convert_hf_to_gguf.py 220 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.POSNET_NORM1,
  274. gguf.MODEL_TENSOR.POSNET_NORM2,
  275. )
  276. )
  277. or not new_name.endswith(".weight")
  278. ):
  279. data_qtype = gguf.GGMLQuantizationType.F32
  280. if data_qtype is False and any(
  281. self.match_model_tensor_name(new_name, key, bid)
  282. for key in (
  283. gguf.MODEL_TENSOR.TOKEN_EMBD,
  284. gguf.MODEL_TENSOR.OUTPUT,
  285. )
  286. ):
  287. if self.ftype in (
  288. gguf.LlamaFileType.MOSTLY_TQ1_0,
  289. gguf.LlamaFileType.MOSTLY_TQ2_0,
  290. ):
  291. # TODO: use Q4_K and Q6_K
  292. data_qtype = gguf.GGMLQuantizationType.F16
  293. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  294. if isinstance(data_qtype, bool):
  295. if self.ftype == gguf.LlamaFileType.ALL_F32:
  296. data_qtype = gguf.GGMLQuantizationType.F32
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  298. data_qtype = gguf.GGMLQuantizationType.F16
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  300. data_qtype = gguf.GGMLQuantizationType.BF16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  302. data_qtype = gguf.GGMLQuantizationType.Q8_0
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  304. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  307. else:
  308. raise ValueError(f"Unknown file type: {self.ftype.name}")
  309. try:
  310. data = gguf.quants.quantize(data, data_qtype)
  311. except gguf.QuantError as e:
  312. logger.warning("%s, %s", e, "falling back to F16")
  313. data_qtype = gguf.GGMLQuantizationType.F16
  314. data = gguf.quants.quantize(data, data_qtype)
  315. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  316. # reverse shape to make it similar to the internal ggml dimension order
  317. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  318. # n_dims is implicit in the shape
  319. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  320. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  321. def set_type(self):
  322. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  323. def prepare_metadata(self, vocab_only: bool):
  324. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  325. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  326. # Fallback to model directory name if metadata name is still missing
  327. if self.metadata.name is None:
  328. self.metadata.name = self.dir_model.name
  329. # Generate parameter weight class (useful for leader boards) if not yet determined
  330. if self.metadata.size_label is None and total_params > 0:
  331. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  332. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  333. output_type: str = self.ftype.name.partition("_")[2]
  334. # Filename Output
  335. if self.fname_out.is_dir():
  336. # Generate default filename based on model specification and available metadata
  337. if not vocab_only:
  338. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  339. else:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  341. # Use the default filename
  342. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  343. else:
  344. # Output path is a custom defined templated filename
  345. # Note: `not is_dir()` is used because `.is_file()` will not detect
  346. # file template strings as it doesn't actually exist as a file
  347. # Process templated file name with the output ftype, useful with the "auto" ftype
  348. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  349. self.set_type()
  350. logger.info("Set meta model")
  351. self.metadata.set_gguf_meta_model(self.gguf_writer)
  352. logger.info("Set model parameters")
  353. self.set_gguf_parameters()
  354. logger.info("Set model tokenizer")
  355. self.set_vocab()
  356. logger.info("Set model quantization version")
  357. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  358. def write(self):
  359. self.prepare_tensors()
  360. self.prepare_metadata(vocab_only=False)
  361. self.gguf_writer.write_header_to_file(path=self.fname_out)
  362. self.gguf_writer.write_kv_data_to_file()
  363. self.gguf_writer.write_tensors_to_file(progress=True)
  364. self.gguf_writer.close()
  365. def write_vocab(self):
  366. if len(self.gguf_writer.tensors) != 1:
  367. raise ValueError('Splitting the vocabulary is not supported')
  368. self.prepare_metadata(vocab_only=True)
  369. self.gguf_writer.write_header_to_file(path=self.fname_out)
  370. self.gguf_writer.write_kv_data_to_file()
  371. self.gguf_writer.close()
  372. @staticmethod
  373. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  374. part_names: list[str] = []
  375. for filename in os.listdir(dir_model):
  376. if filename.startswith(prefix) and filename.endswith(suffix):
  377. part_names.append(filename)
  378. part_names.sort()
  379. return part_names
  380. @staticmethod
  381. def load_hparams(dir_model: Path):
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. return json.load(f)
  384. @classmethod
  385. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  386. assert names
  387. def func(modelcls: AnyModel) -> AnyModel:
  388. for name in names:
  389. cls._model_classes[name] = modelcls
  390. return modelcls
  391. return func
  392. @classmethod
  393. def from_model_architecture(cls, arch: str) -> type[Model]:
  394. try:
  395. return cls._model_classes[arch]
  396. except KeyError:
  397. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  398. def does_token_look_special(self, token: str | bytes) -> bool:
  399. if isinstance(token, (bytes, bytearray)):
  400. token_text = token.decode(encoding="utf-8")
  401. elif isinstance(token, memoryview):
  402. token_text = token.tobytes().decode(encoding="utf-8")
  403. else:
  404. token_text = token
  405. # Some models mark some added tokens which ought to be control tokens as not special.
  406. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  407. seems_special = token_text in (
  408. "<pad>", # deepseek-coder
  409. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  410. )
  411. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  412. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  413. # TODO: should these be marked as UNUSED instead? (maybe not)
  414. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  415. return seems_special
  416. # used for GPT-2 BPE and WordPiece vocabs
  417. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  418. tokens: list[str] = []
  419. toktypes: list[int] = []
  420. from transformers import AutoTokenizer
  421. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  422. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  423. assert max(tokenizer.vocab.values()) < vocab_size
  424. tokpre = self.get_vocab_base_pre(tokenizer)
  425. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  426. added_vocab = tokenizer.get_added_vocab()
  427. for i in range(vocab_size):
  428. if i not in reverse_vocab:
  429. tokens.append(f"[PAD{i}]")
  430. toktypes.append(gguf.TokenType.UNUSED)
  431. else:
  432. token: str = reverse_vocab[i]
  433. if token in added_vocab:
  434. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  435. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  436. if not tokenizer.added_tokens_decoder[i].normalized:
  437. previous_token = token
  438. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  439. if previous_token != token:
  440. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  441. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  442. toktypes.append(gguf.TokenType.CONTROL)
  443. else:
  444. # NOTE: this was added for Gemma.
  445. # Encoding and decoding the tokens above isn't sufficient for this case.
  446. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  447. toktypes.append(gguf.TokenType.USER_DEFINED)
  448. else:
  449. toktypes.append(gguf.TokenType.NORMAL)
  450. tokens.append(token)
  451. return tokens, toktypes, tokpre
  452. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  453. # do not modify it manually!
  454. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  455. # Marker: Start get_vocab_base_pre
  456. def get_vocab_base_pre(self, tokenizer) -> str:
  457. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  458. # is specific for the BPE pre-tokenizer used by the model
  459. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  460. # use in llama.cpp to implement the same pre-tokenizer
  461. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  462. chktok = tokenizer.encode(chktxt)
  463. chkhsh = sha256(str(chktok).encode()).hexdigest()
  464. logger.debug(f"chktok: {chktok}")
  465. logger.debug(f"chkhsh: {chkhsh}")
  466. res = None
  467. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  468. # or pull the latest version of the model from Huggingface
  469. # don't edit the hashes manually!
  470. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  471. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  472. res = "llama-bpe"
  473. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  474. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  475. res = "deepseek-llm"
  476. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  477. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  478. res = "deepseek-coder"
  479. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  480. # ref: https://huggingface.co/tiiuae/falcon-7b
  481. res = "falcon"
  482. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  483. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  484. res = "falcon3"
  485. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  486. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  487. res = "bert-bge"
  488. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  489. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  490. res = "bert-bge-large"
  491. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  492. # ref: https://huggingface.co/mosaicml/mpt-7b
  493. res = "mpt"
  494. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  495. # ref: https://huggingface.co/bigcode/starcoder2-3b
  496. res = "starcoder"
  497. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  498. # ref: https://huggingface.co/openai-community/gpt2
  499. res = "gpt-2"
  500. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  501. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  502. res = "stablelm2"
  503. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  504. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  505. res = "refact"
  506. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  507. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  508. res = "command-r"
  509. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  510. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  511. res = "qwen2"
  512. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  513. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  514. res = "olmo"
  515. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  516. # ref: https://huggingface.co/databricks/dbrx-base
  517. res = "dbrx"
  518. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  519. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  520. res = "jina-v1-en"
  521. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  522. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  523. res = "jina-v2-en"
  524. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  525. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  526. res = "jina-v2-es"
  527. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  528. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  529. res = "jina-v2-de"
  530. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  531. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  532. res = "smaug-bpe"
  533. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  534. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  535. res = "poro-chat"
  536. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  537. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  538. res = "jina-v2-code"
  539. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  540. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  541. res = "chatglm-bpe"
  542. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  543. # ref: https://huggingface.co/LumiOpen/Viking-7B
  544. res = "viking"
  545. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  546. # ref: https://huggingface.co/core42/jais-13b
  547. res = "jais"
  548. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  549. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  550. res = "codeshell"
  551. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  552. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  553. res = "tekken"
  554. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  555. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  556. res = "smollm"
  557. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  558. # ref: https://huggingface.co/bigscience/bloom
  559. res = "bloom"
  560. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  561. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  562. res = "gpt3-finnish"
  563. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  564. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  565. res = "exaone"
  566. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  567. # ref: https://huggingface.co/microsoft/phi-2
  568. res = "phi-2"
  569. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  570. # ref: https://huggingface.co/facebook/chameleon-7b
  571. res = "chameleon"
  572. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  573. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  574. res = "minerva-7b"
  575. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  576. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  577. res = "roberta-bpe"
  578. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  579. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  580. res = "gigachat"
  581. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  582. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  583. res = "megrez"
  584. if res is None:
  585. logger.warning("\n")
  586. logger.warning("**************************************************************************************")
  587. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  588. logger.warning("** There are 2 possible reasons for this:")
  589. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  590. logger.warning("** - the pre-tokenization config has changed upstream")
  591. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  592. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  593. logger.warning("**")
  594. logger.warning(f"** chkhsh: {chkhsh}")
  595. logger.warning("**************************************************************************************")
  596. logger.warning("\n")
  597. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  598. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  599. logger.debug(f"chkhsh: {chkhsh}")
  600. return res
  601. # Marker: End get_vocab_base_pre
  602. def _set_vocab_none(self) -> None:
  603. self.gguf_writer.add_tokenizer_model("none")
  604. def _set_vocab_gpt2(self) -> None:
  605. tokens, toktypes, tokpre = self.get_vocab_base()
  606. self.gguf_writer.add_tokenizer_model("gpt2")
  607. self.gguf_writer.add_tokenizer_pre(tokpre)
  608. self.gguf_writer.add_token_list(tokens)
  609. self.gguf_writer.add_token_types(toktypes)
  610. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  611. special_vocab.add_to_gguf(self.gguf_writer)
  612. def _set_vocab_qwen(self):
  613. dir_model = self.dir_model
  614. hparams = self.hparams
  615. tokens: list[str] = []
  616. toktypes: list[int] = []
  617. from transformers import AutoTokenizer
  618. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  619. vocab_size = hparams["vocab_size"]
  620. assert max(tokenizer.get_vocab().values()) < vocab_size
  621. tokpre = self.get_vocab_base_pre(tokenizer)
  622. merges = []
  623. vocab = {}
  624. mergeable_ranks = tokenizer.mergeable_ranks
  625. for token, rank in mergeable_ranks.items():
  626. vocab[QwenModel.token_bytes_to_string(token)] = rank
  627. if len(token) == 1:
  628. continue
  629. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  630. assert len(merged) == 2
  631. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  632. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  633. added_vocab = tokenizer.special_tokens
  634. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  635. for i in range(vocab_size):
  636. if i not in reverse_vocab:
  637. tokens.append(f"[PAD{i}]")
  638. toktypes.append(gguf.TokenType.UNUSED)
  639. elif reverse_vocab[i] in added_vocab:
  640. tokens.append(reverse_vocab[i])
  641. toktypes.append(gguf.TokenType.CONTROL)
  642. else:
  643. tokens.append(reverse_vocab[i])
  644. toktypes.append(gguf.TokenType.NORMAL)
  645. self.gguf_writer.add_tokenizer_model("gpt2")
  646. self.gguf_writer.add_tokenizer_pre(tokpre)
  647. self.gguf_writer.add_token_list(tokens)
  648. self.gguf_writer.add_token_types(toktypes)
  649. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  650. special_vocab.merges = merges
  651. # only add special tokens when they were not already loaded from config.json
  652. if len(special_vocab.special_token_ids) == 0:
  653. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  654. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  655. # this one is usually not in config.json anyway
  656. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  657. special_vocab.add_to_gguf(self.gguf_writer)
  658. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  659. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  660. self.gguf_writer.add_tokenizer_model("llama")
  661. self.gguf_writer.add_tokenizer_pre("default")
  662. self.gguf_writer.add_token_list(tokens)
  663. self.gguf_writer.add_token_scores(scores)
  664. self.gguf_writer.add_token_types(toktypes)
  665. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  666. special_vocab.add_to_gguf(self.gguf_writer)
  667. def _create_vocab_sentencepiece(self):
  668. from sentencepiece import SentencePieceProcessor
  669. tokenizer_path = self.dir_model / 'tokenizer.model'
  670. if not tokenizer_path.is_file():
  671. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  672. tokenizer = SentencePieceProcessor()
  673. tokenizer.LoadFromFile(str(tokenizer_path))
  674. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  675. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  676. scores: list[float] = [-10000.0] * vocab_size
  677. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  678. for token_id in range(tokenizer.vocab_size()):
  679. piece = tokenizer.IdToPiece(token_id)
  680. text = piece.encode("utf-8")
  681. score = tokenizer.GetScore(token_id)
  682. toktype = SentencePieceTokenTypes.NORMAL
  683. if tokenizer.IsUnknown(token_id):
  684. toktype = SentencePieceTokenTypes.UNKNOWN
  685. elif tokenizer.IsControl(token_id):
  686. toktype = SentencePieceTokenTypes.CONTROL
  687. elif tokenizer.IsUnused(token_id):
  688. toktype = SentencePieceTokenTypes.UNUSED
  689. elif tokenizer.IsByte(token_id):
  690. toktype = SentencePieceTokenTypes.BYTE
  691. tokens[token_id] = text
  692. scores[token_id] = score
  693. toktypes[token_id] = toktype
  694. added_tokens_file = self.dir_model / 'added_tokens.json'
  695. if added_tokens_file.is_file():
  696. with open(added_tokens_file, "r", encoding="utf-8") as f:
  697. added_tokens_json = json.load(f)
  698. for key in added_tokens_json:
  699. token_id = added_tokens_json[key]
  700. if token_id >= vocab_size:
  701. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  702. continue
  703. tokens[token_id] = key.encode("utf-8")
  704. scores[token_id] = -1000.0
  705. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  706. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  707. if tokenizer_config_file.is_file():
  708. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  709. tokenizer_config_json = json.load(f)
  710. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  711. for token_id, token_data in added_tokens_decoder.items():
  712. token_id = int(token_id)
  713. token: str = token_data["content"]
  714. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  715. if tokens[token_id] != token.encode("utf-8"):
  716. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  717. if token_data.get("special") or self.does_token_look_special(token):
  718. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  719. else:
  720. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  721. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  722. scores[token_id] = -1000.0
  723. tokens[token_id] = token.encode("utf-8")
  724. if vocab_size > len(tokens):
  725. pad_count = vocab_size - len(tokens)
  726. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  727. for i in range(1, pad_count + 1):
  728. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  729. scores.append(-1000.0)
  730. toktypes.append(SentencePieceTokenTypes.UNUSED)
