ggml.c 492 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if defined(__AVX2__) || defined(__AVX512F__)
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  462. #if __AVXVNNI__
  463. const __m256i zero = _mm256_setzero_si256();
  464. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  465. return _mm256_cvtepi32_ps(summed_pairs);
  466. #else
  467. // Perform multiplication and create 16-bit values
  468. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  469. return sum_i16_pairs_float(dot);
  470. #endif
  471. }
  472. // multiply int8_t, add results pairwise twice and return as float vector
  473. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  474. #if __AVXVNNIINT8__
  475. const __m256i zero = _mm256_setzero_si256();
  476. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. #else
  479. // Get absolute values of x vectors
  480. const __m256i ax = _mm256_sign_epi8(x, x);
  481. // Sign the values of the y vectors
  482. const __m256i sy = _mm256_sign_epi8(y, x);
  483. return mul_sum_us8_pairs_float(ax, sy);
  484. #endif
  485. }
  486. static inline __m128i packNibbles( __m256i bytes )
  487. {
  488. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  489. #if __AVX512F__
  490. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  491. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  492. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  493. #else
  494. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  495. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  496. __m256i low = _mm256_and_si256( lowByte, bytes );
  497. high = _mm256_srli_epi16( high, 4 );
  498. bytes = _mm256_or_si256( low, high );
  499. // Compress uint16_t lanes into bytes
  500. __m128i r0 = _mm256_castsi256_si128( bytes );
  501. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  502. return _mm_packus_epi16( r0, r1 );
  503. #endif
  504. }
  505. #elif defined(__AVX__)
  506. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  507. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  508. uint32_t x32;
  509. memcpy(&x32, x, sizeof(uint32_t));
  510. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  511. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  512. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  513. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  514. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  515. bytesl = _mm_or_si128(bytesl, bit_mask);
  516. bytesh = _mm_or_si128(bytesh, bit_mask);
  517. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  518. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  519. return _mm256_set_m128i(bytesh, bytesl);
  520. }
  521. // Unpack 32 4-bit fields into 32 bytes
  522. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  523. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  524. {
  525. // Load 16 bytes from memory
  526. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  527. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  528. const __m128i lowMask = _mm_set1_epi8(0xF);
  529. tmpl = _mm_and_si128(lowMask, tmpl);
  530. tmph = _mm_and_si128(lowMask, tmph);
  531. return _mm256_set_m128i(tmph, tmpl);
  532. }
  533. // add int16_t pairwise and return as float vector
  534. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  535. const __m128i ones = _mm_set1_epi16(1);
  536. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  537. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  538. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  539. return _mm256_cvtepi32_ps(summed_pairs);
  540. }
  541. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  542. const __m128i axl = _mm256_castsi256_si128(ax);
  543. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  544. const __m128i syl = _mm256_castsi256_si128(sy);
  545. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  546. // Perform multiplication and create 16-bit values
  547. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  548. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  549. return sum_i16_pairs_float(doth, dotl);
  550. }
  551. // multiply int8_t, add results pairwise twice and return as float vector
  552. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  553. const __m128i xl = _mm256_castsi256_si128(x);
  554. const __m128i xh = _mm256_extractf128_si256(x, 1);
  555. const __m128i yl = _mm256_castsi256_si128(y);
  556. const __m128i yh = _mm256_extractf128_si256(y, 1);
  557. // Get absolute values of x vectors
  558. const __m128i axl = _mm_sign_epi8(xl, xl);
  559. const __m128i axh = _mm_sign_epi8(xh, xh);
  560. // Sign the values of the y vectors
  561. const __m128i syl = _mm_sign_epi8(yl, xl);
  562. const __m128i syh = _mm_sign_epi8(yh, xh);
  563. // Perform multiplication and create 16-bit values
  564. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  565. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  566. return sum_i16_pairs_float(doth, dotl);
  567. }
  568. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  572. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  573. __m128i low = _mm_and_si128( lowByte, bytes1 );
  574. high = _mm_srli_epi16( high, 4 );
  575. bytes1 = _mm_or_si128( low, high );
  576. high = _mm_andnot_si128( lowByte, bytes2 );
  577. low = _mm_and_si128( lowByte, bytes2 );
  578. high = _mm_srli_epi16( high, 4 );
  579. bytes2 = _mm_or_si128( low, high );
  580. return _mm_packus_epi16( bytes1, bytes2);
  581. }
  582. #endif
  583. #elif defined(__SSSE3__)
  584. // horizontally add 4x4 floats
  585. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  586. __m128 res_0 =_mm_hadd_ps(a, b);
  587. __m128 res_1 =_mm_hadd_ps(c, d);
  588. __m128 res =_mm_hadd_ps(res_0, res_1);
  589. res =_mm_hadd_ps(res, res);
  590. res =_mm_hadd_ps(res, res);
  591. return _mm_cvtss_f32(res);
  592. }
  593. #endif // __AVX__ || __AVX2__ || __AVX512F__
  594. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  595. #if defined(__ARM_NEON)
  596. #if !defined(__aarch64__)
  597. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  598. return
  599. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  600. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  601. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  602. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  603. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  604. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  605. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  606. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  607. }
  608. inline static int16_t vaddvq_s8(int8x16_t v) {
  609. return
  610. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  611. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  612. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  613. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  614. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  615. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  616. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  617. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  618. }
  619. inline static int32_t vaddvq_s16(int16x8_t v) {
  620. return
  621. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  622. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  623. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  624. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  625. }
  626. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  627. return
  628. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  629. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  630. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  631. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  632. }
  633. inline static int32_t vaddvq_s32(int32x4_t v) {
  634. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  635. }
  636. inline static float vaddvq_f32(float32x4_t v) {
  637. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  638. }
  639. float vminvq_f32(float32x4_t v) {
  640. return
  641. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  642. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  643. }
  644. float vmaxvq_f32(float32x4_t v) {
  645. return
  646. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  647. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  648. }
  649. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  650. int32x4_t res;
  651. res[0] = roundf(vgetq_lane_f32(v, 0));
  652. res[1] = roundf(vgetq_lane_f32(v, 1));
  653. res[2] = roundf(vgetq_lane_f32(v, 2));
  654. res[3] = roundf(vgetq_lane_f32(v, 3));
  655. return res;
  656. }
  657. #endif
  658. #endif
  659. #define QK4_0 32
  660. typedef struct {
  661. ggml_fp16_t d; // delta
  662. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  663. } block_q4_0;
  664. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  665. #define QK4_1 32
  666. typedef struct {
  667. ggml_fp16_t d; // delta
  668. ggml_fp16_t m; // min
  669. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  670. } block_q4_1;
  671. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  672. #define QK5_0 32
  673. typedef struct {
  674. ggml_fp16_t d; // delta
  675. uint8_t qh[4]; // 5-th bit of quants
  676. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  677. } block_q5_0;
  678. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  679. #define QK5_1 32
  680. typedef struct {
  681. ggml_fp16_t d; // delta
  682. ggml_fp16_t m; // min
  683. uint8_t qh[4]; // 5-th bit of quants
  684. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  685. } block_q5_1;
  686. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  687. #define QK8_0 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. int8_t qs[QK8_0]; // quants
  691. } block_q8_0;
  692. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  693. #define QK8_1 32
  694. typedef struct {
  695. float d; // delta
  696. float s; // d * sum(qs[i])
  697. int8_t qs[QK8_1]; // quants
  698. } block_q8_1;
  699. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  700. // reference implementation for deterministic creation of model files
  701. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  702. static const int qk = QK4_0;
  703. assert(k % qk == 0);
  704. const int nb = k / qk;
  705. for (int i = 0; i < nb; i++) {
  706. float amax = 0.0f; // absolute max
  707. float max = 0.0f;
  708. for (int j = 0; j < qk; j++) {
  709. const float v = x[i*qk + j];
  710. if (amax < fabsf(v)) {
  711. amax = fabsf(v);
  712. max = v;
  713. }
  714. }
  715. const float d = max / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = GGML_FP32_TO_FP16(d);
  718. for (int j = 0; j < qk/2; ++j) {
  719. const float x0 = x[i*qk + 0 + j]*id;
  720. const float x1 = x[i*qk + qk/2 + j]*id;
  721. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  722. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  723. y[i].qs[j] = xi0;
  724. y[i].qs[j] |= xi1 << 4;
  725. }
  726. }
  727. }
  728. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  729. quantize_row_q4_0_reference(x, y, k);
  730. }
  731. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  732. const int qk = QK4_1;
  733. assert(k % qk == 0);
  734. const int nb = k / qk;
  735. for (int i = 0; i < nb; i++) {
  736. float min = FLT_MAX;
  737. float max = -FLT_MAX;
  738. for (int j = 0; j < qk; j++) {
  739. const float v = x[i*qk + j];
  740. if (v < min) min = v;
  741. if (v > max) max = v;
  742. }
  743. const float d = (max - min) / ((1 << 4) - 1);
  744. const float id = d ? 1.0f/d : 0.0f;
  745. y[i].d = GGML_FP32_TO_FP16(d);
  746. y[i].m = GGML_FP32_TO_FP16(min);
  747. for (int j = 0; j < qk/2; ++j) {
  748. const float x0 = (x[i*qk + 0 + j] - min)*id;
  749. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  750. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  751. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  752. y[i].qs[j] = xi0;
  753. y[i].qs[j] |= xi1 << 4;
  754. }
  755. }
  756. }
  757. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  758. quantize_row_q4_1_reference(x, y, k);
  759. }
  760. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  761. static const int qk = QK5_0;
  762. assert(k % qk == 0);
  763. const int nb = k / qk;
  764. for (int i = 0; i < nb; i++) {
  765. float amax = 0.0f; // absolute max
  766. float max = 0.0f;
  767. for (int j = 0; j < qk; j++) {
  768. const float v = x[i*qk + j];
  769. if (amax < fabsf(v)) {
  770. amax = fabsf(v);
  771. max = v;
  772. }
  773. }
  774. const float d = max / -16;
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = GGML_FP32_TO_FP16(d);
  777. uint32_t qh = 0;
  778. for (int j = 0; j < qk/2; ++j) {
  779. const float x0 = x[i*qk + 0 + j]*id;
  780. const float x1 = x[i*qk + qk/2 + j]*id;
  781. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  782. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  783. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  784. // get the 5-th bit and store it in qh at the right position
  785. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  786. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  787. }
  788. memcpy(&y[i].qh, &qh, sizeof(qh));
  789. }
  790. }
  791. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  792. quantize_row_q5_0_reference(x, y, k);
  793. }
  794. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  795. const int qk = QK5_1;
  796. assert(k % qk == 0);
  797. const int nb = k / qk;
  798. for (int i = 0; i < nb; i++) {
  799. float min = FLT_MAX;
  800. float max = -FLT_MAX;
  801. for (int j = 0; j < qk; j++) {
  802. const float v = x[i*qk + j];
  803. if (v < min) min = v;
  804. if (v > max) max = v;
  805. }
  806. const float d = (max - min) / ((1 << 5) - 1);
  807. const float id = d ? 1.0f/d : 0.0f;
  808. y[i].d = GGML_FP32_TO_FP16(d);
  809. y[i].m = GGML_FP32_TO_FP16(min);
  810. uint32_t qh = 0;
  811. for (int j = 0; j < qk/2; ++j) {
  812. const float x0 = (x[i*qk + 0 + j] - min)*id;
  813. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  814. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  815. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  816. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  817. // get the 5-th bit and store it in qh at the right position
  818. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  819. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  820. }
  821. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  822. }
  823. }
  824. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  825. quantize_row_q5_1_reference(x, y, k);
  826. }
  827. // reference implementation for deterministic creation of model files
  828. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. for (int i = 0; i < nb; i++) {
  832. float amax = 0.0f; // absolute max
  833. for (int j = 0; j < QK8_0; j++) {
  834. const float v = x[i*QK8_0 + j];
  835. amax = MAX(amax, fabsf(v));
  836. }
  837. const float d = amax / ((1 << 7) - 1);
  838. const float id = d ? 1.0f/d : 0.0f;
  839. y[i].d = GGML_FP32_TO_FP16(d);
  840. for (int j = 0; j < QK8_0; ++j) {
  841. const float x0 = x[i*QK8_0 + j]*id;
  842. y[i].qs[j] = roundf(x0);
  843. }
  844. }
  845. }
  846. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  847. assert(QK8_0 == 32);
  848. assert(k % QK8_0 == 0);
  849. const int nb = k / QK8_0;
  850. block_q8_0 * restrict y = vy;
  851. #if defined(__ARM_NEON)
  852. for (int i = 0; i < nb; i++) {
  853. float32x4_t srcv [8];
  854. float32x4_t asrcv[8];
  855. float32x4_t amaxv[8];
  856. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  857. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  858. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  859. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  860. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  861. const float amax = vmaxvq_f32(amaxv[0]);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = GGML_FP32_TO_FP16(d);
  865. for (int j = 0; j < 8; j++) {
  866. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  867. const int32x4_t vi = vcvtnq_s32_f32(v);
  868. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  869. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  870. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  871. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  872. }
  873. }
  874. #elif defined(__AVX2__) || defined(__AVX__)
  875. for (int i = 0; i < nb; i++) {
  876. // Load elements into 4 AVX vectors
  877. __m256 v0 = _mm256_loadu_ps( x );
  878. __m256 v1 = _mm256_loadu_ps( x + 8 );
  879. __m256 v2 = _mm256_loadu_ps( x + 16 );
  880. __m256 v3 = _mm256_loadu_ps( x + 24 );
  881. x += 32;
  882. // Compute max(abs(e)) for the block
  883. const __m256 signBit = _mm256_set1_ps( -0.0f );
  884. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  885. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  886. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  887. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  888. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  889. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  890. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  891. const float maxScalar = _mm_cvtss_f32( max4 );
  892. // Quantize these floats
  893. const float d = maxScalar / 127.f;
  894. y[i].d = GGML_FP32_TO_FP16(d);
  895. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  896. const __m256 mul = _mm256_set1_ps( id );
  897. // Apply the multiplier
  898. v0 = _mm256_mul_ps( v0, mul );
  899. v1 = _mm256_mul_ps( v1, mul );
  900. v2 = _mm256_mul_ps( v2, mul );
  901. v3 = _mm256_mul_ps( v3, mul );
  902. // Round to nearest integer
  903. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  904. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  905. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  906. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  907. // Convert floats to integers
  908. __m256i i0 = _mm256_cvtps_epi32( v0 );
  909. __m256i i1 = _mm256_cvtps_epi32( v1 );
  910. __m256i i2 = _mm256_cvtps_epi32( v2 );
  911. __m256i i3 = _mm256_cvtps_epi32( v3 );
  912. #if defined(__AVX2__)
  913. // Convert int32 to int16
  914. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  915. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  916. // Convert int16 to int8
  917. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  918. // We got our precious signed bytes, but the order is now wrong
  919. // These AVX2 pack instructions process 16-byte pieces independently
  920. // The following instruction is fixing the order
  921. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  922. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  923. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  924. #else
  925. // Since we don't have in AVX some necessary functions,
  926. // we split the registers in half and call AVX2 analogs from SSE
  927. __m128i ni0 = _mm256_castsi256_si128( i0 );
  928. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  929. __m128i ni2 = _mm256_castsi256_si128( i1 );
  930. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  931. __m128i ni4 = _mm256_castsi256_si128( i2 );
  932. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  933. __m128i ni6 = _mm256_castsi256_si128( i3 );
  934. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  935. // Convert int32 to int16
  936. ni0 = _mm_packs_epi32( ni0, ni1 );
  937. ni2 = _mm_packs_epi32( ni2, ni3 );
  938. ni4 = _mm_packs_epi32( ni4, ni5 );
  939. ni6 = _mm_packs_epi32( ni6, ni7 );
  940. // Convert int16 to int8
  941. ni0 = _mm_packs_epi16( ni0, ni2 );
  942. ni4 = _mm_packs_epi16( ni4, ni6 );
  943. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  944. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  945. #endif
  946. }
  947. #else
  948. // scalar
  949. quantize_row_q8_0_reference(x, y, k);
  950. #endif
  951. }
  952. // reference implementation for deterministic creation of model files
  953. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  954. assert(QK8_1 == 32);
  955. assert(k % QK8_1 == 0);
  956. const int nb = k / QK8_1;
  957. for (int i = 0; i < nb; i++) {
  958. float amax = 0.0f; // absolute max
  959. for (int j = 0; j < QK8_1; j++) {
  960. const float v = x[i*QK8_1 + j];
  961. amax = MAX(amax, fabsf(v));
  962. }
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = d;
  966. int sum = 0;
  967. for (int j = 0; j < QK8_1/2; ++j) {
  968. const float v0 = x[i*QK8_1 + j]*id;
  969. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  970. y[i].qs[ j] = roundf(v0);
  971. y[i].qs[QK8_1/2 + j] = roundf(v1);
  972. sum += y[i].qs[ j];
  973. sum += y[i].qs[QK8_1/2 + j];
  974. }
  975. y[i].s = sum*d;
  976. }
  977. }
  978. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  979. assert(k % QK8_1 == 0);
  980. const int nb = k / QK8_1;
  981. block_q8_1 * restrict y = vy;
  982. #if defined(__ARM_NEON)
  983. for (int i = 0; i < nb; i++) {
  984. float32x4_t srcv [8];
  985. float32x4_t asrcv[8];
  986. float32x4_t amaxv[8];
  987. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  988. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  989. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  990. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  991. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  992. const float amax = vmaxvq_f32(amaxv[0]);
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = d;
  996. int32x4_t accv = vdupq_n_s32(0);
  997. for (int j = 0; j < 8; j++) {
  998. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  999. const int32x4_t vi = vcvtnq_s32_f32(v);
  1000. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1001. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1002. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1003. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1004. accv = vaddq_s32(accv, vi);
  1005. }
  1006. y[i].s = d * vaddvq_s32(accv);
  1007. }
  1008. #elif defined(__AVX2__) || defined(__AVX__)
  1009. for (int i = 0; i < nb; i++) {
  1010. // Load elements into 4 AVX vectors
  1011. __m256 v0 = _mm256_loadu_ps( x );
  1012. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1013. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1014. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1015. x += 32;
  1016. // Compute max(abs(e)) for the block
  1017. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1018. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1019. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1020. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1021. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1022. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1023. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1024. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1025. const float maxScalar = _mm_cvtss_f32( max4 );
  1026. // Quantize these floats
  1027. const float d = maxScalar / 127.f;
  1028. y[i].d = d;
  1029. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1030. const __m256 mul = _mm256_set1_ps( id );
  1031. // Apply the multiplier
  1032. v0 = _mm256_mul_ps( v0, mul );
  1033. v1 = _mm256_mul_ps( v1, mul );
  1034. v2 = _mm256_mul_ps( v2, mul );
  1035. v3 = _mm256_mul_ps( v3, mul );
  1036. // Round to nearest integer
  1037. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1038. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1039. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1040. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1041. // Convert floats to integers
  1042. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1043. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1044. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1045. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1046. #if defined(__AVX2__)
  1047. // Compute the sum of the quants and set y[i].s
  1048. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1049. // Convert int32 to int16
  1050. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1051. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1052. // Convert int16 to int8
  1053. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1054. // We got our precious signed bytes, but the order is now wrong
  1055. // These AVX2 pack instructions process 16-byte pieces independently
  1056. // The following instruction is fixing the order
  1057. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1058. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1059. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1060. #else
  1061. // Since we don't have in AVX some necessary functions,
  1062. // we split the registers in half and call AVX2 analogs from SSE
  1063. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1064. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1065. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1066. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1067. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1068. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1069. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1070. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1071. // Compute the sum of the quants and set y[i].s
  1072. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1073. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1074. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1075. // Convert int32 to int16
  1076. ni0 = _mm_packs_epi32( ni0, ni1 );
  1077. ni2 = _mm_packs_epi32( ni2, ni3 );
  1078. ni4 = _mm_packs_epi32( ni4, ni5 );
  1079. ni6 = _mm_packs_epi32( ni6, ni7 );
  1080. // Convert int16 to int8
  1081. ni0 = _mm_packs_epi16( ni0, ni2 );
  1082. ni4 = _mm_packs_epi16( ni4, ni6 );
  1083. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1084. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1085. #endif
  1086. }
  1087. #else
  1088. // scalar
  1089. quantize_row_q8_1_reference(x, y, k);
  1090. #endif
  1091. }
  1092. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1093. static const int qk = QK4_0;
  1094. assert(k % qk == 0);
  1095. const int nb = k / qk;
  1096. for (int i = 0; i < nb; i++) {
  1097. const float d = GGML_FP16_TO_FP32(x[i].d);
  1098. for (int j = 0; j < qk/2; ++j) {
  1099. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1100. const int x1 = (x[i].qs[j] >> 4) - 8;
  1101. y[i*qk + j + 0 ] = x0*d;
  1102. y[i*qk + j + qk/2] = x1*d;
  1103. }
  1104. }
  1105. }
  1106. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1107. static const int qk = QK4_1;
  1108. assert(k % qk == 0);
  1109. const int nb = k / qk;
  1110. for (int i = 0; i < nb; i++) {
  1111. const float d = GGML_FP16_TO_FP32(x[i].d);
  1112. const float m = GGML_FP16_TO_FP32(x[i].m);
  1113. for (int j = 0; j < qk/2; ++j) {
  1114. const int x0 = (x[i].qs[j] & 0x0F);
  1115. const int x1 = (x[i].qs[j] >> 4);
  1116. y[i*qk + j + 0 ] = x0*d + m;
  1117. y[i*qk + j + qk/2] = x1*d + m;
  1118. }
  1119. }
  1120. }
  1121. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1122. static const int qk = QK5_0;
  1123. assert(k % qk == 0);
  1124. const int nb = k / qk;
  1125. for (int i = 0; i < nb; i++) {
  1126. const float d = GGML_FP16_TO_FP32(x[i].d);
  1127. uint32_t qh;
  1128. memcpy(&qh, x[i].qh, sizeof(qh));
  1129. for (int j = 0; j < qk/2; ++j) {
  1130. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1131. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1132. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1133. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1134. y[i*qk + j + 0 ] = x0*d;
  1135. y[i*qk + j + qk/2] = x1*d;
  1136. }
  1137. }
  1138. }
  1139. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1140. static const int qk = QK5_1;
  1141. assert(k % qk == 0);
  1142. const int nb = k / qk;
  1143. for (int i = 0; i < nb; i++) {
  1144. const float d = GGML_FP16_TO_FP32(x[i].d);
  1145. const float m = GGML_FP16_TO_FP32(x[i].m);
  1146. uint32_t qh;
  1147. memcpy(&qh, x[i].qh, sizeof(qh));
  1148. for (int j = 0; j < qk/2; ++j) {
  1149. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1150. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1151. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1152. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1153. y[i*qk + j + 0 ] = x0*d + m;
  1154. y[i*qk + j + qk/2] = x1*d + m;
  1155. }
  1156. }
  1157. }
  1158. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1159. static const int qk = QK8_0;
  1160. assert(k % qk == 0);
  1161. const int nb = k / qk;
  1162. const block_q8_0 * restrict x = vx;
  1163. for (int i = 0; i < nb; i++) {
  1164. const float d = GGML_FP16_TO_FP32(x[i].d);
  1165. for (int j = 0; j < qk; ++j) {
  1166. y[i*qk + j] = x[i].qs[j]*d;
  1167. }
  1168. }
  1169. }
  1170. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1171. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1172. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1173. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1174. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1175. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1176. [GGML_TYPE_Q4_0] = {
  1177. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1178. .quantize_row_q = quantize_row_q4_0,
  1179. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1180. .quantize_row_q_dot = quantize_row_q8_0,
  1181. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1182. .vec_dot_type = GGML_TYPE_Q8_0,
  1183. },
  1184. [GGML_TYPE_Q4_1] = {
  1185. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1186. .quantize_row_q = quantize_row_q4_1,
  1187. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1188. .quantize_row_q_dot = quantize_row_q8_1,
  1189. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1190. .vec_dot_type = GGML_TYPE_Q8_1,
  1191. },
  1192. [GGML_TYPE_Q5_0] = {
  1193. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1194. .quantize_row_q = quantize_row_q5_0,
  1195. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1196. .quantize_row_q_dot = quantize_row_q8_0,
  1197. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1198. .vec_dot_type = GGML_TYPE_Q8_0,
  1199. },
  1200. [GGML_TYPE_Q5_1] = {
  1201. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1202. .quantize_row_q = quantize_row_q5_1,
  1203. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1204. .quantize_row_q_dot = quantize_row_q8_1,
  1205. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1206. .vec_dot_type = GGML_TYPE_Q8_1,
  1207. },
  1208. [GGML_TYPE_Q8_0] = {
  1209. .dequantize_row_q = dequantize_row_q8_0,
  1210. .quantize_row_q = quantize_row_q8_0,
  1211. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1212. .quantize_row_q_dot = quantize_row_q8_0,
  1213. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1214. .vec_dot_type = GGML_TYPE_Q8_0,
  1215. },
  1216. [GGML_TYPE_Q8_1] = {
  1217. .dequantize_row_q = NULL, // TODO
  1218. .quantize_row_q = quantize_row_q8_1,
  1219. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1220. .quantize_row_q_dot = quantize_row_q8_1,
  1221. .vec_dot_q = NULL, // TODO
  1222. .vec_dot_type = GGML_TYPE_Q8_1,
  1223. },
  1224. };
  1225. // For internal test use
  1226. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1227. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1228. return quantize_fns[i];
  1229. }
  1230. //
  1231. // simd mappings
  1232. //
  1233. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1234. // we then implement the fundamental computation operations below using only these macros
  1235. // adding support for new architectures requires to define the corresponding SIMD macros
  1236. //
  1237. // GGML_F32_STEP / GGML_F16_STEP
  1238. // number of elements to process in a single step
  1239. //
  1240. // GGML_F32_EPR / GGML_F16_EPR
  1241. // number of elements to fit in a single register
  1242. //
  1243. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1244. #define GGML_SIMD
  1245. // F32 NEON
  1246. #define GGML_F32_STEP 16
  1247. #define GGML_F32_EPR 4
  1248. #define GGML_F32x4 float32x4_t
  1249. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1250. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1251. #define GGML_F32x4_LOAD vld1q_f32
  1252. #define GGML_F32x4_STORE vst1q_f32
  1253. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1254. #define GGML_F32x4_ADD vaddq_f32
  1255. #define GGML_F32x4_MUL vmulq_f32
  1256. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1257. #define GGML_F32x4_REDUCE(res, x) \
  1258. { \
  1259. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1260. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1261. } \
  1262. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1263. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1264. } \
  1265. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1266. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1267. } \
  1268. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1269. }
  1270. #define GGML_F32_VEC GGML_F32x4
  1271. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1272. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1273. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1274. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1275. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1276. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1277. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1278. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1279. // F16 NEON
  1280. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1281. #define GGML_F16_STEP 32
  1282. #define GGML_F16_EPR 8
  1283. #define GGML_F16x8 float16x8_t
  1284. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1285. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1286. #define GGML_F16x8_LOAD vld1q_f16
  1287. #define GGML_F16x8_STORE vst1q_f16
  1288. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1289. #define GGML_F16x8_ADD vaddq_f16
  1290. #define GGML_F16x8_MUL vmulq_f16
  1291. #define GGML_F16x8_REDUCE(res, x) \
  1292. { \
  1293. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1294. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1295. } \
  1296. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1297. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1298. } \
  1299. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1300. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1301. } \
  1302. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1303. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1304. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1305. }
  1306. #define GGML_F16_VEC GGML_F16x8
  1307. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1308. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1309. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1310. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1311. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1312. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1313. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1314. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1315. #else
  1316. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1317. // and take advantage of the vcvt_ functions to convert to/from FP16
  1318. #define GGML_F16_STEP 16
  1319. #define GGML_F16_EPR 4
  1320. #define GGML_F32Cx4 float32x4_t
  1321. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1322. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1323. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1324. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1325. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1326. #define GGML_F32Cx4_ADD vaddq_f32
  1327. #define GGML_F32Cx4_MUL vmulq_f32
  1328. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1329. #define GGML_F16_VEC GGML_F32Cx4
  1330. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1331. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1332. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1333. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1334. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1335. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1336. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1337. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1338. #endif
  1339. #elif defined(__AVX__)
  1340. #define GGML_SIMD
  1341. // F32 AVX
  1342. #define GGML_F32_STEP 32
  1343. #define GGML_F32_EPR 8
  1344. #define GGML_F32x8 __m256
  1345. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1346. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1347. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1348. #define GGML_F32x8_STORE _mm256_storeu_ps
  1349. #if defined(__FMA__)
  1350. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1351. #else
  1352. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1353. #endif
  1354. #define GGML_F32x8_ADD _mm256_add_ps
  1355. #define GGML_F32x8_MUL _mm256_mul_ps
  1356. #define GGML_F32x8_REDUCE(res, x) \
  1357. { \
  1358. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1359. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1360. } \
  1361. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1362. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1363. } \
  1364. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1365. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1366. } \
  1367. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1368. _mm256_extractf128_ps(x[0], 1)); \
  1369. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1370. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1371. }
  1372. // TODO: is this optimal ?
  1373. #define GGML_F32_VEC GGML_F32x8
  1374. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1375. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1376. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1377. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1378. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1379. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1380. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1381. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1382. // F16 AVX
  1383. #define GGML_F16_STEP 32
  1384. #define GGML_F16_EPR 8
  1385. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1386. #define GGML_F32Cx8 __m256
  1387. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1388. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1389. #if defined(__F16C__)
  1390. // the _mm256_cvt intrinsics require F16C
  1391. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1392. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1393. #else
  1394. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1395. float tmp[8];
  1396. for (int i = 0; i < 8; i++) {
  1397. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1398. }
  1399. return _mm256_loadu_ps(tmp);
  1400. }
  1401. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1402. float arr[8];
  1403. _mm256_storeu_ps(arr, y);
  1404. for (int i = 0; i < 8; i++)
  1405. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1406. }
  1407. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1408. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1409. #endif
  1410. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1411. #define GGML_F32Cx8_ADD _mm256_add_ps
  1412. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1413. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1414. #define GGML_F16_VEC GGML_F32Cx8
  1415. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1416. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1417. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1418. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1419. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1420. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1421. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1422. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1423. #elif defined(__POWER9_VECTOR__)
  1424. #define GGML_SIMD
  1425. // F32 POWER9
  1426. #define GGML_F32_STEP 32
  1427. #define GGML_F32_EPR 4
  1428. #define GGML_F32x4 vector float
  1429. #define GGML_F32x4_ZERO 0.0f
  1430. #define GGML_F32x4_SET1 vec_splats
  1431. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1432. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1433. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1434. #define GGML_F32x4_ADD vec_add
  1435. #define GGML_F32x4_MUL vec_mul
  1436. #define GGML_F32x4_REDUCE(res, x) \
  1437. { \
  1438. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1439. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1440. } \
  1441. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1442. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1443. } \
  1444. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1445. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1446. } \
  1447. res = vec_extract(x[0], 0) + \
  1448. vec_extract(x[0], 1) + \
  1449. vec_extract(x[0], 2) + \
  1450. vec_extract(x[0], 3); \
  1451. }
  1452. #define GGML_F32_VEC GGML_F32x4
  1453. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1454. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1455. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1456. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1457. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1458. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1459. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1460. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1461. // F16 POWER9
  1462. #define GGML_F16_STEP GGML_F32_STEP
  1463. #define GGML_F16_EPR GGML_F32_EPR
  1464. #define GGML_F16_VEC GGML_F32x4
  1465. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1466. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1467. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1468. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1469. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1470. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1471. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1472. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1473. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1474. #define GGML_F16_VEC_STORE(p, r, i) \
  1475. if (i & 0x1) \
  1476. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1477. r[i - GGML_ENDIAN_BYTE(0)]), \
  1478. 0, p - GGML_F16_EPR)
  1479. #elif defined(__wasm_simd128__)
  1480. #define GGML_SIMD
  1481. // F32 WASM
  1482. #define GGML_F32_STEP 16
  1483. #define GGML_F32_EPR 4
  1484. #define GGML_F32x4 v128_t
  1485. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1486. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1487. #define GGML_F32x4_LOAD wasm_v128_load
  1488. #define GGML_F32x4_STORE wasm_v128_store
  1489. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1490. #define GGML_F32x4_ADD wasm_f32x4_add
  1491. #define GGML_F32x4_MUL wasm_f32x4_mul
  1492. #define GGML_F32x4_REDUCE(res, x) \
  1493. { \
  1494. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1495. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1496. } \
  1497. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1498. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1499. } \
  1500. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1501. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1502. } \
  1503. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1504. wasm_f32x4_extract_lane(x[0], 1) + \
  1505. wasm_f32x4_extract_lane(x[0], 2) + \
  1506. wasm_f32x4_extract_lane(x[0], 3); \
  1507. }
  1508. #define GGML_F32_VEC GGML_F32x4
  1509. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1510. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1511. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1512. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1513. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1514. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1515. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1516. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1517. // F16 WASM
  1518. #define GGML_F16_STEP 16
  1519. #define GGML_F16_EPR 4
  1520. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1521. float tmp[4];
  1522. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1523. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1524. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1525. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1526. return wasm_v128_load(tmp);
  1527. }
  1528. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1529. float tmp[4];
  1530. wasm_v128_store(tmp, x);
  1531. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1532. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1533. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1534. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1535. }
  1536. #define GGML_F16x4 v128_t
  1537. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1538. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1539. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1540. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1541. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1542. #define GGML_F16x4_ADD wasm_f32x4_add
  1543. #define GGML_F16x4_MUL wasm_f32x4_mul
  1544. #define GGML_F16x4_REDUCE(res, x) \
  1545. { \
  1546. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1547. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1548. } \
  1549. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1550. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1551. } \
  1552. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1553. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1554. } \
  1555. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1556. wasm_f32x4_extract_lane(x[0], 1) + \
  1557. wasm_f32x4_extract_lane(x[0], 2) + \
  1558. wasm_f32x4_extract_lane(x[0], 3); \
  1559. }
  1560. #define GGML_F16_VEC GGML_F16x4
  1561. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1562. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1563. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1564. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1565. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1566. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1567. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1568. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1569. #elif defined(__SSE3__)
  1570. #define GGML_SIMD
  1571. // F32 SSE
  1572. #define GGML_F32_STEP 32
  1573. #define GGML_F32_EPR 4
  1574. #define GGML_F32x4 __m128
  1575. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1576. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1577. #define GGML_F32x4_LOAD _mm_loadu_ps
  1578. #define GGML_F32x4_STORE _mm_storeu_ps
  1579. #if defined(__FMA__)
  1580. // TODO: Does this work?
  1581. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1582. #else
  1583. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1584. #endif
  1585. #define GGML_F32x4_ADD _mm_add_ps
  1586. #define GGML_F32x4_MUL _mm_mul_ps
  1587. #define GGML_F32x4_REDUCE(res, x) \
  1588. { \
  1589. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1590. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1591. } \
  1592. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1593. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1594. } \
  1595. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1596. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1597. } \
  1598. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1599. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1600. }
  1601. // TODO: is this optimal ?
