ggml.h 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdbool.h>
  212. #include <stddef.h>
  213. #include <stdint.h>
  214. #include <stdio.h>
  215. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  216. #define GGML_FILE_VERSION 1
  217. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  218. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  219. #define GGML_MAX_DIMS 4
  220. #define GGML_MAX_PARAMS 2048
  221. #define GGML_MAX_CONTEXTS 64
  222. #define GGML_MAX_SRC 10
  223. #ifndef GGML_MAX_NAME
  224. #define GGML_MAX_NAME 64
  225. #endif
  226. #define GGML_MAX_OP_PARAMS 64
  227. #define GGML_DEFAULT_N_THREADS 4
  228. #define GGML_DEFAULT_GRAPH_SIZE 2048
  229. #if UINTPTR_MAX == 0xFFFFFFFF
  230. #define GGML_MEM_ALIGN 4
  231. #else
  232. #define GGML_MEM_ALIGN 16
  233. #endif
  234. #define GGML_EXIT_SUCCESS 0
  235. #define GGML_EXIT_ABORTED 1
  236. #define GGUF_MAGIC "GGUF"
  237. #define GGUF_VERSION 3
  238. #define GGUF_DEFAULT_ALIGNMENT 32
  239. #define GGML_UNUSED(x) (void)(x)
  240. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  241. #define GGML_ASSERT(x) \
  242. do { \
  243. if (!(x)) { \
  244. fflush(stdout); \
  245. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  246. ggml_print_backtrace(); \
  247. abort(); \
  248. } \
  249. } while (0)
  250. #ifndef NDEBUG
  251. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  252. #elif defined(__GNUC__)
  253. #define GGML_UNREACHABLE() __builtin_unreachable()
  254. #elif defined(_MSC_VER)
  255. #define GGML_UNREACHABLE() __assume(0)
  256. #else
  257. #define GGML_UNREACHABLE() ((void) 0)
  258. #endif
  259. // used to copy the number of elements and stride in bytes of tensors into local variables.
  260. // main purpose is to reduce code duplication and improve readability.
  261. //
  262. // example:
  263. //
  264. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  265. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  266. //
  267. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  268. const type prefix##0 = (pointer)->array[0]; \
  269. GGML_UNUSED(prefix##0);
  270. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  271. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  272. const type prefix##1 = (pointer)->array[1]; \
  273. GGML_UNUSED(prefix##1);
  274. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  275. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  276. const type prefix##2 = (pointer)->array[2]; \
  277. GGML_UNUSED(prefix##2);
  278. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  279. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  280. const type prefix##3 = (pointer)->array[3]; \
  281. GGML_UNUSED(prefix##3);
  282. #define GGML_TENSOR_UNARY_OP_LOCALS \
  283. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  284. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  285. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  286. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  287. #define GGML_TENSOR_BINARY_OP_LOCALS \
  288. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  289. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  290. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  291. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  292. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  293. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  294. #ifdef __cplusplus
  295. extern "C" {
  296. #endif
  297. enum ggml_status {
  298. GGML_STATUS_ALLOC_FAILED = -2,
  299. GGML_STATUS_FAILED = -1,
  300. GGML_STATUS_SUCCESS = 0,
  301. GGML_STATUS_ABORTED = 1,
  302. };
  303. // get ggml_status name string
  304. GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
  305. // ieee 754-2008 half-precision float16
  306. // todo: make this not an integral type
  307. typedef uint16_t ggml_fp16_t;
  308. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  309. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  310. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  311. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  312. // google brain half-precision bfloat16
  313. typedef struct { uint16_t bits; } ggml_bf16_t;
  314. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  315. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  316. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  317. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  318. struct ggml_object;
  319. struct ggml_context;
  320. // NOTE: always add types at the end of the enum to keep backward compatibility
  321. enum ggml_type {
  322. GGML_TYPE_F32 = 0,
  323. GGML_TYPE_F16 = 1,
  324. GGML_TYPE_Q4_0 = 2,
  325. GGML_TYPE_Q4_1 = 3,
  326. // GGML_TYPE_Q4_2 = 4, support has been removed
  327. // GGML_TYPE_Q4_3 = 5, support has been removed
  328. GGML_TYPE_Q5_0 = 6,
  329. GGML_TYPE_Q5_1 = 7,
  330. GGML_TYPE_Q8_0 = 8,
  331. GGML_TYPE_Q8_1 = 9,
  332. GGML_TYPE_Q2_K = 10,
  333. GGML_TYPE_Q3_K = 11,
  334. GGML_TYPE_Q4_K = 12,
  335. GGML_TYPE_Q5_K = 13,
  336. GGML_TYPE_Q6_K = 14,
  337. GGML_TYPE_Q8_K = 15,
  338. GGML_TYPE_IQ2_XXS = 16,
  339. GGML_TYPE_IQ2_XS = 17,
  340. GGML_TYPE_IQ3_XXS = 18,
  341. GGML_TYPE_IQ1_S = 19,
  342. GGML_TYPE_IQ4_NL = 20,
  343. GGML_TYPE_IQ3_S = 21,
  344. GGML_TYPE_IQ2_S = 22,
  345. GGML_TYPE_IQ4_XS = 23,
  346. GGML_TYPE_I8 = 24,
  347. GGML_TYPE_I16 = 25,
  348. GGML_TYPE_I32 = 26,
  349. GGML_TYPE_I64 = 27,
  350. GGML_TYPE_F64 = 28,
  351. GGML_TYPE_IQ1_M = 29,
  352. GGML_TYPE_BF16 = 30,
  353. GGML_TYPE_COUNT,
  354. };
  355. // precision
  356. enum ggml_prec {
  357. GGML_PREC_DEFAULT,
  358. GGML_PREC_F32,
  359. };
  360. enum ggml_backend_type {
  361. GGML_BACKEND_TYPE_CPU = 0,
  362. GGML_BACKEND_TYPE_GPU = 10,
  363. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  364. };
  365. // model file types
  366. enum ggml_ftype {
  367. GGML_FTYPE_UNKNOWN = -1,
  368. GGML_FTYPE_ALL_F32 = 0,
  369. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  370. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  371. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  372. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  373. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  374. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  375. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  376. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  377. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  378. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  379. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  380. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  381. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  384. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  385. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  391. };
  392. // available tensor operations:
  393. enum ggml_op {
  394. GGML_OP_NONE = 0,
  395. GGML_OP_DUP,
  396. GGML_OP_ADD,
  397. GGML_OP_ADD1,
  398. GGML_OP_ACC,
  399. GGML_OP_SUB,
  400. GGML_OP_MUL,
  401. GGML_OP_DIV,
  402. GGML_OP_SQR,
  403. GGML_OP_SQRT,
  404. GGML_OP_LOG,
  405. GGML_OP_SUM,
  406. GGML_OP_SUM_ROWS,
  407. GGML_OP_MEAN,
  408. GGML_OP_ARGMAX,
  409. GGML_OP_REPEAT,
  410. GGML_OP_REPEAT_BACK,
  411. GGML_OP_CONCAT,
  412. GGML_OP_SILU_BACK,
  413. GGML_OP_NORM, // normalize
  414. GGML_OP_RMS_NORM,
  415. GGML_OP_RMS_NORM_BACK,
  416. GGML_OP_GROUP_NORM,
  417. GGML_OP_MUL_MAT,
  418. GGML_OP_MUL_MAT_ID,
  419. GGML_OP_OUT_PROD,
  420. GGML_OP_SCALE,
  421. GGML_OP_SET,
  422. GGML_OP_CPY,
  423. GGML_OP_CONT,
  424. GGML_OP_RESHAPE,
  425. GGML_OP_VIEW,
  426. GGML_OP_PERMUTE,
  427. GGML_OP_TRANSPOSE,
  428. GGML_OP_GET_ROWS,
  429. GGML_OP_GET_ROWS_BACK,
  430. GGML_OP_DIAG,
  431. GGML_OP_DIAG_MASK_INF,
  432. GGML_OP_DIAG_MASK_ZERO,
  433. GGML_OP_SOFT_MAX,
  434. GGML_OP_SOFT_MAX_BACK,
  435. GGML_OP_ROPE,
  436. GGML_OP_ROPE_BACK,
  437. GGML_OP_CLAMP,
  438. GGML_OP_CONV_TRANSPOSE_1D,
  439. GGML_OP_IM2COL,
  440. GGML_OP_CONV_TRANSPOSE_2D,
  441. GGML_OP_POOL_1D,
  442. GGML_OP_POOL_2D,
  443. GGML_OP_UPSCALE, // nearest interpolate
  444. GGML_OP_PAD,
  445. GGML_OP_ARANGE,
  446. GGML_OP_TIMESTEP_EMBEDDING,
  447. GGML_OP_ARGSORT,
  448. GGML_OP_LEAKY_RELU,
  449. GGML_OP_FLASH_ATTN_EXT,
  450. GGML_OP_FLASH_ATTN_BACK,
  451. GGML_OP_SSM_CONV,
  452. GGML_OP_SSM_SCAN,
  453. GGML_OP_WIN_PART,
  454. GGML_OP_WIN_UNPART,
  455. GGML_OP_GET_REL_POS,
  456. GGML_OP_ADD_REL_POS,
  457. GGML_OP_UNARY,
  458. GGML_OP_MAP_UNARY,
  459. GGML_OP_MAP_BINARY,