  731. return tokens, scores, toktypes
  732. def _set_vocab_llama_hf(self):
  733. vocab = gguf.LlamaHfVocab(self.dir_model)
  734. tokens = []
  735. scores = []
  736. toktypes = []
  737. for text, score, toktype in vocab.all_tokens():
  738. tokens.append(text)
  739. scores.append(score)
  740. toktypes.append(toktype)
  741. assert len(tokens) == vocab.vocab_size
  742. self.gguf_writer.add_tokenizer_model("llama")
  743. self.gguf_writer.add_tokenizer_pre("default")
  744. self.gguf_writer.add_token_list(tokens)
  745. self.gguf_writer.add_token_scores(scores)
  746. self.gguf_writer.add_token_types(toktypes)
  747. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  748. special_vocab.add_to_gguf(self.gguf_writer)
  749. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  750. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  751. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  752. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  753. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  754. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  755. assert field # tokenizer model
  756. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  757. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  758. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  759. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  760. assert field # token list
  761. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  762. if model_name == "llama-spm":
  763. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  764. assert field # token scores
  765. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  766. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  767. assert field # token types
  768. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  769. if model_name != "llama-spm":
  770. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  771. assert field # token merges
  772. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  773. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  774. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  775. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  776. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  777. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  778. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  779. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  780. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  781. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  782. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  783. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  784. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  785. @Model.register("GPTNeoXForCausalLM")
  786. class GPTNeoXModel(Model):
  787. model_arch = gguf.MODEL_ARCH.GPTNEOX
  788. def set_gguf_parameters(self):
  789. block_count = self.hparams["num_hidden_layers"]
  790. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  791. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  792. self.gguf_writer.add_block_count(block_count)
  793. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  794. self.gguf_writer.add_rope_dimension_count(
  795. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  796. )
  797. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  798. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  799. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  801. del bid # unused
  802. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  803. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  804. tensors: list[tuple[str, Tensor]] = []
  805. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  806. # Map bloom-style qkv_linear to gpt-style qkv_linear
  807. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  808. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  809. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  810. data_torch = torch.cat(
  811. (
  812. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  813. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  814. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  815. ),
  816. dim=0,
  817. )
  818. logger.info("re-format attention.linear_qkv.weight")
  819. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  820. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  821. data_torch = torch.cat(
  822. (
  823. qkv_bias[:, 0, :].reshape((n_embed,)),
  824. qkv_bias[:, 1, :].reshape((n_embed,)),
  825. qkv_bias[:, 2, :].reshape((n_embed,)),
  826. ),
  827. dim=0,
  828. )
  829. logger.info("re-format attention.linear_qkv.bias")
  830. tensors.append((self.map_tensor_name(name), data_torch))
  831. return tensors
  832. @Model.register("BloomForCausalLM", "BloomModel")
  833. class BloomModel(Model):
  834. model_arch = gguf.MODEL_ARCH.BLOOM
  835. def set_gguf_parameters(self):
  836. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  837. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  838. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  839. self.gguf_writer.add_embedding_length(n_embed)
  840. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  841. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  842. self.gguf_writer.add_head_count(n_head)
  843. self.gguf_writer.add_head_count_kv(n_head)
  844. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  845. self.gguf_writer.add_file_type(self.ftype)
  846. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  847. del bid # unused
  848. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  849. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  850. name = re.sub(r'transformer\.', '', name)
  851. tensors: list[tuple[str, Tensor]] = []
  852. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  853. # Map bloom-style qkv_linear to gpt-style qkv_linear
  854. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  855. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  856. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  857. data_torch = torch.cat(
  858. (
  859. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  860. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  861. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  862. ),
  863. dim=0,
  864. )
  865. logger.info("re-format attention.linear_qkv.weight")
  866. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  867. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  868. data_torch = torch.cat(
  869. (
  870. qkv_bias[:, 0, :].reshape((n_embed,)),
  871. qkv_bias[:, 1, :].reshape((n_embed,)),
  872. qkv_bias[:, 2, :].reshape((n_embed,)),
  873. ),
  874. dim=0,
  875. )
  876. logger.info("re-format attention.linear_qkv.bias")
  877. tensors.append((self.map_tensor_name(name), data_torch))
  878. if name == "word_embeddings.weight":
  879. assert self.tensor_names is not None
  880. # TODO: tie them at runtime, don't duplicate in the model file
  881. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  882. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  883. return tensors
  884. @Model.register("MPTForCausalLM")
  885. class MPTModel(Model):
  886. model_arch = gguf.MODEL_ARCH.MPT
  887. def set_vocab(self):
  888. try:
  889. self._set_vocab_gpt2()
  890. except Exception:
  891. # Fallback for SEA-LION model
  892. self._set_vocab_sentencepiece()
  893. self.gguf_writer.add_add_bos_token(False)
  894. self.gguf_writer.add_pad_token_id(3)
  895. self.gguf_writer.add_eos_token_id(1)
  896. self.gguf_writer.add_unk_token_id(0)
  897. def set_gguf_parameters(self):
  898. block_count = self.hparams["n_layers"]
  899. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  900. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  901. self.gguf_writer.add_block_count(block_count)
  902. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  903. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  904. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  905. self.gguf_writer.add_head_count_kv(kv_n_heads)
  906. self.gguf_writer.add_layer_norm_eps(1e-5)
  907. if self.hparams["attn_config"]["clip_qkv"] is not None:
  908. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  909. if self.hparams["attn_config"]["alibi"]:
  910. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  911. else:
  912. self.gguf_writer.add_max_alibi_bias(0.0)
  913. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  914. del bid # unused
  915. if "scales" in name:
  916. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  917. new_name = new_name.replace("scales", "act.scales")
  918. else:
  919. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  920. return [(new_name, data_torch)]
  921. @Model.register("OrionForCausalLM")
  922. class OrionModel(Model):
  923. model_arch = gguf.MODEL_ARCH.ORION
  924. def set_vocab(self):
  925. self._set_vocab_sentencepiece()
  926. def set_gguf_parameters(self):
  927. block_count = self.hparams["num_hidden_layers"]
  928. head_count = self.hparams["num_attention_heads"]
  929. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  930. ctx_length = 0
  931. if "max_sequence_length" in self.hparams:
  932. ctx_length = self.hparams["max_sequence_length"]
  933. elif "max_position_embeddings" in self.hparams:
  934. ctx_length = self.hparams["max_position_embeddings"]
  935. elif "model_max_length" in self.hparams:
  936. ctx_length = self.hparams["model_max_length"]
  937. else:
  938. raise ValueError("gguf: can not find ctx length parameter.")
  939. self.gguf_writer.add_file_type(self.ftype)
  940. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  941. self.gguf_writer.add_context_length(ctx_length)
  942. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  943. self.gguf_writer.add_block_count(block_count)
  944. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  945. self.gguf_writer.add_head_count(head_count)
  946. self.gguf_writer.add_head_count_kv(head_count_kv)
  947. # note: config provides rms norm but it is actually layer norm
  948. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  949. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  950. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  951. class BaichuanModel(Model):
  952. model_arch = gguf.MODEL_ARCH.BAICHUAN
  953. def set_vocab(self):
  954. self._set_vocab_sentencepiece()
  955. def set_gguf_parameters(self):
  956. block_count = self.hparams["num_hidden_layers"]
  957. head_count = self.hparams["num_attention_heads"]
  958. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  959. ctx_length = 0
  960. if "max_sequence_length" in self.hparams:
  961. ctx_length = self.hparams["max_sequence_length"]
  962. elif "max_position_embeddings" in self.hparams:
  963. ctx_length = self.hparams["max_position_embeddings"]
  964. elif "model_max_length" in self.hparams:
  965. ctx_length = self.hparams["model_max_length"]
  966. else:
  967. raise ValueError("gguf: can not find ctx length parameter.")
  968. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  969. self.gguf_writer.add_context_length(ctx_length)
  970. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  971. self.gguf_writer.add_block_count(block_count)
  972. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  973. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  974. self.gguf_writer.add_head_count(head_count)
  975. self.gguf_writer.add_head_count_kv(head_count_kv)
  976. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  977. self.gguf_writer.add_file_type(self.ftype)
  978. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  979. if self.hparams["rope_scaling"].get("type") == "linear":
  980. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  981. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  983. head_count = self.hparams["num_attention_heads"]
  984. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  985. tensors: list[tuple[str, Tensor]] = []
  986. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  987. logger.info(f"Unpacking and permuting layer {bid}")
  988. tensors = [
  989. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  990. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  991. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  992. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  993. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  994. self._reverse_hf_part(data_torch, 2)),
  995. ]
  996. else:
  997. tensors = [(self.map_tensor_name(name), data_torch)]
  998. return tensors
  999. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1000. if n_kv_head is not None and n_head != n_kv_head:
  1001. n_head //= n_kv_head
  1002. return (
  1003. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1004. .swapaxes(1, 2)
  1005. .reshape(weights.shape)
  1006. )
  1007. def _reverse_hf_permute_part(
  1008. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1009. ) -> Tensor:
  1010. r = weights.shape[0] // 3
  1011. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1012. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1013. r = weights.shape[0] // 3
  1014. return weights[r * n_part:r * n_part + r, ...]
  1015. @Model.register("XverseForCausalLM")
  1016. class XverseModel(Model):
  1017. model_arch = gguf.MODEL_ARCH.XVERSE
  1018. def set_vocab(self):
  1019. assert (self.dir_model / "tokenizer.json").is_file()
  1020. dir_model = self.dir_model
  1021. hparams = self.hparams
  1022. tokens: list[bytes] = []
  1023. toktypes: list[int] = []
  1024. from transformers import AutoTokenizer
  1025. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1026. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1027. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1028. # because vocab_size is the count of items, and indexes start at 0.
  1029. max_vocab_index = max(tokenizer.get_vocab().values())
  1030. if max_vocab_index >= vocab_size:
  1031. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1032. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1033. added_vocab = tokenizer.get_added_vocab()
  1034. for token_id in range(vocab_size):
  1035. token_text = reverse_vocab[token_id].encode('utf-8')
  1036. # replace "\x00" to string with length > 0
  1037. if token_text == b"\x00":
  1038. toktype = gguf.TokenType.BYTE # special
  1039. token_text = f"<{token_text}>".encode('utf-8')
  1040. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1041. toktype = gguf.TokenType.BYTE # special
  1042. elif reverse_vocab[token_id] in added_vocab:
  1043. if tokenizer.added_tokens_decoder[token_id].special:
  1044. toktype = gguf.TokenType.CONTROL
  1045. else:
  1046. toktype = gguf.TokenType.USER_DEFINED
  1047. else:
  1048. toktype = gguf.TokenType.NORMAL
  1049. tokens.append(token_text)
  1050. toktypes.append(toktype)
  1051. self.gguf_writer.add_tokenizer_model("llama")
  1052. self.gguf_writer.add_tokenizer_pre("default")
  1053. self.gguf_writer.add_token_list(tokens)
  1054. self.gguf_writer.add_token_types(toktypes)
  1055. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1056. special_vocab.add_to_gguf(self.gguf_writer)
  1057. def set_gguf_parameters(self):
  1058. block_count = self.hparams["num_hidden_layers"]
  1059. head_count = self.hparams["num_attention_heads"]
  1060. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1061. ctx_length = 0
  1062. if "max_sequence_length" in self.hparams:
  1063. ctx_length = self.hparams["max_sequence_length"]
  1064. elif "max_position_embeddings" in self.hparams:
  1065. ctx_length = self.hparams["max_position_embeddings"]
  1066. elif "model_max_length" in self.hparams:
  1067. ctx_length = self.hparams["model_max_length"]
  1068. else:
  1069. raise ValueError("gguf: can not find ctx length parameter.")
  1070. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1071. self.gguf_writer.add_context_length(ctx_length)
  1072. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1073. self.gguf_writer.add_block_count(block_count)
  1074. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1075. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1076. self.gguf_writer.add_head_count(head_count)
  1077. self.gguf_writer.add_head_count_kv(head_count_kv)
  1078. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1079. self.gguf_writer.add_file_type(self.ftype)
  1080. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1081. if self.hparams["rope_scaling"].get("type") == "linear":
  1082. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1083. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1085. del bid # unused
  1086. head_count = self.hparams["num_attention_heads"]
  1087. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1088. # HF models permute some of the tensors, so we need to undo that
  1089. if name.endswith("q_proj.weight"):
  1090. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1091. if name.endswith("k_proj.weight"):
  1092. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1093. return [(self.map_tensor_name(name), data_torch)]
  1094. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1095. if n_kv_head is not None and n_head != n_kv_head:
  1096. n_head //= n_kv_head
  1097. return (
  1098. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1099. .swapaxes(1, 2)
  1100. .reshape(weights.shape)
  1101. )
  1102. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1103. class FalconModel(Model):
  1104. model_arch = gguf.MODEL_ARCH.FALCON
  1105. def set_gguf_parameters(self):
  1106. block_count = self.hparams.get("num_hidden_layers")
  1107. if block_count is None:
  1108. block_count = self.hparams["n_layer"] # old name
  1109. n_head = self.hparams.get("num_attention_heads")
  1110. if n_head is None:
  1111. n_head = self.hparams["n_head"] # old name
  1112. n_head_kv = self.hparams.get("num_kv_heads")
  1113. if n_head_kv is None:
  1114. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1115. self.gguf_writer.add_context_length(2048) # not in config.json
  1116. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1117. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1118. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1119. self.gguf_writer.add_block_count(block_count)
  1120. self.gguf_writer.add_head_count(n_head)
  1121. self.gguf_writer.add_head_count_kv(n_head_kv)
  1122. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1123. self.gguf_writer.add_file_type(self.ftype)
  1124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1125. del bid # unused
  1126. # QKV tensor transform
  1127. # The original query_key_value tensor contains n_head_kv "kv groups",
  1128. # each consisting of n_head/n_head_kv query weights followed by one key
  1129. # and one value weight (shared by all query heads in the kv group).
  1130. # This layout makes it a big pain to work with in GGML.
  1131. # So we rearrange them here,, so that we have n_head query weights
  1132. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1133. # in contiguous fashion.
  1134. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1135. if "query_key_value" in name:
  1136. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1137. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1138. head_dim = self.hparams["hidden_size"] // n_head
  1139. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1140. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1141. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1142. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1143. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1144. return [(self.map_tensor_name(name), data_torch)]
  1145. @Model.register("GPTBigCodeForCausalLM")
  1146. class StarCoderModel(Model):
  1147. model_arch = gguf.MODEL_ARCH.STARCODER
  1148. def set_gguf_parameters(self):
  1149. block_count = self.hparams["n_layer"]
  1150. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1151. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1152. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1153. self.gguf_writer.add_block_count(block_count)
  1154. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1155. self.gguf_writer.add_head_count_kv(1)
  1156. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1157. self.gguf_writer.add_file_type(self.ftype)
  1158. @Model.register("GPTRefactForCausalLM")
  1159. class RefactModel(Model):
  1160. model_arch = gguf.MODEL_ARCH.REFACT
  1161. def set_vocab(self):
  1162. super().set_vocab()
  1163. # TODO: how to determine special FIM tokens automatically?
  1164. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1165. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1166. special_vocab._set_special_token("prefix", 1)
  1167. special_vocab._set_special_token("suffix", 3)
  1168. special_vocab._set_special_token("middle", 2)
  1169. special_vocab.chat_template = None # do not add it twice
  1170. special_vocab.add_to_gguf(self.gguf_writer)
  1171. def set_gguf_parameters(self):
  1172. hidden_dim = self.hparams["n_embd"]
  1173. inner_dim = 4 * hidden_dim
  1174. hidden_dim = int(2 * inner_dim / 3)
  1175. multiple_of = 256
  1176. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1177. block_count = self.hparams["n_layer"]
  1178. # refact uses Alibi. So this is from config.json which might be used by training.
