().set_gguf_parameters()
  3991. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3992. if self.is_moe:
  3993. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3994. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3995. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3996. def _is_tokenizer_xlmroberta(self) -> bool:
  3997. with open(self.dir_model / "tokenizer.json") as f:
  3998. tokenizer_json = json.load(f)
  3999. toktyp = tokenizer_json["model"]["type"]
  4000. if toktyp == "Unigram":
  4001. return True
  4002. if toktyp == "WordPiece":
  4003. return False
  4004. raise ValueError(f"unknown tokenizer: {toktyp}")
  4005. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4006. class NeoBert(BertModel):
  4007. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4008. def set_gguf_parameters(self):
  4009. super().set_gguf_parameters()
  4010. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4011. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4012. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4013. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4014. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4015. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4016. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4017. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4018. def modify_tensors(self, data_torch, name, bid):
  4019. if name.startswith("decoder."):
  4020. return []
  4021. if name.startswith("model."):
  4022. name = name[6:]
  4023. return super().modify_tensors(data_torch, name, bid)
  4024. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4025. class XLMRobertaModel(BertModel):
  4026. model_arch = gguf.MODEL_ARCH.BERT
  4027. _lora_files = {}
  4028. _lora_names = []
  4029. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4030. hparams = kwargs.pop("hparams", None)
  4031. if hparams is None:
  4032. hparams = ModelBase.load_hparams(dir_model, False)
  4033. if lora_names := hparams.get("lora_adaptations"):
  4034. self._lora_names = lora_names
  4035. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4036. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4037. self._xlmroberta_tokenizer_init()
  4038. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4039. if self._lora_names:
  4040. for name in self._lora_names:
  4041. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4042. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4043. return super().generate_extra_tensors()
  4044. def set_type(self):
  4045. for lora_writer in self._lora_files.values():
  4046. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4047. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4048. super().set_type()
  4049. def set_vocab(self):
  4050. self._xlmroberta_set_vocab()
  4051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4052. # if name starts with "roberta.", remove the prefix
  4053. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4054. if name.startswith("roberta."):
  4055. name = name[8:]
  4056. # jina-embeddings-v3
  4057. if ".parametrizations." in name:
  4058. name = name.replace(".parametrizations.", ".")
  4059. if name.endswith(".original"):
  4060. name = name[:-9]
  4061. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4062. if name == "embeddings.position_embeddings.weight":
  4063. if self._position_offset is not None:
  4064. data_torch = data_torch[self._position_offset:,:]
  4065. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4066. if name.startswith("pooler.dense"):
  4067. return []
  4068. num_loras = data_torch.size(0)
  4069. assert num_loras == len(self._lora_names)
  4070. # Split out each LoRA in their own GGUF
  4071. for i, lora_writer in enumerate(self._lora_files.values()):
  4072. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4073. data = data_torch[i, :, :]
  4074. # Transpose/flip token_embd/types into correct shape
  4075. if new_name == "token_embd.weight.lora_b":
  4076. data = data.T
  4077. elif new_name.startswith("token_types.weight."):
  4078. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4079. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4080. return []
  4081. return super().modify_tensors(data_torch, name, bid)
  4082. def set_gguf_parameters(self):
  4083. super().set_gguf_parameters()
  4084. # jina-embeddings-v3
  4085. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4086. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4087. lora_alpha = self.hparams.get("lora_alpha")
  4088. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4089. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4090. for lora_name, lora_writer in self._lora_files.items():
  4091. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4092. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4093. if lora_prompt_prefixes:
  4094. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4095. def write(self):
  4096. super().write()
  4097. for lora_writer in self._lora_files.values():
  4098. lora_writer.write_header_to_file()
  4099. lora_writer.write_kv_data_to_file()
  4100. lora_writer.write_tensors_to_file(progress=True)
  4101. lora_writer.close()
  4102. @ModelBase.register("GemmaForCausalLM")
  4103. class GemmaModel(TextModel):
  4104. model_arch = gguf.MODEL_ARCH.GEMMA
  4105. def set_vocab(self):
  4106. self._set_vocab_sentencepiece()
  4107. # TODO: these special tokens should be exported only for the CodeGemma family
  4108. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4109. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4110. special_vocab._set_special_token("prefix", 67)
  4111. special_vocab._set_special_token("suffix", 69)
  4112. special_vocab._set_special_token("middle", 68)
  4113. special_vocab._set_special_token("fsep", 70)
  4114. special_vocab._set_special_token("eot", 107)
  4115. special_vocab.chat_template = None # do not add it twice
  4116. special_vocab.add_to_gguf(self.gguf_writer)
  4117. self.gguf_writer.add_add_space_prefix(False)
  4118. def set_gguf_parameters(self):
  4119. hparams = self.hparams
  4120. block_count = hparams["num_hidden_layers"]
  4121. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4122. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4123. self.gguf_writer.add_block_count(block_count)
  4124. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4125. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4126. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4127. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4128. self.gguf_writer.add_key_length(hparams["head_dim"])
  4129. self.gguf_writer.add_value_length(hparams["head_dim"])
  4130. self.gguf_writer.add_file_type(self.ftype)
  4131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4132. del bid # unused
  4133. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4134. # To prevent errors, skip loading lm_head.weight.
  4135. if name == "lm_head.weight":
  4136. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4137. return []
  4138. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4139. if name.endswith("norm.weight"):
  4140. data_torch = data_torch + 1
  4141. return [(self.map_tensor_name(name), data_torch)]
  4142. @ModelBase.register("Gemma2ForCausalLM")
  4143. class Gemma2Model(TextModel):
  4144. model_arch = gguf.MODEL_ARCH.GEMMA2
  4145. def set_vocab(self):
  4146. self._set_vocab_sentencepiece()
  4147. self.gguf_writer.add_add_space_prefix(False)
  4148. def set_gguf_parameters(self):
  4149. hparams = self.hparams
  4150. block_count = hparams["num_hidden_layers"]
  4151. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4152. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4153. self.gguf_writer.add_block_count(block_count)
  4154. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4155. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4156. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4157. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4158. self.gguf_writer.add_key_length(hparams["head_dim"])
  4159. self.gguf_writer.add_value_length(hparams["head_dim"])
  4160. self.gguf_writer.add_file_type(self.ftype)
  4161. self.gguf_writer.add_attn_logit_softcapping(
  4162. self.hparams["attn_logit_softcapping"]
  4163. )
  4164. self.gguf_writer.add_final_logit_softcapping(
  4165. self.hparams["final_logit_softcapping"]
  4166. )
  4167. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4169. del bid # unused
  4170. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4171. # To prevent errors, skip loading lm_head.weight.
  4172. if name == "lm_head.weight":
  4173. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4174. return []
  4175. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4176. if name.endswith("norm.weight"):
  4177. data_torch = data_torch + 1
  4178. return [(self.map_tensor_name(name), data_torch)]
  4179. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4180. class Gemma3Model(TextModel):
  4181. model_arch = gguf.MODEL_ARCH.GEMMA3
  4182. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4183. def set_vocab(self):
  4184. self._set_vocab_sentencepiece()
  4185. self.gguf_writer.add_add_space_prefix(False)
  4186. def set_gguf_parameters(self):
  4187. hparams = self.hparams
  4188. block_count = hparams["num_hidden_layers"]
  4189. # some default values are not specified in the hparams
  4190. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4191. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4192. self.gguf_writer.add_block_count(block_count)
  4193. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4194. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4195. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4196. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4197. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4198. self.gguf_writer.add_file_type(self.ftype)
  4199. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4200. # attn_logit_softcapping is removed in Gemma3
  4201. assert hparams.get("attn_logit_softcapping") is None
  4202. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4203. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4204. if hparams.get("rope_scaling") is not None:
  4205. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4206. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4207. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4208. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4210. del bid # unused
  4211. if "language_model." in name:
  4212. name = name.replace("language_model.", "")
  4213. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4214. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4215. return [] # skip vision tensors
  4216. # remove OOV (out-of-vocabulary) rows in token_embd
  4217. if "embed_tokens.weight" in name:
  4218. vocab = self._create_vocab_sentencepiece()
  4219. tokens = vocab[0]
  4220. data_torch = data_torch[:len(tokens)]
  4221. # ref code in Gemma3RMSNorm
  4222. # output = output * (1.0 + self.weight.float())
  4223. # note: this is not the case on gemma3n
  4224. if name.endswith("norm.weight"):
  4225. data_torch = data_torch + self.norm_shift
  4226. return [(self.map_tensor_name(name), data_torch)]
  4227. @ModelBase.register("Gemma3TextModel")
  4228. class EmbeddingGemma(Gemma3Model):
  4229. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4230. def set_gguf_parameters(self):
  4231. super().set_gguf_parameters()
  4232. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4233. # constructor. We want to use the value from the original model's config.json.
  4234. # ref: https://github.com/huggingface/transformers/pull/40700
  4235. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4236. config = json.load(f)
  4237. orig_sliding_window = config.get("sliding_window")
  4238. if orig_sliding_window is None:
  4239. raise ValueError("sliding_window not found in model config - this is required for the model")
  4240. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4241. f"instead of {self.hparams['sliding_window']}")
  4242. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4243. self._try_set_pooling_type()
  4244. @ModelBase.register("Gemma3ForConditionalGeneration")
  4245. class Gemma3VisionModel(MmprojModel):
  4246. def set_gguf_parameters(self):
  4247. super().set_gguf_parameters()
  4248. hparams = self.hparams
  4249. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4250. # default values below are taken from HF tranformers code
  4251. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4252. self.gguf_writer.add_vision_use_gelu(True)
  4253. # calculate proj_scale_factor (used by tinygemma3 test model)
  4254. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4255. n_per_side = int(image_seq_length ** 0.5)
  4256. image_size = self.hparams["image_size"]
  4257. patch_size = self.hparams["patch_size"]
  4258. proj_scale_factor = (image_size // patch_size) // n_per_side
  4259. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4260. # we only need to write this if it's not the default value
  4261. # in this case, we are converting a test model
  4262. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4263. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4264. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4265. if "input_projection" in name:
  4266. return gguf.GGMLQuantizationType.F16
  4267. if ".embeddings." in name:
  4268. return gguf.GGMLQuantizationType.F32
  4269. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4270. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4271. del bid # unused
  4272. if "vision_model.head." in name:
  4273. return [] # skip redundant tensors for tinygemma3
  4274. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4275. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4276. # process vision tensors
  4277. name = name.replace("_weight", ".weight")
  4278. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4279. # the other norm values are part of SigLIP model, and they are already correct
  4280. # ref code: Gemma3RMSNorm
  4281. if "soft_emb_norm.weight" in name:
  4282. logger.info(f"Correcting norm value for '{name}'")
  4283. data_torch = data_torch + 1
  4284. return [(self.map_tensor_name(name), data_torch)]
  4285. return [] # skip other tensors
  4286. @ModelBase.register("Gemma3nForConditionalGeneration")
  4287. class Gemma3NModel(Gemma3Model):
  4288. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4289. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4290. _altup_proj: list[Tensor] = []
  4291. _altup_unembd: list[Tensor] = []
  4292. def __init__(self, *args, **kwargs):
  4293. super().__init__(*args, **kwargs)
  4294. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4295. self._altup_proj = [
  4296. torch.Tensor(), # to be replaced
  4297. torch.Tensor(), # to be replaced
  4298. torch.Tensor(), # to be replaced
  4299. ]
  4300. self._altup_unembd = [
  4301. torch.Tensor(), # to be replaced
  4302. torch.Tensor(), # to be replaced
  4303. torch.Tensor(), # to be replaced
  4304. ]
  4305. def set_vocab(self):
  4306. super().set_vocab()
  4307. def set_gguf_parameters(self):
  4308. super().set_gguf_parameters()
  4309. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4310. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4311. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4312. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4313. activation_sparsity_scale = []
  4314. for s in self.hparams["activation_sparsity_pattern"]:
  4315. normal_dist = torch.distributions.normal.Normal(0, 1)
  4316. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4317. activation_sparsity_scale.append(std_multiplier.item())
  4318. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4319. sliding_window_pattern = []
  4320. for t in self.hparams["layer_types"]:
  4321. sliding_window_pattern.append(t == "sliding_attention")
  4322. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4323. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4324. has_all = all(m.numel() > 0 for m in matrices)
  4325. if not has_all:
  4326. return None
  4327. else:
  4328. return torch.stack(matrices, dim=0)
  4329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4330. if name.endswith("_scale"):
  4331. name = name + ".weight"
  4332. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4333. if "language_model." not in name:
  4334. return [] # skip non-language model tensors
  4335. if "altup_unembed_projections" in name:
  4336. data_torch = data_torch.to(device="cpu")
  4337. if ".0." in name:
  4338. self._altup_unembd[0] = data_torch
  4339. elif ".1." in name:
  4340. self._altup_unembd[1] = data_torch
  4341. elif ".2." in name:
  4342. self._altup_unembd[2] = data_torch
  4343. else:
  4344. raise ValueError(f"Unknown name: {name}")
  4345. out = self._stack_matrices(self._altup_unembd)
  4346. if out is not None:
  4347. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4348. else:
  4349. return []
  4350. if "altup_projections" in name:
  4351. data_torch = data_torch.to(device="cpu")
  4352. if ".0." in name:
  4353. self._altup_proj[0] = data_torch
  4354. elif ".1." in name:
  4355. self._altup_proj[1] = data_torch
  4356. elif ".2." in name:
  4357. self._altup_proj[2] = data_torch
  4358. else:
  4359. raise ValueError(f"Unknown name: {name}")
  4360. out = self._stack_matrices(self._altup_proj)
  4361. if out is not None:
  4362. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4363. else:
  4364. return []
  4365. return super().modify_tensors(data_torch, name, bid)
  4366. @ModelBase.register("Starcoder2ForCausalLM")
  4367. class StarCoder2Model(TextModel):
  4368. model_arch = gguf.MODEL_ARCH.STARCODER2
  4369. @ModelBase.register("Rwkv6ForCausalLM")
  4370. class Rwkv6Model(TextModel):
  4371. model_arch = gguf.MODEL_ARCH.RWKV6
  4372. def set_vocab(self):
  4373. self._set_vocab_rwkv_world()
  4374. def set_gguf_parameters(self):
  4375. block_count = self.hparams["num_hidden_layers"]
  4376. head_size = self.hparams["head_size"]
  4377. hidden_size = self.hparams["hidden_size"]
  4378. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4379. rescale_every_n_layers = self.hparams["rescale_every"]
  4380. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4381. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4382. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4383. # RWKV isn't context limited
  4384. self.gguf_writer.add_context_length(1048576)
  4385. self.gguf_writer.add_embedding_length(hidden_size)
  4386. self.gguf_writer.add_block_count(block_count)
  4387. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4388. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4389. self.gguf_writer.add_wkv_head_size(head_size)
  4390. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4391. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4392. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4393. self.gguf_writer.add_file_type(self.ftype)
  4394. # required by llama.cpp, unused
  4395. self.gguf_writer.add_head_count(0)
  4396. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4398. new_name = self.map_tensor_name(name)
  4399. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4400. new_name += ".weight"
  4401. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4402. data_torch = data_torch.transpose(0, 1)
  4403. if new_name.endswith("time_mix_w2.weight"):
  4404. data_torch = data_torch.permute(0, 2, 1)