  460. GGML_OP_MAP_CUSTOM1_F32,
  461. GGML_OP_MAP_CUSTOM2_F32,
  462. GGML_OP_MAP_CUSTOM3_F32,
  463. GGML_OP_MAP_CUSTOM1,
  464. GGML_OP_MAP_CUSTOM2,
  465. GGML_OP_MAP_CUSTOM3,
  466. GGML_OP_CROSS_ENTROPY_LOSS,
  467. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  468. GGML_OP_COUNT,
  469. };
  470. enum ggml_unary_op {
  471. GGML_UNARY_OP_ABS,
  472. GGML_UNARY_OP_SGN,
  473. GGML_UNARY_OP_NEG,
  474. GGML_UNARY_OP_STEP,
  475. GGML_UNARY_OP_TANH,
  476. GGML_UNARY_OP_ELU,
  477. GGML_UNARY_OP_RELU,
  478. GGML_UNARY_OP_SIGMOID,
  479. GGML_UNARY_OP_GELU,
  480. GGML_UNARY_OP_GELU_QUICK,
  481. GGML_UNARY_OP_SILU,
  482. GGML_UNARY_OP_HARDSWISH,
  483. GGML_UNARY_OP_HARDSIGMOID,
  484. GGML_UNARY_OP_COUNT,
  485. };
  486. enum ggml_object_type {
  487. GGML_OBJECT_TYPE_TENSOR,
  488. GGML_OBJECT_TYPE_GRAPH,
  489. GGML_OBJECT_TYPE_WORK_BUFFER
  490. };
  491. enum ggml_log_level {
  492. GGML_LOG_LEVEL_ERROR = 2,
  493. GGML_LOG_LEVEL_WARN = 3,
  494. GGML_LOG_LEVEL_INFO = 4,
  495. GGML_LOG_LEVEL_DEBUG = 5
  496. };
  497. enum ggml_tensor_flag {
  498. GGML_TENSOR_FLAG_INPUT = 1,
  499. GGML_TENSOR_FLAG_OUTPUT = 2,
  500. GGML_TENSOR_FLAG_PARAM = 4,
  501. };
  502. // ggml object
  503. struct ggml_object {
  504. size_t offs;
  505. size_t size;
  506. struct ggml_object * next;
  507. enum ggml_object_type type;
  508. char padding[4];
  509. };
  510. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  511. // n-dimensional tensor
  512. struct ggml_tensor {
  513. enum ggml_type type;
  514. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  515. struct ggml_backend_buffer * buffer;
  516. int64_t ne[GGML_MAX_DIMS]; // number of elements
  517. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  518. // nb[0] = ggml_type_size(type)
  519. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  520. // nb[i] = nb[i-1] * ne[i-1]
  521. // compute data
  522. enum ggml_op op;
  523. // op params - allocated as int32_t for alignment
  524. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  525. int32_t flags;
  526. struct ggml_tensor * grad;
  527. struct ggml_tensor * src[GGML_MAX_SRC];
  528. // performance
  529. int perf_runs;
  530. int64_t perf_cycles;
  531. int64_t perf_time_us;
  532. struct ggml_tensor * view_src;
  533. size_t view_offs;
  534. void * data;
  535. char name[GGML_MAX_NAME];
  536. void * extra; // extra things e.g. for ggml-cuda.cu
  537. char padding[8];
  538. };
  539. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  540. // Abort callback
  541. // If not NULL, called before ggml computation
  542. // If it returns true, the computation is aborted
  543. typedef bool (*ggml_abort_callback)(void * data);
  544. // the compute plan that needs to be prepared for ggml_graph_compute()
  545. // since https://github.com/ggerganov/ggml/issues/287
  546. struct ggml_cplan {
  547. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  548. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  549. int n_threads;
  550. // abort ggml_graph_compute when true
  551. ggml_abort_callback abort_callback;
  552. void * abort_callback_data;
  553. };
  554. enum ggml_cgraph_eval_order {
  555. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  556. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  557. GGML_CGRAPH_EVAL_ORDER_COUNT
  558. };
  559. struct ggml_hash_set {
  560. size_t size;
  561. struct ggml_tensor ** keys;
  562. };
  563. // computation graph
  564. struct ggml_cgraph {
  565. int size;
  566. int n_nodes;
  567. int n_leafs;
  568. struct ggml_tensor ** nodes;
  569. struct ggml_tensor ** grads;
  570. struct ggml_tensor ** leafs;
  571. struct ggml_hash_set visited_hash_table;
  572. enum ggml_cgraph_eval_order order;
  573. // performance
  574. int perf_runs;
  575. int64_t perf_cycles;
  576. int64_t perf_time_us;
  577. };
  578. // scratch buffer
  579. struct ggml_scratch {
  580. size_t offs;
  581. size_t size;
  582. void * data;
  583. };
  584. struct ggml_init_params {
  585. // memory pool
  586. size_t mem_size; // bytes
  587. void * mem_buffer; // if NULL, memory will be allocated internally
  588. bool no_alloc; // don't allocate memory for the tensor data
  589. };
  590. // compute types
  591. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  592. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  593. enum ggml_task_type {
  594. GGML_TASK_TYPE_INIT = 0,
  595. GGML_TASK_TYPE_COMPUTE,
  596. GGML_TASK_TYPE_FINALIZE,
  597. };
  598. struct ggml_compute_params {
  599. enum ggml_task_type type;
  600. // ith = thread index, nth = number of threads
  601. int ith, nth;
  602. // work buffer for all threads
  603. size_t wsize;
  604. void * wdata;
  605. };
  606. // numa strategies
  607. enum ggml_numa_strategy {
  608. GGML_NUMA_STRATEGY_DISABLED = 0,
  609. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  610. GGML_NUMA_STRATEGY_ISOLATE = 2,
  611. GGML_NUMA_STRATEGY_NUMACTL = 3,
  612. GGML_NUMA_STRATEGY_MIRROR = 4,
  613. GGML_NUMA_STRATEGY_COUNT
  614. };
  615. //
  616. // GUID
  617. //
  618. // GUID types
  619. typedef uint8_t ggml_guid[16];
  620. typedef ggml_guid * ggml_guid_t;
  621. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  622. // misc
  623. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  624. GGML_API int64_t ggml_time_ms(void);
  625. GGML_API int64_t ggml_time_us(void);
  626. GGML_API int64_t ggml_cycles(void);
  627. GGML_API int64_t ggml_cycles_per_ms(void);
  628. GGML_API void ggml_print_backtrace(void);
  629. // accepts a UTF-8 path, even on Windows
  630. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  631. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  632. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  633. GGML_API void ggml_print_object (const struct ggml_object * obj);
  634. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  635. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  636. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  637. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  638. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  639. GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
  640. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  641. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  642. GGML_DEPRECATED(
  643. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  644. "use ggml_row_size() instead");
  645. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  646. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  647. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  648. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  649. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  650. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  651. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  652. // TODO: temporary until model loading of ggml examples is refactored
  653. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  654. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  655. GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  656. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  657. GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
  658. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  659. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  660. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  661. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  662. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  663. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  664. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  665. // use this to compute the memory overhead of a tensor
  666. GGML_API size_t ggml_tensor_overhead(void);
  667. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  668. // main
  669. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  670. GGML_API void ggml_free(struct ggml_context * ctx);
  671. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  672. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  673. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  674. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  675. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  676. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  677. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  678. GGML_API struct ggml_tensor * ggml_new_tensor(
  679. struct ggml_context * ctx,
  680. enum ggml_type type,
  681. int n_dims,
  682. const int64_t *ne);