  1602. #define GGML_F32_VEC GGML_F32x4
  1603. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1604. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1605. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1606. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1607. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1608. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1609. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1610. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1611. // F16 SSE
  1612. #define GGML_F16_STEP 32
  1613. #define GGML_F16_EPR 4
  1614. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1615. float tmp[4];
  1616. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1617. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1618. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1619. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1620. return _mm_loadu_ps(tmp);
  1621. }
  1622. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1623. float arr[4];
  1624. _mm_storeu_ps(arr, y);
  1625. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1626. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1627. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1628. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1629. }
  1630. #define GGML_F32Cx4 __m128
  1631. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1632. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1633. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1634. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1635. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1636. #define GGML_F32Cx4_ADD _mm_add_ps
  1637. #define GGML_F32Cx4_MUL _mm_mul_ps
  1638. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1639. #define GGML_F16_VEC GGML_F32Cx4
  1640. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1641. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1642. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1643. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1644. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1645. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1646. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1647. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1648. #endif
  1649. // GGML_F32_ARR / GGML_F16_ARR
  1650. // number of registers to use per step
  1651. #ifdef GGML_SIMD
  1652. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1653. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1654. #endif
  1655. //
  1656. // fundamental operations
  1657. //
  1658. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1659. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1660. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1661. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1662. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1663. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1664. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1665. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1666. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1667. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1668. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1669. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1670. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1671. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1672. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1673. #ifdef GGML_SIMD
  1674. float sumf = 0.0f;
  1675. const int np = (n & ~(GGML_F32_STEP - 1));
  1676. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1677. GGML_F32_VEC ax[GGML_F32_ARR];
  1678. GGML_F32_VEC ay[GGML_F32_ARR];
  1679. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1680. for (int j = 0; j < GGML_F32_ARR; j++) {
  1681. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1682. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1683. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1684. }
  1685. }
  1686. // reduce sum0..sum3 to sum0
  1687. GGML_F32_VEC_REDUCE(sumf, sum);
  1688. // leftovers
  1689. for (int i = np; i < n; ++i) {
  1690. sumf += x[i]*y[i];
  1691. }
  1692. #else
  1693. // scalar
  1694. ggml_float sumf = 0.0;
  1695. for (int i = 0; i < n; ++i) {
  1696. sumf += (ggml_float)(x[i]*y[i]);
  1697. }
  1698. #endif
  1699. *s = sumf;
  1700. }
  1701. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1702. ggml_float sumf = 0.0;
  1703. #if defined(GGML_SIMD)
  1704. const int np = (n & ~(GGML_F16_STEP - 1));
  1705. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1706. GGML_F16_VEC ax[GGML_F16_ARR];
  1707. GGML_F16_VEC ay[GGML_F16_ARR];
  1708. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1709. for (int j = 0; j < GGML_F16_ARR; j++) {
  1710. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1711. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1712. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1713. }
  1714. }
  1715. // reduce sum0..sum3 to sum0
  1716. GGML_F16_VEC_REDUCE(sumf, sum);
  1717. // leftovers
  1718. for (int i = np; i < n; ++i) {
  1719. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1720. }
  1721. #else
  1722. for (int i = 0; i < n; ++i) {
  1723. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1724. }
  1725. #endif
  1726. *s = sumf;
  1727. }
  1728. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1729. const int qk = QK8_0;
  1730. const int nb = n / qk;
  1731. assert(n % qk == 0);
  1732. assert(nb % 2 == 0);
  1733. const block_q4_0 * restrict x = vx;
  1734. const block_q8_0 * restrict y = vy;
  1735. #if defined(__ARM_NEON)
  1736. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1737. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1738. for (int i = 0; i < nb; i += 2) {
  1739. const block_q4_0 * restrict x0 = &x[i + 0];
  1740. const block_q4_0 * restrict x1 = &x[i + 1];
  1741. const block_q8_0 * restrict y0 = &y[i + 0];
  1742. const block_q8_0 * restrict y1 = &y[i + 1];
  1743. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1744. const int8x16_t s8b = vdupq_n_s8(0x8);
  1745. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1746. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1747. // 4-bit -> 8-bit
  1748. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1749. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1750. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1751. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1752. // sub 8
  1753. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1754. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1755. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1756. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1757. // load y
  1758. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1759. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1760. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1761. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1762. #if defined(__ARM_FEATURE_DOTPROD)
  1763. // dot product into int32x4_t
  1764. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1765. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1766. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1767. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1768. #else
  1769. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1770. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1771. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1772. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1773. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1774. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1775. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1776. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1777. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1778. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1779. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1780. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1781. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1782. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1783. #endif
  1784. }
  1785. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1786. #elif defined(__AVX2__)
  1787. // Initialize accumulator with zeros
  1788. __m256 acc = _mm256_setzero_ps();
  1789. // Main loop
  1790. for (int i = 0; i < nb; ++i) {
  1791. /* Compute combined scale for the block */
  1792. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1793. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1794. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1795. const __m256i off = _mm256_set1_epi8( 8 );
  1796. bx = _mm256_sub_epi8( bx, off );
  1797. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1798. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1799. /* Multiply q with scale and accumulate */
  1800. acc = _mm256_fmadd_ps( d, q, acc );
  1801. }
  1802. *s = hsum_float_8(acc);
  1803. #elif defined(__AVX__)
  1804. // Initialize accumulator with zeros
  1805. __m256 acc = _mm256_setzero_ps();
  1806. // Main loop
  1807. for (int i = 0; i < nb; ++i) {
  1808. // Compute combined scale for the block
  1809. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1810. const __m128i lowMask = _mm_set1_epi8(0xF);
  1811. const __m128i off = _mm_set1_epi8(8);
  1812. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1813. __m128i bx = _mm_and_si128(lowMask, tmp);
  1814. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1815. bx = _mm_sub_epi8(bx, off);
  1816. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1817. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1818. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1819. bx = _mm_sub_epi8(bx, off);
  1820. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1821. // Convert int32_t to float
  1822. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1823. // Apply the scale, and accumulate
  1824. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1825. }
  1826. *s = hsum_float_8(acc);
  1827. #elif defined(__SSSE3__)
  1828. // set constants
  1829. const __m128i lowMask = _mm_set1_epi8(0xF);
  1830. const __m128i off = _mm_set1_epi8(8);
  1831. // Initialize accumulator with zeros
  1832. __m128 acc_0 = _mm_setzero_ps();
  1833. __m128 acc_1 = _mm_setzero_ps();
  1834. __m128 acc_2 = _mm_setzero_ps();
  1835. __m128 acc_3 = _mm_setzero_ps();
  1836. // First round without accumulation
  1837. {
  1838. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1839. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1840. // Compute combined scale for the block 0 and 1
  1841. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1842. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1843. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1844. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1845. bx_0 = _mm_sub_epi8(bx_0, off);
  1846. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1847. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1848. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1849. bx_1 = _mm_sub_epi8(bx_1, off);
  1850. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1851. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1852. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1853. // Compute combined scale for the block 2 and 3
  1854. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1855. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1856. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1857. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1858. bx_2 = _mm_sub_epi8(bx_2, off);
  1859. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1860. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1861. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1862. bx_3 = _mm_sub_epi8(bx_3, off);
  1863. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1864. // Convert int32_t to float
  1865. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1866. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1867. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1868. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1869. // Apply the scale
  1870. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1871. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1872. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1873. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1874. }
  1875. // Main loop
  1876. for (int i = 2; i < nb; i+=2) {
  1877. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1878. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1879. // Compute combined scale for the block 0 and 1
  1880. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1881. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1882. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1883. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1884. bx_0 = _mm_sub_epi8(bx_0, off);
  1885. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1886. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1887. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1888. bx_1 = _mm_sub_epi8(bx_1, off);
  1889. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1890. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1891. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1892. // Compute combined scale for the block 2 and 3
  1893. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1894. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1895. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1896. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1897. bx_2 = _mm_sub_epi8(bx_2, off);
  1898. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1899. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1900. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1901. bx_3 = _mm_sub_epi8(bx_3, off);
  1902. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1903. // Convert int32_t to float
  1904. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1905. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1906. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1907. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1908. // Apply the scale
  1909. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1910. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1911. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1912. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1913. // Acummulate
  1914. acc_0 = _mm_add_ps(p0_d, acc_0);
  1915. acc_1 = _mm_add_ps(p1_d, acc_1);
  1916. acc_2 = _mm_add_ps(p2_d, acc_2);
  1917. acc_3 = _mm_add_ps(p3_d, acc_3);
  1918. }
  1919. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1920. #else
  1921. // scalar
  1922. float sumf = 0.0;
  1923. for (int i = 0; i < nb; i++) {
  1924. int sumi = 0;
  1925. for (int j = 0; j < qk/2; ++j) {
  1926. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1927. const int v1 = (x[i].qs[j] >> 4) - 8;
  1928. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1929. }
  1930. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1931. }
  1932. *s = sumf;
  1933. #endif
  1934. }
  1935. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1936. const int qk = QK8_1;
  1937. const int nb = n / qk;
  1938. assert(n % qk == 0);
  1939. assert(nb % 2 == 0);
  1940. const block_q4_1 * restrict x = vx;
  1941. const block_q8_1 * restrict y = vy;
  1942. // TODO: add WASM SIMD
  1943. #if defined(__ARM_NEON)
  1944. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1945. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1946. float summs = 0;
  1947. for (int i = 0; i < nb; i += 2) {
  1948. const block_q4_1 * restrict x0 = &x[i + 0];
  1949. const block_q4_1 * restrict x1 = &x[i + 1];
  1950. const block_q8_1 * restrict y0 = &y[i + 0];
  1951. const block_q8_1 * restrict y1 = &y[i + 1];
  1952. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  1953. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1954. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1955. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1956. // 4-bit -> 8-bit
  1957. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1958. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1959. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1960. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1961. // load y
  1962. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1963. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1964. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1965. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1966. #if defined(__ARM_FEATURE_DOTPROD)
  1967. // dot product into int32x4_t
  1968. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1969. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1970. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  1971. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  1972. #else
  1973. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1974. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1975. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1976. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1977. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1978. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1979. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1980. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1981. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1982. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1983. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1984. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1985. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  1986. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  1987. #endif
  1988. }
  1989. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1990. #elif defined(__AVX2__) || defined(__AVX__)
  1991. // Initialize accumulator with zeros
  1992. __m256 acc = _mm256_setzero_ps();
  1993. float summs = 0;
  1994. // Main loop
  1995. for (int i = 0; i < nb; ++i) {
  1996. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  1997. const float d1 = y[i].d;
  1998. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  1999. const __m256 d0v = _mm256_set1_ps( d0 );
  2000. const __m256 d1v = _mm256_set1_ps( d1 );
  2001. // Compute combined scales
  2002. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2003. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2004. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2005. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2006. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2007. // Accumulate d0*d1*x*y
  2008. #if defined(__AVX2__)
  2009. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2010. #else
  2011. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2012. #endif
  2013. }
  2014. *s = hsum_float_8(acc) + summs;
  2015. #else
  2016. // scalar
  2017. float sumf = 0.0;
  2018. for (int i = 0; i < nb; i++) {
  2019. int sumi = 0;
  2020. for (int j = 0; j < qk/2; ++j) {
  2021. const int v0 = (x[i].qs[j] & 0x0F);
  2022. const int v1 = (x[i].qs[j] >> 4);
  2023. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2024. }
  2025. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2026. }
  2027. *s = sumf;
  2028. #endif
  2029. }
  2030. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2031. const int qk = QK8_0;
  2032. const int nb = n / qk;
  2033. assert(n % qk == 0);
  2034. assert(nb % 2 == 0);
  2035. assert(qk == QK5_0);
  2036. const block_q5_0 * restrict x = vx;
  2037. const block_q8_0 * restrict y = vy;
  2038. #if defined(__ARM_NEON)
  2039. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2040. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2041. uint32_t qh0;
  2042. uint32_t qh1;
  2043. uint64_t tmp0[4];
  2044. uint64_t tmp1[4];
  2045. for (int i = 0; i < nb; i += 2) {
  2046. const block_q5_0 * restrict x0 = &x[i];
  2047. const block_q5_0 * restrict x1 = &x[i + 1];
  2048. const block_q8_0 * restrict y0 = &y[i];
  2049. const block_q8_0 * restrict y1 = &y[i + 1];
  2050. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2051. // extract the 5th bit via lookup table ((!b) << 4)
  2052. memcpy(&qh0, x0->qh, sizeof(qh0));
  2053. memcpy(&qh1, x1->qh, sizeof(qh1));
  2054. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2055. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2056. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2057. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2058. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2059. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2060. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2061. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2062. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2063. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2064. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2065. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2066. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2067. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2068. // 4-bit -> 8-bit
  2069. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2070. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2071. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2072. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2073. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2074. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2075. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2076. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2077. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2078. // load y
  2079. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2080. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2081. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2082. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2083. #if defined(__ARM_FEATURE_DOTPROD)
  2084. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2085. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2086. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2087. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2088. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2089. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2090. #else
  2091. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2092. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2093. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2094. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2095. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2096. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2097. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2098. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2099. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2100. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2101. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2102. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2103. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2104. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2105. #endif
  2106. }
  2107. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2108. #elif defined(__wasm_simd128__)
  2109. v128_t sumv = wasm_f32x4_splat(0.0f);
  2110. uint32_t qh;
  2111. uint64_t tmp[4];
  2112. // TODO: check if unrolling this is better
  2113. for (int i = 0; i < nb; ++i) {
  2114. const block_q5_0 * restrict x0 = &x[i];
  2115. const block_q8_0 * restrict y0 = &y[i];
  2116. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2117. const v128_t s16b = wasm_i8x16_splat(0x10);
  2118. // extract the 5th bit
  2119. memcpy(&qh, x0->qh, sizeof(qh));
  2120. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2121. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2122. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2123. tmp[3] = table_b2b_1[(qh >> 24) ];
  2124. const v128_t qhl = wasm_v128_load(tmp + 0);
  2125. const v128_t qhh = wasm_v128_load(tmp + 2);
  2126. const v128_t v0 = wasm_v128_load(x0->qs);
  2127. // 4-bit -> 8-bit
  2128. const v128_t v0l = wasm_v128_and (v0, m4b);
  2129. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2130. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2131. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2132. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2133. // load y
  2134. const v128_t v1l = wasm_v128_load(y0->qs);
  2135. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2136. // int8x16 -> int16x8
  2137. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2138. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2139. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2140. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2141. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2142. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2143. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2144. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2145. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2146. // dot product
  2147. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2148. wasm_i32x4_add(
  2149. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2150. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2151. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2152. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2153. }
  2154. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2155. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2156. #elif defined(__AVX2__)
  2157. // Initialize accumulator with zeros
  2158. __m256 acc = _mm256_setzero_ps();
  2159. // Main loop
  2160. for (int i = 0; i < nb; i++) {
  2161. /* Compute combined scale for the block */
  2162. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2163. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2164. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2165. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2166. bx = _mm256_or_si256(bx, bxhi);
  2167. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2168. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2169. /* Multiply q with scale and accumulate */
  2170. acc = _mm256_fmadd_ps(d, q, acc);
  2171. }
  2172. *s = hsum_float_8(acc);
  2173. #elif defined(__AVX__)
  2174. // Initialize accumulator with zeros
  2175. __m256 acc = _mm256_setzero_ps();
  2176. __m128i mask = _mm_set1_epi8((char)0xF0);
  2177. // Main loop
  2178. for (int i = 0; i < nb; i++) {
  2179. /* Compute combined scale for the block */
  2180. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2181. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2182. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2183. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2184. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2185. bxhil = _mm_andnot_si128(bxhil, mask);
  2186. bxhih = _mm_andnot_si128(bxhih, mask);
  2187. __m128i bxl = _mm256_castsi256_si128(bx);
  2188. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2189. bxl = _mm_or_si128(bxl, bxhil);
  2190. bxh = _mm_or_si128(bxh, bxhih);
  2191. bx = _mm256_set_m128i(bxh, bxl);
  2192. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2193. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2194. /* Multiply q with scale and accumulate */
  2195. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2196. }
  2197. *s = hsum_float_8(acc);
  2198. #else
  2199. // scalar
  2200. float sumf = 0.0;
  2201. for (int i = 0; i < nb; i++) {
  2202. uint32_t qh;
  2203. memcpy(&qh, x[i].qh, sizeof(qh));
  2204. int sumi = 0;
  2205. for (int j = 0; j < qk/2; ++j) {
  2206. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2207. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2208. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2209. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2210. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2211. }
  2212. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2213. }
  2214. *s = sumf;
  2215. #endif
  2216. }
  2217. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2218. const int qk = QK8_1;
  2219. const int nb = n / qk;
  2220. assert(n % qk == 0);
  2221. assert(nb % 2 == 0);
  2222. assert(qk == QK5_1);
  2223. const block_q5_1 * restrict x = vx;
  2224. const block_q8_1 * restrict y = vy;
  2225. #if defined(__ARM_NEON)
  2226. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2227. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2228. float summs0 = 0.0f;
  2229. float summs1 = 0.0f;
  2230. uint32_t qh0;
  2231. uint32_t qh1;
  2232. uint64_t tmp0[4];
  2233. uint64_t tmp1[4];
  2234. for (int i = 0; i < nb; i += 2) {
  2235. const block_q5_1 * restrict x0 = &x[i];
  2236. const block_q5_1 * restrict x1 = &x[i + 1];
  2237. const block_q8_1 * restrict y0 = &y[i];
  2238. const block_q8_1 * restrict y1 = &y[i + 1];
  2239. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2240. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2241. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2242. // extract the 5th bit via lookup table ((b) << 4)
  2243. memcpy(&qh0, x0->qh, sizeof(qh0));
  2244. memcpy(&qh1, x1->qh, sizeof(qh1));
  2245. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2246. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2247. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2248. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2249. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2250. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2251. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2252. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2253. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2254. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2255. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2256. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2257. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2258. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2259. // 4-bit -> 8-bit
  2260. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2261. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2262. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2263. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2264. // add high bit
  2265. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2266. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2267. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2268. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2269. // load y
  2270. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2271. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2272. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2273. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2274. #if defined(__ARM_FEATURE_DOTPROD)
  2275. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2276. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2277. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2278. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2279. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2280. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2281. #else
  2282. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2283. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2284. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2285. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2286. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2287. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2288. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2289. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2290. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2291. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2292. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2293. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2294. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2295. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2296. #endif
  2297. }
  2298. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2299. #elif defined(__wasm_simd128__)
  2300. v128_t sumv = wasm_f32x4_splat(0.0f);
  2301. float summs = 0.0f;
  2302. uint32_t qh;
  2303. uint64_t tmp[4];
  2304. // TODO: check if unrolling this is better
  2305. for (int i = 0; i < nb; ++i) {
  2306. const block_q5_1 * restrict x0 = &x[i];
  2307. const block_q8_1 * restrict y0 = &y[i];
  2308. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2309. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2310. // extract the 5th bit
  2311. memcpy(&qh, x0->qh, sizeof(qh));
  2312. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2313. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2314. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2315. tmp[3] = table_b2b_0[(qh >> 24) ];
  2316. const v128_t qhl = wasm_v128_load(tmp + 0);
  2317. const v128_t qhh = wasm_v128_load(tmp + 2);
  2318. const v128_t v0 = wasm_v128_load(x0->qs);
  2319. // 4-bit -> 8-bit
  2320. const v128_t v0l = wasm_v128_and (v0, m4b);
  2321. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2322. static bool x = true;
  2323. // add high bit
  2324. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2325. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2326. // load y
  2327. const v128_t v1l = wasm_v128_load(y0->qs);
  2328. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2329. // int8x16 -> int16x8
  2330. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2331. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2332. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2333. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2334. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2335. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2336. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2337. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2338. // dot product
  2339. sumv = wasm_f32x4_add(sumv,
  2340. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2341. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2342. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2343. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2344. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2345. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d));
  2346. }
  2347. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2348. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2349. #elif defined(__AVX2__)
  2350. // Initialize accumulator with zeros
  2351. __m256 acc = _mm256_setzero_ps();
  2352. float summs = 0.0f;
  2353. // Main loop
  2354. for (int i = 0; i < nb; i++) {
  2355. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2356. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2357. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2358. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2359. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2360. bx = _mm256_or_si256(bx, bxhi);
  2361. const __m256 dy = _mm256_set1_ps(y[i].d);
  2362. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2363. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2364. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2365. }
  2366. *s = hsum_float_8(acc) + summs;
  2367. #elif defined(__AVX__)
  2368. // Initialize accumulator with zeros
  2369. __m256 acc = _mm256_setzero_ps();
  2370. __m128i mask = _mm_set1_epi8(0x10);
  2371. float summs = 0.0f;
  2372. // Main loop
  2373. for (int i = 0; i < nb; i++) {
  2374. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2375. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2376. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2377. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2378. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2379. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2380. bxhil = _mm_and_si128(bxhil, mask);
  2381. bxhih = _mm_and_si128(bxhih, mask);
  2382. __m128i bxl = _mm256_castsi256_si128(bx);
  2383. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2384. bxl = _mm_or_si128(bxl, bxhil);
  2385. bxh = _mm_or_si128(bxh, bxhih);
  2386. bx = _mm256_set_m128i(bxh, bxl);
  2387. const __m256 dy = _mm256_set1_ps(y[i].d);
  2388. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2389. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2390. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2391. }
  2392. *s = hsum_float_8(acc) + summs;
  2393. #else
  2394. // scalar
  2395. float sumf = 0.0;
  2396. for (int i = 0; i < nb; i++) {
  2397. uint32_t qh;
  2398. memcpy(&qh, x[i].qh, sizeof(qh));
  2399. int sumi = 0;
  2400. for (int j = 0; j < qk/2; ++j) {
  2401. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2402. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2403. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2404. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2405. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2406. }
  2407. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2408. }
  2409. *s = sumf;
  2410. #endif
  2411. }
  2412. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2413. const int qk = QK8_0;
  2414. const int nb = n / qk;
  2415. assert(n % qk == 0);
  2416. assert(nb % 2 == 0);
  2417. const block_q8_0 * restrict x = vx;
  2418. const block_q8_0 * restrict y = vy;
  2419. #if defined(__ARM_NEON)
  2420. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2421. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2422. for (int i = 0; i < nb; i += 2) {
  2423. const block_q8_0 * restrict x0 = &x[i + 0];
  2424. const block_q8_0 * restrict x1 = &x[i + 1];
  2425. const block_q8_0 * restrict y0 = &y[i + 0];
  2426. const block_q8_0 * restrict y1 = &y[i + 1];
  2427. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2428. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2429. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2430. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2431. // load y
  2432. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2433. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2434. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2435. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2436. #if defined(__ARM_FEATURE_DOTPROD)
  2437. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2438. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2439. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2440. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2441. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2442. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2443. #else
  2444. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2445. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2446. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2447. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2448. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2449. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2450. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2451. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2452. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2453. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2454. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2455. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2456. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2457. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2458. #endif
  2459. }
  2460. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2461. #elif defined(__AVX2__) || defined(__AVX__)
  2462. // Initialize accumulator with zeros
  2463. __m256 acc = _mm256_setzero_ps();
  2464. // Main loop
  2465. for (int i = 0; i < nb; ++i) {
  2466. // Compute combined scale for the block
  2467. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2468. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2469. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2470. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2471. // Multiply q with scale and accumulate
  2472. #if defined(__AVX2__)
  2473. acc = _mm256_fmadd_ps( d, q, acc );
  2474. #else
  2475. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2476. #endif
  2477. }
  2478. *s = hsum_float_8(acc);
  2479. #else
  2480. // scalar
  2481. float sumf = 0.0;
  2482. for (int i = 0; i < nb; i++) {
  2483. int sumi = 0;
  2484. for (int j = 0; j < qk; j++) {
  2485. sumi += x[i].qs[j]*y[i].qs[j];
  2486. }
  2487. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2488. }
  2489. *s = sumf;
  2490. #endif
  2491. }
  2492. // compute GGML_VEC_DOT_UNROLL dot products at once
  2493. // xs - x row stride in bytes
  2494. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2495. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2496. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2497. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2498. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2499. }
  2500. #if defined(GGML_SIMD)
  2501. const int np = (n & ~(GGML_F16_STEP - 1));
  2502. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2503. GGML_F16_VEC ax[GGML_F16_ARR];
  2504. GGML_F16_VEC ay[GGML_F16_ARR];
  2505. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2506. for (int j = 0; j < GGML_F16_ARR; j++) {
  2507. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2508. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2509. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2510. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2511. }
  2512. }
  2513. }
  2514. // reduce sum0..sum3 to sum0
  2515. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2516. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2517. }
  2518. // leftovers
  2519. for (int i = np; i < n; ++i) {
  2520. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2521. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2522. }
  2523. }
  2524. #else
  2525. for (int i = 0; i < n; ++i) {
  2526. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2527. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2528. }
  2529. }
  2530. #endif
  2531. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2532. s[i] = sumf[i];
  2533. }
  2534. }
  2535. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2536. #if defined(GGML_SIMD)
  2537. const int np = (n & ~(GGML_F32_STEP - 1));
  2538. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2539. GGML_F32_VEC ax[GGML_F32_ARR];
  2540. GGML_F32_VEC ay[GGML_F32_ARR];
  2541. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2542. for (int j = 0; j < GGML_F32_ARR; j++) {
  2543. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2544. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2545. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2546. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2547. }
  2548. }
  2549. // leftovers
  2550. for (int i = np; i < n; ++i) {
  2551. y[i] += x[i]*v;
  2552. }
  2553. #else
  2554. // scalar
  2555. for (int i = 0; i < n; ++i) {
  2556. y[i] += x[i]*v;
  2557. }
  2558. #endif
  2559. }
  2560. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2561. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2562. #if defined(GGML_SIMD)
  2563. const int np = (n & ~(GGML_F32_STEP - 1));
  2564. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2565. GGML_F32_VEC ay[GGML_F32_ARR];
  2566. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2567. for (int j = 0; j < GGML_F32_ARR; j++) {
  2568. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2569. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2570. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2571. }
  2572. }
  2573. // leftovers
  2574. for (int i = np; i < n; ++i) {
  2575. y[i] *= v;
  2576. }
  2577. #else
  2578. // scalar
  2579. for (int i = 0; i < n; ++i) {
  2580. y[i] *= v;
  2581. }
  2582. #endif
  2583. }
  2584. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2585. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2586. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2587. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2588. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2589. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2590. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2591. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2592. static const float GELU_COEF_A = 0.044715f;
  2593. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2594. inline static float ggml_gelu_f32(float x) {
  2595. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2596. }
  2597. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2598. const uint16_t * i16 = (const uint16_t *) x;
  2599. for (int i = 0; i < n; ++i) {
  2600. y[i] = table_gelu_f16[i16[i]];
  2601. }
  2602. }
  2603. #ifdef GGML_GELU_FP16
  2604. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2605. uint16_t t;
  2606. for (int i = 0; i < n; ++i) {
  2607. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2608. memcpy(&t, &fp16, sizeof(uint16_t));
  2609. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2610. }
  2611. }
  2612. #else
  2613. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2614. for (int i = 0; i < n; ++i) {
  2615. y[i] = ggml_gelu_f32(x[i]);
  2616. }
  2617. }
  2618. #endif
  2619. // Sigmoid Linear Unit (SiLU) function
  2620. inline static float ggml_silu_f32(float x) {
  2621. return x/(1.0f + expf(-x));
  2622. }
  2623. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2624. // const uint16_t * i16 = (const uint16_t *) x;
  2625. // for (int i = 0; i < n; ++i) {
  2626. // y[i] = table_silu_f16[i16[i]];
  2627. // }
  2628. //}
  2629. #ifdef GGML_SILU_FP16
  2630. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2631. uint16_t t;
  2632. for (int i = 0; i < n; ++i) {
  2633. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2634. memcpy(&t, &fp16, sizeof(uint16_t));
  2635. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2636. }
  2637. }
  2638. #else
  2639. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2640. for (int i = 0; i < n; ++i) {
  2641. y[i] = ggml_silu_f32(x[i]);
  2642. }
  2643. }
  2644. #endif
  2645. inline static float ggml_silu_backward_f32(float x, float dy) {
  2646. const float s = 1.0f/(1.0f + expf(-x));
  2647. return dy*s*(1.0f + x*(1.0f - s));
  2648. }
  2649. #ifdef GGML_SILU_FP16
  2650. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2651. for (int i = 0; i < n; ++i) {
  2652. // we did not use x[i] to compute forward silu but its f16 equivalent
  2653. // take derivative at f16 of x[i]:
  2654. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2655. float usedx = GGML_FP16_TO_FP32(fp16);
  2656. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2657. }
  2658. }
  2659. #else
  2660. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2661. for (int i = 0; i < n; ++i) {
  2662. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2663. }
  2664. }
  2665. #endif
  2666. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2667. #ifndef GGML_USE_ACCELERATE
  2668. ggml_float sum = 0.0;
  2669. for (int i = 0; i < n; ++i) {
  2670. sum += (ggml_float)x[i];
  2671. }
  2672. *s = sum;
  2673. #else
  2674. vDSP_sve(x, 1, s, n);
  2675. #endif
  2676. }
  2677. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2678. ggml_float sum = 0.0;
  2679. for (int i = 0; i < n; ++i) {
  2680. sum += (ggml_float)x[i];
  2681. }
  2682. *s = sum;
  2683. }
  2684. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2685. #ifndef GGML_USE_ACCELERATE
  2686. float max = -INFINITY;
  2687. for (int i = 0; i < n; ++i) {
  2688. max = MAX(max, x[i]);
  2689. }
  2690. *s = max;
  2691. #else
  2692. vDSP_maxv(x, 1, s, n);
  2693. #endif
  2694. }
  2695. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2696. ggml_vec_norm_f32(n, s, x);
  2697. *s = 1.f/(*s);
  2698. }
  2699. //
  2700. // logging
  2701. //
  2702. #if (GGML_DEBUG >= 1)
  2703. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2704. #else
  2705. #define GGML_PRINT_DEBUG(...)
  2706. #endif
  2707. #if (GGML_DEBUG >= 5)
  2708. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2709. #else
  2710. #define GGML_PRINT_DEBUG_5(...)
  2711. #endif
  2712. #if (GGML_DEBUG >= 10)
  2713. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2714. #else
  2715. #define GGML_PRINT_DEBUG_10(...)
  2716. #endif
  2717. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2718. //
  2719. // data types
  2720. //
  2721. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2722. [GGML_TYPE_F32] = 1,
  2723. [GGML_TYPE_F16] = 1,
  2724. [GGML_TYPE_Q4_0] = QK4_0,
  2725. [GGML_TYPE_Q4_1] = QK4_1,
  2726. [GGML_TYPE_Q5_0] = QK5_0,
  2727. [GGML_TYPE_Q5_1] = QK5_1,
  2728. [GGML_TYPE_Q8_0] = QK8_0,
  2729. [GGML_TYPE_Q8_1] = QK8_1,
  2730. [GGML_TYPE_I8] = 1,
  2731. [GGML_TYPE_I16] = 1,
  2732. [GGML_TYPE_I32] = 1,
  2733. };
  2734. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2735. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2736. [GGML_TYPE_F32] = sizeof(float),
  2737. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2738. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2739. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2740. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2741. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2742. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2743. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2744. [GGML_TYPE_I8] = sizeof(int8_t),
  2745. [GGML_TYPE_I16] = sizeof(int16_t),
  2746. [GGML_TYPE_I32] = sizeof(int32_t),
  2747. };
  2748. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2749. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2750. [GGML_TYPE_F32] = "f32",
  2751. [GGML_TYPE_F16] = "f16",
  2752. [GGML_TYPE_Q4_0] = "q4_0",
  2753. [GGML_TYPE_Q4_1] = "q4_1",
  2754. [GGML_TYPE_Q5_0] = "q5_0",
  2755. [GGML_TYPE_Q5_1] = "q5_1",
  2756. [GGML_TYPE_Q8_0] = "q8_0",
  2757. [GGML_TYPE_Q8_1] = "q8_1",
  2758. [GGML_TYPE_I8] = "i8",
  2759. [GGML_TYPE_I16] = "i16",
  2760. [GGML_TYPE_I32] = "i32",
  2761. };
  2762. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2763. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2764. [GGML_TYPE_F32] = false,
  2765. [GGML_TYPE_F16] = false,
  2766. [GGML_TYPE_Q4_0] = true,
  2767. [GGML_TYPE_Q4_1] = true,
  2768. [GGML_TYPE_Q5_0] = true,
  2769. [GGML_TYPE_Q5_1] = true,
  2770. [GGML_TYPE_Q8_0] = true,
  2771. [GGML_TYPE_Q8_1] = true,
  2772. [GGML_TYPE_I8] = false,
  2773. [GGML_TYPE_I16] = false,
  2774. [GGML_TYPE_I32] = false,
  2775. };
  2776. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2777. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2778. "NONE",
  2779. "DUP",
  2780. "ADD",
  2781. "ADD1",
  2782. "ACC",
  2783. "SUB",
  2784. "MUL",
  2785. "DIV",
  2786. "SQR",
  2787. "SQRT",
  2788. "LOG",
  2789. "SUM",
  2790. "SUM_ROWS",
  2791. "MEAN",
  2792. "REPEAT",
  2793. "ABS",
  2794. "SGN",
  2795. "NEG",
  2796. "STEP",
  2797. "RELU",
  2798. "GELU",
  2799. "SILU",
  2800. "SILU_BACK",
  2801. "NORM",
  2802. "RMS_NORM",
  2803. "RMS_NORM_BACK",
  2804. "MUL_MAT",
  2805. "SCALE",
  2806. "SET",
  2807. "CPY",
  2808. "CONT",
  2809. "RESHAPE",
  2810. "VIEW",
  2811. "PERMUTE",
  2812. "TRANSPOSE",
  2813. "GET_ROWS",
  2814. "GET_ROWS_BACK",
  2815. "DIAG",
  2816. "DIAG_MASK_INF",
  2817. "DIAG_MASK_ZERO",
  2818. "SOFT_MAX",
  2819. "ROPE",
  2820. "ROPE_BACK",
  2821. "ALIBI",
  2822. "CLAMP",
  2823. "CONV_1D_1S",
  2824. "CONV_1D_2S",
  2825. "FLASH_ATTN",
  2826. "FLASH_FF",
  2827. "MAP_UNARY",
  2828. "MAP_BINARY",
  2829. };
  2830. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2831. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2832. "none",
  2833. "x",
  2834. "x+y",
  2835. "x+y",
  2836. "view(x,nb,offset)+=y->x",
  2837. "x-y",
  2838. "x*y",
  2839. "x/y",
  2840. "x^2",
  2841. "√x",
  2842. "log(x)",
  2843. "Σx",
  2844. "Σx_k",
  2845. "Σx/n",
  2846. "repeat(x)",
  2847. "abs(x)",
  2848. "sgn(x)",
  2849. "-x",
  2850. "step(x)",
  2851. "relu(x)",
  2852. "gelu(x)",
  2853. "silu(x)",
  2854. "silu_back(x)",
  2855. "norm(x)",
  2856. "rms_norm(x)",
  2857. "rms_norm_back(x)",
  2858. "X*Y",
  2859. "x*v",
  2860. "y-\\>view(x)",
  2861. "x-\\>y",
  2862. "cont(x)",
  2863. "reshape(x)",
  2864. "view(x)",
  2865. "permute(x)",
  2866. "transpose(x)",
  2867. "get_rows(x)",
  2868. "get_rows_back(x)",
  2869. "diag(x)",
  2870. "diag_mask_inf(x)",
  2871. "diag_mask_zero(x)",
  2872. "soft_max(x)",
  2873. "rope(x)",
  2874. "rope_back(x)",
  2875. "alibi(x)",
  2876. "clamp(x)",
  2877. "conv_1d_1s(x)",
  2878. "conv_1d_2s(x)",
  2879. "flash_attn(x)",
  2880. "flash_ff(x)",
  2881. "f(x)",
  2882. "f(x,y)",
  2883. };
  2884. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2885. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2886. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2887. //
  2888. // ggml context
  2889. //
  2890. struct ggml_context {
  2891. size_t mem_size;
  2892. void * mem_buffer;
  2893. bool mem_buffer_owned;
  2894. bool no_alloc;
  2895. int n_objects;
  2896. struct ggml_object * objects_begin;
  2897. struct ggml_object * objects_end;
  2898. struct ggml_scratch scratch;
  2899. struct ggml_scratch scratch_save;
  2900. };
  2901. struct ggml_context_container {
  2902. bool used;
  2903. struct ggml_context context;
  2904. };
  2905. //
  2906. // compute types
  2907. //
  2908. enum ggml_task_type {
  2909. GGML_TASK_INIT = 0,
  2910. GGML_TASK_COMPUTE,
  2911. GGML_TASK_FINALIZE,
  2912. };
  2913. struct ggml_compute_params {
  2914. enum ggml_task_type type;
  2915. int ith, nth;
  2916. // work buffer for all threads
  2917. size_t wsize;
  2918. void * wdata;
  2919. };
  2920. //
  2921. // ggml state
  2922. //
  2923. struct ggml_state {
  2924. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2925. };
  2926. // global state
  2927. static struct ggml_state g_state;
  2928. static atomic_int g_state_barrier = 0;
  2929. // barrier via spin lock
  2930. inline static void ggml_critical_section_start(void) {
  2931. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2932. while (processing > 0) {
  2933. // wait for other threads to finish
  2934. atomic_fetch_sub(&g_state_barrier, 1);
  2935. sched_yield(); // TODO: reconsider this
  2936. processing = atomic_fetch_add(&g_state_barrier, 1);
  2937. }
  2938. }
  2939. // TODO: make this somehow automatically executed
  2940. // some sort of "sentry" mechanism
  2941. inline static void ggml_critical_section_end(void) {
  2942. atomic_fetch_sub(&g_state_barrier, 1);
  2943. }
  2944. ////////////////////////////////////////////////////////////////////////////////
  2945. void ggml_print_object(const struct ggml_object * obj) {
  2946. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2947. obj->offs, obj->size, (const void *) obj->next);
  2948. }
  2949. void ggml_print_objects(const struct ggml_context * ctx) {
  2950. struct ggml_object * obj = ctx->objects_begin;
  2951. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2952. while (obj != NULL) {
  2953. ggml_print_object(obj);
  2954. obj = obj->next;
  2955. }
  2956. GGML_PRINT("%s: --- end ---\n", __func__);
  2957. }
  2958. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2959. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2960. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2961. }
  2962. int ggml_nrows(const struct ggml_tensor * tensor) {
  2963. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2964. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2965. }
  2966. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2967. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2968. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2969. }
  2970. int ggml_blck_size(enum ggml_type type) {
  2971. return GGML_BLCK_SIZE[type];
  2972. }
  2973. size_t ggml_type_size(enum ggml_type type) {
  2974. return GGML_TYPE_SIZE[type];
  2975. }
  2976. float ggml_type_sizef(enum ggml_type type) {
  2977. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2978. }
  2979. const char * ggml_type_name(enum ggml_type type) {
  2980. return GGML_TYPE_NAME[type];
  2981. }
  2982. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2983. return GGML_TYPE_SIZE[tensor->type];
  2984. }
  2985. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2986. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2987. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2988. }
  2989. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2990. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2991. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2992. }
  2993. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2994. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2995. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2996. }
  2997. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2998. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2999. return
  3000. (t0->ne[0] == t1->ne[0]) &&
  3001. (t0->ne[2] == t1->ne[2]) &&
  3002. (t0->ne[3] == t1->ne[3]);
  3003. }
  3004. bool ggml_is_quantized(enum ggml_type type) {
  3005. return GGML_IS_QUANTIZED[type];
  3006. }
  3007. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3008. enum ggml_type wtype = GGML_TYPE_COUNT;
  3009. switch (ftype) {
  3010. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3011. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3012. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3013. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3014. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3015. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3016. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3017. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3018. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3019. }
  3020. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3021. return wtype;
  3022. }
  3023. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3024. return tensor->nb[0] > tensor->nb[1];
  3025. }
  3026. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3027. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3028. return
  3029. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3030. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3031. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3032. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3033. }
  3034. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3035. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3036. return
  3037. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3038. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3039. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3040. }
  3041. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3042. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3043. return
  3044. (t0->ne[0] == t1->ne[0] ) &&
  3045. (t0->ne[1] == t1->ne[1] ) &&
  3046. (t0->ne[2] == t1->ne[2] ) &&
  3047. (t0->ne[3] == t1->ne[3] );
  3048. }
  3049. // check if t1 can be represented as a repeatition of t0
  3050. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3051. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3052. return
  3053. (t1->ne[0]%t0->ne[0] == 0) &&
  3054. (t1->ne[1]%t0->ne[1] == 0) &&
  3055. (t1->ne[2]%t0->ne[2] == 0) &&
  3056. (t1->ne[3]%t0->ne[3] == 0);
  3057. }
  3058. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3059. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3060. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3061. }
  3062. static inline int ggml_up32(int n) {
  3063. return (n + 31) & ~31;
  3064. }
  3065. //static inline int ggml_up64(int n) {
  3066. // return (n + 63) & ~63;
  3067. //}
  3068. static inline int ggml_up(int n, int m) {
  3069. // assert m is a power of 2
  3070. GGML_ASSERT((m & (m - 1)) == 0);
  3071. return (n + m - 1) & ~(m - 1);
  3072. }
  3073. // assert that pointer is aligned to GGML_MEM_ALIGN
  3074. #define ggml_assert_aligned(ptr) \
  3075. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3076. ////////////////////////////////////////////////////////////////////////////////
  3077. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3078. // make this function thread safe
  3079. ggml_critical_section_start();
  3080. static bool is_first_call = true;
  3081. if (is_first_call) {
  3082. // initialize time system (required on Windows)
  3083. ggml_time_init();
  3084. // initialize GELU, SILU and EXP F32 tables
  3085. {
  3086. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3087. ggml_fp16_t ii;
  3088. for (int i = 0; i < (1 << 16); ++i) {
  3089. uint16_t ui = i;
  3090. memcpy(&ii, &ui, sizeof(ii));
  3091. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3092. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3093. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3094. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3095. }
  3096. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3097. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3098. }
  3099. // initialize g_state
  3100. {
  3101. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3102. g_state = (struct ggml_state) {
  3103. /*.contexts =*/ { { 0 } },
  3104. };
  3105. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3106. g_state.contexts[i].used = false;
  3107. }
  3108. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3109. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3110. }
  3111. #if defined(GGML_USE_CUBLAS)
  3112. ggml_init_cublas();
  3113. #elif defined(GGML_USE_CLBLAST)
  3114. ggml_cl_init();
  3115. #endif
  3116. is_first_call = false;
  3117. }
  3118. // find non-used context in g_state
  3119. struct ggml_context * ctx = NULL;
  3120. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3121. if (!g_state.contexts[i].used) {
  3122. g_state.contexts[i].used = true;
  3123. ctx = &g_state.contexts[i].context;
  3124. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3125. break;
  3126. }
  3127. }
  3128. if (ctx == NULL) {
  3129. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3130. ggml_critical_section_end();
  3131. return NULL;
  3132. }
  3133. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3134. *ctx = (struct ggml_context) {
  3135. /*.mem_size =*/ mem_size,
  3136. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3137. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3138. /*.no_alloc =*/ params.no_alloc,
  3139. /*.n_objects =*/ 0,
  3140. /*.objects_begin =*/ NULL,
  3141. /*.objects_end =*/ NULL,
  3142. /*.scratch =*/ { 0, 0, NULL, },
  3143. /*.scratch_save =*/ { 0, 0, NULL, },
  3144. };
  3145. GGML_ASSERT(ctx->mem_buffer != NULL);
  3146. ggml_assert_aligned(ctx->mem_buffer);
  3147. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3148. ggml_critical_section_end();
  3149. return ctx;
  3150. }
  3151. void ggml_free(struct ggml_context * ctx) {
  3152. // make this function thread safe
  3153. ggml_critical_section_start();
  3154. bool found = false;
  3155. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3156. if (&g_state.contexts[i].context == ctx) {
  3157. g_state.contexts[i].used = false;
  3158. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3159. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3160. if (ctx->mem_buffer_owned) {
  3161. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3162. }
  3163. found = true;
  3164. break;
  3165. }
  3166. }
  3167. if (!found) {
  3168. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3169. }
  3170. ggml_critical_section_end();
  3171. }
  3172. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3173. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3174. }
  3175. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3176. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3177. ctx->scratch = scratch;
  3178. return result;
  3179. }
  3180. // IMPORTANT:
  3181. // when creating "opt" tensors, always save and load the scratch buffer
  3182. // this is an error prone process, but it is necessary to support inplace
  3183. // operators when using scratch buffers
  3184. // TODO: implement a better way
  3185. void ggml_scratch_save(struct ggml_context * ctx) {
  3186. ctx->scratch_save = ctx->scratch;
  3187. ctx->scratch.data = NULL;
  3188. }
  3189. void ggml_scratch_load(struct ggml_context * ctx) {
  3190. ctx->scratch = ctx->scratch_save;
  3191. }
  3192. ////////////////////////////////////////////////////////////////////////////////
  3193. struct ggml_tensor * ggml_new_tensor_impl(
  3194. struct ggml_context * ctx,
  3195. enum ggml_type type,
  3196. int n_dims,
  3197. const int64_t* ne,
  3198. void* data) {
  3199. // always insert objects at the end of the context's memory pool
  3200. struct ggml_object * obj_cur = ctx->objects_end;
  3201. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3202. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3203. const size_t cur_end = cur_offs + cur_size;
  3204. size_t size_needed = 0;
  3205. if (data == NULL && !ctx->no_alloc) {
  3206. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3207. for (int i = 1; i < n_dims; i++) {
  3208. size_needed *= ne[i];
  3209. }
  3210. // align to GGML_MEM_ALIGN
  3211. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3212. }
  3213. char * const mem_buffer = ctx->mem_buffer;
  3214. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3215. if (ctx->scratch.data == NULL || data != NULL) {
  3216. size_needed += sizeof(struct ggml_tensor);
  3217. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3218. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3219. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3220. assert(false);
  3221. return NULL;
  3222. }
  3223. *obj_new = (struct ggml_object) {
  3224. .offs = cur_end + GGML_OBJECT_SIZE,
  3225. .size = size_needed,
  3226. .next = NULL,
  3227. };
  3228. } else {
  3229. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3230. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3231. assert(false);
  3232. return NULL;
  3233. }
  3234. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3235. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3236. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3237. assert(false);
  3238. return NULL;
  3239. }
  3240. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3241. *obj_new = (struct ggml_object) {
  3242. .offs = cur_end + GGML_OBJECT_SIZE,
  3243. .size = sizeof(struct ggml_tensor),
  3244. .next = NULL,
  3245. };
  3246. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3247. ctx->scratch.offs += size_needed;
  3248. }
  3249. if (obj_cur != NULL) {
  3250. obj_cur->next = obj_new;
  3251. } else {
  3252. // this is the first object in this context
  3253. ctx->objects_begin = obj_new;
  3254. }
  3255. ctx->objects_end = obj_new;
  3256. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3257. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3258. ggml_assert_aligned(result);
  3259. *result = (struct ggml_tensor) {
  3260. /*.type =*/ type,
  3261. /*.backend =*/ GGML_BACKEND_CPU,
  3262. /*.n_dims =*/ n_dims,
  3263. /*.ne =*/ { 1, 1, 1, 1 },
  3264. /*.nb =*/ { 0, 0, 0, 0 },
  3265. /*.op =*/ GGML_OP_NONE,
  3266. /*.is_param =*/ false,
  3267. /*.grad =*/ NULL,
  3268. /*.src0 =*/ NULL,
  3269. /*.src1 =*/ NULL,
  3270. /*.opt =*/ { NULL },
  3271. /*.n_tasks =*/ 0,
  3272. /*.perf_runs =*/ 0,
  3273. /*.perf_cycles =*/ 0,
  3274. /*.perf_time_us =*/ 0,
  3275. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3276. /*.name =*/ { 0 },
  3277. /*.pad =*/ { 0 },
  3278. };
  3279. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3280. //ggml_assert_aligned(result->data);
  3281. for (int i = 0; i < n_dims; i++) {
  3282. result->ne[i] = ne[i];
  3283. }
  3284. result->nb[0] = GGML_TYPE_SIZE[type];
  3285. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3286. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3287. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3288. }
  3289. ctx->n_objects++;
  3290. return result;
  3291. }
  3292. struct ggml_tensor * ggml_new_tensor(
  3293. struct ggml_context * ctx,
  3294. enum ggml_type type,
  3295. int n_dims,
  3296. const int64_t * ne) {
  3297. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3298. }
  3299. struct ggml_tensor * ggml_new_tensor_1d(
  3300. struct ggml_context * ctx,
  3301. enum ggml_type type,
  3302. int64_t ne0) {
  3303. return ggml_new_tensor(ctx, type, 1, &ne0);
  3304. }
  3305. struct ggml_tensor * ggml_new_tensor_2d(
  3306. struct ggml_context * ctx,
  3307. enum ggml_type type,
  3308. int64_t ne0,
  3309. int64_t ne1) {
  3310. const int64_t ne[2] = { ne0, ne1 };
  3311. return ggml_new_tensor(ctx, type, 2, ne);
  3312. }
  3313. struct ggml_tensor * ggml_new_tensor_3d(
  3314. struct ggml_context * ctx,
  3315. enum ggml_type type,
  3316. int64_t ne0,
  3317. int64_t ne1,
  3318. int64_t ne2) {
  3319. const int64_t ne[3] = { ne0, ne1, ne2 };
  3320. return ggml_new_tensor(ctx, type, 3, ne);
  3321. }
  3322. struct ggml_tensor * ggml_new_tensor_4d(
  3323. struct ggml_context * ctx,
  3324. enum ggml_type type,
  3325. int64_t ne0,
  3326. int64_t ne1,
  3327. int64_t ne2,
  3328. int64_t ne3) {
  3329. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3330. return ggml_new_tensor(ctx, type, 4, ne);
  3331. }
  3332. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3333. ggml_scratch_save(ctx);
  3334. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3335. ggml_scratch_load(ctx);
  3336. ggml_set_i32(result, value);
  3337. return result;
  3338. }
  3339. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3340. ggml_scratch_save(ctx);
  3341. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3342. ggml_scratch_load(ctx);
  3343. ggml_set_f32(result, value);
  3344. return result;
  3345. }
  3346. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3347. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3348. }
  3349. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3350. memset(tensor->data, 0, ggml_nbytes(tensor));
  3351. return tensor;
  3352. }
  3353. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3354. const int n = ggml_nrows(tensor);
  3355. const int nc = tensor->ne[0];
  3356. const size_t n1 = tensor->nb[1];
  3357. char * const data = tensor->data;
  3358. switch (tensor->type) {
  3359. case GGML_TYPE_I8:
  3360. {
  3361. assert(tensor->nb[0] == sizeof(int8_t));
  3362. for (int i = 0; i < n; i++) {
  3363. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3364. }
  3365. } break;
  3366. case GGML_TYPE_I16:
  3367. {
  3368. assert(tensor->nb[0] == sizeof(int16_t));
  3369. for (int i = 0; i < n; i++) {
  3370. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3371. }
  3372. } break;
  3373. case GGML_TYPE_I32:
  3374. {
  3375. assert(tensor->nb[0] == sizeof(int32_t));
  3376. for (int i = 0; i < n; i++) {
  3377. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3378. }
  3379. } break;
  3380. case GGML_TYPE_F16:
  3381. {
  3382. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3383. for (int i = 0; i < n; i++) {
  3384. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3385. }
  3386. } break;
  3387. case GGML_TYPE_F32:
  3388. {
  3389. assert(tensor->nb[0] == sizeof(float));
  3390. for (int i = 0; i < n; i++) {
  3391. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3392. }
  3393. } break;
  3394. default:
  3395. {
  3396. GGML_ASSERT(false);
  3397. } break;
  3398. }
  3399. return tensor;
  3400. }
  3401. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3402. const int n = ggml_nrows(tensor);
  3403. const int nc = tensor->ne[0];
  3404. const size_t n1 = tensor->nb[1];
  3405. char * const data = tensor->data;
  3406. switch (tensor->type) {
  3407. case GGML_TYPE_I8:
  3408. {
  3409. assert(tensor->nb[0] == sizeof(int8_t));
  3410. for (int i = 0; i < n; i++) {
  3411. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3412. }
  3413. } break;
  3414. case GGML_TYPE_I16:
  3415. {
  3416. assert(tensor->nb[0] == sizeof(int16_t));
  3417. for (int i = 0; i < n; i++) {
  3418. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3419. }
  3420. } break;
  3421. case GGML_TYPE_I32:
  3422. {
  3423. assert(tensor->nb[0] == sizeof(int32_t));
  3424. for (int i = 0; i < n; i++) {
  3425. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3426. }
  3427. } break;
  3428. case GGML_TYPE_F16:
  3429. {
  3430. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3431. for (int i = 0; i < n; i++) {
  3432. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3433. }
  3434. } break;
  3435. case GGML_TYPE_F32:
  3436. {
  3437. assert(tensor->nb[0] == sizeof(float));
  3438. for (int i = 0; i < n; i++) {
  3439. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3440. }
  3441. } break;
  3442. default:
  3443. {
  3444. GGML_ASSERT(false);
  3445. } break;
  3446. }
  3447. return tensor;
  3448. }
  3449. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3450. switch (tensor->type) {
  3451. case GGML_TYPE_I8:
  3452. {
  3453. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3454. return ((int8_t *)(tensor->data))[i];
  3455. } break;
  3456. case GGML_TYPE_I16:
  3457. {
  3458. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3459. return ((int16_t *)(tensor->data))[i];
  3460. } break;
  3461. case GGML_TYPE_I32:
  3462. {
  3463. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3464. return ((int32_t *)(tensor->data))[i];
  3465. } break;
  3466. case GGML_TYPE_F16:
  3467. {
  3468. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3469. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3470. } break;
  3471. case GGML_TYPE_F32:
  3472. {
  3473. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3474. return ((float *)(tensor->data))[i];
  3475. } break;
  3476. default:
  3477. {
  3478. GGML_ASSERT(false);
  3479. } break;
  3480. }
  3481. return 0.0f;
  3482. }
  3483. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3484. switch (tensor->type) {
  3485. case GGML_TYPE_I8:
  3486. {
  3487. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3488. ((int8_t *)(tensor->data))[i] = value;
  3489. } break;
  3490. case GGML_TYPE_I16:
  3491. {
  3492. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3493. ((int16_t *)(tensor->data))[i] = value;
  3494. } break;
  3495. case GGML_TYPE_I32:
  3496. {
  3497. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3498. ((int32_t *)(tensor->data))[i] = value;
  3499. } break;
  3500. case GGML_TYPE_F16:
  3501. {
  3502. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3503. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3504. } break;
  3505. case GGML_TYPE_F32:
  3506. {
  3507. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3508. ((float *)(tensor->data))[i] = value;
  3509. } break;
  3510. default:
  3511. {
  3512. GGML_ASSERT(false);
  3513. } break;
  3514. }
  3515. }
  3516. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3517. switch (tensor->type) {
  3518. case GGML_TYPE_I8:
  3519. {
  3520. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3521. return ((int8_t *)(tensor->data))[i];
  3522. } break;
  3523. case GGML_TYPE_I16:
  3524. {
  3525. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3526. return ((int16_t *)(tensor->data))[i];
  3527. } break;
  3528. case GGML_TYPE_I32:
  3529. {
  3530. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3531. return ((int32_t *)(tensor->data))[i];
  3532. } break;
  3533. case GGML_TYPE_F16:
  3534. {
  3535. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3536. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3537. } break;
  3538. case GGML_TYPE_F32:
  3539. {
  3540. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3541. return ((float *)(tensor->data))[i];
  3542. } break;
  3543. default:
  3544. {
  3545. GGML_ASSERT(false);
  3546. } break;
  3547. }
  3548. return 0.0f;
  3549. }
  3550. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3551. switch (tensor->type) {
  3552. case GGML_TYPE_I8:
  3553. {
  3554. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3555. ((int8_t *)(tensor->data))[i] = value;
  3556. } break;
  3557. case GGML_TYPE_I16:
  3558. {
  3559. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3560. ((int16_t *)(tensor->data))[i] = value;
  3561. } break;
  3562. case GGML_TYPE_I32:
  3563. {
  3564. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3565. ((int32_t *)(tensor->data))[i] = value;
  3566. } break;
  3567. case GGML_TYPE_F16:
  3568. {
  3569. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3570. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3571. } break;
  3572. case GGML_TYPE_F32:
  3573. {
  3574. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3575. ((float *)(tensor->data))[i] = value;
  3576. } break;
  3577. default:
  3578. {
  3579. GGML_ASSERT(false);
  3580. } break;
  3581. }
  3582. }
  3583. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3584. return tensor->data;
  3585. }
  3586. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3587. assert(tensor->type == GGML_TYPE_F32);
  3588. return (float *)(tensor->data);
  3589. }
  3590. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3591. return tensor->name;
  3592. }
  3593. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3594. strncpy(tensor->name, name, sizeof(tensor->name));
  3595. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3596. }
  3597. struct ggml_tensor * ggml_view_tensor(
  3598. struct ggml_context * ctx,
  3599. const struct ggml_tensor * src) {
  3600. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3601. result->nb[0] = src->nb[0];
  3602. result->nb[1] = src->nb[1];
  3603. result->nb[2] = src->nb[2];
  3604. result->nb[3] = src->nb[3];
  3605. return result;
  3606. }
  3607. ////////////////////////////////////////////////////////////////////////////////
  3608. // ggml_dup
  3609. struct ggml_tensor * ggml_dup_impl(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. bool inplace) {
  3613. bool is_node = false;
  3614. if (!inplace && (a->grad)) {
  3615. is_node = true;
  3616. }
  3617. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3618. result->op = GGML_OP_DUP;
  3619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3620. result->src0 = a;
  3621. result->src1 = NULL;
  3622. return result;
  3623. }
  3624. struct ggml_tensor * ggml_dup(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_dup_impl(ctx, a, false);
  3628. }
  3629. struct ggml_tensor * ggml_dup_inplace(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a) {
  3632. return ggml_dup_impl(ctx, a, true);
  3633. }
  3634. // ggml_add
  3635. struct ggml_tensor * ggml_add_impl(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. struct ggml_tensor * b,
  3639. bool inplace) {
  3640. GGML_ASSERT(ggml_are_same_shape(a, b));
  3641. bool is_node = false;
  3642. if (!inplace && (a->grad || b->grad)) {
  3643. is_node = true;
  3644. }
  3645. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3646. result->op = GGML_OP_ADD;
  3647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3648. result->src0 = a;
  3649. result->src1 = b;
  3650. return result;
  3651. }
  3652. struct ggml_tensor * ggml_add(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. struct ggml_tensor * b) {
  3656. return ggml_add_impl(ctx, a, b, false);
  3657. }
  3658. struct ggml_tensor * ggml_add_inplace(
  3659. struct ggml_context * ctx,
  3660. struct ggml_tensor * a,
  3661. struct ggml_tensor * b) {
  3662. return ggml_add_impl(ctx, a, b, true);
  3663. }
  3664. // ggml_add1
  3665. struct ggml_tensor * ggml_add1_impl(
  3666. struct ggml_context * ctx,
  3667. struct ggml_tensor * a,
  3668. struct ggml_tensor * b,
  3669. bool inplace) {
  3670. GGML_ASSERT(ggml_is_scalar(b));
  3671. GGML_ASSERT(ggml_is_padded_1d(a));
  3672. bool is_node = false;
  3673. if (!inplace && (a->grad || b->grad)) {
  3674. is_node = true;
  3675. }
  3676. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3677. result->op = GGML_OP_ADD1;
  3678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3679. result->src0 = a;
  3680. result->src1 = b;
  3681. return result;
  3682. }
  3683. struct ggml_tensor * ggml_add1(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a,
  3686. struct ggml_tensor * b) {
  3687. return ggml_add1_impl(ctx, a, b, false);
  3688. }
  3689. struct ggml_tensor * ggml_add1_inplace(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. struct ggml_tensor * b) {
  3693. return ggml_add1_impl(ctx, a, b, true);
  3694. }
  3695. // ggml_acc
  3696. struct ggml_tensor * ggml_acc_impl(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. struct ggml_tensor * b,
  3700. size_t nb1,
  3701. size_t nb2,
  3702. size_t nb3,
  3703. size_t offset,
  3704. bool inplace) {
  3705. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3706. GGML_ASSERT(ggml_is_contiguous(a));
  3707. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3708. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3709. bool is_node = false;
  3710. if (!inplace && (a->grad || b->grad)) {
  3711. is_node = true;
  3712. }
  3713. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3714. ggml_scratch_save(ctx);
  3715. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3716. ((int32_t *) c->data)[0] = nb1;
  3717. ((int32_t *) c->data)[1] = nb2;
  3718. ((int32_t *) c->data)[2] = nb3;
  3719. ((int32_t *) c->data)[3] = offset;
  3720. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3721. ggml_scratch_load(ctx);
  3722. result->op = GGML_OP_ACC;
  3723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3724. result->src0 = a;
  3725. result->src1 = b;
  3726. result->opt[0] = c;
  3727. return result;
  3728. }
  3729. struct ggml_tensor * ggml_acc(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a,
  3732. struct ggml_tensor * b,
  3733. size_t nb1,
  3734. size_t nb2,
  3735. size_t nb3,
  3736. size_t offset) {
  3737. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3738. }
  3739. struct ggml_tensor * ggml_acc_inplace(
  3740. struct ggml_context * ctx,
  3741. struct ggml_tensor * a,
  3742. struct ggml_tensor * b,
  3743. size_t nb1,
  3744. size_t nb2,
  3745. size_t nb3,
  3746. size_t offset) {
  3747. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3748. }
  3749. // ggml_sub
  3750. struct ggml_tensor * ggml_sub_impl(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. struct ggml_tensor * b,
  3754. bool inplace) {
  3755. GGML_ASSERT(ggml_are_same_shape(a, b));
  3756. bool is_node = false;
  3757. if (!inplace && (a->grad || b->grad)) {
  3758. is_node = true;
  3759. }
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. result->op = GGML_OP_SUB;
  3762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3763. result->src0 = a;
  3764. result->src1 = b;
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_sub(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. struct ggml_tensor * b) {
  3771. return ggml_sub_impl(ctx, a, b, false);
  3772. }
  3773. struct ggml_tensor * ggml_sub_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. struct ggml_tensor * b) {
  3777. return ggml_sub_impl(ctx, a, b, true);
  3778. }
  3779. // ggml_mul
  3780. struct ggml_tensor * ggml_mul_impl(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b,
  3784. bool inplace) {
  3785. // TODO: support less-strict constraint
  3786. // GGML_ASSERT(ggml_can_repeat(b, a));
  3787. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3788. bool is_node = false;
  3789. if (!inplace && (a->grad || b->grad)) {
  3790. // TODO: support backward pass for broadcasting
  3791. GGML_ASSERT(ggml_are_same_shape(a, b));
  3792. is_node = true;
  3793. }
  3794. if (inplace) {
  3795. GGML_ASSERT(is_node == false);
  3796. }
  3797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3798. result->op = GGML_OP_MUL;
  3799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3800. result->src0 = a;
  3801. result->src1 = b;
  3802. return result;
  3803. }
  3804. struct ggml_tensor * ggml_mul(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. struct ggml_tensor * b) {
  3808. return ggml_mul_impl(ctx, a, b, false);
  3809. }
  3810. struct ggml_tensor * ggml_mul_inplace(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a,
  3813. struct ggml_tensor * b) {
  3814. return ggml_mul_impl(ctx, a, b, true);
  3815. }
  3816. // ggml_div
  3817. struct ggml_tensor * ggml_div_impl(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a,
  3820. struct ggml_tensor * b,
  3821. bool inplace) {
  3822. GGML_ASSERT(ggml_are_same_shape(a, b));
  3823. bool is_node = false;
  3824. if (!inplace && (a->grad || b->grad)) {
  3825. is_node = true;
  3826. }
  3827. if (inplace) {
  3828. GGML_ASSERT(is_node == false);
  3829. }
  3830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3831. result->op = GGML_OP_DIV;
  3832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3833. result->src0 = a;
  3834. result->src1 = b;
  3835. return result;
  3836. }
  3837. struct ggml_tensor * ggml_div(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b) {
  3841. return ggml_div_impl(ctx, a, b, false);
  3842. }
  3843. struct ggml_tensor * ggml_div_inplace(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b) {
  3847. return ggml_div_impl(ctx, a, b, true);
  3848. }
  3849. // ggml_sqr
  3850. struct ggml_tensor * ggml_sqr_impl(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. bool inplace) {
  3854. bool is_node = false;
  3855. if (!inplace && (a->grad)) {
  3856. is_node = true;
  3857. }
  3858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3859. result->op = GGML_OP_SQR;
  3860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3861. result->src0 = a;
  3862. result->src1 = NULL;
  3863. return result;
  3864. }
  3865. struct ggml_tensor * ggml_sqr(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a) {
  3868. return ggml_sqr_impl(ctx, a, false);
  3869. }
  3870. struct ggml_tensor * ggml_sqr_inplace(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a) {
  3873. return ggml_sqr_impl(ctx, a, true);
  3874. }
  3875. // ggml_sqrt
  3876. struct ggml_tensor * ggml_sqrt_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. bool inplace) {
  3880. bool is_node = false;
  3881. if (!inplace && (a->grad)) {
  3882. is_node = true;
  3883. }
  3884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3885. result->op = GGML_OP_SQRT;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src0 = a;
  3888. result->src1 = NULL;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_sqrt(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a) {
  3894. return ggml_sqrt_impl(ctx, a, false);
  3895. }
  3896. struct ggml_tensor * ggml_sqrt_inplace(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a) {
  3899. return ggml_sqrt_impl(ctx, a, true);
  3900. }
  3901. // ggml_log
  3902. struct ggml_tensor * ggml_log_impl(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. bool inplace) {
  3906. bool is_node = false;
  3907. if (!inplace && (a->grad)) {
  3908. is_node = true;
  3909. }
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. result->op = GGML_OP_LOG;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src0 = a;
  3914. result->src1 = NULL;
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_log(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a) {
  3920. return ggml_log_impl(ctx, a, false);
  3921. }
  3922. struct ggml_tensor * ggml_log_inplace(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a) {
  3925. return ggml_log_impl(ctx, a, true);
  3926. }
  3927. // ggml_sum
  3928. struct ggml_tensor * ggml_sum(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a) {
  3931. bool is_node = false;
  3932. if (a->grad) {
  3933. is_node = true;
  3934. }
  3935. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3936. result->op = GGML_OP_SUM;
  3937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3938. result->src0 = a;
  3939. result->src1 = NULL;
  3940. return result;
  3941. }
  3942. // ggml_sum_rows
  3943. struct ggml_tensor * ggml_sum_rows(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a) {
  3946. bool is_node = false;
  3947. if (a->grad) {
  3948. is_node = true;
  3949. }
  3950. int64_t ne[4] = {1,1,1,1};
  3951. for (int i=1; i<a->n_dims; ++i) {
  3952. ne[i] = a->ne[i];
  3953. }
  3954. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3955. result->op = GGML_OP_SUM_ROWS;
  3956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3957. result->src0 = a;
  3958. result->src1 = NULL;
  3959. return result;
  3960. }
  3961. // ggml_mean
  3962. struct ggml_tensor * ggml_mean(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a) {
  3965. bool is_node = false;
  3966. if (a->grad) {
  3967. GGML_ASSERT(false); // TODO: implement
  3968. is_node = true;
  3969. }
  3970. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3971. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3972. result->op = GGML_OP_MEAN;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src0 = a;
  3975. result->src1 = NULL;
  3976. return result;
  3977. }
  3978. // ggml_repeat
  3979. struct ggml_tensor * ggml_repeat(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. struct ggml_tensor * b) {
  3983. GGML_ASSERT(ggml_can_repeat(a, b));
  3984. bool is_node = false;
  3985. if (a->grad) {
  3986. is_node = true;
  3987. }
  3988. if (ggml_are_same_shape(a, b) && !is_node) {
  3989. return a;
  3990. }
  3991. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3992. result->op = GGML_OP_REPEAT;
  3993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3994. result->src0 = a;
  3995. result->src1 = b;
  3996. return result;
  3997. }
  3998. // ggml_abs
  3999. struct ggml_tensor * ggml_abs_impl(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. bool inplace) {
  4003. bool is_node = false;
  4004. if (!inplace && (a->grad)) {
  4005. is_node = true;
  4006. }
  4007. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4008. result->op = GGML_OP_ABS;
  4009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4010. result->src0 = a;
  4011. result->src1 = NULL;
  4012. return result;
  4013. }
  4014. struct ggml_tensor * ggml_abs(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. return ggml_abs_impl(ctx, a, false);
  4018. }
  4019. struct ggml_tensor * ggml_abs_inplace(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a) {
  4022. return ggml_abs_impl(ctx, a, true);
  4023. }
  4024. // ggml_sgn
  4025. struct ggml_tensor * ggml_sgn_impl(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. bool inplace) {
  4029. bool is_node = false;
  4030. if (!inplace && (a->grad)) {
  4031. is_node = true;
  4032. }
  4033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4034. result->op = GGML_OP_SGN;
  4035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4036. result->src0 = a;
  4037. result->src1 = NULL;
  4038. return result;
  4039. }
  4040. struct ggml_tensor * ggml_sgn(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a) {
  4043. return ggml_sgn_impl(ctx, a, false);
  4044. }
  4045. struct ggml_tensor * ggml_sgn_inplace(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a) {
  4048. return ggml_sgn_impl(ctx, a, true);
  4049. }
  4050. // ggml_neg
  4051. struct ggml_tensor * ggml_neg_impl(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. bool inplace) {
  4055. bool is_node = false;
  4056. if (!inplace && (a->grad)) {
  4057. is_node = true;
  4058. }
  4059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4060. result->op = GGML_OP_NEG;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src0 = a;
  4063. result->src1 = NULL;
  4064. return result;
  4065. }
  4066. struct ggml_tensor * ggml_neg(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a) {
  4069. return ggml_neg_impl(ctx, a, false);
  4070. }
  4071. struct ggml_tensor * ggml_neg_inplace(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a) {
  4074. return ggml_neg_impl(ctx, a, true);
  4075. }
  4076. // ggml_step
  4077. struct ggml_tensor * ggml_step_impl(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a,
  4080. bool inplace) {
  4081. bool is_node = false;
  4082. if (!inplace && (a->grad)) {
  4083. is_node = true;
  4084. }
  4085. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4086. result->op = GGML_OP_STEP;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src0 = a;
  4089. result->src1 = NULL;
  4090. return result;
  4091. }
  4092. struct ggml_tensor * ggml_step(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. return ggml_step_impl(ctx, a, false);
  4096. }
  4097. struct ggml_tensor * ggml_step_inplace(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a) {
  4100. return ggml_step_impl(ctx, a, true);
  4101. }
  4102. // ggml_relu
  4103. struct ggml_tensor * ggml_relu_impl(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. bool inplace) {
  4107. bool is_node = false;
  4108. if (!inplace && (a->grad)) {
  4109. is_node = true;
  4110. }
  4111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4112. result->op = GGML_OP_RELU;
  4113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4114. result->src0 = a;
  4115. result->src1 = NULL;
  4116. return result;
  4117. }
  4118. struct ggml_tensor * ggml_relu(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a) {
  4121. return ggml_relu_impl(ctx, a, false);
  4122. }
  4123. struct ggml_tensor * ggml_relu_inplace(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_relu_impl(ctx, a, true);
  4127. }
  4128. // ggml_gelu
  4129. struct ggml_tensor * ggml_gelu_impl(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. bool inplace) {
  4133. bool is_node = false;
  4134. if (!inplace && (a->grad)) {
  4135. is_node = true;
  4136. }
  4137. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4138. result->op = GGML_OP_GELU;
  4139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4140. result->src0 = a;
  4141. result->src1 = NULL;
  4142. return result;
  4143. }
  4144. struct ggml_tensor * ggml_gelu(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a) {
  4147. return ggml_gelu_impl(ctx, a, false);
  4148. }
  4149. struct ggml_tensor * ggml_gelu_inplace(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a) {
  4152. return ggml_gelu_impl(ctx, a, true);
  4153. }
  4154. // ggml_silu
  4155. struct ggml_tensor * ggml_silu_impl(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. bool inplace) {
  4159. bool is_node = false;
  4160. if (!inplace && (a->grad)) {
  4161. is_node = true;
  4162. }
  4163. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4164. result->op = GGML_OP_SILU;
  4165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4166. result->src0 = a;
  4167. result->src1 = NULL;
  4168. return result;
  4169. }
  4170. struct ggml_tensor * ggml_silu(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a) {
  4173. return ggml_silu_impl(ctx, a, false);
  4174. }
  4175. struct ggml_tensor * ggml_silu_inplace(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a) {
  4178. return ggml_silu_impl(ctx, a, true);
  4179. }
  4180. // ggml_silu_back
  4181. struct ggml_tensor * ggml_silu_back(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a,
  4184. struct ggml_tensor * b) {
  4185. bool is_node = false;
  4186. if (a->grad || b->grad) {
  4187. // TODO: implement backward
  4188. is_node = true;
  4189. }
  4190. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4191. result->op = GGML_OP_SILU_BACK;
  4192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4193. result->src0 = a;
  4194. result->src1 = b;
  4195. return result;
  4196. }
  4197. // ggml_norm
  4198. struct ggml_tensor * ggml_norm_impl(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a,
  4201. bool inplace) {
  4202. bool is_node = false;
  4203. if (!inplace && (a->grad)) {
  4204. GGML_ASSERT(false); // TODO: implement backward
  4205. is_node = true;
  4206. }
  4207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4208. result->op = GGML_OP_NORM;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src0 = a;
  4211. result->src1 = NULL; // TODO: maybe store epsilon here?