  4405. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4406. data_torch = data_torch.squeeze()
  4407. try:
  4408. rescale_every_n_layers = self.hparams["rescale_every"]
  4409. if rescale_every_n_layers > 0:
  4410. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4411. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4412. except KeyError:
  4413. pass
  4414. # concat time_mix_lerp weights to reduce some cpu overhead
  4415. # also reduces the number of tensors in the model
  4416. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4417. try:
  4418. self.lerp_weights[bid][new_name] = data_torch
  4419. except KeyError:
  4420. self.lerp_weights[bid] = {new_name: data_torch}
  4421. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4422. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4423. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4424. yield (new_name, data)
  4425. return
  4426. yield (new_name, data_torch)
  4427. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4428. class RWKV6Qwen2Model(Rwkv6Model):
  4429. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4430. def set_vocab(self):
  4431. try:
  4432. self._set_vocab_sentencepiece()
  4433. except FileNotFoundError:
  4434. self._set_vocab_gpt2()
  4435. def set_gguf_parameters(self):
  4436. block_count = self.hparams["num_hidden_layers"]
  4437. num_attention_heads = self.hparams["num_attention_heads"]
  4438. num_key_value_heads = self.hparams["num_key_value_heads"]
  4439. hidden_size = self.hparams["hidden_size"]
  4440. head_size = hidden_size // num_attention_heads
  4441. rms_norm_eps = self.hparams["rms_norm_eps"]
  4442. intermediate_size = self.hparams["intermediate_size"]
  4443. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4444. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4445. # RWKV isn't context limited
  4446. self.gguf_writer.add_context_length(1048576)
  4447. self.gguf_writer.add_embedding_length(hidden_size)
  4448. self.gguf_writer.add_block_count(block_count)
  4449. self.gguf_writer.add_wkv_head_size(head_size)
  4450. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4451. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4452. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4453. self.gguf_writer.add_file_type(self.ftype)
  4454. # special parameters for time_mixing in RWKV6QWEN2
  4455. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4456. self.gguf_writer.add_token_shift_count(1)
  4457. # RWKV6QWEN2 use grouped key/value like GQA
  4458. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4459. # required by llama.cpp, unused
  4460. self.gguf_writer.add_head_count(0)
  4461. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4462. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4463. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4464. data = data.view(5, -1, data.shape[-1])
  4465. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4466. # permute them here to avoid code changes
  4467. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4468. if "w2" in new_name:
  4469. data = data.view(5, -1, data.shape[-1])
  4470. yield (new_name, data)
  4471. continue
  4472. yield (new_name, data)
  4473. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4474. class Rwkv7Model(TextModel):
  4475. model_arch = gguf.MODEL_ARCH.RWKV7
  4476. def set_vocab(self):
  4477. self._set_vocab_rwkv_world()
  4478. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4479. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4480. def set_gguf_parameters(self):
  4481. block_count = self.hparams["num_hidden_layers"]
  4482. try:
  4483. head_size = self.hparams["head_size"]
  4484. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4485. except KeyError:
  4486. head_size = self.hparams["head_dim"]
  4487. layer_norm_eps = self.hparams["norm_eps"]
  4488. hidden_size = self.hparams["hidden_size"]
  4489. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4490. # ICLR: In-Context-Learning-Rate
  4491. try:
  4492. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4493. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4494. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4495. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4496. except KeyError:
  4497. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4498. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4499. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4500. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4501. # RWKV isn't context limited
  4502. self.gguf_writer.add_context_length(1048576)
  4503. self.gguf_writer.add_embedding_length(hidden_size)
  4504. self.gguf_writer.add_block_count(block_count)
  4505. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4506. self.gguf_writer.add_wkv_head_size(head_size)
  4507. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4508. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4509. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4510. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4511. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4512. self.gguf_writer.add_file_type(self.ftype)
  4513. # required by llama.cpp, unused
  4514. self.gguf_writer.add_head_count(0)
  4515. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4516. lora_needs_transpose: bool = True
  4517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4518. # unify tensor names here to make life easier
  4519. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4520. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4521. name = name.replace("time_mixer.", "")
  4522. # lora layer names in fla-hub's impl
  4523. if "_lora.lora" in name:
  4524. self.lora_needs_transpose = False
  4525. name = name.replace("_lora.lora.0.weight", "1.weight")
  4526. name = name.replace("_lora.lora.2.weight", "2.weight")
  4527. name = name.replace("_lora.lora.2.bias", "0.weight")
  4528. name = name.replace("feed_forward_norm", "ln2")
  4529. name = name.replace("g_norm", "ln_x")
  4530. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4531. # some models have dummy v0/v1/v2 on first layer while others don't
  4532. # ignore them all since they are not used
  4533. return
  4534. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4535. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4536. if bid is not None and "attention.x_" in name:
  4537. if "attention.x_x" in name:
  4538. # already concatenated
  4539. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4540. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4541. yield (new_name, data)
  4542. else:
  4543. try:
  4544. self.lerp_weights[bid][name] = data_torch
  4545. except KeyError:
  4546. self.lerp_weights[bid] = {name: data_torch}
  4547. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4548. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4549. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4550. yield (new_name, data)
  4551. return
  4552. else:
  4553. data_torch = data_torch.squeeze()
  4554. new_name = self.map_tensor_name(name)
  4555. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4556. new_name += ".weight"
  4557. if self.lora_needs_transpose and any(
  4558. new_name.endswith(t) for t in [
  4559. "time_mix_w1.weight", "time_mix_w2.weight",
  4560. "time_mix_a1.weight", "time_mix_a2.weight",
  4561. "time_mix_v1.weight", "time_mix_v2.weight",
  4562. "time_mix_g1.weight", "time_mix_g2.weight",
  4563. ]
  4564. ):
  4565. data_torch = data_torch.transpose(0, 1)
  4566. if 'r_k' in new_name:
  4567. data_torch = data_torch.flatten()
  4568. if bid == 0 and "time_mix_a" in new_name:
  4569. # dummy v0/v1/v2 on first layer
  4570. # easist way to make llama happy
  4571. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4572. yield (new_name, data_torch)
  4573. @ModelBase.register("RwkvHybridForCausalLM")
  4574. class ARwkv7Model(Rwkv7Model):
  4575. model_arch = gguf.MODEL_ARCH.ARWKV7
  4576. def set_vocab(self):
  4577. try:
  4578. self._set_vocab_sentencepiece()
  4579. except FileNotFoundError:
  4580. self._set_vocab_gpt2()
  4581. def set_gguf_parameters(self):
  4582. block_count = self.hparams["num_hidden_layers"]
  4583. hidden_size = self.hparams["hidden_size"]
  4584. head_size = self.hparams["head_size"]
  4585. rms_norm_eps = self.hparams["rms_norm_eps"]
  4586. intermediate_size = self.hparams["intermediate_size"]
  4587. wkv_has_gate = self.hparams["wkv_has_gate"]
  4588. assert self.hparams["wkv_version"] == 7
  4589. # ICLR: In-Context-Learning-Rate
  4590. lora_rank_decay = 64
  4591. lora_rank_iclr = 64
  4592. lora_rank_value_residual_mix = 32
  4593. lora_rank_gate = 128 if wkv_has_gate else 0
  4594. # RWKV isn't context limited
  4595. self.gguf_writer.add_context_length(1048576)
  4596. self.gguf_writer.add_embedding_length(hidden_size)
  4597. self.gguf_writer.add_block_count(block_count)
  4598. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4599. self.gguf_writer.add_wkv_head_size(head_size)
  4600. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4601. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4602. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4603. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4604. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4605. self.gguf_writer.add_file_type(self.ftype)
  4606. self.gguf_writer.add_token_shift_count(1)
  4607. # required by llama.cpp, unused
  4608. self.gguf_writer.add_head_count(0)
  4609. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4610. class MambaModel(TextModel):
  4611. model_arch = gguf.MODEL_ARCH.MAMBA
  4612. def __init__(self, dir_model: Path, *args, **kwargs):
  4613. # Avoid using AutoConfig for hparams
  4614. hparams = kwargs.pop("hparams", None)
  4615. if hparams is None:
  4616. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4617. hparams = json.load(f)
  4618. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4619. def set_vocab(self):
  4620. vocab_size = self.hparams["vocab_size"]
  4621. # Round vocab size to next multiple of 8
  4622. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4623. # pad using ceiling division
  4624. # ref: https://stackoverflow.com/a/17511341/22827863
  4625. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4626. self.hparams["vocab_size"] = vocab_size
  4627. if (self.dir_model / "tokenizer.json").is_file():
  4628. self._set_vocab_gpt2()
  4629. elif (self.dir_model / "tokenizer.model").is_file():
  4630. self._set_vocab_sentencepiece()
  4631. else:
  4632. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4633. self._set_vocab_builtin("gpt-neox", vocab_size)
  4634. def set_gguf_parameters(self):
  4635. d_model = self.find_hparam(["hidden_size", "d_model"])
  4636. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4637. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4638. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4639. # ceiling division
  4640. # ref: https://stackoverflow.com/a/17511341/22827863
  4641. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4642. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4643. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4644. use_dt_b_c_norm = False
  4645. # For falconmamba we do apply RMS norm on B / DT and C layers
  4646. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4647. use_dt_b_c_norm = True
  4648. # Fail early for models which don't have a block expansion factor of 2
  4649. assert d_inner == 2 * d_model
  4650. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4651. self.gguf_writer.add_embedding_length(d_model)
  4652. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4653. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4654. self.gguf_writer.add_block_count(self.block_count)
  4655. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4656. self.gguf_writer.add_ssm_inner_size(d_inner)
  4657. self.gguf_writer.add_ssm_state_size(d_state)
  4658. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4659. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4660. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4661. self.gguf_writer.add_file_type(self.ftype)
  4662. _tok_embd = None
  4663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4664. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4665. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4666. new_name = self.map_tensor_name(name)
  4667. if name.endswith(".A_log"):
  4668. logger.debug("A_log --> A ==> " + new_name)
  4669. data_torch = -torch.exp(data_torch)
  4670. # [4 1 8192 1] -> [4 8192 1 1]
  4671. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4672. data_torch = data_torch.squeeze()
  4673. # assuming token_embd.weight is seen before output.weight
  4674. if self._tok_embd is not None and new_name == output_name:
  4675. if torch.equal(self._tok_embd, data_torch):
  4676. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4677. return []
  4678. elif new_name == tok_embd_name:
  4679. self._tok_embd = data_torch
  4680. return [(new_name, data_torch)]
  4681. @ModelBase.register("Mamba2ForCausalLM")
  4682. class Mamba2Model(TextModel):
  4683. model_arch = gguf.MODEL_ARCH.MAMBA2
  4684. def __init__(self, dir_model: Path, *args, **kwargs):
  4685. # Avoid using AutoConfig for hparams
  4686. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4687. hparams = kwargs.pop("hparams", None)
  4688. if hparams is None:
  4689. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4690. hparams = json.load(f)
  4691. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4692. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4693. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4694. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4695. def set_vocab(self):
  4696. vocab_size = self.hparams["vocab_size"]
  4697. # Round vocab size to next multiple of 16
  4698. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4699. # pad using ceiling division
  4700. # ref: https://stackoverflow.com/a/17511341/22827863
  4701. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4702. self.hparams["vocab_size"] = vocab_size
  4703. if (self.dir_model / "tokenizer.model").is_file():
  4704. self._set_vocab_sentencepiece()
  4705. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4706. # mamba-codestral
  4707. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4708. elif (self.dir_model / "tokenizer.json").is_file():
  4709. self._set_vocab_gpt2()
  4710. else:
  4711. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4712. self._set_vocab_builtin("gpt-neox", vocab_size)
  4713. def set_gguf_parameters(self):
  4714. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4715. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4716. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4717. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4718. # Fail early for models which don't have a block expansion factor of 2
  4719. # TODO: does this really matter?
  4720. # skip the assertion for FalconH1 Model
  4721. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4722. assert self.d_inner == 2 * self.d_model
  4723. assert self.d_inner % head_dim == 0
  4724. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4725. self.gguf_writer.add_embedding_length(self.d_model)
  4726. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4727. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4728. self.gguf_writer.add_block_count(self.block_count)
  4729. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4730. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4731. self.gguf_writer.add_ssm_state_size(d_state)
  4732. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4733. self.gguf_writer.add_ssm_group_count(self.n_group)
  4734. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4735. self.gguf_writer.add_file_type(self.ftype)
  4736. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4737. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4738. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4739. name = name.removeprefix("model.")
  4740. if name.endswith(".dt_bias"):
  4741. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4742. new_name = self.map_tensor_name(name)
  4743. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4744. data_torch = data_torch.squeeze()
  4745. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4746. gguf.MODEL_TENSOR.SSM_A,
  4747. gguf.MODEL_TENSOR.SSM_D,
  4748. ]):
  4749. # unsqueeze A to use similar shape semantics as Mamba-1
  4750. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4751. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4752. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4753. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4754. if name.endswith(".A_log"):
  4755. logger.debug("A_log --> A ==> " + new_name)
  4756. data_torch = -torch.exp(data_torch)
  4757. yield (new_name, data_torch)
  4758. @ModelBase.register("JambaForCausalLM")
  4759. class JambaModel(TextModel):
  4760. model_arch = gguf.MODEL_ARCH.JAMBA
  4761. def get_vocab_base_pre(self, tokenizer) -> str:
  4762. del tokenizer # unused
  4763. return "gpt-2"
  4764. def set_vocab(self):
  4765. if (self.dir_model / "tokenizer.model").is_file():
  4766. # Using Jamba's tokenizer.json causes errors on model load
  4767. # (something about "byte not found in vocab"),
  4768. # but there's a working tokenizer.model
  4769. self._set_vocab_sentencepiece()
  4770. else:
  4771. # Some Jamba models only have a tokenizer.json, which works.
  4772. self._set_vocab_gpt2()
  4773. def set_gguf_parameters(self):
  4774. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4775. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4776. d_inner = self.hparams["mamba_expand"] * d_model
  4777. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4778. # ceiling division
  4779. # ref: https://stackoverflow.com/a/17511341/22827863
  4780. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4781. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4782. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4783. n_kv_head = self.hparams["num_key_value_heads"]
  4784. attn_offset = self.hparams["attn_layer_offset"]
  4785. attn_period = self.hparams["attn_layer_period"]
  4786. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4787. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4788. ]
  4789. self.gguf_writer.add_block_count(self.block_count)
  4790. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4791. self.gguf_writer.add_embedding_length(d_model)
  4792. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4793. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4794. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4795. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4796. self.gguf_writer.add_ssm_inner_size(d_inner)
  4797. self.gguf_writer.add_ssm_state_size(d_state)
  4798. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4799. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4800. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4801. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4802. self.gguf_writer.add_file_type(self.ftype)
  4803. _experts: list[dict[str, Tensor]] | None = None
  4804. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4805. # Mini-Jamba
  4806. name = name.replace(".moe.", ".feed_forward.")
  4807. if bid is not None:
  4808. moe_offset = self.hparams["expert_layer_offset"]
  4809. moe_period = self.hparams["expert_layer_period"]
  4810. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4811. name = name.replace(".experts.0.", ".")