  683. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  684. struct ggml_context * ctx,
  685. enum ggml_type type,
  686. int64_t ne0);
  687. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  688. struct ggml_context * ctx,
  689. enum ggml_type type,
  690. int64_t ne0,
  691. int64_t ne1);
  692. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  693. struct ggml_context * ctx,
  694. enum ggml_type type,
  695. int64_t ne0,
  696. int64_t ne1,
  697. int64_t ne2);
  698. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  699. struct ggml_context * ctx,
  700. enum ggml_type type,
  701. int64_t ne0,
  702. int64_t ne1,
  703. int64_t ne2,
  704. int64_t ne3);
  705. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  706. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  707. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  708. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  709. // Context tensor enumeration and lookup
  710. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  711. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  712. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  713. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  714. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  715. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  716. // Converts a flat index into coordinates
  717. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  718. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  719. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  720. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  721. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  722. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  723. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  724. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  725. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  726. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  727. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  728. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  729. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  730. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  731. GGML_ATTRIBUTE_FORMAT(2, 3)
  732. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  733. //
  734. // operations on tensors with backpropagation
  735. //
  736. GGML_API struct ggml_tensor * ggml_dup(
  737. struct ggml_context * ctx,
  738. struct ggml_tensor * a);
  739. // in-place, returns view(a)
  740. GGML_API struct ggml_tensor * ggml_dup_inplace(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a);
  743. GGML_API struct ggml_tensor * ggml_add(
  744. struct ggml_context * ctx,
  745. struct ggml_tensor * a,
  746. struct ggml_tensor * b);
  747. GGML_API struct ggml_tensor * ggml_add_inplace(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a,
  750. struct ggml_tensor * b);
  751. GGML_API struct ggml_tensor * ggml_add_cast(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a,
  754. struct ggml_tensor * b,
  755. enum ggml_type type);
  756. GGML_API struct ggml_tensor * ggml_add1(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a,
  759. struct ggml_tensor * b);
  760. GGML_API struct ggml_tensor * ggml_add1_inplace(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a,
  763. struct ggml_tensor * b);
  764. // dst = a
  765. // view(dst, nb1, nb2, nb3, offset) += b
  766. // return dst
  767. GGML_API struct ggml_tensor * ggml_acc(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a,
  770. struct ggml_tensor * b,
  771. size_t nb1,
  772. size_t nb2,
  773. size_t nb3,
  774. size_t offset);
  775. GGML_API struct ggml_tensor * ggml_acc_inplace(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a,
  778. struct ggml_tensor * b,
  779. size_t nb1,
  780. size_t nb2,
  781. size_t nb3,
  782. size_t offset);
  783. GGML_API struct ggml_tensor * ggml_sub(
  784. struct ggml_context * ctx,
  785. struct ggml_tensor * a,
  786. struct ggml_tensor * b);
  787. GGML_API struct ggml_tensor * ggml_sub_inplace(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a,
  790. struct ggml_tensor * b);
  791. GGML_API struct ggml_tensor * ggml_mul(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a,
  794. struct ggml_tensor * b);
  795. GGML_API struct ggml_tensor * ggml_mul_inplace(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a,
  798. struct ggml_tensor * b);
  799. GGML_API struct ggml_tensor * ggml_div(
  800. struct ggml_context * ctx,
  801. struct ggml_tensor * a,
  802. struct ggml_tensor * b);
  803. GGML_API struct ggml_tensor * ggml_div_inplace(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a,
  806. struct ggml_tensor * b);
  807. GGML_API struct ggml_tensor * ggml_sqr(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a);
  810. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a);
  813. GGML_API struct ggml_tensor * ggml_sqrt(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a);
  816. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a);
  819. GGML_API struct ggml_tensor * ggml_log(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a);
  822. GGML_API struct ggml_tensor * ggml_log_inplace(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a);
  825. // return scalar
  826. GGML_API struct ggml_tensor * ggml_sum(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a);
  829. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  830. GGML_API struct ggml_tensor * ggml_sum_rows(
  831. struct ggml_context * ctx,
  832. struct ggml_tensor * a);
  833. // mean along rows
  834. GGML_API struct ggml_tensor * ggml_mean(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. // argmax along rows
  838. GGML_API struct ggml_tensor * ggml_argmax(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a);
  841. // if a is the same shape as b, and a is not parameter, return a
  842. // otherwise, return a new tensor: repeat(a) to fit in b
  843. GGML_API struct ggml_tensor * ggml_repeat(
  844. struct ggml_context * ctx,
  845. struct ggml_tensor * a,
  846. struct ggml_tensor * b);
  847. // sums repetitions in a into shape of b
  848. GGML_API struct ggml_tensor * ggml_repeat_back(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a,
  851. struct ggml_tensor * b);
  852. // concat a and b on dim 2
  853. // used in stable-diffusion
  854. GGML_API struct ggml_tensor * ggml_concat(
  855. struct ggml_context * ctx,
  856. struct ggml_tensor * a,
  857. struct ggml_tensor * b);
  858. GGML_API struct ggml_tensor * ggml_abs(
  859. struct ggml_context * ctx,
  860. struct ggml_tensor * a);
  861. GGML_API struct ggml_tensor * ggml_abs_inplace(
  862. struct ggml_context * ctx,
  863. struct ggml_tensor * a);
  864. GGML_API struct ggml_tensor * ggml_sgn(
  865. struct ggml_context * ctx,
  866. struct ggml_tensor * a);
  867. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a);
  870. GGML_API struct ggml_tensor * ggml_neg(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a);
  873. GGML_API struct ggml_tensor * ggml_neg_inplace(
  874. struct ggml_context * ctx,
  875. struct ggml_tensor * a);
  876. GGML_API struct ggml_tensor * ggml_step(
  877. struct ggml_context * ctx,
  878. struct ggml_tensor * a);
  879. GGML_API struct ggml_tensor * ggml_step_inplace(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a);
  882. GGML_API struct ggml_tensor * ggml_tanh(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a);
  885. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  886. struct ggml_context * ctx,
  887. struct ggml_tensor * a);
  888. GGML_API struct ggml_tensor * ggml_elu(
  889. struct ggml_context * ctx,
  890. struct ggml_tensor * a);
  891. GGML_API struct ggml_tensor * ggml_elu_inplace(
  892. struct ggml_context * ctx,
  893. struct ggml_tensor * a);
  894. GGML_API struct ggml_tensor * ggml_relu(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a);
  897. GGML_API struct ggml_tensor * ggml_leaky_relu(
  898. struct ggml_context * ctx,
  899. struct ggml_tensor * a, float negative_slope, bool inplace);
  900. GGML_API struct ggml_tensor * ggml_relu_inplace(
  901. struct ggml_context * ctx,
  902. struct ggml_tensor * a);
  903. GGML_API struct ggml_tensor * ggml_sigmoid(
  904. struct ggml_context * ctx,
  905. struct ggml_tensor * a);
  906. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  907. struct ggml_context * ctx,
  908. struct ggml_tensor * a);
  909. GGML_API struct ggml_tensor * ggml_gelu(
  910. struct ggml_context * ctx,
  911. struct ggml_tensor * a);