  4212. return result;
  4213. }
  4214. struct ggml_tensor * ggml_norm(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_norm_impl(ctx, a, false);
  4218. }
  4219. struct ggml_tensor * ggml_norm_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a) {
  4222. return ggml_norm_impl(ctx, a, true);
  4223. }
  4224. struct ggml_tensor * ggml_rms_norm_impl(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. bool inplace) {
  4228. bool is_node = false;
  4229. if (!inplace && (a->grad)) {
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. result->op = GGML_OP_RMS_NORM;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src0 = a;
  4236. result->src1 = NULL; // TODO: maybe store epsilon here?
  4237. return result;
  4238. }
  4239. struct ggml_tensor * ggml_rms_norm(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a) {
  4242. return ggml_rms_norm_impl(ctx, a, false);
  4243. }
  4244. struct ggml_tensor * ggml_rms_norm_inplace(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a) {
  4247. return ggml_rms_norm_impl(ctx, a, true);
  4248. }
  4249. struct ggml_tensor * ggml_rms_norm_back(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. struct ggml_tensor * b) {
  4253. bool is_node = false;
  4254. if (a->grad) {
  4255. // TODO: implement backward
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_RMS_NORM_BACK;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = b;
  4263. return result;
  4264. }
  4265. // ggml_mul_mat
  4266. struct ggml_tensor * ggml_mul_mat(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. struct ggml_tensor * b) {
  4270. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4271. GGML_ASSERT(!ggml_is_transposed(a));
  4272. bool is_node = false;
  4273. if (a->grad || b->grad) {
  4274. is_node = true;
  4275. }
  4276. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4277. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4278. result->op = GGML_OP_MUL_MAT;
  4279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4280. result->src0 = a;
  4281. result->src1 = b;
  4282. return result;
  4283. }
  4284. // ggml_scale
  4285. struct ggml_tensor * ggml_scale_impl(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. struct ggml_tensor * b,
  4289. bool inplace) {
  4290. GGML_ASSERT(ggml_is_scalar(b));
  4291. GGML_ASSERT(ggml_is_padded_1d(a));
  4292. bool is_node = false;
  4293. if (!inplace && (a->grad || b->grad)) {
  4294. is_node = true;
  4295. }
  4296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4297. result->op = GGML_OP_SCALE;
  4298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4299. result->src0 = a;
  4300. result->src1 = b;
  4301. return result;
  4302. }
  4303. struct ggml_tensor * ggml_scale(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b) {
  4307. return ggml_scale_impl(ctx, a, b, false);
  4308. }
  4309. struct ggml_tensor * ggml_scale_inplace(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. return ggml_scale_impl(ctx, a, b, true);
  4314. }
  4315. // ggml_set
  4316. struct ggml_tensor * ggml_set_impl(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. size_t nb1,
  4321. size_t nb2,
  4322. size_t nb3,
  4323. size_t offset,
  4324. bool inplace) {
  4325. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4326. bool is_node = false;
  4327. if (!inplace && (a->grad || b->grad)) {
  4328. is_node = true;
  4329. }
  4330. // make a view of the destination
  4331. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4332. ggml_scratch_save(ctx);
  4333. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4334. (( int32_t * ) c->data)[0] = nb1;
  4335. (( int32_t * ) c->data)[1] = nb2;
  4336. (( int32_t * ) c->data)[2] = nb3;
  4337. (( int32_t * ) c->data)[3] = offset;
  4338. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4339. ggml_scratch_load(ctx);
  4340. result->op = GGML_OP_SET;
  4341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4342. result->src0 = a;
  4343. result->src1 = b;
  4344. result->opt[0] = c;
  4345. return result;
  4346. }
  4347. struct ggml_tensor * ggml_set(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. struct ggml_tensor * b,
  4351. size_t nb1,
  4352. size_t nb2,
  4353. size_t nb3,
  4354. size_t offset) {
  4355. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4356. }
  4357. struct ggml_tensor * ggml_set_inplace(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b,
  4361. size_t nb1,
  4362. size_t nb2,
  4363. size_t nb3,
  4364. size_t offset) {
  4365. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4366. }
  4367. struct ggml_tensor * ggml_set_1d(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. struct ggml_tensor * b,
  4371. size_t offset) {
  4372. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4373. }
  4374. struct ggml_tensor * ggml_set_1d_inplace(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b,
  4378. size_t offset) {
  4379. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4380. }
  4381. struct ggml_tensor * ggml_set_2d(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. struct ggml_tensor * b,
  4385. size_t nb1,
  4386. size_t offset) {
  4387. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4388. }
  4389. struct ggml_tensor * ggml_set_2d_inplace(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. struct ggml_tensor * b,
  4393. size_t nb1,
  4394. size_t offset) {
  4395. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4396. }
  4397. // ggml_cpy
  4398. struct ggml_tensor * ggml_cpy_impl(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. struct ggml_tensor * b,
  4402. bool inplace) {
  4403. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4404. bool is_node = false;
  4405. if (!inplace && (a->grad || b->grad)) {
  4406. is_node = true;
  4407. }
  4408. // make a view of the destination
  4409. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4410. result->op = GGML_OP_CPY;
  4411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4412. result->src0 = a;
  4413. result->src1 = b;
  4414. return result;
  4415. }
  4416. struct ggml_tensor * ggml_cpy(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. struct ggml_tensor * b) {
  4420. return ggml_cpy_impl(ctx, a, b, false);
  4421. }
  4422. struct ggml_tensor * ggml_cpy_inplace(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b) {
  4426. return ggml_cpy_impl(ctx, a, b, true);
  4427. }
  4428. // ggml_cont
  4429. struct ggml_tensor * ggml_cont_impl(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. bool inplace) {
  4433. bool is_node = false;
  4434. if (!inplace && a->grad) {
  4435. is_node = true;
  4436. }
  4437. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4438. result->op = GGML_OP_CONT;
  4439. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4440. result->src0 = a;
  4441. result->src1 = NULL;
  4442. return result;
  4443. }
  4444. struct ggml_tensor * ggml_cont(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * a) {
  4447. return ggml_cont_impl(ctx, a, false);
  4448. }
  4449. struct ggml_tensor * ggml_cont_inplace(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a) {
  4452. return ggml_cont_impl(ctx, a, true);
  4453. }
  4454. // ggml_reshape
  4455. struct ggml_tensor * ggml_reshape(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. struct ggml_tensor * b) {
  4459. GGML_ASSERT(ggml_is_contiguous(a));
  4460. GGML_ASSERT(ggml_is_contiguous(b));
  4461. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4462. bool is_node = false;
  4463. if (a->grad) {
  4464. is_node = true;
  4465. }
  4466. if (b->grad) {
  4467. // gradient propagation is not supported
  4468. //GGML_ASSERT(false);
  4469. }
  4470. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4471. result->op = GGML_OP_RESHAPE;
  4472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4473. result->src0 = a;
  4474. result->src1 = NULL;
  4475. return result;
  4476. }
  4477. struct ggml_tensor * ggml_reshape_1d(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. int64_t ne0) {
  4481. GGML_ASSERT(ggml_is_contiguous(a));
  4482. GGML_ASSERT(ggml_nelements(a) == ne0);
  4483. bool is_node = false;
  4484. if (a->grad) {
  4485. is_node = true;
  4486. }
  4487. const int64_t ne[1] = { ne0 };
  4488. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4489. result->op = GGML_OP_RESHAPE;
  4490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4491. result->src0 = a;
  4492. result->src1 = NULL;
  4493. return result;
  4494. }
  4495. struct ggml_tensor * ggml_reshape_2d(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. int64_t ne0,
  4499. int64_t ne1) {
  4500. GGML_ASSERT(ggml_is_contiguous(a));
  4501. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4502. bool is_node = false;
  4503. if (a->grad) {
  4504. is_node = true;
  4505. }
  4506. const int64_t ne[2] = { ne0, ne1 };
  4507. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4508. result->op = GGML_OP_RESHAPE;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src0 = a;
  4511. result->src1 = NULL;
  4512. return result;
  4513. }
  4514. struct ggml_tensor * ggml_reshape_3d(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. int64_t ne0,
  4518. int64_t ne1,
  4519. int64_t ne2) {
  4520. GGML_ASSERT(ggml_is_contiguous(a));
  4521. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4522. bool is_node = false;
  4523. if (a->grad) {
  4524. is_node = true;
  4525. }
  4526. const int64_t ne[3] = { ne0, ne1, ne2 };
  4527. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4528. result->op = GGML_OP_RESHAPE;
  4529. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4530. result->src0 = a;
  4531. result->src1 = NULL;
  4532. return result;
  4533. }
  4534. struct ggml_tensor * ggml_reshape_4d(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. int64_t ne0,
  4538. int64_t ne1,
  4539. int64_t ne2,
  4540. int64_t ne3) {
  4541. GGML_ASSERT(ggml_is_contiguous(a));
  4542. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4543. bool is_node = false;
  4544. if (a->grad) {
  4545. is_node = true;
  4546. }
  4547. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4548. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4549. result->op = GGML_OP_RESHAPE;
  4550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4551. result->src0 = a;
  4552. result->src1 = NULL;
  4553. return result;
  4554. }
  4555. // ggml_view_1d
  4556. struct ggml_tensor * ggml_view_1d(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. int64_t ne0,
  4560. size_t offset) {
  4561. bool is_node = false;
  4562. if (a->grad) {
  4563. is_node = true;
  4564. }
  4565. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4566. result->op = GGML_OP_VIEW;
  4567. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4568. result->src0 = a;
  4569. result->src1 = NULL;
  4570. if (is_node) {
  4571. memcpy(result->padding, &offset, sizeof(offset));
  4572. }
  4573. return result;
  4574. }
  4575. // ggml_view_2d
  4576. struct ggml_tensor * ggml_view_2d(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. int64_t ne0,
  4580. int64_t ne1,
  4581. size_t nb1,
  4582. size_t offset) {
  4583. bool is_node = false;
  4584. if (a->grad) {
  4585. is_node = true;
  4586. }
  4587. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4588. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4589. result->nb[1] = nb1;
  4590. result->nb[2] = result->nb[1]*ne1;
  4591. result->nb[3] = result->nb[2];
  4592. result->op = GGML_OP_VIEW;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src0 = a;
  4595. result->src1 = NULL;
  4596. if (is_node) {
  4597. memcpy(result->padding, &offset, sizeof(offset));
  4598. }
  4599. return result;
  4600. }
  4601. // ggml_view_3d
  4602. struct ggml_tensor * ggml_view_3d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. int64_t ne0,
  4606. int64_t ne1,
  4607. int64_t ne2,
  4608. size_t nb1,
  4609. size_t nb2,
  4610. size_t offset) {
  4611. bool is_node = false;
  4612. if (a->grad) {
  4613. is_node = true;
  4614. }
  4615. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4616. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4617. result->nb[1] = nb1;
  4618. result->nb[2] = nb2;
  4619. result->nb[3] = result->nb[2]*ne2;
  4620. result->op = GGML_OP_VIEW;
  4621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4622. result->src0 = a;
  4623. result->src1 = NULL;
  4624. if (is_node) {
  4625. memcpy(result->padding, &offset, sizeof(offset));
  4626. }
  4627. return result;
  4628. }
  4629. // ggml_view_4d
  4630. struct ggml_tensor * ggml_view_4d(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a,
  4633. int64_t ne0,
  4634. int64_t ne1,
  4635. int64_t ne2,
  4636. int64_t ne3,
  4637. size_t nb1,
  4638. size_t nb2,
  4639. size_t nb3,
  4640. size_t offset) {
  4641. bool is_node = false;
  4642. if (a->grad) {
  4643. is_node = true;
  4644. }
  4645. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4646. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4647. result->nb[1] = nb1;
  4648. result->nb[2] = nb2;
  4649. result->nb[3] = nb3;
  4650. result->op = GGML_OP_VIEW;
  4651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4652. result->src0 = a;
  4653. result->src1 = NULL;
  4654. if (is_node) {
  4655. memcpy(result->padding, &offset, sizeof(offset));
  4656. }
  4657. return result;
  4658. }
  4659. // ggml_permute
  4660. struct ggml_tensor * ggml_permute(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a,
  4663. int axis0,
  4664. int axis1,
  4665. int axis2,
  4666. int axis3) {
  4667. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4668. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4669. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4670. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4671. GGML_ASSERT(axis0 != axis1);
  4672. GGML_ASSERT(axis0 != axis2);
  4673. GGML_ASSERT(axis0 != axis3);
  4674. GGML_ASSERT(axis1 != axis2);
  4675. GGML_ASSERT(axis1 != axis3);
  4676. GGML_ASSERT(axis2 != axis3);
  4677. bool is_node = false;
  4678. if (a->grad) {
  4679. is_node = true;
  4680. }
  4681. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4682. int ne[GGML_MAX_DIMS];
  4683. int nb[GGML_MAX_DIMS];
  4684. ne[axis0] = a->ne[0];
  4685. ne[axis1] = a->ne[1];
  4686. ne[axis2] = a->ne[2];
  4687. ne[axis3] = a->ne[3];
  4688. nb[axis0] = a->nb[0];
  4689. nb[axis1] = a->nb[1];
  4690. nb[axis2] = a->nb[2];
  4691. nb[axis3] = a->nb[3];
  4692. result->ne[0] = ne[0];
  4693. result->ne[1] = ne[1];
  4694. result->ne[2] = ne[2];
  4695. result->ne[3] = ne[3];
  4696. result->nb[0] = nb[0];
  4697. result->nb[1] = nb[1];
  4698. result->nb[2] = nb[2];
  4699. result->nb[3] = nb[3];
  4700. result->op = GGML_OP_PERMUTE;
  4701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4702. result->src0 = a;
  4703. result->src1 = NULL;
  4704. if (is_node) {
  4705. result->padding[0] = axis0;
  4706. result->padding[1] = axis1;
  4707. result->padding[2] = axis2;
  4708. result->padding[3] = axis3;
  4709. }
  4710. return result;
  4711. }
  4712. // ggml_transpose
  4713. struct ggml_tensor * ggml_transpose(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a) {
  4716. bool is_node = false;
  4717. if (a->grad) {
  4718. is_node = true;
  4719. }
  4720. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4721. result->ne[0] = a->ne[1];
  4722. result->ne[1] = a->ne[0];
  4723. result->nb[0] = a->nb[1];
  4724. result->nb[1] = a->nb[0];
  4725. result->op = GGML_OP_TRANSPOSE;
  4726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4727. result->src0 = a;
  4728. result->src1 = NULL;
  4729. return result;
  4730. }
  4731. // ggml_get_rows
  4732. struct ggml_tensor * ggml_get_rows(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. struct ggml_tensor * b) {
  4736. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4737. bool is_node = false;
  4738. if (a->grad || b->grad) {
  4739. is_node = true;
  4740. }
  4741. // TODO: implement non F32 return
  4742. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4743. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4744. result->op = GGML_OP_GET_ROWS;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src0 = a;
  4747. result->src1 = b;
  4748. return result;
  4749. }
  4750. // ggml_get_rows_back
  4751. struct ggml_tensor * ggml_get_rows_back(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * b,
  4755. struct ggml_tensor * c) {
  4756. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4757. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4758. bool is_node = false;
  4759. if (a->grad || b->grad) {
  4760. is_node = true;
  4761. }
  4762. // TODO: implement non F32 return
  4763. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4764. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4765. result->op = GGML_OP_GET_ROWS_BACK;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src0 = a;
  4768. result->src1 = b;
  4769. result->opt[0] = c;
  4770. return result;
  4771. }
  4772. // ggml_diag
  4773. struct ggml_tensor * ggml_diag(
  4774. struct ggml_context * ctx,
  4775. struct ggml_tensor * a) {
  4776. GGML_ASSERT(a->ne[1] == 1);
  4777. bool is_node = false;
  4778. if (a->grad) {
  4779. is_node = true;
  4780. }
  4781. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4782. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4783. result->op = GGML_OP_DIAG;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src0 = a;
  4786. result->src1 = NULL;
  4787. return result;
  4788. }
  4789. // ggml_diag_mask_inf
  4790. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. int n_past,
  4794. bool inplace) {
  4795. bool is_node = false;
  4796. if (a->grad) {
  4797. is_node = true;
  4798. }
  4799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4800. ggml_scratch_save(ctx);
  4801. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4802. ((int32_t *) b->data)[0] = n_past;
  4803. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4804. ggml_scratch_load(ctx);
  4805. result->op = GGML_OP_DIAG_MASK_INF;
  4806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4807. result->src0 = a;
  4808. result->src1 = b;
  4809. return result;
  4810. }
  4811. struct ggml_tensor * ggml_diag_mask_inf(
  4812. struct ggml_context * ctx,
  4813. struct ggml_tensor * a,
  4814. int n_past) {
  4815. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4816. }
  4817. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. int n_past) {
  4821. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4822. }
  4823. // ggml_diag_mask_zero
  4824. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4825. struct ggml_context * ctx,
  4826. struct ggml_tensor * a,
  4827. int n_past,
  4828. bool inplace) {
  4829. bool is_node = false;
  4830. if (a->grad) {
  4831. is_node = true;
  4832. }
  4833. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4834. ggml_scratch_save(ctx);
  4835. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4836. ggml_set_name(b, "n_past, inplace");
  4837. ((int32_t *) b->data)[0] = n_past;
  4838. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4839. ggml_scratch_load(ctx);
  4840. result->op = GGML_OP_DIAG_MASK_ZERO;
  4841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4842. result->src0 = a;
  4843. result->src1 = b;
  4844. return result;
  4845. }
  4846. struct ggml_tensor * ggml_diag_mask_zero(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. int n_past) {
  4850. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4851. }
  4852. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. int n_past) {
  4856. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4857. }
  4858. // ggml_soft_max
  4859. struct ggml_tensor * ggml_soft_max_impl(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. bool inplace) {
  4863. bool is_node = false;
  4864. if (a->grad) {
  4865. is_node = true;
  4866. }
  4867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4868. result->op = GGML_OP_SOFT_MAX;
  4869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4870. result->src0 = a;
  4871. result->src1 = NULL;
  4872. return result;
  4873. }
  4874. struct ggml_tensor * ggml_soft_max(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a) {
  4877. return ggml_soft_max_impl(ctx, a, false);
  4878. }
  4879. struct ggml_tensor * ggml_soft_max_inplace(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a) {
  4882. return ggml_soft_max_impl(ctx, a, true);
  4883. }
  4884. // ggml_rope
  4885. struct ggml_tensor * ggml_rope_impl(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. int n_past,
  4889. int n_dims,
  4890. int mode,
  4891. bool inplace) {
  4892. GGML_ASSERT(n_past >= 0);
  4893. bool is_node = false;
  4894. if (!inplace && a->grad) {
  4895. is_node = true;
  4896. }
  4897. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4898. ggml_scratch_save(ctx);
  4899. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4900. ((int32_t *) b->data)[0] = n_past;
  4901. ((int32_t *) b->data)[1] = n_dims;
  4902. ((int32_t *) b->data)[2] = mode;
  4903. ggml_scratch_load(ctx);
  4904. result->op = GGML_OP_ROPE;
  4905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4906. result->src0 = a;
  4907. result->src1 = b;
  4908. return result;
  4909. }
  4910. struct ggml_tensor * ggml_rope(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. int n_past,
  4914. int n_dims,
  4915. int mode) {
  4916. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4917. }
  4918. struct ggml_tensor * ggml_rope_inplace(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. int n_past,
  4922. int n_dims,
  4923. int mode) {
  4924. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4925. }
  4926. // ggml_rope_back
  4927. struct ggml_tensor * ggml_rope_back(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. int n_past,
  4931. int n_dims,
  4932. int mode) {
  4933. GGML_ASSERT(n_past >= 0);
  4934. bool is_node = false;
  4935. if (a->grad) {
  4936. GGML_ASSERT(false); // TODO: implement backward
  4937. is_node = true;
  4938. }
  4939. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4940. ggml_scratch_save(ctx);
  4941. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4942. ggml_set_name(b, "n_past, n_dims, mode");
  4943. ((int32_t *) b->data)[0] = n_past;
  4944. ((int32_t *) b->data)[1] = n_dims;
  4945. ((int32_t *) b->data)[2] = mode;
  4946. ggml_scratch_load(ctx);
  4947. result->op = GGML_OP_ROPE_BACK;
  4948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4949. result->src0 = a;
  4950. result->src1 = b;
  4951. return result;
  4952. }
  4953. // ggml_alibi
  4954. struct ggml_tensor * ggml_alibi(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. int n_past,
  4958. int n_head,
  4959. float bias_max) {
  4960. GGML_ASSERT(n_past >= 0);
  4961. bool is_node = false;
  4962. if (a->grad) {
  4963. GGML_ASSERT(false); // TODO: implement backward
  4964. is_node = true;
  4965. }
  4966. // TODO: when implement backward, fix this:
  4967. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4968. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4969. ggml_scratch_save(ctx);
  4970. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4971. ((int32_t *) b->data)[0] = n_past;
  4972. ((int32_t *) b->data)[1] = n_head;
  4973. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  4974. (((float *) b->data)[2]) = bias_max;
  4975. ggml_scratch_load(ctx);
  4976. result->op = GGML_OP_ALIBI;
  4977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4978. result->src0 = a;
  4979. result->src1 = b;
  4980. return result;
  4981. }
  4982. // ggml_clamp
  4983. struct ggml_tensor * ggml_clamp(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. float min,
  4987. float max) {
  4988. bool is_node = false;
  4989. if (a->grad) {
  4990. GGML_ASSERT(false); // TODO: implement backward
  4991. is_node = true;
  4992. }
  4993. // TODO: when implement backward, fix this:
  4994. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4995. ggml_scratch_save(ctx);
  4996. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4997. ((float *) b->data)[0] = min;
  4998. ((float *) b->data)[1] = max;
  4999. ggml_scratch_load(ctx);
  5000. result->op = GGML_OP_CLAMP;
  5001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5002. result->src0 = a;
  5003. result->src1 = b;
  5004. return result;
  5005. }
  5006. // ggml_conv_1d_1s
  5007. struct ggml_tensor * ggml_conv_1d_1s(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b) {
  5011. GGML_ASSERT(ggml_is_matrix(b));
  5012. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5013. GGML_ASSERT(a->ne[3] == 1);
  5014. bool is_node = false;
  5015. if (a->grad || b->grad) {
  5016. GGML_ASSERT(false); // TODO: implement backward
  5017. is_node = true;
  5018. }
  5019. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5020. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5021. result->op = GGML_OP_CONV_1D_1S;
  5022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5023. result->src0 = a;
  5024. result->src1 = b;
  5025. return result;
  5026. }
  5027. // ggml_conv_1d_2s
  5028. struct ggml_tensor * ggml_conv_1d_2s(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. struct ggml_tensor * b) {
  5032. GGML_ASSERT(ggml_is_matrix(b));
  5033. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5034. GGML_ASSERT(a->ne[3] == 1);
  5035. bool is_node = false;
  5036. if (a->grad || b->grad) {
  5037. GGML_ASSERT(false); // TODO: implement backward
  5038. is_node = true;
  5039. }
  5040. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5041. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5042. result->op = GGML_OP_CONV_1D_2S;
  5043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5044. result->src0 = a;
  5045. result->src1 = b;
  5046. return result;
  5047. }
  5048. // ggml_flash_attn
  5049. struct ggml_tensor * ggml_flash_attn(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * q,
  5052. struct ggml_tensor * k,
  5053. struct ggml_tensor * v,
  5054. bool masked) {
  5055. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5056. // TODO: check if vT can be multiplied by (k*qT)
  5057. bool is_node = false;
  5058. if (q->grad || k->grad || v->grad) {
  5059. GGML_ASSERT(false); // TODO: implement backward
  5060. is_node = true;
  5061. }
  5062. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5063. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5064. result->op = GGML_OP_FLASH_ATTN;
  5065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5066. result->src0 = q;
  5067. result->src1 = k;
  5068. result->opt[0] = v;
  5069. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5070. return result;
  5071. }
  5072. // ggml_flash_ff
  5073. struct ggml_tensor * ggml_flash_ff(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. struct ggml_tensor * b0,
  5077. struct ggml_tensor * b1,
  5078. struct ggml_tensor * c0,
  5079. struct ggml_tensor * c1) {
  5080. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5081. // TODO: more checks
  5082. bool is_node = false;
  5083. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5084. GGML_ASSERT(false); // TODO: implement backward
  5085. is_node = true;
  5086. }
  5087. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5088. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5089. result->op = GGML_OP_FLASH_FF;
  5090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5091. result->src0 = a;
  5092. result->src1 = b0;
  5093. result->opt[0] = b1;
  5094. result->opt[1] = c0;
  5095. result->opt[2] = c1;
  5096. return result;
  5097. }
  5098. // ggml_map_unary
  5099. struct ggml_tensor * ggml_map_unary_impl_f32(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. const ggml_unary_op_f32_t fun,
  5103. bool inplace) {
  5104. bool is_node = false;
  5105. if (!inplace && a->grad) {
  5106. is_node = true;
  5107. }
  5108. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5109. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5110. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5111. result->op = GGML_OP_MAP_UNARY;
  5112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5113. result->src0 = a;
  5114. result->opt[0] = addr_tensor;
  5115. return result;
  5116. }
  5117. struct ggml_tensor * ggml_map_unary_f32(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a,
  5120. const ggml_unary_op_f32_t fun) {
  5121. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5122. }
  5123. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5124. struct ggml_context * ctx,
  5125. struct ggml_tensor * a,
  5126. const ggml_unary_op_f32_t fun) {
  5127. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5128. }
  5129. // ggml_map_binary
  5130. struct ggml_tensor * ggml_map_binary_impl_f32(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a,
  5133. struct ggml_tensor * b,
  5134. const ggml_binary_op_f32_t fun,
  5135. bool inplace) {
  5136. GGML_ASSERT(ggml_are_same_shape(a, b));
  5137. bool is_node = false;
  5138. if (!inplace && (a->grad || b->grad)) {
  5139. is_node = true;
  5140. }
  5141. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5142. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5143. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5144. result->op = GGML_OP_MAP_BINARY;
  5145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5146. result->src0 = a;
  5147. result->src1 = b;
  5148. result->opt[0] = addr_tensor;
  5149. return result;
  5150. }
  5151. struct ggml_tensor * ggml_map_binary_f32(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b,
  5155. const ggml_binary_op_f32_t fun) {
  5156. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5157. }
  5158. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5159. struct ggml_context * ctx,
  5160. struct ggml_tensor * a,
  5161. struct ggml_tensor * b,
  5162. const ggml_binary_op_f32_t fun) {
  5163. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5164. }
  5165. ////////////////////////////////////////////////////////////////////////////////
  5166. void ggml_set_param(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * tensor) {
  5169. tensor->is_param = true;
  5170. GGML_ASSERT(tensor->grad == NULL);
  5171. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5172. }
  5173. // ggml_compute_forward_dup
  5174. static void ggml_compute_forward_dup_same_cont(
  5175. const struct ggml_compute_params * params,
  5176. const struct ggml_tensor * src0,
  5177. struct ggml_tensor * dst) {
  5178. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5179. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5180. GGML_ASSERT(src0->type == dst->type);
  5181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5182. return;
  5183. }
  5184. const size_t nb00 = src0->nb[0];
  5185. const size_t nb0 = dst->nb[0];
  5186. const int ith = params->ith; // thread index
  5187. const int nth = params->nth; // number of threads
  5188. // parallelize by elements
  5189. const int ne = ggml_nelements(dst);
  5190. const int dr = (ne + nth - 1) / nth;
  5191. const int ie0 = dr * ith;
  5192. const int ie1 = MIN(ie0 + dr, ne);
  5193. if (ie0 < ie1) {
  5194. memcpy(
  5195. ((char *) dst->data + ie0*nb0),
  5196. ((char *) src0->data + ie0*nb00),
  5197. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5198. }
  5199. }
  5200. static void ggml_compute_forward_dup_f16(
  5201. const struct ggml_compute_params * params,
  5202. const struct ggml_tensor * src0,
  5203. struct ggml_tensor * dst) {
  5204. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5206. return;
  5207. }
  5208. const int64_t ne00 = src0->ne[0];
  5209. const int64_t ne01 = src0->ne[1];
  5210. const int64_t ne02 = src0->ne[2];
  5211. const int64_t ne03 = src0->ne[3];
  5212. const int64_t ne0 = dst->ne[0];
  5213. const int64_t ne1 = dst->ne[1];
  5214. const int64_t ne2 = dst->ne[2];
  5215. const int64_t ne3 = dst->ne[3];
  5216. const size_t nb00 = src0->nb[0];
  5217. const size_t nb01 = src0->nb[1];
  5218. const size_t nb02 = src0->nb[2];
  5219. const size_t nb03 = src0->nb[3];
  5220. const size_t nb0 = dst->nb[0];
  5221. const size_t nb1 = dst->nb[1];
  5222. const size_t nb2 = dst->nb[2];
  5223. const size_t nb3 = dst->nb[3];
  5224. const int ith = params->ith; // thread index
  5225. const int nth = params->nth; // number of threads
  5226. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5227. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5228. return;
  5229. }
  5230. // parallelize by rows
  5231. const int nr = ne01;
  5232. // number of rows per thread
  5233. const int dr = (nr + nth - 1) / nth;
  5234. // row range for this thread
  5235. const int ir0 = dr * ith;
  5236. const int ir1 = MIN(ir0 + dr, nr);
  5237. if (src0->type == dst->type &&
  5238. ne00 == ne0 &&
  5239. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5240. // copy by rows
  5241. const size_t rs = ne00*nb00;
  5242. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5243. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5244. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5245. memcpy(
  5246. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5247. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5248. rs);
  5249. }
  5250. }
  5251. }
  5252. return;
  5253. }
  5254. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5255. if (ggml_is_contiguous(dst)) {
  5256. if (nb00 == sizeof(ggml_fp16_t)) {
  5257. if (dst->type == GGML_TYPE_F16) {
  5258. size_t id = 0;
  5259. const size_t rs = ne00 * nb00;
  5260. char * dst_ptr = (char *) dst->data;
  5261. for (int i03 = 0; i03 < ne03; i03++) {
  5262. for (int i02 = 0; i02 < ne02; i02++) {
  5263. id += rs * ir0;
  5264. for (int i01 = ir0; i01 < ir1; i01++) {
  5265. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5266. memcpy(dst_ptr + id, src0_ptr, rs);
  5267. id += rs;
  5268. }
  5269. id += rs * (ne01 - ir1);
  5270. }
  5271. }
  5272. } else if (dst->type == GGML_TYPE_F32) {
  5273. size_t id = 0;
  5274. float * dst_ptr = (float *) dst->data;
  5275. for (int i03 = 0; i03 < ne03; i03++) {
  5276. for (int i02 = 0; i02 < ne02; i02++) {
  5277. id += ne00 * ir0;
  5278. for (int i01 = ir0; i01 < ir1; i01++) {
  5279. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5280. for (int i00 = 0; i00 < ne00; i00++) {
  5281. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5282. id++;
  5283. }
  5284. }
  5285. id += ne00 * (ne01 - ir1);
  5286. }
  5287. }
  5288. } else if (ggml_is_quantized(dst->type)) {
  5289. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5290. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5291. size_t id = 0;
  5292. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5293. char * dst_ptr = (char *) dst->data;
  5294. for (int i03 = 0; i03 < ne03; i03++) {
  5295. for (int i02 = 0; i02 < ne02; i02++) {
  5296. id += rs * ir0;
  5297. for (int i01 = ir0; i01 < ir1; i01++) {
  5298. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5299. for (int i00 = 0; i00 < ne00; i00++) {
  5300. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5301. }
  5302. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5303. id += rs;
  5304. }
  5305. id += rs * (ne01 - ir1);
  5306. }
  5307. }
  5308. } else {
  5309. GGML_ASSERT(false); // TODO: implement
  5310. }
  5311. } else {
  5312. //printf("%s: this is not optimal - fix me\n", __func__);
  5313. if (dst->type == GGML_TYPE_F32) {
  5314. size_t id = 0;
  5315. float * dst_ptr = (float *) dst->data;
  5316. for (int i03 = 0; i03 < ne03; i03++) {
  5317. for (int i02 = 0; i02 < ne02; i02++) {
  5318. id += ne00 * ir0;
  5319. for (int i01 = ir0; i01 < ir1; i01++) {
  5320. for (int i00 = 0; i00 < ne00; i00++) {
  5321. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5322. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5323. id++;
  5324. }
  5325. }
  5326. id += ne00 * (ne01 - ir1);
  5327. }
  5328. }
  5329. } else if (dst->type == GGML_TYPE_F16) {
  5330. size_t id = 0;
  5331. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5332. for (int i03 = 0; i03 < ne03; i03++) {
  5333. for (int i02 = 0; i02 < ne02; i02++) {
  5334. id += ne00 * ir0;
  5335. for (int i01 = ir0; i01 < ir1; i01++) {
  5336. for (int i00 = 0; i00 < ne00; i00++) {
  5337. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5338. dst_ptr[id] = *src0_ptr;
  5339. id++;
  5340. }
  5341. }
  5342. id += ne00 * (ne01 - ir1);
  5343. }
  5344. }
  5345. } else {
  5346. GGML_ASSERT(false); // TODO: implement
  5347. }
  5348. }
  5349. return;
  5350. }
  5351. // dst counters
  5352. int64_t i10 = 0;
  5353. int64_t i11 = 0;
  5354. int64_t i12 = 0;
  5355. int64_t i13 = 0;
  5356. if (dst->type == GGML_TYPE_F16) {
  5357. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5358. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5359. i10 += ne00 * ir0;
  5360. while (i10 >= ne0) {
  5361. i10 -= ne0;
  5362. if (++i11 == ne1) {
  5363. i11 = 0;
  5364. if (++i12 == ne2) {
  5365. i12 = 0;
  5366. if (++i13 == ne3) {
  5367. i13 = 0;
  5368. }
  5369. }
  5370. }
  5371. }
  5372. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5373. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5374. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5375. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5376. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5377. if (++i10 == ne00) {
  5378. i10 = 0;
  5379. if (++i11 == ne01) {
  5380. i11 = 0;
  5381. if (++i12 == ne02) {
  5382. i12 = 0;
  5383. if (++i13 == ne03) {
  5384. i13 = 0;
  5385. }
  5386. }
  5387. }
  5388. }
  5389. }
  5390. }
  5391. i10 += ne00 * (ne01 - ir1);
  5392. while (i10 >= ne0) {
  5393. i10 -= ne0;
  5394. if (++i11 == ne1) {
  5395. i11 = 0;
  5396. if (++i12 == ne2) {
  5397. i12 = 0;
  5398. if (++i13 == ne3) {
  5399. i13 = 0;
  5400. }
  5401. }
  5402. }
  5403. }
  5404. }
  5405. }
  5406. } else if (dst->type == GGML_TYPE_F32) {
  5407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5409. i10 += ne00 * ir0;
  5410. while (i10 >= ne0) {
  5411. i10 -= ne0;
  5412. if (++i11 == ne1) {
  5413. i11 = 0;
  5414. if (++i12 == ne2) {
  5415. i12 = 0;
  5416. if (++i13 == ne3) {
  5417. i13 = 0;
  5418. }
  5419. }
  5420. }
  5421. }
  5422. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5423. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5424. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5425. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5426. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5427. if (++i10 == ne0) {
  5428. i10 = 0;
  5429. if (++i11 == ne1) {
  5430. i11 = 0;
  5431. if (++i12 == ne2) {
  5432. i12 = 0;
  5433. if (++i13 == ne3) {
  5434. i13 = 0;
  5435. }
  5436. }
  5437. }
  5438. }
  5439. }
  5440. }
  5441. i10 += ne00 * (ne01 - ir1);
  5442. while (i10 >= ne0) {
  5443. i10 -= ne0;
  5444. if (++i11 == ne1) {
  5445. i11 = 0;
  5446. if (++i12 == ne2) {
  5447. i12 = 0;
  5448. if (++i13 == ne3) {
  5449. i13 = 0;
  5450. }
  5451. }
  5452. }
  5453. }
  5454. }
  5455. }
  5456. } else {
  5457. GGML_ASSERT(false); // TODO: implement
  5458. }
  5459. }
  5460. static void ggml_compute_forward_dup_f32(
  5461. const struct ggml_compute_params * params,
  5462. const struct ggml_tensor * src0,
  5463. struct ggml_tensor * dst) {
  5464. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5466. return;
  5467. }
  5468. const int64_t ne00 = src0->ne[0];
  5469. const int64_t ne01 = src0->ne[1];
  5470. const int64_t ne02 = src0->ne[2];
  5471. const int64_t ne03 = src0->ne[3];
  5472. const int64_t ne0 = dst->ne[0];
  5473. const int64_t ne1 = dst->ne[1];
  5474. const int64_t ne2 = dst->ne[2];
  5475. const int64_t ne3 = dst->ne[3];
  5476. const size_t nb00 = src0->nb[0];
  5477. const size_t nb01 = src0->nb[1];
  5478. const size_t nb02 = src0->nb[2];
  5479. const size_t nb03 = src0->nb[3];
  5480. const size_t nb0 = dst->nb[0];
  5481. const size_t nb1 = dst->nb[1];
  5482. const size_t nb2 = dst->nb[2];
  5483. const size_t nb3 = dst->nb[3];
  5484. const int ith = params->ith; // thread index
  5485. const int nth = params->nth; // number of threads
  5486. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5487. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5488. return;
  5489. }
  5490. // parallelize by rows
  5491. const int nr = ne01;
  5492. // number of rows per thread
  5493. const int dr = (nr + nth - 1) / nth;
  5494. // row range for this thread
  5495. const int ir0 = dr * ith;
  5496. const int ir1 = MIN(ir0 + dr, nr);
  5497. if (src0->type == dst->type &&
  5498. ne00 == ne0 &&
  5499. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5500. // copy by rows
  5501. const size_t rs = ne00*nb00;
  5502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5504. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5505. memcpy(
  5506. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5507. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5508. rs);
  5509. }
  5510. }
  5511. }
  5512. return;
  5513. }
  5514. if (ggml_is_contiguous(dst)) {
  5515. // TODO: simplify
  5516. if (nb00 == sizeof(float)) {
  5517. if (dst->type == GGML_TYPE_F32) {
  5518. size_t id = 0;
  5519. const size_t rs = ne00 * nb00;
  5520. char * dst_ptr = (char *) dst->data;
  5521. for (int i03 = 0; i03 < ne03; i03++) {
  5522. for (int i02 = 0; i02 < ne02; i02++) {
  5523. id += rs * ir0;
  5524. for (int i01 = ir0; i01 < ir1; i01++) {
  5525. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5526. memcpy(dst_ptr + id, src0_ptr, rs);
  5527. id += rs;
  5528. }
  5529. id += rs * (ne01 - ir1);
  5530. }
  5531. }
  5532. } else if (dst->type == GGML_TYPE_F16) {
  5533. size_t id = 0;
  5534. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5535. for (int i03 = 0; i03 < ne03; i03++) {
  5536. for (int i02 = 0; i02 < ne02; i02++) {
  5537. id += ne00 * ir0;
  5538. for (int i01 = ir0; i01 < ir1; i01++) {
  5539. for (int i00 = 0; i00 < ne00; i00++) {
  5540. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5541. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5542. id++;
  5543. }
  5544. }
  5545. id += ne00 * (ne01 - ir1);
  5546. }
  5547. }
  5548. } else if (ggml_is_quantized(dst->type)) {
  5549. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5550. size_t id = 0;
  5551. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5552. char * dst_ptr = (char *) dst->data;
  5553. for (int i03 = 0; i03 < ne03; i03++) {
  5554. for (int i02 = 0; i02 < ne02; i02++) {
  5555. id += rs * ir0;
  5556. for (int i01 = ir0; i01 < ir1; i01++) {
  5557. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5558. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5559. id += rs;
  5560. }
  5561. id += rs * (ne01 - ir1);
  5562. }
  5563. }
  5564. } else {
  5565. GGML_ASSERT(false); // TODO: implement
  5566. }
  5567. } else {
  5568. //printf("%s: this is not optimal - fix me\n", __func__);
  5569. if (dst->type == GGML_TYPE_F32) {
  5570. size_t id = 0;
  5571. float * dst_ptr = (float *) dst->data;
  5572. for (int i03 = 0; i03 < ne03; i03++) {
  5573. for (int i02 = 0; i02 < ne02; i02++) {
  5574. id += ne00 * ir0;
  5575. for (int i01 = ir0; i01 < ir1; i01++) {
  5576. for (int i00 = 0; i00 < ne00; i00++) {
  5577. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5578. dst_ptr[id] = *src0_ptr;
  5579. id++;
  5580. }
  5581. }
  5582. id += ne00 * (ne01 - ir1);
  5583. }
  5584. }
  5585. } else if (dst->type == GGML_TYPE_F16) {
  5586. size_t id = 0;
  5587. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5588. for (int i03 = 0; i03 < ne03; i03++) {
  5589. for (int i02 = 0; i02 < ne02; i02++) {
  5590. id += ne00 * ir0;
  5591. for (int i01 = ir0; i01 < ir1; i01++) {
  5592. for (int i00 = 0; i00 < ne00; i00++) {
  5593. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5594. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5595. id++;
  5596. }
  5597. }
  5598. id += ne00 * (ne01 - ir1);
  5599. }
  5600. }
  5601. } else {
  5602. GGML_ASSERT(false); // TODO: implement
  5603. }
  5604. }
  5605. return;
  5606. }
  5607. // dst counters
  5608. int64_t i10 = 0;
  5609. int64_t i11 = 0;
  5610. int64_t i12 = 0;
  5611. int64_t i13 = 0;
  5612. if (dst->type == GGML_TYPE_F32) {
  5613. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5614. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5615. i10 += ne00 * ir0;
  5616. while (i10 >= ne0) {
  5617. i10 -= ne0;
  5618. if (++i11 == ne1) {
  5619. i11 = 0;
  5620. if (++i12 == ne2) {
  5621. i12 = 0;
  5622. if (++i13 == ne3) {
  5623. i13 = 0;
  5624. }
  5625. }
  5626. }
  5627. }
  5628. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5629. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5630. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5631. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5632. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5633. if (++i10 == ne0) {
  5634. i10 = 0;
  5635. if (++i11 == ne1) {
  5636. i11 = 0;
  5637. if (++i12 == ne2) {
  5638. i12 = 0;
  5639. if (++i13 == ne3) {
  5640. i13 = 0;
  5641. }
  5642. }
  5643. }
  5644. }
  5645. }
  5646. }
  5647. i10 += ne00 * (ne01 - ir1);
  5648. while (i10 >= ne0) {
  5649. i10 -= ne0;
  5650. if (++i11 == ne1) {
  5651. i11 = 0;
  5652. if (++i12 == ne2) {
  5653. i12 = 0;
  5654. if (++i13 == ne3) {
  5655. i13 = 0;
  5656. }
  5657. }
  5658. }
  5659. }
  5660. }
  5661. }
  5662. } else if (dst->type == GGML_TYPE_F16) {
  5663. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5664. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5665. i10 += ne00 * ir0;
  5666. while (i10 >= ne0) {
  5667. i10 -= ne0;
  5668. if (++i11 == ne1) {
  5669. i11 = 0;
  5670. if (++i12 == ne2) {
  5671. i12 = 0;
  5672. if (++i13 == ne3) {
  5673. i13 = 0;
  5674. }
  5675. }
  5676. }
  5677. }
