llama.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #ifdef GGML_USE_CUBLAS
  5. #include "ggml-cuda.h"
  6. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  7. #else
  8. #define LLAMA_MAX_DEVICES 1
  9. #endif // GGML_USE_CUBLAS
  10. #include <stddef.h>
  11. #include <stdint.h>
  12. #include <stdbool.h>
  13. #ifdef LLAMA_SHARED
  14. # if defined(_WIN32) && !defined(__MINGW32__)
  15. # ifdef LLAMA_BUILD
  16. # define LLAMA_API __declspec(dllexport)
  17. # else
  18. # define LLAMA_API __declspec(dllimport)
  19. # endif
  20. # else
  21. # define LLAMA_API __attribute__ ((visibility ("default")))
  22. # endif
  23. #else
  24. # define LLAMA_API
  25. #endif
  26. #ifdef __GNUC__
  27. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  28. #elif defined(_MSC_VER)
  29. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  30. #else
  31. # define DEPRECATED(func, hint) func
  32. #endif
  33. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  34. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  35. #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
  36. #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
  37. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  38. #define LLAMA_FILE_VERSION 3
  39. #define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
  40. #define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
  41. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  42. #define LLAMA_SESSION_VERSION 1
  43. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
  44. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  45. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  46. #endif
  47. #ifdef __cplusplus
  48. extern "C" {
  49. #endif
  50. //
  51. // C interface
  52. //
  53. // TODO: show sample usage
  54. //
  55. struct llama_model;
  56. struct llama_context;
  57. typedef int llama_token;
  58. typedef struct llama_token_data {
  59. llama_token id; // token id
  60. float logit; // log-odds of the token
  61. float p; // probability of the token
  62. } llama_token_data;
  63. typedef struct llama_token_data_array {
  64. llama_token_data * data;
  65. size_t size;
  66. bool sorted;
  67. } llama_token_data_array;
  68. typedef void (*llama_progress_callback)(float progress, void *ctx);
  69. struct llama_context_params {
  70. int seed; // RNG seed, -1 for random
  71. int n_ctx; // text context
  72. int n_batch; // prompt processing batch size
  73. int n_gpu_layers; // number of layers to store in VRAM
  74. int main_gpu; // the GPU that is used for scratch and small tensors
  75. float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
  76. // called with a progress value between 0 and 1, pass NULL to disable
  77. llama_progress_callback progress_callback;
  78. // context pointer passed to the progress callback
  79. void * progress_callback_user_data;
  80. // Keep the booleans together to avoid misalignment during copy-by-value.
  81. bool low_vram; // if true, reduce VRAM usage at the cost of performance
  82. bool f16_kv; // use fp16 for KV cache
  83. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  84. bool vocab_only; // only load the vocabulary, no weights
  85. bool use_mmap; // use mmap if possible
  86. bool use_mlock; // force system to keep model in RAM
  87. bool embedding; // embedding mode only
  88. };
  89. // model file types
  90. enum llama_ftype {
  91. LLAMA_FTYPE_ALL_F32 = 0,
  92. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  95. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  96. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  97. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  98. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
  105. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
  106. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
  107. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
  108. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
  109. LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
  110. };
  111. // model quantization parameters
  112. typedef struct llama_model_quantize_params {
  113. int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  114. enum llama_ftype ftype; // quantize to this llama_ftype
  115. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  116. bool quantize_output_tensor; // quantize output.weight
  117. } llama_model_quantize_params;
  118. LLAMA_API struct llama_context_params llama_context_default_params();
  119. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
  120. LLAMA_API bool llama_mmap_supported();
  121. LLAMA_API bool llama_mlock_supported();
  122. // TODO: not great API - very likely to change
  123. // Initialize the llama + ggml backend
  124. // If numa is true, use NUMA optimizations
  125. // Call once at the start of the program
  126. LLAMA_API void llama_init_backend(bool numa);
  127. LLAMA_API int64_t llama_time_us();
  128. LLAMA_API struct llama_model * llama_load_model_from_file(
  129. const char * path_model,
  130. struct llama_context_params params);
  131. LLAMA_API void llama_free_model(struct llama_model * model);
  132. LLAMA_API struct llama_context * llama_new_context_with_model(
  133. struct llama_model * model,
  134. struct llama_context_params params);
  135. // Various functions for loading a ggml llama model.
  136. // Allocate (almost) all memory needed for the model.