  4812. # process the experts separately
  4813. if ".feed_forward.experts." in name:
  4814. n_experts = self.hparams["num_experts"]
  4815. assert bid is not None
  4816. if self._experts is None:
  4817. self._experts = [{} for _ in range(self.block_count)]
  4818. self._experts[bid][name] = data_torch
  4819. if len(self._experts[bid]) >= n_experts * 3:
  4820. # merge the experts into a single 3d tensor
  4821. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4822. datas: list[Tensor] = []
  4823. for xid in range(n_experts):
  4824. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4825. datas.append(self._experts[bid][ename])
  4826. del self._experts[bid][ename]
  4827. data_torch = torch.stack(datas, dim=0)
  4828. # using the same merged name as qwen2moe
  4829. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4830. new_name = self.map_tensor_name(merged_name)
  4831. yield new_name, data_torch
  4832. return
  4833. new_name = self.map_tensor_name(name)
  4834. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4835. data_torch = data_torch.squeeze()
  4836. if name.endswith(".A_log"):
  4837. logger.debug("A_log --> A ==> " + new_name)
  4838. data_torch = -torch.exp(data_torch)
  4839. yield (new_name, data_torch)
  4840. def prepare_tensors(self):
  4841. super().prepare_tensors()
  4842. if self._experts is not None:
  4843. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4844. experts = [k for d in self._experts for k in d.keys()]
  4845. if len(experts) > 0:
  4846. raise ValueError(f"Unprocessed experts: {experts}")
  4847. @ModelBase.register("CohereForCausalLM")
  4848. class CommandR2Model(TextModel):
  4849. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4850. def __init__(self, *args, **kwargs):
  4851. super().__init__(*args, **kwargs)
  4852. # max_position_embeddings = 8192 in config.json but model was actually
  4853. # trained on 128k context length
  4854. # aya-23 models don't have model_max_length specified
  4855. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4856. def set_gguf_parameters(self):
  4857. super().set_gguf_parameters()
  4858. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4859. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4860. @ModelBase.register("Cohere2ForCausalLM")
  4861. class Cohere2Model(TextModel):
  4862. model_arch = gguf.MODEL_ARCH.COHERE2
  4863. def set_gguf_parameters(self):
  4864. super().set_gguf_parameters()
  4865. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4866. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4867. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4868. rotary_pct = self.hparams["rotary_pct"]
  4869. hidden_size = self.hparams["hidden_size"]
  4870. num_attention_heads = self.hparams["num_attention_heads"]
  4871. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4872. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4873. @ModelBase.register("OlmoForCausalLM")
  4874. @ModelBase.register("OLMoForCausalLM")
  4875. class OlmoModel(TextModel):
  4876. model_arch = gguf.MODEL_ARCH.OLMO
  4877. def set_gguf_parameters(self):
  4878. super().set_gguf_parameters()
  4879. self.gguf_writer.add_layer_norm_eps(1e-5)
  4880. clip_qkv = self.hparams.get("clip_qkv")
  4881. if clip_qkv is not None:
  4882. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4883. # Same as super class, but permuting q_proj, k_proj
  4884. # Copied from: LlamaModel
  4885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4886. del bid # unused
  4887. n_head = self.hparams["num_attention_heads"]
  4888. n_kv_head = self.hparams.get("num_key_value_heads")
  4889. if name.endswith("q_proj.weight"):
  4890. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4891. if name.endswith("k_proj.weight"):
  4892. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4893. return [(self.map_tensor_name(name), data_torch)]
  4894. @ModelBase.register("SeedOssForCausalLM")
  4895. class SeedOssModel(TextModel):
  4896. model_arch = gguf.MODEL_ARCH.SEED_OSS
  4897. @ModelBase.register("Olmo2ForCausalLM")
  4898. class Olmo2Model(TextModel):
  4899. model_arch = gguf.MODEL_ARCH.OLMO2
  4900. @ModelBase.register("OlmoeForCausalLM")
  4901. class OlmoeModel(TextModel):
  4902. model_arch = gguf.MODEL_ARCH.OLMOE
  4903. def set_gguf_parameters(self):
  4904. super().set_gguf_parameters()
  4905. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4906. if (n_experts := self.hparams.get("num_experts")) is not None:
  4907. self.gguf_writer.add_expert_count(n_experts)
  4908. _experts: list[dict[str, Tensor]] | None = None
  4909. # Copied from: Qwen2MoeModel
  4910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4911. # process the experts separately
  4912. if name.find("experts") != -1:
  4913. n_experts = self.hparams["num_experts"]
  4914. assert bid is not None
  4915. if self._experts is None:
  4916. self._experts = [{} for _ in range(self.block_count)]
  4917. self._experts[bid][name] = data_torch
  4918. if len(self._experts[bid]) >= n_experts * 3:
  4919. tensors: list[tuple[str, Tensor]] = []
  4920. # merge the experts into a single 3d tensor
  4921. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4922. datas: list[Tensor] = []
  4923. for xid in range(n_experts):
  4924. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4925. datas.append(self._experts[bid][ename])
  4926. del self._experts[bid][ename]
  4927. data_torch = torch.stack(datas, dim=0)
  4928. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4929. new_name = self.map_tensor_name(merged_name)
  4930. tensors.append((new_name, data_torch))
  4931. return tensors
  4932. else:
  4933. return []
  4934. return [(self.map_tensor_name(name), data_torch)]
  4935. # Copied from: Qwen2MoeModel
  4936. def prepare_tensors(self):
  4937. super().prepare_tensors()
  4938. if self._experts is not None:
  4939. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4940. experts = [k for d in self._experts for k in d.keys()]
  4941. if len(experts) > 0:
  4942. raise ValueError(f"Unprocessed experts: {experts}")
  4943. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4944. class JinaBertV2Model(BertModel):
  4945. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4946. def set_vocab(self):
  4947. tokenizer_class = 'BertTokenizer'
  4948. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4949. tokenizer_class = json.load(f)['tokenizer_class']
  4950. if tokenizer_class == 'BertTokenizer':
  4951. super().set_vocab()
  4952. elif tokenizer_class == 'RobertaTokenizer':
  4953. self._set_vocab_gpt2()
  4954. self.gguf_writer.add_token_type_count(2)
  4955. else:
  4956. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4957. @ModelBase.register("OpenELMForCausalLM")
  4958. class OpenELMModel(TextModel):
  4959. model_arch = gguf.MODEL_ARCH.OPENELM
  4960. @staticmethod
  4961. def _make_divisible(v: float | int, divisor: int) -> int:
  4962. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4963. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4964. # Make sure that round down does not go down by more than 10%.
  4965. if new_v < 0.9 * v:
  4966. new_v += divisor
  4967. return new_v
  4968. def __init__(self, *args, **kwargs):
  4969. super().__init__(*args, **kwargs)
  4970. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4971. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4972. self._n_embd: int = self.hparams["model_dim"]
  4973. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4974. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4975. self._ffn_dims: list[int] = [
  4976. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4977. for multiplier in ffn_multipliers
  4978. ]
  4979. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4980. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4981. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4982. def set_vocab(self):
  4983. try:
  4984. self._set_vocab_sentencepiece()
  4985. except FileNotFoundError:
  4986. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4987. def set_gguf_parameters(self):
  4988. n_embd = self._n_embd
  4989. head_dim = self.hparams["head_dim"]
  4990. rot_pct = 1.0
  4991. assert self.block_count == len(self._num_kv_heads)
  4992. assert self.block_count == len(self._num_query_heads)
  4993. assert self.block_count == len(self._ffn_dims)
  4994. self.gguf_writer.add_block_count(self.block_count)
  4995. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4996. self.gguf_writer.add_embedding_length(n_embd)
  4997. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4998. self.gguf_writer.add_head_count(self._num_query_heads)
  4999. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5000. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5001. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5002. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5003. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5004. self.gguf_writer.add_key_length(head_dim)
  5005. self.gguf_writer.add_value_length(head_dim)
  5006. self.gguf_writer.add_file_type(self.ftype)
  5007. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5008. if "n_layers" in keys:
  5009. return self.hparams["num_transformer_layers"]
  5010. return super().find_hparam(keys, optional)
  5011. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5012. # split ff
  5013. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5014. ff_dim = self._ffn_dims[bid]
  5015. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5016. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5017. return
  5018. yield (self.map_tensor_name(name), data_torch)
  5019. @ModelBase.register("ArcticForCausalLM")
  5020. class ArcticModel(TextModel):
  5021. model_arch = gguf.MODEL_ARCH.ARCTIC
  5022. def set_vocab(self):
  5023. # The reason for using a custom implementation here is that the
  5024. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5025. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5026. from sentencepiece import SentencePieceProcessor
  5027. tokenizer_path = self.dir_model / 'tokenizer.model'
  5028. if not tokenizer_path.is_file():
  5029. logger.error(f'Error: Missing {tokenizer_path}')
  5030. sys.exit(1)
  5031. # Read the whole vocabulary from the tokenizer.model file
  5032. tokenizer = SentencePieceProcessor()
  5033. tokenizer.LoadFromFile(str(tokenizer_path))
  5034. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5035. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5036. scores: list[float] = [-10000.0] * vocab_size
  5037. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5038. for token_id in range(tokenizer.vocab_size()):
  5039. piece = tokenizer.IdToPiece(token_id)
  5040. text = piece.encode("utf-8")
  5041. score = tokenizer.GetScore(token_id)
  5042. toktype = SentencePieceTokenTypes.NORMAL
  5043. if tokenizer.IsUnknown(token_id):
  5044. toktype = SentencePieceTokenTypes.UNKNOWN
  5045. elif tokenizer.IsControl(token_id):
  5046. toktype = SentencePieceTokenTypes.CONTROL
  5047. elif tokenizer.IsUnused(token_id):
  5048. toktype = SentencePieceTokenTypes.UNUSED
  5049. elif tokenizer.IsByte(token_id):
  5050. toktype = SentencePieceTokenTypes.BYTE
  5051. tokens[token_id] = text
  5052. scores[token_id] = score
  5053. toktypes[token_id] = toktype
  5054. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5055. # of information about added/redefined tokens and modify them accordingly.
  5056. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5057. if tokenizer_config_file.is_file():
  5058. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5059. tokenizer_config_json = json.load(f)
  5060. if "added_tokens_decoder" in tokenizer_config_json:
  5061. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5062. for token_id, token_json in added_tokens_decoder.items():
  5063. token_id = int(token_id)
  5064. if token_id >= vocab_size:
  5065. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5066. continue
  5067. token_content = token_json["content"]
  5068. token_type = SentencePieceTokenTypes.USER_DEFINED
  5069. token_score = -10000.0
  5070. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5071. # Set the score to 0.0 as in the original tokenizer.model
  5072. if ("special" in token_json) and token_json["special"]:
  5073. if token_content == tokenizer_config_json["unk_token"]:
  5074. token_type = SentencePieceTokenTypes.UNKNOWN
  5075. else:
  5076. token_type = SentencePieceTokenTypes.CONTROL
  5077. token_score = 0.0
  5078. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5079. tokens[token_id] = token_content.encode("utf-8")
  5080. toktypes[token_id] = token_type
  5081. scores[token_id] = token_score
  5082. self.gguf_writer.add_tokenizer_model("llama")
  5083. self.gguf_writer.add_tokenizer_pre("default")
  5084. self.gguf_writer.add_token_list(tokens)
  5085. self.gguf_writer.add_token_scores(scores)
  5086. self.gguf_writer.add_token_types(toktypes)
  5087. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5088. special_vocab.add_to_gguf(self.gguf_writer)
  5089. def set_gguf_parameters(self):
  5090. super().set_gguf_parameters()
  5091. hparams = self.hparams
  5092. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5093. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5094. _experts: list[dict[str, Tensor]] | None = None
  5095. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5096. n_head = self.hparams["num_attention_heads"]
  5097. n_kv_head = self.hparams.get("num_key_value_heads")
  5098. if name.endswith("q_proj.weight"):
  5099. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5100. if name.endswith("k_proj.weight"):
  5101. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5102. # process the experts separately
  5103. if name.find("block_sparse_moe.experts") != -1:
  5104. n_experts = self.hparams["num_local_experts"]
  5105. assert bid is not None
  5106. if self._experts is None:
  5107. self._experts = [{} for _ in range(self.block_count)]
  5108. self._experts[bid][name] = data_torch
  5109. if len(self._experts[bid]) >= n_experts * 3:
  5110. tensors: list[tuple[str, Tensor]] = []
  5111. # merge the experts into a single 3d tensor
  5112. for wid in ["w1", "w2", "w3"]:
  5113. datas: list[Tensor] = []
  5114. for xid in range(n_experts):
  5115. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5116. datas.append(self._experts[bid][ename])
  5117. del self._experts[bid][ename]
  5118. data_torch = torch.stack(datas, dim=0)
  5119. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5120. new_name = self.map_tensor_name(merged_name)
  5121. tensors.append((new_name, data_torch))
  5122. return tensors
  5123. else:
  5124. return []
  5125. return [(self.map_tensor_name(name), data_torch)]
  5126. def prepare_tensors(self):
  5127. super().prepare_tensors()
  5128. if self._experts is not None:
  5129. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5130. experts = [k for d in self._experts for k in d.keys()]
  5131. if len(experts) > 0:
  5132. raise ValueError(f"Unprocessed experts: {experts}")
  5133. @ModelBase.register("DeepseekForCausalLM")
  5134. class DeepseekModel(TextModel):
  5135. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5136. def set_vocab(self):
  5137. try:
  5138. self._set_vocab_sentencepiece()
  5139. except FileNotFoundError:
  5140. self._set_vocab_gpt2()
  5141. def set_gguf_parameters(self):
  5142. super().set_gguf_parameters()
  5143. hparams = self.hparams
  5144. if (rope_dim := hparams.get("head_dim")) is None:
  5145. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5146. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5147. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5148. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5149. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5150. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5151. self.gguf_writer.add_expert_weights_scale(1.0)
  5152. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5153. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5154. _experts: list[dict[str, Tensor]] | None = None
  5155. @staticmethod
  5156. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5157. if n_head_kv is not None and n_head != n_head_kv:
  5158. n_head = n_head_kv
  5159. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5160. .swapaxes(1, 2)
  5161. .reshape(weights.shape))
  5162. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5163. n_head = self.hparams["num_attention_heads"]
  5164. n_kv_head = self.hparams.get("num_key_value_heads")
  5165. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5166. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5167. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5168. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5169. # process the experts separately
  5170. if name.find("mlp.experts") != -1:
  5171. n_experts = self.hparams["n_routed_experts"]
  5172. assert bid is not None
  5173. if self._experts is None:
  5174. self._experts = [{} for _ in range(self.block_count)]
  5175. self._experts[bid][name] = data_torch
  5176. if len(self._experts[bid]) >= n_experts * 3:
  5177. tensors: list[tuple[str, Tensor]] = []
  5178. # merge the experts into a single 3d tensor
  5179. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5180. datas: list[Tensor] = []
  5181. for xid in range(n_experts):
  5182. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5183. datas.append(self._experts[bid][ename])
  5184. del self._experts[bid][ename]
  5185. data_torch = torch.stack(datas, dim=0)
  5186. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5187. new_name = self.map_tensor_name(merged_name)
  5188. tensors.append((new_name, data_torch))
  5189. return tensors
  5190. else:
  5191. return []
  5192. return [(self.map_tensor_name(name), data_torch)]
  5193. def prepare_tensors(self):
  5194. super().prepare_tensors()
  5195. if self._experts is not None:
  5196. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5197. experts = [k for d in self._experts for k in d.keys()]
  5198. if len(experts) > 0:
  5199. raise ValueError(f"Unprocessed experts: {experts}")
  5200. @ModelBase.register(
  5201. "DeepseekV2ForCausalLM",
  5202. "DeepseekV3ForCausalLM",
  5203. "KimiVLForConditionalGeneration",
  5204. )
  5205. class DeepseekV2Model(TextModel):
  5206. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5207. def set_vocab(self):
  5208. try:
  5209. self._set_vocab_gpt2()
  5210. return
  5211. except Exception:
  5212. pass
  5213. from transformers import AutoTokenizer
  5214. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5215. tokpre = self.get_vocab_base_pre(tokenizer)
  5216. if tokpre == "kimi-k2":
  5217. # Build merges list using the approach similar to HunYuanMoE
  5218. merges = []
  5219. vocab = {}