  912. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a);
  915. GGML_API struct ggml_tensor * ggml_gelu_quick(
  916. struct ggml_context * ctx,
  917. struct ggml_tensor * a);
  918. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a);
  921. GGML_API struct ggml_tensor * ggml_silu(
  922. struct ggml_context * ctx,
  923. struct ggml_tensor * a);
  924. GGML_API struct ggml_tensor * ggml_silu_inplace(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a);
  927. // a - x
  928. // b - dy
  929. GGML_API struct ggml_tensor * ggml_silu_back(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a,
  932. struct ggml_tensor * b);
  933. // hardswish(x) = x * relu6(x + 3) / 6
  934. GGML_API struct ggml_tensor * ggml_hardswish(
  935. struct ggml_context * ctx,
  936. struct ggml_tensor * a);
  937. // hardsigmoid(x) = relu6(x + 3) / 6
  938. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  939. struct ggml_context * ctx,
  940. struct ggml_tensor * a);
  941. // normalize along rows
  942. GGML_API struct ggml_tensor * ggml_norm(
  943. struct ggml_context * ctx,
  944. struct ggml_tensor * a,
  945. float eps);
  946. GGML_API struct ggml_tensor * ggml_norm_inplace(
  947. struct ggml_context * ctx,
  948. struct ggml_tensor * a,
  949. float eps);
  950. GGML_API struct ggml_tensor * ggml_rms_norm(
  951. struct ggml_context * ctx,
  952. struct ggml_tensor * a,
  953. float eps);
  954. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  955. struct ggml_context * ctx,
  956. struct ggml_tensor * a,
  957. float eps);
  958. // group normalize along ne0*ne1*n_groups
  959. // used in stable-diffusion
  960. // TODO: eps is hardcoded to 1e-6 for now
  961. GGML_API struct ggml_tensor * ggml_group_norm(
  962. struct ggml_context * ctx,
  963. struct ggml_tensor * a,
  964. int n_groups);
  965. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  966. struct ggml_context * ctx,
  967. struct ggml_tensor * a,
  968. int n_groups);
  969. // a - x
  970. // b - dy
  971. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  972. struct ggml_context * ctx,
  973. struct ggml_tensor * a,
  974. struct ggml_tensor * b,
  975. float eps);
  976. // A: k columns, n rows => [ne03, ne02, n, k]
  977. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  978. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  979. GGML_API struct ggml_tensor * ggml_mul_mat(
  980. struct ggml_context * ctx,
  981. struct ggml_tensor * a,
  982. struct ggml_tensor * b);
  983. // change the precision of a matrix multiplication
  984. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  985. GGML_API void ggml_mul_mat_set_prec(
  986. struct ggml_tensor * a,
  987. enum ggml_prec prec);
  988. // indirect matrix multiplication
  989. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  990. struct ggml_context * ctx,
  991. struct ggml_tensor * as,
  992. struct ggml_tensor * b,
  993. struct ggml_tensor * ids);
  994. // A: m columns, n rows,
  995. // B: p columns, n rows,
  996. // result is m columns, p rows
  997. GGML_API struct ggml_tensor * ggml_out_prod(
  998. struct ggml_context * ctx,
  999. struct ggml_tensor * a,
  1000. struct ggml_tensor * b);
  1001. //
  1002. // operations on tensors without backpropagation
  1003. //
  1004. GGML_API struct ggml_tensor * ggml_scale(
  1005. struct ggml_context * ctx,
  1006. struct ggml_tensor * a,
  1007. float s);
  1008. // in-place, returns view(a)
  1009. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1010. struct ggml_context * ctx,
  1011. struct ggml_tensor * a,
  1012. float s);
  1013. // b -> view(a,offset,nb1,nb2,3), return modified a
  1014. GGML_API struct ggml_tensor * ggml_set(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a,
  1017. struct ggml_tensor * b,
  1018. size_t nb1,
  1019. size_t nb2,
  1020. size_t nb3,
  1021. size_t offset);
  1022. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1023. GGML_API struct ggml_tensor * ggml_set_inplace(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. struct ggml_tensor * b,
  1027. size_t nb1,
  1028. size_t nb2,
  1029. size_t nb3,
  1030. size_t offset);
  1031. GGML_API struct ggml_tensor * ggml_set_1d(
  1032. struct ggml_context * ctx,
  1033. struct ggml_tensor * a,
  1034. struct ggml_tensor * b,
  1035. size_t offset);
  1036. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1037. struct ggml_context * ctx,
  1038. struct ggml_tensor * a,
  1039. struct ggml_tensor * b,
  1040. size_t offset);
  1041. // b -> view(a,offset,nb1,nb2,3), return modified a
  1042. GGML_API struct ggml_tensor * ggml_set_2d(
  1043. struct ggml_context * ctx,
  1044. struct ggml_tensor * a,
  1045. struct ggml_tensor * b,
  1046. size_t nb1,
  1047. size_t offset);
  1048. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1049. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. struct ggml_tensor * b,
  1053. size_t nb1,
  1054. size_t offset);
  1055. // a -> b, return view(b)
  1056. GGML_API struct ggml_tensor * ggml_cpy(
  1057. struct ggml_context * ctx,
  1058. struct ggml_tensor * a,
  1059. struct ggml_tensor * b);
  1060. GGML_API struct ggml_tensor * ggml_cast(
  1061. struct ggml_context * ctx,
  1062. struct ggml_tensor * a,
  1063. enum ggml_type type);
  1064. // make contiguous
  1065. GGML_API struct ggml_tensor * ggml_cont(
  1066. struct ggml_context * ctx,
  1067. struct ggml_tensor * a);
  1068. // make contiguous, with new shape
  1069. GGML_API struct ggml_tensor * ggml_cont_1d(
  1070. struct ggml_context * ctx,
  1071. struct ggml_tensor * a,
  1072. int64_t ne0);
  1073. GGML_API struct ggml_tensor * ggml_cont_2d(
  1074. struct ggml_context * ctx,
  1075. struct ggml_tensor * a,
  1076. int64_t ne0,
  1077. int64_t ne1);
  1078. GGML_API struct ggml_tensor * ggml_cont_3d(
  1079. struct ggml_context * ctx,
  1080. struct ggml_tensor * a,
  1081. int64_t ne0,
  1082. int64_t ne1,
  1083. int64_t ne2);
  1084. GGML_API struct ggml_tensor * ggml_cont_4d(
  1085. struct ggml_context * ctx,
  1086. struct ggml_tensor * a,
  1087. int64_t ne0,
  1088. int64_t ne1,
  1089. int64_t ne2,
  1090. int64_t ne3);
  1091. // return view(a), b specifies the new shape
  1092. // TODO: when we start computing gradient, make a copy instead of view
  1093. GGML_API struct ggml_tensor * ggml_reshape(
  1094. struct ggml_context * ctx,
  1095. struct ggml_tensor * a,
  1096. struct ggml_tensor * b);
  1097. // return view(a)
  1098. // TODO: when we start computing gradient, make a copy instead of view
  1099. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1100. struct ggml_context * ctx,
  1101. struct ggml_tensor * a,
  1102. int64_t ne0);
  1103. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1104. struct ggml_context * ctx,
  1105. struct ggml_tensor * a,
  1106. int64_t ne0,
  1107. int64_t ne1);
  1108. // return view(a)
  1109. // TODO: when we start computing gradient, make a copy instead of view
  1110. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1111. struct ggml_context * ctx,
  1112. struct ggml_tensor * a,
  1113. int64_t ne0,
  1114. int64_t ne1,
  1115. int64_t ne2);
  1116. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1117. struct ggml_context * ctx,
  1118. struct ggml_tensor * a,
  1119. int64_t ne0,
  1120. int64_t ne1,
  1121. int64_t ne2,
  1122. int64_t ne3);
  1123. // offset in bytes
  1124. GGML_API struct ggml_tensor * ggml_view_1d(
  1125. struct ggml_context * ctx,
  1126. struct ggml_tensor * a,
  1127. int64_t ne0,
  1128. size_t offset);
  1129. GGML_API struct ggml_tensor * ggml_view_2d(
  1130. struct ggml_context * ctx,
  1131. struct ggml_tensor * a,
  1132. int64_t ne0,
  1133. int64_t ne1,
  1134. size_t nb1, // row stride in bytes
  1135. size_t offset);
  1136. GGML_API struct ggml_tensor * ggml_view_3d(
  1137. struct ggml_context * ctx,
  1138. struct ggml_tensor * a,
  1139. int64_t ne0,
  1140. int64_t ne1,
  1141. int64_t ne2,
  1142. size_t nb1, // row stride in bytes
  1143. size_t nb2, // slice stride in bytes
  1144. size_t offset);
  1145. GGML_API struct ggml_tensor * ggml_view_4d(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. int64_t ne0,
  1149. int64_t ne1,
  1150. int64_t ne2,
  1151. int64_t ne3,
  1152. size_t nb1, // row stride in bytes
  1153. size_t nb2, // slice stride in bytes
  1154. size_t nb3,
  1155. size_t offset);
  1156. GGML_API struct ggml_tensor * ggml_permute(
  1157. struct ggml_context * ctx,
  1158. struct ggml_tensor * a,
  1159. int axis0,
  1160. int axis1,
  1161. int axis2,
  1162. int axis3);
