ggml.c 594 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. // if C99 - static_assert is noop
  27. // ref: https://stackoverflow.com/a/53923785/4039976
  28. #ifndef static_assert
  29. #define static_assert(cond, msg) struct global_scope_noop_trick
  30. #endif
  31. #if defined(_MSC_VER)
  32. // disable "possible loss of data" to avoid hundreds of casts
  33. // we should just be careful :)
  34. #pragma warning(disable: 4244 4267)
  35. #endif
  36. #if defined(_WIN32)
  37. #include <windows.h>
  38. typedef volatile LONG atomic_int;
  39. typedef atomic_int atomic_bool;
  40. static void atomic_store(atomic_int* ptr, LONG val) {
  41. InterlockedExchange(ptr, val);
  42. }
  43. static LONG atomic_load(atomic_int* ptr) {
  44. return InterlockedCompareExchange(ptr, 0, 0);
  45. }
  46. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  47. return InterlockedExchangeAdd(ptr, inc);
  48. }
  49. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  50. return atomic_fetch_add(ptr, -(dec));
  51. }
  52. typedef HANDLE pthread_t;
  53. typedef DWORD thread_ret_t;
  54. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  55. (void) unused;
  56. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  57. if (handle == NULL)
  58. {
  59. return EAGAIN;
  60. }
  61. *out = handle;
  62. return 0;
  63. }
  64. static int pthread_join(pthread_t thread, void* unused) {
  65. (void) unused;
  66. return (int) WaitForSingleObject(thread, INFINITE);
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void* thread_ret_t;
  76. #endif
  77. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  78. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  79. #ifndef __FMA__
  80. #define __FMA__
  81. #endif
  82. #ifndef __F16C__
  83. #define __F16C__
  84. #endif
  85. #ifndef __SSE3__
  86. #define __SSE3__
  87. #endif
  88. #endif
  89. #ifdef __HAIKU__
  90. #define static_assert(cond, msg) _Static_assert(cond, msg)
  91. #endif
  92. /*#define GGML_PERF*/
  93. #define GGML_DEBUG 0
  94. #define GGML_GELU_FP16
  95. #define GGML_GELU_QUICK_FP16
  96. #define GGML_SILU_FP16
  97. #define GGML_SOFT_MAX_UNROLL 4
  98. #define GGML_VEC_DOT_UNROLL 2
  99. #ifdef GGML_USE_ACCELERATE
  100. // uncomment to use vDSP for soft max computation
  101. // note: not sure if it is actually faster
  102. //#define GGML_SOFT_MAX_ACCELERATE
  103. #endif
  104. #if UINTPTR_MAX == 0xFFFFFFFF
  105. #define GGML_MEM_ALIGN 4
  106. #else
  107. #define GGML_MEM_ALIGN 16
  108. #endif
  109. #if defined(_MSC_VER) || defined(__MINGW32__)
  110. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  111. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  112. #else
  113. inline static void* ggml_aligned_malloc(size_t size) {
  114. void* aligned_memory = NULL;
  115. #ifdef GGML_USE_METAL
  116. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  117. #else
  118. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  119. #endif
  120. if (result != 0) {
  121. // Handle allocation failure
  122. return NULL;
  123. }
  124. return aligned_memory;
  125. }
  126. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  127. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  128. #endif
  129. #define UNUSED(x) (void)(x)
  130. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  131. #if defined(GGML_USE_ACCELERATE)
  132. #include <Accelerate/Accelerate.h>
  133. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  134. #include "ggml-opencl.h"
  135. #endif
  136. #elif defined(GGML_USE_OPENBLAS)
  137. #include <cblas.h>
  138. #elif defined(GGML_USE_CUBLAS)
  139. #include "ggml-cuda.h"
  140. #elif defined(GGML_USE_CLBLAST)
  141. #include "ggml-opencl.h"
  142. #endif
  143. #undef MIN
  144. #undef MAX
  145. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  146. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  147. // floating point type used to accumulate sums
  148. typedef double ggml_float;
  149. // 16-bit float
  150. // on Arm, we use __fp16
  151. // on x86, we use uint16_t
  152. #ifdef __ARM_NEON
  153. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  154. //
  155. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  156. //
  157. #include <arm_neon.h>
  158. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  159. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  160. #define GGML_FP16_TO_FP32(x) ((float) (x))
  161. #define GGML_FP32_TO_FP16(x) (x)
  162. #else
  163. #ifdef __wasm_simd128__
  164. #include <wasm_simd128.h>
  165. #else
  166. #ifdef __POWER9_VECTOR__
  167. #include <altivec.h>
  168. #undef bool
  169. #define bool _Bool
  170. #else
  171. #if defined(_MSC_VER) || defined(__MINGW32__)
  172. #include <intrin.h>
  173. #else
  174. #if !defined(__riscv)
  175. #include <immintrin.h>
  176. #endif
  177. #endif
  178. #endif
  179. #endif
  180. #ifdef __F16C__
  181. #ifdef _MSC_VER
  182. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  183. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  184. #else
  185. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  186. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  187. #endif
  188. #elif defined(__POWER9_VECTOR__)
  189. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  190. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  191. /* the inline asm below is about 12% faster than the lookup method */
  192. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  193. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  194. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  195. register float f;
  196. register double d;
  197. __asm__(
  198. "mtfprd %0,%2\n"
  199. "xscvhpdp %0,%0\n"
  200. "frsp %1,%0\n" :
  201. /* temp */ "=d"(d),
  202. /* out */ "=f"(f):
  203. /* in */ "r"(h));
  204. return f;
  205. }
  206. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  207. register double d;
  208. register ggml_fp16_t r;
  209. __asm__( /* xscvdphp can work on double or single precision */
  210. "xscvdphp %0,%2\n"
  211. "mffprd %1,%0\n" :
  212. /* temp */ "=d"(d),
  213. /* out */ "=r"(r):
  214. /* in */ "f"(f));
  215. return r;
  216. }
  217. #else
  218. // FP16 <-> FP32
  219. // ref: https://github.com/Maratyszcza/FP16
  220. static inline float fp32_from_bits(uint32_t w) {
  221. union {
  222. uint32_t as_bits;
  223. float as_value;
  224. } fp32;
  225. fp32.as_bits = w;
  226. return fp32.as_value;
  227. }
  228. static inline uint32_t fp32_to_bits(float f) {
  229. union {
  230. float as_value;
  231. uint32_t as_bits;
  232. } fp32;
  233. fp32.as_value = f;
  234. return fp32.as_bits;
  235. }
  236. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  237. const uint32_t w = (uint32_t) h << 16;
  238. const uint32_t sign = w & UINT32_C(0x80000000);
  239. const uint32_t two_w = w + w;
  240. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  241. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  242. const float exp_scale = 0x1.0p-112f;
  243. #else
  244. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  245. #endif
  246. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  247. const uint32_t magic_mask = UINT32_C(126) << 23;
  248. const float magic_bias = 0.5f;
  249. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  250. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  251. const uint32_t result = sign |
  252. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  253. return fp32_from_bits(result);
  254. }
  255. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  256. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  257. const float scale_to_inf = 0x1.0p+112f;
  258. const float scale_to_zero = 0x1.0p-110f;
  259. #else
  260. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  261. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  262. #endif
  263. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  264. const uint32_t w = fp32_to_bits(f);
  265. const uint32_t shl1_w = w + w;
  266. const uint32_t sign = w & UINT32_C(0x80000000);
  267. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  268. if (bias < UINT32_C(0x71000000)) {
  269. bias = UINT32_C(0x71000000);
  270. }
  271. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  272. const uint32_t bits = fp32_to_bits(base);
  273. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  274. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  275. const uint32_t nonsign = exp_bits + mantissa_bits;
  276. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  277. }
  278. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  279. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  280. #endif // __F16C__
  281. #endif // __ARM_NEON
  282. //
  283. // global data
  284. //
  285. // precomputed gelu table for f16 (128 KB)
  286. static ggml_fp16_t table_gelu_f16[1 << 16];
  287. // precomputed quick gelu table for f16 (128 KB)
  288. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  289. // precomputed silu table for f16 (128 KB)
  290. static ggml_fp16_t table_silu_f16[1 << 16];
  291. // precomputed exp table for f16 (128 KB)
  292. static ggml_fp16_t table_exp_f16[1 << 16];
  293. // precomputed f32 table for f16 (256 KB)
  294. static float table_f32_f16[1 << 16];
  295. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  296. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  297. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  298. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  299. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  300. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  301. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  302. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  303. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  304. // precomputed tables for expanding 8bits to 8 bytes:
  305. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  306. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  307. #endif
  308. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  309. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  310. // This is also true for POWER9.
  311. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  312. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  313. uint16_t s;
  314. memcpy(&s, &f, sizeof(uint16_t));
  315. return table_f32_f16[s];
  316. }
  317. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  318. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  319. #endif
  320. // note: do not use these inside ggml.c
  321. // these are meant to be used via the ggml.h API
  322. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  323. return (float) GGML_FP16_TO_FP32(x);
  324. }
  325. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  326. return GGML_FP32_TO_FP16(x);
  327. }
  328. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  329. for (size_t i = 0; i < n; i++) {
  330. y[i] = GGML_FP16_TO_FP32(x[i]);
  331. }
  332. }
  333. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  334. size_t i = 0;
  335. #if defined(__F16C__)
  336. for (; i + 7 < n; i += 8) {
  337. __m256 x_vec = _mm256_loadu_ps(x + i);
  338. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  339. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  340. }
  341. for(; i + 3 < n; i += 4) {
  342. __m128 x_vec = _mm_loadu_ps(x + i);
  343. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  344. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  345. }
  346. #endif
  347. for (; i < n; i++) {
  348. y[i] = GGML_FP32_TO_FP16(x[i]);
  349. }
  350. }
  351. //
  352. // timing
  353. //
  354. #if defined(_MSC_VER) || defined(__MINGW32__)
  355. static int64_t timer_freq, timer_start;
  356. void ggml_time_init(void) {
  357. LARGE_INTEGER t;
  358. QueryPerformanceFrequency(&t);
  359. timer_freq = t.QuadPart;
  360. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  361. // and the uptime is high enough.