  5678. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5679. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5680. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5681. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5682. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5683. if (++i10 == ne0) {
  5684. i10 = 0;
  5685. if (++i11 == ne1) {
  5686. i11 = 0;
  5687. if (++i12 == ne2) {
  5688. i12 = 0;
  5689. if (++i13 == ne3) {
  5690. i13 = 0;
  5691. }
  5692. }
  5693. }
  5694. }
  5695. }
  5696. }
  5697. i10 += ne00 * (ne01 - ir1);
  5698. while (i10 >= ne0) {
  5699. i10 -= ne0;
  5700. if (++i11 == ne1) {
  5701. i11 = 0;
  5702. if (++i12 == ne2) {
  5703. i12 = 0;
  5704. if (++i13 == ne3) {
  5705. i13 = 0;
  5706. }
  5707. }
  5708. }
  5709. }
  5710. }
  5711. }
  5712. } else {
  5713. GGML_ASSERT(false); // TODO: implement
  5714. }
  5715. }
  5716. static void ggml_compute_forward_dup(
  5717. const struct ggml_compute_params * params,
  5718. const struct ggml_tensor * src0,
  5719. struct ggml_tensor * dst) {
  5720. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5721. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5722. return;
  5723. }
  5724. switch (src0->type) {
  5725. case GGML_TYPE_F16:
  5726. {
  5727. ggml_compute_forward_dup_f16(params, src0, dst);
  5728. } break;
  5729. case GGML_TYPE_F32:
  5730. {
  5731. ggml_compute_forward_dup_f32(params, src0, dst);
  5732. } break;
  5733. default:
  5734. {
  5735. GGML_ASSERT(false);
  5736. } break;
  5737. }
  5738. }
  5739. // ggml_compute_forward_add
  5740. static void ggml_compute_forward_add_f32(
  5741. const struct ggml_compute_params * params,
  5742. const struct ggml_tensor * src0,
  5743. const struct ggml_tensor * src1,
  5744. struct ggml_tensor * dst) {
  5745. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5746. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5747. return;
  5748. }
  5749. const int ith = params->ith;
  5750. const int nth = params->nth;
  5751. const int nr = ggml_nrows(src0);
  5752. const int64_t ne0 = src0->ne[0];
  5753. const int64_t ne1 = src0->ne[1];
  5754. const int64_t ne2 = src0->ne[2];
  5755. const size_t nb00 = src0->nb[0];
  5756. const size_t nb01 = src0->nb[1];
  5757. const size_t nb02 = src0->nb[2];
  5758. const size_t nb03 = src0->nb[3];
  5759. const size_t nb10 = src1->nb[0];
  5760. const size_t nb11 = src1->nb[1];
  5761. const size_t nb12 = src1->nb[2];
  5762. const size_t nb13 = src1->nb[3];
  5763. const size_t nb0 = dst->nb[0];
  5764. const size_t nb1 = dst->nb[1];
  5765. const size_t nb2 = dst->nb[2];
  5766. const size_t nb3 = dst->nb[3];
  5767. GGML_ASSERT( nb0 == sizeof(float));
  5768. GGML_ASSERT(nb00 == sizeof(float));
  5769. // rows per thread
  5770. const int dr = (nr + nth - 1)/nth;
  5771. // row range for this thread
  5772. const int ir0 = dr*ith;
  5773. const int ir1 = MIN(ir0 + dr, nr);
  5774. if (nb10 == sizeof(float)) {
  5775. for (int ir = ir0; ir < ir1; ++ir) {
  5776. // src0, src1 and dst are same shape => same indices
  5777. const int i3 = ir/(ne2*ne1);
  5778. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5779. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5780. #ifdef GGML_USE_ACCELERATE
  5781. vDSP_vadd(
  5782. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5783. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5784. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5785. ne0);
  5786. #else
  5787. ggml_vec_add_f32(ne0,
  5788. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5789. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5790. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5791. #endif
  5792. // }
  5793. // }
  5794. }
  5795. } else {
  5796. // src1 is not contiguous
  5797. for (int ir = ir0; ir < ir1; ++ir) {
  5798. // src0, src1 and dst are same shape => same indices
  5799. const int i3 = ir/(ne2*ne1);
  5800. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5801. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5802. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5803. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5804. for (int i0 = 0; i0 < ne0; i0++) {
  5805. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5806. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5807. }
  5808. }
  5809. }
  5810. }
  5811. static void ggml_compute_forward_add_f16_f32(
  5812. const struct ggml_compute_params * params,
  5813. const struct ggml_tensor * src0,
  5814. const struct ggml_tensor * src1,
  5815. struct ggml_tensor * dst) {
  5816. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5818. return;
  5819. }
  5820. const int ith = params->ith;
  5821. const int nth = params->nth;
  5822. const int nr = ggml_nrows(src0);
  5823. const int64_t ne0 = src0->ne[0];
  5824. const int64_t ne1 = src0->ne[1];
  5825. const int64_t ne2 = src0->ne[2];
  5826. const size_t nb00 = src0->nb[0];
  5827. const size_t nb01 = src0->nb[1];
  5828. const size_t nb02 = src0->nb[2];
  5829. const size_t nb03 = src0->nb[3];
  5830. const size_t nb10 = src1->nb[0];
  5831. const size_t nb11 = src1->nb[1];
  5832. const size_t nb12 = src1->nb[2];
  5833. const size_t nb13 = src1->nb[3];
  5834. const size_t nb0 = dst->nb[0];
  5835. const size_t nb1 = dst->nb[1];
  5836. const size_t nb2 = dst->nb[2];
  5837. const size_t nb3 = dst->nb[3];
  5838. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5839. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5840. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5841. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5842. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5843. // rows per thread
  5844. const int dr = (nr + nth - 1)/nth;
  5845. // row range for this thread
  5846. const int ir0 = dr*ith;
  5847. const int ir1 = MIN(ir0 + dr, nr);
  5848. if (nb10 == sizeof(float)) {
  5849. for (int ir = ir0; ir < ir1; ++ir) {
  5850. // src0, src1 and dst are same shape => same indices
  5851. const int i3 = ir/(ne2*ne1);
  5852. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5853. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5854. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5855. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5856. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5857. for (int i = 0; i < ne0; i++) {
  5858. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5859. }
  5860. }
  5861. }
  5862. else {
  5863. // src1 is not contiguous
  5864. GGML_ASSERT(false);
  5865. }
  5866. }
  5867. static void ggml_compute_forward_add_f16_f16(
  5868. const struct ggml_compute_params * params,
  5869. const struct ggml_tensor * src0,
  5870. const struct ggml_tensor * src1,
  5871. struct ggml_tensor * dst) {
  5872. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5874. return;
  5875. }
  5876. const int ith = params->ith;
  5877. const int nth = params->nth;
  5878. const int nr = ggml_nrows(src0);
  5879. const int64_t ne0 = src0->ne[0];
  5880. const int64_t ne1 = src0->ne[1];
  5881. const int64_t ne2 = src0->ne[2];
  5882. const size_t nb00 = src0->nb[0];
  5883. const size_t nb01 = src0->nb[1];
  5884. const size_t nb02 = src0->nb[2];
  5885. const size_t nb03 = src0->nb[3];
  5886. const size_t nb10 = src1->nb[0];
  5887. const size_t nb11 = src1->nb[1];
  5888. const size_t nb12 = src1->nb[2];
  5889. const size_t nb13 = src1->nb[3];
  5890. const size_t nb0 = dst->nb[0];
  5891. const size_t nb1 = dst->nb[1];
  5892. const size_t nb2 = dst->nb[2];
  5893. const size_t nb3 = dst->nb[3];
  5894. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5895. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5896. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5897. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5898. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5899. // rows per thread
  5900. const int dr = (nr + nth - 1)/nth;
  5901. // row range for this thread
  5902. const int ir0 = dr*ith;
  5903. const int ir1 = MIN(ir0 + dr, nr);
  5904. if (nb10 == sizeof(ggml_fp16_t)) {
  5905. for (int ir = ir0; ir < ir1; ++ir) {
  5906. // src0, src1 and dst are same shape => same indices
  5907. const int i3 = ir/(ne2*ne1);
  5908. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5909. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5910. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5911. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5912. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5913. for (int i = 0; i < ne0; i++) {
  5914. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5915. }
  5916. }
  5917. }
  5918. else {
  5919. // src1 is not contiguous
  5920. GGML_ASSERT(false);
  5921. }
  5922. }
  5923. static void ggml_compute_forward_add_q_f32(
  5924. const struct ggml_compute_params * params,
  5925. const struct ggml_tensor * src0,
  5926. const struct ggml_tensor * src1,
  5927. struct ggml_tensor * dst) {
  5928. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5930. return;
  5931. }
  5932. const int nr = ggml_nrows(src0);
  5933. const int64_t ne00 = src0->ne[0];
  5934. const int64_t ne01 = src0->ne[1];
  5935. const int64_t ne02 = src0->ne[2];
  5936. //const int64_t ne03 = src0->ne[3];
  5937. const size_t nb00 = src0->nb[0];
  5938. const size_t nb01 = src0->nb[1];
  5939. const size_t nb02 = src0->nb[2];
  5940. const size_t nb03 = src0->nb[3];
  5941. const size_t nb10 = src1->nb[0];
  5942. const size_t nb11 = src1->nb[1];
  5943. const size_t nb12 = src1->nb[2];
  5944. const size_t nb13 = src1->nb[3];
  5945. const size_t nb0 = dst->nb[0];
  5946. const size_t nb1 = dst->nb[1];
  5947. const size_t nb2 = dst->nb[2];
  5948. const size_t nb3 = dst->nb[3];
  5949. const int ith = params->ith;
  5950. const int nth = params->nth;
  5951. const enum ggml_type type = src0->type;
  5952. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5953. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5954. // we don't support permuted src0 or src1
  5955. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  5956. GGML_ASSERT(nb10 == sizeof(float));
  5957. // dst cannot be transposed or permuted
  5958. GGML_ASSERT(nb0 <= nb1);
  5959. GGML_ASSERT(nb1 <= nb2);
  5960. GGML_ASSERT(nb2 <= nb3);
  5961. GGML_ASSERT(ggml_is_quantized(src0->type));
  5962. GGML_ASSERT(dst->type == src0->type);
  5963. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5964. // rows per thread
  5965. const int dr = (nr + nth - 1)/nth;
  5966. // row range for this thread
  5967. const int ir0 = dr*ith;
  5968. const int ir1 = MIN(ir0 + dr, nr);
  5969. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5970. for (int ir = ir0; ir < ir1; ++ir) {
  5971. // src0 indices
  5972. const int i03 = ir/(ne02*ne01);
  5973. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5974. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5975. // src1 and dst are same shape as src0 => same indices
  5976. const int i13 = i03;
  5977. const int i12 = i02;
  5978. const int i11 = i01;
  5979. const int i3 = i03;
  5980. const int i2 = i02;
  5981. const int i1 = i01;
  5982. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5983. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5984. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5985. assert(ne00 % 32 == 0);
  5986. // unquantize row from src0 to temp buffer
  5987. dequantize_row_q(src0_row, wdata, ne00);
  5988. // add src1
  5989. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5990. // quantize row to dst
  5991. quantize_row_q(wdata, dst_row, ne00);
  5992. }
  5993. }
  5994. static void ggml_compute_forward_add(
  5995. const struct ggml_compute_params * params,
  5996. const struct ggml_tensor * src0,
  5997. const struct ggml_tensor * src1,
  5998. struct ggml_tensor * dst) {
  5999. switch (src0->type) {
  6000. case GGML_TYPE_F32:
  6001. {
  6002. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6003. } break;
  6004. case GGML_TYPE_F16:
  6005. {
  6006. if (src1->type == GGML_TYPE_F16) {
  6007. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6008. }
  6009. else if (src1->type == GGML_TYPE_F32) {
  6010. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6011. }
  6012. else {
  6013. GGML_ASSERT(false);
  6014. }
  6015. } break;
  6016. case GGML_TYPE_Q4_0:
  6017. case GGML_TYPE_Q4_1:
  6018. case GGML_TYPE_Q5_0:
  6019. case GGML_TYPE_Q5_1:
  6020. case GGML_TYPE_Q8_0:
  6021. {
  6022. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6023. } break;
  6024. default:
  6025. {
  6026. GGML_ASSERT(false);
  6027. } break;
  6028. }
  6029. }
  6030. // ggml_compute_forward_add1
  6031. static void ggml_compute_forward_add1_f32(
  6032. const struct ggml_compute_params * params,
  6033. const struct ggml_tensor * src0,
  6034. const struct ggml_tensor * src1,
  6035. struct ggml_tensor * dst) {
  6036. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6037. GGML_ASSERT(ggml_is_scalar(src1));
  6038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6039. return;
  6040. }
  6041. const int ith = params->ith;
  6042. const int nth = params->nth;
  6043. const int nr = ggml_nrows(src0);
  6044. const int64_t ne0 = src0->ne[0];
  6045. const int64_t ne1 = src0->ne[1];
  6046. const int64_t ne2 = src0->ne[2];
  6047. const size_t nb00 = src0->nb[0];
  6048. const size_t nb01 = src0->nb[1];
  6049. const size_t nb02 = src0->nb[2];
  6050. const size_t nb03 = src0->nb[3];
  6051. const size_t nb0 = dst->nb[0];
  6052. const size_t nb1 = dst->nb[1];
  6053. const size_t nb2 = dst->nb[2];
  6054. const size_t nb3 = dst->nb[3];
  6055. GGML_ASSERT( nb0 == sizeof(float));
  6056. GGML_ASSERT(nb00 == sizeof(float));
  6057. // rows per thread
  6058. const int dr = (nr + nth - 1)/nth;
  6059. // row range for this thread
  6060. const int ir0 = dr*ith;
  6061. const int ir1 = MIN(ir0 + dr, nr);
  6062. for (int ir = ir0; ir < ir1; ++ir) {
  6063. // src0 and dst are same shape => same indices
  6064. const int i3 = ir/(ne2*ne1);
  6065. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6066. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6067. #ifdef GGML_USE_ACCELERATE
  6068. UNUSED(ggml_vec_add1_f32);
  6069. vDSP_vadd(
  6070. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6071. (float *) ((char *) src1->data), 0,
  6072. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6073. ne0);
  6074. #else
  6075. ggml_vec_add1_f32(ne0,
  6076. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6077. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6078. *(float *) src1->data);
  6079. #endif
  6080. }
  6081. }
  6082. static void ggml_compute_forward_add1_f16_f32(
  6083. const struct ggml_compute_params * params,
  6084. const struct ggml_tensor * src0,
  6085. const struct ggml_tensor * src1,
  6086. struct ggml_tensor * dst) {
  6087. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6088. GGML_ASSERT(ggml_is_scalar(src1));
  6089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6090. return;
  6091. }
  6092. // scalar to add
  6093. const float v = *(float *) src1->data;
  6094. const int ith = params->ith;
  6095. const int nth = params->nth;
  6096. const int nr = ggml_nrows(src0);
  6097. const int64_t ne0 = src0->ne[0];
  6098. const int64_t ne1 = src0->ne[1];
  6099. const int64_t ne2 = src0->ne[2];
  6100. const size_t nb00 = src0->nb[0];
  6101. const size_t nb01 = src0->nb[1];
  6102. const size_t nb02 = src0->nb[2];
  6103. const size_t nb03 = src0->nb[3];
  6104. const size_t nb0 = dst->nb[0];
  6105. const size_t nb1 = dst->nb[1];
  6106. const size_t nb2 = dst->nb[2];
  6107. const size_t nb3 = dst->nb[3];
  6108. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6109. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6110. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6111. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6112. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6113. // rows per thread
  6114. const int dr = (nr + nth - 1)/nth;
  6115. // row range for this thread
  6116. const int ir0 = dr*ith;
  6117. const int ir1 = MIN(ir0 + dr, nr);
  6118. for (int ir = ir0; ir < ir1; ++ir) {
  6119. // src0 and dst are same shape => same indices
  6120. const int i3 = ir/(ne2*ne1);
  6121. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6122. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6123. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6124. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6125. for (int i = 0; i < ne0; i++) {
  6126. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6127. }
  6128. }
  6129. }
  6130. static void ggml_compute_forward_add1_f16_f16(
  6131. const struct ggml_compute_params * params,
  6132. const struct ggml_tensor * src0,
  6133. const struct ggml_tensor * src1,
  6134. struct ggml_tensor * dst) {
  6135. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6136. GGML_ASSERT(ggml_is_scalar(src1));
  6137. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6138. return;
  6139. }
  6140. // scalar to add
  6141. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6142. const int ith = params->ith;
  6143. const int nth = params->nth;
  6144. const int nr = ggml_nrows(src0);
  6145. const int64_t ne0 = src0->ne[0];
  6146. const int64_t ne1 = src0->ne[1];
  6147. const int64_t ne2 = src0->ne[2];
  6148. const size_t nb00 = src0->nb[0];
  6149. const size_t nb01 = src0->nb[1];
  6150. const size_t nb02 = src0->nb[2];
  6151. const size_t nb03 = src0->nb[3];
  6152. const size_t nb0 = dst->nb[0];
  6153. const size_t nb1 = dst->nb[1];
  6154. const size_t nb2 = dst->nb[2];
  6155. const size_t nb3 = dst->nb[3];
  6156. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6157. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6158. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6159. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6160. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6161. // rows per thread
  6162. const int dr = (nr + nth - 1)/nth;
  6163. // row range for this thread
  6164. const int ir0 = dr*ith;
  6165. const int ir1 = MIN(ir0 + dr, nr);
  6166. for (int ir = ir0; ir < ir1; ++ir) {
  6167. // src0 and dst are same shape => same indices
  6168. const int i3 = ir/(ne2*ne1);
  6169. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6170. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6171. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6172. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6173. for (int i = 0; i < ne0; i++) {
  6174. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6175. }
  6176. }
  6177. }
  6178. static void ggml_compute_forward_add1_q_f32(
  6179. const struct ggml_compute_params * params,
  6180. const struct ggml_tensor * src0,
  6181. const struct ggml_tensor * src1,
  6182. struct ggml_tensor * dst) {
  6183. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6184. GGML_ASSERT(ggml_is_scalar(src1));
  6185. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6186. return;
  6187. }
  6188. // scalar to add
  6189. const float v = *(float *) src1->data;
  6190. const int ith = params->ith;
  6191. const int nth = params->nth;
  6192. const int nr = ggml_nrows(src0);
  6193. const int64_t ne0 = src0->ne[0];
  6194. const int64_t ne1 = src0->ne[1];
  6195. const int64_t ne2 = src0->ne[2];
  6196. const size_t nb00 = src0->nb[0];
  6197. const size_t nb01 = src0->nb[1];
  6198. const size_t nb02 = src0->nb[2];
  6199. const size_t nb03 = src0->nb[3];
  6200. const size_t nb0 = dst->nb[0];
  6201. const size_t nb1 = dst->nb[1];
  6202. const size_t nb2 = dst->nb[2];
  6203. const size_t nb3 = dst->nb[3];
  6204. const enum ggml_type type = src0->type;
  6205. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6206. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6207. // we don't support permuted src0
  6208. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6209. // dst cannot be transposed or permuted
  6210. GGML_ASSERT(nb0 <= nb1);
  6211. GGML_ASSERT(nb1 <= nb2);
  6212. GGML_ASSERT(nb2 <= nb3);
  6213. GGML_ASSERT(ggml_is_quantized(src0->type));
  6214. GGML_ASSERT(dst->type == src0->type);
  6215. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6216. // rows per thread
  6217. const int dr = (nr + nth - 1)/nth;
  6218. // row range for this thread
  6219. const int ir0 = dr*ith;
  6220. const int ir1 = MIN(ir0 + dr, nr);
  6221. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6222. for (int ir = ir0; ir < ir1; ++ir) {
  6223. // src0 and dst are same shape => same indices
  6224. const int i3 = ir/(ne2*ne1);
  6225. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6226. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6227. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6228. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6229. assert(ne0 % 32 == 0);
  6230. // unquantize row from src0 to temp buffer
  6231. dequantize_row_q(src0_row, wdata, ne0);
  6232. // add src1
  6233. ggml_vec_acc1_f32(ne0, wdata, v);
  6234. // quantize row to dst
  6235. quantize_row_q(wdata, dst_row, ne0);
  6236. }
  6237. }
  6238. static void ggml_compute_forward_add1(
  6239. const struct ggml_compute_params * params,
  6240. const struct ggml_tensor * src0,
  6241. const struct ggml_tensor * src1,
  6242. struct ggml_tensor * dst) {
  6243. switch (src0->type) {
  6244. case GGML_TYPE_F32:
  6245. {
  6246. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6247. } break;
  6248. case GGML_TYPE_F16:
  6249. {
  6250. if (src1->type == GGML_TYPE_F16) {
  6251. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6252. }
  6253. else if (src1->type == GGML_TYPE_F32) {
  6254. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6255. }
  6256. else {
  6257. GGML_ASSERT(false);
  6258. }
  6259. } break;
  6260. case GGML_TYPE_Q4_0:
  6261. case GGML_TYPE_Q4_1:
  6262. case GGML_TYPE_Q5_0:
  6263. case GGML_TYPE_Q5_1:
  6264. case GGML_TYPE_Q8_0:
  6265. case GGML_TYPE_Q8_1:
  6266. {
  6267. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6268. } break;
  6269. default:
  6270. {
  6271. GGML_ASSERT(false);
  6272. } break;
  6273. }
  6274. }
  6275. // ggml_compute_forward_acc
  6276. static void ggml_compute_forward_acc_f32(
  6277. const struct ggml_compute_params * params,
  6278. const struct ggml_tensor * src0,
  6279. const struct ggml_tensor * src1,
  6280. const struct ggml_tensor * opt0,
  6281. struct ggml_tensor * dst) {
  6282. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6283. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6284. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6285. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6286. // view src0 and dst with these strides and data offset inbytes during acc
  6287. // nb0 is implicitely element_size because src0 and dst are contiguous
  6288. size_t nb1 = ((int32_t *) opt0->data)[0];
  6289. size_t nb2 = ((int32_t *) opt0->data)[1];
  6290. size_t nb3 = ((int32_t *) opt0->data)[2];
  6291. size_t offset = ((int32_t *) opt0->data)[3];
  6292. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6293. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6294. // memcpy needs to be synchronized across threads to avoid race conditions.
  6295. // => do it in INIT phase
  6296. memcpy(
  6297. ((char *) dst->data),
  6298. ((char *) src0->data),
  6299. ggml_nbytes(dst));
  6300. }
  6301. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6302. return;
  6303. }
  6304. const int ith = params->ith;
  6305. const int nth = params->nth;
  6306. const int nr = ggml_nrows(src1);
  6307. const int nc = src1->ne[0];
  6308. const int64_t ne10 = src1->ne[0];
  6309. const int64_t ne11 = src1->ne[1];
  6310. const int64_t ne12 = src1->ne[2];
  6311. const int64_t ne13 = src1->ne[3];
  6312. const size_t nb10 = src1->nb[0];
  6313. const size_t nb11 = src1->nb[1];
  6314. const size_t nb12 = src1->nb[2];
  6315. const size_t nb13 = src1->nb[3];
  6316. // src0 and dst as viewed during acc
  6317. const size_t nb0 = ggml_element_size(src0);
  6318. const size_t nb00 = nb0;
  6319. const size_t nb01 = nb1;
  6320. const size_t nb02 = nb2;
  6321. const size_t nb03 = nb3;
  6322. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6323. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6324. GGML_ASSERT(nb10 == sizeof(float));
  6325. // rows per thread
  6326. const int dr = (nr + nth - 1)/nth;
  6327. // row range for this thread
  6328. const int ir0 = dr*ith;
  6329. const int ir1 = MIN(ir0 + dr, nr);
  6330. for (int ir = ir0; ir < ir1; ++ir) {
  6331. // src0 and dst are viewed with shape of src1 and offset
  6332. // => same indices
  6333. const int i3 = ir/(ne12*ne11);
  6334. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6335. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6336. #ifdef GGML_USE_ACCELERATE
  6337. vDSP_vadd(
  6338. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6339. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6340. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6341. #else
  6342. ggml_vec_add_f32(nc,
  6343. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6344. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6345. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6346. #endif
  6347. }
  6348. }
  6349. static void ggml_compute_forward_acc(
  6350. const struct ggml_compute_params * params,
  6351. const struct ggml_tensor * src0,
  6352. const struct ggml_tensor * src1,
  6353. const struct ggml_tensor * opt0,
  6354. struct ggml_tensor * dst) {
  6355. switch (src0->type) {
  6356. case GGML_TYPE_F32:
  6357. {
  6358. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6359. } break;
  6360. case GGML_TYPE_F16:
  6361. case GGML_TYPE_Q4_0:
  6362. case GGML_TYPE_Q4_1:
  6363. case GGML_TYPE_Q5_0:
  6364. case GGML_TYPE_Q5_1:
  6365. case GGML_TYPE_Q8_0:
  6366. case GGML_TYPE_Q8_1:
  6367. default:
  6368. {
  6369. GGML_ASSERT(false);
  6370. } break;
  6371. }
  6372. }
  6373. // ggml_compute_forward_sub
  6374. static void ggml_compute_forward_sub_f32(
  6375. const struct ggml_compute_params * params,
  6376. const struct ggml_tensor * src0,
  6377. const struct ggml_tensor * src1,
  6378. struct ggml_tensor * dst) {
  6379. assert(params->ith == 0);
  6380. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6382. return;
  6383. }
  6384. const int nr = ggml_nrows(src0);
  6385. const int64_t ne0 = src0->ne[0];
  6386. const int64_t ne1 = src0->ne[1];
  6387. const int64_t ne2 = src0->ne[2];
  6388. const size_t nb00 = src0->nb[0];
  6389. const size_t nb01 = src0->nb[1];
  6390. const size_t nb02 = src0->nb[2];
  6391. const size_t nb03 = src0->nb[3];
  6392. const size_t nb10 = src1->nb[0];
  6393. const size_t nb11 = src1->nb[1];
  6394. const size_t nb12 = src1->nb[2];
  6395. const size_t nb13 = src1->nb[3];
  6396. const size_t nb0 = dst->nb[0];
  6397. const size_t nb1 = dst->nb[1];
  6398. const size_t nb2 = dst->nb[2];
  6399. const size_t nb3 = dst->nb[3];
  6400. GGML_ASSERT( nb0 == sizeof(float));
  6401. GGML_ASSERT(nb00 == sizeof(float));
  6402. if (nb10 == sizeof(float)) {
  6403. for (int ir = 0; ir < nr; ++ir) {
  6404. // src0, src1 and dst are same shape => same indices
  6405. const int i3 = ir/(ne2*ne1);
  6406. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6407. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6408. #ifdef GGML_USE_ACCELERATE
  6409. vDSP_vsub(
  6410. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6411. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6412. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6413. ne0);
  6414. #else
  6415. ggml_vec_sub_f32(ne0,
  6416. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6417. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6418. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6419. #endif
  6420. // }
  6421. // }
  6422. }
  6423. } else {
  6424. // src1 is not contiguous
  6425. for (int ir = 0; ir < nr; ++ir) {
  6426. // src0, src1 and dst are same shape => same indices
  6427. const int i3 = ir/(ne2*ne1);
  6428. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6429. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6430. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6431. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6432. for (int i0 = 0; i0 < ne0; i0++) {
  6433. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6434. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6435. }
  6436. }
  6437. }
  6438. }
  6439. static void ggml_compute_forward_sub(
  6440. const struct ggml_compute_params * params,
  6441. const struct ggml_tensor * src0,
  6442. const struct ggml_tensor * src1,
  6443. struct ggml_tensor * dst) {
  6444. switch (src0->type) {
  6445. case GGML_TYPE_F32:
  6446. {
  6447. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6448. } break;
  6449. default:
  6450. {
  6451. GGML_ASSERT(false);
  6452. } break;
  6453. }
  6454. }
  6455. // ggml_compute_forward_mul
  6456. static void ggml_compute_forward_mul_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. const struct ggml_tensor * src1,
  6460. struct ggml_tensor * dst) {
  6461. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6463. return;
  6464. }
  6465. const int ith = params->ith;
  6466. const int nth = params->nth;
  6467. #ifdef GGML_USE_CUBLAS
  6468. if (src1->backend == GGML_BACKEND_CUDA) {
  6469. if (ith == 0) {
  6470. ggml_cuda_mul(src0, src1, dst);
  6471. }
  6472. return;
  6473. }
  6474. #endif
  6475. const int64_t nr = ggml_nrows(src0);
  6476. const int64_t ne00 = src0->ne[0];
  6477. const int64_t ne01 = src0->ne[1];
  6478. const int64_t ne02 = src0->ne[2];
  6479. const int64_t ne10 = src1->ne[0];
  6480. const int64_t ne11 = src1->ne[1];
  6481. const int64_t ne12 = src1->ne[2];
  6482. const int64_t ne13 = src1->ne[3];
  6483. const size_t nb00 = src0->nb[0];
  6484. const size_t nb01 = src0->nb[1];
  6485. const size_t nb02 = src0->nb[2];
  6486. const size_t nb03 = src0->nb[3];
  6487. const size_t nb10 = src1->nb[0];
  6488. const size_t nb11 = src1->nb[1];
  6489. const size_t nb12 = src1->nb[2];
  6490. const size_t nb13 = src1->nb[3];
  6491. const size_t nb0 = dst->nb[0];
  6492. const size_t nb1 = dst->nb[1];
  6493. const size_t nb2 = dst->nb[2];
  6494. const size_t nb3 = dst->nb[3];
  6495. GGML_ASSERT( nb0 == sizeof(float));
  6496. GGML_ASSERT(nb00 == sizeof(float));
  6497. GGML_ASSERT(ne00 == ne10);
  6498. if (nb10 == sizeof(float)) {
  6499. for (int64_t ir = ith; ir < nr; ir += nth) {
  6500. // src0 and dst are same shape => same indices
  6501. const int64_t i03 = ir/(ne02*ne01);
  6502. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6503. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6504. const int64_t i13 = i03 % ne13;
  6505. const int64_t i12 = i02 % ne12;
  6506. const int64_t i11 = i01 % ne11;
  6507. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6508. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6509. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6510. #ifdef GGML_USE_ACCELERATE
  6511. UNUSED(ggml_vec_mul_f32);
  6512. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6513. #else
  6514. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6515. #endif
  6516. // }
  6517. // }
  6518. }
  6519. } else {
  6520. // src1 is not contiguous
  6521. for (int64_t ir = ith; ir < nr; ir += nth) {
  6522. // src0 and dst are same shape => same indices
  6523. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6524. const int64_t i03 = ir/(ne02*ne01);
  6525. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6526. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6527. const int64_t i13 = i03 % ne13;
  6528. const int64_t i12 = i02 % ne12;
  6529. const int64_t i11 = i01 % ne11;
  6530. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6531. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6532. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6533. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6534. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6535. }
  6536. }
  6537. }
  6538. }
  6539. static void ggml_compute_forward_mul(
  6540. const struct ggml_compute_params * params,
  6541. const struct ggml_tensor * src0,
  6542. const struct ggml_tensor * src1,
  6543. struct ggml_tensor * dst) {
  6544. switch (src0->type) {
  6545. case GGML_TYPE_F32:
  6546. {
  6547. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6548. } break;
  6549. default:
  6550. {
  6551. GGML_ASSERT(false);
  6552. } break;
  6553. }
  6554. }
  6555. // ggml_compute_forward_div
  6556. static void ggml_compute_forward_div_f32(
  6557. const struct ggml_compute_params * params,
  6558. const struct ggml_tensor * src0,
  6559. const struct ggml_tensor * src1,
  6560. struct ggml_tensor * dst) {
  6561. assert(params->ith == 0);
  6562. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6564. return;
  6565. }
  6566. const int nr = ggml_nrows(src0);
  6567. const int64_t ne0 = src0->ne[0];
  6568. const int64_t ne1 = src0->ne[1];
  6569. const int64_t ne2 = src0->ne[2];
  6570. const size_t nb00 = src0->nb[0];
  6571. const size_t nb01 = src0->nb[1];
  6572. const size_t nb02 = src0->nb[2];
  6573. const size_t nb03 = src0->nb[3];
  6574. const size_t nb10 = src1->nb[0];
  6575. const size_t nb11 = src1->nb[1];
  6576. const size_t nb12 = src1->nb[2];
  6577. const size_t nb13 = src1->nb[3];
  6578. const size_t nb0 = dst->nb[0];
  6579. const size_t nb1 = dst->nb[1];
  6580. const size_t nb2 = dst->nb[2];
  6581. const size_t nb3 = dst->nb[3];
  6582. GGML_ASSERT( nb0 == sizeof(float));
  6583. GGML_ASSERT(nb00 == sizeof(float));
  6584. if (nb10 == sizeof(float)) {
  6585. for (int ir = 0; ir < nr; ++ir) {
  6586. // src0, src1 and dst are same shape => same indices
  6587. const int i3 = ir/(ne2*ne1);
  6588. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6589. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6590. #ifdef GGML_USE_ACCELERATE
  6591. vDSP_vdiv(
  6592. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6593. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6594. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6595. ne0);
  6596. #else
  6597. ggml_vec_div_f32(ne0,
  6598. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6599. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6600. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6601. #endif
  6602. // }
  6603. // }
  6604. }
  6605. } else {
  6606. // src1 is not contiguous
  6607. for (int ir = 0; ir < nr; ++ir) {
  6608. // src0, src1 and dst are same shape => same indices
  6609. const int i3 = ir/(ne2*ne1);
  6610. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6611. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6612. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6613. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6614. for (int i0 = 0; i0 < ne0; i0++) {
  6615. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6616. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6617. }
  6618. }
  6619. }
  6620. }
  6621. static void ggml_compute_forward_div(
  6622. const struct ggml_compute_params * params,
  6623. const struct ggml_tensor * src0,
  6624. const struct ggml_tensor * src1,
  6625. struct ggml_tensor * dst) {
  6626. switch (src0->type) {
  6627. case GGML_TYPE_F32:
  6628. {
  6629. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6630. } break;
  6631. default:
  6632. {
  6633. GGML_ASSERT(false);
  6634. } break;
  6635. }
  6636. }
  6637. // ggml_compute_forward_sqr
  6638. static void ggml_compute_forward_sqr_f32(
  6639. const struct ggml_compute_params * params,
  6640. const struct ggml_tensor * src0,
  6641. struct ggml_tensor * dst) {
  6642. assert(params->ith == 0);
  6643. assert(ggml_are_same_shape(src0, dst));
  6644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6645. return;
  6646. }
  6647. const int n = ggml_nrows(src0);
  6648. const int nc = src0->ne[0];
  6649. assert( dst->nb[0] == sizeof(float));
  6650. assert(src0->nb[0] == sizeof(float));
  6651. for (int i = 0; i < n; i++) {
  6652. ggml_vec_sqr_f32(nc,
  6653. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6654. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6655. }
  6656. }
  6657. static void ggml_compute_forward_sqr(
  6658. const struct ggml_compute_params * params,
  6659. const struct ggml_tensor * src0,
  6660. struct ggml_tensor * dst) {
  6661. switch (src0->type) {
  6662. case GGML_TYPE_F32:
  6663. {
  6664. ggml_compute_forward_sqr_f32(params, src0, dst);
  6665. } break;
  6666. default:
  6667. {
  6668. GGML_ASSERT(false);
  6669. } break;
  6670. }
  6671. }
  6672. // ggml_compute_forward_sqrt
  6673. static void ggml_compute_forward_sqrt_f32(
  6674. const struct ggml_compute_params * params,
  6675. const struct ggml_tensor * src0,
  6676. struct ggml_tensor * dst) {
  6677. assert(params->ith == 0);
  6678. assert(ggml_are_same_shape(src0, dst));
  6679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6680. return;
  6681. }
  6682. const int n = ggml_nrows(src0);
  6683. const int nc = src0->ne[0];
  6684. assert( dst->nb[0] == sizeof(float));
  6685. assert(src0->nb[0] == sizeof(float));
  6686. for (int i = 0; i < n; i++) {
  6687. ggml_vec_sqrt_f32(nc,
  6688. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6689. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6690. }
  6691. }
  6692. static void ggml_compute_forward_sqrt(
  6693. const struct ggml_compute_params * params,
  6694. const struct ggml_tensor * src0,
  6695. struct ggml_tensor * dst) {
  6696. switch (src0->type) {
  6697. case GGML_TYPE_F32:
  6698. {
  6699. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6700. } break;
  6701. default:
  6702. {
  6703. GGML_ASSERT(false);
  6704. } break;
  6705. }
  6706. }
  6707. // ggml_compute_forward_log
  6708. static void ggml_compute_forward_log_f32(
  6709. const struct ggml_compute_params * params,
  6710. const struct ggml_tensor * src0,
  6711. struct ggml_tensor * dst) {
  6712. GGML_ASSERT(params->ith == 0);
  6713. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6714. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6715. return;
  6716. }
  6717. const int n = ggml_nrows(src0);
  6718. const int nc = src0->ne[0];
  6719. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6720. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6721. for (int i = 0; i < n; i++) {
  6722. ggml_vec_log_f32(nc,
  6723. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6724. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6725. }
  6726. }
  6727. static void ggml_compute_forward_log(
  6728. const struct ggml_compute_params * params,
  6729. const struct ggml_tensor * src0,
  6730. struct ggml_tensor * dst) {
  6731. switch (src0->type) {
  6732. case GGML_TYPE_F32:
  6733. {
  6734. ggml_compute_forward_log_f32(params, src0, dst);
  6735. } break;
  6736. default:
  6737. {
  6738. GGML_ASSERT(false);
  6739. } break;
  6740. }
  6741. }
  6742. // ggml_compute_forward_sum
  6743. static void ggml_compute_forward_sum_f32(
  6744. const struct ggml_compute_params * params,
  6745. const struct ggml_tensor * src0,
  6746. struct ggml_tensor * dst) {
  6747. assert(params->ith == 0);
  6748. assert(ggml_is_scalar(dst));
  6749. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6750. return;
  6751. }
  6752. assert(ggml_is_scalar(dst));
  6753. assert(src0->nb[0] == sizeof(float));
  6754. const int64_t ne00 = src0->ne[0];
  6755. const int64_t ne01 = src0->ne[1];
  6756. const int64_t ne02 = src0->ne[2];
  6757. const int64_t ne03 = src0->ne[3];
  6758. const size_t nb01 = src0->nb[1];
  6759. const size_t nb02 = src0->nb[2];
  6760. const size_t nb03 = src0->nb[3];
  6761. ggml_float sum = 0;
  6762. ggml_float row_sum = 0;
  6763. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6764. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6765. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6766. ggml_vec_sum_ggf(ne00,
  6767. &row_sum,
  6768. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6769. sum += row_sum;
  6770. }
  6771. }
  6772. }
  6773. ((float *) dst->data)[0] = sum;
  6774. }
  6775. static void ggml_compute_forward_sum(
  6776. const struct ggml_compute_params * params,
  6777. const struct ggml_tensor * src0,
  6778. struct ggml_tensor * dst) {
  6779. switch (src0->type) {
  6780. case GGML_TYPE_F32:
  6781. {
  6782. ggml_compute_forward_sum_f32(params, src0, dst);
  6783. } break;
  6784. default:
  6785. {
  6786. GGML_ASSERT(false);
  6787. } break;
  6788. }
  6789. }
  6790. // ggml_compute_forward_sum_rows
  6791. static void ggml_compute_forward_sum_rows_f32(
  6792. const struct ggml_compute_params * params,
  6793. const struct ggml_tensor * src0,
  6794. struct ggml_tensor * dst) {
  6795. GGML_ASSERT(params->ith == 0);
  6796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6797. return;
  6798. }
  6799. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6800. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6801. const int64_t ne00 = src0->ne[0];
  6802. const int64_t ne01 = src0->ne[1];
  6803. const int64_t ne02 = src0->ne[2];
  6804. const int64_t ne03 = src0->ne[3];
  6805. const int64_t ne0 = dst->ne[0];
  6806. const int64_t ne1 = dst->ne[1];
  6807. const int64_t ne2 = dst->ne[2];
  6808. const int64_t ne3 = dst->ne[3];
  6809. GGML_ASSERT(ne0 == 1);
  6810. GGML_ASSERT(ne1 == ne01);
  6811. GGML_ASSERT(ne2 == ne02);
  6812. GGML_ASSERT(ne3 == ne03);
  6813. const size_t nb01 = src0->nb[1];
  6814. const size_t nb02 = src0->nb[2];
  6815. const size_t nb03 = src0->nb[3];
  6816. const size_t nb1 = dst->nb[1];
  6817. const size_t nb2 = dst->nb[2];
  6818. const size_t nb3 = dst->nb[3];
  6819. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6820. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6821. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6822. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6823. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6824. float row_sum = 0;
  6825. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6826. dst_row[0] = row_sum;
  6827. }
  6828. }
  6829. }
  6830. }
  6831. static void ggml_compute_forward_sum_rows(
  6832. const struct ggml_compute_params * params,
  6833. const struct ggml_tensor * src0,
  6834. struct ggml_tensor * dst) {
  6835. switch (src0->type) {
  6836. case GGML_TYPE_F32:
  6837. {
  6838. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6839. } break;
  6840. default:
  6841. {
  6842. GGML_ASSERT(false);
  6843. } break;
  6844. }
  6845. }
  6846. // ggml_compute_forward_mean
  6847. static void ggml_compute_forward_mean_f32(
  6848. const struct ggml_compute_params * params,
  6849. const struct ggml_tensor * src0,
  6850. struct ggml_tensor * dst) {
  6851. assert(params->ith == 0);
  6852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6853. return;
  6854. }
  6855. assert(src0->nb[0] == sizeof(float));
  6856. const int64_t ne00 = src0->ne[0];
  6857. const int64_t ne01 = src0->ne[1];
  6858. const int64_t ne02 = src0->ne[2];
  6859. const int64_t ne03 = src0->ne[3];
  6860. const size_t nb01 = src0->nb[1];
  6861. const size_t nb02 = src0->nb[2];
  6862. const size_t nb03 = src0->nb[3];
  6863. const int64_t ne0 = dst->ne[0];
  6864. const int64_t ne1 = dst->ne[1];
  6865. const int64_t ne2 = dst->ne[2];
  6866. const int64_t ne3 = dst->ne[3];
  6867. assert(ne0 == 1);
  6868. assert(ne1 == ne01);
  6869. assert(ne2 == ne02);
  6870. assert(ne3 == ne03);
  6871. UNUSED(ne0);
  6872. UNUSED(ne1);
  6873. UNUSED(ne2);
  6874. UNUSED(ne3);
  6875. const size_t nb1 = dst->nb[1];
  6876. const size_t nb2 = dst->nb[2];
  6877. const size_t nb3 = dst->nb[3];
  6878. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6880. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6881. ggml_vec_sum_f32(ne00,
  6882. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6883. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6884. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6885. }
  6886. }
  6887. }
  6888. }
  6889. static void ggml_compute_forward_mean(
  6890. const struct ggml_compute_params * params,
  6891. const struct ggml_tensor * src0,
  6892. struct ggml_tensor * dst) {
  6893. switch (src0->type) {
  6894. case GGML_TYPE_F32:
  6895. {
  6896. ggml_compute_forward_mean_f32(params, src0, dst);
  6897. } break;
  6898. default:
  6899. {
  6900. GGML_ASSERT(false);
  6901. } break;
  6902. }
  6903. }
  6904. // ggml_compute_forward_repeat
  6905. static void ggml_compute_forward_repeat_f32(
  6906. const struct ggml_compute_params * params,
  6907. const struct ggml_tensor * src0,
  6908. struct ggml_tensor * dst) {
  6909. GGML_ASSERT(params->ith == 0);
  6910. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6911. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6912. return;
  6913. }
  6914. const int64_t ne0 = dst->ne[0];
  6915. const int64_t ne1 = dst->ne[1];
  6916. const int64_t ne2 = dst->ne[2];
  6917. const int64_t ne3 = dst->ne[3];
  6918. const int64_t ne00 = src0->ne[0];
  6919. const int64_t ne01 = src0->ne[1];
  6920. const int64_t ne02 = src0->ne[2];
  6921. const int64_t ne03 = src0->ne[3];
  6922. const size_t nb0 = dst->nb[0];
  6923. const size_t nb1 = dst->nb[1];
  6924. const size_t nb2 = dst->nb[2];
  6925. const size_t nb3 = dst->nb[3];
  6926. const size_t nb00 = src0->nb[0];
  6927. const size_t nb01 = src0->nb[1];
  6928. const size_t nb02 = src0->nb[2];
  6929. const size_t nb03 = src0->nb[3];
  6930. // guaranteed to be an integer due to the check in ggml_can_repeat
  6931. const int nr0 = (int)(ne0/ne00);
  6932. const int nr1 = (int)(ne1/ne01);
  6933. const int nr2 = (int)(ne2/ne02);
  6934. const int nr3 = (int)(ne3/ne03);
  6935. // TODO: support for transposed / permuted tensors
  6936. GGML_ASSERT(nb0 == sizeof(float));
  6937. GGML_ASSERT(nb00 == sizeof(float));
  6938. // TODO: maybe this is not optimal?