  1163. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1164. GGML_API struct ggml_tensor * ggml_transpose(
  1165. struct ggml_context * ctx,
  1166. struct ggml_tensor * a);
  1167. // supports 3D: a->ne[2] == b->ne[1]
  1168. GGML_API struct ggml_tensor * ggml_get_rows(
  1169. struct ggml_context * ctx,
  1170. struct ggml_tensor * a,
  1171. struct ggml_tensor * b);
  1172. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1173. struct ggml_context * ctx,
  1174. struct ggml_tensor * a,
  1175. struct ggml_tensor * b,
  1176. struct ggml_tensor * c);
  1177. GGML_API struct ggml_tensor * ggml_diag(
  1178. struct ggml_context * ctx,
  1179. struct ggml_tensor * a);
  1180. // set elements above the diagonal to -INF
  1181. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1182. struct ggml_context * ctx,
  1183. struct ggml_tensor * a,
  1184. int n_past);
  1185. // in-place, returns view(a)
  1186. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1187. struct ggml_context * ctx,
  1188. struct ggml_tensor * a,
  1189. int n_past);
  1190. // set elements above the diagonal to 0
  1191. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1192. struct ggml_context * ctx,
  1193. struct ggml_tensor * a,
  1194. int n_past);
  1195. // in-place, returns view(a)
  1196. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1197. struct ggml_context * ctx,
  1198. struct ggml_tensor * a,
  1199. int n_past);
  1200. GGML_API struct ggml_tensor * ggml_soft_max(
  1201. struct ggml_context * ctx,
  1202. struct ggml_tensor * a);
  1203. // in-place, returns view(a)
  1204. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1205. struct ggml_context * ctx,
  1206. struct ggml_tensor * a);
  1207. // fused soft_max(a*scale + mask*(ALiBi slope))
  1208. // mask is optional
  1209. // max_bias = 0.0f for no ALiBi
  1210. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1211. struct ggml_context * ctx,
  1212. struct ggml_tensor * a,
  1213. struct ggml_tensor * mask,
  1214. float scale,
  1215. float max_bias);
  1216. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1217. struct ggml_context * ctx,
  1218. struct ggml_tensor * a,
  1219. struct ggml_tensor * b);
  1220. // in-place, returns view(a)
  1221. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1222. struct ggml_context * ctx,
  1223. struct ggml_tensor * a,
  1224. struct ggml_tensor * b);
  1225. // rotary position embedding
  1226. // if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
  1227. // if mode & 2 == 1, GPT-NeoX style
  1228. // if mode & 4 == 1, ChatGLM style
  1229. //
  1230. // b is an int32 vector with size a->ne[2], it contains the positions
  1231. // c is freq factors (e.g. phi3-128k), (optional)
  1232. GGML_API struct ggml_tensor * ggml_rope(
  1233. struct ggml_context * ctx,
  1234. struct ggml_tensor * a,
  1235. struct ggml_tensor * b,
  1236. int n_dims,
  1237. int mode,
  1238. int n_ctx);
  1239. // in-place, returns view(a)
  1240. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1241. struct ggml_context * ctx,
  1242. struct ggml_tensor * a,
  1243. struct ggml_tensor * b,
  1244. int n_dims,
  1245. int mode,
  1246. int n_ctx);
  1247. // custom RoPE
  1248. GGML_API struct ggml_tensor * ggml_rope_ext(
  1249. struct ggml_context * ctx,
  1250. struct ggml_tensor * a,
  1251. struct ggml_tensor * b,
  1252. struct ggml_tensor * c,
  1253. int n_dims,
  1254. int mode,
  1255. int n_ctx,
  1256. int n_orig_ctx,
  1257. float freq_base,
  1258. float freq_scale,
  1259. float ext_factor,
  1260. float attn_factor,
  1261. float beta_fast,
  1262. float beta_slow);
  1263. // in-place, returns view(a)
  1264. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1265. struct ggml_context * ctx,
  1266. struct ggml_tensor * a,
  1267. struct ggml_tensor * b,
  1268. struct ggml_tensor * c,
  1269. int n_dims,
  1270. int mode,
  1271. int n_ctx,
  1272. int n_orig_ctx,
  1273. float freq_base,
  1274. float freq_scale,
  1275. float ext_factor,
  1276. float attn_factor,
  1277. float beta_fast,
  1278. float beta_slow);
  1279. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1280. struct ggml_context * ctx,
  1281. struct ggml_tensor * a,
  1282. struct ggml_tensor * b,
  1283. int n_dims,
  1284. int mode,
  1285. int n_ctx,
  1286. int n_orig_ctx,
  1287. float freq_base,
  1288. float freq_scale,
  1289. float ext_factor,
  1290. float attn_factor,
  1291. float beta_fast,
  1292. float beta_slow),
  1293. "use ggml_rope_ext instead");
  1294. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1295. struct ggml_context * ctx,
  1296. struct ggml_tensor * a,
  1297. struct ggml_tensor * b,
  1298. int n_dims,
  1299. int mode,
  1300. int n_ctx,
  1301. int n_orig_ctx,
  1302. float freq_base,
  1303. float freq_scale,
  1304. float ext_factor,
  1305. float attn_factor,
  1306. float beta_fast,
  1307. float beta_slow),
  1308. "use ggml_rope_ext_inplace instead");
  1309. // compute correction dims for YaRN RoPE scaling
  1310. GGML_CALL void ggml_rope_yarn_corr_dims(
  1311. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1312. // rotary position embedding backward, i.e compute dx from dy
  1313. // a - dy
  1314. GGML_API struct ggml_tensor * ggml_rope_back(
  1315. struct ggml_context * ctx,
  1316. struct ggml_tensor * a,
  1317. struct ggml_tensor * b,
  1318. struct ggml_tensor * c,
  1319. int n_dims,
  1320. int mode,
  1321. int n_ctx,
  1322. int n_orig_ctx,
  1323. float freq_base,
  1324. float freq_scale,
  1325. float ext_factor,
  1326. float attn_factor,
  1327. float beta_fast,
  1328. float beta_slow,
  1329. float xpos_base,
  1330. bool xpos_down);
  1331. // clamp
  1332. // in-place, returns view(a)
  1333. GGML_API struct ggml_tensor * ggml_clamp(
  1334. struct ggml_context * ctx,
  1335. struct ggml_tensor * a,
  1336. float min,
  1337. float max);
  1338. GGML_API struct ggml_tensor * ggml_im2col(
  1339. struct ggml_context * ctx,
  1340. struct ggml_tensor * a,
  1341. struct ggml_tensor * b,
  1342. int s0,
  1343. int s1,
  1344. int p0,
  1345. int p1,
  1346. int d0,
  1347. int d1,
  1348. bool is_2D,
  1349. enum ggml_type dst_type);
  1350. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1351. struct ggml_context * ctx,
  1352. struct ggml_tensor * a,
  1353. struct ggml_tensor * b,
  1354. int s0,
  1355. int s1,
  1356. int p0,
  1357. int p1,
  1358. int d0,
  1359. int d1);
  1360. GGML_API struct ggml_tensor * ggml_conv_1d(
  1361. struct ggml_context * ctx,
  1362. struct ggml_tensor * a,
  1363. struct ggml_tensor * b,
  1364. int s0, // stride
  1365. int p0, // padding
  1366. int d0); // dilation
  1367. // conv_1d with padding = half
  1368. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1369. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1370. struct ggml_context * ctx,
  1371. struct ggml_tensor * a,
  1372. struct ggml_tensor * b,
  1373. int s,
  1374. int d);
  1375. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1376. struct ggml_context * ctx,
  1377. struct ggml_tensor * a,
  1378. struct ggml_tensor * b,
  1379. int s0,
  1380. int p0,
  1381. int d0);
  1382. GGML_API struct ggml_tensor * ggml_conv_2d(
  1383. struct ggml_context * ctx,
  1384. struct ggml_tensor * a,
  1385. struct ggml_tensor * b,
  1386. int s0,
  1387. int s1,
  1388. int p0,
  1389. int p1,
  1390. int d0,
  1391. int d1);
  1392. // kernel size is a->ne[0] x a->ne[1]
  1393. // stride is equal to kernel size
  1394. // padding is zero
  1395. // example:
  1396. // a: 16 16 3 768
  1397. // b: 1024 1024 3 1
  1398. // res: 64 64 768 1
  1399. // used in sam
  1400. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1401. struct ggml_context * ctx,
  1402. struct ggml_tensor * a,
  1403. struct ggml_tensor * b);
  1404. // kernel size is a->ne[0] x a->ne[1]
  1405. // stride is 1
  1406. // padding is half
  1407. // example:
  1408. // a: 3 3 256 256
  1409. // b: 64 64 256 1
  1410. // res: 64 64 256 1
  1411. // used in sam
  1412. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1413. struct ggml_context * ctx,
  1414. struct ggml_tensor * a,
  1415. struct ggml_tensor * b);
  1416. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1417. struct ggml_context * ctx,
  1418. struct ggml_tensor * a,
  1419. struct ggml_tensor * b,
  1420. int stride);
  1421. enum ggml_op_pool {
  1422. GGML_OP_POOL_MAX,
  1423. GGML_OP_POOL_AVG,
  1424. GGML_OP_POOL_COUNT,
  1425. };
  1426. GGML_API struct ggml_tensor * ggml_pool_1d(