  137. // Return NULL on failure
  138. LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
  139. const char * path_model,
  140. struct llama_context_params params),
  141. "please use llama_load_model_from_file combined with llama_new_context_with_model instead");
  142. // Frees all allocated memory
  143. LLAMA_API void llama_free(struct llama_context * ctx);
  144. // Returns 0 on success
  145. LLAMA_API int llama_model_quantize(
  146. const char * fname_inp,
  147. const char * fname_out,
  148. const llama_model_quantize_params * params);
  149. // Apply a LoRA adapter to a loaded model
  150. // path_base_model is the path to a higher quality model to use as a base for
  151. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  152. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  153. // will be applied on top of the previous one
  154. // Returns 0 on success
  155. LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
  156. struct llama_context * ctx,
  157. const char * path_lora,
  158. const char * path_base_model,
  159. int n_threads),
  160. "please use llama_model_apply_lora_from_file instead");
  161. LLAMA_API int llama_model_apply_lora_from_file(
  162. const struct llama_model * model,
  163. const char * path_lora,
  164. const char * path_base_model,
  165. int n_threads);
  166. // Returns the number of tokens in the KV cache
  167. LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
  168. // Sets the current rng seed.
  169. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
  170. // Returns the maximum size in bytes of the state (rng, logits, embedding
  171. // and kv_cache) - will often be smaller after compacting tokens
  172. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  173. // Copies the state to the specified destination address.
  174. // Destination needs to have allocated enough memory.
  175. // Returns the number of bytes copied
  176. LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
  177. // Set the state reading from the specified address
  178. // Returns the number of bytes read
  179. LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
  180. // Save/load session file
  181. LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
  182. LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
  183. // Run the llama inference to obtain the logits and probabilities for the next token.
  184. // tokens + n_tokens is the provided batch of new tokens to process
  185. // n_past is the number of tokens to use from previous eval calls
  186. // Returns 0 on success
  187. LLAMA_API int llama_eval(
  188. struct llama_context * ctx,
  189. const llama_token * tokens,
  190. int n_tokens,
  191. int n_past,
  192. int n_threads);
  193. // Same as llama_eval, but use float matrix input directly.
  194. LLAMA_API int llama_eval_embd(
  195. struct llama_context * ctx,
  196. const float * embd,
  197. int n_tokens,
  198. int n_past,
  199. int n_threads);
  200. // Export a static computation graph for context of 511 and batch size of 1
  201. // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
  202. // parameters here to keep things simple
  203. // IMPORTANT: do not use for anything else other than debugging and testing!
  204. LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
  205. // Convert the provided text into tokens.
  206. // The tokens pointer must be large enough to hold the resulting tokens.
  207. // Returns the number of tokens on success, no more than n_max_tokens
  208. // Returns a negative number on failure - the number of tokens that would have been returned
  209. // TODO: not sure if correct
  210. LLAMA_API int llama_tokenize(
  211. struct llama_context * ctx,
  212. const char * text,
  213. llama_token * tokens,
  214. int n_max_tokens,
  215. bool add_bos);
  216. LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
  217. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  218. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  219. // Get the vocabulary as output parameters.
  220. // Returns number of results.
  221. LLAMA_API int llama_get_vocab(
  222. const struct llama_context * ctx,
  223. const char * * strings,
  224. float * scores,
  225. int capacity);
  226. // Token logits obtained from the last call to llama_eval()
  227. // The logits for the last token are stored in the last row
  228. // Can be mutated in order to change the probabilities of the next token
  229. // Rows: n_tokens
  230. // Cols: n_vocab
  231. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  232. // Get the embeddings for the input
  233. // shape: [n_embd] (1-dimensional)
  234. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  235. // Token Id -> String. Uses the vocabulary in the provided context
  236. LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
  237. // Special tokens
  238. LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
  239. LLAMA_API llama_token llama_token_eos(); // end-of-sentence
  240. LLAMA_API llama_token llama_token_nl(); // next-line
  241. // Sampling functions
  242. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  243. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
  244. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  245. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
  246. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  247. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
  248. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  249. LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
  250. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  251. LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  252. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  253. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
  254. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  255. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  256. LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
  257. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  258. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  259. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  260. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  261. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  262. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  263. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
  264. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  265. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  266. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  267. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  268. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  269. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
  270. /// @details Selects the token with the highest probability.
  271. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
  272. /// @details Randomly selects a token from the candidates based on their probabilities.
  273. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
  274. // Performance information
  275. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  276. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  277. // Print system information
  278. LLAMA_API const char * llama_print_system_info(void);
  279. #ifdef __cplusplus
  280. }
  281. #endif
  282. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  283. #ifdef LLAMA_API_INTERNAL
  284. #include <vector>
  285. #include <string>
  286. struct ggml_tensor;
  287. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
  288. #endif
  289. #endif // LLAMA_H