  1179. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1180. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1181. self.gguf_writer.add_feed_forward_length(ff_dim)
  1182. self.gguf_writer.add_block_count(block_count)
  1183. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1184. self.gguf_writer.add_head_count_kv(1)
  1185. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1186. self.gguf_writer.add_file_type(self.ftype)
  1187. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1188. hidden_dim = self.hparams["n_embd"]
  1189. inner_dim = 4 * hidden_dim
  1190. hidden_dim = int(2 * inner_dim / 3)
  1191. multiple_of = 256
  1192. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1193. n_head = self.hparams["n_head"]
  1194. n_head_kv = 1
  1195. head_dim = self.hparams["n_embd"] // n_head
  1196. tensors: list[tuple[str, Tensor]] = []
  1197. if bid is not None:
  1198. if name == f"transformer.h.{bid}.attn.kv.weight":
  1199. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1200. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1201. elif name == f"transformer.h.{bid}.attn.q.weight":
  1202. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1203. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1204. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1205. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1206. if len(tensors) == 0:
  1207. tensors.append((self.map_tensor_name(name), data_torch))
  1208. return tensors
  1209. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1210. class StableLMModel(Model):
  1211. model_arch = gguf.MODEL_ARCH.STABLELM
  1212. def set_vocab(self):
  1213. if (self.dir_model / "tokenizer.json").is_file():
  1214. self._set_vocab_gpt2()
  1215. else:
  1216. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1217. self._set_vocab_qwen()
  1218. def set_gguf_parameters(self):
  1219. hparams = self.hparams
  1220. block_count = hparams["num_hidden_layers"]
  1221. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1222. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1223. self.gguf_writer.add_block_count(block_count)
  1224. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1225. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1226. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1227. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1228. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1229. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1230. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1231. self.gguf_writer.add_file_type(self.ftype)
  1232. _q_norms: list[dict[str, Tensor]] | None = None
  1233. _k_norms: list[dict[str, Tensor]] | None = None
  1234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1235. n_head = self.hparams["num_attention_heads"]
  1236. n_kv_head = self.hparams["num_key_value_heads"]
  1237. if name.find("q_layernorm.norms") != -1:
  1238. assert bid is not None
  1239. if self._q_norms is None:
  1240. self._q_norms = [{} for _ in range(self.block_count)]
  1241. self._q_norms[bid][name] = data_torch
  1242. if len(self._q_norms[bid]) >= n_head:
  1243. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1244. else:
  1245. return []
  1246. if name.find("k_layernorm.norms") != -1:
  1247. assert bid is not None
  1248. if self._k_norms is None:
  1249. self._k_norms = [{} for _ in range(self.block_count)]
  1250. self._k_norms[bid][name] = data_torch
  1251. if len(self._k_norms[bid]) >= n_kv_head:
  1252. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1253. else:
  1254. return []
  1255. return [(self.map_tensor_name(name), data_torch)]
  1256. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1257. datas: list[Tensor] = []
  1258. # extract the norms in order
  1259. for xid in range(n_head):
  1260. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1261. datas.append(norms[ename])
  1262. del norms[ename]
  1263. data_torch = torch.stack(datas, dim=0)
  1264. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1265. new_name = self.map_tensor_name(merged_name)
  1266. return [(new_name, data_torch)]
  1267. def prepare_tensors(self):
  1268. super().prepare_tensors()
  1269. if self._q_norms is not None or self._k_norms is not None:
  1270. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1271. norms = (
  1272. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1273. ) + (
  1274. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1275. )
  1276. if len(norms) > 0:
  1277. raise ValueError(f"Unprocessed norms: {norms}")
  1278. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1279. class LlamaModel(Model):
  1280. model_arch = gguf.MODEL_ARCH.LLAMA
  1281. def set_vocab(self):
  1282. try:
  1283. self._set_vocab_sentencepiece()
  1284. except FileNotFoundError:
  1285. try:
  1286. self._set_vocab_llama_hf()
  1287. except (FileNotFoundError, TypeError):
  1288. # Llama 3
  1289. self._set_vocab_gpt2()
  1290. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1291. if self.hparams.get("vocab_size", 32000) == 32016:
  1292. special_vocab = gguf.SpecialVocab(
  1293. self.dir_model, load_merges=False,
  1294. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1295. )
  1296. special_vocab._set_special_token("prefix", 32007)
  1297. special_vocab._set_special_token("suffix", 32008)
  1298. special_vocab._set_special_token("middle", 32009)
  1299. special_vocab._set_special_token("eot", 32010)
  1300. special_vocab.add_to_gguf(self.gguf_writer)
  1301. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1302. if tokenizer_config_file.is_file():
  1303. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1304. tokenizer_config_json = json.load(f)
  1305. if "add_prefix_space" in tokenizer_config_json:
  1306. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1307. # Apply to granite small models only
  1308. if self.hparams.get("vocab_size", 32000) == 49152:
  1309. self.gguf_writer.add_add_bos_token(False)
  1310. def set_gguf_parameters(self):
  1311. super().set_gguf_parameters()
  1312. hparams = self.hparams
  1313. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1314. if "head_dim" in hparams:
  1315. rope_dim = hparams["head_dim"]
  1316. else:
  1317. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1318. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1319. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1320. if self.hparams["rope_scaling"].get("type") == "linear":
  1321. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1322. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1323. @staticmethod
  1324. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1325. if n_head_kv is not None and n_head != n_head_kv:
  1326. n_head = n_head_kv
  1327. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1328. .swapaxes(1, 2)
  1329. .reshape(weights.shape))
  1330. _experts: list[dict[str, Tensor]] | None = None
  1331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1332. n_head = self.hparams["num_attention_heads"]
  1333. n_kv_head = self.hparams.get("num_key_value_heads")
  1334. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1335. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1336. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1337. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1338. # process the experts separately
  1339. if name.find("block_sparse_moe.experts") != -1:
  1340. n_experts = self.hparams["num_local_experts"]
  1341. assert bid is not None
  1342. if self._experts is None:
  1343. self._experts = [{} for _ in range(self.block_count)]
  1344. self._experts[bid][name] = data_torch
  1345. if len(self._experts[bid]) >= n_experts * 3:
  1346. tensors: list[tuple[str, Tensor]] = []
  1347. # merge the experts into a single 3d tensor
  1348. for wid in ["w1", "w2", "w3"]:
  1349. datas: list[Tensor] = []
  1350. for xid in range(n_experts):
  1351. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1352. datas.append(self._experts[bid][ename])
  1353. del self._experts[bid][ename]
  1354. data_torch = torch.stack(datas, dim=0)
  1355. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1356. new_name = self.map_tensor_name(merged_name)
  1357. tensors.append((new_name, data_torch))
  1358. return tensors
  1359. else:
  1360. return []
  1361. return [(self.map_tensor_name(name), data_torch)]
  1362. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1363. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1364. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1365. base = self.hparams.get("rope_theta", 10000.0)
  1366. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1367. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1368. factor = rope_scaling.get("factor", 8.0)
  1369. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1370. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1371. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1372. low_freq_wavelen = old_context_len / low_freq_factor
  1373. high_freq_wavelen = old_context_len / high_freq_factor
  1374. assert low_freq_wavelen != high_freq_wavelen
  1375. rope_factors = []
  1376. for freq in freqs:
  1377. wavelen = 2 * math.pi / freq
  1378. if wavelen < high_freq_wavelen:
  1379. rope_factors.append(1)
  1380. elif wavelen > low_freq_wavelen:
  1381. rope_factors.append(factor)
  1382. else:
  1383. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1384. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1385. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1386. def prepare_tensors(self):
  1387. super().prepare_tensors()
  1388. if self._experts is not None:
  1389. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1390. experts = [k for d in self._experts for k in d.keys()]
  1391. if len(experts) > 0:
  1392. raise ValueError(f"Unprocessed experts: {experts}")
  1393. @Model.register("DeciLMForCausalLM")
  1394. class DeciModel(Model):
  1395. model_arch = gguf.MODEL_ARCH.DECI
  1396. @staticmethod
  1397. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1398. # DeciLM-specific code
  1399. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1400. return DeciModel._find_multiple(intermediate_size, 256)
  1401. @staticmethod
  1402. def _find_multiple(n: int, k: int) -> int:
  1403. # DeciLM-specific code
  1404. if n % k == 0:
  1405. return n
  1406. return n + k - (n % k)
  1407. def __init__(self, *args, **kwargs):
  1408. super().__init__(*args, **kwargs)
  1409. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1410. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1411. assert self.block_count == len(_block_configs)
  1412. self._num_kv_heads = list()
  1413. self._num_heads = list()
  1414. _ffn_multipliers = list()
  1415. # ***linear attention layer***
  1416. # if n_heads_in_group is None and replace_with_linear is True
  1417. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1418. # ***attention-free layer***
  1419. # if n_heads_in_group is None and replace_with_linear is False
  1420. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1421. # ***normal attention-layer***
  1422. # if n_heads_in_group is not None, then
  1423. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1424. # _num_heads[il] is num_attention_head
  1425. for il in range(len(_block_configs)):
  1426. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1427. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1428. self._num_kv_heads.append(0)
  1429. self._num_heads.append(self.hparams["num_attention_heads"])
  1430. else:
  1431. self._num_kv_heads.append(0)
  1432. self._num_heads.append(0)
  1433. else:
  1434. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1435. self._num_heads.append(self.hparams["num_attention_heads"])
  1436. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1437. assert self.block_count == len(self._num_kv_heads)
  1438. assert self.block_count == len(self._num_heads)
  1439. assert self.block_count == len(_ffn_multipliers)
  1440. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1441. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1442. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1443. self._ffn_dims: list[int] = [
  1444. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1445. for multiplier in _ffn_multipliers
  1446. ]
  1447. def set_vocab(self):
  1448. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1449. # eos_token from '|eot_id|' to '|end_of_text|'
  1450. if self.hparams.get("vocab_size", 128256) == 128256:
  1451. tokens, toktypes, tokpre = self.get_vocab_base()
  1452. self.gguf_writer.add_tokenizer_model("gpt2")
  1453. self.gguf_writer.add_tokenizer_pre(tokpre)
  1454. self.gguf_writer.add_token_list(tokens)
  1455. self.gguf_writer.add_token_types(toktypes)
  1456. special_vocab = gguf.SpecialVocab(
  1457. self.dir_model, load_merges=True,
  1458. special_token_types = ['bos', 'eos', 'eom', 'eot']
  1459. )
  1460. special_vocab._set_special_token("bos", 128000)
  1461. special_vocab._set_special_token("eos", 128001)
  1462. special_vocab._set_special_token("eom", 128008)
  1463. special_vocab._set_special_token("eot", 128009)
  1464. special_vocab.add_to_gguf(self.gguf_writer)
  1465. else:
  1466. # DeciLM-7B
  1467. self._set_vocab_llama_hf()
  1468. # self._set_vocab_gpt2()
  1469. def set_gguf_parameters(self):
  1470. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1471. assert self.block_count == len(self._num_kv_heads)
  1472. assert self.block_count == len(self._num_heads)
  1473. assert self.block_count == len(self._ffn_dims)
  1474. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1475. self.gguf_writer.add_head_count(self._num_heads)
  1476. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1477. self.gguf_writer.add_block_count(self.block_count)
  1478. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1479. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1480. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1481. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1482. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1483. self.gguf_writer.add_file_type(self.ftype)
  1484. else: # DeciLM-7B
  1485. super().set_gguf_parameters()
  1486. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1487. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1488. assert self.block_count == len(self._num_kv_heads)
  1489. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1490. hparams = self.hparams
  1491. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1492. if "head_dim" in hparams:
  1493. rope_dim = hparams["head_dim"]
  1494. else:
  1495. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1496. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1497. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1498. if self.hparams["rope_scaling"].get("type") == "linear":
  1499. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1500. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1501. @staticmethod
  1502. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1503. if n_head_kv is not None and n_head != n_head_kv:
  1504. n_head = n_head_kv
  1505. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1506. .swapaxes(1, 2)
  1507. .reshape(weights.shape))
  1508. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1509. n_head = self.hparams["num_attention_heads"]
  1510. if bid is not None:
  1511. if "num_key_value_heads_per_layer" in self.hparams:
  1512. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1513. elif "block_configs" in self.hparams:
  1514. n_kv_head = self._num_kv_heads[bid]
  1515. n_head = self._num_heads[bid]
  1516. else:
  1517. n_kv_head = self.hparams.get("num_key_value_heads")
  1518. else:
  1519. n_kv_head = self.hparams.get("num_key_value_heads")
  1520. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1521. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1522. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1523. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1524. return [(self.map_tensor_name(name), data_torch)]
  1525. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1526. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1527. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1528. base = self.hparams.get("rope_theta", 10000.0)
  1529. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1530. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1531. factor = rope_scaling.get("factor", 8.0)
  1532. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1533. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1534. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1535. low_freq_wavelen = old_context_len / low_freq_factor
  1536. high_freq_wavelen = old_context_len / high_freq_factor
  1537. assert low_freq_wavelen != high_freq_wavelen
  1538. rope_factors = []
  1539. for freq in freqs:
  1540. wavelen = 2 * math.pi / freq
  1541. if wavelen < high_freq_wavelen:
  1542. rope_factors.append(1)
  1543. elif wavelen > low_freq_wavelen:
  1544. rope_factors.append(factor)
  1545. else:
  1546. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1547. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1548. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1549. def prepare_tensors(self):
  1550. super().prepare_tensors()
  1551. @Model.register("BitnetForCausalLM")
  1552. class BitnetModel(Model):
  1553. model_arch = gguf.MODEL_ARCH.BITNET
  1554. def set_vocab(self):
  1555. self._set_vocab_sentencepiece()
  1556. def set_gguf_parameters(self):
  1557. super().set_gguf_parameters()
  1558. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1559. self.gguf_writer.add_rope_scaling_factor(1.0)
  1560. def weight_quant(self, weight: Tensor) -> Tensor:
  1561. dtype = weight.dtype
  1562. weight = weight.float()
  1563. scale = weight.abs().mean().clamp(min=1e-5)
  1564. iscale = 1 / scale
  1565. # TODO: multiply by the scale directly instead of inverting it twice
  1566. # (this is also unnecessarily doubly inverted upstream)
  1567. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1568. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1569. return result.type(dtype)
  1570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1571. new_name = self.map_tensor_name(name)
  1572. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1573. gguf.MODEL_TENSOR.ATTN_Q,
  1574. gguf.MODEL_TENSOR.ATTN_K,
  1575. gguf.MODEL_TENSOR.ATTN_V,
  1576. gguf.MODEL_TENSOR.ATTN_OUT,
  1577. gguf.MODEL_TENSOR.FFN_UP,
  1578. gguf.MODEL_TENSOR.FFN_DOWN,
  1579. gguf.MODEL_TENSOR.FFN_GATE,
  1580. ]):
  1581. # transform weight into 1/0/-1 (in fp32)
  1582. data_torch = self.weight_quant(data_torch)
  1583. yield (new_name, data_torch)
  1584. @Model.register("GrokForCausalLM")
  1585. class GrokModel(Model):
  1586. model_arch = gguf.MODEL_ARCH.GROK
  1587. def set_vocab(self):
  1588. self._set_vocab_sentencepiece()
  1589. def __init__(self, *args, **kwargs):
  1590. super().__init__(*args, **kwargs)
  1591. def set_gguf_parameters(self):
  1592. super().set_gguf_parameters()
  1593. _experts: list[dict[str, Tensor]] | None = None
  1594. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1595. # process the experts separately
  1596. if name.find(".moe.") != -1:
  1597. n_experts = self.hparams["num_local_experts"]
  1598. assert bid is not None
  1599. if self._experts is None:
  1600. self._experts = [{} for _ in range(self.block_count)]
  1601. self._experts[bid][name] = data_torch
  1602. if len(self._experts[bid]) >= n_experts * 3:
  1603. tensors: list[tuple[str, Tensor]] = []
  1604. # merge the experts into a single 3d tensor
  1605. for wid in ["linear", "linear_1", "linear_v"]:
  1606. datas: list[Tensor] = []
  1607. for xid in range(n_experts):
  1608. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1609. datas.append(self._experts[bid][ename])
  1610. del self._experts[bid][ename]
  1611. data_torch = torch.stack(datas, dim=0)
  1612. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1613. new_name = self.map_tensor_name(merged_name)
  1614. tensors.append((new_name, data_torch))
  1615. return tensors
  1616. else:
  1617. return []
  1618. return [(self.map_tensor_name(name), data_torch)]
  1619. @Model.register("DbrxForCausalLM")
  1620. class DbrxModel(Model):
  1621. model_arch = gguf.MODEL_ARCH.DBRX
  1622. def set_gguf_parameters(self):
  1623. ffn_config = self.hparams["ffn_config"]
  1624. attn_config = self.hparams["attn_config"]
  1625. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1626. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1627. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1628. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1629. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1630. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1631. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1632. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1633. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1634. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1635. self.gguf_writer.add_layer_norm_eps(1e-5)
  1636. self.gguf_writer.add_file_type(self.ftype)
  1637. logger.info(f"gguf: file type = {self.ftype}")
  1638. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1639. del bid # unused
  1640. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1641. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1642. n_embd = self.hparams["d_model"]
  1643. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1644. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1645. # But llama.cpp moe graph works differently
  1646. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1647. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1648. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1649. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1650. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1651. experts = False
  1652. for exp_tensor_name in exp_tensor_names.keys():
  1653. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1654. experts = True
  1655. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1656. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1657. data_torch = data_torch.permute(*permute_tensor)
  1658. break
  1659. # map tensor names
  1660. # In MoE models the ffn tensors are typically most of the model weights,
  1661. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1662. # Every other model has the weight names ending in .weight,
  1663. # let's assume that is the convention which is not the case for dbrx:
  1664. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1665. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1666. return [(new_name, data_torch)]
  1667. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1668. del name, new_name, bid # unused
  1669. return n_dims > 1
  1670. @Model.register("MiniCPMForCausalLM")
  1671. class MiniCPMModel(Model):
  1672. model_arch = gguf.MODEL_ARCH.MINICPM
  1673. def set_gguf_parameters(self):
  1674. super().set_gguf_parameters()
  1675. embedding_scale = float(self.hparams["scale_emb"])
  1676. self.gguf_writer.add_embedding_scale(embedding_scale)
  1677. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1678. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1679. self.gguf_writer.add_residual_scale(residual_scale)
  1680. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1681. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1682. self.gguf_writer.add_logit_scale(logit_scale)
  1683. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1684. if self.hparams.get("rope_scaling") is not None:
  1685. if self.hparams["rope_scaling"].get("type") == "longrope":
  1686. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1687. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1688. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1689. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1690. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1691. if rope_scaling is not None:
  1692. long_factors = rope_scaling.get('long_factor', None)
  1693. short_factors = rope_scaling.get('short_factor', None)
  1694. if long_factors is None or short_factors is None:
  1695. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1696. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1697. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1698. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1699. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1700. def set_vocab(self):
  1701. self._set_vocab_sentencepiece()
  1702. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1703. del bid # unused
  1704. n_head = self.hparams["num_attention_heads"]
  1705. n_kv_head = self.hparams.get("num_key_value_heads")
  1706. # HF models permute some of the tensors, so we need to undo that
  1707. if name.endswith(("q_proj.weight")):
  1708. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1709. if name.endswith(("k_proj.weight")):
  1710. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1711. return [(self.map_tensor_name(name), data_torch)]
  1712. @Model.register("MiniCPM3ForCausalLM")
  1713. class MiniCPM3Model(Model):
  1714. model_arch = gguf.MODEL_ARCH.MINICPM3
  1715. def set_gguf_parameters(self):
  1716. hparams = self.hparams
  1717. self.gguf_writer.add_file_type(self.ftype)
  1718. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1719. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1720. self.gguf_writer.add_block_count(self.block_count)
  1721. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1722. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1723. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1724. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1725. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1726. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1727. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1728. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1729. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1730. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1731. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1732. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1733. if rope_scaling is not None:
  1734. rope_dims = self.hparams["qk_rope_head_dim"]
  1735. long_factors = rope_scaling.get('long_factor', None)
  1736. short_factors = rope_scaling.get('short_factor', None)
  1737. if long_factors is None or short_factors is None:
  1738. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1739. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1740. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1741. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1742. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1743. def set_vocab(self):
  1744. self._set_vocab_sentencepiece()
  1745. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1746. if n_kv_head is not None and n_head != n_kv_head:
  1747. n_head //= n_kv_head
  1748. return (
  1749. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1750. .swapaxes(1, 2)
  1751. .reshape(weights.shape)
  1752. )
  1753. @Model.register("QWenLMHeadModel")
  1754. class QwenModel(Model):
  1755. model_arch = gguf.MODEL_ARCH.QWEN
  1756. @staticmethod
  1757. def token_bytes_to_string(b):
  1758. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1759. byte_encoder = bytes_to_unicode()
  1760. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1761. @staticmethod
  1762. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1763. parts = [bytes([b]) for b in token]
  1764. while True:
  1765. min_idx = None
  1766. min_rank = None
  1767. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1768. rank = mergeable_ranks.get(pair[0] + pair[1])
  1769. if rank is not None and (min_rank is None or rank < min_rank):
  1770. min_idx = i
  1771. min_rank = rank
  1772. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1773. break
  1774. assert min_idx is not None
  1775. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1776. return parts
  1777. def set_vocab(self):
  1778. self._set_vocab_qwen()
  1779. def set_gguf_parameters(self):
  1780. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1781. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1782. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1783. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1784. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1785. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1786. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1787. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1788. self.gguf_writer.add_file_type(self.ftype)
  1789. @Model.register("Qwen2ForCausalLM")
  1790. class Qwen2Model(Model):
  1791. model_arch = gguf.MODEL_ARCH.QWEN2
  1792. def set_vocab(self):
  1793. try:
  1794. self._set_vocab_sentencepiece()
  1795. except FileNotFoundError:
  1796. self._set_vocab_gpt2()
  1797. def set_gguf_parameters(self):
  1798. super().set_gguf_parameters()
  1799. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1800. if self.hparams["rope_scaling"].get("type") == "yarn":
  1801. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1802. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1803. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1804. @Model.register("Qwen2VLForConditionalGeneration")
  1805. class Qwen2VLModel(Model):
  1806. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1807. def set_gguf_parameters(self):
  1808. super().set_gguf_parameters()
  1809. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1810. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1811. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1812. def set_vocab(self):
  1813. try:
  1814. self._set_vocab_sentencepiece()
  1815. except FileNotFoundError:
  1816. self._set_vocab_gpt2()
  1817. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1818. for name, data in super().get_tensors():
  1819. if name.startswith("visual."):
  1820. continue
  1821. yield name, data
  1822. @Model.register("WavTokenizerDec")
  1823. class WavTokenizerDecModel(Model):
  1824. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1825. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1826. del bid # unused
  1827. if \
  1828. name.endswith("codebook.cluster_size") or \
  1829. name.endswith("codebook.embed_avg") or \
  1830. name.endswith("codebook.inited"):
  1831. logger.debug(f"Skipping {name!r}")
  1832. return []
  1833. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1834. return [(self.map_tensor_name(name), data_torch)]
  1835. def set_vocab(self):
  1836. self._set_vocab_none()
  1837. def set_gguf_parameters(self):
  1838. super().set_gguf_parameters()
  1839. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1840. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1841. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1842. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1843. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1844. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1845. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1846. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1847. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1848. self.gguf_writer.add_causal_attention(False)
  1849. @Model.register("Qwen2MoeForCausalLM")
  1850. class Qwen2MoeModel(Model):
  1851. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1852. def set_gguf_parameters(self):
  1853. super().set_gguf_parameters()
  1854. if (n_experts := self.hparams.get("num_experts")) is not None:
  1855. self.gguf_writer.add_expert_count(n_experts)
  1856. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1857. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1858. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1859. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1860. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1861. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1862. _experts: list[dict[str, Tensor]] | None = None
  1863. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1864. # process the experts separately
  1865. if name.find("experts") != -1:
  1866. n_experts = self.hparams["num_experts"]
  1867. assert bid is not None
  1868. if self._experts is None:
  1869. self._experts = [{} for _ in range(self.block_count)]
  1870. self._experts[bid][name] = data_torch
  1871. if len(self._experts[bid]) >= n_experts * 3:
  1872. tensors: list[tuple[str, Tensor]] = []
  1873. # merge the experts into a single 3d tensor
  1874. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1875. datas: list[Tensor] = []
  1876. for xid in range(n_experts):
  1877. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1878. datas.append(self._experts[bid][ename])
  1879. del self._experts[bid][ename]
  1880. data_torch = torch.stack(datas, dim=0)
  1881. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1882. new_name = self.map_tensor_name(merged_name)
  1883. tensors.append((new_name, data_torch))
  1884. return tensors
  1885. else:
  1886. return []
  1887. return [(self.map_tensor_name(name), data_torch)]
  1888. def prepare_tensors(self):
  1889. super().prepare_tensors()
  1890. if self._experts is not None:
  1891. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1892. experts = [k for d in self._experts for k in d.keys()]
  1893. if len(experts) > 0:
  1894. raise ValueError(f"Unprocessed experts: {experts}")
  1895. @Model.register("GPT2LMHeadModel")
  1896. class GPT2Model(Model):
  1897. model_arch = gguf.MODEL_ARCH.GPT2
  1898. def set_gguf_parameters(self):
  1899. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1900. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1901. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1902. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1903. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1904. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1905. self.gguf_writer.add_file_type(self.ftype)
  1906. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1907. del bid # unused
  1908. tensors: list[tuple[str, Tensor]] = []
  1909. # we don't need these
  1910. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1911. return tensors
  1912. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1913. data_torch = data_torch.transpose(1, 0)
  1914. new_name = self.map_tensor_name(name)
  1915. tensors.append((new_name, data_torch))
  1916. # note: GPT2 output is tied to (same as) wte in original model
  1917. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1918. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1919. return tensors
  1920. @Model.register("PhiForCausalLM")
  1921. class Phi2Model(Model):
  1922. model_arch = gguf.MODEL_ARCH.PHI2
  1923. def set_gguf_parameters(self):
  1924. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1925. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1926. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1927. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1928. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1929. self.gguf_writer.add_embedding_length(n_embd)
  1930. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1931. self.gguf_writer.add_block_count(block_count)
  1932. self.gguf_writer.add_head_count(n_head)
  1933. self.gguf_writer.add_head_count_kv(n_head)
  1934. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1935. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1936. self.gguf_writer.add_file_type(self.ftype)
  1937. self.gguf_writer.add_add_bos_token(False)
  1938. @Model.register("Phi3ForCausalLM")
  1939. class Phi3MiniModel(Model):
  1940. model_arch = gguf.MODEL_ARCH.PHI3
  1941. def set_vocab(self):
  1942. # Phi-4 model uses GPT2Tokenizer
  1943. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1944. if tokenizer_config_file.is_file():
  1945. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1946. tokenizer_config_json = json.load(f)
  1947. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1948. if tokenizer_class == 'GPT2Tokenizer':
  1949. return self._set_vocab_gpt2()
  1950. from sentencepiece import SentencePieceProcessor
  1951. tokenizer_path = self.dir_model / 'tokenizer.model'
  1952. if not tokenizer_path.is_file():
  1953. raise ValueError(f'Error: Missing {tokenizer_path}')
  1954. tokenizer = SentencePieceProcessor()
  1955. tokenizer.LoadFromFile(str(tokenizer_path))
  1956. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1957. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1958. scores: list[float] = [-10000.0] * vocab_size
  1959. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1960. for token_id in range(tokenizer.vocab_size()):
  1961. piece = tokenizer.IdToPiece(token_id)
  1962. text = piece.encode("utf-8")
  1963. score = tokenizer.GetScore(token_id)
  1964. toktype = SentencePieceTokenTypes.NORMAL
  1965. if tokenizer.IsUnknown(token_id):
  1966. toktype = SentencePieceTokenTypes.UNKNOWN
  1967. elif tokenizer.IsControl(token_id):
  1968. toktype = SentencePieceTokenTypes.CONTROL
  1969. elif tokenizer.IsUnused(token_id):
  1970. toktype = SentencePieceTokenTypes.UNUSED
  1971. elif tokenizer.IsByte(token_id):
  1972. toktype = SentencePieceTokenTypes.BYTE
  1973. tokens[token_id] = text
  1974. scores[token_id] = score
  1975. toktypes[token_id] = toktype
  1976. added_tokens_file = self.dir_model / 'added_tokens.json'
  1977. if added_tokens_file.is_file():
  1978. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1979. added_tokens_json = json.load(f)
  1980. for key in added_tokens_json:
  1981. token_id = added_tokens_json[key]
  1982. if token_id >= vocab_size:
  1983. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1984. continue
  1985. tokens[token_id] = key.encode("utf-8")
  1986. scores[token_id] = -1000.0
  1987. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1988. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1989. if tokenizer_config_file.is_file():
  1990. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1991. tokenizer_config_json = json.load(f)
  1992. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1993. for token_id, foken_data in added_tokens_decoder.items():
  1994. token_id = int(token_id)
  1995. token = foken_data["content"].encode("utf-8")
  1996. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1997. if tokens[token_id] != token:
  1998. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1999. tokens[token_id] = token
  2000. scores[token_id] = -1000.0
  2001. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2002. if foken_data.get("special"):
  2003. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2004. tokenizer_file = self.dir_model / 'tokenizer.json'
  2005. if tokenizer_file.is_file():
  2006. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2007. tokenizer_json = json.load(f)
  2008. added_tokens = tokenizer_json.get("added_tokens", [])
  2009. for foken_data in added_tokens:
  2010. token_id = int(foken_data["id"])
  2011. token = foken_data["content"].encode("utf-8")
  2012. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2013. if tokens[token_id] != token:
  2014. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2015. tokens[token_id] = token
  2016. scores[token_id] = -1000.0
  2017. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2018. if foken_data.get("special"):
  2019. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2020. self.gguf_writer.add_tokenizer_model("llama")
  2021. self.gguf_writer.add_tokenizer_pre("default")
  2022. self.gguf_writer.add_token_list(tokens)
  2023. self.gguf_writer.add_token_scores(scores)
  2024. self.gguf_writer.add_token_types(toktypes)
  2025. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2026. special_vocab.add_to_gguf(self.gguf_writer)
  2027. def set_gguf_parameters(self):
  2028. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2029. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2030. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2031. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2032. rms_eps = self.find_hparam(["rms_norm_eps"])
  2033. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2034. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2035. rope_dims = n_embd // n_head
  2036. self.gguf_writer.add_context_length(max_pos_embds)
  2037. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2038. self.gguf_writer.add_embedding_length(n_embd)
  2039. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2040. self.gguf_writer.add_block_count(block_count)
  2041. self.gguf_writer.add_head_count(n_head)
  2042. self.gguf_writer.add_head_count_kv(n_head_kv)
  2043. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2044. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2045. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2046. self.gguf_writer.add_file_type(self.ftype)
  2047. sliding_window = self.hparams.get("sliding_window")
  2048. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2049. if sliding_window is None:
  2050. sliding_window = 0
  2051. self.gguf_writer.add_sliding_window(sliding_window)
  2052. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2053. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2054. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2055. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2056. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2057. rope_dims = n_embd // n_head
  2058. # write rope scaling for long context (128k) model
  2059. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2060. if rope_scaling is None:
  2061. return
  2062. scale = max_pos_embds / orig_max_pos_embds
  2063. rope_scaling_type = rope_scaling.get('type', '').lower()
  2064. if len(rope_scaling_type) == 0:
  2065. raise KeyError('Missing the required key rope_scaling.type')
  2066. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2067. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2068. elif rope_scaling_type == 'yarn':
  2069. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2070. else:
  2071. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2072. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2073. long_factors = rope_scaling.get('long_factor', None)
  2074. short_factors = rope_scaling.get('short_factor', None)
  2075. if long_factors is None or short_factors is None:
  2076. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2077. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2078. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2079. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2080. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2081. @Model.register("PlamoForCausalLM")
  2082. class PlamoModel(Model):
  2083. model_arch = gguf.MODEL_ARCH.PLAMO
  2084. def set_vocab(self):
  2085. self._set_vocab_sentencepiece()
  2086. def set_gguf_parameters(self):
  2087. hparams = self.hparams
  2088. block_count = hparams["num_hidden_layers"]
  2089. self.gguf_writer.add_context_length(4096) # not in config.json
  2090. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2091. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2092. self.gguf_writer.add_block_count(block_count)
  2093. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2094. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2095. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2096. self.gguf_writer.add_file_type(self.ftype)
  2097. def shuffle_attn_q_weight(self, data_torch):
  2098. assert data_torch.size() == (5120, 5120)
  2099. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2100. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2101. data_torch = torch.reshape(data_torch, (5120, 5120))
  2102. return data_torch
  2103. def shuffle_attn_output_weight(self, data_torch):
  2104. assert data_torch.size() == (5120, 5120)
  2105. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2106. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2107. data_torch = torch.reshape(data_torch, (5120, 5120))
  2108. return data_torch
  2109. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2110. del bid # unused
  2111. new_name = self.map_tensor_name(name)
  2112. # shuffle for broadcasting of gqa in ggml_mul_mat
  2113. if new_name.endswith("attn_q.weight"):
  2114. data_torch = self.shuffle_attn_q_weight(data_torch)
  2115. elif new_name.endswith("attn_output.weight"):
  2116. data_torch = self.shuffle_attn_output_weight(data_torch)
  2117. return [(new_name, data_torch)]
  2118. @Model.register("CodeShellForCausalLM")
  2119. class CodeShellModel(Model):
  2120. model_arch = gguf.MODEL_ARCH.CODESHELL
  2121. def set_gguf_parameters(self):
  2122. block_count = self.hparams["n_layer"]
  2123. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2124. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2125. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2126. self.gguf_writer.add_block_count(block_count)
  2127. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2128. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2129. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2130. self.gguf_writer.add_file_type(self.ftype)
  2131. self.gguf_writer.add_rope_freq_base(10000.0)
  2132. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2133. self.gguf_writer.add_rope_scaling_factor(1.0)
  2134. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2135. del bid # unused
  2136. new_name = self.map_tensor_name(name)
  2137. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  2138. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2139. assert self.tensor_names is not None
  2140. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  2141. # copy tok_embd.weight to output.weight
  2142. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  2143. return tensors
  2144. @Model.register("InternLM2ForCausalLM")
  2145. class InternLM2Model(Model):
  2146. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2147. def set_vocab(self):
  2148. # (TODO): Is there a better way?
  2149. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2150. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2151. # recognized as an empty string in C++.
  2152. from sentencepiece import SentencePieceProcessor
  2153. from sentencepiece import sentencepiece_model_pb2 as model
  2154. tokenizer_path = self.dir_model / 'tokenizer.model'
  2155. tokens: list[bytes] = []
  2156. scores: list[float] = []
  2157. toktypes: list[int] = []
  2158. if not tokenizer_path.is_file():
  2159. logger.error(f'Error: Missing {tokenizer_path}')
  2160. sys.exit(1)
  2161. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2162. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2163. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2164. tokenizer = SentencePieceProcessor()
  2165. tokenizer.LoadFromFile(str(tokenizer_path))
  2166. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2167. for token_id in range(vocab_size):
  2168. piece = tokenizer.IdToPiece(token_id)
  2169. text = piece.encode("utf-8")
  2170. score = tokenizer.GetScore(token_id)
  2171. if text == b"\x00":
  2172. # (TODO): fixme
  2173. # Hack here and replace the \x00 characters.