  362. // We subtract the program start time to reduce the likelihood of that happening.
  363. QueryPerformanceCounter(&t);
  364. timer_start = t.QuadPart;
  365. }
  366. int64_t ggml_time_ms(void) {
  367. LARGE_INTEGER t;
  368. QueryPerformanceCounter(&t);
  369. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  370. }
  371. int64_t ggml_time_us(void) {
  372. LARGE_INTEGER t;
  373. QueryPerformanceCounter(&t);
  374. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  375. }
  376. #else
  377. void ggml_time_init(void) {}
  378. int64_t ggml_time_ms(void) {
  379. struct timespec ts;
  380. clock_gettime(CLOCK_MONOTONIC, &ts);
  381. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  382. }
  383. int64_t ggml_time_us(void) {
  384. struct timespec ts;
  385. clock_gettime(CLOCK_MONOTONIC, &ts);
  386. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  387. }
  388. #endif
  389. int64_t ggml_cycles(void) {
  390. return clock();
  391. }
  392. int64_t ggml_cycles_per_ms(void) {
  393. return CLOCKS_PER_SEC/1000;
  394. }
  395. #ifdef GGML_PERF
  396. #define ggml_perf_time_ms() ggml_time_ms()
  397. #define ggml_perf_time_us() ggml_time_us()
  398. #define ggml_perf_cycles() ggml_cycles()
  399. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  400. #else
  401. #define ggml_perf_time_ms() 0
  402. #define ggml_perf_time_us() 0
  403. #define ggml_perf_cycles() 0
  404. #define ggml_perf_cycles_per_ms() 0
  405. #endif
  406. //
  407. // cache line
  408. //
  409. #if defined(__cpp_lib_hardware_interference_size)
  410. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  411. #else
  412. #if defined(__POWER9_VECTOR__)
  413. #define CACHE_LINE_SIZE 128
  414. #else
  415. #define CACHE_LINE_SIZE 64
  416. #endif
  417. #endif
  418. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  419. //
  420. // quantization
  421. //
  422. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  423. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  424. // multiply int8_t, add results pairwise twice
  425. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  426. // Get absolute values of x vectors
  427. const __m128i ax = _mm_sign_epi8(x, x);
  428. // Sign the values of the y vectors
  429. const __m128i sy = _mm_sign_epi8(y, x);
  430. // Perform multiplication and create 16-bit values
  431. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  432. const __m128i ones = _mm_set1_epi16(1);
  433. return _mm_madd_epi16(ones, dot);
  434. }
  435. #if __AVX__ || __AVX2__ || __AVX512F__
  436. // horizontally add 8 floats
  437. static inline float hsum_float_8(const __m256 x) {
  438. __m128 res = _mm256_extractf128_ps(x, 1);
  439. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  440. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  441. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  442. return _mm_cvtss_f32(res);
  443. }
  444. // horizontally add 8 int32_t
  445. static inline int hsum_i32_8(const __m256i a) {
  446. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  447. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  448. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  449. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  450. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  451. }
  452. // horizontally add 4 int32_t
  453. static inline int hsum_i32_4(const __m128i a) {
  454. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  455. const __m128i sum64 = _mm_add_epi32(hi64, a);
  456. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  457. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  458. }
  459. #if defined(__AVX2__) || defined(__AVX512F__)
  460. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  461. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  462. uint32_t x32;
  463. memcpy(&x32, x, sizeof(uint32_t));
  464. const __m256i shuf_mask = _mm256_set_epi64x(
  465. 0x0303030303030303, 0x0202020202020202,
  466. 0x0101010101010101, 0x0000000000000000);
  467. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  468. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  469. bytes = _mm256_or_si256(bytes, bit_mask);
  470. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  471. }
  472. // Unpack 32 4-bit fields into 32 bytes
  473. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  474. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  475. {
  476. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  477. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  478. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  479. return _mm256_and_si256(lowMask, bytes);
  480. }
  481. // add int16_t pairwise and return as float vector
  482. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  483. const __m256i ones = _mm256_set1_epi16(1);
  484. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  485. return _mm256_cvtepi32_ps(summed_pairs);
  486. }
  487. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  488. #if __AVXVNNI__
  489. const __m256i zero = _mm256_setzero_si256();
  490. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  491. return _mm256_cvtepi32_ps(summed_pairs);
  492. #else
  493. // Perform multiplication and create 16-bit values
  494. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  495. return sum_i16_pairs_float(dot);
  496. #endif
  497. }
  498. // multiply int8_t, add results pairwise twice and return as float vector
  499. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  500. #if __AVXVNNIINT8__
  501. const __m256i zero = _mm256_setzero_si256();
  502. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  503. return _mm256_cvtepi32_ps(summed_pairs);
  504. #else
  505. // Get absolute values of x vectors
  506. const __m256i ax = _mm256_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m256i sy = _mm256_sign_epi8(y, x);
  509. return mul_sum_us8_pairs_float(ax, sy);
  510. #endif
  511. }
  512. static inline __m128i packNibbles( __m256i bytes )
  513. {
  514. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  515. #if __AVX512F__
  516. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  517. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  518. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  519. #else
  520. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  521. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  522. __m256i low = _mm256_and_si256( lowByte, bytes );
  523. high = _mm256_srli_epi16( high, 4 );
  524. bytes = _mm256_or_si256( low, high );
  525. // Compress uint16_t lanes into bytes
  526. __m128i r0 = _mm256_castsi256_si128( bytes );
  527. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  528. return _mm_packus_epi16( r0, r1 );
  529. #endif
  530. }
  531. #elif defined(__AVX__)
  532. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  533. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  534. uint32_t x32;
  535. memcpy(&x32, x, sizeof(uint32_t));
  536. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  537. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  538. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  539. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  540. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  541. bytesl = _mm_or_si128(bytesl, bit_mask);
  542. bytesh = _mm_or_si128(bytesh, bit_mask);
  543. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  544. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  545. return MM256_SET_M128I(bytesh, bytesl);
  546. }
  547. // Unpack 32 4-bit fields into 32 bytes
  548. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  549. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  550. {
  551. // Load 16 bytes from memory
  552. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  553. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  554. const __m128i lowMask = _mm_set1_epi8(0xF);
  555. tmpl = _mm_and_si128(lowMask, tmpl);
  556. tmph = _mm_and_si128(lowMask, tmph);
  557. return MM256_SET_M128I(tmph, tmpl);
  558. }
  559. // add int16_t pairwise and return as float vector
  560. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  561. const __m128i ones = _mm_set1_epi16(1);
  562. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  563. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  564. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  565. return _mm256_cvtepi32_ps(summed_pairs);
  566. }
  567. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  568. const __m128i axl = _mm256_castsi256_si128(ax);
  569. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  570. const __m128i syl = _mm256_castsi256_si128(sy);
  571. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  572. // Perform multiplication and create 16-bit values
  573. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  574. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  575. return sum_i16_pairs_float(doth, dotl);
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. const __m128i xl = _mm256_castsi256_si128(x);
  580. const __m128i xh = _mm256_extractf128_si256(x, 1);
  581. const __m128i yl = _mm256_castsi256_si128(y);
  582. const __m128i yh = _mm256_extractf128_si256(y, 1);
  583. // Get absolute values of x vectors
  584. const __m128i axl = _mm_sign_epi8(xl, xl);
  585. const __m128i axh = _mm_sign_epi8(xh, xh);
  586. // Sign the values of the y vectors
  587. const __m128i syl = _mm_sign_epi8(yl, xl);
  588. const __m128i syh = _mm_sign_epi8(yh, xh);
  589. // Perform multiplication and create 16-bit values
  590. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  591. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  592. return sum_i16_pairs_float(doth, dotl);
  593. }
  594. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  595. {
  596. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  597. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  598. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  599. __m128i low = _mm_and_si128( lowByte, bytes1 );
  600. high = _mm_srli_epi16( high, 4 );
  601. bytes1 = _mm_or_si128( low, high );
  602. high = _mm_andnot_si128( lowByte, bytes2 );
  603. low = _mm_and_si128( lowByte, bytes2 );
  604. high = _mm_srli_epi16( high, 4 );
  605. bytes2 = _mm_or_si128( low, high );
  606. return _mm_packus_epi16( bytes1, bytes2);
  607. }
  608. #endif
  609. #elif defined(__SSSE3__)
  610. // horizontally add 4x4 floats
  611. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  612. __m128 res_0 =_mm_hadd_ps(a, b);
  613. __m128 res_1 =_mm_hadd_ps(c, d);
  614. __m128 res =_mm_hadd_ps(res_0, res_1);
  615. res =_mm_hadd_ps(res, res);
  616. res =_mm_hadd_ps(res, res);
  617. return _mm_cvtss_f32(res);
  618. }
  619. #endif // __AVX__ || __AVX2__ || __AVX512F__
  620. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  621. #if defined(__ARM_NEON)
  622. #if !defined(__aarch64__)
  623. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  624. return
  625. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  626. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  627. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  628. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  629. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  630. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  631. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  632. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  633. }
  634. inline static int16_t vaddvq_s8(int8x16_t v) {
  635. return
  636. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  637. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  638. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  639. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  640. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  641. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  642. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  643. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  644. }