  1427. struct ggml_context * ctx,
  1428. struct ggml_tensor * a,
  1429. enum ggml_op_pool op,
  1430. int k0, // kernel size
  1431. int s0, // stride
  1432. int p0); // padding
  1433. // the result will have 2*p0 padding for the first dimension
  1434. // and 2*p1 padding for the second dimension
  1435. GGML_API struct ggml_tensor * ggml_pool_2d(
  1436. struct ggml_context * ctx,
  1437. struct ggml_tensor * a,
  1438. enum ggml_op_pool op,
  1439. int k0,
  1440. int k1,
  1441. int s0,
  1442. int s1,
  1443. float p0,
  1444. float p1);
  1445. // nearest interpolate
  1446. // multiplies ne0 and ne1 by scale factor
  1447. // used in stable-diffusion
  1448. GGML_API struct ggml_tensor * ggml_upscale(
  1449. struct ggml_context * ctx,
  1450. struct ggml_tensor * a,
  1451. int scale_factor);
  1452. // nearest interpolate
  1453. // nearest interpolate to specified dimensions
  1454. // used in tortoise.cpp
  1455. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1456. struct ggml_context * ctx,
  1457. struct ggml_tensor * a,
  1458. int ne0,
  1459. int ne1,
  1460. int ne2,
  1461. int ne3);
  1462. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1463. GGML_API struct ggml_tensor * ggml_pad(
  1464. struct ggml_context * ctx,
  1465. struct ggml_tensor * a,
  1466. int p0,
  1467. int p1,
  1468. int p2,
  1469. int p3);
  1470. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1471. // timesteps: [N,]
  1472. // return: [N, dim]
  1473. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1474. struct ggml_context * ctx,
  1475. struct ggml_tensor * timesteps,
  1476. int dim,
  1477. int max_period);
  1478. // sort rows
  1479. enum ggml_sort_order {
  1480. GGML_SORT_ORDER_ASC,
  1481. GGML_SORT_ORDER_DESC,
  1482. };
  1483. GGML_API struct ggml_tensor * ggml_argsort(
  1484. struct ggml_context * ctx,
  1485. struct ggml_tensor * a,
  1486. enum ggml_sort_order order);
  1487. GGML_API struct ggml_tensor * ggml_arange(
  1488. struct ggml_context * ctx,
  1489. float start,
  1490. float stop,
  1491. float step);
  1492. // top k elements per row
  1493. GGML_API struct ggml_tensor * ggml_top_k(
  1494. struct ggml_context * ctx,
  1495. struct ggml_tensor * a,
  1496. int k);
  1497. #define GGML_KQ_MASK_PAD 32
  1498. // q: [n_embd, n_batch, n_head, 1]
  1499. // k: [n_embd, n_kv, n_head_kv, 1]
  1500. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1501. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1502. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1503. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1504. struct ggml_context * ctx,
  1505. struct ggml_tensor * q,
  1506. struct ggml_tensor * k,
  1507. struct ggml_tensor * v,
  1508. struct ggml_tensor * mask,
  1509. float scale,
  1510. float max_bias);
  1511. GGML_API void ggml_flash_attn_ext_set_prec(
  1512. struct ggml_tensor * a,
  1513. enum ggml_prec prec);
  1514. // TODO: needs to be adapted to ggml_flash_attn_ext
  1515. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1516. struct ggml_context * ctx,
  1517. struct ggml_tensor * q,
  1518. struct ggml_tensor * k,
  1519. struct ggml_tensor * v,
  1520. struct ggml_tensor * d,
  1521. bool masked);
  1522. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1523. struct ggml_context * ctx,
  1524. struct ggml_tensor * s,
  1525. struct ggml_tensor * x,
  1526. struct ggml_tensor * c,
  1527. struct ggml_tensor * sq);
  1528. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1529. struct ggml_context * ctx,
  1530. struct ggml_tensor * s,
  1531. struct ggml_tensor * x,
  1532. struct ggml_tensor * dt,
  1533. struct ggml_tensor * A,
  1534. struct ggml_tensor * B,
  1535. struct ggml_tensor * C,
  1536. struct ggml_tensor * sq);
  1537. // partition into non-overlapping windows with padding if needed
  1538. // example:
  1539. // a: 768 64 64 1
  1540. // w: 14
  1541. // res: 768 14 14 25
  1542. // used in sam
  1543. GGML_API struct ggml_tensor * ggml_win_part(
  1544. struct ggml_context * ctx,
  1545. struct ggml_tensor * a,
  1546. int w);
  1547. // reverse of ggml_win_part
  1548. // used in sam
  1549. GGML_API struct ggml_tensor * ggml_win_unpart(
  1550. struct ggml_context * ctx,
  1551. struct ggml_tensor * a,
  1552. int w0,
  1553. int h0,
  1554. int w);
  1555. GGML_API struct ggml_tensor * ggml_unary(
  1556. struct ggml_context * ctx,
  1557. struct ggml_tensor * a,
  1558. enum ggml_unary_op op);
  1559. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1560. struct ggml_context * ctx,
  1561. struct ggml_tensor * a,
  1562. enum ggml_unary_op op);
  1563. // used in sam
  1564. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1565. struct ggml_context * ctx,
  1566. struct ggml_tensor * a,
  1567. int qh,
  1568. int kh);
  1569. // used in sam
  1570. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1571. struct ggml_context * ctx,
  1572. struct ggml_tensor * a,
  1573. struct ggml_tensor * pw,
  1574. struct ggml_tensor * ph);
  1575. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1576. struct ggml_context * ctx,
  1577. struct ggml_tensor * a,
  1578. struct ggml_tensor * pw,
  1579. struct ggml_tensor * ph);
  1580. // custom operators
  1581. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1582. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1583. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1584. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1585. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1586. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1587. struct ggml_context * ctx,
  1588. struct ggml_tensor * a,
  1589. ggml_unary_op_f32_t fun),
  1590. "use ggml_map_custom1 instead");
  1591. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1592. struct ggml_context * ctx,
  1593. struct ggml_tensor * a,
  1594. ggml_unary_op_f32_t fun),
  1595. "use ggml_map_custom1_inplace instead");
  1596. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1597. struct ggml_context * ctx,
  1598. struct ggml_tensor * a,
  1599. struct ggml_tensor * b,
  1600. ggml_binary_op_f32_t fun),
  1601. "use ggml_map_custom2 instead");
  1602. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1603. struct ggml_context * ctx,
  1604. struct ggml_tensor * a,
  1605. struct ggml_tensor * b,
  1606. ggml_binary_op_f32_t fun),
  1607. "use ggml_map_custom2_inplace instead");
  1608. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1609. struct ggml_context * ctx,
  1610. struct ggml_tensor * a,
  1611. ggml_custom1_op_f32_t fun),
  1612. "use ggml_map_custom1 instead");
  1613. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1614. struct ggml_context * ctx,
  1615. struct ggml_tensor * a,
  1616. ggml_custom1_op_f32_t fun),
  1617. "use ggml_map_custom1_inplace instead");
  1618. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1619. struct ggml_context * ctx,
  1620. struct ggml_tensor * a,
  1621. struct ggml_tensor * b,
  1622. ggml_custom2_op_f32_t fun),
  1623. "use ggml_map_custom2 instead");
  1624. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1625. struct ggml_context * ctx,
  1626. struct ggml_tensor * a,
  1627. struct ggml_tensor * b,
  1628. ggml_custom2_op_f32_t fun),
  1629. "use ggml_map_custom2_inplace instead");
  1630. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1631. struct ggml_context * ctx,
  1632. struct ggml_tensor * a,
  1633. struct ggml_tensor * b,
  1634. struct ggml_tensor * c,
  1635. ggml_custom3_op_f32_t fun),
  1636. "use ggml_map_custom3 instead");
  1637. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1638. struct ggml_context * ctx,
  1639. struct ggml_tensor * a,
  1640. struct ggml_tensor * b,
  1641. struct ggml_tensor * c,
  1642. ggml_custom3_op_f32_t fun),
  1643. "use ggml_map_custom3_inplace instead");
  1644. // custom operators v2
  1645. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1646. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1647. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1648. #define GGML_N_TASKS_MAX -1
  1649. GGML_API struct ggml_tensor * ggml_map_custom1(
  1650. struct ggml_context * ctx,
  1651. struct ggml_tensor * a,
  1652. ggml_custom1_op_t fun,
  1653. int n_tasks,
  1654. void * userdata);
  1655. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1656. struct ggml_context * ctx,
  1657. struct ggml_tensor * a,
  1658. ggml_custom1_op_t fun,
  1659. int n_tasks,
  1660. void * userdata);
  1661. GGML_API struct ggml_tensor * ggml_map_custom2(
  1662. struct ggml_context * ctx,