  2174. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2175. text = "🐉".encode("utf-8")
  2176. toktype = SentencePieceTokenTypes.NORMAL
  2177. if tokenizer.IsUnknown(token_id):
  2178. toktype = SentencePieceTokenTypes.UNKNOWN
  2179. elif tokenizer.IsControl(token_id):
  2180. toktype = SentencePieceTokenTypes.CONTROL
  2181. elif tokenizer.IsUnused(token_id):
  2182. toktype = SentencePieceTokenTypes.UNUSED
  2183. elif tokenizer.IsByte(token_id):
  2184. toktype = SentencePieceTokenTypes.BYTE
  2185. # take care of ununsed raw token
  2186. if piece.startswith('[UNUSED'):
  2187. toktype = SentencePieceTokenTypes.UNUSED
  2188. tokens.append(text)
  2189. scores.append(score)
  2190. toktypes.append(toktype)
  2191. added_tokens_file = self.dir_model / 'added_tokens.json'
  2192. if added_tokens_file.is_file():
  2193. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2194. added_tokens_json = json.load(f)
  2195. for key in added_tokens_json:
  2196. tokens.append(key.encode("utf-8"))
  2197. scores.append(-1000.0)
  2198. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2199. chat_eos_token = '<|im_end|>'
  2200. chat_eos_token_id = None
  2201. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2202. if tokenizer_config_file.is_file():
  2203. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2204. tokenizer_config_json = json.load(f)
  2205. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2206. for token_id, foken_data in added_tokens_decoder.items():
  2207. token_id = int(token_id)
  2208. token = foken_data["content"]
  2209. if token == chat_eos_token:
  2210. chat_eos_token_id = token_id
  2211. token = token.encode("utf-8")
  2212. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2213. if tokens[token_id] != token:
  2214. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2215. tokens[token_id] = token
  2216. scores[token_id] = -1000.0
  2217. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2218. if foken_data.get("special"):
  2219. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2220. tokenizer_file = self.dir_model / 'tokenizer.json'
  2221. if tokenizer_file.is_file():
  2222. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2223. tokenizer_json = json.load(f)
  2224. added_tokens = tokenizer_json.get("added_tokens", [])
  2225. for foken_data in added_tokens:
  2226. token_id = int(foken_data["id"])
  2227. token = foken_data["content"]
  2228. if token == chat_eos_token:
  2229. chat_eos_token_id = token_id
  2230. token = token.encode("utf-8")
  2231. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2232. if tokens[token_id] != token:
  2233. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2234. tokens[token_id] = token
  2235. scores[token_id] = -1000.0
  2236. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2237. if foken_data.get("special"):
  2238. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2239. self.gguf_writer.add_tokenizer_model("llama")
  2240. self.gguf_writer.add_tokenizer_pre("default")
  2241. self.gguf_writer.add_token_list(tokens)
  2242. self.gguf_writer.add_token_scores(scores)
  2243. self.gguf_writer.add_token_types(toktypes)
  2244. self.gguf_writer.add_add_space_prefix(add_prefix)
  2245. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2246. old_eos = special_vocab.special_token_ids["eos"]
  2247. if chat_eos_token_id is not None:
  2248. # For the chat model, we replace the eos with '<|im_end|>'.
  2249. # TODO: this is a hack, should be fixed
  2250. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2251. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2252. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2253. " in chat mode so that the conversation can end normally.")
  2254. special_vocab.add_to_gguf(self.gguf_writer)
  2255. def set_gguf_parameters(self):
  2256. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2257. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2258. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2259. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2260. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2261. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2262. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2263. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2264. self.gguf_writer.add_file_type(self.ftype)
  2265. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2266. if self.hparams["rope_scaling"].get("type") == "linear":
  2267. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2268. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2270. num_heads = self.hparams["num_attention_heads"]
  2271. num_kv_heads = self.hparams["num_key_value_heads"]
  2272. n_embd = self.hparams["hidden_size"]
  2273. q_per_kv = num_heads // num_kv_heads
  2274. head_dim = n_embd // num_heads
  2275. num_groups = num_heads // q_per_kv
  2276. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2277. qkv = data_torch
  2278. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2279. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2280. # The model weights of q and k equire additional reshape.
  2281. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2282. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2283. v = v.reshape((-1, v.shape[-1]))
  2284. return [
  2285. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2286. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2287. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2288. ]
  2289. else:
  2290. return [(self.map_tensor_name(name), data_torch)]
  2291. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2292. class BertModel(Model):
  2293. model_arch = gguf.MODEL_ARCH.BERT
  2294. def __init__(self, *args, **kwargs):
  2295. super().__init__(*args, **kwargs)
  2296. self.vocab_size = None
  2297. def set_gguf_parameters(self):
  2298. super().set_gguf_parameters()
  2299. self.gguf_writer.add_causal_attention(False)
  2300. # get pooling path
  2301. pooling_path = None
  2302. module_path = self.dir_model / "modules.json"
  2303. if module_path.is_file():
  2304. with open(module_path, encoding="utf-8") as f:
  2305. modules = json.load(f)
  2306. for mod in modules:
  2307. if mod["type"] == "sentence_transformers.models.Pooling":
  2308. pooling_path = mod["path"]
  2309. break
  2310. # get pooling type
  2311. if pooling_path is not None:
  2312. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2313. pooling = json.load(f)
  2314. if pooling["pooling_mode_mean_tokens"]:
  2315. pooling_type = gguf.PoolingType.MEAN
  2316. elif pooling["pooling_mode_cls_token"]:
  2317. pooling_type = gguf.PoolingType.CLS
  2318. else:
  2319. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2320. self.gguf_writer.add_pooling_type(pooling_type)
  2321. def set_vocab(self):
  2322. tokens, toktypes, tokpre = self.get_vocab_base()
  2323. self.vocab_size = len(tokens)
  2324. # we need this to validate the size of the token_type embeddings
  2325. # though currently we are passing all zeros to the token_type embeddings
  2326. # "Sequence A" or "Sequence B"
  2327. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2328. # convert to phantom space vocab
  2329. def phantom(tok):
  2330. if tok.startswith("[") and tok.endswith("]"):
  2331. return tok
  2332. if tok.startswith("##"):
  2333. return tok[2:]
  2334. return "\u2581" + tok
  2335. tokens = list(map(phantom, tokens))
  2336. # add vocab to gguf
  2337. self.gguf_writer.add_tokenizer_model("bert")
  2338. self.gguf_writer.add_tokenizer_pre(tokpre)
  2339. self.gguf_writer.add_token_list(tokens)
  2340. self.gguf_writer.add_token_types(toktypes)
  2341. # handle special tokens
  2342. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2343. special_vocab.add_to_gguf(self.gguf_writer)
  2344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2345. del bid # unused
  2346. if name.startswith("bert."):
  2347. name = name[5:]
  2348. if name.endswith(".gamma"):
  2349. name = name[:-6] + ".weight"
  2350. if name.endswith(".beta"):
  2351. name = name[:-5] + ".bias"
  2352. # we are only using BERT for embeddings so we don't need the pooling layer
  2353. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2354. return [] # we don't need these
  2355. if name.startswith("cls.predictions"):
  2356. return []
  2357. if name.startswith("cls.seq_relationship"):
  2358. return []
  2359. return [(self.map_tensor_name(name), data_torch)]
  2360. @Model.register("RobertaModel")
  2361. class RobertaModel(BertModel):
  2362. model_arch = gguf.MODEL_ARCH.BERT
  2363. def __init__(self, *args, **kwargs):
  2364. super().__init__(*args, **kwargs)
  2365. # we need the pad_token_id to know how to chop down position_embd matrix
  2366. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2367. self._position_offset = 1 + pad_token_id
  2368. if "max_position_embeddings" in self.hparams:
  2369. self.hparams["max_position_embeddings"] -= self._position_offset
  2370. else:
  2371. self._position_offset = None
  2372. def set_vocab(self):
  2373. """Support BPE tokenizers for roberta models"""
  2374. bpe_tok_path = self.dir_model / "tokenizer.json"
  2375. if bpe_tok_path.exists():
  2376. self._set_vocab_gpt2()
  2377. self.gguf_writer.add_add_bos_token(True)
  2378. self.gguf_writer.add_add_eos_token(True)
  2379. # we need this to validate the size of the token_type embeddings
  2380. # though currently we are passing all zeros to the token_type embeddings
  2381. # "Sequence A" or "Sequence B"
  2382. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2383. else:
  2384. return super().set_vocab()
  2385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2386. # if name starts with "roberta.", remove the prefix
  2387. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2388. if name.startswith("roberta."):
  2389. name = name[8:]
  2390. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2391. if name == "embeddings.position_embeddings.weight":
  2392. if self._position_offset is not None:
  2393. data_torch = data_torch[self._position_offset:,:]
  2394. return super().modify_tensors(data_torch, name, bid)
  2395. @Model.register("NomicBertModel")
  2396. class NomicBertModel(BertModel):
  2397. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2398. def __init__(self, *args, **kwargs):
  2399. super().__init__(*args, **kwargs)
  2400. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2401. self.hparams["n_ctx"] = 2048
  2402. # SwigLU activation
  2403. assert self.hparams["activation_function"] == "swiglu"
  2404. # this doesn't do anything in the HF version
  2405. assert self.hparams["causal"] is False
  2406. # no bias tensors
  2407. assert self.hparams["qkv_proj_bias"] is False
  2408. assert self.hparams["mlp_fc1_bias"] is False
  2409. assert self.hparams["mlp_fc2_bias"] is False
  2410. # norm at end of layer
  2411. assert self.hparams["prenorm"] is False
  2412. # standard RoPE
  2413. assert self.hparams["rotary_emb_fraction"] == 1.0
  2414. assert self.hparams["rotary_emb_interleaved"] is False
  2415. assert self.hparams["rotary_emb_scale_base"] is None
  2416. def set_gguf_parameters(self):
  2417. super().set_gguf_parameters()
  2418. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2419. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2420. class XLMRobertaModel(BertModel):
  2421. model_arch = gguf.MODEL_ARCH.BERT
  2422. def __init__(self, *args, **kwargs):
  2423. super().__init__(*args, **kwargs)
  2424. # we need the pad_token_id to know how to chop down position_embd matrix
  2425. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2426. self._position_offset = 1 + pad_token_id
  2427. if "max_position_embeddings" in self.hparams:
  2428. self.hparams["max_position_embeddings"] -= self._position_offset
  2429. else:
  2430. self._position_offset = None
  2431. def set_vocab(self):
  2432. # to avoid TypeError: Descriptors cannot be created directly
  2433. # exception when importing sentencepiece_model_pb2
  2434. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2435. from sentencepiece import SentencePieceProcessor
  2436. from sentencepiece import sentencepiece_model_pb2 as model
  2437. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2438. if not tokenizer_path.is_file():
  2439. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2440. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2441. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2442. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2443. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2444. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2445. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2446. tokenizer = SentencePieceProcessor()
  2447. tokenizer.LoadFromFile(str(tokenizer_path))
  2448. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2449. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2450. scores: list[float] = [-10000.0] * vocab_size
  2451. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2452. for token_id in range(tokenizer.vocab_size()):
  2453. piece = tokenizer.IdToPiece(token_id)
  2454. text = piece.encode("utf-8")
  2455. score = tokenizer.GetScore(token_id)
  2456. toktype = SentencePieceTokenTypes.NORMAL
  2457. if tokenizer.IsUnknown(token_id):
  2458. toktype = SentencePieceTokenTypes.UNKNOWN
  2459. elif tokenizer.IsControl(token_id):
  2460. toktype = SentencePieceTokenTypes.CONTROL
  2461. elif tokenizer.IsUnused(token_id):
  2462. toktype = SentencePieceTokenTypes.UNUSED
  2463. elif tokenizer.IsByte(token_id):
  2464. toktype = SentencePieceTokenTypes.BYTE
  2465. tokens[token_id] = text
  2466. scores[token_id] = score
  2467. toktypes[token_id] = toktype
  2468. if vocab_size > len(tokens):
  2469. pad_count = vocab_size - len(tokens)
  2470. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2471. for i in range(1, pad_count + 1):
  2472. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2473. scores.append(-1000.0)
  2474. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2475. # realign tokens (see HF tokenizer code)
  2476. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2477. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2478. toktypes = [
  2479. SentencePieceTokenTypes.CONTROL,
  2480. SentencePieceTokenTypes.CONTROL,
  2481. SentencePieceTokenTypes.CONTROL,
  2482. SentencePieceTokenTypes.UNKNOWN,
  2483. ] + toktypes[3:-1]
  2484. self.gguf_writer.add_tokenizer_model("t5")
  2485. self.gguf_writer.add_tokenizer_pre("default")
  2486. self.gguf_writer.add_token_list(tokens)
  2487. self.gguf_writer.add_token_scores(scores)
  2488. self.gguf_writer.add_token_types(toktypes)
  2489. self.gguf_writer.add_add_space_prefix(add_prefix)
  2490. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2491. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2492. if precompiled_charsmap:
  2493. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2494. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2495. special_vocab.add_to_gguf(self.gguf_writer)
  2496. self.gguf_writer.add_add_bos_token(True)
  2497. self.gguf_writer.add_add_eos_token(True)
  2498. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2499. # if name starts with "roberta.", remove the prefix
  2500. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2501. if name.startswith("roberta."):
  2502. name = name[8:]
  2503. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2504. if name == "embeddings.position_embeddings.weight":
  2505. if self._position_offset is not None:
  2506. data_torch = data_torch[self._position_offset:,:]
  2507. return super().modify_tensors(data_torch, name, bid)
  2508. @Model.register("GemmaForCausalLM")
  2509. class GemmaModel(Model):
  2510. model_arch = gguf.MODEL_ARCH.GEMMA
  2511. def set_vocab(self):
  2512. self._set_vocab_sentencepiece()
  2513. # TODO: these special tokens should be exported only for the CodeGemma family
  2514. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2515. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2516. special_vocab._set_special_token("prefix", 67)
  2517. special_vocab._set_special_token("suffix", 69)
  2518. special_vocab._set_special_token("middle", 68)
  2519. special_vocab._set_special_token("fsep", 70)
  2520. special_vocab._set_special_token("eot", 107)
  2521. special_vocab.chat_template = None # do not add it twice
  2522. special_vocab.add_to_gguf(self.gguf_writer)
  2523. self.gguf_writer.add_add_space_prefix(False)
  2524. def set_gguf_parameters(self):
  2525. hparams = self.hparams
  2526. block_count = hparams["num_hidden_layers"]
  2527. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2528. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2529. self.gguf_writer.add_block_count(block_count)
  2530. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2531. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2532. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2533. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2534. self.gguf_writer.add_key_length(hparams["head_dim"])
  2535. self.gguf_writer.add_value_length(hparams["head_dim"])
  2536. self.gguf_writer.add_file_type(self.ftype)
  2537. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2538. del bid # unused
  2539. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2540. # To prevent errors, skip loading lm_head.weight.
  2541. if name == "lm_head.weight":
  2542. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2543. return []
  2544. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2545. if name.endswith("norm.weight"):
  2546. data_torch = data_torch + 1
  2547. return [(self.map_tensor_name(name), data_torch)]
  2548. @Model.register("Gemma2ForCausalLM")
  2549. class Gemma2Model(Model):
  2550. model_arch = gguf.MODEL_ARCH.GEMMA2
  2551. def set_vocab(self):
  2552. self._set_vocab_sentencepiece()
  2553. self.gguf_writer.add_add_space_prefix(False)
  2554. def set_gguf_parameters(self):
  2555. hparams = self.hparams
  2556. block_count = hparams["num_hidden_layers"]
  2557. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2558. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2559. self.gguf_writer.add_block_count(block_count)
  2560. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2561. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2562. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2563. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2564. self.gguf_writer.add_key_length(hparams["head_dim"])
  2565. self.gguf_writer.add_value_length(hparams["head_dim"])
  2566. self.gguf_writer.add_file_type(self.ftype)
  2567. self.gguf_writer.add_attn_logit_softcapping(
  2568. self.hparams["attn_logit_softcapping"]
  2569. )
  2570. self.gguf_writer.add_final_logit_softcapping(
  2571. self.hparams["final_logit_softcapping"]
  2572. )
  2573. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2575. del bid # unused
  2576. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2577. # To prevent errors, skip loading lm_head.weight.