  645. inline static int32_t vaddvq_s16(int16x8_t v) {
  646. return
  647. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  648. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  649. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  650. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  651. }
  652. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  653. return
  654. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  655. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  656. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  657. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  658. }
  659. inline static int32_t vaddvq_s32(int32x4_t v) {
  660. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  661. }
  662. inline static float vaddvq_f32(float32x4_t v) {
  663. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  664. }
  665. inline static float vminvq_f32(float32x4_t v) {
  666. return
  667. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  668. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  669. }
  670. inline static float vmaxvq_f32(float32x4_t v) {
  671. return
  672. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  673. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  674. }
  675. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  676. int32x4_t res;
  677. res[0] = roundf(vgetq_lane_f32(v, 0));
  678. res[1] = roundf(vgetq_lane_f32(v, 1));
  679. res[2] = roundf(vgetq_lane_f32(v, 2));
  680. res[3] = roundf(vgetq_lane_f32(v, 3));
  681. return res;
  682. }
  683. #endif
  684. #endif
  685. #define QK4_0 32
  686. typedef struct {
  687. ggml_fp16_t d; // delta
  688. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  689. } block_q4_0;
  690. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  691. #define QK4_1 32
  692. typedef struct {
  693. ggml_fp16_t d; // delta
  694. ggml_fp16_t m; // min
  695. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  696. } block_q4_1;
  697. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  698. #define QK5_0 32
  699. typedef struct {
  700. ggml_fp16_t d; // delta
  701. uint8_t qh[4]; // 5-th bit of quants
  702. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  703. } block_q5_0;
  704. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  705. #define QK5_1 32
  706. typedef struct {
  707. ggml_fp16_t d; // delta
  708. ggml_fp16_t m; // min
  709. uint8_t qh[4]; // 5-th bit of quants
  710. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  711. } block_q5_1;
  712. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  713. #define QK8_0 32
  714. typedef struct {
  715. ggml_fp16_t d; // delta
  716. int8_t qs[QK8_0]; // quants
  717. } block_q8_0;
  718. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  719. #define QK8_1 32
  720. typedef struct {
  721. float d; // delta
  722. float s; // d * sum(qs[i])
  723. int8_t qs[QK8_1]; // quants
  724. } block_q8_1;
  725. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  726. // reference implementation for deterministic creation of model files
  727. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  728. static const int qk = QK4_0;
  729. assert(k % qk == 0);
  730. const int nb = k / qk;
  731. for (int i = 0; i < nb; i++) {
  732. float amax = 0.0f; // absolute max
  733. float max = 0.0f;
  734. for (int j = 0; j < qk; j++) {
  735. const float v = x[i*qk + j];
  736. if (amax < fabsf(v)) {
  737. amax = fabsf(v);
  738. max = v;
  739. }
  740. }
  741. const float d = max / -8;
  742. const float id = d ? 1.0f/d : 0.0f;
  743. y[i].d = GGML_FP32_TO_FP16(d);
  744. for (int j = 0; j < qk/2; ++j) {
  745. const float x0 = x[i*qk + 0 + j]*id;
  746. const float x1 = x[i*qk + qk/2 + j]*id;
  747. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  748. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  749. y[i].qs[j] = xi0;
  750. y[i].qs[j] |= xi1 << 4;
  751. }
  752. }
  753. }
  754. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  755. quantize_row_q4_0_reference(x, y, k);
  756. }
  757. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  758. const int qk = QK4_1;
  759. assert(k % qk == 0);
  760. const int nb = k / qk;
  761. for (int i = 0; i < nb; i++) {
  762. float min = FLT_MAX;
  763. float max = -FLT_MAX;
  764. for (int j = 0; j < qk; j++) {
  765. const float v = x[i*qk + j];
  766. if (v < min) min = v;
  767. if (v > max) max = v;
  768. }
  769. const float d = (max - min) / ((1 << 4) - 1);
  770. const float id = d ? 1.0f/d : 0.0f;
  771. y[i].d = GGML_FP32_TO_FP16(d);
  772. y[i].m = GGML_FP32_TO_FP16(min);
  773. for (int j = 0; j < qk/2; ++j) {
  774. const float x0 = (x[i*qk + 0 + j] - min)*id;
  775. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  776. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  777. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  778. y[i].qs[j] = xi0;
  779. y[i].qs[j] |= xi1 << 4;
  780. }
  781. }
  782. }
  783. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  784. quantize_row_q4_1_reference(x, y, k);
  785. }
  786. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  787. static const int qk = QK5_0;
  788. assert(k % qk == 0);
  789. const int nb = k / qk;
  790. for (int i = 0; i < nb; i++) {
  791. float amax = 0.0f; // absolute max
  792. float max = 0.0f;
  793. for (int j = 0; j < qk; j++) {
  794. const float v = x[i*qk + j];
  795. if (amax < fabsf(v)) {
  796. amax = fabsf(v);
  797. max = v;
  798. }
  799. }
  800. const float d = max / -16;
  801. const float id = d ? 1.0f/d : 0.0f;
  802. y[i].d = GGML_FP32_TO_FP16(d);
  803. uint32_t qh = 0;
  804. for (int j = 0; j < qk/2; ++j) {
  805. const float x0 = x[i*qk + 0 + j]*id;
  806. const float x1 = x[i*qk + qk/2 + j]*id;
  807. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  808. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  809. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  810. // get the 5-th bit and store it in qh at the right position
  811. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  812. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  813. }
  814. memcpy(&y[i].qh, &qh, sizeof(qh));
  815. }
  816. }
  817. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  818. quantize_row_q5_0_reference(x, y, k);
  819. }
  820. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  821. const int qk = QK5_1;
  822. assert(k % qk == 0);
  823. const int nb = k / qk;
  824. for (int i = 0; i < nb; i++) {
  825. float min = FLT_MAX;
  826. float max = -FLT_MAX;
  827. for (int j = 0; j < qk; j++) {
  828. const float v = x[i*qk + j];
  829. if (v < min) min = v;
  830. if (v > max) max = v;
  831. }
  832. const float d = (max - min) / ((1 << 5) - 1);
  833. const float id = d ? 1.0f/d : 0.0f;
  834. y[i].d = GGML_FP32_TO_FP16(d);
  835. y[i].m = GGML_FP32_TO_FP16(min);
  836. uint32_t qh = 0;
  837. for (int j = 0; j < qk/2; ++j) {
  838. const float x0 = (x[i*qk + 0 + j] - min)*id;
  839. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  840. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  841. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  842. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  843. // get the 5-th bit and store it in qh at the right position
  844. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  845. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  846. }
  847. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  848. }
  849. }
  850. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  851. quantize_row_q5_1_reference(x, y, k);
  852. }
  853. // reference implementation for deterministic creation of model files
  854. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  855. assert(k % QK8_0 == 0);
  856. const int nb = k / QK8_0;
  857. for (int i = 0; i < nb; i++) {
  858. float amax = 0.0f; // absolute max
  859. for (int j = 0; j < QK8_0; j++) {
  860. const float v = x[i*QK8_0 + j];
  861. amax = MAX(amax, fabsf(v));
  862. }
  863. const float d = amax / ((1 << 7) - 1);
  864. const float id = d ? 1.0f/d : 0.0f;
  865. y[i].d = GGML_FP32_TO_FP16(d);
  866. for (int j = 0; j < QK8_0; ++j) {
  867. const float x0 = x[i*QK8_0 + j]*id;
  868. y[i].qs[j] = roundf(x0);
  869. }
  870. }
  871. }
  872. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  873. assert(QK8_0 == 32);
  874. assert(k % QK8_0 == 0);
  875. const int nb = k / QK8_0;
  876. block_q8_0 * restrict y = vy;
  877. #if defined(__ARM_NEON)
  878. for (int i = 0; i < nb; i++) {
  879. float32x4_t srcv [8];
  880. float32x4_t asrcv[8];
  881. float32x4_t amaxv[8];
  882. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  883. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  884. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  885. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  886. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  887. const float amax = vmaxvq_f32(amaxv[0]);
  888. const float d = amax / ((1 << 7) - 1);
  889. const float id = d ? 1.0f/d : 0.0f;
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. for (int j = 0; j < 8; j++) {
  892. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  893. const int32x4_t vi = vcvtnq_s32_f32(v);
  894. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  895. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  896. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  897. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  898. }
  899. }
  900. #elif defined(__wasm_simd128__)
  901. for (int i = 0; i < nb; i++) {
  902. v128_t srcv [8];
  903. v128_t asrcv[8];
  904. v128_t amaxv[8];
  905. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  906. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  907. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  908. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  909. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  910. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  911. wasm_f32x4_extract_lane(amaxv[0], 1)),
  912. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  913. wasm_f32x4_extract_lane(amaxv[0], 3)));
  914. const float d = amax / ((1 << 7) - 1);
  915. const float id = d ? 1.0f/d : 0.0f;
  916. y[i].d = GGML_FP32_TO_FP16(d);
  917. for (int j = 0; j < 8; j++) {
  918. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  919. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  920. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  921. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  922. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  923. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  924. }
  925. }
  926. #elif defined(__AVX2__) || defined(__AVX__)
  927. for (int i = 0; i < nb; i++) {
  928. // Load elements into 4 AVX vectors
  929. __m256 v0 = _mm256_loadu_ps( x );
  930. __m256 v1 = _mm256_loadu_ps( x + 8 );
  931. __m256 v2 = _mm256_loadu_ps( x + 16 );
  932. __m256 v3 = _mm256_loadu_ps( x + 24 );
  933. x += 32;
  934. // Compute max(abs(e)) for the block
  935. const __m256 signBit = _mm256_set1_ps( -0.0f );
  936. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  937. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  938. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  939. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  940. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  941. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  942. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  943. const float maxScalar = _mm_cvtss_f32( max4 );
  944. // Quantize these floats
  945. const float d = maxScalar / 127.f;
  946. y[i].d = GGML_FP32_TO_FP16(d);
  947. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  948. const __m256 mul = _mm256_set1_ps( id );