  1663. struct ggml_tensor * a,
  1664. struct ggml_tensor * b,
  1665. ggml_custom2_op_t fun,
  1666. int n_tasks,
  1667. void * userdata);
  1668. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1669. struct ggml_context * ctx,
  1670. struct ggml_tensor * a,
  1671. struct ggml_tensor * b,
  1672. ggml_custom2_op_t fun,
  1673. int n_tasks,
  1674. void * userdata);
  1675. GGML_API struct ggml_tensor * ggml_map_custom3(
  1676. struct ggml_context * ctx,
  1677. struct ggml_tensor * a,
  1678. struct ggml_tensor * b,
  1679. struct ggml_tensor * c,
  1680. ggml_custom3_op_t fun,
  1681. int n_tasks,
  1682. void * userdata);
  1683. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1684. struct ggml_context * ctx,
  1685. struct ggml_tensor * a,
  1686. struct ggml_tensor * b,
  1687. struct ggml_tensor * c,
  1688. ggml_custom3_op_t fun,
  1689. int n_tasks,
  1690. void * userdata);
  1691. // loss function
  1692. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1693. struct ggml_context * ctx,
  1694. struct ggml_tensor * a,
  1695. struct ggml_tensor * b);
  1696. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1697. struct ggml_context * ctx,
  1698. struct ggml_tensor * a,
  1699. struct ggml_tensor * b,
  1700. struct ggml_tensor * c);
  1701. //
  1702. // automatic differentiation
  1703. //
  1704. GGML_API void ggml_set_param(
  1705. struct ggml_context * ctx,
  1706. struct ggml_tensor * tensor);
  1707. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1708. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1709. // graph allocation in a context
  1710. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1711. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1712. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1713. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1714. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1715. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1716. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1717. GGML_API size_t ggml_graph_overhead(void);
  1718. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1719. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1720. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1721. GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1722. GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1723. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1724. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1725. GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1726. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1727. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1728. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1729. // print info and performance information for the graph
  1730. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1731. // dump the graph into a file using the dot format
  1732. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1733. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1734. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1735. // but without the second forward pass nodes.
  1736. GGML_API void ggml_build_backward_gradient_checkpointing(
  1737. struct ggml_context * ctx,
  1738. struct ggml_cgraph * gf,
  1739. struct ggml_cgraph * gb,
  1740. struct ggml_cgraph * gb_tmp,
  1741. struct ggml_tensor * * checkpoints,
  1742. int n_checkpoints);
  1743. //
  1744. // optimization
  1745. //
  1746. // optimization methods
  1747. enum ggml_opt_type {
  1748. GGML_OPT_TYPE_ADAM,
  1749. GGML_OPT_TYPE_LBFGS,
  1750. };
  1751. // linesearch methods
  1752. enum ggml_linesearch {
  1753. GGML_LINESEARCH_DEFAULT = 1,
  1754. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1755. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1756. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1757. };
  1758. // optimization return values
  1759. enum ggml_opt_result {
  1760. GGML_OPT_RESULT_OK = 0,
  1761. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1762. GGML_OPT_RESULT_NO_CONTEXT,
  1763. GGML_OPT_RESULT_INVALID_WOLFE,
  1764. GGML_OPT_RESULT_FAIL,
  1765. GGML_OPT_RESULT_CANCEL,
  1766. GGML_LINESEARCH_FAIL = -128,
  1767. GGML_LINESEARCH_MINIMUM_STEP,
  1768. GGML_LINESEARCH_MAXIMUM_STEP,
  1769. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1770. GGML_LINESEARCH_INVALID_PARAMETERS,
  1771. };
  1772. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1773. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1774. // optimization parameters
  1775. //
  1776. // see ggml.c (ggml_opt_default_params) for default values
  1777. //
  1778. struct ggml_opt_params {
  1779. enum ggml_opt_type type;
  1780. size_t graph_size;
  1781. int n_threads;
  1782. // delta-based convergence test
  1783. //
  1784. // if past == 0 - disabled
  1785. // if past > 0:
  1786. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1787. //
  1788. int past;
  1789. float delta;
  1790. // maximum number of iterations without improvement
  1791. //
  1792. // if 0 - disabled
  1793. // if > 0:
  1794. // assume convergence if no cost improvement in this number of iterations
  1795. //
  1796. int max_no_improvement;
  1797. bool print_forward_graph;
  1798. bool print_backward_graph;
  1799. int n_gradient_accumulation;
  1800. // ADAM parameters
  1801. struct {
  1802. int n_iter;
  1803. float sched; // schedule multiplier (fixed, decay or warmup)
  1804. float decay; // weight decay for AdamW, use 0.0f to disable
  1805. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1806. float alpha; // learning rate
  1807. float beta1;
  1808. float beta2;
  1809. float eps; // epsilon for numerical stability
  1810. float eps_f; // epsilon for convergence test
  1811. float eps_g; // epsilon for convergence test
  1812. float gclip; // gradient clipping
  1813. } adam;
  1814. // LBFGS parameters
  1815. struct {
  1816. int m; // number of corrections to approximate the inv. Hessian
  1817. int n_iter;
  1818. int max_linesearch;
  1819. float eps; // convergence tolerance
  1820. float ftol; // line search tolerance
  1821. float wolfe;
  1822. float min_step;
  1823. float max_step;
  1824. enum ggml_linesearch linesearch;
  1825. } lbfgs;
  1826. };
  1827. struct ggml_opt_context {
  1828. struct ggml_context * ctx;
  1829. struct ggml_opt_params params;
  1830. int iter;
  1831. int64_t nx; // number of parameter elements
  1832. bool just_initialized;
  1833. float loss_before;
  1834. float loss_after;
  1835. struct {
  1836. struct ggml_tensor * g; // current gradient
  1837. struct ggml_tensor * m; // first moment
  1838. struct ggml_tensor * v; // second moment
  1839. struct ggml_tensor * pf; // past function values
  1840. float fx_best;
  1841. float fx_prev;
  1842. int n_no_improvement;
  1843. } adam;
  1844. struct {
  1845. struct ggml_tensor * x; // current parameters
  1846. struct ggml_tensor * xp; // previous parameters
  1847. struct ggml_tensor * g; // current gradient
  1848. struct ggml_tensor * gp; // previous gradient
  1849. struct ggml_tensor * d; // search direction
  1850. struct ggml_tensor * pf; // past function values
  1851. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1852. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1853. struct ggml_tensor * lms; // the L-BFGS memory s
  1854. struct ggml_tensor * lmy; // the L-BFGS memory y
  1855. float fx_best;
  1856. float step;
  1857. int j;
  1858. int k;
  1859. int end;
  1860. int n_no_improvement;
  1861. } lbfgs;
  1862. };
  1863. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1864. // optimize the function defined by the tensor f
  1865. GGML_API enum ggml_opt_result ggml_opt(
  1866. struct ggml_context * ctx,
  1867. struct ggml_opt_params params,
  1868. struct ggml_tensor * f);
  1869. // initialize optimizer context
  1870. GGML_API void ggml_opt_init(
  1871. struct ggml_context * ctx,
  1872. struct ggml_opt_context * opt,
  1873. struct ggml_opt_params params,
  1874. int64_t nx);
  1875. // continue optimizing the function defined by the tensor f
  1876. GGML_API enum ggml_opt_result ggml_opt_resume(
  1877. struct ggml_context * ctx,
  1878. struct ggml_opt_context * opt,
  1879. struct ggml_tensor * f);
  1880. // continue optimizing the function defined by the tensor f
  1881. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1882. struct ggml_context * ctx,
  1883. struct ggml_opt_context * opt,
  1884. struct ggml_tensor * f,
  1885. struct ggml_cgraph * gf,
  1886. struct ggml_cgraph * gb,