  6939. for (int i3 = 0; i3 < nr3; i3++) {
  6940. for (int k3 = 0; k3 < ne03; k3++) {
  6941. for (int i2 = 0; i2 < nr2; i2++) {
  6942. for (int k2 = 0; k2 < ne02; k2++) {
  6943. for (int i1 = 0; i1 < nr1; i1++) {
  6944. for (int k1 = 0; k1 < ne01; k1++) {
  6945. for (int i0 = 0; i0 < nr0; i0++) {
  6946. ggml_vec_cpy_f32(ne00,
  6947. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6948. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6949. }
  6950. }
  6951. }
  6952. }
  6953. }
  6954. }
  6955. }
  6956. }
  6957. static void ggml_compute_forward_repeat(
  6958. const struct ggml_compute_params * params,
  6959. const struct ggml_tensor * src0,
  6960. struct ggml_tensor * dst) {
  6961. switch (src0->type) {
  6962. case GGML_TYPE_F32:
  6963. {
  6964. ggml_compute_forward_repeat_f32(params, src0, dst);
  6965. } break;
  6966. default:
  6967. {
  6968. GGML_ASSERT(false);
  6969. } break;
  6970. }
  6971. }
  6972. // ggml_compute_forward_abs
  6973. static void ggml_compute_forward_abs_f32(
  6974. const struct ggml_compute_params * params,
  6975. const struct ggml_tensor * src0,
  6976. struct ggml_tensor * dst) {
  6977. assert(params->ith == 0);
  6978. assert(ggml_are_same_shape(src0, dst));
  6979. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6980. return;
  6981. }
  6982. const int n = ggml_nrows(src0);
  6983. const int nc = src0->ne[0];
  6984. assert(dst->nb[0] == sizeof(float));
  6985. assert(src0->nb[0] == sizeof(float));
  6986. for (int i = 0; i < n; i++) {
  6987. ggml_vec_abs_f32(nc,
  6988. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6989. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6990. }
  6991. }
  6992. static void ggml_compute_forward_abs(
  6993. const struct ggml_compute_params * params,
  6994. const struct ggml_tensor * src0,
  6995. struct ggml_tensor * dst) {
  6996. switch (src0->type) {
  6997. case GGML_TYPE_F32:
  6998. {
  6999. ggml_compute_forward_abs_f32(params, src0, dst);
  7000. } break;
  7001. default:
  7002. {
  7003. GGML_ASSERT(false);
  7004. } break;
  7005. }
  7006. }
  7007. // ggml_compute_forward_sgn
  7008. static void ggml_compute_forward_sgn_f32(
  7009. const struct ggml_compute_params * params,
  7010. const struct ggml_tensor * src0,
  7011. struct ggml_tensor * dst) {
  7012. assert(params->ith == 0);
  7013. assert(ggml_are_same_shape(src0, dst));
  7014. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7015. return;
  7016. }
  7017. const int n = ggml_nrows(src0);
  7018. const int nc = src0->ne[0];
  7019. assert(dst->nb[0] == sizeof(float));
  7020. assert(src0->nb[0] == sizeof(float));
  7021. for (int i = 0; i < n; i++) {
  7022. ggml_vec_sgn_f32(nc,
  7023. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7024. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7025. }
  7026. }
  7027. static void ggml_compute_forward_sgn(
  7028. const struct ggml_compute_params * params,
  7029. const struct ggml_tensor * src0,
  7030. struct ggml_tensor * dst) {
  7031. switch (src0->type) {
  7032. case GGML_TYPE_F32:
  7033. {
  7034. ggml_compute_forward_sgn_f32(params, src0, dst);
  7035. } break;
  7036. default:
  7037. {
  7038. GGML_ASSERT(false);
  7039. } break;
  7040. }
  7041. }
  7042. // ggml_compute_forward_neg
  7043. static void ggml_compute_forward_neg_f32(
  7044. const struct ggml_compute_params * params,
  7045. const struct ggml_tensor * src0,
  7046. struct ggml_tensor * dst) {
  7047. assert(params->ith == 0);
  7048. assert(ggml_are_same_shape(src0, dst));
  7049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7050. return;
  7051. }
  7052. const int n = ggml_nrows(src0);
  7053. const int nc = src0->ne[0];
  7054. assert(dst->nb[0] == sizeof(float));
  7055. assert(src0->nb[0] == sizeof(float));
  7056. for (int i = 0; i < n; i++) {
  7057. ggml_vec_neg_f32(nc,
  7058. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7059. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7060. }
  7061. }
  7062. static void ggml_compute_forward_neg(
  7063. const struct ggml_compute_params * params,
  7064. const struct ggml_tensor * src0,
  7065. struct ggml_tensor * dst) {
  7066. switch (src0->type) {
  7067. case GGML_TYPE_F32:
  7068. {
  7069. ggml_compute_forward_neg_f32(params, src0, dst);
  7070. } break;
  7071. default:
  7072. {
  7073. GGML_ASSERT(false);
  7074. } break;
  7075. }
  7076. }
  7077. // ggml_compute_forward_step
  7078. static void ggml_compute_forward_step_f32(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. struct ggml_tensor * dst) {
  7082. assert(params->ith == 0);
  7083. assert(ggml_are_same_shape(src0, dst));
  7084. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7085. return;
  7086. }
  7087. const int n = ggml_nrows(src0);
  7088. const int nc = src0->ne[0];
  7089. assert(dst->nb[0] == sizeof(float));
  7090. assert(src0->nb[0] == sizeof(float));
  7091. for (int i = 0; i < n; i++) {
  7092. ggml_vec_step_f32(nc,
  7093. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7094. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7095. }
  7096. }
  7097. static void ggml_compute_forward_step(
  7098. const struct ggml_compute_params * params,
  7099. const struct ggml_tensor * src0,
  7100. struct ggml_tensor * dst) {
  7101. switch (src0->type) {
  7102. case GGML_TYPE_F32:
  7103. {
  7104. ggml_compute_forward_step_f32(params, src0, dst);
  7105. } break;
  7106. default:
  7107. {
  7108. GGML_ASSERT(false);
  7109. } break;
  7110. }
  7111. }
  7112. // ggml_compute_forward_relu
  7113. static void ggml_compute_forward_relu_f32(
  7114. const struct ggml_compute_params * params,
  7115. const struct ggml_tensor * src0,
  7116. struct ggml_tensor * dst) {
  7117. assert(params->ith == 0);
  7118. assert(ggml_are_same_shape(src0, dst));
  7119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7120. return;
  7121. }
  7122. const int n = ggml_nrows(src0);
  7123. const int nc = src0->ne[0];
  7124. assert(dst->nb[0] == sizeof(float));
  7125. assert(src0->nb[0] == sizeof(float));
  7126. for (int i = 0; i < n; i++) {
  7127. ggml_vec_relu_f32(nc,
  7128. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7129. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7130. }
  7131. }
  7132. static void ggml_compute_forward_relu(
  7133. const struct ggml_compute_params * params,
  7134. const struct ggml_tensor * src0,
  7135. struct ggml_tensor * dst) {
  7136. switch (src0->type) {
  7137. case GGML_TYPE_F32:
  7138. {
  7139. ggml_compute_forward_relu_f32(params, src0, dst);
  7140. } break;
  7141. default:
  7142. {
  7143. GGML_ASSERT(false);
  7144. } break;
  7145. }
  7146. }
  7147. // ggml_compute_forward_gelu
  7148. static void ggml_compute_forward_gelu_f32(
  7149. const struct ggml_compute_params * params,
  7150. const struct ggml_tensor * src0,
  7151. struct ggml_tensor * dst) {
  7152. GGML_ASSERT(ggml_is_contiguous(src0));
  7153. GGML_ASSERT(ggml_is_contiguous(dst));
  7154. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7156. return;
  7157. }
  7158. const int ith = params->ith;
  7159. const int nth = params->nth;
  7160. const int nc = src0->ne[0];
  7161. const int nr = ggml_nrows(src0);
  7162. // rows per thread
  7163. const int dr = (nr + nth - 1)/nth;
  7164. // row range for this thread
  7165. const int ir0 = dr*ith;
  7166. const int ir1 = MIN(ir0 + dr, nr);
  7167. for (int i1 = ir0; i1 < ir1; i1++) {
  7168. ggml_vec_gelu_f32(nc,
  7169. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7170. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7171. #ifndef NDEBUG
  7172. for (int k = 0; k < nc; k++) {
  7173. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7174. UNUSED(x);
  7175. assert(!isnan(x));
  7176. assert(!isinf(x));
  7177. }
  7178. #endif
  7179. }
  7180. }
  7181. static void ggml_compute_forward_gelu(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. struct ggml_tensor * dst) {
  7185. switch (src0->type) {
  7186. case GGML_TYPE_F32:
  7187. {
  7188. ggml_compute_forward_gelu_f32(params, src0, dst);
  7189. } break;
  7190. default:
  7191. {
  7192. GGML_ASSERT(false);
  7193. } break;
  7194. }
  7195. //printf("XXXXXXXX gelu\n");
  7196. }
  7197. // ggml_compute_forward_silu
  7198. static void ggml_compute_forward_silu_f32(
  7199. const struct ggml_compute_params * params,
  7200. const struct ggml_tensor * src0,
  7201. struct ggml_tensor * dst) {
  7202. GGML_ASSERT(ggml_is_contiguous(src0));
  7203. GGML_ASSERT(ggml_is_contiguous(dst));
  7204. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7206. return;
  7207. }
  7208. const int ith = params->ith;
  7209. const int nth = params->nth;
  7210. const int nc = src0->ne[0];
  7211. const int nr = ggml_nrows(src0);
  7212. // rows per thread
  7213. const int dr = (nr + nth - 1)/nth;
  7214. // row range for this thread
  7215. const int ir0 = dr*ith;
  7216. const int ir1 = MIN(ir0 + dr, nr);
  7217. for (int i1 = ir0; i1 < ir1; i1++) {
  7218. ggml_vec_silu_f32(nc,
  7219. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7220. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7221. #ifndef NDEBUG
  7222. for (int k = 0; k < nc; k++) {
  7223. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7224. UNUSED(x);
  7225. assert(!isnan(x));
  7226. assert(!isinf(x));
  7227. }
  7228. #endif
  7229. }
  7230. }
  7231. static void ggml_compute_forward_silu(
  7232. const struct ggml_compute_params * params,
  7233. const struct ggml_tensor * src0,
  7234. struct ggml_tensor * dst) {
  7235. switch (src0->type) {
  7236. case GGML_TYPE_F32:
  7237. {
  7238. ggml_compute_forward_silu_f32(params, src0, dst);
  7239. } break;
  7240. default:
  7241. {
  7242. GGML_ASSERT(false);
  7243. } break;
  7244. }
  7245. }
  7246. // ggml_compute_forward_silu_back
  7247. static void ggml_compute_forward_silu_back_f32(
  7248. const struct ggml_compute_params * params,
  7249. const struct ggml_tensor * src0,
  7250. const struct ggml_tensor * grad,
  7251. struct ggml_tensor * dst) {
  7252. GGML_ASSERT(ggml_is_contiguous(grad));
  7253. GGML_ASSERT(ggml_is_contiguous(src0));
  7254. GGML_ASSERT(ggml_is_contiguous(dst));
  7255. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7256. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7257. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7258. return;
  7259. }
  7260. const int ith = params->ith;
  7261. const int nth = params->nth;
  7262. const int nc = src0->ne[0];
  7263. const int nr = ggml_nrows(src0);
  7264. // rows per thread
  7265. const int dr = (nr + nth - 1)/nth;
  7266. // row range for this thread
  7267. const int ir0 = dr*ith;
  7268. const int ir1 = MIN(ir0 + dr, nr);
  7269. for (int i1 = ir0; i1 < ir1; i1++) {
  7270. ggml_vec_silu_backward_f32(nc,
  7271. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7272. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7273. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7274. #ifndef NDEBUG
  7275. for (int k = 0; k < nc; k++) {
  7276. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7277. UNUSED(x);
  7278. assert(!isnan(x));
  7279. assert(!isinf(x));
  7280. }
  7281. #endif
  7282. }
  7283. }
  7284. static void ggml_compute_forward_silu_back(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. const struct ggml_tensor * grad,
  7288. struct ggml_tensor * dst) {
  7289. switch (src0->type) {
  7290. case GGML_TYPE_F32:
  7291. {
  7292. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7293. } break;
  7294. default:
  7295. {
  7296. GGML_ASSERT(false);
  7297. } break;
  7298. }
  7299. }
  7300. // ggml_compute_forward_norm
  7301. static void ggml_compute_forward_norm_f32(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. struct ggml_tensor * dst) {
  7305. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7307. return;
  7308. }
  7309. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7310. const int ith = params->ith;
  7311. const int nth = params->nth;
  7312. const int64_t ne00 = src0->ne[0];
  7313. const int64_t ne01 = src0->ne[1];
  7314. const int64_t ne02 = src0->ne[2];
  7315. const int64_t ne03 = src0->ne[3];
  7316. const size_t nb01 = src0->nb[1];
  7317. const size_t nb02 = src0->nb[2];
  7318. const size_t nb03 = src0->nb[3];
  7319. const size_t nb1 = dst->nb[1];
  7320. const size_t nb2 = dst->nb[2];
  7321. const size_t nb3 = dst->nb[3];
  7322. const float eps = 1e-5f; // TODO: make this a parameter
  7323. // TODO: optimize
  7324. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7325. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7326. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7327. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7328. ggml_float sum = 0.0;
  7329. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7330. sum += (ggml_float)x[i00];
  7331. }
  7332. float mean = sum/ne00;
  7333. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7334. ggml_float sum2 = 0.0;
  7335. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7336. float v = x[i00] - mean;
  7337. y[i00] = v;
  7338. sum2 += (ggml_float)(v*v);
  7339. }
  7340. float variance = sum2/ne00;
  7341. const float scale = 1.0f/sqrtf(variance + eps);
  7342. ggml_vec_scale_f32(ne00, y, scale);
  7343. }
  7344. }
  7345. }
  7346. }
  7347. static void ggml_compute_forward_norm(
  7348. const struct ggml_compute_params * params,
  7349. const struct ggml_tensor * src0,
  7350. struct ggml_tensor * dst) {
  7351. switch (src0->type) {
  7352. case GGML_TYPE_F32:
  7353. {
  7354. ggml_compute_forward_norm_f32(params, src0, dst);
  7355. } break;
  7356. default:
  7357. {
  7358. GGML_ASSERT(false);
  7359. } break;
  7360. }
  7361. }
  7362. static void ggml_compute_forward_rms_norm_f32(
  7363. const struct ggml_compute_params * params,
  7364. const struct ggml_tensor * src0,
  7365. struct ggml_tensor * dst) {
  7366. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7367. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7368. return;
  7369. }
  7370. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7371. const int ith = params->ith;
  7372. const int nth = params->nth;
  7373. const int64_t ne00 = src0->ne[0];
  7374. const int64_t ne01 = src0->ne[1];
  7375. const int64_t ne02 = src0->ne[2];
  7376. const int64_t ne03 = src0->ne[3];
  7377. const size_t nb01 = src0->nb[1];
  7378. const size_t nb02 = src0->nb[2];
  7379. const size_t nb03 = src0->nb[3];
  7380. const size_t nb1 = dst->nb[1];
  7381. const size_t nb2 = dst->nb[2];
  7382. const size_t nb3 = dst->nb[3];
  7383. const float eps = 1e-6f; // TODO: make this a parameter
  7384. // TODO: optimize
  7385. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7386. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7387. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7388. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7389. ggml_float sum = 0.0;
  7390. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7391. sum += (ggml_float)(x[i00] * x[i00]);
  7392. }
  7393. float mean = sum/ne00;
  7394. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7395. memcpy(y, x, ne00 * sizeof(float));
  7396. // for (int i00 = 0; i00 < ne00; i00++) {
  7397. // y[i00] = x[i00];
  7398. // }
  7399. const float scale = 1.0f/sqrtf(mean + eps);
  7400. ggml_vec_scale_f32(ne00, y, scale);
  7401. }
  7402. }
  7403. }
  7404. }
  7405. static void ggml_compute_forward_rms_norm(
  7406. const struct ggml_compute_params * params,
  7407. const struct ggml_tensor * src0,
  7408. struct ggml_tensor * dst) {
  7409. switch (src0->type) {
  7410. case GGML_TYPE_F32:
  7411. {
  7412. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7413. } break;
  7414. default:
  7415. {
  7416. GGML_ASSERT(false);
  7417. } break;
  7418. }
  7419. }
  7420. static void ggml_compute_forward_rms_norm_back_f32(
  7421. const struct ggml_compute_params * params,
  7422. const struct ggml_tensor * src0,
  7423. const struct ggml_tensor * src1,
  7424. struct ggml_tensor * dst) {
  7425. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7427. return;
  7428. }
  7429. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7430. const int ith = params->ith;
  7431. const int nth = params->nth;
  7432. const int64_t ne00 = src0->ne[0];
  7433. const int64_t ne01 = src0->ne[1];
  7434. const int64_t ne02 = src0->ne[2];
  7435. const int64_t ne03 = src0->ne[3];
  7436. const size_t nb01 = src0->nb[1];
  7437. const size_t nb02 = src0->nb[2];
  7438. const size_t nb03 = src0->nb[3];
  7439. const size_t nb11 = src1->nb[1];
  7440. const size_t nb12 = src1->nb[2];
  7441. const size_t nb13 = src1->nb[3];
  7442. const size_t nb1 = dst->nb[1];
  7443. const size_t nb2 = dst->nb[2];
  7444. const size_t nb3 = dst->nb[3];
  7445. const float eps = 1e-6f; // TODO: make this a parameter
  7446. // TODO: optimize
  7447. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7448. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7449. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7450. // src1 is same shape as src0 => same indices
  7451. const int64_t i11 = i01;
  7452. const int64_t i12 = i02;
  7453. const int64_t i13 = i03;
  7454. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7455. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7456. ggml_float sum_xx = 0.0;
  7457. ggml_float sum_xdz = 0.0;
  7458. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7459. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7460. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7461. }
  7462. //const float mean = (float)(sum_xx)/ne00;
  7463. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7464. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7465. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7466. // we could cache rms from forward pass to improve performance.
  7467. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7468. //const float rms = sqrtf(mean_eps);
  7469. const float rrms = 1.0f / sqrtf(mean_eps);
  7470. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7471. {
  7472. // z = rms_norm(x)
  7473. //
  7474. // rms_norm(src0) =
  7475. // scale(
  7476. // src0,
  7477. // div(
  7478. // 1,
  7479. // sqrt(
  7480. // add(
  7481. // scale(
  7482. // sum(
  7483. // sqr(
  7484. // src0)),
  7485. // (1.0/N)),
  7486. // eps))));
  7487. // postorder:
  7488. // ## op args grad
  7489. // 00 param src0 grad[#00]
  7490. // 01 const 1
  7491. // 02 sqr (#00) grad[#02]
  7492. // 03 sum (#02) grad[#03]
  7493. // 04 const 1/N
  7494. // 05 scale (#03, #04) grad[#05]
  7495. // 06 const eps
  7496. // 07 add (#05, #06) grad[#07]
  7497. // 08 sqrt (#07) grad[#08]
  7498. // 09 div (#01,#08) grad[#09]
  7499. // 10 scale (#00,#09) grad[#10]
  7500. //
  7501. // backward pass, given grad[#10]
  7502. // #10: scale
  7503. // grad[#00] += scale(grad[#10],#09)
  7504. // grad[#09] += sum(mul(grad[#10],#00))
  7505. // #09: div
  7506. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7507. // #08: sqrt
  7508. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7509. // #07: add
  7510. // grad[#05] += grad[#07]
  7511. // #05: scale
  7512. // grad[#03] += scale(grad[#05],#04)
  7513. // #03: sum
  7514. // grad[#02] += repeat(grad[#03], #02)
  7515. // #02:
  7516. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7517. //
  7518. // substitute and simplify:
  7519. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7520. // grad[#02] = repeat(grad[#03], #02)
  7521. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7522. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7523. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7524. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7525. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7526. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7527. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7528. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7529. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7530. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7531. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7532. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7533. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7534. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7535. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7536. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7537. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7538. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7539. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7540. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7541. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7542. // a = b*c + d*e
  7543. // a = b*c*f/f + d*e*f/f
  7544. // a = (b*c*f + d*e*f)*(1/f)
  7545. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7546. // a = (b + d*e/c)*c
  7547. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7548. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7549. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7550. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7551. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7552. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7553. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7554. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7555. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7556. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7557. }
  7558. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7559. // post-order:
  7560. // dx := x
  7561. // dx := scale(dx,-mean_xdz/mean_eps)
  7562. // dx := add(dx, dz)
  7563. // dx := scale(dx, rrms)
  7564. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7565. ggml_vec_cpy_f32 (ne00, dx, x);
  7566. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7567. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7568. ggml_vec_acc_f32 (ne00, dx, dz);
  7569. ggml_vec_scale_f32(ne00, dx, rrms);
  7570. }
  7571. }
  7572. }
  7573. }
  7574. static void ggml_compute_forward_rms_norm_back(
  7575. const struct ggml_compute_params * params,
  7576. const struct ggml_tensor * src0,
  7577. const struct ggml_tensor * src1,
  7578. struct ggml_tensor * dst) {
  7579. switch (src0->type) {
  7580. case GGML_TYPE_F32:
  7581. {
  7582. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7583. } break;
  7584. default:
  7585. {
  7586. GGML_ASSERT(false);
  7587. } break;
  7588. }
  7589. }
  7590. // ggml_compute_forward_mul_mat
  7591. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7592. // helper function to determine if it is better to use BLAS or not
  7593. // for large matrices, BLAS is faster
  7594. static bool ggml_compute_forward_mul_mat_use_blas(
  7595. const struct ggml_tensor * src0,
  7596. const struct ggml_tensor * src1,
  7597. struct ggml_tensor * dst) {
  7598. //const int64_t ne00 = src0->ne[0];
  7599. //const int64_t ne01 = src0->ne[1];
  7600. const int64_t ne10 = src1->ne[0];
  7601. const int64_t ne0 = dst->ne[0];
  7602. const int64_t ne1 = dst->ne[1];
  7603. // TODO: find the optimal values for these
  7604. if (ggml_is_contiguous(src0) &&
  7605. ggml_is_contiguous(src1) &&
  7606. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7607. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7608. return true;
  7609. }
  7610. return false;
  7611. }
  7612. #endif
  7613. static void ggml_compute_forward_mul_mat_f32(
  7614. const struct ggml_compute_params * params,
  7615. const struct ggml_tensor * src0,
  7616. const struct ggml_tensor * src1,
  7617. struct ggml_tensor * dst) {
  7618. int64_t t0 = ggml_perf_time_us();
  7619. UNUSED(t0);
  7620. const int64_t ne00 = src0->ne[0];
  7621. const int64_t ne01 = src0->ne[1];
  7622. const int64_t ne02 = src0->ne[2];
  7623. const int64_t ne03 = src0->ne[3];
  7624. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7625. const int64_t ne10 = src1->ne[0];
  7626. #endif
  7627. const int64_t ne11 = src1->ne[1];
  7628. #ifndef NDEBUG
  7629. const int64_t ne12 = src1->ne[2];
  7630. const int64_t ne13 = src1->ne[3];
  7631. const int64_t ne0 = dst->ne[0];
  7632. const int64_t ne1 = dst->ne[1];
  7633. const int64_t ne2 = dst->ne[2];
  7634. const int64_t ne3 = dst->ne[3];
  7635. const int nb00 = src0->nb[0];
  7636. #endif
  7637. const int nb01 = src0->nb[1];
  7638. const int nb02 = src0->nb[2];
  7639. const int nb03 = src0->nb[3];
  7640. #ifndef NDEBUG
  7641. const int nb10 = src1->nb[0];
  7642. #endif
  7643. const int nb11 = src1->nb[1];
  7644. const int nb12 = src1->nb[2];
  7645. const int nb13 = src1->nb[3];
  7646. const int nb0 = dst->nb[0];
  7647. const int nb1 = dst->nb[1];
  7648. const int nb2 = dst->nb[2];
  7649. const int nb3 = dst->nb[3];
  7650. const int ith = params->ith;
  7651. const int nth = params->nth;
  7652. assert(ne02 == ne12);
  7653. assert(ne03 == ne13);
  7654. assert(ne2 == ne12);
  7655. assert(ne3 == ne13);
  7656. // we don't support permuted src0 or src1
  7657. assert(nb00 == sizeof(float));
  7658. assert(nb10 == sizeof(float));
  7659. // dst cannot be transposed or permuted
  7660. assert(nb0 == sizeof(float));
  7661. assert(nb0 <= nb1);
  7662. assert(nb1 <= nb2);
  7663. assert(nb2 <= nb3);
  7664. assert(ne0 == ne01);
  7665. assert(ne1 == ne11);
  7666. assert(ne2 == ne02);
  7667. assert(ne3 == ne03);
  7668. // nb01 >= nb00 - src0 is not transposed
  7669. // compute by src0 rows
  7670. #if defined(GGML_USE_CUBLAS)
  7671. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7672. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7673. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7674. }
  7675. return;
  7676. }
  7677. #endif
  7678. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7679. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7680. if (params->ith != 0) {
  7681. return;
  7682. }
  7683. if (params->type == GGML_TASK_INIT) {
  7684. return;
  7685. }
  7686. if (params->type == GGML_TASK_FINALIZE) {
  7687. return;
  7688. }
  7689. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7690. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7691. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7692. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7693. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7694. #if defined(GGML_USE_CLBLAST)
  7695. // zT = y * xT
  7696. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7697. ne11, ne01, ne10,
  7698. 1.0f, y, ne10,
  7699. x, ne10,
  7700. 0.0f, d, ne01,
  7701. GGML_TYPE_F32);
  7702. #else
  7703. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7704. ne11, ne01, ne10,
  7705. 1.0f, y, ne10,
  7706. x, ne00,
  7707. 0.0f, d, ne01);
  7708. #endif
  7709. }
  7710. }
  7711. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7712. return;
  7713. }
  7714. #endif
  7715. if (params->type == GGML_TASK_INIT) {
  7716. return;
  7717. }
  7718. if (params->type == GGML_TASK_FINALIZE) {
  7719. return;
  7720. }
  7721. // parallelize by src0 rows using ggml_vec_dot_f32
  7722. // total rows in src0
  7723. const int nr = ne01*ne02*ne03;
  7724. // rows per thread
  7725. const int dr = (nr + nth - 1)/nth;
  7726. // row range for this thread
  7727. const int ir0 = dr*ith;
  7728. const int ir1 = MIN(ir0 + dr, nr);
  7729. for (int ir = ir0; ir < ir1; ++ir) {
  7730. // src0 indices
  7731. const int i03 = ir/(ne02*ne01);
  7732. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7733. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7734. for (int64_t ic = 0; ic < ne11; ++ic) {
  7735. // src1 indices
  7736. const int i13 = i03;
  7737. const int i12 = i02;
  7738. const int i11 = ic;
  7739. // dst indices
  7740. const int i0 = i01;
  7741. const int i1 = i11;
  7742. const int i2 = i02;
  7743. const int i3 = i03;
  7744. ggml_vec_dot_f32(ne00,
  7745. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7746. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7747. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7748. }
  7749. }
  7750. //int64_t t1 = ggml_perf_time_us();
  7751. //static int64_t acc = 0;
  7752. //acc += t1 - t0;
  7753. //if (t1 - t0 > 10) {
  7754. // printf("\n");
  7755. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7756. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7757. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7758. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7759. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7760. //}
  7761. }
  7762. static void ggml_compute_forward_mul_mat_f16_f32(
  7763. const struct ggml_compute_params * params,
  7764. const struct ggml_tensor * src0,
  7765. const struct ggml_tensor * src1,
  7766. struct ggml_tensor * dst) {
  7767. int64_t t0 = ggml_perf_time_us();
  7768. UNUSED(t0);
  7769. const int64_t ne00 = src0->ne[0];
  7770. const int64_t ne01 = src0->ne[1];
  7771. const int64_t ne02 = src0->ne[2];
  7772. const int64_t ne03 = src0->ne[3];
  7773. const int64_t ne10 = src1->ne[0];
  7774. const int64_t ne11 = src1->ne[1];
  7775. const int64_t ne12 = src1->ne[2];
  7776. const int64_t ne13 = src1->ne[3];
  7777. const int64_t ne0 = dst->ne[0];
  7778. const int64_t ne1 = dst->ne[1];
  7779. const int64_t ne2 = dst->ne[2];
  7780. const int64_t ne3 = dst->ne[3];
  7781. //const int64_t ne = ne0*ne1*ne2*ne3;
  7782. const int nb00 = src0->nb[0];
  7783. const int nb01 = src0->nb[1];
  7784. const int nb02 = src0->nb[2];
  7785. const int nb03 = src0->nb[3];
  7786. const int nb10 = src1->nb[0];
  7787. const int nb11 = src1->nb[1];
  7788. const int nb12 = src1->nb[2];
  7789. const int nb13 = src1->nb[3];
  7790. const int nb0 = dst->nb[0];
  7791. const int nb1 = dst->nb[1];
  7792. const int nb2 = dst->nb[2];
  7793. const int nb3 = dst->nb[3];
  7794. const int ith = params->ith;
  7795. const int nth = params->nth;
  7796. GGML_ASSERT(ne02 == ne12);
  7797. GGML_ASSERT(ne03 == ne13);
  7798. GGML_ASSERT(ne2 == ne12);
  7799. GGML_ASSERT(ne3 == ne13);
  7800. // TODO: we don't support permuted src0
  7801. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7802. // dst cannot be transposed or permuted
  7803. GGML_ASSERT(nb0 == sizeof(float));
  7804. GGML_ASSERT(nb0 <= nb1);
  7805. GGML_ASSERT(nb1 <= nb2);
  7806. GGML_ASSERT(nb2 <= nb3);
  7807. GGML_ASSERT(ne0 == ne01);
  7808. GGML_ASSERT(ne1 == ne11);
  7809. GGML_ASSERT(ne2 == ne02);
  7810. GGML_ASSERT(ne3 == ne03);
  7811. // nb01 >= nb00 - src0 is not transposed
  7812. // compute by src0 rows
  7813. #if defined(GGML_USE_CUBLAS)
  7814. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7815. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7816. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7817. }
  7818. return;
  7819. }
  7820. #endif
  7821. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7822. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7823. GGML_ASSERT(nb10 == sizeof(float));
  7824. if (params->ith != 0) {
  7825. return;
  7826. }
  7827. if (params->type == GGML_TASK_INIT) {
  7828. return;
  7829. }
  7830. if (params->type == GGML_TASK_FINALIZE) {
  7831. return;
  7832. }
  7833. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7834. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7835. float * const wdata = params->wdata;
  7836. {
  7837. size_t id = 0;
  7838. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7839. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7840. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7841. }
  7842. }
  7843. assert(id*sizeof(float) <= params->wsize);
  7844. }
  7845. #if defined(GGML_USE_CLBLAST)
  7846. const float * x = wdata;
  7847. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7848. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7849. // zT = y * xT
  7850. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7851. ne11, ne01, ne10,
  7852. 1.0f, y, ne10,
  7853. x, ne10,
  7854. 0.0f, d, ne01,
  7855. GGML_TYPE_F32);
  7856. #else
  7857. const float * x = wdata;
  7858. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7859. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7860. // zT = y * xT
  7861. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7862. ne11, ne01, ne10,
  7863. 1.0f, y, ne10,
  7864. x, ne00,
  7865. 0.0f, d, ne01);
  7866. #endif
  7867. }
  7868. }
  7869. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7870. return;
  7871. }
  7872. #endif
  7873. if (params->type == GGML_TASK_INIT) {
  7874. ggml_fp16_t * const wdata = params->wdata;
  7875. size_t id = 0;
  7876. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7877. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7878. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7879. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7880. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7881. }
  7882. }
  7883. }
  7884. }
  7885. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7886. return;
  7887. }
  7888. if (params->type == GGML_TASK_FINALIZE) {
  7889. return;
  7890. }
  7891. // fp16 -> half the size, so divide by 2
  7892. // TODO: do not support transposed src1
  7893. assert(nb10/2 == sizeof(ggml_fp16_t));
  7894. // parallelize by src0 rows using ggml_vec_dot_f16
  7895. // total rows in src0
  7896. const int nr = ne01*ne02*ne03;
  7897. // rows per thread
  7898. const int dr = (nr + nth - 1)/nth;
  7899. // row range for this thread
  7900. const int ir0 = dr*ith;
  7901. const int ir1 = MIN(ir0 + dr, nr);
  7902. ggml_fp16_t * wdata = params->wdata;
  7903. for (int ir = ir0; ir < ir1; ++ir) {
  7904. // src0 indices
  7905. const int i03 = ir/(ne02*ne01);
  7906. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7907. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7908. const int i13 = i03;
  7909. const int i12 = i02;
  7910. const int i0 = i01;
  7911. const int i2 = i02;
  7912. const int i3 = i03;
  7913. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7914. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7915. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7916. for (int64_t ic = 0; ic < ne11; ++ic) {
  7917. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7918. }
  7919. }
  7920. //int64_t t1 = ggml_time_us();
  7921. //static int64_t acc = 0;
  7922. //acc += t1 - t0;
  7923. //if (t1 - t0 > 10) {
  7924. // printf("\n");
  7925. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7926. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7927. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7928. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7929. //}
  7930. }
  7931. static void ggml_compute_forward_mul_mat_q_f32(
  7932. const struct ggml_compute_params * params,
  7933. const struct ggml_tensor * src0,
  7934. const struct ggml_tensor * src1,
  7935. struct ggml_tensor * dst) {
  7936. int64_t t0 = ggml_perf_time_us();
  7937. UNUSED(t0);
  7938. const int64_t ne00 = src0->ne[0];
  7939. const int64_t ne01 = src0->ne[1];
  7940. const int64_t ne02 = src0->ne[2];
  7941. const int64_t ne03 = src0->ne[3];
  7942. const int64_t ne10 = src1->ne[0];
  7943. const int64_t ne11 = src1->ne[1];
  7944. const int64_t ne12 = src1->ne[2];
  7945. const int64_t ne13 = src1->ne[3];
  7946. const int64_t ne0 = dst->ne[0];
  7947. const int64_t ne1 = dst->ne[1];
  7948. const int64_t ne2 = dst->ne[2];
  7949. const int64_t ne3 = dst->ne[3];
  7950. const int nb00 = src0->nb[0];
  7951. const int nb01 = src0->nb[1];
  7952. const int nb02 = src0->nb[2];
  7953. const int nb03 = src0->nb[3];
  7954. const int nb10 = src1->nb[0];
  7955. const int nb11 = src1->nb[1];
  7956. const int nb12 = src1->nb[2];
  7957. const int nb13 = src1->nb[3];
  7958. const int nb0 = dst->nb[0];
  7959. const int nb1 = dst->nb[1];
  7960. const int nb2 = dst->nb[2];
  7961. const int nb3 = dst->nb[3];
  7962. const int ith = params->ith;
  7963. const int nth = params->nth;
  7964. GGML_ASSERT(ne02 == ne12);
  7965. GGML_ASSERT(ne03 == ne13);
  7966. GGML_ASSERT(ne2 == ne12);
  7967. GGML_ASSERT(ne3 == ne13);
  7968. const enum ggml_type type = src0->type;
  7969. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7970. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7971. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7972. // we don't support permuted src0 or src1
  7973. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7974. GGML_ASSERT(nb10 == sizeof(float));
  7975. // dst cannot be transposed or permuted
  7976. GGML_ASSERT(nb0 == sizeof(float));
  7977. GGML_ASSERT(nb0 <= nb1);
  7978. GGML_ASSERT(nb1 <= nb2);
  7979. GGML_ASSERT(nb2 <= nb3);
  7980. GGML_ASSERT(ne0 == ne01);
  7981. GGML_ASSERT(ne1 == ne11);
  7982. GGML_ASSERT(ne2 == ne02);
  7983. GGML_ASSERT(ne3 == ne03);
  7984. // nb01 >= nb00 - src0 is not transposed
  7985. // compute by src0 rows
  7986. #if defined(GGML_USE_CUBLAS)
  7987. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7988. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7989. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7990. }
  7991. return;
  7992. }
  7993. #endif
  7994. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7995. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7996. if (params->ith != 0) {
  7997. return;
  7998. }
  7999. if (params->type == GGML_TASK_INIT) {
  8000. return;
  8001. }
  8002. if (params->type == GGML_TASK_FINALIZE) {
  8003. return;
  8004. }
  8005. float * const wdata = params->wdata;
  8006. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8007. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8008. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8009. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8010. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8011. #if defined(GGML_USE_CLBLAST)
  8012. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  8013. #else
  8014. {
  8015. size_t id = 0;
  8016. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8017. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8018. id += ne00;
  8019. }
  8020. assert(id*sizeof(float) <= params->wsize);
  8021. }
  8022. const float * x = wdata;
  8023. #endif
  8024. #if defined(GGML_USE_CLBLAST)
  8025. // zT = y * xT
  8026. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  8027. ne11, ne01, ne10,
  8028. 1.0f, y, ne10,
  8029. x, ne10,
  8030. 0.0f, d, ne01,
  8031. type);
  8032. #else
  8033. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8034. ne11, ne01, ne10,
  8035. 1.0f, y, ne10,
  8036. x, ne00,
  8037. 0.0f, d, ne01);
  8038. #endif
  8039. }
  8040. }
  8041. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8042. return;
  8043. }
  8044. #endif
  8045. if (params->type == GGML_TASK_INIT) {
  8046. char * wdata = params->wdata;
  8047. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8048. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8049. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8050. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8051. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8052. wdata += row_size;
  8053. }
  8054. }
  8055. }
  8056. return;
  8057. }
  8058. if (params->type == GGML_TASK_FINALIZE) {
  8059. return;
  8060. }
  8061. // parallelize by src0 rows using ggml_vec_dot_q
  8062. // total rows in src0
  8063. const int nr = ne01*ne02*ne03;
  8064. // rows per thread
  8065. const int dr = (nr + nth - 1)/nth;
  8066. // row range for this thread
  8067. const int ir0 = dr*ith;
  8068. const int ir1 = MIN(ir0 + dr, nr);
  8069. void * wdata = params->wdata;
  8070. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8071. for (int ir = ir0; ir < ir1; ++ir) {
  8072. // src0 indices
  8073. const int i03 = ir/(ne02*ne01);
  8074. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8075. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8076. const int i13 = i03;
  8077. const int i12 = i02;
  8078. const int i0 = i01;
  8079. const int i2 = i02;
  8080. const int i3 = i03;
  8081. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8082. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8083. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8084. assert(ne00 % 32 == 0);
  8085. for (int64_t ic = 0; ic < ne11; ++ic) {
  8086. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8087. }
  8088. }
  8089. //int64_t t1 = ggml_time_us();
  8090. //static int64_t acc = 0;
  8091. //acc += t1 - t0;
  8092. //if (t1 - t0 > 10) {
  8093. // printf("\n");
  8094. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8095. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8096. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8097. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8098. //}
  8099. }
  8100. static void ggml_compute_forward_mul_mat(
  8101. const struct ggml_compute_params * params,
  8102. const struct ggml_tensor * src0,
  8103. const struct ggml_tensor * src1,
  8104. struct ggml_tensor * dst) {
  8105. switch (src0->type) {
  8106. case GGML_TYPE_Q4_0:
  8107. case GGML_TYPE_Q4_1:
  8108. case GGML_TYPE_Q5_0:
  8109. case GGML_TYPE_Q5_1:
  8110. case GGML_TYPE_Q8_0:
  8111. case GGML_TYPE_Q8_1:
  8112. {
  8113. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8114. } break;
  8115. case GGML_TYPE_F16:
  8116. {
  8117. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8118. } break;
  8119. case GGML_TYPE_F32:
  8120. {
  8121. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8122. } break;
  8123. default:
  8124. {
  8125. GGML_ASSERT(false);
  8126. } break;
  8127. }
  8128. }
  8129. // ggml_compute_forward_scale
  8130. static void ggml_compute_forward_scale_f32(
  8131. const struct ggml_compute_params * params,
  8132. const struct ggml_tensor * src0,
  8133. const struct ggml_tensor * src1,
  8134. struct ggml_tensor * dst) {
  8135. GGML_ASSERT(ggml_is_contiguous(src0));
  8136. GGML_ASSERT(ggml_is_contiguous(dst));
  8137. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8138. GGML_ASSERT(ggml_is_scalar(src1));
  8139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8140. return;
  8141. }
  8142. // scale factor
  8143. const float v = *(float *) src1->data;
  8144. const int ith = params->ith;
  8145. const int nth = params->nth;
  8146. const int nc = src0->ne[0];
  8147. const int nr = ggml_nrows(src0);
  8148. // rows per thread
  8149. const int dr = (nr + nth - 1)/nth;
  8150. // row range for this thread
  8151. const int ir0 = dr*ith;
  8152. const int ir1 = MIN(ir0 + dr, nr);
  8153. const size_t nb01 = src0->nb[1];
  8154. const size_t nb1 = dst->nb[1];
  8155. for (int i1 = ir0; i1 < ir1; i1++) {
  8156. if (dst->data != src0->data) {
  8157. // src0 is same shape as dst => same indices
  8158. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8159. }
  8160. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8161. }
  8162. }
  8163. static void ggml_compute_forward_scale(
  8164. const struct ggml_compute_params * params,
  8165. const struct ggml_tensor * src0,
  8166. const struct ggml_tensor * src1,
  8167. struct ggml_tensor * dst) {
  8168. switch (src0->type) {
  8169. case GGML_TYPE_F32:
  8170. {
  8171. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8172. } break;
  8173. default:
  8174. {
  8175. GGML_ASSERT(false);
  8176. } break;
  8177. }
  8178. }
  8179. // ggml_compute_forward_set
  8180. static void ggml_compute_forward_set_f32(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * src1,
  8184. const struct ggml_tensor * opt0,
  8185. struct ggml_tensor * dst) {
  8186. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8187. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8188. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8189. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8190. // view src0 and dst with these strides and data offset inbytes during set
  8191. // nb0 is implicitely element_size because src0 and dst are contiguous
  8192. size_t nb1 = ((int32_t *) opt0->data)[0];
  8193. size_t nb2 = ((int32_t *) opt0->data)[1];
  8194. size_t nb3 = ((int32_t *) opt0->data)[2];
  8195. size_t offset = ((int32_t *) opt0->data)[3];
  8196. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8197. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8198. // memcpy needs to be synchronized across threads to avoid race conditions.
  8199. // => do it in INIT phase
  8200. memcpy(
  8201. ((char *) dst->data),
  8202. ((char *) src0->data),
  8203. ggml_nbytes(dst));
  8204. }
  8205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8206. return;
  8207. }
  8208. const int ith = params->ith;
  8209. const int nth = params->nth;
  8210. const int nr = ggml_nrows(src1);
  8211. const int nc = src1->ne[0];
  8212. const int64_t ne10 = src1->ne[0];
  8213. const int64_t ne11 = src1->ne[1];
  8214. const int64_t ne12 = src1->ne[2];
  8215. const int64_t ne13 = src1->ne[3];
  8216. const size_t nb10 = src1->nb[0];
  8217. const size_t nb11 = src1->nb[1];
  8218. const size_t nb12 = src1->nb[2];
  8219. const size_t nb13 = src1->nb[3];
  8220. // src0 and dst as viewed during set
  8221. const size_t nb0 = ggml_element_size(src0);
  8222. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8223. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8224. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8225. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8226. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8227. GGML_ASSERT(nb10 == sizeof(float));
  8228. // rows per thread
  8229. const int dr = (nr + nth - 1)/nth;
  8230. // row range for this thread
  8231. const int ir0 = dr*ith;
  8232. const int ir1 = MIN(ir0 + dr, nr);
  8233. for (int ir = ir0; ir < ir1; ++ir) {
  8234. // src0 and dst are viewed with shape of src1 and offset
  8235. // => same indices
  8236. const int i3 = ir/(ne12*ne11);
  8237. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8238. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8239. ggml_vec_cpy_f32(nc,
  8240. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8241. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8242. }
  8243. }
  8244. static void ggml_compute_forward_set(
  8245. const struct ggml_compute_params * params,
  8246. const struct ggml_tensor * src0,
  8247. const struct ggml_tensor * src1,
  8248. const struct ggml_tensor * opt0,
  8249. struct ggml_tensor * dst) {
  8250. switch (src0->type) {
  8251. case GGML_TYPE_F32:
  8252. {
  8253. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8254. } break;
  8255. case GGML_TYPE_F16:
  8256. case GGML_TYPE_Q4_0:
  8257. case GGML_TYPE_Q4_1:
  8258. case GGML_TYPE_Q5_0:
  8259. case GGML_TYPE_Q5_1:
  8260. case GGML_TYPE_Q8_0:
  8261. case GGML_TYPE_Q8_1:
  8262. default:
  8263. {
  8264. GGML_ASSERT(false);
  8265. } break;
  8266. }
  8267. }
  8268. // ggml_compute_forward_cpy
  8269. static void ggml_compute_forward_cpy(
  8270. const struct ggml_compute_params * params,
  8271. const struct ggml_tensor * src0,
  8272. struct ggml_tensor * dst) {
  8273. ggml_compute_forward_dup(params, src0, dst);
  8274. }
  8275. // ggml_compute_forward_cont
  8276. static void ggml_compute_forward_cont(
  8277. const struct ggml_compute_params * params,
  8278. const struct ggml_tensor * src0,
  8279. struct ggml_tensor * dst) {
  8280. ggml_compute_forward_dup(params, src0, dst);
  8281. }
  8282. // ggml_compute_forward_reshape
  8283. static void ggml_compute_forward_reshape(
  8284. const struct ggml_compute_params * params,
  8285. const struct ggml_tensor * src0,
  8286. struct ggml_tensor * dst) {
  8287. // NOP
  8288. UNUSED(params);
  8289. UNUSED(src0);
  8290. UNUSED(dst);
  8291. }
  8292. // ggml_compute_forward_view
  8293. static void ggml_compute_forward_view(
  8294. const struct ggml_compute_params * params,
  8295. const struct ggml_tensor * src0) {
  8296. // NOP
  8297. UNUSED(params);
  8298. UNUSED(src0);
  8299. }
  8300. // ggml_compute_forward_permute
  8301. static void ggml_compute_forward_permute(
  8302. const struct ggml_compute_params * params,
  8303. const struct ggml_tensor * src0) {
  8304. // NOP
  8305. UNUSED(params);
  8306. UNUSED(src0);
  8307. }
  8308. // ggml_compute_forward_transpose
  8309. static void ggml_compute_forward_transpose(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0) {
  8312. // NOP
  8313. UNUSED(params);
  8314. UNUSED(src0);
  8315. }
  8316. // ggml_compute_forward_get_rows
  8317. static void ggml_compute_forward_get_rows_q(
  8318. const struct ggml_compute_params * params,
  8319. const struct ggml_tensor * src0,
  8320. const struct ggml_tensor * src1,
  8321. struct ggml_tensor * dst) {
  8322. assert(params->ith == 0);
  8323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8324. return;
  8325. }
  8326. const int nc = src0->ne[0];
  8327. const int nr = ggml_nelements(src1);
  8328. const enum ggml_type type = src0->type;
  8329. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8330. assert( dst->ne[0] == nc);
  8331. assert( dst->ne[1] == nr);
  8332. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8333. for (int i = 0; i < nr; ++i) {
  8334. const int r = ((int32_t *) src1->data)[i];
  8335. dequantize_row_q(
  8336. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8337. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8338. }
  8339. }
  8340. static void ggml_compute_forward_get_rows_f16(
  8341. const struct ggml_compute_params * params,
  8342. const struct ggml_tensor * src0,
  8343. const struct ggml_tensor * src1,
  8344. struct ggml_tensor * dst) {
  8345. assert(params->ith == 0);
  8346. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8347. return;
  8348. }
  8349. const int nc = src0->ne[0];
  8350. const int nr = ggml_nelements(src1);
  8351. assert( dst->ne[0] == nc);
  8352. assert( dst->ne[1] == nr);
  8353. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8354. for (int i = 0; i < nr; ++i) {
  8355. const int r = ((int32_t *) src1->data)[i];
  8356. for (int j = 0; j < nc; ++j) {
  8357. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8358. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8359. }
  8360. }
  8361. }
  8362. static void ggml_compute_forward_get_rows_f32(
  8363. const struct ggml_compute_params * params,
  8364. const struct ggml_tensor * src0,
  8365. const struct ggml_tensor * src1,
  8366. struct ggml_tensor * dst) {
  8367. assert(params->ith == 0);
  8368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8369. return;
  8370. }
  8371. const int nc = src0->ne[0];
  8372. const int nr = ggml_nelements(src1);
  8373. assert( dst->ne[0] == nc);
  8374. assert( dst->ne[1] == nr);
  8375. assert(src0->nb[0] == sizeof(float));
  8376. for (int i = 0; i < nr; ++i) {
  8377. const int r = ((int32_t *) src1->data)[i];
  8378. ggml_vec_cpy_f32(nc,
  8379. (float *) ((char *) dst->data + i*dst->nb[1]),
  8380. (float *) ((char *) src0->data + r*src0->nb[1]));
  8381. }
  8382. }
  8383. static void ggml_compute_forward_get_rows(
  8384. const struct ggml_compute_params * params,
  8385. const struct ggml_tensor * src0,
  8386. const struct ggml_tensor * src1,
  8387. struct ggml_tensor * dst) {
  8388. switch (src0->type) {
  8389. case GGML_TYPE_Q4_0:
  8390. case GGML_TYPE_Q4_1:
  8391. case GGML_TYPE_Q5_0:
  8392. case GGML_TYPE_Q5_1:
  8393. case GGML_TYPE_Q8_0:
  8394. case GGML_TYPE_Q8_1:
  8395. {
  8396. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8397. } break;
  8398. case GGML_TYPE_F16:
  8399. {
  8400. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8401. } break;
  8402. case GGML_TYPE_F32:
  8403. {
  8404. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8405. } break;
  8406. default:
  8407. {
  8408. GGML_ASSERT(false);
  8409. } break;
  8410. }
  8411. //static bool first = true;
  8412. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8413. //if (first) {
  8414. // first = false;
  8415. //} else {
  8416. // for (int k = 0; k < dst->ne[1]; ++k) {
  8417. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8418. // for (int i = 0; i < 16; ++i) {
  8419. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8420. // }
  8421. // printf("\n");
  8422. // }
  8423. // printf("\n");
  8424. // }
  8425. // printf("\n");
  8426. // exit(0);
  8427. //}
  8428. }
  8429. // ggml_compute_forward_get_rows_back
  8430. static void ggml_compute_forward_get_rows_back_f32_f16(
  8431. const struct ggml_compute_params * params,
  8432. const struct ggml_tensor * src0,
  8433. const struct ggml_tensor * src1,
  8434. const struct ggml_tensor * opt0,
  8435. struct ggml_tensor * dst) {
  8436. GGML_ASSERT(params->ith == 0);
  8437. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8438. GGML_ASSERT(ggml_is_contiguous(opt0));
  8439. GGML_ASSERT(ggml_is_contiguous(dst));
  8440. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8442. return;
  8443. }
  8444. const int nc = src0->ne[0];
  8445. const int nr = ggml_nelements(src1);
  8446. GGML_ASSERT( dst->ne[0] == nc);
  8447. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8448. for (int i = 0; i < nr; ++i) {
  8449. const int r = ((int32_t *) src1->data)[i];
  8450. for (int j = 0; j < nc; ++j) {
  8451. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8452. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8453. }
  8454. }
  8455. }
  8456. static void ggml_compute_forward_get_rows_back_f32(
  8457. const struct ggml_compute_params * params,
  8458. const struct ggml_tensor * src0,
  8459. const struct ggml_tensor * src1,
  8460. const struct ggml_tensor * opt0,
  8461. struct ggml_tensor * dst) {
  8462. GGML_ASSERT(params->ith == 0);
  8463. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8464. GGML_ASSERT(ggml_is_contiguous(opt0));
  8465. GGML_ASSERT(ggml_is_contiguous(dst));
  8466. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8468. return;
  8469. }
  8470. const int nc = src0->ne[0];
  8471. const int nr = ggml_nelements(src1);
  8472. GGML_ASSERT( dst->ne[0] == nc);
  8473. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8474. for (int i = 0; i < nr; ++i) {
  8475. const int r = ((int32_t *) src1->data)[i];
  8476. ggml_vec_add_f32(nc,
  8477. (float *) ((char *) dst->data + r*dst->nb[1]),
  8478. (float *) ((char *) dst->data + r*dst->nb[1]),
  8479. (float *) ((char *) src0->data + i*src0->nb[1]));
  8480. }
  8481. }
  8482. static void ggml_compute_forward_get_rows_back(
  8483. const struct ggml_compute_params * params,
  8484. const struct ggml_tensor * src0,
  8485. const struct ggml_tensor * src1,
  8486. const struct ggml_tensor * opt0,
  8487. struct ggml_tensor * dst) {
  8488. switch (src0->type) {
  8489. case GGML_TYPE_F16:
  8490. {
  8491. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8492. } break;
  8493. case GGML_TYPE_F32:
  8494. {
  8495. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8496. } break;
  8497. default:
  8498. {
  8499. GGML_ASSERT(false);
  8500. } break;
  8501. }
  8502. //static bool first = true;
  8503. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8504. //if (first) {
  8505. // first = false;
  8506. //} else {
  8507. // for (int k = 0; k < dst->ne[1]; ++k) {
  8508. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8509. // for (int i = 0; i < 16; ++i) {
  8510. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8511. // }
  8512. // printf("\n");
  8513. // }
  8514. // printf("\n");
  8515. // }
  8516. // printf("\n");
  8517. // exit(0);
  8518. //}
  8519. }
  8520. // ggml_compute_forward_diag
  8521. static void ggml_compute_forward_diag_f32(
  8522. const struct ggml_compute_params * params,
  8523. const struct ggml_tensor * src0,
  8524. struct ggml_tensor * dst) {
  8525. GGML_ASSERT(params->ith == 0);
  8526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8527. return;
  8528. }
  8529. // TODO: handle transposed/permuted matrices
  8530. const int ne00 = src0->ne[0];
  8531. const int ne01 = src0->ne[1];
  8532. const int ne02 = src0->ne[2];
  8533. const int ne03 = src0->ne[3];
  8534. const int ne0 = dst->ne[0];
  8535. const int ne1 = dst->ne[1];
  8536. const int ne2 = dst->ne[2];
  8537. const int ne3 = dst->ne[3];
  8538. GGML_ASSERT(ne00 == ne0);
  8539. GGML_ASSERT(ne00 == ne1);
  8540. GGML_ASSERT(ne01 == 1);
  8541. GGML_ASSERT(ne02 == ne2);
  8542. GGML_ASSERT(ne03 == ne3);
  8543. const int nb00 = src0->nb[0];
  8544. //const int nb01 = src0->nb[1];
  8545. const int nb02 = src0->nb[2];
  8546. const int nb03 = src0->nb[3];
  8547. const int nb0 = dst->nb[0];
  8548. const int nb1 = dst->nb[1];
  8549. const int nb2 = dst->nb[2];
  8550. const int nb3 = dst->nb[3];
  8551. GGML_ASSERT(nb00 == sizeof(float));
  8552. GGML_ASSERT(nb0 == sizeof(float));
  8553. for (int i3 = 0; i3 < ne3; i3++) {
  8554. for (int i2 = 0; i2 < ne2; i2++) {
  8555. for (int i1 = 0; i1 < ne1; i1++) {
  8556. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8557. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8558. for (int i0 = 0; i0 < i1; i0++) {
  8559. d[i0] = 0;
  8560. }
  8561. d[i1] = s[i1];
  8562. for (int i0 = i1+1; i0 < ne0; i0++) {
  8563. d[i0] = 0;
  8564. }
  8565. }
  8566. }
  8567. }
  8568. }
  8569. static void ggml_compute_forward_diag(
  8570. const struct ggml_compute_params * params,
  8571. const struct ggml_tensor * src0,
  8572. struct ggml_tensor * dst) {
  8573. switch (src0->type) {
  8574. case GGML_TYPE_F32:
  8575. {
  8576. ggml_compute_forward_diag_f32(params, src0, dst);
  8577. } break;
  8578. default:
  8579. {
  8580. GGML_ASSERT(false);
  8581. } break;
  8582. }
  8583. }
  8584. // ggml_compute_forward_diag_mask_inf
  8585. static void ggml_compute_forward_diag_mask_f32(
  8586. const struct ggml_compute_params * params,
  8587. const struct ggml_tensor * src0,
  8588. const struct ggml_tensor * src1,
  8589. struct ggml_tensor * dst,
  8590. const float value) {
  8591. assert(src1->type == GGML_TYPE_I32);
  8592. assert(ggml_nelements(src1) == 2);
  8593. const int ith = params->ith;
  8594. const int nth = params->nth;
  8595. const int n_past = ((int32_t *) src1->data)[0];
  8596. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8597. assert(n_past >= 0);
  8598. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8599. // memcpy needs to be synchronized across threads to avoid race conditions.