  949. // Apply the multiplier
  950. v0 = _mm256_mul_ps( v0, mul );
  951. v1 = _mm256_mul_ps( v1, mul );
  952. v2 = _mm256_mul_ps( v2, mul );
  953. v3 = _mm256_mul_ps( v3, mul );
  954. // Round to nearest integer
  955. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  956. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  957. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  958. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  959. // Convert floats to integers
  960. __m256i i0 = _mm256_cvtps_epi32( v0 );
  961. __m256i i1 = _mm256_cvtps_epi32( v1 );
  962. __m256i i2 = _mm256_cvtps_epi32( v2 );
  963. __m256i i3 = _mm256_cvtps_epi32( v3 );
  964. #if defined(__AVX2__)
  965. // Convert int32 to int16
  966. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  967. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  968. // Convert int16 to int8
  969. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  970. // We got our precious signed bytes, but the order is now wrong
  971. // These AVX2 pack instructions process 16-byte pieces independently
  972. // The following instruction is fixing the order
  973. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  974. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  975. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  976. #else
  977. // Since we don't have in AVX some necessary functions,
  978. // we split the registers in half and call AVX2 analogs from SSE
  979. __m128i ni0 = _mm256_castsi256_si128( i0 );
  980. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  981. __m128i ni2 = _mm256_castsi256_si128( i1 );
  982. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  983. __m128i ni4 = _mm256_castsi256_si128( i2 );
  984. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  985. __m128i ni6 = _mm256_castsi256_si128( i3 );
  986. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  987. // Convert int32 to int16
  988. ni0 = _mm_packs_epi32( ni0, ni1 );
  989. ni2 = _mm_packs_epi32( ni2, ni3 );
  990. ni4 = _mm_packs_epi32( ni4, ni5 );
  991. ni6 = _mm_packs_epi32( ni6, ni7 );
  992. // Convert int16 to int8
  993. ni0 = _mm_packs_epi16( ni0, ni2 );
  994. ni4 = _mm_packs_epi16( ni4, ni6 );
  995. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  996. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  997. #endif
  998. }
  999. #else
  1000. // scalar
  1001. quantize_row_q8_0_reference(x, y, k);
  1002. #endif
  1003. }
  1004. // reference implementation for deterministic creation of model files
  1005. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1006. assert(QK8_1 == 32);
  1007. assert(k % QK8_1 == 0);
  1008. const int nb = k / QK8_1;
  1009. for (int i = 0; i < nb; i++) {
  1010. float amax = 0.0f; // absolute max
  1011. for (int j = 0; j < QK8_1; j++) {
  1012. const float v = x[i*QK8_1 + j];
  1013. amax = MAX(amax, fabsf(v));
  1014. }
  1015. const float d = amax / ((1 << 7) - 1);
  1016. const float id = d ? 1.0f/d : 0.0f;
  1017. y[i].d = d;
  1018. int sum = 0;
  1019. for (int j = 0; j < QK8_1/2; ++j) {
  1020. const float v0 = x[i*QK8_1 + j]*id;
  1021. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1022. y[i].qs[ j] = roundf(v0);
  1023. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1024. sum += y[i].qs[ j];
  1025. sum += y[i].qs[QK8_1/2 + j];
  1026. }
  1027. y[i].s = sum*d;
  1028. }
  1029. }
  1030. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1031. assert(k % QK8_1 == 0);
  1032. const int nb = k / QK8_1;
  1033. block_q8_1 * restrict y = vy;
  1034. #if defined(__ARM_NEON)
  1035. for (int i = 0; i < nb; i++) {
  1036. float32x4_t srcv [8];
  1037. float32x4_t asrcv[8];
  1038. float32x4_t amaxv[8];
  1039. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1040. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1041. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1042. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1043. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1044. const float amax = vmaxvq_f32(amaxv[0]);
  1045. const float d = amax / ((1 << 7) - 1);
  1046. const float id = d ? 1.0f/d : 0.0f;
  1047. y[i].d = d;
  1048. int32x4_t accv = vdupq_n_s32(0);
  1049. for (int j = 0; j < 8; j++) {
  1050. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1051. const int32x4_t vi = vcvtnq_s32_f32(v);
  1052. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1053. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1054. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1055. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1056. accv = vaddq_s32(accv, vi);
  1057. }
  1058. y[i].s = d * vaddvq_s32(accv);
  1059. }
  1060. #elif defined(__wasm_simd128__)
  1061. for (int i = 0; i < nb; i++) {
  1062. v128_t srcv [8];
  1063. v128_t asrcv[8];
  1064. v128_t amaxv[8];
  1065. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1066. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1067. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1068. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1069. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1070. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1071. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1072. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1073. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1074. const float d = amax / ((1 << 7) - 1);
  1075. const float id = d ? 1.0f/d : 0.0f;
  1076. y[i].d = d;
  1077. v128_t accv = wasm_i32x4_splat(0);
  1078. for (int j = 0; j < 8; j++) {
  1079. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1080. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1081. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1082. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1083. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1084. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1085. accv = wasm_i32x4_add(accv, vi);
  1086. }
  1087. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1088. wasm_i32x4_extract_lane(accv, 1) +
  1089. wasm_i32x4_extract_lane(accv, 2) +
  1090. wasm_i32x4_extract_lane(accv, 3));
  1091. }
  1092. #elif defined(__AVX2__) || defined(__AVX__)
  1093. for (int i = 0; i < nb; i++) {
  1094. // Load elements into 4 AVX vectors
  1095. __m256 v0 = _mm256_loadu_ps( x );
  1096. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1097. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1098. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1099. x += 32;
  1100. // Compute max(abs(e)) for the block
  1101. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1102. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1103. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1104. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1105. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1106. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1107. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1108. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1109. const float maxScalar = _mm_cvtss_f32( max4 );
  1110. // Quantize these floats
  1111. const float d = maxScalar / 127.f;
  1112. y[i].d = d;
  1113. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1114. const __m256 mul = _mm256_set1_ps( id );
  1115. // Apply the multiplier
  1116. v0 = _mm256_mul_ps( v0, mul );
  1117. v1 = _mm256_mul_ps( v1, mul );
  1118. v2 = _mm256_mul_ps( v2, mul );
  1119. v3 = _mm256_mul_ps( v3, mul );
  1120. // Round to nearest integer
  1121. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1122. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1123. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1124. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1125. // Convert floats to integers
  1126. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1127. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1128. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1129. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1130. #if defined(__AVX2__)
  1131. // Compute the sum of the quants and set y[i].s
  1132. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1133. // Convert int32 to int16
  1134. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1135. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1136. // Convert int16 to int8
  1137. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1138. // We got our precious signed bytes, but the order is now wrong
  1139. // These AVX2 pack instructions process 16-byte pieces independently
  1140. // The following instruction is fixing the order
  1141. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1142. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1143. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1144. #else
  1145. // Since we don't have in AVX some necessary functions,
  1146. // we split the registers in half and call AVX2 analogs from SSE
  1147. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1148. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1149. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1150. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1151. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1152. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1153. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1154. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1155. // Compute the sum of the quants and set y[i].s
  1156. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1157. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1158. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1159. // Convert int32 to int16
  1160. ni0 = _mm_packs_epi32( ni0, ni1 );
  1161. ni2 = _mm_packs_epi32( ni2, ni3 );
  1162. ni4 = _mm_packs_epi32( ni4, ni5 );
  1163. ni6 = _mm_packs_epi32( ni6, ni7 );
  1164. // Convert int16 to int8
  1165. ni0 = _mm_packs_epi16( ni0, ni2 );
  1166. ni4 = _mm_packs_epi16( ni4, ni6 );
  1167. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1168. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1169. #endif
  1170. }
  1171. #else
  1172. // scalar
  1173. quantize_row_q8_1_reference(x, y, k);
  1174. #endif
  1175. }
  1176. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1177. static const int qk = QK4_0;
  1178. assert(k % qk == 0);
  1179. const int nb = k / qk;
  1180. for (int i = 0; i < nb; i++) {
  1181. const float d = GGML_FP16_TO_FP32(x[i].d);
  1182. for (int j = 0; j < qk/2; ++j) {
  1183. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1184. const int x1 = (x[i].qs[j] >> 4) - 8;
  1185. y[i*qk + j + 0 ] = x0*d;
  1186. y[i*qk + j + qk/2] = x1*d;
  1187. }
  1188. }
  1189. }
  1190. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1191. static const int qk = QK4_1;
  1192. assert(k % qk == 0);
  1193. const int nb = k / qk;
  1194. for (int i = 0; i < nb; i++) {
  1195. const float d = GGML_FP16_TO_FP32(x[i].d);
  1196. const float m = GGML_FP16_TO_FP32(x[i].m);
  1197. for (int j = 0; j < qk/2; ++j) {
  1198. const int x0 = (x[i].qs[j] & 0x0F);
  1199. const int x1 = (x[i].qs[j] >> 4);
  1200. y[i*qk + j + 0 ] = x0*d + m;
  1201. y[i*qk + j + qk/2] = x1*d + m;
  1202. }
  1203. }
  1204. }
  1205. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1206. static const int qk = QK5_0;
  1207. assert(k % qk == 0);
  1208. const int nb = k / qk;
  1209. for (int i = 0; i < nb; i++) {
  1210. const float d = GGML_FP16_TO_FP32(x[i].d);
  1211. uint32_t qh;
  1212. memcpy(&qh, x[i].qh, sizeof(qh));
  1213. for (int j = 0; j < qk/2; ++j) {
  1214. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1215. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1216. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1217. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1218. y[i*qk + j + 0 ] = x0*d;
  1219. y[i*qk + j + qk/2] = x1*d;
  1220. }
  1221. }
  1222. }
  1223. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1224. static const int qk = QK5_1;