  2578. if name == "lm_head.weight":
  2579. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2580. return []
  2581. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2582. if name.endswith("norm.weight"):
  2583. data_torch = data_torch + 1
  2584. return [(self.map_tensor_name(name), data_torch)]
  2585. @Model.register("Starcoder2ForCausalLM")
  2586. class StarCoder2Model(Model):
  2587. model_arch = gguf.MODEL_ARCH.STARCODER2
  2588. @Model.register("Rwkv6ForCausalLM")
  2589. class Rwkv6Model(Model):
  2590. model_arch = gguf.MODEL_ARCH.RWKV6
  2591. def set_vocab(self):
  2592. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2593. vocab_size = self.hparams.get("vocab_size", 65536)
  2594. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2595. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2596. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2597. lines = f.readlines()
  2598. for line in lines:
  2599. parts = line.split(' ')
  2600. assert len(parts) >= 3
  2601. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2602. token = token.encode("utf-8") if isinstance(token, str) else token
  2603. assert isinstance(token, bytes)
  2604. assert len(token) == token_len
  2605. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2606. tokens.append(token_text.encode("utf-8"))
  2607. toktypes.append(gguf.TokenType.NORMAL)
  2608. remainder = vocab_size - len(tokens)
  2609. assert remainder >= 0
  2610. for i in range(len(tokens), vocab_size):
  2611. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2612. toktypes.append(gguf.TokenType.UNUSED)
  2613. self.gguf_writer.add_tokenizer_model("rwkv")
  2614. self.gguf_writer.add_token_list(tokens)
  2615. self.gguf_writer.add_token_types(toktypes)
  2616. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2617. special_vocab.chat_template = "rwkv-world"
  2618. # hack: Add '\n\n' as the EOT token to make it chat normally
  2619. special_vocab._set_special_token("eot", 261)
  2620. special_vocab.add_to_gguf(self.gguf_writer)
  2621. def set_gguf_parameters(self):
  2622. block_count = self.hparams["num_hidden_layers"]
  2623. head_size = self.hparams["head_size"]
  2624. hidden_size = self.hparams["hidden_size"]
  2625. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2626. rescale_every_n_layers = self.hparams["rescale_every"]
  2627. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2628. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2629. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2630. # RWKV isn't context limited
  2631. self.gguf_writer.add_context_length(1048576)
  2632. self.gguf_writer.add_embedding_length(hidden_size)
  2633. self.gguf_writer.add_block_count(block_count)
  2634. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2635. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2636. self.gguf_writer.add_wkv_head_size(head_size)
  2637. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2638. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2639. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2640. self.gguf_writer.add_file_type(self.ftype)
  2641. # required by llama.cpp, unused
  2642. self.gguf_writer.add_head_count(0)
  2643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2644. new_name = self.map_tensor_name(name)
  2645. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2646. new_name += ".weight"
  2647. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2648. data_torch = data_torch.transpose(0, 1)
  2649. if new_name.endswith("time_mix_w2.weight"):
  2650. data_torch = data_torch.permute(0, 2, 1)
  2651. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2652. data_torch = data_torch.squeeze()
  2653. rescale_every_n_layers = self.hparams["rescale_every"]
  2654. if rescale_every_n_layers > 0:
  2655. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2656. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2657. yield (new_name, data_torch)
  2658. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2659. class MambaModel(Model):
  2660. model_arch = gguf.MODEL_ARCH.MAMBA
  2661. def set_vocab(self):
  2662. vocab_size = self.hparams["vocab_size"]
  2663. # Round vocab size to next multiple of 8
  2664. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2665. # pad using ceiling division
  2666. # ref: https://stackoverflow.com/a/17511341/22827863
  2667. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2668. self.hparams["vocab_size"] = vocab_size
  2669. if (self.dir_model / "tokenizer.json").is_file():
  2670. self._set_vocab_gpt2()
  2671. elif (self.dir_model / "tokenizer.model").is_file():
  2672. self._set_vocab_sentencepiece()
  2673. else:
  2674. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2675. self._set_vocab_builtin("gpt-neox", vocab_size)
  2676. def set_gguf_parameters(self):
  2677. d_model = self.find_hparam(["hidden_size", "d_model"])
  2678. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2679. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2680. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2681. # ceiling division
  2682. # ref: https://stackoverflow.com/a/17511341/22827863
  2683. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2684. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2685. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2686. use_dt_b_c_norm = False
  2687. # For falconmamba we do apply RMS norm on B / DT and C layers
  2688. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2689. use_dt_b_c_norm = True
  2690. # Fail early for models which don't have a block expansion factor of 2
  2691. assert d_inner == 2 * d_model
  2692. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2693. self.gguf_writer.add_embedding_length(d_model)
  2694. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2695. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2696. self.gguf_writer.add_block_count(self.block_count)
  2697. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2698. self.gguf_writer.add_ssm_inner_size(d_inner)
  2699. self.gguf_writer.add_ssm_state_size(d_state)
  2700. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2701. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2702. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2703. self.gguf_writer.add_file_type(self.ftype)
  2704. _tok_embd = None
  2705. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2706. del bid # unused
  2707. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2708. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2709. new_name = self.map_tensor_name(name)
  2710. if name.endswith(".A_log"):
  2711. logger.debug("A_log --> A ==> " + new_name)
  2712. data_torch = -torch.exp(data_torch)
  2713. # assuming token_embd.weight is seen before output.weight
  2714. if self._tok_embd is not None and new_name == output_name:
  2715. if torch.equal(self._tok_embd, data_torch):
  2716. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2717. return []
  2718. elif new_name == tok_embd_name:
  2719. self._tok_embd = data_torch
  2720. return [(new_name, data_torch)]
  2721. @Model.register("CohereForCausalLM")
  2722. class CommandR2Model(Model):
  2723. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2724. def __init__(self, *args, **kwargs):
  2725. super().__init__(*args, **kwargs)
  2726. # max_position_embeddings = 8192 in config.json but model was actually
  2727. # trained on 128k context length
  2728. # aya-23 models don't have model_max_length specified
  2729. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2730. def set_gguf_parameters(self):
  2731. super().set_gguf_parameters()
  2732. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2733. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2734. @Model.register("OlmoForCausalLM")
  2735. @Model.register("OLMoForCausalLM")
  2736. class OlmoModel(Model):
  2737. model_arch = gguf.MODEL_ARCH.OLMO
  2738. def set_gguf_parameters(self):
  2739. super().set_gguf_parameters()
  2740. self.gguf_writer.add_layer_norm_eps(1e-5)
  2741. clip_qkv = self.hparams.get("clip_qkv")
  2742. if clip_qkv is not None:
  2743. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2744. # Same as super class, but permuting q_proj, k_proj
  2745. # Copied from: LlamaModel
  2746. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2747. del bid # unused
  2748. n_head = self.hparams["num_attention_heads"]
  2749. n_kv_head = self.hparams.get("num_key_value_heads")
  2750. if name.endswith("q_proj.weight"):
  2751. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2752. if name.endswith("k_proj.weight"):
  2753. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2754. return [(self.map_tensor_name(name), data_torch)]
  2755. @Model.register("Olmo2ForCausalLM")
  2756. class Olmo2Model(Model):
  2757. model_arch = gguf.MODEL_ARCH.OLMO2
  2758. @Model.register("OlmoeForCausalLM")
  2759. class OlmoeModel(Model):
  2760. model_arch = gguf.MODEL_ARCH.OLMOE
  2761. def set_gguf_parameters(self):
  2762. super().set_gguf_parameters()
  2763. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2764. if (n_experts := self.hparams.get("num_experts")) is not None:
  2765. self.gguf_writer.add_expert_count(n_experts)
  2766. _experts: list[dict[str, Tensor]] | None = None
  2767. # Copied from: Qwen2MoeModel
  2768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2769. # process the experts separately
  2770. if name.find("experts") != -1:
  2771. n_experts = self.hparams["num_experts"]
  2772. assert bid is not None
  2773. if self._experts is None:
  2774. self._experts = [{} for _ in range(self.block_count)]
  2775. self._experts[bid][name] = data_torch
  2776. if len(self._experts[bid]) >= n_experts * 3:
  2777. tensors: list[tuple[str, Tensor]] = []
  2778. # merge the experts into a single 3d tensor
  2779. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2780. datas: list[Tensor] = []
  2781. for xid in range(n_experts):
  2782. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2783. datas.append(self._experts[bid][ename])
  2784. del self._experts[bid][ename]
  2785. data_torch = torch.stack(datas, dim=0)
  2786. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2787. new_name = self.map_tensor_name(merged_name)
  2788. tensors.append((new_name, data_torch))
  2789. return tensors
  2790. else:
  2791. return []
  2792. return [(self.map_tensor_name(name), data_torch)]
  2793. # Copied from: Qwen2MoeModel
  2794. def prepare_tensors(self):
  2795. super().prepare_tensors()
  2796. if self._experts is not None:
  2797. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2798. experts = [k for d in self._experts for k in d.keys()]
  2799. if len(experts) > 0:
  2800. raise ValueError(f"Unprocessed experts: {experts}")
  2801. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2802. class JinaBertV2Model(BertModel):
  2803. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2804. def __init__(self, *args, **kwargs):
  2805. super().__init__(*args, **kwargs)
  2806. self.intermediate_size = self.hparams["intermediate_size"]
  2807. def get_tensors(self):
  2808. for name, data in super().get_tensors():
  2809. if 'gated_layer' in name:
  2810. d1 = data[:self.intermediate_size, :]
  2811. name1 = name.replace('gated_layers', 'gated_layers_w')
  2812. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2813. d2 = data[self.intermediate_size:, :]
  2814. name2 = name.replace('gated_layers', 'gated_layers_v')
  2815. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2816. yield name1, d1
  2817. yield name2, d2
  2818. continue
  2819. yield name, data
  2820. def set_vocab(self):
  2821. tokenizer_class = 'BertTokenizer'
  2822. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2823. tokenizer_class = json.load(f)['tokenizer_class']
  2824. if tokenizer_class == 'BertTokenizer':
  2825. super().set_vocab()
  2826. elif tokenizer_class == 'RobertaTokenizer':
  2827. self._set_vocab_gpt2()
  2828. self.gguf_writer.add_token_type_count(2)
  2829. else:
  2830. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2831. self.gguf_writer.add_add_bos_token(True)
  2832. self.gguf_writer.add_add_eos_token(True)
  2833. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2834. # if name starts with "bert.", remove the prefix
  2835. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2836. if name.startswith("bert."):
  2837. name = name[5:]
  2838. return super().modify_tensors(data_torch, name, bid)
  2839. @Model.register("OpenELMForCausalLM")
  2840. class OpenELMModel(Model):
  2841. model_arch = gguf.MODEL_ARCH.OPENELM
  2842. @staticmethod
  2843. def _make_divisible(v: float | int, divisor: int) -> int:
  2844. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2845. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2846. # Make sure that round down does not go down by more than 10%.
  2847. if new_v < 0.9 * v:
  2848. new_v += divisor
  2849. return new_v
  2850. def __init__(self, *args, **kwargs):
  2851. super().__init__(*args, **kwargs)
  2852. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2853. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2854. self._n_embd: int = self.hparams["model_dim"]
  2855. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2856. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2857. self._ffn_dims: list[int] = [
  2858. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2859. for multiplier in ffn_multipliers
  2860. ]
  2861. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2862. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2863. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2864. def set_vocab(self):
  2865. try:
  2866. self._set_vocab_sentencepiece()
  2867. except FileNotFoundError:
  2868. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2869. def set_gguf_parameters(self):
  2870. n_embd = self._n_embd
  2871. head_dim = self.hparams["head_dim"]
  2872. rot_pct = 1.0
  2873. assert self.block_count == len(self._num_kv_heads)
  2874. assert self.block_count == len(self._num_query_heads)
  2875. assert self.block_count == len(self._ffn_dims)
  2876. self.gguf_writer.add_block_count(self.block_count)
  2877. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2878. self.gguf_writer.add_embedding_length(n_embd)
  2879. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2880. self.gguf_writer.add_head_count(self._num_query_heads)
  2881. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2882. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2883. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2884. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2885. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2886. self.gguf_writer.add_key_length(head_dim)
  2887. self.gguf_writer.add_value_length(head_dim)
  2888. self.gguf_writer.add_file_type(self.ftype)
  2889. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2890. if "n_layers" in keys:
  2891. return self.hparams["num_transformer_layers"]
  2892. return super().find_hparam(keys, optional)
  2893. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2894. # split ff
  2895. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2896. ff_dim = self._ffn_dims[bid]
  2897. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2898. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2899. return
  2900. yield (self.map_tensor_name(name), data_torch)
  2901. @Model.register("ArcticForCausalLM")
  2902. class ArcticModel(Model):
  2903. model_arch = gguf.MODEL_ARCH.ARCTIC
  2904. def set_vocab(self):
  2905. # The reason for using a custom implementation here is that the
  2906. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2907. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2908. from sentencepiece import SentencePieceProcessor
  2909. tokenizer_path = self.dir_model / 'tokenizer.model'
  2910. if not tokenizer_path.is_file():
  2911. logger.error(f'Error: Missing {tokenizer_path}')
  2912. sys.exit(1)
  2913. # Read the whole vocabulary from the tokenizer.model file
  2914. tokenizer = SentencePieceProcessor()
  2915. tokenizer.LoadFromFile(str(tokenizer_path))
  2916. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2917. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2918. scores: list[float] = [-10000.0] * vocab_size
  2919. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2920. for token_id in range(tokenizer.vocab_size()):
  2921. piece = tokenizer.IdToPiece(token_id)
  2922. text = piece.encode("utf-8")
  2923. score = tokenizer.GetScore(token_id)
  2924. toktype = SentencePieceTokenTypes.NORMAL
  2925. if tokenizer.IsUnknown(token_id):
  2926. toktype = SentencePieceTokenTypes.UNKNOWN
  2927. elif tokenizer.IsControl(token_id):
  2928. toktype = SentencePieceTokenTypes.CONTROL
  2929. elif tokenizer.IsUnused(token_id):
  2930. toktype = SentencePieceTokenTypes.UNUSED
  2931. elif tokenizer.IsByte(token_id):
  2932. toktype = SentencePieceTokenTypes.BYTE
  2933. tokens[token_id] = text
  2934. scores[token_id] = score
  2935. toktypes[token_id] = toktype
  2936. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2937. # of information about added/redefined tokens and modify them accordingly.