  8600. // => do it in INIT phase
  8601. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8602. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8603. memcpy(
  8604. ((char *) dst->data),
  8605. ((char *) src0->data),
  8606. ggml_nbytes(dst));
  8607. }
  8608. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8609. return;
  8610. }
  8611. // TODO: handle transposed/permuted matrices
  8612. const int n = ggml_nrows(src0);
  8613. const int nc = src0->ne[0];
  8614. const int nr = src0->ne[1];
  8615. const int nz = n/nr;
  8616. assert( dst->nb[0] == sizeof(float));
  8617. assert(src0->nb[0] == sizeof(float));
  8618. for (int k = 0; k < nz; k++) {
  8619. for (int j = ith; j < nr; j += nth) {
  8620. for (int i = n_past; i < nc; i++) {
  8621. if (i > n_past + j) {
  8622. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8623. }
  8624. }
  8625. }
  8626. }
  8627. }
  8628. static void ggml_compute_forward_diag_mask_inf(
  8629. const struct ggml_compute_params * params,
  8630. const struct ggml_tensor * src0,
  8631. const struct ggml_tensor * src1,
  8632. struct ggml_tensor * dst) {
  8633. switch (src0->type) {
  8634. case GGML_TYPE_F32:
  8635. {
  8636. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8637. } break;
  8638. default:
  8639. {
  8640. GGML_ASSERT(false);
  8641. } break;
  8642. }
  8643. }
  8644. static void ggml_compute_forward_diag_mask_zero(
  8645. const struct ggml_compute_params * params,
  8646. const struct ggml_tensor * src0,
  8647. const struct ggml_tensor * src1,
  8648. struct ggml_tensor * dst) {
  8649. switch (src0->type) {
  8650. case GGML_TYPE_F32:
  8651. {
  8652. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8653. } break;
  8654. default:
  8655. {
  8656. GGML_ASSERT(false);
  8657. } break;
  8658. }
  8659. }
  8660. // ggml_compute_forward_soft_max
  8661. static void ggml_compute_forward_soft_max_f32(
  8662. const struct ggml_compute_params * params,
  8663. const struct ggml_tensor * src0,
  8664. struct ggml_tensor * dst) {
  8665. GGML_ASSERT(ggml_is_contiguous(src0));
  8666. GGML_ASSERT(ggml_is_contiguous(dst));
  8667. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8669. return;
  8670. }
  8671. // TODO: handle transposed/permuted matrices
  8672. const int ith = params->ith;
  8673. const int nth = params->nth;
  8674. const int nc = src0->ne[0];
  8675. const int nr = ggml_nrows(src0);
  8676. // rows per thread
  8677. const int dr = (nr + nth - 1)/nth;
  8678. // row range for this thread
  8679. const int ir0 = dr*ith;
  8680. const int ir1 = MIN(ir0 + dr, nr);
  8681. for (int i1 = ir0; i1 < ir1; i1++) {
  8682. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8683. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8684. #ifndef NDEBUG
  8685. for (int i = 0; i < nc; ++i) {
  8686. //printf("p[%d] = %f\n", i, p[i]);
  8687. assert(!isnan(sp[i]));
  8688. }
  8689. #endif
  8690. float max = -INFINITY;
  8691. ggml_vec_max_f32(nc, &max, sp);
  8692. ggml_float sum = 0.0;
  8693. uint16_t scvt;
  8694. for (int i = 0; i < nc; i++) {
  8695. if (sp[i] == -INFINITY) {
  8696. dp[i] = 0.0f;
  8697. } else {
  8698. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8699. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8700. memcpy(&scvt, &s, sizeof(scvt));
  8701. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8702. sum += (ggml_float)val;
  8703. dp[i] = val;
  8704. }
  8705. }
  8706. assert(sum > 0.0);
  8707. sum = 1.0/sum;
  8708. ggml_vec_scale_f32(nc, dp, sum);
  8709. #ifndef NDEBUG
  8710. for (int i = 0; i < nc; ++i) {
  8711. assert(!isnan(dp[i]));
  8712. assert(!isinf(dp[i]));
  8713. }
  8714. #endif
  8715. }
  8716. }
  8717. static void ggml_compute_forward_soft_max(
  8718. const struct ggml_compute_params * params,
  8719. const struct ggml_tensor * src0,
  8720. struct ggml_tensor * dst) {
  8721. switch (src0->type) {
  8722. case GGML_TYPE_F32:
  8723. {
  8724. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8725. } break;
  8726. default:
  8727. {
  8728. GGML_ASSERT(false);
  8729. } break;
  8730. }
  8731. }
  8732. // ggml_compute_forward_alibi
  8733. static void ggml_compute_forward_alibi_f32(
  8734. const struct ggml_compute_params * params,
  8735. const struct ggml_tensor * src0,
  8736. const struct ggml_tensor * src1,
  8737. struct ggml_tensor * dst) {
  8738. assert(params->ith == 0);
  8739. assert(src1->type == GGML_TYPE_I32);
  8740. assert(ggml_nelements(src1) == 3);
  8741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8742. return;
  8743. }
  8744. const int n_past = ((int32_t *) src1->data)[0];
  8745. const int n_head = ((int32_t *) src1->data)[1];
  8746. const float max_bias = ((float *) src1->data)[2];
  8747. assert(n_past >= 0);
  8748. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8749. const int ne1 = src0->ne[1]; // seq_len_without_past
  8750. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8751. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8752. const int n = ggml_nrows(src0);
  8753. const int ne2_ne3 = n/ne1; // ne2*ne3
  8754. const int nb0 = src0->nb[0];
  8755. const int nb1 = src0->nb[1];
  8756. const int nb2 = src0->nb[2];
  8757. //const int nb3 = src0->nb[3];
  8758. assert(nb0 == sizeof(float));
  8759. assert(ne1 + n_past == ne0); (void) n_past;
  8760. // add alibi to src0 (KQ_scaled)
  8761. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8762. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8763. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8764. for (int i = 0; i < ne0; i++) {
  8765. for (int j = 0; j < ne1; j++) {
  8766. for (int k = 0; k < ne2_ne3; k++) {
  8767. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8768. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8769. // TODO: k*nb2 or k*nb3
  8770. float m_k;
  8771. if (k < n_heads_log2_floor) {
  8772. m_k = powf(m0, k + 1);
  8773. } else {
  8774. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8775. }
  8776. pdst[0] = (i-ne0+1) * m_k + src[0];
  8777. }
  8778. }
  8779. }
  8780. }
  8781. static void ggml_compute_forward_alibi_f16(
  8782. const struct ggml_compute_params * params,
  8783. const struct ggml_tensor * src0,
  8784. const struct ggml_tensor * src1,
  8785. struct ggml_tensor * dst) {
  8786. assert(params->ith == 0);
  8787. assert(src1->type == GGML_TYPE_I32);
  8788. assert(ggml_nelements(src1) == 3);
  8789. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8790. return;
  8791. }
  8792. const int n_past = ((int32_t *) src1->data)[0];
  8793. const int n_head = ((int32_t *) src1->data)[1];
  8794. const float max_bias = ((float *) src1->data)[2];
  8795. assert(n_past >= 0);
  8796. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8797. const int ne1 = src0->ne[1]; // seq_len_without_past
  8798. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8799. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8800. const int n = ggml_nrows(src0);
  8801. const int ne2_ne3 = n/ne1; // ne2*ne3
  8802. const int nb0 = src0->nb[0];
  8803. const int nb1 = src0->nb[1];
  8804. const int nb2 = src0->nb[2];
  8805. //const int nb3 = src0->nb[3];
  8806. assert(nb0 == sizeof(ggml_fp16_t));
  8807. assert(ne1 + n_past == ne0); (void) n_past;
  8808. // add alibi to src0 (KQ_scaled)
  8809. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8810. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8811. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8812. for (int i = 0; i < ne0; i++) {
  8813. for (int j = 0; j < ne1; j++) {
  8814. for (int k = 0; k < ne2_ne3; k++) {
  8815. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8816. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8817. // TODO: k*nb2 or k*nb3
  8818. float m_k;
  8819. if (k < n_heads_log2_floor) {
  8820. m_k = powf(m0, k + 1);
  8821. } else {
  8822. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8823. }
  8824. // we return F32
  8825. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  8826. }
  8827. }
  8828. }
  8829. }
  8830. static void ggml_compute_forward_alibi(
  8831. const struct ggml_compute_params * params,
  8832. const struct ggml_tensor * src0,
  8833. const struct ggml_tensor * src1,
  8834. struct ggml_tensor * dst) {
  8835. switch (src0->type) {
  8836. case GGML_TYPE_F16:
  8837. {
  8838. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8839. } break;
  8840. case GGML_TYPE_F32:
  8841. {
  8842. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8843. } break;
  8844. case GGML_TYPE_Q4_0:
  8845. case GGML_TYPE_Q4_1:
  8846. case GGML_TYPE_Q5_0:
  8847. case GGML_TYPE_Q5_1:
  8848. case GGML_TYPE_Q8_0:
  8849. case GGML_TYPE_Q8_1:
  8850. case GGML_TYPE_I8:
  8851. case GGML_TYPE_I16:
  8852. case GGML_TYPE_I32:
  8853. case GGML_TYPE_COUNT:
  8854. {
  8855. GGML_ASSERT(false);
  8856. } break;
  8857. }
  8858. }
  8859. // ggml_compute_forward_clamp
  8860. static void ggml_compute_forward_clamp_f32(
  8861. const struct ggml_compute_params * params,
  8862. const struct ggml_tensor * src0,
  8863. const struct ggml_tensor * src1,
  8864. struct ggml_tensor * dst) {
  8865. assert(params->ith == 0);
  8866. assert(src1->type == GGML_TYPE_I32);
  8867. assert(ggml_nelements(src1) == 2);
  8868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8869. return;
  8870. }
  8871. const int min = ((float *) src1->data)[0];
  8872. const int max = ((float *) src1->data)[1];
  8873. const int ith = params->ith;
  8874. const int nth = params->nth;
  8875. const int n = ggml_nrows(src0);
  8876. const int nc = src0->ne[0];
  8877. const size_t nb00 = src0->nb[0];
  8878. const size_t nb01 = src0->nb[1];
  8879. const size_t nb0 = dst->nb[0];
  8880. const size_t nb1 = dst->nb[1];
  8881. GGML_ASSERT( nb0 == sizeof(float));
  8882. GGML_ASSERT(nb00 == sizeof(float));
  8883. for (int j = ith; j < n; j += nth) {
  8884. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8885. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8886. for (int i = 0; i < nc; i++) {
  8887. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8888. }
  8889. }
  8890. }
  8891. static void ggml_compute_forward_clamp(
  8892. const struct ggml_compute_params * params,
  8893. const struct ggml_tensor * src0,
  8894. const struct ggml_tensor * src1,
  8895. struct ggml_tensor * dst) {
  8896. switch (src0->type) {
  8897. case GGML_TYPE_F32:
  8898. {
  8899. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  8900. } break;
  8901. case GGML_TYPE_F16:
  8902. case GGML_TYPE_Q4_0:
  8903. case GGML_TYPE_Q4_1:
  8904. case GGML_TYPE_Q5_0:
  8905. case GGML_TYPE_Q5_1:
  8906. case GGML_TYPE_Q8_0:
  8907. case GGML_TYPE_Q8_1:
  8908. case GGML_TYPE_I8:
  8909. case GGML_TYPE_I16:
  8910. case GGML_TYPE_I32:
  8911. case GGML_TYPE_COUNT:
  8912. {
  8913. GGML_ASSERT(false);
  8914. } break;
  8915. }
  8916. }
  8917. // ggml_compute_forward_rope
  8918. static void ggml_compute_forward_rope_f32(
  8919. const struct ggml_compute_params * params,
  8920. const struct ggml_tensor * src0,
  8921. const struct ggml_tensor * src1,
  8922. struct ggml_tensor * dst) {
  8923. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8924. GGML_ASSERT(ggml_nelements(src1) == 3);
  8925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8926. return;
  8927. }
  8928. const int n_past = ((int32_t *) src1->data)[0];
  8929. const int n_dims = ((int32_t *) src1->data)[1];
  8930. const int mode = ((int32_t *) src1->data)[2];
  8931. assert(n_past >= 0);
  8932. const size_t nb00 = src0->nb[0];
  8933. const size_t nb01 = src0->nb[1];
  8934. const size_t nb02 = src0->nb[2];
  8935. const size_t nb03 = src0->nb[3];
  8936. const int64_t ne0 = dst->ne[0];
  8937. const int64_t ne1 = dst->ne[1];
  8938. const int64_t ne2 = dst->ne[2];
  8939. const int64_t ne3 = dst->ne[3];
  8940. const size_t nb0 = dst->nb[0];
  8941. const size_t nb1 = dst->nb[1];
  8942. const size_t nb2 = dst->nb[2];
  8943. const size_t nb3 = dst->nb[3];
  8944. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8945. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8946. GGML_ASSERT(nb00 == sizeof(float));
  8947. const int ith = params->ith;
  8948. const int nth = params->nth;
  8949. const int nr = ggml_nrows(dst);
  8950. GGML_ASSERT(n_dims <= ne0);
  8951. GGML_ASSERT(n_dims % 2 == 0);
  8952. // rows per thread
  8953. const int dr = (nr + nth - 1)/nth;
  8954. // row range for this thread
  8955. const int ir0 = dr*ith;
  8956. const int ir1 = MIN(ir0 + dr, nr);
  8957. // row index used to determine which thread to use
  8958. int ir = 0;
  8959. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8960. const bool is_neox = mode & 2;
  8961. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8962. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8963. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8964. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8965. if (ir++ < ir0) continue;
  8966. if (ir > ir1) break;
  8967. float theta = (float)p;
  8968. if (!is_neox) {
  8969. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8970. const float cos_theta = cosf(theta);
  8971. const float sin_theta = sinf(theta);
  8972. theta *= theta_scale;
  8973. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8974. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8975. const float x0 = src[0];
  8976. const float x1 = src[1];
  8977. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8978. dst_data[1] = x0*sin_theta + x1*cos_theta;
  8979. }
  8980. } else {
  8981. // TODO: this is probably wrong, but I can't figure it out ..
  8982. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  8983. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  8984. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  8985. const float cos_theta = cosf(theta);
  8986. const float sin_theta = sinf(theta);
  8987. theta *= theta_scale;
  8988. const int64_t i0 = ib*n_dims + ic/2;
  8989. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8990. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8991. const float x0 = src[0];
  8992. const float x1 = src[n_dims/2];
  8993. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8994. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8995. }
  8996. }
  8997. }
  8998. }
  8999. }
  9000. }
  9001. }
  9002. static void ggml_compute_forward_rope_f16(
  9003. const struct ggml_compute_params * params,
  9004. const struct ggml_tensor * src0,
  9005. const struct ggml_tensor * src1,
  9006. struct ggml_tensor * dst) {
  9007. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9008. GGML_ASSERT(ggml_nelements(src1) == 3);
  9009. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9010. return;
  9011. }
  9012. const int n_past = ((int32_t *) src1->data)[0];
  9013. const int n_dims = ((int32_t *) src1->data)[1];
  9014. const int mode = ((int32_t *) src1->data)[2];
  9015. assert(n_past >= 0);
  9016. const size_t nb00 = src0->nb[0];
  9017. const size_t nb01 = src0->nb[1];
  9018. const size_t nb02 = src0->nb[2];
  9019. const size_t nb03 = src0->nb[3];
  9020. const int64_t ne0 = dst->ne[0];
  9021. const int64_t ne1 = dst->ne[1];
  9022. const int64_t ne2 = dst->ne[2];
  9023. const int64_t ne3 = dst->ne[3];
  9024. const size_t nb0 = dst->nb[0];
  9025. const size_t nb1 = dst->nb[1];
  9026. const size_t nb2 = dst->nb[2];
  9027. const size_t nb3 = dst->nb[3];
  9028. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9029. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9030. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9031. const int ith = params->ith;
  9032. const int nth = params->nth;
  9033. const int nr = ggml_nrows(dst);
  9034. GGML_ASSERT(n_dims <= ne0);
  9035. GGML_ASSERT(n_dims % 2 == 0);
  9036. // rows per thread
  9037. const int dr = (nr + nth - 1)/nth;
  9038. // row range for this thread
  9039. const int ir0 = dr*ith;
  9040. const int ir1 = MIN(ir0 + dr, nr);
  9041. // row index used to determine which thread to use
  9042. int ir = 0;
  9043. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9044. const bool is_neox = mode & 2;
  9045. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9046. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9047. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9048. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9049. if (ir++ < ir0) continue;
  9050. if (ir > ir1) break;
  9051. float theta = (float)p;
  9052. if (!is_neox) {
  9053. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9054. const float cos_theta = cosf(theta);
  9055. const float sin_theta = sinf(theta);
  9056. theta *= theta_scale;
  9057. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9058. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9059. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9060. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9061. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9062. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9063. }
  9064. } else {
  9065. // TODO: this is probably wrong, but I can't figure it out ..
  9066. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9067. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9068. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9069. const float cos_theta = cosf(theta);
  9070. const float sin_theta = sinf(theta);
  9071. theta *= theta_scale;
  9072. const int64_t i0 = ib*n_dims + ic/2;
  9073. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9074. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9075. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9076. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9077. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9078. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9079. }
  9080. }
  9081. }
  9082. }
  9083. }
  9084. }
  9085. }
  9086. static void ggml_compute_forward_rope(
  9087. const struct ggml_compute_params * params,
  9088. const struct ggml_tensor * src0,
  9089. const struct ggml_tensor * src1,
  9090. struct ggml_tensor * dst) {
  9091. switch (src0->type) {
  9092. case GGML_TYPE_F16:
  9093. {
  9094. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9095. } break;
  9096. case GGML_TYPE_F32:
  9097. {
  9098. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9099. } break;
  9100. default:
  9101. {
  9102. GGML_ASSERT(false);
  9103. } break;
  9104. }
  9105. }
  9106. // ggml_compute_forward_rope_back
  9107. static void ggml_compute_forward_rope_back_f32(
  9108. const struct ggml_compute_params * params,
  9109. const struct ggml_tensor * src0,
  9110. const struct ggml_tensor * src1,
  9111. struct ggml_tensor * dst) {
  9112. assert(src1->type == GGML_TYPE_I32);
  9113. assert(ggml_nelements(src1) == 3);
  9114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9115. return;
  9116. }
  9117. // y = rope(x, src1)
  9118. // dx = rope_back(dy, src1)
  9119. // src0 is dy, src1 contains options
  9120. const int n_past = ((int32_t *) src1->data)[0];
  9121. const int n_dims = ((int32_t *) src1->data)[1];
  9122. const int mode = ((int32_t *) src1->data)[2];
  9123. assert(n_past >= 0);
  9124. const size_t nb00 = src0->nb[0];
  9125. const size_t nb01 = src0->nb[1];
  9126. const size_t nb02 = src0->nb[2];
  9127. const size_t nb03 = src0->nb[3];
  9128. const int64_t ne0 = dst->ne[0];
  9129. const int64_t ne1 = dst->ne[1];
  9130. const int64_t ne2 = dst->ne[2];
  9131. const int64_t ne3 = dst->ne[3];
  9132. const size_t nb0 = dst->nb[0];
  9133. const size_t nb1 = dst->nb[1];
  9134. const size_t nb2 = dst->nb[2];
  9135. const size_t nb3 = dst->nb[3];
  9136. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9137. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9138. assert(nb0 == sizeof(float));
  9139. const int ith = params->ith;
  9140. const int nth = params->nth;
  9141. const int nr = ggml_nrows(dst);
  9142. // rows per thread
  9143. const int dr = (nr + nth - 1)/nth;
  9144. // row range for this thread
  9145. const int ir0 = dr*ith;
  9146. const int ir1 = MIN(ir0 + dr, nr);
  9147. // row index used to determine which thread to use
  9148. int ir = 0;
  9149. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9150. const bool is_neox = mode & 2;
  9151. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9152. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9153. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9154. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9155. if (ir++ < ir0) continue;
  9156. if (ir > ir1) break;
  9157. float theta = (float)p;
  9158. if (!is_neox) {
  9159. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9160. const float cos_theta = cosf(theta);
  9161. const float sin_theta = sinf(theta);
  9162. theta *= theta_scale;
  9163. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9164. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9165. const float dy0 = dy[0];
  9166. const float dy1 = dy[1];
  9167. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9168. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9169. }
  9170. } else {
  9171. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9172. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9173. const float cos_theta = cosf(theta);
  9174. const float sin_theta = sinf(theta);
  9175. theta *= theta_scale;
  9176. const int64_t i0 = ib*n_dims + ic/2;
  9177. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9178. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9179. const float dy0 = dy[0];
  9180. const float dy1 = dy[n_dims/2];
  9181. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9182. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9183. }
  9184. }
  9185. }
  9186. }
  9187. }
  9188. }
  9189. }
  9190. static void ggml_compute_forward_rope_back_f16(
  9191. const struct ggml_compute_params * params,
  9192. const struct ggml_tensor * src0,
  9193. const struct ggml_tensor * src1,
  9194. struct ggml_tensor * dst) {
  9195. assert(src1->type == GGML_TYPE_I32);
  9196. assert(ggml_nelements(src1) == 3);
  9197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9198. return;
  9199. }
  9200. // y = rope(x, src1)
  9201. // dx = rope_back(dy, src1)
  9202. // src0 is dy, src1 contains options
  9203. const int n_past = ((int32_t *) src1->data)[0];
  9204. const int n_dims = ((int32_t *) src1->data)[1];
  9205. const int mode = ((int32_t *) src1->data)[2];
  9206. assert(n_past >= 0);
  9207. const size_t nb00 = src0->nb[0];
  9208. const size_t nb01 = src0->nb[1];
  9209. const size_t nb02 = src0->nb[2];
  9210. const size_t nb03 = src0->nb[3];
  9211. const int64_t ne0 = dst->ne[0];
  9212. const int64_t ne1 = dst->ne[1];
  9213. const int64_t ne2 = dst->ne[2];
  9214. const int64_t ne3 = dst->ne[3];
  9215. const size_t nb0 = dst->nb[0];
  9216. const size_t nb1 = dst->nb[1];
  9217. const size_t nb2 = dst->nb[2];
  9218. const size_t nb3 = dst->nb[3];
  9219. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9220. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9221. assert(nb0 == sizeof(ggml_fp16_t));
  9222. const int ith = params->ith;
  9223. const int nth = params->nth;
  9224. const int nr = ggml_nrows(dst);
  9225. // rows per thread
  9226. const int dr = (nr + nth - 1)/nth;
  9227. // row range for this thread
  9228. const int ir0 = dr*ith;
  9229. const int ir1 = MIN(ir0 + dr, nr);
  9230. // row index used to determine which thread to use
  9231. int ir = 0;
  9232. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9233. const bool is_neox = mode & 2;
  9234. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9235. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9236. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9237. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9238. if (ir++ < ir0) continue;
  9239. if (ir > ir1) break;
  9240. float theta = (float)p;
  9241. if (!is_neox) {
  9242. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9243. const float cos_theta = cosf(theta);
  9244. const float sin_theta = sinf(theta);
  9245. theta *= theta_scale;
  9246. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9247. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9248. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9249. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9250. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9251. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9252. }
  9253. } else {
  9254. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9255. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9256. const float cos_theta = cosf(theta);
  9257. const float sin_theta = sinf(theta);
  9258. theta *= theta_scale;
  9259. const int64_t i0 = ib*n_dims + ic/2;
  9260. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9261. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9262. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9263. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9264. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9265. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9266. }
  9267. }
  9268. }
  9269. }
  9270. }
  9271. }
  9272. }
  9273. static void ggml_compute_forward_rope_back(
  9274. const struct ggml_compute_params * params,
  9275. const struct ggml_tensor * src0,
  9276. const struct ggml_tensor * src1,
  9277. struct ggml_tensor * dst) {
  9278. switch (src0->type) {
  9279. case GGML_TYPE_F16:
  9280. {
  9281. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9282. } break;
  9283. case GGML_TYPE_F32:
  9284. {
  9285. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9286. } break;
  9287. default:
  9288. {
  9289. GGML_ASSERT(false);
  9290. } break;
  9291. }
  9292. }
  9293. // ggml_compute_forward_conv_1d_1s
  9294. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9295. const struct ggml_compute_params * params,
  9296. const struct ggml_tensor * src0,
  9297. const struct ggml_tensor * src1,
  9298. struct ggml_tensor * dst) {
  9299. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9300. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9301. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9302. int64_t t0 = ggml_perf_time_us();
  9303. UNUSED(t0);
  9304. const int64_t ne00 = src0->ne[0];
  9305. const int64_t ne01 = src0->ne[1];
  9306. const int64_t ne02 = src0->ne[2];
  9307. //const int64_t ne03 = src0->ne[3];
  9308. const int64_t ne10 = src1->ne[0];
  9309. const int64_t ne11 = src1->ne[1];
  9310. //const int64_t ne12 = src1->ne[2];
  9311. //const int64_t ne13 = src1->ne[3];
  9312. //const int64_t ne0 = dst->ne[0];
  9313. //const int64_t ne1 = dst->ne[1];
  9314. //const int64_t ne2 = dst->ne[2];
  9315. //const int64_t ne3 = dst->ne[3];
  9316. //const int64_t ne = ne0*ne1*ne2*ne3;
  9317. const int nb00 = src0->nb[0];
  9318. const int nb01 = src0->nb[1];
  9319. const int nb02 = src0->nb[2];
  9320. //const int nb03 = src0->nb[3];
  9321. const int nb10 = src1->nb[0];
  9322. const int nb11 = src1->nb[1];
  9323. //const int nb12 = src1->nb[2];
  9324. //const int nb13 = src1->nb[3];
  9325. //const int nb0 = dst->nb[0];
  9326. const int nb1 = dst->nb[1];
  9327. //const int nb2 = dst->nb[2];
  9328. //const int nb3 = dst->nb[3];
  9329. const int ith = params->ith;
  9330. const int nth = params->nth;
  9331. const int nk = ne00;
  9332. const int nh = nk/2;
  9333. const int ew0 = ggml_up32(ne01);
  9334. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9335. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9336. GGML_ASSERT(nb10 == sizeof(float));
  9337. if (params->type == GGML_TASK_INIT) {
  9338. // TODO: fix this memset (wsize is overestimated)
  9339. memset(params->wdata, 0, params->wsize);
  9340. // prepare kernel data (src0)
  9341. {
  9342. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9343. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9344. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9345. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9346. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9347. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9348. dst_data[i00*ew0 + i01] = src[i00];
  9349. }
  9350. }
  9351. }
  9352. }
  9353. // prepare source data (src1)
  9354. {
  9355. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9356. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9357. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9358. ggml_fp16_t * dst_data = wdata;
  9359. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9360. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9361. }
  9362. }
  9363. }
  9364. return;
  9365. }
  9366. if (params->type == GGML_TASK_FINALIZE) {
  9367. return;
  9368. }
  9369. // total rows in dst
  9370. const int nr = ne02;
  9371. // rows per thread
  9372. const int dr = (nr + nth - 1)/nth;
  9373. // row range for this thread
  9374. const int ir0 = dr*ith;
  9375. const int ir1 = MIN(ir0 + dr, nr);
  9376. for (int i1 = ir0; i1 < ir1; i1++) {
  9377. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9378. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9379. dst_data[i0] = 0;
  9380. for (int k = -nh; k <= nh; k++) {
  9381. float v = 0.0f;
  9382. ggml_vec_dot_f16(ew0, &v,
  9383. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9384. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9385. dst_data[i0] += v;
  9386. }
  9387. }
  9388. }
  9389. }
  9390. static void ggml_compute_forward_conv_1d_1s_f32(
  9391. const struct ggml_compute_params * params,
  9392. const struct ggml_tensor * src0,
  9393. const struct ggml_tensor * src1,
  9394. struct ggml_tensor * dst) {
  9395. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9396. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9397. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9398. int64_t t0 = ggml_perf_time_us();
  9399. UNUSED(t0);
  9400. const int64_t ne00 = src0->ne[0];
  9401. const int64_t ne01 = src0->ne[1];
  9402. const int64_t ne02 = src0->ne[2];
  9403. //const int64_t ne03 = src0->ne[3];
  9404. const int64_t ne10 = src1->ne[0];
  9405. const int64_t ne11 = src1->ne[1];
  9406. //const int64_t ne12 = src1->ne[2];
  9407. //const int64_t ne13 = src1->ne[3];
  9408. //const int64_t ne0 = dst->ne[0];
  9409. //const int64_t ne1 = dst->ne[1];
  9410. //const int64_t ne2 = dst->ne[2];
  9411. //const int64_t ne3 = dst->ne[3];
  9412. //const int64_t ne = ne0*ne1*ne2*ne3;
  9413. const int nb00 = src0->nb[0];
  9414. const int nb01 = src0->nb[1];
  9415. const int nb02 = src0->nb[2];
  9416. //const int nb03 = src0->nb[3];
  9417. const int nb10 = src1->nb[0];
  9418. const int nb11 = src1->nb[1];
  9419. //const int nb12 = src1->nb[2];
  9420. //const int nb13 = src1->nb[3];
  9421. //const int nb0 = dst->nb[0];
  9422. const int nb1 = dst->nb[1];
  9423. //const int nb2 = dst->nb[2];
  9424. //const int nb3 = dst->nb[3];
  9425. const int ith = params->ith;
  9426. const int nth = params->nth;
  9427. const int nk = ne00;
  9428. const int nh = nk/2;
  9429. const int ew0 = ggml_up32(ne01);
  9430. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9431. GGML_ASSERT(nb00 == sizeof(float));
  9432. GGML_ASSERT(nb10 == sizeof(float));
  9433. if (params->type == GGML_TASK_INIT) {
  9434. // TODO: fix this memset (wsize is overestimated)
  9435. memset(params->wdata, 0, params->wsize);
  9436. // prepare kernel data (src0)
  9437. {
  9438. float * const wdata = (float *) params->wdata + 0;
  9439. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9440. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9441. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9442. float * dst_data = wdata + i02*ew0*ne00;
  9443. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9444. dst_data[i00*ew0 + i01] = src[i00];
  9445. }
  9446. }
  9447. }
  9448. }
  9449. // prepare source data (src1)
  9450. {
  9451. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9452. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9453. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9454. float * dst_data = wdata;
  9455. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9456. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9457. }
  9458. }
  9459. }
  9460. return;
  9461. }
  9462. if (params->type == GGML_TASK_FINALIZE) {
  9463. return;
  9464. }
  9465. // total rows in dst
  9466. const int nr = ne02;
  9467. // rows per thread
  9468. const int dr = (nr + nth - 1)/nth;
  9469. // row range for this thread
  9470. const int ir0 = dr*ith;
  9471. const int ir1 = MIN(ir0 + dr, nr);
  9472. for (int i1 = ir0; i1 < ir1; i1++) {
  9473. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9474. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9475. dst_data[i0] = 0;
  9476. for (int k = -nh; k <= nh; k++) {
  9477. float v = 0.0f;
  9478. ggml_vec_dot_f32(ew0, &v,
  9479. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9480. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9481. dst_data[i0] += v;
  9482. }
  9483. }
  9484. }
  9485. }
  9486. static void ggml_compute_forward_conv_1d_1s(
  9487. const struct ggml_compute_params * params,
  9488. const struct ggml_tensor * src0,
  9489. const struct ggml_tensor * src1,
  9490. struct ggml_tensor * dst) {
  9491. switch (src0->type) {
  9492. case GGML_TYPE_F16:
  9493. {
  9494. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9495. } break;
  9496. case GGML_TYPE_F32:
  9497. {
  9498. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9499. } break;
  9500. default:
  9501. {
  9502. GGML_ASSERT(false);
  9503. } break;
  9504. }
  9505. }
  9506. // ggml_compute_forward_conv_1d_2s
  9507. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9508. const struct ggml_compute_params * params,
  9509. const struct ggml_tensor * src0,
  9510. const struct ggml_tensor * src1,
  9511. struct ggml_tensor * dst) {
  9512. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9513. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9514. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9515. int64_t t0 = ggml_perf_time_us();
  9516. UNUSED(t0);
  9517. const int64_t ne00 = src0->ne[0];
  9518. const int64_t ne01 = src0->ne[1];
  9519. const int64_t ne02 = src0->ne[2];
  9520. //const int64_t ne03 = src0->ne[3];
  9521. const int64_t ne10 = src1->ne[0];
  9522. const int64_t ne11 = src1->ne[1];
  9523. //const int64_t ne12 = src1->ne[2];
  9524. //const int64_t ne13 = src1->ne[3];
  9525. //const int64_t ne0 = dst->ne[0];
  9526. //const int64_t ne1 = dst->ne[1];
  9527. //const int64_t ne2 = dst->ne[2];
  9528. //const int64_t ne3 = dst->ne[3];
  9529. //const int64_t ne = ne0*ne1*ne2*ne3;
  9530. const int nb00 = src0->nb[0];
  9531. const int nb01 = src0->nb[1];
  9532. const int nb02 = src0->nb[2];
  9533. //const int nb03 = src0->nb[3];
  9534. const int nb10 = src1->nb[0];
  9535. const int nb11 = src1->nb[1];
  9536. //const int nb12 = src1->nb[2];
  9537. //const int nb13 = src1->nb[3];
  9538. //const int nb0 = dst->nb[0];
  9539. const int nb1 = dst->nb[1];
  9540. //const int nb2 = dst->nb[2];
  9541. //const int nb3 = dst->nb[3];
  9542. const int ith = params->ith;
  9543. const int nth = params->nth;
  9544. const int nk = ne00;
  9545. const int nh = nk/2;
  9546. const int ew0 = ggml_up32(ne01);
  9547. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9548. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9549. GGML_ASSERT(nb10 == sizeof(float));
  9550. if (params->type == GGML_TASK_INIT) {
  9551. // TODO: fix this memset (wsize is overestimated)
  9552. memset(params->wdata, 0, params->wsize);
  9553. // prepare kernel data (src0)
  9554. {
  9555. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9556. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9557. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9558. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9559. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9560. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9561. dst_data[i00*ew0 + i01] = src[i00];
  9562. }
  9563. }
  9564. }
  9565. }
  9566. // prepare source data (src1)
  9567. {
  9568. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9569. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9570. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9571. ggml_fp16_t * dst_data = wdata;
  9572. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9573. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9574. }
  9575. }
  9576. }
  9577. return;
  9578. }
  9579. if (params->type == GGML_TASK_FINALIZE) {
  9580. return;
  9581. }
  9582. // total rows in dst
  9583. const int nr = ne02;
  9584. // rows per thread
  9585. const int dr = (nr + nth - 1)/nth;
  9586. // row range for this thread
  9587. const int ir0 = dr*ith;
  9588. const int ir1 = MIN(ir0 + dr, nr);
  9589. for (int i1 = ir0; i1 < ir1; i1++) {
  9590. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9591. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9592. dst_data[i0/2] = 0;
  9593. for (int k = -nh; k <= nh; k++) {
  9594. float v = 0.0f;
  9595. ggml_vec_dot_f16(ew0, &v,
  9596. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9597. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9598. dst_data[i0/2] += v;
  9599. }
  9600. }
  9601. }
  9602. }
  9603. static void ggml_compute_forward_conv_1d_2s_f32(
  9604. const struct ggml_compute_params * params,
  9605. const struct ggml_tensor * src0,
  9606. const struct ggml_tensor * src1,
  9607. struct ggml_tensor * dst) {
  9608. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9609. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9610. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9611. int64_t t0 = ggml_perf_time_us();
  9612. UNUSED(t0);
  9613. const int64_t ne00 = src0->ne[0];
  9614. const int64_t ne01 = src0->ne[1];
  9615. const int64_t ne02 = src0->ne[2];
  9616. //const int64_t ne03 = src0->ne[3];
  9617. const int64_t ne10 = src1->ne[0];
  9618. const int64_t ne11 = src1->ne[1];
  9619. //const int64_t ne12 = src1->ne[2];
  9620. //const int64_t ne13 = src1->ne[3];
  9621. //const int64_t ne0 = dst->ne[0];
  9622. //const int64_t ne1 = dst->ne[1];
  9623. //const int64_t ne2 = dst->ne[2];
  9624. //const int64_t ne3 = dst->ne[3];
  9625. //const int64_t ne = ne0*ne1*ne2*ne3;
  9626. const int nb00 = src0->nb[0];
  9627. const int nb01 = src0->nb[1];
  9628. const int nb02 = src0->nb[2];
  9629. //const int nb03 = src0->nb[3];
  9630. const int nb10 = src1->nb[0];
  9631. const int nb11 = src1->nb[1];
  9632. //const int nb12 = src1->nb[2];
  9633. //const int nb13 = src1->nb[3];
  9634. //const int nb0 = dst->nb[0];
  9635. const int nb1 = dst->nb[1];
  9636. //const int nb2 = dst->nb[2];
  9637. //const int nb3 = dst->nb[3];
  9638. const int ith = params->ith;
  9639. const int nth = params->nth;
  9640. const int nk = ne00;
  9641. const int nh = nk/2;
  9642. const int ew0 = ggml_up32(ne01);
  9643. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9644. GGML_ASSERT(nb00 == sizeof(float));
  9645. GGML_ASSERT(nb10 == sizeof(float));
  9646. if (params->type == GGML_TASK_INIT) {
  9647. // TODO: fix this memset (wsize is overestimated)
  9648. memset(params->wdata, 0, params->wsize);
  9649. // prepare kernel data (src0)
  9650. {
  9651. float * const wdata = (float *) params->wdata + 0;
  9652. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9653. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9654. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9655. float * dst_data = wdata + i02*ew0*ne00;
  9656. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9657. dst_data[i00*ew0 + i01] = src[i00];
  9658. }
  9659. }
  9660. }
  9661. }
  9662. // prepare source data (src1)
  9663. {
  9664. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9665. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9666. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9667. float * dst_data = wdata;
  9668. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9669. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9670. }
  9671. }
  9672. }
  9673. return;
  9674. }
  9675. if (params->type == GGML_TASK_FINALIZE) {
  9676. return;
  9677. }
  9678. // total rows in dst
  9679. const int nr = ne02;
  9680. // rows per thread
  9681. const int dr = (nr + nth - 1)/nth;
  9682. // row range for this thread
  9683. const int ir0 = dr*ith;
  9684. const int ir1 = MIN(ir0 + dr, nr);
  9685. for (int i1 = ir0; i1 < ir1; i1++) {
  9686. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9687. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9688. dst_data[i0/2] = 0;
  9689. for (int k = -nh; k <= nh; k++) {
  9690. float v = 0.0f;
  9691. ggml_vec_dot_f32(ew0, &v,
  9692. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9693. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9694. dst_data[i0/2] += v;
  9695. }
  9696. }
  9697. }
  9698. }
  9699. static void ggml_compute_forward_conv_1d_2s(
  9700. const struct ggml_compute_params * params,
  9701. const struct ggml_tensor * src0,
  9702. const struct ggml_tensor * src1,
  9703. struct ggml_tensor * dst) {
  9704. switch (src0->type) {
  9705. case GGML_TYPE_F16:
  9706. {
  9707. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9708. } break;
  9709. case GGML_TYPE_F32:
  9710. {
  9711. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9712. } break;
  9713. default:
  9714. {
  9715. GGML_ASSERT(false);
  9716. } break;
  9717. }
  9718. }
  9719. // ggml_compute_forward_flash_attn
  9720. static void ggml_compute_forward_flash_attn_f32(
  9721. const struct ggml_compute_params * params,
  9722. const struct ggml_tensor * q,
  9723. const struct ggml_tensor * k,
  9724. const struct ggml_tensor * v,
  9725. const bool masked,
  9726. struct ggml_tensor * dst) {
  9727. int64_t t0 = ggml_perf_time_us();
  9728. UNUSED(t0);
  9729. const int64_t neq0 = q->ne[0];
  9730. const int64_t neq1 = q->ne[1];
  9731. const int64_t neq2 = q->ne[2];
  9732. const int64_t neq3 = q->ne[3];
  9733. const int64_t nek0 = k->ne[0];
  9734. const int64_t nek1 = k->ne[1];
  9735. //const int64_t nek2 = k->ne[2];
  9736. //const int64_t nek3 = k->ne[3];
  9737. //const int64_t nev0 = v->ne[0];
  9738. const int64_t nev1 = v->ne[1];
  9739. //const int64_t nev2 = v->ne[2];
  9740. //const int64_t nev3 = v->ne[3];
  9741. const int64_t ne0 = dst->ne[0];
  9742. const int64_t ne1 = dst->ne[1];
  9743. //const int64_t ne2 = dst->ne[2];
  9744. //const int64_t ne3 = dst->ne[3];
  9745. const int nbk0 = k->nb[0];
  9746. const int nbk1 = k->nb[1];
  9747. const int nbk2 = k->nb[2];
  9748. const int nbk3 = k->nb[3];
  9749. const int nbq0 = q->nb[0];
  9750. const int nbq1 = q->nb[1];
  9751. const int nbq2 = q->nb[2];
  9752. const int nbq3 = q->nb[3];
  9753. const int nbv0 = v->nb[0];
  9754. const int nbv1 = v->nb[1];
  9755. const int nbv2 = v->nb[2];
  9756. const int nbv3 = v->nb[3];
  9757. const int nb0 = dst->nb[0];
  9758. const int nb1 = dst->nb[1];
  9759. const int nb2 = dst->nb[2];
  9760. const int nb3 = dst->nb[3];
  9761. const int ith = params->ith;
  9762. const int nth = params->nth;
  9763. const int64_t D = neq0;
  9764. const int64_t N = neq1;
  9765. const int64_t P = nek1 - N;
  9766. const int64_t M = P + N;
  9767. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9768. GGML_ASSERT(ne0 == D);
  9769. GGML_ASSERT(ne1 == N);
  9770. GGML_ASSERT(P >= 0);
  9771. GGML_ASSERT(nbq0 == sizeof(float));
  9772. GGML_ASSERT(nbk0 == sizeof(float));
  9773. GGML_ASSERT(nbv0 == sizeof(float));
  9774. GGML_ASSERT(neq0 == D);
  9775. GGML_ASSERT(nek0 == D);
  9776. GGML_ASSERT(nev1 == D);
  9777. GGML_ASSERT(neq1 == N);
  9778. GGML_ASSERT(nek1 == N + P);
  9779. GGML_ASSERT(nev1 == D);
  9780. // dst cannot be transposed or permuted
  9781. GGML_ASSERT(nb0 == sizeof(float));
  9782. GGML_ASSERT(nb0 <= nb1);
  9783. GGML_ASSERT(nb1 <= nb2);
  9784. GGML_ASSERT(nb2 <= nb3);
  9785. if (params->type == GGML_TASK_INIT) {
  9786. return;
  9787. }
  9788. if (params->type == GGML_TASK_FINALIZE) {
  9789. return;
  9790. }
  9791. // parallelize by q rows using ggml_vec_dot_f32
  9792. // total rows in q
  9793. const int nr = neq1*neq2*neq3;
  9794. // rows per thread
  9795. const int dr = (nr + nth - 1)/nth;
  9796. // row range for this thread
  9797. const int ir0 = dr*ith;
  9798. const int ir1 = MIN(ir0 + dr, nr);
  9799. const float scale = 1.0f/sqrtf(D);
  9800. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9801. for (int ir = ir0; ir < ir1; ++ir) {
  9802. // q indices
  9803. const int iq3 = ir/(neq2*neq1);
  9804. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9805. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9806. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9807. for (int i = M; i < Mup; ++i) {
  9808. S[i] = -INFINITY;
  9809. }
  9810. for (int64_t ic = 0; ic < nek1; ++ic) {
  9811. // k indices
  9812. const int ik3 = iq3;
  9813. const int ik2 = iq2;
  9814. const int ik1 = ic;
  9815. // S indices
  9816. const int i1 = ik1;
  9817. ggml_vec_dot_f32(neq0,
  9818. S + i1,
  9819. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9820. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9821. }
  9822. // scale
  9823. ggml_vec_scale_f32(nek1, S, scale);
  9824. if (masked) {
  9825. for (int64_t i = P; i < M; i++) {
  9826. if (i > P + iq1) {
  9827. S[i] = -INFINITY;
  9828. }
  9829. }
  9830. }
  9831. // softmax
  9832. {
  9833. float max = -INFINITY;
  9834. ggml_vec_max_f32(M, &max, S);
  9835. ggml_float sum = 0.0;
  9836. {
  9837. #ifdef GGML_SOFT_MAX_ACCELERATE
  9838. max = -max;
  9839. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9840. vvexpf(S, S, &Mup);
  9841. ggml_vec_sum_f32(Mup, &sum, S);
  9842. #else
  9843. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9844. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9845. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9846. float * SS = S + i;
  9847. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9848. if (SS[j] == -INFINITY) {
  9849. SS[j] = 0.0f;
  9850. } else {
  9851. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9852. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9853. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9854. sump[j] += (ggml_float)val;
  9855. SS[j] = val;
  9856. }
  9857. }
  9858. }
  9859. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9860. sum += sump[i];
  9861. }
  9862. #endif
  9863. }
  9864. assert(sum > 0.0);
  9865. sum = 1.0/sum;
  9866. ggml_vec_scale_f32(M, S, sum);
  9867. #ifndef NDEBUG
  9868. for (int i = 0; i < M; ++i) {
  9869. assert(!isnan(S[i]));
  9870. assert(!isinf(S[i]));
  9871. }
  9872. #endif
  9873. }
  9874. for (int64_t ic = 0; ic < nev1; ++ic) {
  9875. // dst indices
  9876. const int i1 = iq1;
  9877. const int i2 = iq2;
  9878. const int i3 = iq3;
  9879. ggml_vec_dot_f32(nek1,
  9880. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9881. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9882. S);
  9883. }
  9884. }
  9885. }
  9886. static void ggml_compute_forward_flash_attn_f16(
  9887. const struct ggml_compute_params * params,
  9888. const struct ggml_tensor * q,
  9889. const struct ggml_tensor * k,
  9890. const struct ggml_tensor * v,
  9891. const bool masked,
  9892. struct ggml_tensor * dst) {
  9893. int64_t t0 = ggml_perf_time_us();
  9894. UNUSED(t0);
  9895. const int64_t neq0 = q->ne[0];
  9896. const int64_t neq1 = q->ne[1];
  9897. const int64_t neq2 = q->ne[2];
  9898. const int64_t neq3 = q->ne[3];
  9899. const int64_t nek0 = k->ne[0];
  9900. const int64_t nek1 = k->ne[1];
  9901. //const int64_t nek2 = k->ne[2];
  9902. //const int64_t nek3 = k->ne[3];