  5220. mergeable_ranks = tokenizer.model._mergeable_ranks
  5221. for token, rank in mergeable_ranks.items():
  5222. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5223. if len(token) == 1:
  5224. continue
  5225. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5226. if len(merged) == 2:
  5227. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5228. # Build token list
  5229. vocab_size = self.hparams["vocab_size"]
  5230. special_tokens = tokenizer.special_tokens
  5231. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5232. tokens: list[str] = []
  5233. toktypes: list[int] = []
  5234. for i in range(vocab_size):
  5235. if i not in reverse_vocab:
  5236. tokens.append(f"[PAD{i}]")
  5237. toktypes.append(gguf.TokenType.UNUSED)
  5238. else:
  5239. token = reverse_vocab[i]
  5240. tokens.append(token)
  5241. if i in special_tokens.values():
  5242. toktypes.append(gguf.TokenType.CONTROL)
  5243. else:
  5244. toktypes.append(gguf.TokenType.NORMAL)
  5245. self.gguf_writer.add_tokenizer_model("gpt2")
  5246. self.gguf_writer.add_tokenizer_pre(tokpre)
  5247. self.gguf_writer.add_token_list(tokens)
  5248. self.gguf_writer.add_token_types(toktypes)
  5249. self.gguf_writer.add_token_merges(merges)
  5250. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5251. special_vocab.add_to_gguf(self.gguf_writer)
  5252. else:
  5253. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5254. def set_gguf_parameters(self):
  5255. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5256. self.hparams["num_key_value_heads"] = 1
  5257. super().set_gguf_parameters()
  5258. hparams = self.hparams
  5259. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5260. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5261. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5262. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5263. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5264. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5265. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5266. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5267. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5268. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5269. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5270. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5271. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5272. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5273. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5274. if hparams["scoring_func"] == "sigmoid":
  5275. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5276. elif hparams["scoring_func"] == "softmax":
  5277. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5278. else:
  5279. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5280. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5281. rope_scaling = self.hparams.get("rope_scaling") or {}
  5282. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5283. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5284. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5285. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5286. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5287. _experts: list[dict[str, Tensor]] | None = None
  5288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5289. # skip vision tensors and remove "language_model." for Kimi-VL
  5290. if "vision_tower" in name or "multi_modal_projector" in name:
  5291. return []
  5292. if name.startswith("language_model."):
  5293. name = name.replace("language_model.", "")
  5294. # rename e_score_correction_bias tensors
  5295. if name.endswith("e_score_correction_bias"):
  5296. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5297. # skip Multi-Token Prediction (MTP) layers
  5298. block_count = self.hparams["num_hidden_layers"]
  5299. match = re.match(r"model.layers.(\d+)", name)
  5300. if match and int(match.group(1)) >= block_count:
  5301. return []
  5302. # process the experts separately
  5303. if name.find("mlp.experts") != -1:
  5304. n_experts = self.hparams["n_routed_experts"]
  5305. assert bid is not None
  5306. if self._experts is None:
  5307. self._experts = [{} for _ in range(self.block_count)]
  5308. self._experts[bid][name] = data_torch
  5309. if len(self._experts[bid]) >= n_experts * 3:
  5310. tensors: list[tuple[str, Tensor]] = []
  5311. # merge the experts into a single 3d tensor
  5312. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5313. datas: list[Tensor] = []
  5314. for xid in range(n_experts):
  5315. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5316. datas.append(self._experts[bid][ename])
  5317. del self._experts[bid][ename]
  5318. data_torch = torch.stack(datas, dim=0)
  5319. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5320. new_name = self.map_tensor_name(merged_name)
  5321. tensors.append((new_name, data_torch))
  5322. return tensors
  5323. else:
  5324. return []
  5325. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5326. if name.endswith("kv_b_proj.weight"):
  5327. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5328. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5329. n_head_kv = self.hparams["num_key_value_heads"]
  5330. v_head_dim = self.hparams["v_head_dim"]
  5331. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5332. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5333. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5334. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5335. k_b = k_b.transpose(1, 2)
  5336. return [
  5337. (self.map_tensor_name(name_kb), k_b),
  5338. (self.map_tensor_name(name_vb), v_b)
  5339. ]
  5340. return [(self.map_tensor_name(name), data_torch)]
  5341. def prepare_tensors(self):
  5342. super().prepare_tensors()
  5343. if self._experts is not None:
  5344. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5345. experts = [k for d in self._experts for k in d.keys()]
  5346. if len(experts) > 0:
  5347. raise ValueError(f"Unprocessed experts: {experts}")
  5348. @ModelBase.register("Dots1ForCausalLM")
  5349. class Dots1Model(Qwen2MoeModel):
  5350. model_arch = gguf.MODEL_ARCH.DOTS1
  5351. def __init__(self, *args, **kwargs):
  5352. super().__init__(*args, **kwargs)
  5353. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5354. def set_gguf_parameters(self):
  5355. super().set_gguf_parameters()
  5356. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5357. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5358. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5359. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5360. if self.hparams["scoring_func"] == "noaux_tc":
  5361. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5362. else:
  5363. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5364. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5365. if name.endswith("e_score_correction_bias"):
  5366. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5367. if "shared_experts" in name:
  5368. return [(self.map_tensor_name(name), data_torch)]
  5369. return super().modify_tensors(data_torch, name, bid)
  5370. @ModelBase.register("PLMForCausalLM")
  5371. class PLMModel(TextModel):
  5372. model_arch = gguf.MODEL_ARCH.PLM
  5373. def set_vocab(self):
  5374. self._set_vocab_gpt2()
  5375. def set_gguf_parameters(self):
  5376. super().set_gguf_parameters()
  5377. hparams = self.hparams
  5378. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5379. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5380. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5381. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5382. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5383. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5384. return [(self.map_tensor_name(name), data_torch)]
  5385. def prepare_tensors(self):
  5386. super().prepare_tensors()
  5387. @ModelBase.register("T5WithLMHeadModel")
  5388. @ModelBase.register("T5ForConditionalGeneration")
  5389. @ModelBase.register("MT5ForConditionalGeneration")
  5390. @ModelBase.register("UMT5ForConditionalGeneration")
  5391. class T5Model(TextModel):
  5392. model_arch = gguf.MODEL_ARCH.T5
  5393. def __init__(self, *args, **kwargs):
  5394. super().__init__(*args, **kwargs)
  5395. self.shared_token_embeddings_found = False
  5396. def set_vocab(self):
  5397. # to avoid TypeError: Descriptors cannot be created directly
  5398. # exception when importing sentencepiece_model_pb2
  5399. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5400. from sentencepiece import SentencePieceProcessor
  5401. from sentencepiece import sentencepiece_model_pb2 as model
  5402. tokenizer_path = self.dir_model / 'tokenizer.model'
  5403. # many older models use spiece.model tokenizer model filename
  5404. if not tokenizer_path.is_file():
  5405. tokenizer_path = self.dir_model / 'spiece.model'
  5406. if not tokenizer_path.is_file():
  5407. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5408. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5409. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5410. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5411. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5412. # assure the tokenizer model file name is correct
  5413. assert tokenizer_path.name == 'tokenizer.model'
  5414. return self._set_vocab_sentencepiece()
  5415. else:
  5416. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5417. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5418. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5419. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5420. tokenizer = SentencePieceProcessor()
  5421. tokenizer.LoadFromFile(str(tokenizer_path))
  5422. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5423. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5424. scores: list[float] = [-10000.0] * vocab_size
  5425. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5426. for token_id in range(tokenizer.vocab_size()):
  5427. piece = tokenizer.IdToPiece(token_id)
  5428. text = piece.encode("utf-8")
  5429. score = tokenizer.GetScore(token_id)
  5430. toktype = SentencePieceTokenTypes.NORMAL
  5431. if tokenizer.IsUnknown(token_id):
  5432. toktype = SentencePieceTokenTypes.UNKNOWN
  5433. elif tokenizer.IsControl(token_id):
  5434. toktype = SentencePieceTokenTypes.CONTROL
  5435. elif tokenizer.IsUnused(token_id):
  5436. toktype = SentencePieceTokenTypes.UNUSED
  5437. elif tokenizer.IsByte(token_id):
  5438. toktype = SentencePieceTokenTypes.BYTE
  5439. tokens[token_id] = text
  5440. scores[token_id] = score
  5441. toktypes[token_id] = toktype
  5442. added_tokens_file = self.dir_model / 'added_tokens.json'
  5443. if added_tokens_file.is_file():
  5444. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5445. added_tokens_json = json.load(f)
  5446. for key in added_tokens_json:
  5447. token_id = added_tokens_json[key]
  5448. if token_id >= vocab_size:
  5449. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5450. continue
  5451. tokens[token_id] = key.encode("utf-8")
  5452. scores[token_id] = -1000.0
  5453. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5454. if vocab_size > len(tokens):
  5455. pad_count = vocab_size - len(tokens)
  5456. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5457. for i in range(1, pad_count + 1):
  5458. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5459. scores.append(-1000.0)
  5460. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5461. self.gguf_writer.add_tokenizer_model("t5")
  5462. self.gguf_writer.add_tokenizer_pre("default")
  5463. self.gguf_writer.add_token_list(tokens)
  5464. self.gguf_writer.add_token_scores(scores)
  5465. self.gguf_writer.add_token_types(toktypes)
  5466. self.gguf_writer.add_add_space_prefix(add_prefix)
  5467. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5468. if precompiled_charsmap:
  5469. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5470. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5471. special_vocab.add_to_gguf(self.gguf_writer)
  5472. def set_gguf_parameters(self):
  5473. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5474. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5475. n_ctx = 512
  5476. self.gguf_writer.add_context_length(n_ctx)
  5477. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5478. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5479. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5480. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5481. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5482. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5483. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5484. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5485. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5486. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5487. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5488. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5489. self.gguf_writer.add_file_type(self.ftype)
  5490. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5491. del bid # unused
  5492. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5493. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5494. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5495. # and decoder and ignore the remaining ones.
  5496. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5497. if not self.shared_token_embeddings_found:
  5498. name = "shared.weight"
  5499. self.shared_token_embeddings_found = True
  5500. else:
  5501. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5502. return []
  5503. return [(self.map_tensor_name(name), data_torch)]
  5504. @ModelBase.register("T5EncoderModel")
  5505. class T5EncoderModel(TextModel):
  5506. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5507. def __init__(self, *args, **kwargs):
  5508. super().__init__(*args, **kwargs)
  5509. self.shared_token_embeddings_found = False
  5510. def set_vocab(self):
  5511. # to avoid TypeError: Descriptors cannot be created directly
  5512. # exception when importing sentencepiece_model_pb2
  5513. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5514. from sentencepiece import SentencePieceProcessor
  5515. from sentencepiece import sentencepiece_model_pb2 as model
  5516. tokenizer_path = self.dir_model / 'tokenizer.model'
  5517. # many older models use spiece.model tokenizer model filename
  5518. if not tokenizer_path.is_file():
  5519. tokenizer_path = self.dir_model / 'spiece.model'
  5520. if not tokenizer_path.is_file():
  5521. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5522. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5523. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5524. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5525. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5526. # assure the tokenizer model file name is correct
  5527. assert tokenizer_path.name == 'tokenizer.model'
  5528. return self._set_vocab_sentencepiece()
  5529. else:
  5530. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5531. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5532. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5533. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5534. tokenizer = SentencePieceProcessor()
  5535. tokenizer.LoadFromFile(str(tokenizer_path))
  5536. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5537. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5538. scores: list[float] = [-10000.0] * vocab_size
  5539. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5540. for token_id in range(tokenizer.vocab_size()):
  5541. piece = tokenizer.IdToPiece(token_id)
  5542. text = piece.encode("utf-8")
  5543. score = tokenizer.GetScore(token_id)
  5544. toktype = SentencePieceTokenTypes.NORMAL
  5545. if tokenizer.IsUnknown(token_id):
  5546. toktype = SentencePieceTokenTypes.UNKNOWN
  5547. elif tokenizer.IsControl(token_id):
  5548. toktype = SentencePieceTokenTypes.CONTROL
  5549. elif tokenizer.IsUnused(token_id):
  5550. toktype = SentencePieceTokenTypes.UNUSED
  5551. elif tokenizer.IsByte(token_id):
  5552. toktype = SentencePieceTokenTypes.BYTE
  5553. tokens[token_id] = text
  5554. scores[token_id] = score
  5555. toktypes[token_id] = toktype
  5556. added_tokens_file = self.dir_model / 'added_tokens.json'
  5557. if added_tokens_file.is_file():
  5558. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5559. added_tokens_json = json.load(f)
  5560. for key in added_tokens_json:
  5561. token_id = added_tokens_json[key]
  5562. if token_id >= vocab_size:
  5563. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5564. continue
  5565. tokens[token_id] = key.encode("utf-8")
  5566. scores[token_id] = -1000.0
  5567. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5568. if vocab_size > len(tokens):
  5569. pad_count = vocab_size - len(tokens)
  5570. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5571. for i in range(1, pad_count + 1):
  5572. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5573. scores.append(-1000.0)
  5574. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5575. self.gguf_writer.add_tokenizer_model("t5")
  5576. self.gguf_writer.add_tokenizer_pre("default")
  5577. self.gguf_writer.add_token_list(tokens)
  5578. self.gguf_writer.add_token_scores(scores)
  5579. self.gguf_writer.add_token_types(toktypes)
  5580. self.gguf_writer.add_add_space_prefix(add_prefix)
  5581. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5582. if precompiled_charsmap:
  5583. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5584. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5585. special_vocab.add_to_gguf(self.gguf_writer)
  5586. def set_gguf_parameters(self):
  5587. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5588. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5589. n_ctx = 512
  5590. self.gguf_writer.add_context_length(n_ctx)
  5591. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5592. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5593. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5594. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5595. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5596. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5597. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5598. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5599. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5600. self.gguf_writer.add_file_type(self.ftype)
  5601. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5602. del bid # unused
  5603. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5604. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5605. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5606. # and decoder and ignore the remaining ones.