  1225. assert(k % qk == 0);
  1226. const int nb = k / qk;
  1227. for (int i = 0; i < nb; i++) {
  1228. const float d = GGML_FP16_TO_FP32(x[i].d);
  1229. const float m = GGML_FP16_TO_FP32(x[i].m);
  1230. uint32_t qh;
  1231. memcpy(&qh, x[i].qh, sizeof(qh));
  1232. for (int j = 0; j < qk/2; ++j) {
  1233. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1234. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1235. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1236. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1237. y[i*qk + j + 0 ] = x0*d + m;
  1238. y[i*qk + j + qk/2] = x1*d + m;
  1239. }
  1240. }
  1241. }
  1242. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1243. static const int qk = QK8_0;
  1244. assert(k % qk == 0);
  1245. const int nb = k / qk;
  1246. const block_q8_0 * restrict x = vx;
  1247. for (int i = 0; i < nb; i++) {
  1248. const float d = GGML_FP16_TO_FP32(x[i].d);
  1249. for (int j = 0; j < qk; ++j) {
  1250. y[i*qk + j] = x[i].qs[j]*d;
  1251. }
  1252. }
  1253. }
  1254. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1255. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1256. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1257. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1258. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1259. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1260. [GGML_TYPE_Q4_0] = {
  1261. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1262. .quantize_row_q = quantize_row_q4_0,
  1263. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1264. .quantize_row_q_dot = quantize_row_q8_0,
  1265. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1266. .vec_dot_type = GGML_TYPE_Q8_0,
  1267. },
  1268. [GGML_TYPE_Q4_1] = {
  1269. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1270. .quantize_row_q = quantize_row_q4_1,
  1271. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1272. .quantize_row_q_dot = quantize_row_q8_1,
  1273. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1274. .vec_dot_type = GGML_TYPE_Q8_1,
  1275. },
  1276. [GGML_TYPE_Q5_0] = {
  1277. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1278. .quantize_row_q = quantize_row_q5_0,
  1279. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1280. .quantize_row_q_dot = quantize_row_q8_0,
  1281. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1282. .vec_dot_type = GGML_TYPE_Q8_0,
  1283. },
  1284. [GGML_TYPE_Q5_1] = {
  1285. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1286. .quantize_row_q = quantize_row_q5_1,
  1287. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1288. .quantize_row_q_dot = quantize_row_q8_1,
  1289. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1290. .vec_dot_type = GGML_TYPE_Q8_1,
  1291. },
  1292. [GGML_TYPE_Q8_0] = {
  1293. .dequantize_row_q = dequantize_row_q8_0,
  1294. .quantize_row_q = quantize_row_q8_0,
  1295. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1296. .quantize_row_q_dot = quantize_row_q8_0,
  1297. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1298. .vec_dot_type = GGML_TYPE_Q8_0,
  1299. },
  1300. [GGML_TYPE_Q8_1] = {
  1301. .dequantize_row_q = NULL, // TODO
  1302. .quantize_row_q = quantize_row_q8_1,
  1303. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1304. .quantize_row_q_dot = quantize_row_q8_1,
  1305. .vec_dot_q = NULL, // TODO
  1306. .vec_dot_type = GGML_TYPE_Q8_1,
  1307. },
  1308. #ifdef GGML_USE_K_QUANTS
  1309. [GGML_TYPE_Q2_K] = {
  1310. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1311. .quantize_row_q = quantize_row_q2_K,
  1312. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1313. .quantize_row_q_dot = quantize_row_q8_K,
  1314. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1315. .vec_dot_type = GGML_TYPE_Q8_K,
  1316. },
  1317. [GGML_TYPE_Q3_K] = {
  1318. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1319. .quantize_row_q = quantize_row_q3_K,
  1320. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1321. .quantize_row_q_dot = quantize_row_q8_K,
  1322. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1323. .vec_dot_type = GGML_TYPE_Q8_K,
  1324. },
  1325. [GGML_TYPE_Q4_K] = {
  1326. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1327. .quantize_row_q = quantize_row_q4_K,
  1328. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1329. .quantize_row_q_dot = quantize_row_q8_K,
  1330. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1331. .vec_dot_type = GGML_TYPE_Q8_K,
  1332. },
  1333. [GGML_TYPE_Q5_K] = {
  1334. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1335. .quantize_row_q = quantize_row_q5_K,
  1336. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1337. .quantize_row_q_dot = quantize_row_q8_K,
  1338. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1339. .vec_dot_type = GGML_TYPE_Q8_K,
  1340. },
  1341. [GGML_TYPE_Q6_K] = {
  1342. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1343. .quantize_row_q = quantize_row_q6_K,
  1344. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1345. .quantize_row_q_dot = quantize_row_q8_K,
  1346. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1347. .vec_dot_type = GGML_TYPE_Q8_K,
  1348. },
  1349. #endif
  1350. };
  1351. // For internal test use
  1352. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1353. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1354. return quantize_fns[i];
  1355. }
  1356. //
  1357. // simd mappings
  1358. //
  1359. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1360. // we then implement the fundamental computation operations below using only these macros
  1361. // adding support for new architectures requires to define the corresponding SIMD macros
  1362. //
  1363. // GGML_F32_STEP / GGML_F16_STEP
  1364. // number of elements to process in a single step
  1365. //
  1366. // GGML_F32_EPR / GGML_F16_EPR
  1367. // number of elements to fit in a single register
  1368. //
  1369. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1370. #define GGML_SIMD
  1371. // F32 NEON
  1372. #define GGML_F32_STEP 16
  1373. #define GGML_F32_EPR 4
  1374. #define GGML_F32x4 float32x4_t
  1375. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1376. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1377. #define GGML_F32x4_LOAD vld1q_f32
  1378. #define GGML_F32x4_STORE vst1q_f32
  1379. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1380. #define GGML_F32x4_ADD vaddq_f32
  1381. #define GGML_F32x4_MUL vmulq_f32
  1382. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1383. #define GGML_F32x4_REDUCE(res, x) \
  1384. { \
  1385. int offset = GGML_F32_ARR >> 1; \
  1386. for (int i = 0; i < offset; ++i) { \
  1387. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1388. } \
  1389. offset >>= 1; \
  1390. for (int i = 0; i < offset; ++i) { \
  1391. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1392. } \
  1393. offset >>= 1; \
  1394. for (int i = 0; i < offset; ++i) { \
  1395. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1396. } \
  1397. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1398. }
  1399. #define GGML_F32_VEC GGML_F32x4
  1400. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1401. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1402. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1403. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1404. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1405. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1406. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1407. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1408. // F16 NEON
  1409. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1410. #define GGML_F16_STEP 32
  1411. #define GGML_F16_EPR 8
  1412. #define GGML_F16x8 float16x8_t
  1413. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1414. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1415. #define GGML_F16x8_LOAD vld1q_f16
  1416. #define GGML_F16x8_STORE vst1q_f16
  1417. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1418. #define GGML_F16x8_ADD vaddq_f16
  1419. #define GGML_F16x8_MUL vmulq_f16
  1420. #define GGML_F16x8_REDUCE(res, x) \
  1421. { \
  1422. int offset = GGML_F16_ARR >> 1; \
  1423. for (int i = 0; i < offset; ++i) { \
  1424. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1425. } \
  1426. offset >>= 1; \
  1427. for (int i = 0; i < offset; ++i) { \
  1428. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1429. } \
  1430. offset >>= 1; \
  1431. for (int i = 0; i < offset; ++i) { \
  1432. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1433. } \
  1434. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1435. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1436. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1437. }
  1438. #define GGML_F16_VEC GGML_F16x8
  1439. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1440. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1441. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1442. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1443. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1444. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1445. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1446. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1447. #else
  1448. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1449. // and take advantage of the vcvt_ functions to convert to/from FP16
  1450. #define GGML_F16_STEP 16
  1451. #define GGML_F16_EPR 4
  1452. #define GGML_F32Cx4 float32x4_t
  1453. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1454. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1455. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1456. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1457. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1458. #define GGML_F32Cx4_ADD vaddq_f32
  1459. #define GGML_F32Cx4_MUL vmulq_f32
  1460. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1461. #define GGML_F16_VEC GGML_F32Cx4
  1462. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1463. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1464. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1465. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1466. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1467. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1468. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1469. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1470. #endif
  1471. #elif defined(__AVX__)
  1472. #define GGML_SIMD
  1473. // F32 AVX
  1474. #define GGML_F32_STEP 32
  1475. #define GGML_F32_EPR 8
  1476. #define GGML_F32x8 __m256
  1477. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1478. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1479. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1480. #define GGML_F32x8_STORE _mm256_storeu_ps
  1481. #if defined(__FMA__)
  1482. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1483. #else
  1484. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1485. #endif
  1486. #define GGML_F32x8_ADD _mm256_add_ps
  1487. #define GGML_F32x8_MUL _mm256_mul_ps
  1488. #define GGML_F32x8_REDUCE(res, x) \
  1489. { \
  1490. int offset = GGML_F32_ARR >> 1; \
  1491. for (int i = 0; i < offset; ++i) { \
  1492. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1493. } \
  1494. offset >>= 1; \
  1495. for (int i = 0; i < offset; ++i) { \
  1496. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1497. } \
  1498. offset >>= 1; \
  1499. for (int i = 0; i < offset; ++i) { \
  1500. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1501. } \
  1502. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1503. _mm256_extractf128_ps(x[0], 1)); \
  1504. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1505. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1506. }
  1507. // TODO: is this optimal ?