  2938. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2939. if tokenizer_config_file.is_file():
  2940. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2941. tokenizer_config_json = json.load(f)
  2942. if "added_tokens_decoder" in tokenizer_config_json:
  2943. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2944. for token_id, token_json in added_tokens_decoder.items():
  2945. token_id = int(token_id)
  2946. if token_id >= vocab_size:
  2947. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2948. continue
  2949. token_content = token_json["content"]
  2950. token_type = SentencePieceTokenTypes.USER_DEFINED
  2951. token_score = -10000.0
  2952. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2953. # Set the score to 0.0 as in the original tokenizer.model
  2954. if ("special" in token_json) and token_json["special"]:
  2955. if token_content == tokenizer_config_json["unk_token"]:
  2956. token_type = SentencePieceTokenTypes.UNKNOWN
  2957. else:
  2958. token_type = SentencePieceTokenTypes.CONTROL
  2959. token_score = 0.0
  2960. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2961. tokens[token_id] = token_content.encode("utf-8")
  2962. toktypes[token_id] = token_type
  2963. scores[token_id] = token_score
  2964. self.gguf_writer.add_tokenizer_model("llama")
  2965. self.gguf_writer.add_tokenizer_pre("default")
  2966. self.gguf_writer.add_token_list(tokens)
  2967. self.gguf_writer.add_token_scores(scores)
  2968. self.gguf_writer.add_token_types(toktypes)
  2969. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2970. special_vocab.add_to_gguf(self.gguf_writer)
  2971. def set_gguf_parameters(self):
  2972. super().set_gguf_parameters()
  2973. hparams = self.hparams
  2974. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2975. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2976. _experts: list[dict[str, Tensor]] | None = None
  2977. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2978. n_head = self.hparams["num_attention_heads"]
  2979. n_kv_head = self.hparams.get("num_key_value_heads")
  2980. if name.endswith("q_proj.weight"):
  2981. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2982. if name.endswith("k_proj.weight"):
  2983. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2984. # process the experts separately
  2985. if name.find("block_sparse_moe.experts") != -1:
  2986. n_experts = self.hparams["num_local_experts"]
  2987. assert bid is not None
  2988. if self._experts is None:
  2989. self._experts = [{} for _ in range(self.block_count)]
  2990. self._experts[bid][name] = data_torch
  2991. if len(self._experts[bid]) >= n_experts * 3:
  2992. tensors: list[tuple[str, Tensor]] = []
  2993. # merge the experts into a single 3d tensor
  2994. for wid in ["w1", "w2", "w3"]:
  2995. datas: list[Tensor] = []
  2996. for xid in range(n_experts):
  2997. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2998. datas.append(self._experts[bid][ename])
  2999. del self._experts[bid][ename]
  3000. data_torch = torch.stack(datas, dim=0)
  3001. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3002. new_name = self.map_tensor_name(merged_name)
  3003. tensors.append((new_name, data_torch))
  3004. return tensors
  3005. else:
  3006. return []
  3007. return [(self.map_tensor_name(name), data_torch)]
  3008. def prepare_tensors(self):
  3009. super().prepare_tensors()
  3010. if self._experts is not None:
  3011. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3012. experts = [k for d in self._experts for k in d.keys()]
  3013. if len(experts) > 0:
  3014. raise ValueError(f"Unprocessed experts: {experts}")
  3015. @Model.register("DeepseekForCausalLM")
  3016. class DeepseekModel(Model):
  3017. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3018. def set_vocab(self):
  3019. try:
  3020. self._set_vocab_sentencepiece()
  3021. except FileNotFoundError:
  3022. self._set_vocab_gpt2()
  3023. def set_gguf_parameters(self):
  3024. super().set_gguf_parameters()
  3025. hparams = self.hparams
  3026. if "head_dim" in hparams:
  3027. rope_dim = hparams["head_dim"]
  3028. else:
  3029. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3030. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3032. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3033. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3034. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3035. self.gguf_writer.add_expert_weights_scale(1.0)
  3036. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3037. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3038. _experts: list[dict[str, Tensor]] | None = None
  3039. @staticmethod
  3040. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3041. if n_head_kv is not None and n_head != n_head_kv:
  3042. n_head = n_head_kv
  3043. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3044. .swapaxes(1, 2)
  3045. .reshape(weights.shape))
  3046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3047. n_head = self.hparams["num_attention_heads"]
  3048. n_kv_head = self.hparams.get("num_key_value_heads")
  3049. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3050. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3051. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3052. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3053. # process the experts separately
  3054. if name.find("mlp.experts") != -1:
  3055. n_experts = self.hparams["n_routed_experts"]
  3056. assert bid is not None
  3057. if self._experts is None:
  3058. self._experts = [{} for _ in range(self.block_count)]
  3059. self._experts[bid][name] = data_torch
  3060. if len(self._experts[bid]) >= n_experts * 3:
  3061. tensors: list[tuple[str, Tensor]] = []
  3062. # merge the experts into a single 3d tensor
  3063. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3064. datas: list[Tensor] = []
  3065. for xid in range(n_experts):
  3066. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3067. datas.append(self._experts[bid][ename])
  3068. del self._experts[bid][ename]
  3069. data_torch = torch.stack(datas, dim=0)
  3070. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3071. new_name = self.map_tensor_name(merged_name)
  3072. tensors.append((new_name, data_torch))
  3073. return tensors
  3074. else:
  3075. return []
  3076. return [(self.map_tensor_name(name), data_torch)]
  3077. def prepare_tensors(self):
  3078. super().prepare_tensors()
  3079. if self._experts is not None:
  3080. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3081. experts = [k for d in self._experts for k in d.keys()]
  3082. if len(experts) > 0:
  3083. raise ValueError(f"Unprocessed experts: {experts}")
  3084. @Model.register("DeepseekV2ForCausalLM")
  3085. class DeepseekV2Model(Model):
  3086. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3087. def set_vocab(self):
  3088. self._set_vocab_gpt2()
  3089. def set_gguf_parameters(self):
  3090. super().set_gguf_parameters()
  3091. hparams = self.hparams
  3092. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3093. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3094. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3095. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3096. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3097. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3098. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3099. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3100. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3101. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3102. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3103. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3104. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3105. if self.hparams["rope_scaling"].get("type") == "yarn":
  3106. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3107. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3108. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3109. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3110. _experts: list[dict[str, Tensor]] | None = None
  3111. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3112. # process the experts separately
  3113. if name.find("mlp.experts") != -1:
  3114. n_experts = self.hparams["n_routed_experts"]
  3115. assert bid is not None
  3116. if self._experts is None:
  3117. self._experts = [{} for _ in range(self.block_count)]
  3118. self._experts[bid][name] = data_torch
  3119. if len(self._experts[bid]) >= n_experts * 3:
  3120. tensors: list[tuple[str, Tensor]] = []
  3121. # merge the experts into a single 3d tensor
  3122. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3123. datas: list[Tensor] = []
  3124. for xid in range(n_experts):
  3125. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3126. datas.append(self._experts[bid][ename])
  3127. del self._experts[bid][ename]
  3128. data_torch = torch.stack(datas, dim=0)
  3129. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3130. new_name = self.map_tensor_name(merged_name)
  3131. tensors.append((new_name, data_torch))
  3132. return tensors
  3133. else:
  3134. return []
  3135. return [(self.map_tensor_name(name), data_torch)]
  3136. def prepare_tensors(self):
  3137. super().prepare_tensors()
  3138. if self._experts is not None:
  3139. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3140. experts = [k for d in self._experts for k in d.keys()]
  3141. if len(experts) > 0:
  3142. raise ValueError(f"Unprocessed experts: {experts}")
  3143. @Model.register("T5WithLMHeadModel")
  3144. @Model.register("T5ForConditionalGeneration")
  3145. @Model.register("MT5ForConditionalGeneration")
  3146. @Model.register("UMT5ForConditionalGeneration")
  3147. class T5Model(Model):
  3148. model_arch = gguf.MODEL_ARCH.T5
  3149. def __init__(self, *args, **kwargs):
  3150. super().__init__(*args, **kwargs)
  3151. self.shared_token_embeddings_found = False
  3152. def set_vocab(self):
  3153. # to avoid TypeError: Descriptors cannot be created directly
  3154. # exception when importing sentencepiece_model_pb2
  3155. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3156. from sentencepiece import SentencePieceProcessor
  3157. from sentencepiece import sentencepiece_model_pb2 as model
  3158. tokenizer_path = self.dir_model / 'tokenizer.model'
  3159. # many older models use spiece.model tokenizer model filename
  3160. if not tokenizer_path.is_file():
  3161. tokenizer_path = self.dir_model / 'spiece.model'
  3162. if not tokenizer_path.is_file():
  3163. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3164. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3165. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3166. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3167. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3168. # assure the tokenizer model file name is correct
  3169. assert tokenizer_path.name == 'tokenizer.model'
  3170. return self._set_vocab_sentencepiece()
  3171. else:
  3172. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3173. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3174. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3175. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3176. tokenizer = SentencePieceProcessor()
  3177. tokenizer.LoadFromFile(str(tokenizer_path))
  3178. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3179. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3180. scores: list[float] = [-10000.0] * vocab_size
  3181. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3182. for token_id in range(tokenizer.vocab_size()):
  3183. piece = tokenizer.IdToPiece(token_id)
  3184. text = piece.encode("utf-8")
  3185. score = tokenizer.GetScore(token_id)
  3186. toktype = SentencePieceTokenTypes.NORMAL
  3187. if tokenizer.IsUnknown(token_id):
  3188. toktype = SentencePieceTokenTypes.UNKNOWN
  3189. elif tokenizer.IsControl(token_id):
  3190. toktype = SentencePieceTokenTypes.CONTROL
  3191. elif tokenizer.IsUnused(token_id):
  3192. toktype = SentencePieceTokenTypes.UNUSED
  3193. elif tokenizer.IsByte(token_id):
  3194. toktype = SentencePieceTokenTypes.BYTE
  3195. tokens[token_id] = text
  3196. scores[token_id] = score
  3197. toktypes[token_id] = toktype
  3198. added_tokens_file = self.dir_model / 'added_tokens.json'
  3199. if added_tokens_file.is_file():
  3200. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3201. added_tokens_json = json.load(f)
  3202. for key in added_tokens_json:
  3203. token_id = added_tokens_json[key]
  3204. if token_id >= vocab_size:
  3205. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3206. continue
  3207. tokens[token_id] = key.encode("utf-8")
  3208. scores[token_id] = -1000.0
  3209. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3210. if vocab_size > len(tokens):
  3211. pad_count = vocab_size - len(tokens)
  3212. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3213. for i in range(1, pad_count + 1):
  3214. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3215. scores.append(-1000.0)
  3216. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3217. self.gguf_writer.add_tokenizer_model("t5")
  3218. self.gguf_writer.add_tokenizer_pre("default")
  3219. self.gguf_writer.add_token_list(tokens)
  3220. self.gguf_writer.add_token_scores(scores)
  3221. self.gguf_writer.add_token_types(toktypes)
  3222. self.gguf_writer.add_add_space_prefix(add_prefix)
  3223. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3224. if precompiled_charsmap:
  3225. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3226. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3227. special_vocab.add_to_gguf(self.gguf_writer)
  3228. self.gguf_writer.add_add_bos_token(False)
  3229. self.gguf_writer.add_add_eos_token(True)
  3230. def set_gguf_parameters(self):
  3231. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3232. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3233. n_ctx = 512
  3234. self.gguf_writer.add_context_length(n_ctx)
  3235. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3236. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3237. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3238. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3239. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3240. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3241. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3242. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3243. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3244. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3245. self.gguf_writer.add_file_type(self.ftype)
  3246. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3247. del bid # unused
  3248. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3249. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3250. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3251. # and decoder and ignore the remaining ones.
  3252. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3253. if not self.shared_token_embeddings_found:
  3254. name = "shared.weight"
  3255. self.shared_token_embeddings_found = True
  3256. else:
  3257. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3258. return []
  3259. return [(self.map_tensor_name(name), data_torch)]
  3260. @Model.register("T5EncoderModel")
  3261. class T5EncoderModel(Model):
  3262. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3263. def __init__(self, *args, **kwargs):
  3264. super().__init__(*args, **kwargs)
  3265. self.shared_token_embeddings_found = False
  3266. def set_vocab(self):
  3267. # to avoid TypeError: Descriptors cannot be created directly
  3268. # exception when importing sentencepiece_model_pb2
  3269. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3270. from sentencepiece import SentencePieceProcessor
  3271. from sentencepiece import sentencepiece_model_pb2 as model
  3272. tokenizer_path = self.dir_model / 'tokenizer.model'
  3273. # many older models use spiece.model tokenizer model filename
  3274. if not tokenizer_path.is_file():
  3275. tokenizer_path = self.dir_model / 'spiece.model'
  3276. if not tokenizer_path.is_file():
  3277. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3278. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3279. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3280. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3281. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3282. # assure the tokenizer model file name is correct
  3283. assert tokenizer_path.name == 'tokenizer.model'
  3284. return self._set_vocab_sentencepiece()
  3285. else:
  3286. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3287. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3288. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3289. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3290. tokenizer = SentencePieceProcessor()
  3291. tokenizer.LoadFromFile(str(tokenizer_path))
  3292. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3293. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3294. scores: list[float] = [-10000.0] * vocab_size
  3295. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3296. for token_id in range(tokenizer.vocab_size()):
  3297. piece = tokenizer.IdToPiece(token_id)
  3298. text = piece.encode("utf-8")
  3299. score = tokenizer.GetScore(token_id)
  3300. toktype = SentencePieceTokenTypes.NORMAL
  3301. if tokenizer.IsUnknown(token_id):
  3302. toktype = SentencePieceTokenTypes.UNKNOWN
  3303. elif tokenizer.IsControl(token_id):
  3304. toktype = SentencePieceTokenTypes.CONTROL
  3305. elif tokenizer.IsUnused(token_id):
  3306. toktype = SentencePieceTokenTypes.UNUSED
  3307. elif tokenizer.IsByte(token_id):
  3308. toktype = SentencePieceTokenTypes.BYTE
  3309. tokens[token_id] = text
  3310. scores[token_id] = score
  3311. toktypes[token_id] = toktype
  3312. added_tokens_file = self.dir_model / 'added_tokens.json'
  3313. if added_tokens_file.is_file():
  3314. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3315. added_tokens_json = json.load(f)
  3316. for key in added_tokens_json:
  3317. token_id = added_tokens_json[key]
  3318. if token_id >= vocab_size:
  3319. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3320. continue
  3321. tokens[token_id] = key.encode("utf-8")
  3322. scores[token_id] = -1000.0
  3323. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3324. if vocab_size > len(tokens):
  3325. pad_count = vocab_size - len(tokens)
  3326. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3327. for i in range(1, pad_count + 1):
  3328. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3329. scores.append(-1000.0)
  3330. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3331. self.gguf_writer.add_tokenizer_model("t5")
  3332. self.gguf_writer.add_tokenizer_pre("default")
  3333. self.gguf_writer.add_token_list(tokens)
  3334. self.gguf_writer.add_token_scores(scores)
  3335. self.gguf_writer.add_token_types(toktypes)
  3336. self.gguf_writer.add_add_space_prefix(add_prefix)
  3337. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3338. if precompiled_charsmap:
  3339. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3340. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3341. special_vocab.add_to_gguf(self.gguf_writer)
  3342. self.gguf_writer.add_add_bos_token(False)
  3343. self.gguf_writer.add_add_eos_token(True)
  3344. def set_gguf_parameters(self):
  3345. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3346. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3347. n_ctx = 512
  3348. self.gguf_writer.add_context_length(n_ctx)
  3349. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3350. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3351. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3352. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3353. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3354. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3355. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3356. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3357. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3358. self.gguf_writer.add_file_type(self.ftype)
  3359. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3360. del bid # unused
  3361. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3362. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3363. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3364. # and decoder and ignore the remaining ones.