  5607. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5608. if not self.shared_token_embeddings_found:
  5609. name = "shared.weight"
  5610. self.shared_token_embeddings_found = True
  5611. else:
  5612. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5613. return []
  5614. return [(self.map_tensor_name(name), data_torch)]
  5615. @ModelBase.register("JAISLMHeadModel")
  5616. class JaisModel(TextModel):
  5617. model_arch = gguf.MODEL_ARCH.JAIS
  5618. def __init__(self, *args, **kwargs):
  5619. super().__init__(*args, **kwargs)
  5620. # SwigLU activation
  5621. assert self.hparams["activation_function"] == "swiglu"
  5622. # ALiBi position embedding
  5623. assert self.hparams["position_embedding_type"] == "alibi"
  5624. # Embeddings scale
  5625. self.embeddings_scale = 1.0
  5626. if 'mup_embeddings_scale' in self.hparams:
  5627. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5628. elif 'embeddings_scale' in self.hparams:
  5629. self.embeddings_scale = self.hparams['embeddings_scale']
  5630. else:
  5631. assert False
  5632. self.width_scale = 1.0
  5633. if 'mup_output_alpha' in self.hparams:
  5634. assert 'mup_width_scale' in self.hparams
  5635. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5636. elif 'width_scale' in self.hparams:
  5637. self.width_scale = self.hparams['width_scale']
  5638. else:
  5639. assert False
  5640. self.max_alibi_bias = 8.0
  5641. def set_vocab(self):
  5642. self._set_vocab_gpt2()
  5643. def set_gguf_parameters(self):
  5644. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5645. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5646. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5647. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5648. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5649. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5650. self.gguf_writer.add_file_type(self.ftype)
  5651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5652. del bid # unused
  5653. tensors: list[tuple[str, Tensor]] = []
  5654. # we don't need these
  5655. if name.endswith((".attn.bias")):
  5656. return tensors
  5657. if name.endswith(("relative_pe.slopes")):
  5658. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5659. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5660. # but Jais's PyTorch model simply precalculates the slope values and places them
  5661. # in relative_pes.slopes
  5662. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5663. first_val = float(data_torch[0].item())
  5664. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5665. return tensors
  5666. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5667. data_torch = data_torch.transpose(1, 0)
  5668. new_name = self.map_tensor_name(name)
  5669. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5670. tensors.append((new_name, data_torch * self.embeddings_scale))
  5671. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5672. tensors.append((new_name, data_torch * self.width_scale))
  5673. else:
  5674. tensors.append((new_name, data_torch))
  5675. return tensors
  5676. def prepare_tensors(self):
  5677. super().prepare_tensors()
  5678. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5679. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5680. class Glm4Model(TextModel):
  5681. model_arch = gguf.MODEL_ARCH.GLM4
  5682. def set_vocab(self):
  5683. from transformers import AutoTokenizer
  5684. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5685. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5686. tokens, toktypes, tokpre = self.get_vocab_base()
  5687. self.gguf_writer.add_tokenizer_model("gpt2")
  5688. self.gguf_writer.add_tokenizer_pre(tokpre)
  5689. self.gguf_writer.add_token_list(tokens)
  5690. self.gguf_writer.add_token_types(toktypes)
  5691. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5692. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5693. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5694. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5695. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5696. special_vocab.add_to_gguf(self.gguf_writer)
  5697. def set_gguf_parameters(self):
  5698. super().set_gguf_parameters()
  5699. if (rope_dim := self.hparams.get("head_dim")) is None:
  5700. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5701. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5702. rope_scaling = self.hparams.get("rope_scaling") or {}
  5703. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5704. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5705. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5706. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5708. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5709. return []
  5710. elif name.startswith("model.language_model."):
  5711. name = name.replace("language_model.", "") # for Glm4v
  5712. return super().modify_tensors(data_torch, name, bid)
  5713. @ModelBase.register("Glm4MoeForCausalLM")
  5714. class Glm4MoeModel(TextModel):
  5715. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5716. def __init__(self, *args, **kwargs):
  5717. super().__init__(*args, **kwargs)
  5718. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5719. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5720. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5721. def set_vocab(self):
  5722. from transformers import AutoTokenizer
  5723. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5724. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5725. tokens, toktypes, tokpre = self.get_vocab_base()
  5726. self.gguf_writer.add_tokenizer_model("gpt2")
  5727. self.gguf_writer.add_tokenizer_pre(tokpre)
  5728. self.gguf_writer.add_token_list(tokens)
  5729. self.gguf_writer.add_token_types(toktypes)
  5730. # Special tokens
  5731. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5732. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5733. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5734. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5735. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5736. # Patch broken chat template
  5737. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5738. special_vocab.chat_template = special_vocab.chat_template.replace(
  5739. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5740. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5741. special_vocab.add_to_gguf(self.gguf_writer)
  5742. def set_gguf_parameters(self):
  5743. super().set_gguf_parameters()
  5744. if (rope_dim := self.hparams.get("head_dim")) is None:
  5745. rope_dim = (
  5746. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5747. )
  5748. self.gguf_writer.add_rope_dimension_count(
  5749. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5750. )
  5751. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5752. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5753. self.gguf_writer.add_expert_count(n_routed_experts)
  5754. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5755. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5756. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5757. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5758. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5759. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5760. # Expert gating function (sigmoid for GLM4_MOE)
  5761. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5762. # Routed scaling factor
  5763. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5764. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5765. # Normalise topk probabilities
  5766. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5767. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5768. # NextN/MTP prediction layers
  5769. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5770. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5771. _experts: list[dict[str, Tensor]] | None = None
  5772. def modify_tensors(
  5773. self, data_torch: Tensor, name: str, bid: int | None
  5774. ) -> Iterable[tuple[str, Tensor]]:
  5775. if name.startswith("model.visual."): # ignore visual part
  5776. return []
  5777. elif name.startswith("model.language_model."):
  5778. name = name.replace("language_model.", "") # for multimodal variants
  5779. # Handle main token embedding (but not layer-specific NextN embeddings)
  5780. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5781. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5782. # Handle routed experts
  5783. if name.find("mlp.experts") != -1:
  5784. n_experts = self.hparams["n_routed_experts"]
  5785. assert bid is not None
  5786. if self._experts is None:
  5787. self._experts = [{} for _ in range(self.block_count)]
  5788. self._experts[bid][name] = data_torch
  5789. if len(self._experts[bid]) >= n_experts * 3:
  5790. tensors: list[tuple[str, Tensor]] = []
  5791. # merge the experts into a single 3d tensor
  5792. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5793. datas: list[Tensor] = []
  5794. for xid in range(n_experts):
  5795. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5796. datas.append(self._experts[bid][ename])
  5797. del self._experts[bid][ename]
  5798. data_torch = torch.stack(datas, dim=0)
  5799. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5800. new_name = self.map_tensor_name(merged_name)
  5801. tensors.append((new_name, data_torch))
  5802. return tensors
  5803. else:
  5804. return []
  5805. if name.endswith("e_score_correction_bias"):
  5806. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5807. new_name = self.map_tensor_name(name)
  5808. return [(new_name, data_torch)]
  5809. def prepare_tensors(self):
  5810. super().prepare_tensors()
  5811. if self._experts is not None:
  5812. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5813. experts = [k for d in self._experts for k in d.keys()]
  5814. if len(experts) > 0:
  5815. raise ValueError(f"Unprocessed experts: {experts}")
  5816. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5817. class ChatGLMModel(TextModel):
  5818. model_arch = gguf.MODEL_ARCH.CHATGLM
  5819. def set_vocab_chatglm3(self):
  5820. dir_model = self.dir_model
  5821. hparams = self.hparams
  5822. tokens: list[bytes] = []
  5823. toktypes: list[int] = []
  5824. scores: list[float] = []
  5825. from transformers import AutoTokenizer
  5826. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5827. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5828. assert max(tokenizer.get_vocab().values()) < vocab_size
  5829. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5830. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5831. for token_id in range(vocab_size):
  5832. piece = tokenizer._convert_id_to_token(token_id)
  5833. if token_id == 0:
  5834. piece = "<unk>"
  5835. elif token_id == 1:
  5836. piece = "<bos>"
  5837. elif token_id == 2:
  5838. piece = "<eos>"
  5839. text = piece.encode("utf-8")
  5840. score = 0.0
  5841. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5842. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5843. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5844. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5845. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5846. if piece in special_tokens:
  5847. toktype = SentencePieceTokenTypes.CONTROL
  5848. elif len(piece) == 0:
  5849. text = f"[PAD{token_id}]".encode("utf-8")
  5850. toktype = SentencePieceTokenTypes.UNUSED
  5851. else:
  5852. toktype = SentencePieceTokenTypes.USER_DEFINED
  5853. tokens.append(text)
  5854. scores.append(score)
  5855. toktypes.append(toktype)
  5856. continue
  5857. toktype = SentencePieceTokenTypes.NORMAL
  5858. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5859. toktype = SentencePieceTokenTypes.UNKNOWN
  5860. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5861. toktype = SentencePieceTokenTypes.CONTROL
  5862. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5863. toktype = SentencePieceTokenTypes.UNUSED
  5864. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5865. toktype = SentencePieceTokenTypes.BYTE
  5866. tokens.append(text)
  5867. scores.append(score)
  5868. toktypes.append(toktype)
  5869. self.gguf_writer.add_tokenizer_model("llama")
  5870. # glm3 needs prefix and suffix formatted as:
  5871. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5872. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5873. self.gguf_writer.add_token_list(tokens)
  5874. self.gguf_writer.add_token_scores(scores)
  5875. self.gguf_writer.add_token_types(toktypes)
  5876. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5877. special_vocab.add_to_gguf(self.gguf_writer)
  5878. @staticmethod
  5879. def token_bytes_to_string(b):
  5880. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5881. byte_encoder = bytes_to_unicode()
  5882. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5883. @staticmethod
  5884. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5885. parts = [bytes([b]) for b in token]
  5886. while True:
  5887. min_idx = None
  5888. min_rank = None
  5889. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5890. rank = mergeable_ranks.get(pair[0] + pair[1])
  5891. if rank is not None and (min_rank is None or rank < min_rank):
  5892. min_idx = i
  5893. min_rank = rank
  5894. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5895. break
  5896. assert min_idx is not None
  5897. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5898. return parts
  5899. def set_vocab(self):
  5900. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5901. self.set_vocab_chatglm3()
  5902. return
  5903. dir_model = self.dir_model
  5904. hparams = self.hparams
  5905. tokens: list[str] = []
  5906. toktypes: list[int] = []
  5907. from transformers import AutoTokenizer
  5908. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5909. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5910. assert max(tokenizer.get_vocab().values()) < vocab_size
  5911. tokens, toktypes, tokpre = self.get_vocab_base()
  5912. self.gguf_writer.add_tokenizer_model("gpt2")
  5913. self.gguf_writer.add_tokenizer_pre(tokpre)
  5914. self.gguf_writer.add_token_list(tokens)
  5915. self.gguf_writer.add_token_types(toktypes)
  5916. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5917. # only add special tokens when they were not already loaded from config.json
  5918. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5919. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5920. # this one is usually not in config.json anyway
  5921. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5922. special_vocab.add_to_gguf(self.gguf_writer)
  5923. def set_gguf_parameters(self):
  5924. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5925. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5926. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5927. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5928. self.gguf_writer.add_embedding_length(n_embed)
  5929. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5930. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5931. self.gguf_writer.add_head_count(n_head)
  5932. self.gguf_writer.add_head_count_kv(n_head_kv)
  5933. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5934. self.gguf_writer.add_file_type(self.ftype)
  5935. if "attention_dim" in self.hparams:
  5936. rope_dim = self.hparams["attention_dim"]
  5937. else:
  5938. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5939. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5940. self.gguf_writer.add_add_bos_token(False)
  5941. rope_freq = 10000
  5942. if "rope_ratio" in self.hparams:
  5943. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5944. self.gguf_writer.add_rope_freq_base(rope_freq)
  5945. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5946. del bid # unused
  5947. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5948. return []
  5949. name = name.removeprefix("transformer.")
  5950. return [(self.map_tensor_name(name), data_torch)]
  5951. @ModelBase.register("NemotronForCausalLM")
  5952. class NemotronModel(TextModel):
  5953. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5954. def set_vocab(self):
  5955. self._set_vocab_sentencepiece()
  5956. self.gguf_writer.add_pad_token_id(0)
  5957. self.gguf_writer.add_unk_token_id(1)
  5958. def set_gguf_parameters(self):
  5959. super().set_gguf_parameters()
  5960. hparams = self.hparams
  5961. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5962. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5963. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5964. # * Partial RoPE
  5965. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5966. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5967. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5968. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5969. # * RopeScaling for Nemotron
  5970. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5971. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5972. else:
  5973. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5974. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5976. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5977. # model.layers.{l}.input_layernorm.weight
  5978. # model.layers.{l}.post_attention_layernorm.weight
  5979. # model.norm.weight
  5980. if name.endswith("norm.weight"):
  5981. data_torch = data_torch + 1
  5982. return [(self.map_tensor_name(name), data_torch)]
  5983. @ModelBase.register("ExaoneForCausalLM")
  5984. class ExaoneModel(TextModel):
  5985. model_arch = gguf.MODEL_ARCH.EXAONE
  5986. def set_gguf_parameters(self):
  5987. hparams = self.hparams
  5988. assert (hparams["activation_function"] == "silu")
  5989. max_position_embeddings = hparams["max_position_embeddings"]
  5990. embed_dim = hparams["hidden_size"]
  5991. num_heads = hparams["num_attention_heads"]
  5992. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5993. layer_norm_eps = hparams["layer_norm_epsilon"]
  5994. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5995. num_layers = hparams["num_layers"]
  5996. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5997. # attention_dropout_rate = hparams["attention_dropout"]
  5998. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5999. # embed_dropout_rate = hparams["embed_dropout"]
  6000. self.gguf_writer.add_embedding_length(embed_dim)
  6001. self.gguf_writer.add_head_count(num_heads)
  6002. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6003. self.gguf_writer.add_context_length(max_position_embeddings)
  6004. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6005. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6006. self.gguf_writer.add_block_count(num_layers)
  6007. self.gguf_writer.add_file_type(self.ftype)
  6008. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6009. self.gguf_writer.add_rope_freq_base(rope_theta)
  6010. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6011. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6012. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6013. rope_scaling = self.hparams.get("rope_scaling") or {}
  6014. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6015. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6016. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6017. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6018. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6019. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6020. base = self.hparams.get("rope_theta", 10000.0)
  6021. if (dim := self.hparams.get("head_dim")) is None:
  6022. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6023. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6024. factor = rope_scaling.get("factor", 8.0)
  6025. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6026. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6027. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6028. low_freq_wavelen = old_context_len / low_freq_factor
  6029. high_freq_wavelen = old_context_len / high_freq_factor
  6030. assert low_freq_wavelen != high_freq_wavelen
  6031. rope_factors = []
  6032. for freq in freqs:
  6033. wavelen = 2 * math.pi / freq
  6034. if wavelen < high_freq_wavelen:
  6035. rope_factors.append(1)
  6036. elif wavelen > low_freq_wavelen:
  6037. rope_factors.append(factor)
  6038. else:
  6039. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6040. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6041. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6042. @ModelBase.register("Exaone4ForCausalLM")
  6043. class Exaone4Model(TextModel):
  6044. model_arch = gguf.MODEL_ARCH.EXAONE4
  6045. def set_vocab(self):
  6046. tokens, toktypes, tokpre = self.get_vocab_base()
  6047. self.gguf_writer.add_tokenizer_model("gpt2")
  6048. self.gguf_writer.add_tokenizer_pre(tokpre)
  6049. self.gguf_writer.add_token_list(tokens)
  6050. self.gguf_writer.add_token_types(toktypes)
  6051. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6052. special_vocab.add_to_gguf(self.gguf_writer)
  6053. def set_gguf_parameters(self):
  6054. super().set_gguf_parameters()
  6055. hparams = self.hparams
  6056. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6057. if hparams.get("sliding_window") is not None:
  6058. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6059. if "layer_types" in hparams:
  6060. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6061. elif "sliding_window_pattern" in hparams:
  6062. sliding_window_pattern = []
  6063. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6064. for i in range(hparams["num_hidden_layers"]):
  6065. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6066. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6067. for i in range(hparams["num_hidden_layers"]):
  6068. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6069. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6070. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6071. rope_scaling = self.hparams.get("rope_scaling") or {}
  6072. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6073. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6074. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6075. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6076. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6077. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6078. base = self.hparams.get("rope_theta", 10_000.0)
  6079. if (dim := self.hparams.get("head_dim")) is None:
  6080. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6081. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6082. factor = rope_scaling.get("factor", 16.0)
  6083. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6084. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6085. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6086. low_freq_wavelen = old_context_len / low_freq_factor
  6087. high_freq_wavelen = old_context_len / high_freq_factor
  6088. rope_factors = []
  6089. for freq in freqs:
  6090. wavelen = 2 * math.pi / freq
  6091. if wavelen < high_freq_wavelen:
  6092. rope_factors.append(1)
  6093. elif wavelen > low_freq_wavelen:
  6094. rope_factors.append(factor)
  6095. else:
  6096. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6097. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6098. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6099. @ModelBase.register("GraniteForCausalLM")
  6100. class GraniteModel(LlamaModel):
  6101. """Conversion for IBM's GraniteForCausalLM"""
  6102. model_arch = gguf.MODEL_ARCH.GRANITE
  6103. def set_gguf_parameters(self):
  6104. """Granite uses standard llama parameters with the following differences:
  6105. - No head_dim support
  6106. - New multiplier params:
  6107. - attention_scale
  6108. - embedding_scale
  6109. - residual_scale
  6110. - logits_scaling
  6111. """
  6112. if head_dim := self.hparams.pop("head_dim", None):
  6113. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6114. super().set_gguf_parameters()
  6115. # NOTE: Convert _multiplier params to _scale params for naming
  6116. # consistency
  6117. if attention_scale := self.hparams.get("attention_multiplier"):
  6118. self.gguf_writer.add_attention_scale(attention_scale)
  6119. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6120. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6121. self.gguf_writer.add_embedding_scale(embedding_scale)
  6122. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6123. if residual_scale := self.hparams.get("residual_multiplier"):
  6124. self.gguf_writer.add_residual_scale(residual_scale)
  6125. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6126. if logits_scale := self.hparams.get("logits_scaling"):
  6127. self.gguf_writer.add_logit_scale(logits_scale)
  6128. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6129. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6130. class GraniteMoeModel(GraniteModel):
  6131. """Conversion for IBM's GraniteMoeForCausalLM"""
  6132. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6133. def set_gguf_parameters(self):
  6134. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6135. - shared_intermediate_size
  6136. """
  6137. super().set_gguf_parameters()
  6138. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6139. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6140. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6142. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6143. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6144. the hidden size that is then split during forward. To keep compatibility
  6145. with existing mixtral support, we pull them apart here.