  9903. //const int64_t nev0 = v->ne[0];
  9904. const int64_t nev1 = v->ne[1];
  9905. //const int64_t nev2 = v->ne[2];
  9906. //const int64_t nev3 = v->ne[3];
  9907. const int64_t ne0 = dst->ne[0];
  9908. const int64_t ne1 = dst->ne[1];
  9909. //const int64_t ne2 = dst->ne[2];
  9910. //const int64_t ne3 = dst->ne[3];
  9911. const int nbk0 = k->nb[0];
  9912. const int nbk1 = k->nb[1];
  9913. const int nbk2 = k->nb[2];
  9914. const int nbk3 = k->nb[3];
  9915. const int nbq0 = q->nb[0];
  9916. const int nbq1 = q->nb[1];
  9917. const int nbq2 = q->nb[2];
  9918. const int nbq3 = q->nb[3];
  9919. const int nbv0 = v->nb[0];
  9920. const int nbv1 = v->nb[1];
  9921. const int nbv2 = v->nb[2];
  9922. const int nbv3 = v->nb[3];
  9923. const int nb0 = dst->nb[0];
  9924. const int nb1 = dst->nb[1];
  9925. const int nb2 = dst->nb[2];
  9926. const int nb3 = dst->nb[3];
  9927. const int ith = params->ith;
  9928. const int nth = params->nth;
  9929. const int64_t D = neq0;
  9930. const int64_t N = neq1;
  9931. const int64_t P = nek1 - N;
  9932. const int64_t M = P + N;
  9933. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9934. GGML_ASSERT(ne0 == D);
  9935. GGML_ASSERT(ne1 == N);
  9936. GGML_ASSERT(P >= 0);
  9937. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9938. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9939. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9940. GGML_ASSERT(neq0 == D);
  9941. GGML_ASSERT(nek0 == D);
  9942. GGML_ASSERT(nev1 == D);
  9943. GGML_ASSERT(neq1 == N);
  9944. GGML_ASSERT(nek1 == N + P);
  9945. GGML_ASSERT(nev1 == D);
  9946. // dst cannot be transposed or permuted
  9947. GGML_ASSERT(nb0 == sizeof(float));
  9948. GGML_ASSERT(nb0 <= nb1);
  9949. GGML_ASSERT(nb1 <= nb2);
  9950. GGML_ASSERT(nb2 <= nb3);
  9951. if (params->type == GGML_TASK_INIT) {
  9952. return;
  9953. }
  9954. if (params->type == GGML_TASK_FINALIZE) {
  9955. return;
  9956. }
  9957. // parallelize by q rows using ggml_vec_dot_f32
  9958. // total rows in q
  9959. const int nr = neq1*neq2*neq3;
  9960. // rows per thread
  9961. const int dr = (nr + nth - 1)/nth;
  9962. // row range for this thread
  9963. const int ir0 = dr*ith;
  9964. const int ir1 = MIN(ir0 + dr, nr);
  9965. const float scale = 1.0f/sqrtf(D);
  9966. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9967. for (int ir = ir0; ir < ir1; ++ir) {
  9968. // q indices
  9969. const int iq3 = ir/(neq2*neq1);
  9970. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9971. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9972. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9973. for (int i = M; i < Mup; ++i) {
  9974. S[i] = -INFINITY;
  9975. }
  9976. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  9977. for (int64_t ic = 0; ic < nek1; ++ic) {
  9978. // k indices
  9979. const int ik3 = iq3;
  9980. const int ik2 = iq2;
  9981. const int ik1 = ic;
  9982. // S indices
  9983. const int i1 = ik1;
  9984. ggml_vec_dot_f16(neq0,
  9985. S + i1,
  9986. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9987. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9988. }
  9989. } else {
  9990. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  9991. // k indices
  9992. const int ik3 = iq3;
  9993. const int ik2 = iq2;
  9994. const int ik1 = ic;
  9995. // S indices
  9996. const int i1 = ik1;
  9997. ggml_vec_dot_f16_unroll(neq0, nbk1,
  9998. S + i1,
  9999. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10000. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10001. }
  10002. }
  10003. // scale
  10004. ggml_vec_scale_f32(nek1, S, scale);
  10005. if (masked) {
  10006. for (int64_t i = P; i < M; i++) {
  10007. if (i > P + iq1) {
  10008. S[i] = -INFINITY;
  10009. }
  10010. }
  10011. }
  10012. // softmax
  10013. {
  10014. float max = -INFINITY;
  10015. ggml_vec_max_f32(M, &max, S);
  10016. ggml_float sum = 0.0;
  10017. {
  10018. #ifdef GGML_SOFT_MAX_ACCELERATE
  10019. max = -max;
  10020. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10021. vvexpf(S, S, &Mup);
  10022. ggml_vec_sum_f32(Mup, &sum, S);
  10023. #else
  10024. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10025. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10026. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10027. float * SS = S + i;
  10028. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10029. if (SS[j] == -INFINITY) {
  10030. SS[j] = 0.0f;
  10031. } else {
  10032. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10033. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10034. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10035. sump[j] += (ggml_float)val;
  10036. SS[j] = val;
  10037. }
  10038. }
  10039. }
  10040. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10041. sum += sump[i];
  10042. }
  10043. #endif
  10044. }
  10045. assert(sum > 0.0);
  10046. sum = 1.0/sum;
  10047. ggml_vec_scale_f32(M, S, sum);
  10048. #ifndef NDEBUG
  10049. for (int i = 0; i < M; ++i) {
  10050. assert(!isnan(S[i]));
  10051. assert(!isinf(S[i]));
  10052. }
  10053. #endif
  10054. }
  10055. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10056. for (int64_t i = 0; i < M; i++) {
  10057. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10058. }
  10059. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10060. for (int64_t ic = 0; ic < nev1; ++ic) {
  10061. // dst indices
  10062. const int i1 = iq1;
  10063. const int i2 = iq2;
  10064. const int i3 = iq3;
  10065. ggml_vec_dot_f16(nek1,
  10066. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10067. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10068. S16);
  10069. }
  10070. } else {
  10071. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10072. // dst indices
  10073. const int i1 = iq1;
  10074. const int i2 = iq2;
  10075. const int i3 = iq3;
  10076. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10077. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10078. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10079. S16);
  10080. }
  10081. }
  10082. }
  10083. }
  10084. static void ggml_compute_forward_flash_attn(
  10085. const struct ggml_compute_params * params,
  10086. const struct ggml_tensor * q,
  10087. const struct ggml_tensor * k,
  10088. const struct ggml_tensor * v,
  10089. const bool masked,
  10090. struct ggml_tensor * dst) {
  10091. switch (q->type) {
  10092. case GGML_TYPE_F16:
  10093. {
  10094. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10095. } break;
  10096. case GGML_TYPE_F32:
  10097. {
  10098. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10099. } break;
  10100. default:
  10101. {
  10102. GGML_ASSERT(false);
  10103. } break;
  10104. }
  10105. }
  10106. // ggml_compute_forward_flash_ff
  10107. static void ggml_compute_forward_flash_ff_f16(
  10108. const struct ggml_compute_params * params,
  10109. const struct ggml_tensor * a, // F16
  10110. const struct ggml_tensor * b0, // F16 fc_w
  10111. const struct ggml_tensor * b1, // F32 fc_b
  10112. const struct ggml_tensor * c0, // F16 proj_w
  10113. const struct ggml_tensor * c1, // F32 proj_b
  10114. struct ggml_tensor * dst) {
  10115. int64_t t0 = ggml_perf_time_us();
  10116. UNUSED(t0);
  10117. const int64_t nea0 = a->ne[0];
  10118. const int64_t nea1 = a->ne[1];
  10119. const int64_t nea2 = a->ne[2];
  10120. const int64_t nea3 = a->ne[3];
  10121. const int64_t neb00 = b0->ne[0];
  10122. const int64_t neb01 = b0->ne[1];
  10123. //const int64_t neb02 = b0->ne[2];
  10124. //const int64_t neb03 = b0->ne[3];
  10125. const int64_t neb10 = b1->ne[0];
  10126. const int64_t neb11 = b1->ne[1];
  10127. //const int64_t neb12 = b1->ne[2];
  10128. //const int64_t neb13 = b1->ne[3];
  10129. const int64_t nec00 = c0->ne[0];
  10130. const int64_t nec01 = c0->ne[1];
  10131. //const int64_t nec02 = c0->ne[2];
  10132. //const int64_t nec03 = c0->ne[3];
  10133. const int64_t nec10 = c1->ne[0];
  10134. const int64_t nec11 = c1->ne[1];
  10135. //const int64_t nec12 = c1->ne[2];
  10136. //const int64_t nec13 = c1->ne[3];
  10137. const int64_t ne0 = dst->ne[0];
  10138. const int64_t ne1 = dst->ne[1];
  10139. const int64_t ne2 = dst->ne[2];
  10140. //const int64_t ne3 = dst->ne[3];
  10141. const int nba0 = a->nb[0];
  10142. const int nba1 = a->nb[1];
  10143. const int nba2 = a->nb[2];
  10144. const int nba3 = a->nb[3];
  10145. const int nbb00 = b0->nb[0];
  10146. const int nbb01 = b0->nb[1];
  10147. const int nbb02 = b0->nb[2];
  10148. const int nbb03 = b0->nb[3];
  10149. const int nbb10 = b1->nb[0];
  10150. //const int nbb11 = b1->nb[1];
  10151. //const int nbb12 = b1->nb[2];
  10152. //const int nbb13 = b1->nb[3];
  10153. const int nbc00 = c0->nb[0];
  10154. const int nbc01 = c0->nb[1];
  10155. const int nbc02 = c0->nb[2];
  10156. const int nbc03 = c0->nb[3];
  10157. const int nbc10 = c1->nb[0];
  10158. //const int nbc11 = c1->nb[1];
  10159. //const int nbc12 = c1->nb[2];
  10160. //const int nbc13 = c1->nb[3];
  10161. const int nb0 = dst->nb[0];
  10162. const int nb1 = dst->nb[1];
  10163. const int nb2 = dst->nb[2];
  10164. const int nb3 = dst->nb[3];
  10165. const int ith = params->ith;
  10166. const int nth = params->nth;
  10167. const int64_t D = nea0;
  10168. //const int64_t N = nea1;
  10169. const int64_t M = neb01;
  10170. GGML_ASSERT(ne0 == nea0);
  10171. GGML_ASSERT(ne1 == nea1);
  10172. GGML_ASSERT(ne2 == nea2);
  10173. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10174. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10175. GGML_ASSERT(nbb10 == sizeof(float));
  10176. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10177. GGML_ASSERT(nbc10 == sizeof(float));
  10178. GGML_ASSERT(neb00 == D);
  10179. GGML_ASSERT(neb01 == M);
  10180. GGML_ASSERT(neb10 == M);
  10181. GGML_ASSERT(neb11 == 1);
  10182. GGML_ASSERT(nec00 == M);
  10183. GGML_ASSERT(nec01 == D);
  10184. GGML_ASSERT(nec10 == D);
  10185. GGML_ASSERT(nec11 == 1);
  10186. // dst cannot be transposed or permuted
  10187. GGML_ASSERT(nb0 == sizeof(float));
  10188. GGML_ASSERT(nb0 <= nb1);
  10189. GGML_ASSERT(nb1 <= nb2);
  10190. GGML_ASSERT(nb2 <= nb3);
  10191. if (params->type == GGML_TASK_INIT) {
  10192. return;
  10193. }
  10194. if (params->type == GGML_TASK_FINALIZE) {
  10195. return;
  10196. }
  10197. // parallelize by a rows using ggml_vec_dot_f32
  10198. // total rows in a
  10199. const int nr = nea1*nea2*nea3;
  10200. // rows per thread
  10201. const int dr = (nr + nth - 1)/nth;
  10202. // row range for this thread
  10203. const int ir0 = dr*ith;
  10204. const int ir1 = MIN(ir0 + dr, nr);
  10205. for (int ir = ir0; ir < ir1; ++ir) {
  10206. // a indices
  10207. const int ia3 = ir/(nea2*nea1);
  10208. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10209. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10210. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10211. for (int64_t ic = 0; ic < neb01; ++ic) {
  10212. // b0 indices
  10213. const int ib03 = ia3;
  10214. const int ib02 = ia2;
  10215. const int ib01 = ic;
  10216. // S indices
  10217. const int i1 = ib01;
  10218. ggml_vec_dot_f16(nea0,
  10219. S + i1,
  10220. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10221. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10222. }
  10223. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10224. //ggml_vec_gelu_f32(neb01, S, S);
  10225. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10226. for (int64_t i = 0; i < M; i++) {
  10227. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10228. }
  10229. ggml_vec_gelu_f16(neb01, S16, S16);
  10230. {
  10231. // dst indices
  10232. const int i1 = ia1;
  10233. const int i2 = ia2;
  10234. const int i3 = ia3;
  10235. for (int64_t ic = 0; ic < nec01; ++ic) {
  10236. ggml_vec_dot_f16(neb01,
  10237. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10238. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10239. S16);
  10240. }
  10241. ggml_vec_add_f32(nec01,
  10242. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10243. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10244. (float *) c1->data);
  10245. }
  10246. }
  10247. }
  10248. static void ggml_compute_forward_flash_ff(
  10249. const struct ggml_compute_params * params,
  10250. const struct ggml_tensor * a,
  10251. const struct ggml_tensor * b0,
  10252. const struct ggml_tensor * b1,
  10253. const struct ggml_tensor * c0,
  10254. const struct ggml_tensor * c1,
  10255. struct ggml_tensor * dst) {
  10256. switch (b0->type) {
  10257. case GGML_TYPE_F16:
  10258. {
  10259. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10260. } break;
  10261. case GGML_TYPE_F32:
  10262. {
  10263. GGML_ASSERT(false); // TODO
  10264. } break;
  10265. default:
  10266. {
  10267. GGML_ASSERT(false);
  10268. } break;
  10269. }
  10270. }
  10271. // ggml_compute_forward_map_unary
  10272. static void ggml_compute_forward_map_unary_f32(
  10273. const struct ggml_compute_params * params,
  10274. const struct ggml_tensor * src0,
  10275. struct ggml_tensor * dst,
  10276. const ggml_unary_op_f32_t fun) {
  10277. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10279. return;
  10280. }
  10281. const int n = ggml_nrows(src0);
  10282. const int nc = src0->ne[0];
  10283. assert( dst->nb[0] == sizeof(float));
  10284. assert(src0->nb[0] == sizeof(float));
  10285. for (int i = 0; i < n; i++) {
  10286. fun(nc,
  10287. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10288. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10289. }
  10290. }
  10291. static void ggml_compute_forward_map_unary(
  10292. const struct ggml_compute_params * params,
  10293. const struct ggml_tensor * src0,
  10294. struct ggml_tensor * dst,
  10295. const ggml_unary_op_f32_t fun) {
  10296. switch (src0->type) {
  10297. case GGML_TYPE_F32:
  10298. {
  10299. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10300. } break;
  10301. default:
  10302. {
  10303. GGML_ASSERT(false);
  10304. } break;
  10305. }
  10306. }
  10307. // ggml_compute_forward_map_binary
  10308. static void ggml_compute_forward_map_binary_f32(
  10309. const struct ggml_compute_params * params,
  10310. const struct ggml_tensor * src0,
  10311. const struct ggml_tensor * src1,
  10312. struct ggml_tensor * dst,
  10313. const ggml_binary_op_f32_t fun) {
  10314. assert(params->ith == 0);
  10315. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10317. return;
  10318. }
  10319. const int n = ggml_nrows(src0);
  10320. const int nc = src0->ne[0];
  10321. assert( dst->nb[0] == sizeof(float));
  10322. assert(src0->nb[0] == sizeof(float));
  10323. assert(src1->nb[0] == sizeof(float));
  10324. for (int i = 0; i < n; i++) {
  10325. fun(nc,
  10326. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10327. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10328. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10329. }
  10330. }
  10331. static void ggml_compute_forward_map_binary(
  10332. const struct ggml_compute_params * params,
  10333. const struct ggml_tensor * src0,
  10334. const struct ggml_tensor * src1,
  10335. struct ggml_tensor * dst,
  10336. const ggml_binary_op_f32_t fun) {
  10337. switch (src0->type) {
  10338. case GGML_TYPE_F32:
  10339. {
  10340. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10341. } break;
  10342. default:
  10343. {
  10344. GGML_ASSERT(false);
  10345. } break;
  10346. }
  10347. }
  10348. /////////////////////////////////
  10349. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10350. GGML_ASSERT(params);
  10351. switch (tensor->op) {
  10352. case GGML_OP_DUP:
  10353. {
  10354. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10355. } break;
  10356. case GGML_OP_ADD:
  10357. {
  10358. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10359. } break;
  10360. case GGML_OP_ADD1:
  10361. {
  10362. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10363. } break;
  10364. case GGML_OP_ACC:
  10365. {
  10366. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10367. } break;
  10368. case GGML_OP_SUB:
  10369. {
  10370. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10371. } break;
  10372. case GGML_OP_MUL:
  10373. {
  10374. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10375. } break;
  10376. case GGML_OP_DIV:
  10377. {
  10378. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10379. } break;
  10380. case GGML_OP_SQR:
  10381. {
  10382. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10383. } break;
  10384. case GGML_OP_SQRT:
  10385. {
  10386. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10387. } break;
  10388. case GGML_OP_LOG:
  10389. {
  10390. ggml_compute_forward_log(params, tensor->src0, tensor);
  10391. } break;
  10392. case GGML_OP_SUM:
  10393. {
  10394. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10395. } break;
  10396. case GGML_OP_SUM_ROWS:
  10397. {
  10398. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10399. } break;
  10400. case GGML_OP_MEAN:
  10401. {
  10402. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10403. } break;
  10404. case GGML_OP_REPEAT:
  10405. {
  10406. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10407. } break;
  10408. case GGML_OP_ABS:
  10409. {
  10410. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10411. } break;
  10412. case GGML_OP_SGN:
  10413. {
  10414. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10415. } break;
  10416. case GGML_OP_NEG:
  10417. {
  10418. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10419. } break;
  10420. case GGML_OP_STEP:
  10421. {
  10422. ggml_compute_forward_step(params, tensor->src0, tensor);
  10423. } break;
  10424. case GGML_OP_RELU:
  10425. {
  10426. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10427. } break;
  10428. case GGML_OP_GELU:
  10429. {
  10430. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10431. } break;
  10432. case GGML_OP_SILU:
  10433. {
  10434. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10435. } break;
  10436. case GGML_OP_SILU_BACK:
  10437. {
  10438. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10439. } break;
  10440. case GGML_OP_NORM:
  10441. {
  10442. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10443. } break;
  10444. case GGML_OP_RMS_NORM:
  10445. {
  10446. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10447. } break;
  10448. case GGML_OP_RMS_NORM_BACK:
  10449. {
  10450. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10451. } break;
  10452. case GGML_OP_MUL_MAT:
  10453. {
  10454. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10455. } break;
  10456. case GGML_OP_SCALE:
  10457. {
  10458. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10459. } break;
  10460. case GGML_OP_SET:
  10461. {
  10462. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10463. } break;
  10464. case GGML_OP_CPY:
  10465. {
  10466. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10467. } break;
  10468. case GGML_OP_CONT:
  10469. {
  10470. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10471. } break;
  10472. case GGML_OP_RESHAPE:
  10473. {
  10474. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10475. } break;
  10476. case GGML_OP_VIEW:
  10477. {
  10478. ggml_compute_forward_view(params, tensor->src0);
  10479. } break;
  10480. case GGML_OP_PERMUTE:
  10481. {
  10482. ggml_compute_forward_permute(params, tensor->src0);
  10483. } break;
  10484. case GGML_OP_TRANSPOSE:
  10485. {
  10486. ggml_compute_forward_transpose(params, tensor->src0);
  10487. } break;
  10488. case GGML_OP_GET_ROWS:
  10489. {
  10490. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10491. } break;
  10492. case GGML_OP_GET_ROWS_BACK:
  10493. {
  10494. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10495. } break;
  10496. case GGML_OP_DIAG:
  10497. {
  10498. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10499. } break;
  10500. case GGML_OP_DIAG_MASK_INF:
  10501. {
  10502. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10503. } break;
  10504. case GGML_OP_DIAG_MASK_ZERO:
  10505. {
  10506. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10507. } break;
  10508. case GGML_OP_SOFT_MAX:
  10509. {
  10510. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10511. } break;
  10512. case GGML_OP_ROPE:
  10513. {
  10514. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10515. } break;
  10516. case GGML_OP_ROPE_BACK:
  10517. {
  10518. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10519. } break;
  10520. case GGML_OP_ALIBI:
  10521. {
  10522. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10523. } break;
  10524. case GGML_OP_CLAMP:
  10525. {
  10526. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10527. } break;
  10528. case GGML_OP_CONV_1D_1S:
  10529. {
  10530. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10531. } break;
  10532. case GGML_OP_CONV_1D_2S:
  10533. {
  10534. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10535. } break;
  10536. case GGML_OP_FLASH_ATTN:
  10537. {
  10538. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10539. GGML_ASSERT(t == 0 || t == 1);
  10540. bool masked = t != 0;
  10541. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10542. } break;
  10543. case GGML_OP_FLASH_FF:
  10544. {
  10545. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10546. } break;
  10547. case GGML_OP_MAP_UNARY:
  10548. {
  10549. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10550. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10551. }
  10552. break;
  10553. case GGML_OP_MAP_BINARY:
  10554. {
  10555. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10556. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10557. }
  10558. break;
  10559. case GGML_OP_NONE:
  10560. {
  10561. // nop
  10562. } break;
  10563. case GGML_OP_COUNT:
  10564. {
  10565. GGML_ASSERT(false);
  10566. } break;
  10567. }
  10568. }
  10569. ////////////////////////////////////////////////////////////////////////////////
  10570. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10571. struct ggml_tensor * src0 = tensor->src0;
  10572. struct ggml_tensor * src1 = tensor->src1;
  10573. switch (tensor->op) {
  10574. case GGML_OP_DUP:
  10575. {
  10576. if (src0->grad) {
  10577. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10578. }
  10579. } break;
  10580. case GGML_OP_ADD:
  10581. {
  10582. if (src0->grad) {
  10583. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10584. }
  10585. if (src1->grad) {
  10586. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10587. }
  10588. } break;
  10589. case GGML_OP_ADD1:
  10590. {
  10591. if (src0->grad) {
  10592. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10593. }
  10594. if (src1->grad) {
  10595. src1->grad = ggml_add_impl(ctx,
  10596. src1->grad,
  10597. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10598. inplace);
  10599. }
  10600. } break;
  10601. case GGML_OP_ACC:
  10602. {
  10603. if (src0->grad) {
  10604. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10605. }
  10606. if (src1->grad) {
  10607. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10608. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10609. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10610. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10611. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10612. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10613. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10614. tensor->grad,
  10615. src1->grad->ne[0],
  10616. src1->grad->ne[1],
  10617. src1->grad->ne[2],
  10618. src1->grad->ne[3],
  10619. nb1, nb2, nb3, offset);
  10620. src1->grad =
  10621. ggml_add_impl(ctx,
  10622. src1->grad,
  10623. ggml_reshape(ctx,
  10624. ggml_cont(ctx, tensor_grad_view),
  10625. src1->grad),
  10626. inplace);
  10627. }
  10628. } break;
  10629. case GGML_OP_SUB:
  10630. {
  10631. if (src0->grad) {
  10632. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10633. }
  10634. if (src1->grad) {
  10635. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10636. }
  10637. } break;
  10638. case GGML_OP_MUL:
  10639. {
  10640. if (src0->grad) {
  10641. src0->grad =
  10642. ggml_add_impl(ctx,
  10643. src0->grad,
  10644. ggml_mul(ctx, src1, tensor->grad),
  10645. inplace);
  10646. }
  10647. if (src1->grad) {
  10648. src1->grad =
  10649. ggml_add_impl(ctx,
  10650. src1->grad,
  10651. ggml_mul(ctx, src0, tensor->grad),
  10652. inplace);
  10653. }
  10654. } break;
  10655. case GGML_OP_DIV:
  10656. {
  10657. if (src0->grad) {
  10658. src0->grad =
  10659. ggml_add_impl(ctx,
  10660. src0->grad,
  10661. ggml_div(ctx, tensor->grad, src1),
  10662. inplace);
  10663. }
  10664. if (src1->grad) {
  10665. src1->grad =
  10666. ggml_sub_impl(ctx,
  10667. src1->grad,
  10668. ggml_mul(ctx,
  10669. tensor->grad,
  10670. ggml_div(ctx, tensor, src1)),
  10671. inplace);
  10672. }
  10673. } break;
  10674. case GGML_OP_SQR:
  10675. {
  10676. if (src0->grad) {
  10677. src0->grad =
  10678. ggml_add_impl(ctx,
  10679. src0->grad,
  10680. ggml_scale(ctx,
  10681. ggml_mul(ctx, src0, tensor->grad),
  10682. ggml_new_f32(ctx, 2.0f)),
  10683. inplace);
  10684. }
  10685. } break;
  10686. case GGML_OP_SQRT:
  10687. {
  10688. if (src0->grad) {
  10689. src0->grad =
  10690. ggml_add_impl(ctx,
  10691. src0->grad,
  10692. ggml_mul(ctx,
  10693. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10694. ggml_div(ctx,
  10695. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10696. tensor)),
  10697. inplace);
  10698. }
  10699. } break;
  10700. case GGML_OP_LOG:
  10701. {
  10702. if (src0->grad) {
  10703. src0->grad =
  10704. ggml_add_impl(ctx,
  10705. src0->grad,
  10706. ggml_div(ctx,
  10707. tensor->grad,
  10708. src0),
  10709. inplace);
  10710. }
  10711. } break;
  10712. case GGML_OP_SUM:
  10713. {
  10714. if (src0->grad) {
  10715. src0->grad =
  10716. ggml_add1_impl(ctx,
  10717. src0->grad,
  10718. tensor->grad,
  10719. inplace);
  10720. }
  10721. } break;
  10722. case GGML_OP_SUM_ROWS:
  10723. {
  10724. if (src0->grad) {
  10725. src0->grad =
  10726. ggml_add_impl(ctx,
  10727. src0->grad,
  10728. ggml_repeat(ctx,
  10729. tensor->grad,
  10730. src0->grad),
  10731. inplace);
  10732. }
  10733. } break;
  10734. case GGML_OP_MEAN:
  10735. {
  10736. GGML_ASSERT(false); // TODO: implement
  10737. } break;
  10738. case GGML_OP_REPEAT:
  10739. {
  10740. // necessary for llama
  10741. if (src0->grad) {
  10742. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10743. const int nc = tensor->ne[0];
  10744. const int nr = tensor->ne[1];
  10745. const int nc0 = src0->ne[0];
  10746. const int nr0 = src0->ne[1];
  10747. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10748. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10749. // tensor->grad [nc,nr,1,1]
  10750. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10751. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10752. // substitute [nc0,nr0,ncr,nrr]
  10753. // reshape [nc0*nr0,ncr*nrr,1,1]
  10754. // transpose [ncr*nrr,nc0*nr0,1,1]
  10755. // sum rows [1,nc0*nr0,1,1]
  10756. // transpose [nc0*nr0,1,1]
  10757. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10758. // add to src0->grad
  10759. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10760. struct ggml_tensor* F00 = tensor->grad;
  10761. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10762. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10763. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10764. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10765. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10766. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10767. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10768. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10769. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10770. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10771. src0->grad =
  10772. ggml_add_impl(ctx,
  10773. src0->grad,
  10774. F10,
  10775. inplace);
  10776. }
  10777. } break;
  10778. case GGML_OP_ABS:
  10779. {
  10780. if (src0->grad) {
  10781. src0->grad =
  10782. ggml_add_impl(ctx,
  10783. src0->grad,
  10784. ggml_mul(ctx,
  10785. ggml_sgn(ctx, src0),
  10786. tensor->grad),
  10787. inplace);
  10788. }
  10789. } break;
  10790. case GGML_OP_SGN:
  10791. {
  10792. if (src0->grad) {
  10793. // noop
  10794. }
  10795. } break;
  10796. case GGML_OP_NEG:
  10797. {
  10798. if (src0->grad) {
  10799. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10800. }
  10801. } break;
  10802. case GGML_OP_STEP:
  10803. {
  10804. if (src0->grad) {
  10805. // noop
  10806. }
  10807. } break;
  10808. case GGML_OP_RELU:
  10809. {
  10810. if (src0->grad) {
  10811. src0->grad = ggml_sub_impl(ctx,
  10812. src0->grad,
  10813. ggml_mul(ctx,
  10814. ggml_step(ctx, src0),
  10815. tensor->grad),
  10816. inplace);
  10817. }
  10818. } break;
  10819. case GGML_OP_GELU:
  10820. {
  10821. GGML_ASSERT(false); // TODO: not implemented
  10822. } break;
  10823. case GGML_OP_ALIBI:
  10824. {
  10825. GGML_ASSERT(false); // TODO: not implemented
  10826. } break;
  10827. case GGML_OP_CLAMP:
  10828. {
  10829. GGML_ASSERT(false); // TODO: not implemented
  10830. } break;
  10831. case GGML_OP_SILU:
  10832. {
  10833. // necessary for llama
  10834. if (src0->grad) {
  10835. src0->grad = ggml_add_impl(ctx,
  10836. src0->grad,
  10837. ggml_silu_back(ctx, src0, tensor->grad),
  10838. inplace);
  10839. }
  10840. } break;
  10841. case GGML_OP_SILU_BACK:
  10842. {
  10843. GGML_ASSERT(false); // TODO: not implemented
  10844. } break;
  10845. case GGML_OP_NORM:
  10846. {
  10847. GGML_ASSERT(false); // TODO: not implemented
  10848. } break;
  10849. case GGML_OP_RMS_NORM:
  10850. {
  10851. // necessary for llama
  10852. if (src0->grad) {
  10853. src0->grad = ggml_add_impl(ctx,
  10854. src0->grad,
  10855. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10856. inplace);
  10857. }
  10858. } break;
  10859. case GGML_OP_RMS_NORM_BACK:
  10860. {
  10861. GGML_ASSERT(false); // TODO: not implemented
  10862. } break;
  10863. case GGML_OP_MUL_MAT:
  10864. {
  10865. // https://cs231n.github.io/optimization-2/#staged
  10866. // # forward pass
  10867. // s0 = np.random.randn(5, 10)
  10868. // s1 = np.random.randn(10, 3)
  10869. // t = s0.dot(s1)
  10870. // # now suppose we had the gradient on t from above in the circuit
  10871. // dt = np.random.randn(*t.shape) # same shape as t
  10872. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10873. // ds1 = t.T.dot(dt)
  10874. // tensor.shape [m,p]
  10875. // src0.shape [n,m]
  10876. // src1.shape [n,p]
  10877. // necessary for llama
  10878. if (src0->grad) {
  10879. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10880. src0->grad =
  10881. ggml_add_impl(ctx,
  10882. src0->grad,
  10883. // ds0 = dt.dot(s1.T)
  10884. // ggml_out_prod(ctx, // [n,m]
  10885. // src1, // [n,p]
  10886. // tensor->grad), // [m,p]
  10887. // for now just using A*B==(B.T*A.T).T
  10888. ggml_cont(ctx, // [n,m]
  10889. ggml_transpose(ctx, // [n,m]
  10890. ggml_mul_mat(ctx, // [m,n]
  10891. ggml_cont(ctx, // [p,m]
  10892. ggml_transpose(ctx, // [p,m]
  10893. tensor->grad)), // [m,p]
  10894. ggml_cont(ctx, // [p,n]
  10895. ggml_transpose(ctx, // [p,n]
  10896. src1))))), // [n,p]
  10897. inplace);
  10898. }
  10899. if (src1->grad) {
  10900. src1->grad =
  10901. ggml_add_impl(ctx,
  10902. src1->grad,
  10903. // ds1 = s0.T.dot(dt):
  10904. ggml_mul_mat(ctx, // [n,p]
  10905. ggml_cont(ctx, // [m,n]
  10906. ggml_transpose(ctx, src0)), // [m,n]
  10907. tensor->grad), // [m,p]
  10908. inplace);
  10909. }
  10910. } break;
  10911. case GGML_OP_SCALE:
  10912. {
  10913. // necessary for llama
  10914. if (src0->grad) {
  10915. src0->grad =
  10916. ggml_add_impl(ctx,
  10917. src0->grad,
  10918. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10919. inplace);
  10920. }
  10921. if (src1->grad) {
  10922. src1->grad =
  10923. ggml_add_impl(ctx,
  10924. src1->grad,
  10925. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10926. inplace);
  10927. }
  10928. } break;
  10929. case GGML_OP_SET:
  10930. {
  10931. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10932. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10933. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10934. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10935. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10936. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10937. struct ggml_tensor * tensor_grad_view = NULL;
  10938. if (src0->grad || src1->grad) {
  10939. GGML_ASSERT(src0->type == tensor->type);
  10940. GGML_ASSERT(tensor->grad->type == tensor->type);
  10941. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10942. tensor_grad_view = ggml_view_4d(ctx,
  10943. tensor->grad,
  10944. src1->grad->ne[0],
  10945. src1->grad->ne[1],
  10946. src1->grad->ne[2],
  10947. src1->grad->ne[3],
  10948. nb1, nb2, nb3, offset);
  10949. }
  10950. if (src0->grad) {
  10951. src0->grad = ggml_add_impl(ctx,
  10952. src0->grad,
  10953. ggml_acc_impl(ctx,
  10954. tensor->grad,
  10955. ggml_neg(ctx, tensor_grad_view),
  10956. nb1, nb2, nb3, offset, false),
  10957. inplace);
  10958. }
  10959. if (src1->grad) {
  10960. src1->grad =
  10961. ggml_add_impl(ctx,
  10962. src1->grad,
  10963. ggml_reshape(ctx,
  10964. ggml_cont(ctx, tensor_grad_view),
  10965. src1->grad),
  10966. inplace);
  10967. }
  10968. } break;
  10969. case GGML_OP_CPY:
  10970. {
  10971. // necessary for llama
  10972. // cpy overwrites value of src1 by src0 and returns view(src1)
  10973. // the overwriting is mathematically equivalent to:
  10974. // tensor = src0 * 1 + src1 * 0
  10975. if (src0->grad) {
  10976. // dsrc0 = dtensor * 1
  10977. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10978. }
  10979. if (src1->grad) {
  10980. // dsrc1 = dtensor * 0 -> noop
  10981. }
  10982. } break;
  10983. case GGML_OP_CONT:
  10984. {
  10985. // same as cpy
  10986. if (src0->grad) {
  10987. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  10988. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  10989. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10990. }
  10991. } break;
  10992. case GGML_OP_RESHAPE:
  10993. {
  10994. // necessary for llama
  10995. if (src0->grad) {
  10996. src0->grad =
  10997. ggml_add_impl(ctx, src0->grad,
  10998. ggml_reshape(ctx, tensor->grad, src0->grad),
  10999. inplace);
  11000. }
  11001. } break;
  11002. case GGML_OP_VIEW:
  11003. {
  11004. // necessary for llama
  11005. if (src0->grad) {
  11006. size_t offset;
  11007. memcpy(&offset, tensor->padding, sizeof(offset));
  11008. size_t nb1 = tensor->nb[1];
  11009. size_t nb2 = tensor->nb[2];
  11010. size_t nb3 = tensor->nb[3];
  11011. if (src0->type != src0->grad->type) {
  11012. // gradient is typically F32, but src0 could be other type
  11013. size_t ng = ggml_element_size(src0->grad);
  11014. size_t n0 = ggml_element_size(src0);
  11015. GGML_ASSERT(offset % n0 == 0);
  11016. GGML_ASSERT(nb1 % n0 == 0);
  11017. GGML_ASSERT(nb2 % n0 == 0);
  11018. GGML_ASSERT(nb3 % n0 == 0);
  11019. offset = (offset / n0) * ng;
  11020. nb1 = (nb1 / n0) * ng;
  11021. nb2 = (nb2 / n0) * ng;
  11022. nb3 = (nb3 / n0) * ng;
  11023. }
  11024. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11025. }
  11026. } break;
  11027. case GGML_OP_PERMUTE:
  11028. {
  11029. // necessary for llama
  11030. if (src0->grad) {
  11031. int axis0 = tensor->padding[0] & 0x3;
  11032. int axis1 = tensor->padding[1] & 0x3;
  11033. int axis2 = tensor->padding[2] & 0x3;
  11034. int axis3 = tensor->padding[3] & 0x3;
  11035. int axes_backward[4] = {0,0,0,0};
  11036. axes_backward[axis0] = 0;
  11037. axes_backward[axis1] = 1;
  11038. axes_backward[axis2] = 2;
  11039. axes_backward[axis3] = 3;
  11040. src0->grad =
  11041. ggml_add_impl(ctx, src0->grad,
  11042. ggml_permute(ctx,
  11043. tensor->grad,
  11044. axes_backward[0],
  11045. axes_backward[1],
  11046. axes_backward[2],
  11047. axes_backward[3]),
  11048. inplace);
  11049. }
  11050. } break;
  11051. case GGML_OP_TRANSPOSE:
  11052. {
  11053. // necessary for llama
  11054. if (src0->grad) {
  11055. src0->grad =
  11056. ggml_add_impl(ctx, src0->grad,
  11057. ggml_transpose(ctx, tensor->grad),
  11058. inplace);
  11059. }
  11060. } break;
  11061. case GGML_OP_GET_ROWS:
  11062. {
  11063. // necessary for llama (only for tokenizer)
  11064. if (src0->grad) {
  11065. src0->grad =
  11066. ggml_add_impl(ctx, src0->grad,
  11067. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11068. inplace);
  11069. }
  11070. if (src1->grad) {
  11071. // noop
  11072. }
  11073. } break;
  11074. case GGML_OP_GET_ROWS_BACK:
  11075. {
  11076. GGML_ASSERT(false); // TODO: not implemented
  11077. } break;
  11078. case GGML_OP_DIAG:
  11079. {
  11080. GGML_ASSERT(false); // TODO: not implemented
  11081. } break;
  11082. case GGML_OP_DIAG_MASK_INF:
  11083. {
  11084. // necessary for llama
  11085. if (src0->grad) {
  11086. assert(src1->type == GGML_TYPE_I32);
  11087. assert(ggml_nelements(src1) == 2);
  11088. const int n_past = ((int32_t *) src1->data)[0];
  11089. src0->grad =
  11090. ggml_add_impl(ctx, src0->grad,
  11091. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11092. inplace);
  11093. }
  11094. if (src1->grad) {
  11095. // noop
  11096. }
  11097. } break;
  11098. case GGML_OP_DIAG_MASK_ZERO:
  11099. {
  11100. // necessary for llama
  11101. if (src0->grad) {
  11102. assert(src1->type == GGML_TYPE_I32);
  11103. assert(ggml_nelements(src1) == 2);
  11104. const int n_past = ((int32_t *) src1->data)[0];
  11105. src0->grad =
  11106. ggml_add_impl(ctx, src0->grad,
  11107. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11108. inplace);
  11109. }
  11110. if (src1->grad) {
  11111. // noop
  11112. }
  11113. } break;
  11114. case GGML_OP_SOFT_MAX:
  11115. {
  11116. // necessary for llama
  11117. if (src0->grad) {
  11118. // y = softmax(x)
  11119. //
  11120. // Jii = yi - yi*yi
  11121. // Jij = -yi*yj
  11122. // J = diag(y)-y.*y
  11123. // dx = J * dy
  11124. // dxk = sum(Jkj * dyk)
  11125. int64_t ne2[4] = {
  11126. tensor->ne[0],
  11127. 1,
  11128. tensor->ne[1]*tensor->ne[2],
  11129. tensor->ne[3]
  11130. };
  11131. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11132. ggml_reshape_4d(ctx,
  11133. ggml_cont(ctx, tensor),
  11134. ne2[0], ne2[1], ne2[2], ne2[3]));
  11135. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11136. ggml_reshape_4d(ctx,
  11137. ggml_cont(ctx, tensor->grad),
  11138. ne2[0], ne2[1], ne2[2], ne2[3]));
  11139. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11140. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11141. tensor2, // [ne0,1,ne1*ne2,ne3]
  11142. 1, 0, 2, 3));
  11143. src0->grad =
  11144. ggml_add_impl(ctx,
  11145. src0->grad, // [ne0,ne1,ne2,ne3]
  11146. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11147. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11148. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11149. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11150. tensor2), // [ne0,1,ne1*ne2,ne3]
  11151. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11152. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11153. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11154. grad2), // [ne0,1,ne1*ne2,ne3]
  11155. src0->grad),
  11156. inplace);
  11157. }
  11158. } break;
  11159. case GGML_OP_ROPE:
  11160. {
  11161. // necessary for llama
  11162. if (src0->grad) {
  11163. assert(src1->type == GGML_TYPE_I32);
  11164. assert(ggml_nelements(src1) == 3);
  11165. const int n_past = ((int32_t *) src1->data)[0];
  11166. const int n_dims = ((int32_t *) src1->data)[1];
  11167. const int mode = ((int32_t *) src1->data)[2];
  11168. src0->grad = ggml_add_impl(ctx,
  11169. src0->grad,
  11170. ggml_rope_back(ctx,
  11171. tensor->grad,
  11172. n_past,
  11173. n_dims,
  11174. mode),
  11175. inplace);
  11176. }
  11177. if (src1->grad) {
  11178. // noop
  11179. }
  11180. } break;
  11181. case GGML_OP_ROPE_BACK:
  11182. {
  11183. if (src0->grad) {
  11184. assert(src1->type == GGML_TYPE_I32);
  11185. assert(ggml_nelements(src1) == 3);
  11186. const int n_past = ((int32_t *) src1->data)[0];
  11187. const int n_dims = ((int32_t *) src1->data)[1];
  11188. const int mode = ((int32_t *) src1->data)[2];
  11189. src0->grad = ggml_add_impl(ctx,
  11190. src0->grad,
  11191. ggml_rope(ctx,
  11192. tensor->grad,
  11193. n_past,
  11194. n_dims,
  11195. mode),
  11196. inplace);
  11197. }
  11198. if (src1->grad) {
  11199. // noop
  11200. }
  11201. } break;
  11202. case GGML_OP_CONV_1D_1S:
  11203. {
  11204. GGML_ASSERT(false); // TODO: not implemented
  11205. } break;
  11206. case GGML_OP_CONV_1D_2S:
  11207. {
  11208. GGML_ASSERT(false); // TODO: not implemented
  11209. } break;
  11210. case GGML_OP_FLASH_ATTN:
  11211. {
  11212. GGML_ASSERT(false); // not supported
  11213. } break;
  11214. case GGML_OP_FLASH_FF:
  11215. {
  11216. GGML_ASSERT(false); // not supported
  11217. } break;
  11218. case GGML_OP_MAP_UNARY:
  11219. case GGML_OP_MAP_BINARY:
  11220. {
  11221. GGML_ASSERT(false); // not supported
  11222. } break;
  11223. case GGML_OP_NONE:
  11224. {
  11225. // nop
  11226. } break;
  11227. case GGML_OP_COUNT:
  11228. {
  11229. GGML_ASSERT(false);
  11230. } break;
  11231. }
  11232. }
  11233. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11234. if (node->grad == NULL) {
  11235. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11236. // it can also happen during forward pass, if the user performs computations with constants
  11237. if (node->op != GGML_OP_NONE) {
  11238. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11239. }
  11240. }
  11241. // check if already visited
  11242. for (int i = 0; i < cgraph->n_nodes; i++) {
  11243. if (cgraph->nodes[i] == node) {
  11244. return;
  11245. }
  11246. }
  11247. for (int i = 0; i < cgraph->n_leafs; i++) {
  11248. if (cgraph->leafs[i] == node) {
  11249. return;
  11250. }
  11251. }
  11252. if (node->src0) {
  11253. ggml_visit_parents(cgraph, node->src0);
  11254. }
  11255. if (node->src1) {
  11256. ggml_visit_parents(cgraph, node->src1);
  11257. }
  11258. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11259. if (node->opt[i]) {
  11260. ggml_visit_parents(cgraph, node->opt[i]);
  11261. }
  11262. }
  11263. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11264. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11265. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11266. cgraph->leafs[cgraph->n_leafs] = node;
  11267. cgraph->n_leafs++;
  11268. } else {
  11269. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11270. cgraph->nodes[cgraph->n_nodes] = node;
  11271. cgraph->grads[cgraph->n_nodes] = node->grad;
  11272. cgraph->n_nodes++;
  11273. }
  11274. }
  11275. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11276. if (!expand) {
  11277. cgraph->n_nodes = 0;
  11278. cgraph->n_leafs = 0;
  11279. }
  11280. const int n0 = cgraph->n_nodes;
  11281. UNUSED(n0);
  11282. ggml_visit_parents(cgraph, tensor);
  11283. const int n_new = cgraph->n_nodes - n0;
  11284. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11285. if (n_new > 0) {
  11286. // the last added node should always be starting point
  11287. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11288. }
  11289. }
  11290. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11291. ggml_build_forward_impl(cgraph, tensor, true);
  11292. }
  11293. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11294. struct ggml_cgraph result = {
  11295. /*.n_nodes =*/ 0,
  11296. /*.n_leafs =*/ 0,
  11297. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11298. /*.work_size =*/ 0,
  11299. /*.work =*/ NULL,
  11300. /*.nodes =*/ { NULL },
  11301. /*.grads =*/ { NULL },
  11302. /*.leafs =*/ { NULL },
  11303. /*.perf_runs =*/ 0,
  11304. /*.perf_cycles =*/ 0,
  11305. /*.perf_time_us =*/ 0,
  11306. };
  11307. ggml_build_forward_impl(&result, tensor, false);
  11308. return result;
  11309. }
  11310. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11311. struct ggml_cgraph result = *gf;
  11312. GGML_ASSERT(gf->n_nodes > 0);
  11313. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11314. if (keep) {
  11315. for (int i = 0; i < gf->n_nodes; i++) {
  11316. struct ggml_tensor * node = gf->nodes[i];
  11317. if (node->grad) {
  11318. node->grad = ggml_dup_tensor(ctx, node);
  11319. gf->grads[i] = node->grad;
  11320. }
  11321. }
  11322. }
  11323. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11324. struct ggml_tensor * node = gf->nodes[i];
  11325. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11326. if (node->grad) {
  11327. ggml_compute_backward(ctx, node, keep);
  11328. }
  11329. }
  11330. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11331. struct ggml_tensor * node = gf->nodes[i];
  11332. if (node->is_param) {
  11333. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11334. ggml_build_forward_impl(&result, node->grad, true);
  11335. }
  11336. }
  11337. return result;
  11338. }
  11339. //
  11340. // thread data
  11341. //
  11342. // synchronization is done via busy loops
  11343. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11344. //
  11345. #ifdef __APPLE__
  11346. //#include <os/lock.h>
  11347. //
  11348. //typedef os_unfair_lock ggml_lock_t;
  11349. //
  11350. //#define ggml_lock_init(x) UNUSED(x)
  11351. //#define ggml_lock_destroy(x) UNUSED(x)
  11352. //#define ggml_lock_lock os_unfair_lock_lock
  11353. //#define ggml_lock_unlock os_unfair_lock_unlock
  11354. //
  11355. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11356. typedef int ggml_lock_t;
  11357. #define ggml_lock_init(x) UNUSED(x)
  11358. #define ggml_lock_destroy(x) UNUSED(x)
  11359. #define ggml_lock_lock(x) UNUSED(x)
  11360. #define ggml_lock_unlock(x) UNUSED(x)
  11361. #define GGML_LOCK_INITIALIZER 0
  11362. typedef pthread_t ggml_thread_t;
  11363. #define ggml_thread_create pthread_create
  11364. #define ggml_thread_join pthread_join
  11365. #else
  11366. //typedef pthread_spinlock_t ggml_lock_t;
  11367. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11368. //#define ggml_lock_destroy pthread_spin_destroy
  11369. //#define ggml_lock_lock pthread_spin_lock
  11370. //#define ggml_lock_unlock pthread_spin_unlock
  11371. typedef int ggml_lock_t;
  11372. #define ggml_lock_init(x) UNUSED(x)
  11373. #define ggml_lock_destroy(x) UNUSED(x)
  11374. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11375. #define ggml_lock_lock(x) _mm_pause()
  11376. #else
  11377. #define ggml_lock_lock(x) UNUSED(x)
  11378. #endif
  11379. #define ggml_lock_unlock(x) UNUSED(x)
  11380. #define GGML_LOCK_INITIALIZER 0
  11381. typedef pthread_t ggml_thread_t;
  11382. #define ggml_thread_create pthread_create
  11383. #define ggml_thread_join pthread_join
  11384. #endif
  11385. struct ggml_compute_state_shared {
  11386. ggml_lock_t spin;
  11387. int n_threads;
  11388. // synchronization primitives
  11389. atomic_int n_ready;
  11390. atomic_bool has_work;
  11391. atomic_bool stop; // stop all threads
  11392. };
  11393. struct ggml_compute_state {
  11394. ggml_thread_t thrd;
  11395. struct ggml_compute_params params;
  11396. struct ggml_tensor * node;