  3365. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3366. if not self.shared_token_embeddings_found:
  3367. name = "shared.weight"
  3368. self.shared_token_embeddings_found = True
  3369. else:
  3370. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3371. return []
  3372. return [(self.map_tensor_name(name), data_torch)]
  3373. @Model.register("JAISLMHeadModel")
  3374. class JaisModel(Model):
  3375. model_arch = gguf.MODEL_ARCH.JAIS
  3376. def __init__(self, *args, **kwargs):
  3377. super().__init__(*args, **kwargs)
  3378. # SwigLU activation
  3379. assert self.hparams["activation_function"] == "swiglu"
  3380. # ALiBi position embedding
  3381. assert self.hparams["position_embedding_type"] == "alibi"
  3382. # Embeddings scale
  3383. self.embeddings_scale = 1.0
  3384. if 'mup_embeddings_scale' in self.hparams:
  3385. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3386. elif 'embeddings_scale' in self.hparams:
  3387. self.embeddings_scale = self.hparams['embeddings_scale']
  3388. else:
  3389. assert False
  3390. self.width_scale = 1.0
  3391. if 'mup_output_alpha' in self.hparams:
  3392. assert 'mup_width_scale' in self.hparams
  3393. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3394. elif 'width_scale' in self.hparams:
  3395. self.width_scale = self.hparams['width_scale']
  3396. else:
  3397. assert False
  3398. self.max_alibi_bias = 8.0
  3399. def set_vocab(self):
  3400. self._set_vocab_gpt2()
  3401. def set_gguf_parameters(self):
  3402. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3403. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3404. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3405. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3406. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3407. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3408. self.gguf_writer.add_file_type(self.ftype)
  3409. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3410. del bid # unused
  3411. tensors: list[tuple[str, Tensor]] = []
  3412. # we don't need these
  3413. if name.endswith((".attn.bias")):
  3414. return tensors
  3415. if name.endswith(("relative_pe.slopes")):
  3416. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3417. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3418. # but Jais's PyTorch model simply precalculates the slope values and places them
  3419. # in relative_pes.slopes
  3420. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3421. first_val = float(data_torch[0].item())
  3422. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3423. return tensors
  3424. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3425. data_torch = data_torch.transpose(1, 0)
  3426. new_name = self.map_tensor_name(name)
  3427. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3428. tensors.append((new_name, data_torch * self.embeddings_scale))
  3429. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3430. tensors.append((new_name, data_torch * self.width_scale))
  3431. else:
  3432. tensors.append((new_name, data_torch))
  3433. return tensors
  3434. def prepare_tensors(self):
  3435. super().prepare_tensors()
  3436. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3437. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3438. class ChatGLMModel(Model):
  3439. model_arch = gguf.MODEL_ARCH.CHATGLM
  3440. def set_vocab_chatglm3(self):
  3441. dir_model = self.dir_model
  3442. hparams = self.hparams
  3443. tokens: list[bytes] = []
  3444. toktypes: list[int] = []
  3445. scores: list[float] = []
  3446. from transformers import AutoTokenizer
  3447. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3448. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3449. assert max(tokenizer.get_vocab().values()) < vocab_size
  3450. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3451. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3452. for token_id in range(vocab_size):
  3453. piece = tokenizer._convert_id_to_token(token_id)
  3454. if token_id == 0:
  3455. piece = "<unk>"
  3456. elif token_id == 1:
  3457. piece = "<bos>"
  3458. elif token_id == 2:
  3459. piece = "<eos>"
  3460. text = piece.encode("utf-8")
  3461. score = 0.0
  3462. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3463. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3464. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3465. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3466. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3467. if piece in special_tokens:
  3468. toktype = SentencePieceTokenTypes.CONTROL
  3469. elif len(piece) == 0:
  3470. text = f"[PAD{token_id}]".encode("utf-8")
  3471. toktype = SentencePieceTokenTypes.UNUSED
  3472. else:
  3473. toktype = SentencePieceTokenTypes.USER_DEFINED
  3474. tokens.append(text)
  3475. scores.append(score)
  3476. toktypes.append(toktype)
  3477. continue
  3478. toktype = SentencePieceTokenTypes.NORMAL
  3479. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3480. toktype = SentencePieceTokenTypes.UNKNOWN
  3481. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3482. toktype = SentencePieceTokenTypes.CONTROL
  3483. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3484. toktype = SentencePieceTokenTypes.UNUSED
  3485. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3486. toktype = SentencePieceTokenTypes.BYTE
  3487. tokens.append(text)
  3488. scores.append(score)
  3489. toktypes.append(toktype)
  3490. self.gguf_writer.add_tokenizer_model("llama")
  3491. # glm3 needs prefix and suffix formatted as:
  3492. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3493. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3494. self.gguf_writer.add_token_list(tokens)
  3495. self.gguf_writer.add_token_scores(scores)
  3496. self.gguf_writer.add_token_types(toktypes)
  3497. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3498. special_vocab.add_to_gguf(self.gguf_writer)
  3499. @staticmethod
  3500. def token_bytes_to_string(b):
  3501. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3502. byte_encoder = bytes_to_unicode()
  3503. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3504. @staticmethod
  3505. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3506. parts = [bytes([b]) for b in token]
  3507. while True:
  3508. min_idx = None
  3509. min_rank = None
  3510. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3511. rank = mergeable_ranks.get(pair[0] + pair[1])
  3512. if rank is not None and (min_rank is None or rank < min_rank):
  3513. min_idx = i
  3514. min_rank = rank
  3515. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3516. break
  3517. assert min_idx is not None
  3518. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3519. return parts
  3520. def set_vocab(self):
  3521. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3522. self.set_vocab_chatglm3()
  3523. return
  3524. dir_model = self.dir_model
  3525. hparams = self.hparams
  3526. tokens: list[str] = []
  3527. toktypes: list[int] = []
  3528. from transformers import AutoTokenizer
  3529. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3530. vocab_size = hparams["padded_vocab_size"]
  3531. assert max(tokenizer.get_vocab().values()) < vocab_size
  3532. tokpre = self.get_vocab_base_pre(tokenizer)
  3533. merges = []
  3534. vocab = {}
  3535. mergeable_ranks = tokenizer.mergeable_ranks
  3536. for token, rank in mergeable_ranks.items():
  3537. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3538. if len(token) == 1:
  3539. continue
  3540. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3541. assert len(merged) >= 2 and len(merged) <= 7
  3542. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3543. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3544. added_vocab = tokenizer.get_added_vocab()
  3545. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3546. for i in range(vocab_size):
  3547. if i not in reverse_vocab:
  3548. tokens.append(f"[PAD{i}]")
  3549. toktypes.append(gguf.TokenType.UNUSED)
  3550. elif reverse_vocab[i] in added_vocab:
  3551. tokens.append(reverse_vocab[i])
  3552. if tokenizer.added_tokens_decoder[i].special:
  3553. toktypes.append(gguf.TokenType.CONTROL)
  3554. else:
  3555. toktypes.append(gguf.TokenType.USER_DEFINED)
  3556. else:
  3557. tokens.append(reverse_vocab[i])
  3558. toktypes.append(gguf.TokenType.NORMAL)
  3559. self.gguf_writer.add_tokenizer_model("gpt2")
  3560. self.gguf_writer.add_tokenizer_pre(tokpre)
  3561. self.gguf_writer.add_token_list(tokens)
  3562. self.gguf_writer.add_token_types(toktypes)
  3563. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3564. special_vocab.merges = merges
  3565. # only add special tokens when they were not already loaded from config.json
  3566. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3567. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3568. # this one is usually not in config.json anyway
  3569. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3570. special_vocab.add_to_gguf(self.gguf_writer)
  3571. def set_gguf_parameters(self):
  3572. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3573. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3574. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3575. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3576. self.gguf_writer.add_embedding_length(n_embed)
  3577. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3578. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3579. self.gguf_writer.add_head_count(n_head)
  3580. self.gguf_writer.add_head_count_kv(n_head_kv)
  3581. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3582. self.gguf_writer.add_file_type(self.ftype)
  3583. self.gguf_writer.add_rope_dimension_count(64)
  3584. self.gguf_writer.add_add_bos_token(False)
  3585. rope_freq = 10000
  3586. if "rope_ratio" in self.hparams:
  3587. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3588. self.gguf_writer.add_rope_freq_base(rope_freq)
  3589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3590. del bid # unused
  3591. if name.endswith(".rotary_pos_emb.inv_freq"):
  3592. return []
  3593. name = name.removeprefix("transformer.")
  3594. return [(self.map_tensor_name(name), data_torch)]
  3595. @Model.register("NemotronForCausalLM")
  3596. class NemotronModel(Model):
  3597. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3598. def set_vocab(self):
  3599. self._set_vocab_sentencepiece()
  3600. self.gguf_writer.add_pad_token_id(0)
  3601. self.gguf_writer.add_unk_token_id(1)
  3602. def set_gguf_parameters(self):
  3603. super().set_gguf_parameters()
  3604. hparams = self.hparams
  3605. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3606. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3607. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3608. # * Partial RoPE
  3609. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3610. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3611. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3612. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3613. # * RopeScaling for Nemotron
  3614. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3615. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3616. else:
  3617. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3618. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3619. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3620. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3621. # model.layers.{l}.input_layernorm.weight
  3622. # model.layers.{l}.post_attention_layernorm.weight
  3623. # model.norm.weight
  3624. if name.endswith("norm.weight"):
  3625. data_torch = data_torch + 1
  3626. return [(self.map_tensor_name(name), data_torch)]
  3627. @Model.register("ExaoneForCausalLM")
  3628. class ExaoneModel(Model):
  3629. model_arch = gguf.MODEL_ARCH.EXAONE
  3630. def set_gguf_parameters(self):
  3631. hparams = self.hparams
  3632. assert (hparams["activation_function"] == "silu")
  3633. max_position_embeddings = hparams["max_position_embeddings"]
  3634. embed_dim = hparams["hidden_size"]
  3635. num_heads = hparams["num_attention_heads"]
  3636. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3637. layer_norm_eps = hparams["layer_norm_epsilon"]
  3638. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3639. num_layers = hparams["num_layers"]
  3640. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3641. # attention_dropout_rate = hparams["attention_dropout"]
  3642. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3643. # embed_dropout_rate = hparams["embed_dropout"]
  3644. self.gguf_writer.add_embedding_length(embed_dim)
  3645. self.gguf_writer.add_head_count(num_heads)
  3646. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3647. self.gguf_writer.add_context_length(max_position_embeddings)
  3648. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3649. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3650. self.gguf_writer.add_block_count(num_layers)
  3651. self.gguf_writer.add_file_type(self.ftype)
  3652. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3653. self.gguf_writer.add_rope_freq_base(rope_theta)
  3654. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3655. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3656. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3657. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3658. if hparams["rope_scaling"].get("type") == "linear":
  3659. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3660. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3661. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3662. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3663. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3664. base = self.hparams.get("rope_theta", 10000.0)
  3665. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3666. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3667. factor = rope_scaling.get("factor", 8.0)
  3668. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3669. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3670. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3671. low_freq_wavelen = old_context_len / low_freq_factor
  3672. high_freq_wavelen = old_context_len / high_freq_factor
  3673. assert low_freq_wavelen != high_freq_wavelen
  3674. rope_factors = []
  3675. for freq in freqs:
  3676. wavelen = 2 * math.pi / freq
  3677. if wavelen < high_freq_wavelen:
  3678. rope_factors.append(1)
  3679. elif wavelen > low_freq_wavelen:
  3680. rope_factors.append(factor)
  3681. else:
  3682. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3683. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3684. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3685. @Model.register("GraniteForCausalLM")
  3686. class GraniteModel(LlamaModel):
  3687. """Conversion for IBM's GraniteForCausalLM"""
  3688. model_arch = gguf.MODEL_ARCH.GRANITE
  3689. def set_gguf_parameters(self):
  3690. """Granite uses standard llama parameters with the following differences:
  3691. - No head_dim support
  3692. - New multiplier params:
  3693. - attention_scale
  3694. - embedding_scale
  3695. - residual_scale
  3696. - logits_scaling
  3697. """
  3698. if head_dim := self.hparams.pop("head_dim", None):
  3699. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3700. super().set_gguf_parameters()
  3701. # NOTE: Convert _multiplier params to _scale params for naming
  3702. # consistency
  3703. if attention_scale := self.hparams.get("attention_multiplier"):
  3704. self.gguf_writer.add_attention_scale(attention_scale)
  3705. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3706. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3707. self.gguf_writer.add_embedding_scale(embedding_scale)
  3708. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3709. if residual_scale := self.hparams.get("residual_multiplier"):
  3710. self.gguf_writer.add_residual_scale(residual_scale)
  3711. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3712. if logits_scale := self.hparams.get("logits_scaling"):
  3713. self.gguf_writer.add_logit_scale(logits_scale)
  3714. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3715. @Model.register("GraniteMoeForCausalLM")
  3716. class GraniteMoeModel(GraniteModel):
  3717. """Conversion for IBM's GraniteMoeForCausalLM"""
  3718. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3720. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3721. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3722. the hidden size that is then split during forward. To keep compatibility
  3723. with existing mixtral support, we pull them apart here.
  3724. """
  3725. if name.endswith("block_sparse_moe.input_linear.weight"):
  3726. ffn_dim = self.hparams["intermediate_size"]
  3727. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3728. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3729. return [
  3730. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3731. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3732. ]
  3733. return super().modify_tensors(data_torch, name, bid)
  3734. @Model.register("ChameleonForConditionalGeneration")
  3735. @Model.register("ChameleonForCausalLM") # obsolete
  3736. class ChameleonModel(Model):
  3737. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3738. def set_gguf_parameters(self):
  3739. super().set_gguf_parameters()
  3740. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3741. def set_vocab(self):
  3742. self._set_vocab_gpt2()
  3743. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3744. # ignore image tokenizer for now
  3745. # TODO: remove this once image support is implemented for Chameleon
  3746. if name.startswith("model.vqmodel"):
  3747. return []
  3748. n_head = self.hparams["num_attention_heads"]
  3749. n_kv_head = self.hparams.get("num_key_value_heads")
  3750. hidden_dim = self.hparams.get("hidden_size")
  3751. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3752. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3753. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3754. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3755. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3756. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3757. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3758. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3759. return [(self.map_tensor_name(name), data_torch)]
  3760. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3761. @staticmethod
  3762. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3763. head_dim = hidden_dim // n_heads
  3764. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3765. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3766. return data_torch
  3767. ###### CONVERSION LOGIC ######
  3768. # tree of lazy tensors
  3769. class LazyTorchTensor(gguf.LazyBase):
  3770. _tensor_type = torch.Tensor
  3771. # to keep the type-checker happy
  3772. dtype: torch.dtype
  3773. shape: torch.Size
  3774. # only used when converting a torch.Tensor to a np.ndarray
  3775. _dtype_map: dict[torch.dtype, type] = {
  3776. torch.float16: np.float16,
  3777. torch.float32: np.float32,
  3778. }
  3779. # used for safetensors slices
  3780. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3781. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3782. _dtype_str_map: dict[str, torch.dtype] = {
  3783. "F64": torch.float64,
  3784. "F32": torch.float32,
  3785. "BF16": torch.bfloat16,
  3786. "F16": torch.float16,
  3787. # "U64": torch.uint64,
  3788. "I64": torch.int64,
  3789. # "U32": torch.uint32,
  3790. "I32": torch.int32,
  3791. # "U16": torch.uint16,
  3792. "I16": torch.int16,
  3793. "U8": torch.uint8,
  3794. "I8": torch.int8,
  3795. "BOOL": torch.bool,
  3796. "F8_E4M3": torch.float8_e4m3fn,
  3797. "F8_E5M2": torch.float8_e5m2,
  3798. }
  3799. def numpy(self) -> gguf.LazyNumpyTensor:
  3800. dtype = self._dtype_map[self.dtype]
  3801. return gguf.LazyNumpyTensor(
  3802. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3803. args=(self,),
  3804. func=(lambda s: s.numpy())
  3805. )
  3806. @classmethod
  3807. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3808. return torch.empty(size=shape, dtype=dtype, device="meta")
  3809. @classmethod
  3810. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3811. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3812. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3813. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3814. return cast(torch.Tensor, lazy)
  3815. @classmethod
  3816. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3817. del types # unused
  3818. if kwargs is None:
  3819. kwargs = {}
  3820. if func is torch.Tensor.numpy:
  3821. return args[0].numpy()
  3822. return cls._wrap_fn(func)(*args, **kwargs)
  3823. def parse_args() -> argparse.Namespace:
  3824. parser = argparse.ArgumentParser(
  3825. description="Convert a huggingface model to a GGML compatible file")
  3826. parser.add_argument(
  3827. "--vocab-only", action="store_true",
  3828. help="extract only the vocab",
  3829. )
  3830. parser.add_argument(
  3831. "--outfile", type=Path,
  3832. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3833. )
  3834. parser.add_argument(
  3835. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3836. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3837. )
  3838. parser.add_argument(
  3839. "--bigendian", action="store_true",
  3840. help="model is executed on big endian machine",
  3841. )
  3842. parser.add_argument(
  3843. "model", type=Path,
  3844. help="directory containing model file",
  3845. )
  3846. parser.add_argument(
  3847. "--use-temp-file", action="store_true",
  3848. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3849. )
  3850. parser.add_argument(
  3851. "--no-lazy", action="store_true",
  3852. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3853. )
  3854. parser.add_argument(
  3855. "--model-name", type=str, default=None,
  3856. help="name of the model",
  3857. )
  3858. parser.add_argument(
  3859. "--verbose", action="store_true",
  3860. help="increase output verbosity",
  3861. )
  3862. parser.add_argument(
  3863. "--split-max-tensors", type=int, default=0,
  3864. help="max tensors in each split",
  3865. )
  3866. parser.add_argument(
  3867. "--split-max-size", type=str, default="0",
  3868. help="max size per split N(M|G)",
  3869. )
  3870. parser.add_argument(
  3871. "--dry-run", action="store_true",
  3872. help="only print out a split plan and exit, without writing any new files",
  3873. )
  3874. parser.add_argument(
  3875. "--no-tensor-first-split", action="store_true",
  3876. help="do not add tensors to the first split (disabled by default)"
  3877. )
  3878. parser.add_argument(
  3879. "--metadata", type=Path,
  3880. help="Specify the path for an authorship metadata override file"
  3881. )
  3882. return parser.parse_args()
  3883. def split_str_to_n_bytes(split_str: str) -> int:
  3884. if split_str.endswith("K"):
  3885. n = int(split_str[:-1]) * 1000
  3886. elif split_str.endswith("M"):
  3887. n = int(split_str[:-1]) * 1000 * 1000
  3888. elif split_str.endswith("G"):
  3889. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3890. elif split_str.isnumeric():
  3891. n = int(split_str)
  3892. else:
  3893. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3894. if n < 0:
  3895. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3896. return n
  3897. def main() -> None:
  3898. args = parse_args()
  3899. if args.verbose:
  3900. logging.basicConfig(level=logging.DEBUG)
  3901. else:
  3902. logging.basicConfig(level=logging.INFO)
  3903. dir_model = args.model
  3904. if not dir_model.is_dir():
  3905. logger.error(f'Error: {args.model} is not a directory')
  3906. sys.exit(1)
  3907. ftype_map: dict[str, gguf.LlamaFileType] = {
  3908. "f32": gguf.LlamaFileType.ALL_F32,
  3909. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3910. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3911. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3912. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3913. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3914. "auto": gguf.LlamaFileType.GUESSED,
  3915. }
  3916. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3917. if args.use_temp_file and is_split:
  3918. logger.error("Error: Cannot use temp file when splitting")
  3919. sys.exit(1)
  3920. if args.outfile is not None:
  3921. fname_out = args.outfile
  3922. else:
  3923. fname_out = dir_model
  3924. logger.info(f"Loading model: {dir_model.name}")
  3925. hparams = Model.load_hparams(dir_model)
  3926. with torch.inference_mode():
  3927. output_type = ftype_map[args.outtype]
  3928. model_architecture = hparams["architectures"][0]
  3929. try:
  3930. model_class = Model.from_model_architecture(model_architecture)
  3931. except NotImplementedError:
  3932. logger.error(f"Model {model_architecture} is not supported")
  3933. sys.exit(1)
  3934. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3935. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3936. eager=args.no_lazy,
  3937. metadata_override=args.metadata, model_name=args.model_name,
  3938. split_max_tensors=args.split_max_tensors,
  3939. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3940. small_first_shard=args.no_tensor_first_split)
  3941. if args.vocab_only:
  3942. logger.info("Exporting model vocab...")
  3943. model_instance.write_vocab()
  3944. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3945. else:
  3946. logger.info("Exporting model...")
  3947. model_instance.write()
  3948. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3949. logger.info(f"Model successfully exported to {out_path}")
  3950. if __name__ == '__main__':
  3951. main()