  1508. #define GGML_F32_VEC GGML_F32x8
  1509. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1510. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1511. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1512. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1513. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1514. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1515. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1516. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1517. // F16 AVX
  1518. #define GGML_F16_STEP 32
  1519. #define GGML_F16_EPR 8
  1520. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1521. #define GGML_F32Cx8 __m256
  1522. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1523. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1524. #if defined(__F16C__)
  1525. // the _mm256_cvt intrinsics require F16C
  1526. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1527. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1528. #else
  1529. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1530. float tmp[8];
  1531. for (int i = 0; i < 8; i++) {
  1532. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1533. }
  1534. return _mm256_loadu_ps(tmp);
  1535. }
  1536. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1537. float arr[8];
  1538. _mm256_storeu_ps(arr, y);
  1539. for (int i = 0; i < 8; i++)
  1540. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1541. }
  1542. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1543. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1544. #endif
  1545. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1546. #define GGML_F32Cx8_ADD _mm256_add_ps
  1547. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1548. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1549. #define GGML_F16_VEC GGML_F32Cx8
  1550. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1551. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1552. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1553. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1554. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1555. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1556. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1557. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1558. #elif defined(__POWER9_VECTOR__)
  1559. #define GGML_SIMD
  1560. // F32 POWER9
  1561. #define GGML_F32_STEP 32
  1562. #define GGML_F32_EPR 4
  1563. #define GGML_F32x4 vector float
  1564. #define GGML_F32x4_ZERO 0.0f
  1565. #define GGML_F32x4_SET1 vec_splats
  1566. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1567. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1568. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1569. #define GGML_F32x4_ADD vec_add
  1570. #define GGML_F32x4_MUL vec_mul
  1571. #define GGML_F32x4_REDUCE(res, x) \
  1572. { \
  1573. int offset = GGML_F32_ARR >> 1; \
  1574. for (int i = 0; i < offset; ++i) { \
  1575. x[i] = vec_add(x[i], x[offset+i]); \
  1576. } \
  1577. offset >>= 1; \
  1578. for (int i = 0; i < offset; ++i) { \
  1579. x[i] = vec_add(x[i], x[offset+i]); \
  1580. } \
  1581. offset >>= 1; \
  1582. for (int i = 0; i < offset; ++i) { \
  1583. x[i] = vec_add(x[i], x[offset+i]); \
  1584. } \
  1585. res = vec_extract(x[0], 0) + \
  1586. vec_extract(x[0], 1) + \
  1587. vec_extract(x[0], 2) + \
  1588. vec_extract(x[0], 3); \
  1589. }
  1590. #define GGML_F32_VEC GGML_F32x4
  1591. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1592. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1593. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1594. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1595. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1596. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1597. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1598. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1599. // F16 POWER9
  1600. #define GGML_F16_STEP GGML_F32_STEP
  1601. #define GGML_F16_EPR GGML_F32_EPR
  1602. #define GGML_F16_VEC GGML_F32x4
  1603. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1604. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1605. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1606. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1607. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1608. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1609. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1610. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1611. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1612. #define GGML_F16_VEC_STORE(p, r, i) \
  1613. if (i & 0x1) \
  1614. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1615. r[i - GGML_ENDIAN_BYTE(0)]), \
  1616. 0, p - GGML_F16_EPR)
  1617. #elif defined(__wasm_simd128__)
  1618. #define GGML_SIMD
  1619. // F32 WASM
  1620. #define GGML_F32_STEP 16
  1621. #define GGML_F32_EPR 4
  1622. #define GGML_F32x4 v128_t
  1623. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1624. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1625. #define GGML_F32x4_LOAD wasm_v128_load
  1626. #define GGML_F32x4_STORE wasm_v128_store
  1627. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1628. #define GGML_F32x4_ADD wasm_f32x4_add
  1629. #define GGML_F32x4_MUL wasm_f32x4_mul
  1630. #define GGML_F32x4_REDUCE(res, x) \
  1631. { \
  1632. int offset = GGML_F32_ARR >> 1; \
  1633. for (int i = 0; i < offset; ++i) { \
  1634. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1635. } \
  1636. offset >>= 1; \
  1637. for (int i = 0; i < offset; ++i) { \
  1638. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1639. } \
  1640. offset >>= 1; \
  1641. for (int i = 0; i < offset; ++i) { \
  1642. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1643. } \
  1644. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1645. wasm_f32x4_extract_lane(x[0], 1) + \
  1646. wasm_f32x4_extract_lane(x[0], 2) + \
  1647. wasm_f32x4_extract_lane(x[0], 3); \
  1648. }
  1649. #define GGML_F32_VEC GGML_F32x4
  1650. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1651. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1652. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1653. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1654. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1655. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1656. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1657. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1658. // F16 WASM
  1659. #define GGML_F16_STEP 16
  1660. #define GGML_F16_EPR 4
  1661. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1662. float tmp[4];
  1663. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1664. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1665. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1666. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1667. return wasm_v128_load(tmp);
  1668. }
  1669. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1670. float tmp[4];
  1671. wasm_v128_store(tmp, x);
  1672. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1673. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1674. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1675. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1676. }
  1677. #define GGML_F16x4 v128_t
  1678. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1679. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1680. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1681. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1682. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1683. #define GGML_F16x4_ADD wasm_f32x4_add
  1684. #define GGML_F16x4_MUL wasm_f32x4_mul
  1685. #define GGML_F16x4_REDUCE(res, x) \
  1686. { \
  1687. int offset = GGML_F16_ARR >> 1; \
  1688. for (int i = 0; i < offset; ++i) { \
  1689. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1690. } \
  1691. offset >>= 1; \
  1692. for (int i = 0; i < offset; ++i) { \
  1693. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1694. } \
  1695. offset >>= 1; \
  1696. for (int i = 0; i < offset; ++i) { \
  1697. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1698. } \
  1699. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1700. wasm_f32x4_extract_lane(x[0], 1) + \
  1701. wasm_f32x4_extract_lane(x[0], 2) + \
  1702. wasm_f32x4_extract_lane(x[0], 3); \
  1703. }
  1704. #define GGML_F16_VEC GGML_F16x4
  1705. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1706. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1707. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1709. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1710. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1711. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1712. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1713. #elif defined(__SSE3__)
  1714. #define GGML_SIMD
  1715. // F32 SSE
  1716. #define GGML_F32_STEP 32
  1717. #define GGML_F32_EPR 4
  1718. #define GGML_F32x4 __m128
  1719. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1720. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1721. #define GGML_F32x4_LOAD _mm_loadu_ps
  1722. #define GGML_F32x4_STORE _mm_storeu_ps
  1723. #if defined(__FMA__)
  1724. // TODO: Does this work?
  1725. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1726. #else
  1727. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1728. #endif
  1729. #define GGML_F32x4_ADD _mm_add_ps
  1730. #define GGML_F32x4_MUL _mm_mul_ps
  1731. #define GGML_F32x4_REDUCE(res, x) \
  1732. { \
  1733. int offset = GGML_F32_ARR >> 1; \
  1734. for (int i = 0; i < offset; ++i) { \
  1735. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1736. } \
  1737. offset >>= 1; \
  1738. for (int i = 0; i < offset; ++i) { \
  1739. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1740. } \
  1741. offset >>= 1; \
  1742. for (int i = 0; i < offset; ++i) { \
  1743. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1744. } \
  1745. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1746. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1747. }
  1748. // TODO: is this optimal ?