  6146. """
  6147. if name.endswith("block_sparse_moe.input_linear.weight"):
  6148. ffn_dim = self.hparams["intermediate_size"]
  6149. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6150. gate, up = data_torch.split(ffn_dim, dim=-2)
  6151. return [
  6152. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6153. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6154. ]
  6155. has_experts = bool(self.hparams.get('num_local_experts'))
  6156. if name.endswith("shared_mlp.input_linear.weight"):
  6157. ffn_dim = self.hparams["shared_intermediate_size"]
  6158. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6159. gate, up = data_torch.split(ffn_dim, dim=-2)
  6160. if has_experts:
  6161. return [
  6162. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6163. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6164. ]
  6165. return [
  6166. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6167. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6168. ]
  6169. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6170. return [
  6171. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6172. ]
  6173. return super().modify_tensors(data_torch, name, bid)
  6174. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6175. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6176. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6177. layers and optionally uses MoE w/ a shared expert"""
  6178. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6179. undo_permute = True
  6180. def __init__(self, *args, **kwargs):
  6181. # Hybrid mamba models use a prefix for the mamba-specific params.
  6182. # TODO: Extend this if the prefix(es) need to be configurable
  6183. self.hparam_prefixes = ["mamba"]
  6184. super().__init__(*args, **kwargs)
  6185. # Lists of which layers use ssm vs attention
  6186. self._attn_layers = self.get_attn_layers()
  6187. self._ssm_layers = [
  6188. i for i in range(self.block_count)
  6189. if i not in self._attn_layers
  6190. ]
  6191. # n_group and d_inner are used during reshape_tensors for mamba2
  6192. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6193. # disambiguate with top-level head_dim
  6194. # NOTE 2: If needed for future models, this can be isolated in a method
  6195. # to separate the prefix setting and teh keys used
  6196. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6197. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6198. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6199. def get_attn_layers(self):
  6200. # Explicit list of layer type names
  6201. if layer_types := self.hparams.get("layer_types"):
  6202. return [
  6203. i for i, typ in enumerate(layer_types)
  6204. if typ == "attention"
  6205. ]
  6206. # Layer types indicated by index or period
  6207. attn_layers = self.hparams.get("attn_layer_indices", [])
  6208. if not attn_layers:
  6209. attn_period = self.hparams.get("attn_layer_period")
  6210. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6211. attn_offset = self.hparams.get("attn_layer_offset")
  6212. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6213. attn_layers = [
  6214. i for i in range(self.block_count)
  6215. if i % attn_period == attn_offset
  6216. ]
  6217. return attn_layers
  6218. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6219. prefixed = []
  6220. for pfx in self.hparam_prefixes:
  6221. prefixed.extend(
  6222. "_".join([pfx, k])
  6223. for k in keys
  6224. )
  6225. keys = list(keys) + prefixed
  6226. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6227. def modify_tensors(
  6228. self, data_torch: Tensor, name: str, bid: int | None
  6229. ) -> Iterable[tuple[str, Tensor]]:
  6230. if (
  6231. name.endswith("block_sparse_moe.input_linear.weight")
  6232. or "shared_mlp" in name
  6233. ):
  6234. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6235. # Determine whether this is a mamba layer or an attention layer
  6236. if bid in self._ssm_layers:
  6237. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6238. elif bid in self._attn_layers:
  6239. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6240. return [(self.map_tensor_name(name), data_torch)]
  6241. def set_gguf_parameters(self):
  6242. """This method merges params from both parents and some that are
  6243. specific to this model. The result is some duplication of how the params
  6244. get set. The following warnings are expected during conversion:
  6245. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6246. WARNING:Duplicated key name 'granitehybrid.context_length'
  6247. """
  6248. GraniteMoeModel.set_gguf_parameters(self)
  6249. ## Mamba mixer params ##
  6250. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6251. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6252. self.gguf_writer.add_ssm_group_count(self.n_group)
  6253. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6254. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6255. # in llama.cpp
  6256. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6257. ## Attention params ##
  6258. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6259. head_count_kv_vec = [
  6260. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6261. ]
  6262. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6263. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6264. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6265. ## If Bamba, use rope, otherwise don't
  6266. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  6267. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6268. if not use_rope:
  6269. self.gguf_writer.add_context_length(2**20)
  6270. ## Validation ##
  6271. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6272. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6273. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6274. def set_vocab(self):
  6275. self.hparams["pad_vocab_size_multiple"] = 8
  6276. Mamba2Model.set_vocab(self)
  6277. @ModelBase.register("NemotronHForCausalLM")
  6278. class NemotronHModel(GraniteHybridModel):
  6279. """Hybrid mamba2/attention model from NVIDIA"""
  6280. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6281. def __init__(self, *args, **kwargs):
  6282. super().__init__(*args, **kwargs)
  6283. # Save the top-level head_dim for later
  6284. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6285. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6286. # Don't use expand to calculate d_inner
  6287. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6288. # Update the ssm / attn / mlp layers
  6289. # M: Mamba2, *: Attention, -: MLP
  6290. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6291. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6292. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6293. def get_attn_layers(self):
  6294. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6295. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6296. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6297. def set_gguf_parameters(self):
  6298. super().set_gguf_parameters()
  6299. self.gguf_writer.add_key_length(self.head_dim)
  6300. self.gguf_writer.add_value_length(self.head_dim)
  6301. # Set feed_forward_length
  6302. # NOTE: This will trigger an override warning. This is preferrable to
  6303. # duplicating all the parent logic
  6304. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6305. self.gguf_writer.add_feed_forward_length([
  6306. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6307. ])
  6308. def set_vocab(self):
  6309. super().set_vocab()
  6310. # The tokenizer _does_ add a BOS token (via post_processor type
  6311. # TemplateProcessing) but does not set add_bos_token to true in the
  6312. # config, so we need to explicitly override it here.
  6313. self.gguf_writer.add_add_bos_token(True)
  6314. @ModelBase.register("BailingMoeForCausalLM")
  6315. class BailingMoeModel(TextModel):
  6316. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6317. def set_vocab(self):
  6318. self._set_vocab_gpt2()
  6319. def set_gguf_parameters(self):
  6320. super().set_gguf_parameters()
  6321. hparams = self.hparams
  6322. if (rope_dim := hparams.get("head_dim")) is None:
  6323. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6324. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6325. rope_scaling = self.hparams.get("rope_scaling") or {}
  6326. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6327. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6328. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6329. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6330. else:
  6331. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6332. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6333. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6334. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6335. self.gguf_writer.add_expert_weights_scale(1.0)
  6336. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6337. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6338. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6339. _experts: list[dict[str, Tensor]] | None = None
  6340. @staticmethod
  6341. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6342. if n_head_kv is not None and n_head != n_head_kv:
  6343. n_head = n_head_kv
  6344. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6345. .swapaxes(1, 2)
  6346. .reshape(weights.shape))
  6347. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6348. n_head = self.hparams["num_attention_heads"]
  6349. n_kv_head = self.hparams.get("num_key_value_heads")
  6350. n_embd = self.hparams["hidden_size"]
  6351. if (head_dim := self.hparams.get("head_dim")) is None:
  6352. head_dim = n_embd // n_head
  6353. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6354. if name.endswith("attention.dense.weight"):
  6355. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6356. elif name.endswith("query_key_value.weight"):
  6357. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6358. return [
  6359. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6360. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6361. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6362. ]
  6363. elif name.find("mlp.experts") != -1:
  6364. n_experts = self.hparams["num_experts"]
  6365. assert bid is not None
  6366. tensors: list[tuple[str, Tensor]] = []
  6367. if self._experts is None:
  6368. self._experts = [{} for _ in range(self.block_count)]
  6369. self._experts[bid][name] = data_torch
  6370. if len(self._experts[bid]) >= n_experts * 3:
  6371. # merge the experts into a single 3d tensor
  6372. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6373. datas: list[Tensor] = []
  6374. for xid in range(n_experts):
  6375. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6376. datas.append(self._experts[bid][ename])
  6377. del self._experts[bid][ename]
  6378. data_torch = torch.stack(datas, dim=0)
  6379. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6380. new_name = self.map_tensor_name(merged_name)
  6381. tensors.append((new_name, data_torch))
  6382. return tensors
  6383. new_name = self.map_tensor_name(name)
  6384. if new_name == output_name and self.hparams.get("norm_head"):
  6385. data_torch = data_torch.float()
  6386. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6387. return [(new_name, data_torch)]
  6388. def prepare_tensors(self):
  6389. super().prepare_tensors()
  6390. if self._experts is not None:
  6391. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6392. experts = [k for d in self._experts for k in d.keys()]
  6393. if len(experts) > 0:
  6394. raise ValueError(f"Unprocessed experts: {experts}")
  6395. @ModelBase.register("ChameleonForConditionalGeneration")
  6396. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6397. class ChameleonModel(TextModel):
  6398. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6399. def set_gguf_parameters(self):
  6400. super().set_gguf_parameters()
  6401. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6402. def set_vocab(self):
  6403. self._set_vocab_gpt2()
  6404. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6405. # ignore image tokenizer for now
  6406. # TODO: remove this once image support is implemented for Chameleon
  6407. if name.startswith("model.vqmodel"):
  6408. return []
  6409. n_head = self.hparams["num_attention_heads"]
  6410. n_kv_head = self.hparams.get("num_key_value_heads")
  6411. hidden_dim = self.hparams.get("hidden_size")
  6412. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6413. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6414. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6415. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6416. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6417. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6418. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6419. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6420. return [(self.map_tensor_name(name), data_torch)]
  6421. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6422. @staticmethod
  6423. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6424. head_dim = hidden_dim // n_heads
  6425. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6426. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6427. return data_torch
  6428. @ModelBase.register("UltravoxModel")
  6429. class UltravoxModel(TextModel):
  6430. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6431. def __init__(self, *args, **kwargs):
  6432. super().__init__(*args, **kwargs)
  6433. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6434. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6435. class WhisperEncoderModel(MmprojModel):
  6436. has_vision_encoder = False # no vision encoder
  6437. has_audio_encoder = True
  6438. def __init__(self, *args, **kwargs):
  6439. super().__init__(*args, **kwargs)
  6440. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6441. self.hparams["hidden_size"] = self.hparams["d_model"]
  6442. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6443. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6444. def set_gguf_parameters(self):
  6445. super().set_gguf_parameters()
  6446. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6447. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6448. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6449. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6450. if ".conv" in name and ".weight" in name:
  6451. return gguf.GGMLQuantizationType.F16
  6452. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6454. del bid # unused
  6455. if name.startswith("language_model."):
  6456. # skip language model tensors
  6457. return []
  6458. # prevent clash naming with vision tensors
  6459. if name.startswith("multi_modal_projector"):
  6460. name = "audio." + name
  6461. if "conv1.bias" in name or "conv2.bias" in name:
  6462. # transpose conv1 and conv2 bias
  6463. data_torch = data_torch.unsqueeze(-1)
  6464. return [(self.map_tensor_name(name), data_torch)]
  6465. @ModelBase.register("UltravoxModel")
  6466. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6467. has_vision_encoder = False # no vision encoder
  6468. has_audio_encoder = True
  6469. def set_gguf_parameters(self):
  6470. super().set_gguf_parameters()
  6471. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6472. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6473. @ModelBase.register("VoxtralForConditionalGeneration")
  6474. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6475. has_vision_encoder = False # no vision encoder
  6476. has_audio_encoder = True
  6477. def set_gguf_parameters(self):
  6478. super().set_gguf_parameters()
  6479. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6480. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6481. @ModelBase.register("FalconH1ForCausalLM")
  6482. class FalconH1Model(Mamba2Model):
  6483. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6484. def __init__(self, *args, **kwargs):
  6485. # Set the hparam prefixes for Falcon Mamba2
  6486. self.hparam_prefixes = ["mamba"]
  6487. # Initialize the base Mamba2Model
  6488. super().__init__(*args, **kwargs)
  6489. # Use Llama conversion for attention
  6490. self._transformer_model_class = LlamaModel
  6491. # n_group and d_inner are used during reshape_tensors for mamba2
  6492. self.n_group = self.find_hparam(["n_groups"])
  6493. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6494. self.d_head = self.find_hparam(["d_head"])
  6495. # Initialize any Falcon Mamba2 specific attributes
  6496. self.has_attention = True # Falcon Mamba2 has attention components
  6497. # Load Falcon-H1 multipliers from hyperparameters
  6498. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6499. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6500. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6501. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6502. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6503. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6504. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6505. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6506. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6507. prefixed = []
  6508. for pfx in self.hparam_prefixes:
  6509. prefixed.extend(
  6510. "_".join([pfx, k])
  6511. for k in keys
  6512. )
  6513. keys = list(keys) + prefixed
  6514. return super().find_hparam(keys, *args, **kwargs)
  6515. def set_vocab(self):
  6516. self._set_vocab_gpt2()
  6517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6518. tensors = list(super().modify_tensors(data_torch, name, bid))
  6519. tensor = tensors[0][1]
  6520. if "down_proj" in name:
  6521. tensor = tensor * self.mlp_multipliers[1]
  6522. elif "gate_proj" in name:
  6523. tensor = tensor * self.mlp_multipliers[0]
  6524. elif "k_proj" in name:
  6525. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6526. elif "q_proj" in name:
  6527. tensor = tensor * self.attention_in_multiplier
  6528. elif "v_proj" in name:
  6529. tensor = tensor * self.attention_in_multiplier
  6530. elif "o_proj" in name:
  6531. tensor = tensor * self.attention_out_multiplier
  6532. elif "out_proj" in name:
  6533. tensor = tensor * self.ssm_out_multiplier
  6534. elif "in_proj" in name:
  6535. tensor = tensor * self.ssm_in_multiplier
  6536. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6537. intermediate_size = self.hparams["mamba_d_ssm"]
  6538. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6539. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6540. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6541. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6542. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6543. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6544. elif "lm_head" in name:
  6545. tensor = tensor * self.hparams["lm_head_multiplier"]
  6546. elif "embed_tokens" in name:
  6547. tensor = tensor * self.hparams["embedding_multiplier"]
  6548. elif "mamba.norm" in name:
  6549. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6550. tensors = [(tensors[0][0], tensor)]
  6551. return tensors
  6552. def set_gguf_parameters(self):
  6553. super().set_gguf_parameters()
  6554. ## General Params ##
  6555. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6556. # Override some Mamba2 defaults
  6557. self.gguf_writer.add_block_count(self.block_count)
  6558. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6559. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6560. ## Attention params ##
  6561. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6562. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6563. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6564. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6565. ## Validation ##
  6566. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6567. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6568. # Add any other Falcon Mamba2 specific configuration
  6569. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6570. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6571. class HunYuanMoEModel(TextModel):
  6572. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6573. def set_vocab(self):
  6574. from transformers import AutoTokenizer
  6575. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6576. # 1. Get the pre-tokenizer identifier hash
  6577. tokpre = self.get_vocab_base_pre(tokenizer)
  6578. # 2. Reverse-engineer the merges list from mergeable_ranks
  6579. merges = []
  6580. vocab = {}
  6581. mergeable_ranks = tokenizer.mergeable_ranks
  6582. for token, rank in mergeable_ranks.items():
  6583. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6584. if len(token) == 1:
  6585. continue
  6586. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6587. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6588. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6589. # 3. Generate the tokens and toktypes lists
  6590. vocab_size = self.hparams["vocab_size"]
  6591. assert tokenizer.vocab_size == vocab_size
  6592. special_tokens = tokenizer.special_tokens
  6593. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6594. tokens: list[str] = []
  6595. toktypes: list[int] = []
  6596. for i in range(vocab_size):
  6597. if i not in reverse_vocab:
  6598. tokens.append(f"[PAD{i}]")
  6599. toktypes.append(gguf.TokenType.UNUSED)
  6600. else:
  6601. token = reverse_vocab[i]
  6602. tokens.append(token)
  6603. if i in special_tokens.values():
  6604. toktypes.append(gguf.TokenType.CONTROL)
  6605. else:
  6606. toktypes.append(gguf.TokenType.NORMAL)
  6607. # 4. Write all vocab-related fields to the GGUF writer
  6608. self.gguf_writer.add_tokenizer_model("gpt2")
  6609. self.gguf_writer.add_tokenizer_pre(tokpre)
  6610. self.gguf_writer.add_token_list(tokens)
  6611. self.gguf_writer.add_token_types(toktypes)
  6612. self.gguf_writer.add_token_merges(merges)
  6613. # 5. Add special tokens and chat templates
  6614. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6615. special_vocab.add_to_gguf(self.gguf_writer)
  6616. # FIX for BOS token: Overwrite incorrect id read from config.json
  6617. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6618. def set_gguf_parameters(self):
  6619. super().set_gguf_parameters()
  6620. hparams = self.hparams
  6621. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6622. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6623. moe_intermediate_size = hparams["moe_intermediate_size"]
  6624. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6625. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6626. moe_topk = hparams["moe_topk"]
  6627. assert all(topk == moe_topk[0] for topk in moe_topk)
  6628. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6629. moe_shared_expert = hparams["num_shared_expert"]
  6630. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6631. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6632. # Rope
  6633. rope_scaling = hparams.get("rope_scaling", {})
  6634. if rope_scaling.get("type") == "dynamic":
  6635. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6636. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6637. alpha = rope_scaling.get("alpha", 1000)
  6638. base = hparams.get("rope_theta", 10000.0)
  6639. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6640. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6641. self.gguf_writer.add_rope_freq_base(scaled_base)
  6642. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6643. self.gguf_writer.add_rope_scaling_factor(1)
  6644. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6645. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6646. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6647. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6648. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6649. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6650. _experts: list[dict[str, Tensor]] | None = None
  6651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6652. if name == "lm_head.weight":
  6653. if self.hparams.get("tie_word_embeddings", False):
  6654. logger.info("Skipping tied output layer 'lm_head.weight'")
  6655. return []
  6656. if name.find("mlp.experts") != -1:
  6657. n_experts = self.hparams["num_experts"]
  6658. assert bid is not None
  6659. if self._experts is None:
  6660. self._experts = [{} for _ in range(self.block_count)]
  6661. self._experts[bid][name] = data_torch
  6662. if len(self._experts[bid]) >= n_experts * 3:
  6663. # merge the experts into a single 3d tensor
  6664. tensors: list[tuple[str, Tensor]] = []
  6665. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6666. datas: list[Tensor] = []
  6667. for xid in range(n_experts):
  6668. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6669. datas.append(self._experts[bid][ename])
  6670. del self._experts[bid][ename]
  6671. data_torch = torch.stack(datas, dim=0)
  6672. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6673. new_name = self.map_tensor_name(merged_name)
  6674. tensors.append((new_name, data_torch))
  6675. return tensors
  6676. else:
  6677. return []
  6678. return [(self.map_tensor_name(name), data_torch)]
  6679. def prepare_tensors(self):
  6680. super().prepare_tensors()
  6681. if self._experts is not None:
  6682. experts = [k for d in self._experts for k in d.keys()]
  6683. if len(experts) > 0:
  6684. raise ValueError(f"Unprocessed experts: {experts}")
  6685. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6686. class HunYuanModel(TextModel):
  6687. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6688. def set_vocab(self):
  6689. if (self.dir_model / "tokenizer.json").is_file():
  6690. self._set_vocab_gpt2()
  6691. else:
  6692. from transformers import AutoTokenizer
  6693. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6694. # 1. Get the pre-tokenizer identifier hash
  6695. tokpre = self.get_vocab_base_pre(tokenizer)
  6696. # 2. Reverse-engineer the merges list from mergeable_ranks
  6697. merges = []
  6698. vocab = {}
  6699. mergeable_ranks = tokenizer.mergeable_ranks
  6700. for token, rank in mergeable_ranks.items():
  6701. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6702. if len(token) == 1:
  6703. continue
  6704. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6705. if len(merged) == 2:
  6706. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6707. # 3. Generate the tokens and toktypes lists
  6708. vocab_size = self.hparams["vocab_size"]
  6709. assert tokenizer.vocab_size == vocab_size
  6710. special_tokens = tokenizer.special_tokens
  6711. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6712. tokens: list[str] = []
  6713. toktypes: list[int] = []
  6714. for i in range(vocab_size):
  6715. if i not in reverse_vocab:
  6716. tokens.append(f"[PAD{i}]")
  6717. toktypes.append(gguf.TokenType.UNUSED)
  6718. else:
  6719. token = reverse_vocab[i]
  6720. tokens.append(token)
  6721. if i in special_tokens.values():
  6722. toktypes.append(gguf.TokenType.CONTROL)
  6723. else:
  6724. toktypes.append(gguf.TokenType.NORMAL)
  6725. # 4. Write all vocab-related fields to the GGUF writer
  6726. self.gguf_writer.add_tokenizer_model("gpt2")
  6727. self.gguf_writer.add_tokenizer_pre(tokpre)
  6728. self.gguf_writer.add_token_list(tokens)
  6729. self.gguf_writer.add_token_types(toktypes)
  6730. self.gguf_writer.add_token_merges(merges)
  6731. # 5. Add special tokens and chat templates
  6732. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6733. special_vocab.add_to_gguf(self.gguf_writer)
  6734. # FIX for BOS token: Overwrite incorrect id read from config.json
  6735. if self.hparams['hidden_size'] == 4096:
  6736. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6737. def set_gguf_parameters(self):
  6738. super().set_gguf_parameters()
  6739. hparams = self.hparams
  6740. # Rope
  6741. rope_scaling = hparams.get("rope_scaling", {})
  6742. if rope_scaling.get("type") == "dynamic":
  6743. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6744. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6745. alpha = rope_scaling.get("alpha", 50)
  6746. base = hparams.get("rope_theta", 10000.0)
  6747. dim = hparams["head_dim"]
  6748. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6749. self.gguf_writer.add_rope_freq_base(scaled_base)
  6750. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6751. self.gguf_writer.add_rope_scaling_factor(1)
  6752. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6753. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6754. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6755. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6756. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6757. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6759. if name == "lm_head.weight":
  6760. if self.hparams.get("tie_word_embeddings", False):
  6761. logger.info("Skipping tied output layer 'lm_head.weight'")
  6762. return []
  6763. return [(self.map_tensor_name(name), data_torch)]
  6764. @ModelBase.register("SmolLM3ForCausalLM")
  6765. class SmolLM3Model(LlamaModel):
  6766. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6767. def set_vocab(self):
  6768. super().set_vocab()
  6769. # remove unsupported array slicing in chat template
  6770. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6771. from transformers import AutoTokenizer
  6772. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6773. if tokenizer.chat_template is not None:
  6774. chat_template = tokenizer.chat_template.replace("[:]", "")
  6775. self.gguf_writer.add_chat_template(chat_template)
  6776. @ModelBase.register("GptOssForCausalLM")
  6777. class GptOssModel(TextModel):
  6778. model_arch = gguf.MODEL_ARCH.GPT_OSS
  6779. def transform_nibble_layout(self, tensor):
  6780. assert tensor.dtype == torch.uint8
  6781. assert tensor.shape[-1] == 16
  6782. # swap nibbles
  6783. t_lo = tensor & 0x0F
  6784. t_hi = tensor & 0xF0
  6785. t_swapped = (t_lo << 4) | (t_hi >> 4)
  6786. tensor = t_swapped
  6787. # transform aaaa...bbbb... to abababab...
  6788. blk_a, blk_b = tensor.chunk(2, dim=-1)
  6789. # get a_
  6790. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  6791. blk_a1 = (blk_a << 4).view(-1, 1)
  6792. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  6793. # get _b
  6794. blk_b0 = (blk_b >> 4).view(-1, 1)
  6795. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  6796. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  6797. # swap once more
  6798. out = blk_a | blk_b
  6799. out_h = out & 0xF0
  6800. out_l = out & 0x0F
  6801. out = (out_h >> 4) | (out_l << 4)
  6802. return out
  6803. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  6804. assert blocks.dtype == torch.uint8
  6805. assert scales.dtype == torch.uint8
  6806. scales = scales.unsqueeze(-1)
  6807. assert len(blocks.shape) == 4
  6808. assert len(scales.shape) == 4
  6809. blocks = self.transform_nibble_layout(blocks)
  6810. new_data = torch.concat((scales, blocks), dim=-1)
  6811. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  6812. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  6813. # flatten last dim
  6814. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  6815. new_data = new_data.numpy()
  6816. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  6817. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6818. blocks0: Tensor = torch.zeros(1)
  6819. blocks1: Tensor = torch.zeros(1)
  6820. # we assume that tensors are loaded in the correct order
  6821. for name, data_torch in self.get_tensors():
  6822. if "mlp.experts.down_proj_blocks" in name:
  6823. blocks0 = data_torch
  6824. elif "mlp.experts.down_proj_scales" in name:
  6825. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  6826. self.repack_mxfp4(new_name, blocks0, data_torch)
  6827. elif "mlp.experts.gate_up_proj_blocks" in name:
  6828. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  6829. elif "mlp.experts.gate_up_proj_scales" in name:
  6830. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6831. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  6832. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  6833. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  6834. self.repack_mxfp4(new_name_up, blocks1, scales1)
  6835. return []
  6836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6837. del bid # unused
  6838. if "sinks" in name:
  6839. name += ".weight"
  6840. # correct naming for down_proj
  6841. if "down_proj" in name:
  6842. if name.endswith("_bias"):
  6843. name = name.replace("down_proj_bias", "down_proj.bias")
  6844. elif "_blocks" not in name and "_scales" not in name:
  6845. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6846. name = name.replace("down_proj", "down_proj.weight")
  6847. data_torch = data_torch.transpose(-1, -2)
  6848. else:
  6849. # otherwise, it should already be repacked to ggml MXFP4 format
  6850. return []
  6851. # split the gate_up into gate and up
  6852. if "gate_up_proj" in name:
  6853. if name.endswith("_bias"):
  6854. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  6855. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  6856. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  6857. return [
  6858. (self.map_tensor_name(name_gate), gate_proj_bias),
  6859. (self.map_tensor_name(name_up), up_proj_bias)
  6860. ]
  6861. elif "_blocks" not in name and "_scales" not in name:
  6862. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6863. name_up = name.replace("gate_up_proj", "up_proj.weight")
  6864. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  6865. data_torch = data_torch.transpose(-1, -2)
  6866. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6867. return [
  6868. (self.map_tensor_name(name_gate), gate_proj_weight),
  6869. (self.map_tensor_name(name_up), up_proj_weight)
  6870. ]
  6871. else:
  6872. # otherwise, it should already be repacked to ggml MXFP4 format
  6873. return []
  6874. return [(self.map_tensor_name(name), data_torch)]
  6875. def set_vocab(self):
  6876. self._set_vocab_gpt2()
  6877. def set_gguf_parameters(self):
  6878. super().set_gguf_parameters()
  6879. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6880. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  6881. rope_scaling = self.hparams.get("rope_scaling") or {}
  6882. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  6883. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  6884. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6885. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6886. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  6887. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  6888. class LFM2Model(TextModel):
  6889. model_arch = gguf.MODEL_ARCH.LFM2
  6890. def _add_feed_forward_length(self):
  6891. ff_dim = self.hparams["block_ff_dim"]
  6892. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6893. ff_dim = self.hparams["block_ff_dim"]
  6894. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6895. multiple_of = self.hparams["block_multiple_of"]
  6896. if auto_adjust_ff_dim:
  6897. ff_dim = int(2 * ff_dim / 3)
  6898. # custom dim factor multiplier
  6899. if ffn_dim_multiplier is not None:
  6900. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6901. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6902. self.gguf_writer.add_feed_forward_length(ff_dim)
  6903. def set_gguf_parameters(self):
  6904. # set num_key_value_heads only for attention layers
  6905. self.hparams["num_key_value_heads"] = [
  6906. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6907. for layer_type in self.hparams["layer_types"]
  6908. ]
  6909. super().set_gguf_parameters()
  6910. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6911. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6912. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6913. self._add_feed_forward_length()
  6914. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6915. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6916. if is_vision_tensor:
  6917. # skip vision tensors
  6918. return []
  6919. name = name.replace("language_model.", "")
  6920. # conv op requires 2d tensor
  6921. if 'conv.conv' in name:
  6922. data_torch = data_torch.squeeze(1)
  6923. return [(self.map_tensor_name(name), data_torch)]
  6924. @ModelBase.register("Lfm2VlForConditionalGeneration")
  6925. class LFM2VLModel(MmprojModel):
  6926. def __init__(self, *args, **kwargs):
  6927. super().__init__(*args, **kwargs)
  6928. assert self.hparams_vision is not None
  6929. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  6930. self.hparams_vision["image_size"] = 256
  6931. def set_gguf_parameters(self):
  6932. super().set_gguf_parameters()
  6933. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  6934. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  6935. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  6936. self.gguf_writer.add_vision_use_gelu(True)
  6937. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  6938. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  6939. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  6940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6941. del bid # unused
  6942. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6943. if is_vision_tensor:
  6944. # remove "model." prefix
  6945. name = name.replace("model.vision_tower.", "vision_tower.")