  1887. ggml_opt_callback callback,
  1888. void * callback_data);
  1889. //
  1890. // tensor flags
  1891. //
  1892. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  1893. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  1894. //
  1895. // quantization
  1896. //
  1897. // - ggml_quantize_init can be called multiple times with the same type
  1898. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1899. // automatically called by ggml_quantize_chunk for convenience
  1900. //
  1901. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1902. // call this at the end of the program to avoid memory leaks
  1903. //
  1904. // note: these are thread-safe
  1905. //
  1906. GGML_API void ggml_quantize_init(enum ggml_type type);
  1907. GGML_API void ggml_quantize_free(void);
  1908. // some quantization type cannot be used without an importance matrix
  1909. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1910. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1911. GGML_API size_t ggml_quantize_chunk(
  1912. enum ggml_type type,
  1913. const float * src,
  1914. void * dst,
  1915. int64_t start,
  1916. int64_t nrows,
  1917. int64_t n_per_row,
  1918. const float * imatrix);
  1919. //
  1920. // gguf
  1921. //
  1922. enum gguf_type {
  1923. GGUF_TYPE_UINT8 = 0,
  1924. GGUF_TYPE_INT8 = 1,
  1925. GGUF_TYPE_UINT16 = 2,
  1926. GGUF_TYPE_INT16 = 3,
  1927. GGUF_TYPE_UINT32 = 4,
  1928. GGUF_TYPE_INT32 = 5,
  1929. GGUF_TYPE_FLOAT32 = 6,
  1930. GGUF_TYPE_BOOL = 7,
  1931. GGUF_TYPE_STRING = 8,
  1932. GGUF_TYPE_ARRAY = 9,
  1933. GGUF_TYPE_UINT64 = 10,
  1934. GGUF_TYPE_INT64 = 11,
  1935. GGUF_TYPE_FLOAT64 = 12,
  1936. GGUF_TYPE_COUNT, // marks the end of the enum
  1937. };
  1938. struct gguf_context;
  1939. struct gguf_init_params {
  1940. bool no_alloc;
  1941. // if not NULL, create a ggml_context and allocate the tensor data in it
  1942. struct ggml_context ** ctx;
  1943. };
  1944. GGML_API struct gguf_context * gguf_init_empty(void);
  1945. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1946. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1947. GGML_API void gguf_free(struct gguf_context * ctx);
  1948. GGML_API const char * gguf_type_name(enum gguf_type type);
  1949. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1950. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1951. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1952. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1953. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1954. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1955. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1956. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1957. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1958. // will abort if the wrong type is used for the key
  1959. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1960. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1961. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1962. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1963. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1964. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1965. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1966. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1967. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1968. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1969. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1970. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1971. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1972. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1973. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1974. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1975. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1976. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1977. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1978. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1979. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1980. // removes key if it exists
  1981. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  1982. // overrides existing values or adds a new one
  1983. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1984. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1985. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1986. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1987. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1988. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1989. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1990. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1991. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1992. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1993. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1994. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1995. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1996. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1997. // set or add KV pairs from another context
  1998. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1999. // manage tensor info
  2000. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  2001. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  2002. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  2003. // writing gguf files can be done in 2 ways:
  2004. //
  2005. // - write the entire gguf_context to a binary file in a single pass:
  2006. //
  2007. // gguf_write_to_file(ctx, fname);
  2008. //
  2009. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  2010. //
  2011. // FILE * f = fopen(fname, "wb");
  2012. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  2013. // fwrite(f, ...);
  2014. // void * data = gguf_meta_get_meta_data(ctx);
  2015. // fseek(f, 0, SEEK_SET);
  2016. // fwrite(f, data, gguf_get_meta_size(ctx));
  2017. // free(data);
  2018. // fclose(f);
  2019. //
  2020. // write the entire context to a binary file
  2021. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  2022. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  2023. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  2024. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  2025. //
  2026. // system info
  2027. //
  2028. GGML_API int ggml_cpu_has_avx (void);
  2029. GGML_API int ggml_cpu_has_avx_vnni (void);
  2030. GGML_API int ggml_cpu_has_avx2 (void);
  2031. GGML_API int ggml_cpu_has_avx512 (void);
  2032. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  2033. GGML_API int ggml_cpu_has_avx512_vnni(void);
  2034. GGML_API int ggml_cpu_has_avx512_bf16(void);
  2035. GGML_API int ggml_cpu_has_fma (void);
  2036. GGML_API int ggml_cpu_has_neon (void);
  2037. GGML_API int ggml_cpu_has_sve (void);
  2038. GGML_API int ggml_cpu_has_arm_fma (void);
  2039. GGML_API int ggml_cpu_has_metal (void);
  2040. GGML_API int ggml_cpu_has_f16c (void);
  2041. GGML_API int ggml_cpu_has_fp16_va (void);
  2042. GGML_API int ggml_cpu_has_wasm_simd (void);
  2043. GGML_API int ggml_cpu_has_blas (void);
  2044. GGML_API int ggml_cpu_has_cuda (void);
  2045. GGML_API int ggml_cpu_has_clblast (void);
  2046. GGML_API int ggml_cpu_has_vulkan (void);
  2047. GGML_API int ggml_cpu_has_kompute (void);
  2048. GGML_API int ggml_cpu_has_gpublas (void);
  2049. GGML_API int ggml_cpu_has_sse3 (void);
  2050. GGML_API int ggml_cpu_has_ssse3 (void);
  2051. GGML_API int ggml_cpu_has_sycl (void);
  2052. GGML_API int ggml_cpu_has_vsx (void);
  2053. GGML_API int ggml_cpu_has_matmul_int8(void);
  2054. //
  2055. // Internal types and functions exposed for tests and benchmarks
  2056. //
  2057. #ifdef __cplusplus
  2058. // restrict not standard in C++
  2059. #define GGML_RESTRICT
  2060. #else
  2061. #define GGML_RESTRICT restrict
  2062. #endif
  2063. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2064. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2065. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  2066. const void * GGML_RESTRICT y, size_t by, int nrc);
  2067. typedef struct {
  2068. const char * type_name;
  2069. int blck_size;
  2070. size_t type_size;
  2071. bool is_quantized;
  2072. ggml_to_float_t to_float;
  2073. ggml_from_float_t from_float;
  2074. ggml_from_float_t from_float_reference;
  2075. ggml_vec_dot_t vec_dot;
  2076. enum ggml_type vec_dot_type;
  2077. int64_t nrows; // number of rows to process simultaneously;
  2078. } ggml_type_traits_t;
  2079. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  2080. #ifdef __cplusplus
  2081. }
  2082. #endif