  11397. struct ggml_compute_state_shared * shared;
  11398. };
  11399. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11400. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11401. const int n_threads = state->shared->n_threads;
  11402. while (true) {
  11403. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11404. atomic_store(&state->shared->has_work, false);
  11405. } else {
  11406. while (atomic_load(&state->shared->has_work)) {
  11407. if (atomic_load(&state->shared->stop)) {
  11408. return 0;
  11409. }
  11410. ggml_lock_lock (&state->shared->spin);
  11411. ggml_lock_unlock(&state->shared->spin);
  11412. }
  11413. }
  11414. atomic_fetch_sub(&state->shared->n_ready, 1);
  11415. // wait for work
  11416. while (!atomic_load(&state->shared->has_work)) {
  11417. if (atomic_load(&state->shared->stop)) {
  11418. return 0;
  11419. }
  11420. ggml_lock_lock (&state->shared->spin);
  11421. ggml_lock_unlock(&state->shared->spin);
  11422. }
  11423. // check if we should stop
  11424. if (atomic_load(&state->shared->stop)) {
  11425. break;
  11426. }
  11427. if (state->node) {
  11428. if (state->params.ith < state->params.nth) {
  11429. ggml_compute_forward(&state->params, state->node);
  11430. }
  11431. state->node = NULL;
  11432. } else {
  11433. break;
  11434. }
  11435. }
  11436. return 0;
  11437. }
  11438. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11439. const int n_threads = cgraph->n_threads;
  11440. struct ggml_compute_state_shared state_shared = {
  11441. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11442. /*.n_threads =*/ n_threads,
  11443. /*.n_ready =*/ 0,
  11444. /*.has_work =*/ false,
  11445. /*.stop =*/ false,
  11446. };
  11447. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11448. // create thread pool
  11449. if (n_threads > 1) {
  11450. ggml_lock_init(&state_shared.spin);
  11451. atomic_store(&state_shared.has_work, true);
  11452. for (int j = 0; j < n_threads - 1; j++) {
  11453. workers[j] = (struct ggml_compute_state) {
  11454. .thrd = 0,
  11455. .params = {
  11456. .type = GGML_TASK_COMPUTE,
  11457. .ith = j + 1,
  11458. .nth = n_threads,
  11459. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11460. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11461. },
  11462. .node = NULL,
  11463. .shared = &state_shared,
  11464. };
  11465. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11466. GGML_ASSERT(rc == 0);
  11467. UNUSED(rc);
  11468. }
  11469. }
  11470. // initialize tasks + work buffer
  11471. {
  11472. size_t work_size = 0;
  11473. // thread scheduling for the different operations
  11474. for (int i = 0; i < cgraph->n_nodes; i++) {
  11475. struct ggml_tensor * node = cgraph->nodes[i];
  11476. switch (node->op) {
  11477. case GGML_OP_CPY:
  11478. case GGML_OP_DUP:
  11479. {
  11480. node->n_tasks = n_threads;
  11481. size_t cur = 0;
  11482. if (ggml_is_quantized(node->type)) {
  11483. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11484. }
  11485. work_size = MAX(work_size, cur);
  11486. } break;
  11487. case GGML_OP_ADD:
  11488. case GGML_OP_ADD1:
  11489. {
  11490. node->n_tasks = n_threads;
  11491. size_t cur = 0;
  11492. if (ggml_is_quantized(node->src0->type)) {
  11493. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11494. }
  11495. work_size = MAX(work_size, cur);
  11496. } break;
  11497. case GGML_OP_ACC:
  11498. {
  11499. node->n_tasks = n_threads;
  11500. size_t cur = 0;
  11501. if (ggml_is_quantized(node->src0->type)) {
  11502. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11503. }
  11504. work_size = MAX(work_size, cur);
  11505. } break;
  11506. case GGML_OP_SUB:
  11507. case GGML_OP_DIV:
  11508. case GGML_OP_SQR:
  11509. case GGML_OP_SQRT:
  11510. case GGML_OP_LOG:
  11511. case GGML_OP_SUM:
  11512. case GGML_OP_SUM_ROWS:
  11513. case GGML_OP_MEAN:
  11514. case GGML_OP_REPEAT:
  11515. case GGML_OP_ABS:
  11516. case GGML_OP_SGN:
  11517. case GGML_OP_NEG:
  11518. case GGML_OP_STEP:
  11519. case GGML_OP_RELU:
  11520. {
  11521. node->n_tasks = 1;
  11522. } break;
  11523. case GGML_OP_MUL:
  11524. case GGML_OP_GELU:
  11525. case GGML_OP_SILU:
  11526. case GGML_OP_SILU_BACK:
  11527. case GGML_OP_NORM:
  11528. case GGML_OP_RMS_NORM:
  11529. case GGML_OP_RMS_NORM_BACK:
  11530. {
  11531. node->n_tasks = n_threads;
  11532. } break;
  11533. case GGML_OP_MUL_MAT:
  11534. {
  11535. node->n_tasks = n_threads;
  11536. // TODO: use different scheduling for different matrix sizes
  11537. //const int nr0 = ggml_nrows(node->src0);
  11538. //const int nr1 = ggml_nrows(node->src1);
  11539. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11540. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11541. size_t cur = 0;
  11542. #if defined(GGML_USE_CUBLAS)
  11543. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11544. node->n_tasks = 1; // TODO: this actually is doing nothing
  11545. // the threads are still spinning
  11546. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11547. }
  11548. else
  11549. #endif
  11550. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11551. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11552. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11553. node->n_tasks = 1; // TODO: this actually is doing nothing
  11554. // the threads are still spinning
  11555. // here we need memory just for single 2D matrix from src0
  11556. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11557. } else {
  11558. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11559. }
  11560. #else
  11561. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11562. #endif
  11563. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11564. cur = 0;
  11565. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11566. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11567. node->n_tasks = 1;
  11568. }
  11569. #endif
  11570. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11571. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11572. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11573. node->n_tasks = 1;
  11574. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11575. } else
  11576. #endif
  11577. {
  11578. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11579. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11580. }
  11581. } else {
  11582. GGML_ASSERT(false);
  11583. }
  11584. work_size = MAX(work_size, cur);
  11585. } break;
  11586. case GGML_OP_SCALE:
  11587. {
  11588. node->n_tasks = n_threads;
  11589. } break;
  11590. case GGML_OP_SET:
  11591. case GGML_OP_CONT:
  11592. case GGML_OP_RESHAPE:
  11593. case GGML_OP_VIEW:
  11594. case GGML_OP_PERMUTE:
  11595. case GGML_OP_TRANSPOSE:
  11596. case GGML_OP_GET_ROWS:
  11597. case GGML_OP_GET_ROWS_BACK:
  11598. case GGML_OP_DIAG:
  11599. case GGML_OP_DIAG_MASK_ZERO:
  11600. {
  11601. node->n_tasks = 1;
  11602. } break;
  11603. case GGML_OP_DIAG_MASK_INF:
  11604. case GGML_OP_SOFT_MAX:
  11605. case GGML_OP_ROPE:
  11606. case GGML_OP_ROPE_BACK:
  11607. {
  11608. node->n_tasks = n_threads;
  11609. } break;
  11610. case GGML_OP_ALIBI:
  11611. {
  11612. node->n_tasks = 1; //TODO
  11613. } break;
  11614. case GGML_OP_CLAMP:
  11615. {
  11616. node->n_tasks = 1; //TODO
  11617. } break;
  11618. case GGML_OP_CONV_1D_1S:
  11619. case GGML_OP_CONV_1D_2S:
  11620. {
  11621. node->n_tasks = n_threads;
  11622. GGML_ASSERT(node->src0->ne[3] == 1);
  11623. GGML_ASSERT(node->src1->ne[2] == 1);
  11624. GGML_ASSERT(node->src1->ne[3] == 1);
  11625. size_t cur = 0;
  11626. const int nk = node->src0->ne[0];
  11627. if (node->src0->type == GGML_TYPE_F16 &&
  11628. node->src1->type == GGML_TYPE_F32) {
  11629. cur = sizeof(ggml_fp16_t)*(
  11630. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11631. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11632. );
  11633. } else if (node->src0->type == GGML_TYPE_F32 &&
  11634. node->src1->type == GGML_TYPE_F32) {
  11635. cur = sizeof(float)*(
  11636. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11637. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11638. );
  11639. } else {
  11640. GGML_ASSERT(false);
  11641. }
  11642. work_size = MAX(work_size, cur);
  11643. } break;
  11644. case GGML_OP_FLASH_ATTN:
  11645. {
  11646. node->n_tasks = n_threads;
  11647. size_t cur = 0;
  11648. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11649. if (node->src1->type == GGML_TYPE_F32) {
  11650. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11651. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11652. }
  11653. if (node->src1->type == GGML_TYPE_F16) {
  11654. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11655. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11656. }
  11657. work_size = MAX(work_size, cur);
  11658. } break;
  11659. case GGML_OP_FLASH_FF:
  11660. {
  11661. node->n_tasks = n_threads;
  11662. size_t cur = 0;
  11663. if (node->src1->type == GGML_TYPE_F32) {
  11664. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11665. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11666. }
  11667. if (node->src1->type == GGML_TYPE_F16) {
  11668. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11669. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11670. }
  11671. work_size = MAX(work_size, cur);
  11672. } break;
  11673. case GGML_OP_MAP_UNARY:
  11674. case GGML_OP_MAP_BINARY:
  11675. {
  11676. node->n_tasks = 1;
  11677. } break;
  11678. case GGML_OP_NONE:
  11679. {
  11680. node->n_tasks = 1;
  11681. } break;
  11682. case GGML_OP_COUNT:
  11683. {
  11684. GGML_ASSERT(false);
  11685. } break;
  11686. }
  11687. }
  11688. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11689. GGML_ASSERT(false); // TODO: better handling
  11690. }
  11691. if (work_size > 0 && cgraph->work == NULL) {
  11692. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11693. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11694. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11695. }
  11696. }
  11697. const int64_t perf_start_cycles = ggml_perf_cycles();
  11698. const int64_t perf_start_time_us = ggml_perf_time_us();
  11699. for (int i = 0; i < cgraph->n_nodes; i++) {
  11700. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11701. struct ggml_tensor * node = cgraph->nodes[i];
  11702. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11703. //if (node->grad == NULL && node->perf_runs > 0) {
  11704. // continue;
  11705. //}
  11706. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11707. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11708. // INIT
  11709. struct ggml_compute_params params = {
  11710. /*.type =*/ GGML_TASK_INIT,
  11711. /*.ith =*/ 0,
  11712. /*.nth =*/ node->n_tasks,
  11713. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11714. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11715. };
  11716. ggml_compute_forward(&params, node);
  11717. // COMPUTE
  11718. if (node->n_tasks > 1) {
  11719. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11720. atomic_store(&state_shared.has_work, false);
  11721. }
  11722. while (atomic_load(&state_shared.has_work)) {
  11723. ggml_lock_lock (&state_shared.spin);
  11724. ggml_lock_unlock(&state_shared.spin);
  11725. }
  11726. // launch thread pool
  11727. for (int j = 0; j < n_threads - 1; j++) {
  11728. workers[j].params = (struct ggml_compute_params) {
  11729. .type = GGML_TASK_COMPUTE,
  11730. .ith = j + 1,
  11731. .nth = node->n_tasks,
  11732. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11733. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11734. };
  11735. workers[j].node = node;
  11736. }
  11737. atomic_fetch_sub(&state_shared.n_ready, 1);
  11738. while (atomic_load(&state_shared.n_ready) > 0) {
  11739. ggml_lock_lock (&state_shared.spin);
  11740. ggml_lock_unlock(&state_shared.spin);
  11741. }
  11742. atomic_store(&state_shared.has_work, true);
  11743. }
  11744. params.type = GGML_TASK_COMPUTE;
  11745. ggml_compute_forward(&params, node);
  11746. // wait for thread pool
  11747. if (node->n_tasks > 1) {
  11748. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11749. atomic_store(&state_shared.has_work, false);
  11750. }
  11751. while (atomic_load(&state_shared.has_work)) {
  11752. ggml_lock_lock (&state_shared.spin);
  11753. ggml_lock_unlock(&state_shared.spin);
  11754. }
  11755. atomic_fetch_sub(&state_shared.n_ready, 1);
  11756. while (atomic_load(&state_shared.n_ready) != 0) {
  11757. ggml_lock_lock (&state_shared.spin);
  11758. ggml_lock_unlock(&state_shared.spin);
  11759. }
  11760. }
  11761. // FINALIZE
  11762. if (node->n_tasks > 1) {
  11763. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11764. atomic_store(&state_shared.has_work, false);
  11765. }
  11766. while (atomic_load(&state_shared.has_work)) {
  11767. ggml_lock_lock (&state_shared.spin);
  11768. ggml_lock_unlock(&state_shared.spin);
  11769. }
  11770. // launch thread pool
  11771. for (int j = 0; j < n_threads - 1; j++) {
  11772. workers[j].params = (struct ggml_compute_params) {
  11773. .type = GGML_TASK_FINALIZE,
  11774. .ith = j + 1,
  11775. .nth = node->n_tasks,
  11776. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11777. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11778. };
  11779. workers[j].node = node;
  11780. }
  11781. atomic_fetch_sub(&state_shared.n_ready, 1);
  11782. while (atomic_load(&state_shared.n_ready) > 0) {
  11783. ggml_lock_lock (&state_shared.spin);
  11784. ggml_lock_unlock(&state_shared.spin);
  11785. }
  11786. atomic_store(&state_shared.has_work, true);
  11787. }
  11788. params.type = GGML_TASK_FINALIZE;
  11789. ggml_compute_forward(&params, node);
  11790. // wait for thread pool
  11791. if (node->n_tasks > 1) {
  11792. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11793. atomic_store(&state_shared.has_work, false);
  11794. }
  11795. while (atomic_load(&state_shared.has_work)) {
  11796. ggml_lock_lock (&state_shared.spin);
  11797. ggml_lock_unlock(&state_shared.spin);
  11798. }
  11799. atomic_fetch_sub(&state_shared.n_ready, 1);
  11800. while (atomic_load(&state_shared.n_ready) != 0) {
  11801. ggml_lock_lock (&state_shared.spin);
  11802. ggml_lock_unlock(&state_shared.spin);
  11803. }
  11804. }
  11805. // performance stats (node)
  11806. {
  11807. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11808. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11809. node->perf_runs++;
  11810. node->perf_cycles += perf_cycles_cur;
  11811. node->perf_time_us += perf_time_us_cur;
  11812. }
  11813. }
  11814. // join thread pool
  11815. if (n_threads > 1) {
  11816. atomic_store(&state_shared.stop, true);
  11817. atomic_store(&state_shared.has_work, true);
  11818. for (int j = 0; j < n_threads - 1; j++) {
  11819. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11820. GGML_ASSERT(rc == 0);
  11821. UNUSED(rc);
  11822. }
  11823. ggml_lock_destroy(&state_shared.spin);
  11824. }
  11825. // performance stats (graph)
  11826. {
  11827. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11828. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11829. cgraph->perf_runs++;
  11830. cgraph->perf_cycles += perf_cycles_cur;
  11831. cgraph->perf_time_us += perf_time_us_cur;
  11832. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11833. __func__, cgraph->perf_runs,
  11834. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11835. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11836. (double) perf_time_us_cur / 1000.0,
  11837. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11838. }
  11839. }
  11840. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11841. for (int i = 0; i < cgraph->n_nodes; i++) {
  11842. struct ggml_tensor * grad = cgraph->grads[i];
  11843. if (grad) {
  11844. ggml_set_zero(grad);
  11845. }
  11846. }
  11847. }
  11848. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11849. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11850. GGML_PRINT("=== GRAPH ===\n");
  11851. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11852. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11853. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11854. for (int i = 0; i < cgraph->n_nodes; i++) {
  11855. struct ggml_tensor * node = cgraph->nodes[i];
  11856. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11857. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11858. i,
  11859. node->ne[0], node->ne[1], node->ne[2],
  11860. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11861. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11862. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11863. (double) node->perf_time_us / 1000.0,
  11864. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11865. }
  11866. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11867. for (int i = 0; i < cgraph->n_leafs; i++) {
  11868. struct ggml_tensor * node = cgraph->leafs[i];
  11869. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11870. i,
  11871. node->ne[0], node->ne[1],
  11872. GGML_OP_LABEL[node->op]);
  11873. }
  11874. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11875. if (perf_total_per_op_us[i] == 0) {
  11876. continue;
  11877. }
  11878. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11879. }
  11880. GGML_PRINT("========================================\n");
  11881. }
  11882. // check if node is part of the graph
  11883. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11884. if (cgraph == NULL) {
  11885. return true;
  11886. }
  11887. for (int i = 0; i < cgraph->n_nodes; i++) {
  11888. if (cgraph->nodes[i] == node) {
  11889. return true;
  11890. }
  11891. }
  11892. return false;
  11893. }
  11894. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11895. for (int i = 0; i < cgraph->n_nodes; i++) {
  11896. struct ggml_tensor * parent = cgraph->nodes[i];
  11897. if (parent->grad == node) {
  11898. return parent;
  11899. }
  11900. }
  11901. return NULL;
  11902. }
  11903. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11904. char color[16];
  11905. FILE * fp = fopen(filename, "w");
  11906. GGML_ASSERT(fp);
  11907. fprintf(fp, "digraph G {\n");
  11908. fprintf(fp, " newrank = true;\n");
  11909. fprintf(fp, " rankdir = LR;\n");
  11910. for (int i = 0; i < gb->n_nodes; i++) {
  11911. struct ggml_tensor * node = gb->nodes[i];
  11912. if (ggml_graph_get_parent(gb, node) != NULL) {
  11913. continue;
  11914. }
  11915. if (node->is_param) {
  11916. snprintf(color, sizeof(color), "yellow");
  11917. } else if (node->grad) {
  11918. if (ggml_graph_find(gf, node)) {
  11919. snprintf(color, sizeof(color), "green");
  11920. } else {
  11921. snprintf(color, sizeof(color), "lightblue");
  11922. }
  11923. } else {
  11924. snprintf(color, sizeof(color), "white");
  11925. }
  11926. fprintf(fp, " \"%p\" [ "
  11927. "style = filled; fillcolor = %s; shape = record; "
  11928. "label=\"",
  11929. (void *) node, color);
  11930. if (strlen(node->name) > 0) {
  11931. fprintf(fp, "%s |", node->name);
  11932. }
  11933. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  11934. i, node->ne[0], node->ne[1],
  11935. GGML_OP_SYMBOL[node->op]);
  11936. if (node->grad) {
  11937. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11938. } else {
  11939. fprintf(fp, "\"; ]\n");
  11940. }
  11941. }
  11942. for (int i = 0; i < gb->n_leafs; i++) {
  11943. struct ggml_tensor * node = gb->leafs[i];
  11944. snprintf(color, sizeof(color), "pink");
  11945. fprintf(fp, " \"%p\" [ "
  11946. "style = filled; fillcolor = %s; shape = record; "
  11947. "label=\"<x>",
  11948. (void *) node, color);
  11949. if (strlen(node->name) > 0) {
  11950. fprintf(fp, "%s | ", node->name);
  11951. }
  11952. if (ggml_nelements(node) == 1) {
  11953. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  11954. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  11955. }
  11956. else {
  11957. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  11958. }
  11959. }
  11960. else {
  11961. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  11962. }
  11963. fprintf(fp, "\"; ]\n");
  11964. }
  11965. for (int i = 0; i < gb->n_nodes; i++) {
  11966. struct ggml_tensor * node = gb->nodes[i];
  11967. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  11968. if (node->src0) {
  11969. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  11970. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  11971. parent0 ? (void *) parent0 : (void *) node->src0,
  11972. parent0 ? "g" : "x",
  11973. parent ? (void *) parent : (void *) node,
  11974. parent ? "g" : "x",
  11975. parent ? "empty" : "vee",
  11976. parent ? "dashed" : "solid");
  11977. }
  11978. if (node->src1) {
  11979. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  11980. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  11981. parent1 ? (void *) parent1 : (void *) node->src1,
  11982. parent1 ? "g" : "x",
  11983. parent ? (void *) parent : (void *) node,
  11984. parent ? "g" : "x",
  11985. parent ? "empty" : "vee",
  11986. parent ? "dashed" : "solid");
  11987. }
  11988. }
  11989. for (int i = 0; i < gb->n_leafs; i++) {
  11990. struct ggml_tensor * node = gb->leafs[i];
  11991. if (node->src0) {
  11992. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  11993. (void *) node->src0, "x",
  11994. (void *) node, "x");
  11995. }
  11996. if (node->src1) {
  11997. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  11998. (void *) node->src1, "x",
  11999. (void *) node, "x");
  12000. }
  12001. }
  12002. fprintf(fp, "}\n");
  12003. fclose(fp);
  12004. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12005. }
  12006. ////////////////////////////////////////////////////////////////////////////////
  12007. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12008. int i = 0;
  12009. for (int p = 0; p < np; ++p) {
  12010. const int64_t ne = ggml_nelements(ps[p]) ;
  12011. // TODO: add function to set tensor from array
  12012. for (int64_t j = 0; j < ne; ++j) {
  12013. ggml_set_f32_1d(ps[p], j, x[i++]);
  12014. }
  12015. }
  12016. }
  12017. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12018. int i = 0;
  12019. for (int p = 0; p < np; ++p) {
  12020. const int64_t ne = ggml_nelements(ps[p]) ;
  12021. // TODO: add function to get all elements at once
  12022. for (int64_t j = 0; j < ne; ++j) {
  12023. x[i++] = ggml_get_f32_1d(ps[p], j);
  12024. }
  12025. }
  12026. }
  12027. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12028. int i = 0;
  12029. for (int p = 0; p < np; ++p) {
  12030. const int64_t ne = ggml_nelements(ps[p]) ;
  12031. // TODO: add function to get all elements at once
  12032. for (int64_t j = 0; j < ne; ++j) {
  12033. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12034. }
  12035. }
  12036. }
  12037. //
  12038. // ADAM
  12039. //
  12040. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12041. //
  12042. static enum ggml_opt_result ggml_opt_adam(
  12043. struct ggml_context * ctx,
  12044. struct ggml_opt_params params,
  12045. struct ggml_tensor * f,
  12046. struct ggml_cgraph * gf,
  12047. struct ggml_cgraph * gb) {
  12048. GGML_ASSERT(ggml_is_scalar(f));
  12049. gf->n_threads = params.n_threads;
  12050. gb->n_threads = params.n_threads;
  12051. // these will store the parameters we want to optimize
  12052. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12053. int np = 0;
  12054. int nx = 0;
  12055. for (int i = 0; i < gf->n_nodes; ++i) {
  12056. if (gf->nodes[i]->is_param) {
  12057. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12058. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12059. ps[np++] = gf->nodes[i];
  12060. nx += ggml_nelements(gf->nodes[i]);
  12061. }
  12062. }
  12063. // constants
  12064. const float alpha = params.adam.alpha;
  12065. const float beta1 = params.adam.beta1;
  12066. const float beta2 = params.adam.beta2;
  12067. const float eps = params.adam.eps;
  12068. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12069. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12070. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12071. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12072. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12073. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12074. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12075. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12076. // initialize
  12077. ggml_vec_set_f32(nx, m, 0.0f);
  12078. ggml_vec_set_f32(nx, v, 0.0f);
  12079. // update view
  12080. ggml_opt_get_params(np, ps, x);
  12081. // compute the function value
  12082. ggml_graph_reset (gf);
  12083. ggml_set_f32 (f->grad, 1.0f);
  12084. ggml_graph_compute(ctx, gb);
  12085. float fx_prev = ggml_get_f32_1d(f, 0);
  12086. if (pf) {
  12087. pf[0] = fx_prev;
  12088. }
  12089. int n_no_improvement = 0;
  12090. float fx_best = fx_prev;
  12091. // run the optimizer
  12092. for (int t = 0; t < params.adam.n_iter; ++t) {
  12093. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12094. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12095. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12096. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12097. for (int i = 0; i < np; ++i) {
  12098. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12099. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12100. }
  12101. const int64_t t_start_wall = ggml_time_us();
  12102. const int64_t t_start_cpu = ggml_cycles();
  12103. UNUSED(t_start_wall);
  12104. UNUSED(t_start_cpu);
  12105. {
  12106. // update the gradient
  12107. ggml_opt_get_grad(np, ps, g1);
  12108. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12109. ggml_vec_scale_f32(nx, m, beta1);
  12110. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12111. // g2 = g1^2
  12112. ggml_vec_sqr_f32 (nx, g2, g1);
  12113. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12114. ggml_vec_scale_f32(nx, v, beta2);
  12115. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12116. // m^hat = m_t / (1 - beta1^t)
  12117. // v^hat = v_t / (1 - beta2^t)
  12118. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12119. ggml_vec_cpy_f32 (nx, mh, m);
  12120. ggml_vec_cpy_f32 (nx, vh, v);
  12121. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12122. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12123. ggml_vec_sqrt_f32 (nx, vh, vh);
  12124. ggml_vec_acc1_f32 (nx, vh, eps);
  12125. ggml_vec_div_f32 (nx, mh, mh, vh);
  12126. ggml_vec_sub_f32 (nx, x, x, mh);
  12127. // update the parameters
  12128. ggml_opt_set_params(np, ps, x);
  12129. }
  12130. ggml_graph_reset (gf);
  12131. ggml_set_f32 (f->grad, 1.0f);
  12132. ggml_graph_compute(ctx, gb);
  12133. const float fx = ggml_get_f32_1d(f, 0);
  12134. // check convergence
  12135. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12136. GGML_PRINT_DEBUG("converged\n");
  12137. return GGML_OPT_OK;
  12138. }
  12139. // delta-based convergence test
  12140. if (pf != NULL) {
  12141. // need at least params.past iterations to start checking for convergence
  12142. if (params.past <= t) {
  12143. const float rate = (pf[t%params.past] - fx)/fx;
  12144. if (fabsf(rate) < params.delta) {
  12145. return GGML_OPT_OK;
  12146. }
  12147. }
  12148. pf[t%params.past] = fx;
  12149. }
  12150. // check for improvement
  12151. if (params.max_no_improvement > 0) {
  12152. if (fx_best > fx) {
  12153. fx_best = fx;
  12154. n_no_improvement = 0;
  12155. } else {
  12156. ++n_no_improvement;
  12157. if (n_no_improvement >= params.max_no_improvement) {
  12158. return GGML_OPT_OK;
  12159. }
  12160. }
  12161. }
  12162. fx_prev = fx;
  12163. {
  12164. const int64_t t_end_cpu = ggml_cycles();
  12165. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12166. UNUSED(t_end_cpu);
  12167. const int64_t t_end_wall = ggml_time_us();
  12168. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12169. UNUSED(t_end_wall);
  12170. }
  12171. }
  12172. return GGML_OPT_DID_NOT_CONVERGE;
  12173. }
  12174. //
  12175. // L-BFGS
  12176. //
  12177. // the L-BFGS implementation below is based on the following implementation:
  12178. //
  12179. // https://github.com/chokkan/liblbfgs
  12180. //
  12181. struct ggml_lbfgs_iteration_data {
  12182. float alpha;
  12183. float ys;
  12184. float * s;
  12185. float * y;
  12186. };
  12187. static enum ggml_opt_result linesearch_backtracking(
  12188. struct ggml_context * ctx,
  12189. const struct ggml_opt_params * params,
  12190. int nx,
  12191. float * x,
  12192. float * fx,
  12193. float * g,
  12194. float * d,
  12195. float * step,
  12196. const float * xp,
  12197. struct ggml_tensor * f,
  12198. struct ggml_cgraph * gf,
  12199. struct ggml_cgraph * gb,
  12200. const int np,
  12201. struct ggml_tensor * ps[]) {
  12202. int count = 0;
  12203. float width = 0.0f;
  12204. float dg = 0.0f;
  12205. float finit = 0.0f;
  12206. float dginit = 0.0f;
  12207. float dgtest = 0.0f;
  12208. const float dec = 0.5f;
  12209. const float inc = 2.1f;
  12210. if (*step <= 0.f) {
  12211. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12212. }
  12213. // compute the initial gradient in the search direction
  12214. ggml_vec_dot_f32(nx, &dginit, g, d);
  12215. // make sure that d points to a descent direction
  12216. if (0 < dginit) {
  12217. return GGML_LINESEARCH_FAIL;
  12218. }
  12219. // initialize local variables
  12220. finit = *fx;
  12221. dgtest = params->lbfgs.ftol*dginit;
  12222. while (true) {
  12223. ggml_vec_cpy_f32(nx, x, xp);
  12224. ggml_vec_mad_f32(nx, x, d, *step);
  12225. // evaluate the function and gradient values
  12226. {
  12227. ggml_opt_set_params(np, ps, x);
  12228. ggml_graph_reset (gf);
  12229. ggml_set_f32 (f->grad, 1.0f);
  12230. ggml_graph_compute(ctx, gb);
  12231. ggml_opt_get_grad(np, ps, g);
  12232. *fx = ggml_get_f32_1d(f, 0);
  12233. }
  12234. ++count;
  12235. if (*fx > finit + (*step)*dgtest) {
  12236. width = dec;
  12237. } else {
  12238. // Armijo condition is satisfied
  12239. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12240. return count;
  12241. }
  12242. ggml_vec_dot_f32(nx, &dg, g, d);
  12243. // check the Wolfe condition
  12244. if (dg < params->lbfgs.wolfe * dginit) {
  12245. width = inc;
  12246. } else {
  12247. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12248. // regular Wolfe conditions
  12249. return count;
  12250. }
  12251. if(dg > -params->lbfgs.wolfe*dginit) {
  12252. width = dec;
  12253. } else {
  12254. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12255. return count;
  12256. }
  12257. return count;
  12258. }
  12259. }
  12260. if (*step < params->lbfgs.min_step) {
  12261. return GGML_LINESEARCH_MINIMUM_STEP;
  12262. }
  12263. if (*step > params->lbfgs.max_step) {
  12264. return GGML_LINESEARCH_MAXIMUM_STEP;
  12265. }
  12266. if (params->lbfgs.max_linesearch <= count) {
  12267. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12268. }
  12269. (*step) *= width;
  12270. }
  12271. return GGML_LINESEARCH_FAIL;
  12272. }
  12273. static enum ggml_opt_result ggml_opt_lbfgs(
  12274. struct ggml_context * ctx,
  12275. struct ggml_opt_params params,
  12276. struct ggml_tensor * f,
  12277. struct ggml_cgraph * gf,
  12278. struct ggml_cgraph * gb) {
  12279. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12280. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12281. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12282. return GGML_OPT_INVALID_WOLFE;
  12283. }
  12284. }
  12285. gf->n_threads = params.n_threads;
  12286. gb->n_threads = params.n_threads;
  12287. const int m = params.lbfgs.m;
  12288. // these will store the parameters we want to optimize
  12289. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12290. int np = 0;
  12291. int nx = 0;
  12292. for (int i = 0; i < gf->n_nodes; ++i) {
  12293. if (gf->nodes[i]->is_param) {
  12294. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12295. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12296. ps[np++] = gf->nodes[i];
  12297. nx += ggml_nelements(gf->nodes[i]);
  12298. }
  12299. }
  12300. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12301. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12302. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12303. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12304. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12305. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12306. float fx = 0.0f; // cost function value
  12307. float xnorm = 0.0f; // ||x||
  12308. float gnorm = 0.0f; // ||g||
  12309. float step = 0.0f;
  12310. // initialize x from the graph nodes
  12311. ggml_opt_get_params(np, ps, x);
  12312. // the L-BFGS memory
  12313. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12314. for (int i = 0; i < m; ++i) {
  12315. lm[i].alpha = 0.0f;
  12316. lm[i].ys = 0.0f;
  12317. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12318. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12319. }
  12320. // evaluate the function value and its gradient
  12321. {
  12322. ggml_opt_set_params(np, ps, x);
  12323. ggml_graph_reset (gf);
  12324. ggml_set_f32 (f->grad, 1.0f);
  12325. ggml_graph_compute(ctx, gb);
  12326. ggml_opt_get_grad(np, ps, g);
  12327. fx = ggml_get_f32_1d(f, 0);
  12328. }
  12329. if (pf) {
  12330. pf[0] = fx;
  12331. }
  12332. float fx_best = fx;
  12333. // search direction = -gradient
  12334. ggml_vec_neg_f32(nx, d, g);
  12335. // ||x||, ||g||
  12336. ggml_vec_norm_f32(nx, &xnorm, x);
  12337. ggml_vec_norm_f32(nx, &gnorm, g);
  12338. if (xnorm < 1.0f) {
  12339. xnorm = 1.0f;
  12340. }
  12341. // already optimized
  12342. if (gnorm/xnorm <= params.lbfgs.eps) {
  12343. return GGML_OPT_OK;
  12344. }
  12345. // initial step
  12346. ggml_vec_norm_inv_f32(nx, &step, d);
  12347. int j = 0;
  12348. int k = 1;
  12349. int ls = 0;
  12350. int end = 0;
  12351. int bound = 0;
  12352. int n_no_improvement = 0;
  12353. float ys = 0.0f;
  12354. float yy = 0.0f;
  12355. float beta = 0.0f;
  12356. while (true) {
  12357. // store the current position and gradient vectors
  12358. ggml_vec_cpy_f32(nx, xp, x);
  12359. ggml_vec_cpy_f32(nx, gp, g);
  12360. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12361. if (ls < 0) {
  12362. // linesearch failed - go back to the previous point and return
  12363. ggml_vec_cpy_f32(nx, x, xp);
  12364. ggml_vec_cpy_f32(nx, g, gp);
  12365. return ls;
  12366. }
  12367. ggml_vec_norm_f32(nx, &xnorm, x);
  12368. ggml_vec_norm_f32(nx, &gnorm, g);
  12369. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12370. if (xnorm < 1.0f) {
  12371. xnorm = 1.0f;
  12372. }
  12373. if (gnorm/xnorm <= params.lbfgs.eps) {
  12374. // converged
  12375. return GGML_OPT_OK;
  12376. }
  12377. // delta-based convergence test
  12378. if (pf != NULL) {
  12379. // need at least params.past iterations to start checking for convergence
  12380. if (params.past <= k) {
  12381. const float rate = (pf[k%params.past] - fx)/fx;
  12382. if (fabsf(rate) < params.delta) {
  12383. return GGML_OPT_OK;
  12384. }
  12385. }
  12386. pf[k%params.past] = fx;
  12387. }
  12388. // check for improvement
  12389. if (params.max_no_improvement > 0) {
  12390. if (fx < fx_best) {
  12391. fx_best = fx;
  12392. n_no_improvement = 0;
  12393. } else {
  12394. n_no_improvement++;
  12395. if (n_no_improvement >= params.max_no_improvement) {
  12396. return GGML_OPT_OK;
  12397. }
  12398. }
  12399. }
  12400. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12401. // reached the maximum number of iterations
  12402. return GGML_OPT_DID_NOT_CONVERGE;
  12403. }
  12404. // update vectors s and y:
  12405. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12406. // y_{k+1} = g_{k+1} - g_{k}.
  12407. //
  12408. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12409. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12410. // compute scalars ys and yy:
  12411. // ys = y^t \cdot s -> 1 / \rho.
  12412. // yy = y^t \cdot y.
  12413. //
  12414. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12415. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12416. lm[end].ys = ys;
  12417. // find new search direction
  12418. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12419. bound = (m <= k) ? m : k;
  12420. k++;
  12421. end = (end + 1)%m;
  12422. // initialize search direction with -g
  12423. ggml_vec_neg_f32(nx, d, g);
  12424. j = end;
  12425. for (int i = 0; i < bound; ++i) {
  12426. j = (j + m - 1) % m;
  12427. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12428. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12429. lm[j].alpha /= lm[j].ys;
  12430. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12431. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12432. }
  12433. ggml_vec_scale_f32(nx, d, ys/yy);
  12434. for (int i = 0; i < bound; ++i) {
  12435. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12436. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12437. beta /= lm[j].ys;
  12438. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12439. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12440. j = (j + 1)%m;
  12441. }
  12442. step = 1.0;
  12443. }
  12444. return GGML_OPT_DID_NOT_CONVERGE;
  12445. }
  12446. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12447. struct ggml_opt_params result;
  12448. switch (type) {
  12449. case GGML_OPT_ADAM:
  12450. {
  12451. result = (struct ggml_opt_params) {
  12452. .type = GGML_OPT_ADAM,
  12453. .n_threads = 1,
  12454. .past = 0,
  12455. .delta = 1e-5f,
  12456. .max_no_improvement = 100,
  12457. .print_forward_graph = true,
  12458. .print_backward_graph = true,
  12459. .adam = {
  12460. .n_iter = 10000,
  12461. .alpha = 0.001f,
  12462. .beta1 = 0.9f,
  12463. .beta2 = 0.999f,
  12464. .eps = 1e-8f,
  12465. .eps_f = 1e-5f,
  12466. .eps_g = 1e-3f,
  12467. },
  12468. };
  12469. } break;
  12470. case GGML_OPT_LBFGS:
  12471. {
  12472. result = (struct ggml_opt_params) {
  12473. .type = GGML_OPT_LBFGS,
  12474. .n_threads = 1,
  12475. .past = 0,
  12476. .delta = 1e-5f,
  12477. .max_no_improvement = 0,
  12478. .print_forward_graph = true,
  12479. .print_backward_graph = true,
  12480. .lbfgs = {
  12481. .m = 6,
  12482. .n_iter = 100,
  12483. .max_linesearch = 20,
  12484. .eps = 1e-5f,
  12485. .ftol = 1e-4f,
  12486. .wolfe = 0.9f,
  12487. .min_step = 1e-20f,
  12488. .max_step = 1e+20f,
  12489. .linesearch = GGML_LINESEARCH_DEFAULT,
  12490. },
  12491. };
  12492. } break;
  12493. }
  12494. return result;
  12495. }
  12496. enum ggml_opt_result ggml_opt(
  12497. struct ggml_context * ctx,
  12498. struct ggml_opt_params params,
  12499. struct ggml_tensor * f) {
  12500. bool free_ctx = false;
  12501. if (ctx == NULL) {
  12502. struct ggml_init_params params_ctx = {
  12503. .mem_size = 16*1024*1024,
  12504. .mem_buffer = NULL,
  12505. .no_alloc = false,
  12506. };
  12507. ctx = ggml_init(params_ctx);
  12508. if (ctx == NULL) {
  12509. return GGML_OPT_NO_CONTEXT;
  12510. }
  12511. free_ctx = true;
  12512. }
  12513. enum ggml_opt_result result = GGML_OPT_OK;
  12514. // build forward + backward compute graphs
  12515. struct ggml_cgraph gf = ggml_build_forward (f);
  12516. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12517. switch (params.type) {
  12518. case GGML_OPT_ADAM:
  12519. {
  12520. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12521. } break;
  12522. case GGML_OPT_LBFGS:
  12523. {
  12524. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12525. } break;
  12526. }
  12527. if (params.print_forward_graph) {
  12528. ggml_graph_print (&gf);
  12529. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12530. }
  12531. if (params.print_backward_graph) {
  12532. ggml_graph_print (&gb);
  12533. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12534. }
  12535. if (free_ctx) {
  12536. ggml_free(ctx);
  12537. }
  12538. return result;
  12539. }
  12540. ////////////////////////////////////////////////////////////////////////////////
  12541. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12542. assert(k % QK4_0 == 0);
  12543. const int nb = k / QK4_0;
  12544. for (int b = 0; b < n; b += k) {
  12545. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12546. quantize_row_q4_0_reference(src + b, y, k);
  12547. for (int i = 0; i < nb; i++) {
  12548. for (int j = 0; j < QK4_0; j += 2) {
  12549. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12550. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12551. hist[vi0]++;
  12552. hist[vi1]++;
  12553. }
  12554. }
  12555. }
  12556. return (n/QK4_0*sizeof(block_q4_0));
  12557. }
  12558. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12559. assert(k % QK4_1 == 0);
  12560. const int nb = k / QK4_1;
  12561. for (int b = 0; b < n; b += k) {
  12562. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12563. quantize_row_q4_1_reference(src + b, y, k);
  12564. for (int i = 0; i < nb; i++) {
  12565. for (int j = 0; j < QK4_1; j += 2) {
  12566. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12567. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12568. hist[vi0]++;
  12569. hist[vi1]++;
  12570. }
  12571. }
  12572. }
  12573. return (n/QK4_1*sizeof(block_q4_1));
  12574. }
  12575. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12576. assert(k % QK5_0 == 0);
  12577. const int nb = k / QK5_0;
  12578. for (int b = 0; b < n; b += k) {
  12579. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12580. quantize_row_q5_0_reference(src + b, y, k);
  12581. for (int i = 0; i < nb; i++) {
  12582. uint32_t qh;
  12583. memcpy(&qh, &y[i].qh, sizeof(qh));
  12584. for (int j = 0; j < QK5_0; j += 2) {
  12585. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12586. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12587. // cast to 16 bins
  12588. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12589. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12590. hist[vi0]++;
  12591. hist[vi1]++;
  12592. }
  12593. }
  12594. }
  12595. return (n/QK5_0*sizeof(block_q5_0));
  12596. }
  12597. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12598. assert(k % QK5_1 == 0);
  12599. const int nb = k / QK5_1;
  12600. for (int b = 0; b < n; b += k) {
  12601. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12602. quantize_row_q5_1_reference(src + b, y, k);
  12603. for (int i = 0; i < nb; i++) {
  12604. uint32_t qh;
  12605. memcpy(&qh, &y[i].qh, sizeof(qh));
  12606. for (int j = 0; j < QK5_1; j += 2) {
  12607. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12608. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12609. // cast to 16 bins
  12610. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12611. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12612. hist[vi0]++;
  12613. hist[vi1]++;
  12614. }
  12615. }
  12616. }
  12617. return (n/QK5_1*sizeof(block_q5_1));
  12618. }
  12619. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12620. assert(k % QK8_0 == 0);
  12621. const int nb = k / QK8_0;
  12622. for (int b = 0; b < n; b += k) {
  12623. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12624. quantize_row_q8_0_reference(src + b, y, k);
  12625. for (int i = 0; i < nb; i++) {
  12626. for (int j = 0; j < QK8_0; ++j) {
  12627. const int8_t vi = y[i].qs[j];
  12628. hist[vi/16 + 8]++;
  12629. }
  12630. }
  12631. }
  12632. return (n/QK8_0*sizeof(block_q8_0));
  12633. }
  12634. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12635. size_t result = 0;
  12636. switch (type) {
  12637. case GGML_TYPE_Q4_0:
  12638. {
  12639. GGML_ASSERT(start % QK4_0 == 0);
  12640. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12641. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12642. } break;
  12643. case GGML_TYPE_Q4_1:
  12644. {
  12645. GGML_ASSERT(start % QK4_1 == 0);
  12646. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12647. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12648. } break;
  12649. case GGML_TYPE_Q5_0:
  12650. {
  12651. GGML_ASSERT(start % QK5_0 == 0);
  12652. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12653. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12654. } break;
  12655. case GGML_TYPE_Q5_1:
  12656. {
  12657. GGML_ASSERT(start % QK5_1 == 0);
  12658. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12659. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12660. } break;
  12661. case GGML_TYPE_Q8_0:
  12662. {
  12663. GGML_ASSERT(start % QK8_0 == 0);
  12664. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12665. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12666. } break;
  12667. default:
  12668. assert(false);
  12669. }
  12670. return result;
  12671. }
  12672. ////////////////////////////////////////////////////////////////////////////////
  12673. int ggml_cpu_has_avx(void) {
  12674. #if defined(__AVX__)
  12675. return 1;
  12676. #else
  12677. return 0;
  12678. #endif
  12679. }
  12680. int ggml_cpu_has_avx2(void) {
  12681. #if defined(__AVX2__)
  12682. return 1;
  12683. #else
  12684. return 0;
  12685. #endif
  12686. }
  12687. int ggml_cpu_has_avx512(void) {
  12688. #if defined(__AVX512F__)
  12689. return 1;
  12690. #else
  12691. return 0;
  12692. #endif
  12693. }
  12694. int ggml_cpu_has_avx512_vbmi(void) {
  12695. #if defined(__AVX512VBMI__)
  12696. return 1;
  12697. #else
  12698. return 0;
  12699. #endif
  12700. }
  12701. int ggml_cpu_has_avx512_vnni(void) {
  12702. #if defined(__AVX512VNNI__)
  12703. return 1;
  12704. #else
  12705. return 0;
  12706. #endif
  12707. }
  12708. int ggml_cpu_has_fma(void) {
  12709. #if defined(__FMA__)
  12710. return 1;
  12711. #else
  12712. return 0;
  12713. #endif
  12714. }
  12715. int ggml_cpu_has_neon(void) {
  12716. #if defined(__ARM_NEON)
  12717. return 1;
  12718. #else
  12719. return 0;
  12720. #endif
  12721. }
  12722. int ggml_cpu_has_arm_fma(void) {
  12723. #if defined(__ARM_FEATURE_FMA)
  12724. return 1;
  12725. #else
  12726. return 0;
  12727. #endif
  12728. }
  12729. int ggml_cpu_has_f16c(void) {
  12730. #if defined(__F16C__)
  12731. return 1;
  12732. #else
  12733. return 0;
  12734. #endif
  12735. }
  12736. int ggml_cpu_has_fp16_va(void) {
  12737. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12738. return 1;
  12739. #else
  12740. return 0;
  12741. #endif
  12742. }
  12743. int ggml_cpu_has_wasm_simd(void) {
  12744. #if defined(__wasm_simd128__)
  12745. return 1;
  12746. #else
  12747. return 0;
  12748. #endif
  12749. }
  12750. int ggml_cpu_has_blas(void) {
  12751. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12752. return 1;
  12753. #else
  12754. return 0;
  12755. #endif
  12756. }
  12757. int ggml_cpu_has_cublas(void) {
  12758. #if defined(GGML_USE_CUBLAS)
  12759. return 1;
  12760. #else
  12761. return 0;
  12762. #endif
  12763. }
  12764. int ggml_cpu_has_clblast(void) {
  12765. #if defined(GGML_USE_CLBLAST)
  12766. return 1;
  12767. #else
  12768. return 0;
  12769. #endif
  12770. }
  12771. int ggml_cpu_has_gpublas(void) {
  12772. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12773. }
  12774. int ggml_cpu_has_sse3(void) {
  12775. #if defined(__SSE3__)
  12776. return 1;
  12777. #else
  12778. return 0;
  12779. #endif
  12780. }
  12781. int ggml_cpu_has_vsx(void) {
  12782. #if defined(__POWER9_VECTOR__)
  12783. return 1;
  12784. #else
  12785. return 0;
  12786. #endif
  12787. }
  12788. ////////////////////////////////////////////////////////////////////////////////