  6946. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  6947. if "patch_embedding.weight" in name:
  6948. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  6949. return [(self.map_tensor_name(name), data_torch)]
  6950. return [] # skip other tensors
  6951. @ModelBase.register("SmallThinkerForCausalLM")
  6952. class SmallThinkerModel(TextModel):
  6953. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6954. def set_gguf_parameters(self):
  6955. super().set_gguf_parameters()
  6956. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6957. self.gguf_writer.add_expert_count(n_experts)
  6958. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6959. self.gguf_writer.add_expert_used_count(n_experts_used)
  6960. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6961. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6962. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6963. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6964. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6965. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6966. else:
  6967. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6968. # YaRN is not enabled by default
  6969. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6970. rope_scaling = self.hparams.get("rope_scaling") or {}
  6971. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6972. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6973. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6974. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6975. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6976. if sliding_window_layout:
  6977. for i in sliding_window_layout:
  6978. if i != 0:
  6979. sliding_window = self.hparams.get("sliding_window_size")
  6980. if sliding_window:
  6981. self.gguf_writer.add_sliding_window(sliding_window)
  6982. break
  6983. _experts: list[dict[str, Tensor]] | None = None
  6984. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6985. # process the experts separately
  6986. if name.find("experts") != -1:
  6987. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6988. assert bid is not None
  6989. if self._experts is None:
  6990. self._experts = [{} for _ in range(self.block_count)]
  6991. self._experts[bid][name] = data_torch
  6992. if len(self._experts[bid]) >= n_experts * 3:
  6993. tensors: list[tuple[str, Tensor]] = []
  6994. # merge the experts into a single 3d tensor
  6995. for w_name in ["down", "gate", "up"]:
  6996. datas: list[Tensor] = []
  6997. for xid in range(n_experts):
  6998. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6999. datas.append(self._experts[bid][ename])
  7000. del self._experts[bid][ename]
  7001. data_torch = torch.stack(datas, dim=0)
  7002. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7003. new_name = self.map_tensor_name(merged_name)
  7004. tensors.append((new_name, data_torch))
  7005. return tensors
  7006. else:
  7007. return []
  7008. return [(self.map_tensor_name(name), data_torch)]
  7009. def prepare_tensors(self):
  7010. super().prepare_tensors()
  7011. if self._experts is not None:
  7012. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7013. experts = [k for d in self._experts for k in d.keys()]
  7014. if len(experts) > 0:
  7015. raise ValueError(f"Unprocessed experts: {experts}")
  7016. class MistralModel(LlamaModel):
  7017. model_arch = gguf.MODEL_ARCH.LLAMA
  7018. model_name = "Mistral"
  7019. hf_arch = ""
  7020. is_mistral_format = True
  7021. undo_permute = False
  7022. @staticmethod
  7023. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7024. assert TokenizerVersion is not None, "mistral_common is not installed"
  7025. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7026. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7027. )
  7028. if vocab.tokenizer.version == TokenizerVersion.v1:
  7029. return "mistral-v1"
  7030. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7031. return "mistral-v3"
  7032. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7033. return "mistral-v3-tekken"
  7034. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7035. return "mistral-v7"
  7036. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7037. return "mistral-v7-tekken"
  7038. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7039. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7040. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7041. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7042. else:
  7043. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7044. if is_mistral_format:
  7045. err_message += (
  7046. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7047. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7048. )
  7049. raise ValueError(err_message)
  7050. template_path = templates_dir / template_file
  7051. if not template_path.exists():
  7052. raise FileNotFoundError(f"Template file not found: {template_path}")
  7053. with open(template_path, "r", encoding="utf-8") as f:
  7054. template = f.read()
  7055. return template
  7056. class PixtralModel(LlavaVisionModel):
  7057. model_name = "Pixtral"
  7058. hf_arch = ""
  7059. is_mistral_format = True
  7060. def set_gguf_parameters(self):
  7061. super().set_gguf_parameters()
  7062. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7063. self.gguf_writer.add_vision_attention_layernorm_eps(
  7064. self.find_hparam(["norm_eps"])
  7065. )
  7066. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7067. self.gguf_writer.add_vision_use_silu(True)
  7068. # spatial_merge_size
  7069. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7070. self.gguf_writer.add_vision_spatial_merge_size(
  7071. self.find_vparam(["spatial_merge_size"])
  7072. )
  7073. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7074. if name == "vision_language_adapter.w_in.weight":
  7075. return "mm.1.weight"
  7076. elif name == "vision_language_adapter.w_out.weight":
  7077. return "mm.2.weight"
  7078. return super().map_tensor_name(name, try_suffixes)
  7079. @ModelBase.register("KimiVLForConditionalGeneration")
  7080. class KimiVLModel(MmprojModel):
  7081. def __init__(self, *args, **kwargs):
  7082. super().__init__(*args, **kwargs)
  7083. assert self.hparams_vision is not None
  7084. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7085. def set_gguf_parameters(self):
  7086. super().set_gguf_parameters()
  7087. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7088. self.gguf_writer.add_vision_use_gelu(True)
  7089. self.gguf_writer.add_vision_projector_scale_factor(2)
  7090. # eps is the same as pytorch's default value
  7091. assert self.hparams_vision is not None
  7092. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7093. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7094. del bid # unused
  7095. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7096. if is_vision_tensor:
  7097. if "pos_emb.weight" in name:
  7098. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7099. elif "wqkv" in name:
  7100. split_dim = 0 if "weight" in name else -1
  7101. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7102. return [
  7103. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7104. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7105. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7106. ]
  7107. return [(self.map_tensor_name(name), data_torch)]
  7108. return [] # skip other tensors
  7109. ###### CONVERSION LOGIC ######
  7110. # tree of lazy tensors
  7111. class LazyTorchTensor(gguf.LazyBase):
  7112. _tensor_type = torch.Tensor
  7113. # to keep the type-checker happy
  7114. dtype: torch.dtype
  7115. shape: torch.Size
  7116. # only used when converting a torch.Tensor to a np.ndarray
  7117. _dtype_map: dict[torch.dtype, type] = {
  7118. torch.float16: np.float16,
  7119. torch.float32: np.float32,
  7120. torch.uint8: np.uint8,
  7121. }
  7122. # used for safetensors slices
  7123. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7124. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7125. _dtype_str_map: dict[str, torch.dtype] = {
  7126. "F64": torch.float64,
  7127. "F32": torch.float32,
  7128. "BF16": torch.bfloat16,
  7129. "F16": torch.float16,
  7130. # "U64": torch.uint64,
  7131. "I64": torch.int64,
  7132. # "U32": torch.uint32,
  7133. "I32": torch.int32,
  7134. # "U16": torch.uint16,
  7135. "I16": torch.int16,
  7136. "U8": torch.uint8,
  7137. "I8": torch.int8,
  7138. "BOOL": torch.bool,
  7139. "F8_E4M3": torch.float8_e4m3fn,
  7140. "F8_E5M2": torch.float8_e5m2,
  7141. }
  7142. def numpy(self) -> gguf.LazyNumpyTensor:
  7143. dtype = self._dtype_map[self.dtype]
  7144. return gguf.LazyNumpyTensor(
  7145. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7146. args=(self,),
  7147. func=(lambda s: s.numpy())
  7148. )
  7149. @classmethod
  7150. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7151. return torch.empty(size=shape, dtype=dtype, device="meta")
  7152. @classmethod
  7153. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7154. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7155. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7156. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  7157. return cast(torch.Tensor, lazy)
  7158. @classmethod
  7159. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7160. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7161. shape = remote_tensor.shape
  7162. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7163. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7164. return cast(torch.Tensor, lazy)
  7165. @classmethod
  7166. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7167. del types # unused
  7168. if kwargs is None:
  7169. kwargs = {}
  7170. if func is torch.Tensor.numpy:
  7171. return args[0].numpy()
  7172. return cls._wrap_fn(func)(*args, **kwargs)
  7173. def parse_args() -> argparse.Namespace:
  7174. parser = argparse.ArgumentParser(
  7175. description="Convert a huggingface model to a GGML compatible file")
  7176. parser.add_argument(
  7177. "--vocab-only", action="store_true",
  7178. help="extract only the vocab",
  7179. )
  7180. parser.add_argument(
  7181. "--outfile", type=Path,
  7182. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7183. )
  7184. parser.add_argument(
  7185. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7186. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7187. )
  7188. parser.add_argument(
  7189. "--bigendian", action="store_true",
  7190. help="model is executed on big endian machine",
  7191. )
  7192. parser.add_argument(
  7193. "model", type=str,
  7194. help="directory containing model file or huggingface repository ID (if --remote)",
  7195. nargs="?",
  7196. )
  7197. parser.add_argument(
  7198. "--use-temp-file", action="store_true",
  7199. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7200. )
  7201. parser.add_argument(
  7202. "--no-lazy", action="store_true",
  7203. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7204. )
  7205. parser.add_argument(
  7206. "--model-name", type=str, default=None,
  7207. help="name of the model",
  7208. )
  7209. parser.add_argument(
  7210. "--verbose", action="store_true",
  7211. help="increase output verbosity",
  7212. )
  7213. parser.add_argument(
  7214. "--split-max-tensors", type=int, default=0,
  7215. help="max tensors in each split",
  7216. )
  7217. parser.add_argument(
  7218. "--split-max-size", type=str, default="0",
  7219. help="max size per split N(M|G)",
  7220. )
  7221. parser.add_argument(
  7222. "--dry-run", action="store_true",
  7223. help="only print out a split plan and exit, without writing any new files",
  7224. )
  7225. parser.add_argument(
  7226. "--no-tensor-first-split", action="store_true",
  7227. help="do not add tensors to the first split (disabled by default)"
  7228. )
  7229. parser.add_argument(
  7230. "--metadata", type=Path,
  7231. help="Specify the path for an authorship metadata override file"
  7232. )
  7233. parser.add_argument(
  7234. "--print-supported-models", action="store_true",
  7235. help="Print the supported models"
  7236. )
  7237. parser.add_argument(
  7238. "--remote", action="store_true",
  7239. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7240. )
  7241. parser.add_argument(
  7242. "--mmproj", action="store_true",
  7243. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7244. )
  7245. parser.add_argument(
  7246. "--mistral-format", action="store_true",
  7247. help="Whether the model is stored following the Mistral format.",
  7248. )
  7249. parser.add_argument(
  7250. "--disable-mistral-community-chat-template", action="store_true",
  7251. help=(
  7252. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7253. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7254. )
  7255. )
  7256. args = parser.parse_args()
  7257. if not args.print_supported_models and args.model is None:
  7258. parser.error("the following arguments are required: model")
  7259. return args
  7260. def split_str_to_n_bytes(split_str: str) -> int:
  7261. if split_str.endswith("K"):
  7262. n = int(split_str[:-1]) * 1000
  7263. elif split_str.endswith("M"):
  7264. n = int(split_str[:-1]) * 1000 * 1000
  7265. elif split_str.endswith("G"):
  7266. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7267. elif split_str.isnumeric():
  7268. n = int(split_str)
  7269. else:
  7270. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7271. if n < 0:
  7272. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7273. return n
  7274. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7275. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7276. # maybe we should fallback to text model's arch in that case, since not many models have both
  7277. text_config = hparams.get("text_config", {})
  7278. vision_config = hparams.get("vision_config", {})
  7279. arch = None
  7280. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7281. arch = arches[0]
  7282. elif "ssm_cfg" in hparams:
  7283. # For non-hf Mamba and Mamba2 models
  7284. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7285. # if "architectures" is found in the sub-config, use that instead
  7286. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7287. arch = text_config["architectures"][0]
  7288. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7289. arch = vision_config["architectures"][0]
  7290. if arch is None:
  7291. raise ValueError("Failed to detect model architecture")
  7292. return arch
  7293. def main() -> None:
  7294. args = parse_args()
  7295. if args.print_supported_models:
  7296. logger.error("Supported models:")
  7297. ModelBase.print_registered_models()
  7298. sys.exit(0)
  7299. if args.verbose:
  7300. logging.basicConfig(level=logging.DEBUG)
  7301. else:
  7302. logging.basicConfig(level=logging.INFO)
  7303. if args.remote:
  7304. hf_repo_id = args.model
  7305. from huggingface_hub import snapshot_download
  7306. local_dir = snapshot_download(
  7307. repo_id=hf_repo_id,
  7308. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  7309. dir_model = Path(local_dir)
  7310. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7311. else:
  7312. hf_repo_id = None
  7313. dir_model = Path(args.model)
  7314. if not dir_model.is_dir():
  7315. logger.error(f'Error: {dir_model} is not a directory')
  7316. sys.exit(1)
  7317. ftype_map: dict[str, gguf.LlamaFileType] = {
  7318. "f32": gguf.LlamaFileType.ALL_F32,
  7319. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7320. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7321. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7322. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7323. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7324. "auto": gguf.LlamaFileType.GUESSED,
  7325. }
  7326. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7327. if args.use_temp_file and is_split:
  7328. logger.error("Error: Cannot use temp file when splitting")
  7329. sys.exit(1)
  7330. if args.outfile is not None:
  7331. fname_out = args.outfile
  7332. elif hf_repo_id:
  7333. # if remote, use the model ID as the output file name
  7334. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7335. else:
  7336. fname_out = dir_model
  7337. logger.info(f"Loading model: {dir_model.name}")
  7338. if args.mmproj:
  7339. if "mmproj" not in fname_out.name:
  7340. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7341. is_mistral_format = args.mistral_format
  7342. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7343. with torch.inference_mode():
  7344. output_type = ftype_map[args.outtype]
  7345. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7346. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7347. if not is_mistral_format:
  7348. model_architecture = get_model_architecture(hparams, model_type)
  7349. logger.info(f"Model architecture: {model_architecture}")
  7350. try:
  7351. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7352. except NotImplementedError:
  7353. logger.error(f"Model {model_architecture} is not supported")
  7354. sys.exit(1)
  7355. elif args.mmproj:
  7356. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7357. model_class = PixtralModel
  7358. else:
  7359. model_class = MistralModel
  7360. model_instance = model_class(dir_model, output_type, fname_out,
  7361. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7362. eager=args.no_lazy,
  7363. metadata_override=args.metadata, model_name=args.model_name,
  7364. split_max_tensors=args.split_max_tensors,
  7365. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7366. small_first_shard=args.no_tensor_first_split,
  7367. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
  7368. )
  7369. if args.vocab_only:
  7370. logger.info("Exporting model vocab...")
  7371. model_instance.write_vocab()
  7372. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7373. else:
  7374. logger.info("Exporting model...")
  7375. model_instance.write()
  7376. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7377. logger.info(f"Model successfully exported to {out_path}")
  7378. if __name__ == '__main__':
  7379. main()