  1749. #define GGML_F32_VEC GGML_F32x4
  1750. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1751. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1752. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1753. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1754. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1755. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1756. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1757. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1758. // F16 SSE
  1759. #define GGML_F16_STEP 32
  1760. #define GGML_F16_EPR 4
  1761. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1762. float tmp[4];
  1763. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1764. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1765. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1766. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1767. return _mm_loadu_ps(tmp);
  1768. }
  1769. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1770. float arr[4];
  1771. _mm_storeu_ps(arr, y);
  1772. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1773. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1774. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1775. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1776. }
  1777. #define GGML_F32Cx4 __m128
  1778. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1779. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1780. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1781. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1782. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1783. #define GGML_F32Cx4_ADD _mm_add_ps
  1784. #define GGML_F32Cx4_MUL _mm_mul_ps
  1785. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1786. #define GGML_F16_VEC GGML_F32Cx4
  1787. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1788. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1789. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1790. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1791. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1792. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1793. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1794. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1795. #endif
  1796. // GGML_F32_ARR / GGML_F16_ARR
  1797. // number of registers to use per step
  1798. #ifdef GGML_SIMD
  1799. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1800. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1801. #endif
  1802. //
  1803. // fundamental operations
  1804. //
  1805. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1806. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1807. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1808. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1809. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1810. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1811. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1812. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1813. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1814. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1815. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1816. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1817. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1818. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1819. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1820. #ifdef GGML_SIMD
  1821. float sumf = 0.0f;
  1822. const int np = (n & ~(GGML_F32_STEP - 1));
  1823. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1824. GGML_F32_VEC ax[GGML_F32_ARR];
  1825. GGML_F32_VEC ay[GGML_F32_ARR];
  1826. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1827. for (int j = 0; j < GGML_F32_ARR; j++) {
  1828. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1829. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1830. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. GGML_F32_VEC_REDUCE(sumf, sum);
  1835. // leftovers
  1836. for (int i = np; i < n; ++i) {
  1837. sumf += x[i]*y[i];
  1838. }
  1839. #else
  1840. // scalar
  1841. ggml_float sumf = 0.0;
  1842. for (int i = 0; i < n; ++i) {
  1843. sumf += (ggml_float)(x[i]*y[i]);
  1844. }
  1845. #endif
  1846. *s = sumf;
  1847. }
  1848. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1849. ggml_float sumf = 0.0;
  1850. #if defined(GGML_SIMD)
  1851. const int np = (n & ~(GGML_F16_STEP - 1));
  1852. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1853. GGML_F16_VEC ax[GGML_F16_ARR];
  1854. GGML_F16_VEC ay[GGML_F16_ARR];
  1855. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1856. for (int j = 0; j < GGML_F16_ARR; j++) {
  1857. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1858. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1859. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1860. }
  1861. }
  1862. // reduce sum0..sum3 to sum0
  1863. GGML_F16_VEC_REDUCE(sumf, sum);
  1864. // leftovers
  1865. for (int i = np; i < n; ++i) {
  1866. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1867. }
  1868. #else
  1869. for (int i = 0; i < n; ++i) {
  1870. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1871. }
  1872. #endif
  1873. *s = sumf;
  1874. }
  1875. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1876. const int qk = QK8_0;
  1877. const int nb = n / qk;
  1878. assert(n % qk == 0);
  1879. assert(nb % 2 == 0);
  1880. const block_q4_0 * restrict x = vx;
  1881. const block_q8_0 * restrict y = vy;
  1882. #if defined(__ARM_NEON)
  1883. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1884. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1885. for (int i = 0; i < nb; i += 2) {
  1886. const block_q4_0 * restrict x0 = &x[i + 0];
  1887. const block_q4_0 * restrict x1 = &x[i + 1];
  1888. const block_q8_0 * restrict y0 = &y[i + 0];
  1889. const block_q8_0 * restrict y1 = &y[i + 1];
  1890. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1891. const int8x16_t s8b = vdupq_n_s8(0x8);
  1892. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1893. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1894. // 4-bit -> 8-bit
  1895. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1896. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1897. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1898. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1899. // sub 8
  1900. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1901. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1902. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1903. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1904. // load y
  1905. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1906. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1907. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1908. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1909. #if defined(__ARM_FEATURE_DOTPROD)
  1910. // dot product into int32x4_t
  1911. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1912. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1913. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1914. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1915. #else
  1916. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1917. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1918. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1919. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1920. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1921. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1922. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1923. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1924. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1925. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1926. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1927. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1928. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1929. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1930. #endif
  1931. }
  1932. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1933. #elif defined(__AVX2__)
  1934. // Initialize accumulator with zeros
  1935. __m256 acc = _mm256_setzero_ps();
  1936. // Main loop
  1937. for (int i = 0; i < nb; ++i) {
  1938. /* Compute combined scale for the block */
  1939. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1940. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1941. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1942. const __m256i off = _mm256_set1_epi8( 8 );
  1943. bx = _mm256_sub_epi8( bx, off );
  1944. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1945. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1946. /* Multiply q with scale and accumulate */
  1947. acc = _mm256_fmadd_ps( d, q, acc );
  1948. }
  1949. *s = hsum_float_8(acc);
  1950. #elif defined(__AVX__)
  1951. // Initialize accumulator with zeros
  1952. __m256 acc = _mm256_setzero_ps();
  1953. // Main loop
  1954. for (int i = 0; i < nb; ++i) {
  1955. // Compute combined scale for the block
  1956. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1957. const __m128i lowMask = _mm_set1_epi8(0xF);
  1958. const __m128i off = _mm_set1_epi8(8);
  1959. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1960. __m128i bx = _mm_and_si128(lowMask, tmp);
  1961. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1962. bx = _mm_sub_epi8(bx, off);
  1963. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1964. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1965. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1966. bx = _mm_sub_epi8(bx, off);
  1967. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1968. // Convert int32_t to float
  1969. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  1970. // Apply the scale, and accumulate
  1971. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1972. }
  1973. *s = hsum_float_8(acc);
  1974. #elif defined(__SSSE3__)
  1975. // set constants
  1976. const __m128i lowMask = _mm_set1_epi8(0xF);
  1977. const __m128i off = _mm_set1_epi8(8);
  1978. // Initialize accumulator with zeros
  1979. __m128 acc_0 = _mm_setzero_ps();
  1980. __m128 acc_1 = _mm_setzero_ps();
  1981. __m128 acc_2 = _mm_setzero_ps();
  1982. __m128 acc_3 = _mm_setzero_ps();
  1983. // First round without accumulation
  1984. {
  1985. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1986. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1987. // Compute combined scale for the block 0 and 1
  1988. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1989. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1990. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1991. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1992. bx_0 = _mm_sub_epi8(bx_0, off);
  1993. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1994. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1995. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1996. bx_1 = _mm_sub_epi8(bx_1, off);
  1997. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1998. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1999. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2000. // Compute combined scale for the block 2 and 3
  2001. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2002. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2003. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2004. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2005. bx_2 = _mm_sub_epi8(bx_2, off);
  2006. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2007. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2008. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2009. bx_3 = _mm_sub_epi8(bx_3, off);
  2010. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2011. // Convert int32_t to float
  2012. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2013. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2014. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2015. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2016. // Apply the scale
  2017. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2018. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2019. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2020. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2021. }
  2022. // Main loop
  2023. for (int i = 2; i < nb; i+=2) {
  2024. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2025. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2026. // Compute combined scale for the block 0 and 1
  2027. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2028. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2029. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2030. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2031. bx_0 = _mm_sub_epi8(bx_0, off);
  2032. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2033. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2034. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2035. bx_1 = _mm_sub_epi8(bx_1, off);
  2036. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2037. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2038. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2039. // Compute combined scale for the block 2 and 3
  2040. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2041. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2042. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2043. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2044. bx_2 = _mm_sub_epi8(bx_2, off);
  2045. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2046. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2047. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2048. bx_3 = _mm_sub_epi8(bx_3, off);
  2049. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2050. // Convert int32_t to float
  2051. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2052. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2053. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2054. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2055. // Apply the scale
  2056. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2057. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2058. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2059. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2060. // Acummulate
  2061. acc_0 = _mm_add_ps(p0_d, acc_0);
  2062. acc_1 = _mm_add_ps(p1_d, acc_1);
  2063. acc_2 = _mm_add_ps(p2_d, acc_2);
  2064. acc_3 = _mm_add_ps(p3_d, acc_3);
  2065. }
  2066. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2067. #else
  2068. // scalar
  2069. float sumf = 0.0;
  2070. for (int i = 0; i < nb; i++) {
  2071. int sumi = 0;
  2072. for (int j = 0; j < qk/2; ++j) {
  2073. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2074. const int v1 = (x[i].qs[j] >> 4) - 8;
  2075. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2076. }
  2077. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2078. }
  2079. *s = sumf;
  2080. #endif
  2081. }
  2082. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2083. const int qk = QK8_1;
  2084. const int nb = n / qk;
  2085. assert(n % qk == 0);
  2086. assert(nb % 2 == 0);
  2087. const block_q4_1 * restrict x = vx;
  2088. const block_q8_1 * restrict y = vy;
  2089. // TODO: add WASM SIMD
  2090. #if defined(__ARM_NEON)
  2091. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2092. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2093. float summs = 0;
  2094. for (int i = 0; i < nb; i += 2) {
  2095. const block_q4_1 * restrict x0 = &x[i + 0];
  2096. const block_q4_1 * restrict x1 = &x[i + 1];
  2097. const block_q8_1 * restrict y0 = &y[i + 0];
  2098. const block_q8_1 * restrict y1 = &y[i + 1];
  2099. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2100. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2101. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2102. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2103. // 4-bit -> 8-bit
  2104. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2105. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2106. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2107. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2108. // load y
  2109. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2110. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2111. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2112. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2113. #if defined(__ARM_FEATURE_DOTPROD)
  2114. // dot product into int32x4_t
  2115. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2116. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2117. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2118. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2119. #else
  2120. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2121. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2122. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2123. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2124. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2125. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2126. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2127. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2128. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2129. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2130. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2131. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2132. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2133. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2134. #endif
  2135. }
  2136. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2137. #elif defined(__AVX2__) || defined(__AVX__)
  2138. // Initialize accumulator with zeros
  2139. __m256 acc = _mm256_setzero_ps();
  2140. float summs = 0;
  2141. // Main loop
  2142. for (int i = 0; i < nb; ++i) {
  2143. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2144. const float d1 = y[i].d;
  2145. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2146. const __m256 d0v = _mm256_set1_ps( d0 );
  2147. const __m256 d1v = _mm256_set1_ps( d1 );
  2148. // Compute combined scales
  2149. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2150. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2151. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2152. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2153. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2154. // Accumulate d0*d1*x*y
  2155. #if defined(__AVX2__)
  2156. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2157. #else
  2158. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2159. #endif
  2160. }
  2161. *s = hsum_float_8(acc) + summs;
  2162. #else
  2163. // scalar
  2164. float sumf = 0.0;
  2165. for (int i = 0; i < nb; i++) {
  2166. int sumi = 0;
  2167. for (int j = 0; j < qk/2; ++j) {
  2168. const int v0 = (x[i].qs[j] & 0x0F);
  2169. const int v1 = (x[i].qs[j] >> 4);
  2170. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2171. }
  2172. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2173. }
  2174. *s = sumf;
  2175. #endif
  2176. }
  2177. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2178. const int qk = QK8_0;
  2179. const int nb = n / qk;
  2180. assert(n % qk == 0);
  2181. assert(nb % 2 == 0);
  2182. assert(qk == QK5_0);
  2183. const block_q5_0 * restrict x = vx;
  2184. const block_q8_0 * restrict y = vy;
  2185. #if defined(__ARM_NEON)
  2186. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2187. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2188. uint32_t qh0;
  2189. uint32_t qh1;
  2190. uint64_t tmp0[4];
  2191. uint64_t tmp1[4];
  2192. for (int i = 0; i < nb; i += 2) {
  2193. const block_q5_0 * restrict x0 = &x[i];
  2194. const block_q5_0 * restrict x1 = &x[i + 1];
  2195. const block_q8_0 * restrict y0 = &y[i];
  2196. const block_q8_0 * restrict y1 = &y[i + 1];
  2197. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2198. // extract the 5th bit via lookup table ((!b) << 4)
  2199. memcpy(&qh0, x0->qh, sizeof(qh0));
  2200. memcpy(&qh1, x1->qh, sizeof(qh1));
  2201. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2202. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2203. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2204. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2205. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2206. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2207. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2208. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2209. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2210. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2211. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2212. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2213. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2214. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2215. // 4-bit -> 8-bit
  2216. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2217. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2218. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2219. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2220. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2221. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2222. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2223. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2224. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2225. // load y
  2226. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2227. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2228. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2229. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2230. #if defined(__ARM_FEATURE_DOTPROD)
  2231. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2232. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2233. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2234. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2235. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2236. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2237. #else
  2238. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2239. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2240. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2241. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2242. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2243. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2244. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2245. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2246. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2247. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2248. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2249. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2250. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2251. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2252. #endif
  2253. }
  2254. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2255. #elif defined(__wasm_simd128__)
  2256. v128_t sumv = wasm_f32x4_splat(0.0f);
  2257. uint32_t qh;
  2258. uint64_t tmp[4];
  2259. // TODO: check if unrolling this is better
  2260. for (int i = 0; i < nb; ++i) {
  2261. const block_q5_0 * restrict x0 = &x[i];
  2262. const block_q8_0 * restrict y0 = &y[i];
  2263. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2264. // extract the 5th bit
  2265. memcpy(&qh, x0->qh, sizeof(qh));
  2266. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2267. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2268. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2269. tmp[3] = table_b2b_1[(qh >> 24) ];
  2270. const v128_t qhl = wasm_v128_load(tmp + 0);
  2271. const v128_t qhh = wasm_v128_load(tmp + 2);
  2272. const v128_t v0 = wasm_v128_load(x0->qs);
  2273. // 4-bit -> 8-bit
  2274. const v128_t v0l = wasm_v128_and (v0, m4b);
  2275. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2276. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2277. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2278. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2279. // load y
  2280. const v128_t v1l = wasm_v128_load(y0->qs);
  2281. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2282. // int8x16 -> int16x8
  2283. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2284. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2285. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2286. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2287. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2288. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2289. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2290. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2291. // dot product
  2292. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2293. wasm_i32x4_add(
  2294. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2295. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2296. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2297. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2298. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2299. }
  2300. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2301. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2302. #elif defined(__AVX2__)
  2303. // Initialize accumulator with zeros
  2304. __m256 acc = _mm256_setzero_ps();
  2305. // Main loop
  2306. for (int i = 0; i < nb; i++) {
  2307. /* Compute combined scale for the block */
  2308. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2309. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2310. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2311. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2312. bx = _mm256_or_si256(bx, bxhi);
  2313. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2314. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2315. /* Multiply q with scale and accumulate */
  2316. acc = _mm256_fmadd_ps(d, q, acc);
  2317. }
  2318. *s = hsum_float_8(acc);
  2319. #elif defined(__AVX__)
  2320. // Initialize accumulator with zeros
  2321. __m256 acc = _mm256_setzero_ps();
  2322. __m128i mask = _mm_set1_epi8((char)0xF0);
  2323. // Main loop
  2324. for (int i = 0; i < nb; i++) {
  2325. /* Compute combined scale for the block */
  2326. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2327. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2328. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2329. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2330. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2331. bxhil = _mm_andnot_si128(bxhil, mask);
  2332. bxhih = _mm_andnot_si128(bxhih, mask);
  2333. __m128i bxl = _mm256_castsi256_si128(bx);
  2334. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2335. bxl = _mm_or_si128(bxl, bxhil);
  2336. bxh = _mm_or_si128(bxh, bxhih);
  2337. bx = MM256_SET_M128I(bxh, bxl);
  2338. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2339. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2340. /* Multiply q with scale and accumulate */
  2341. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2342. }
  2343. *s = hsum_float_8(acc);
  2344. #else
  2345. // scalar
  2346. float sumf = 0.0;
  2347. for (int i = 0; i < nb; i++) {
  2348. uint32_t qh;
  2349. memcpy(&qh, x[i].qh, sizeof(qh));
  2350. int sumi = 0;
  2351. for (int j = 0; j < qk/2; ++j) {
  2352. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2353. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2354. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2355. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2356. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2357. }
  2358. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2359. }
  2360. *s = sumf;
  2361. #endif
  2362. }
  2363. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2364. const int qk = QK8_1;
  2365. const int nb = n / qk;
  2366. assert(n % qk == 0);
  2367. assert(nb % 2 == 0);
  2368. assert(qk == QK5_1);
  2369. const block_q5_1 * restrict x = vx;
  2370. const block_q8_1 * restrict y = vy;
  2371. #if defined(__ARM_NEON)
  2372. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2373. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2374. float summs0 = 0.0f;
  2375. float summs1 = 0.0f;
  2376. uint32_t qh0;
  2377. uint32_t qh1;
  2378. uint64_t tmp0[4];
  2379. uint64_t tmp1[4];
  2380. for (int i = 0; i < nb; i += 2) {
  2381. const block_q5_1 * restrict x0 = &x[i];
  2382. const block_q5_1 * restrict x1 = &x[i + 1];
  2383. const block_q8_1 * restrict y0 = &y[i];
  2384. const block_q8_1 * restrict y1 = &y[i + 1];
  2385. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2386. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2387. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2388. // extract the 5th bit via lookup table ((b) << 4)
  2389. memcpy(&qh0, x0->qh, sizeof(qh0));
  2390. memcpy(&qh1, x1->qh, sizeof(qh1));
  2391. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2392. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2393. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2394. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2395. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2396. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2397. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2398. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2399. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2400. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2401. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2402. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2403. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2404. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2405. // 4-bit -> 8-bit
  2406. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2407. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2408. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2409. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2410. // add high bit
  2411. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2412. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2413. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2414. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2415. // load y
  2416. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2417. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2418. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2419. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2420. #if defined(__ARM_FEATURE_DOTPROD)
  2421. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2422. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2423. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2424. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2425. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2426. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2427. #else
  2428. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2429. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2430. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2431. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2432. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2433. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2434. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2435. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2436. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2437. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2438. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2439. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2440. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2441. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2442. #endif
  2443. }
  2444. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2445. #elif defined(__wasm_simd128__)
  2446. v128_t sumv = wasm_f32x4_splat(0.0f);
  2447. float summs = 0.0f;
  2448. uint32_t qh;
  2449. uint64_t tmp[4];
  2450. // TODO: check if unrolling this is better
  2451. for (int i = 0; i < nb; ++i) {
  2452. const block_q5_1 * restrict x0 = &x[i];
  2453. const block_q8_1 * restrict y0 = &y[i];
  2454. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2455. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2456. // extract the 5th bit
  2457. memcpy(&qh, x0->qh, sizeof(qh));
  2458. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2459. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2460. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2461. tmp[3] = table_b2b_0[(qh >> 24) ];
  2462. const v128_t qhl = wasm_v128_load(tmp + 0);
  2463. const v128_t qhh = wasm_v128_load(tmp + 2);
  2464. const v128_t v0 = wasm_v128_load(x0->qs);
  2465. // 4-bit -> 8-bit
  2466. const v128_t v0l = wasm_v128_and (v0, m4b);
  2467. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2468. // add high bit
  2469. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2470. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2471. // load y
  2472. const v128_t v1l = wasm_v128_load(y0->qs);
  2473. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2474. // int8x16 -> int16x8
  2475. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2476. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2477. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2478. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2479. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2480. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2481. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2482. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2483. // dot product
  2484. sumv = wasm_f32x4_add(sumv,
  2485. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2486. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2487. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2488. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2489. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2490. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2491. }
  2492. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2493. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2494. #elif defined(__AVX2__)
  2495. // Initialize accumulator with zeros
  2496. __m256 acc = _mm256_setzero_ps();
  2497. float summs = 0.0f;
  2498. // Main loop
  2499. for (int i = 0; i < nb; i++) {
  2500. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2501. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2502. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2503. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2504. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2505. bx = _mm256_or_si256(bx, bxhi);
  2506. const __m256 dy = _mm256_set1_ps(y[i].d);
  2507. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2508. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2509. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2510. }
  2511. *s = hsum_float_8(acc) + summs;
  2512. #elif defined(__AVX__)
  2513. // Initialize accumulator with zeros
  2514. __m256 acc = _mm256_setzero_ps();
  2515. __m128i mask = _mm_set1_epi8(0x10);
  2516. float summs = 0.0f;
  2517. // Main loop
  2518. for (int i = 0; i < nb; i++) {
  2519. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2520. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2521. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2522. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2523. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2524. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2525. bxhil = _mm_and_si128(bxhil, mask);
  2526. bxhih = _mm_and_si128(bxhih, mask);
  2527. __m128i bxl = _mm256_castsi256_si128(bx);
  2528. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2529. bxl = _mm_or_si128(bxl, bxhil);
  2530. bxh = _mm_or_si128(bxh, bxhih);
  2531. bx = MM256_SET_M128I(bxh, bxl);
  2532. const __m256 dy = _mm256_set1_ps(y[i].d);
  2533. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2534. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2535. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2536. }
  2537. *s = hsum_float_8(acc) + summs;
  2538. #else
  2539. // scalar
  2540. float sumf = 0.0;
  2541. for (int i = 0; i < nb; i++) {
  2542. uint32_t qh;
  2543. memcpy(&qh, x[i].qh, sizeof(qh));
  2544. int sumi = 0;
  2545. for (int j = 0; j < qk/2; ++j) {
  2546. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2547. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2548. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2549. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2550. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2551. }
  2552. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2553. }
  2554. *s = sumf;
  2555. #endif
  2556. }
  2557. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2558. const int qk = QK8_0;
  2559. const int nb = n / qk;
  2560. assert(n % qk == 0);
  2561. assert(nb % 2 == 0);
  2562. const block_q8_0 * restrict x = vx;
  2563. const block_q8_0 * restrict y = vy;
  2564. #if defined(__ARM_NEON)
  2565. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2566. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2567. for (int i = 0; i < nb; i += 2) {
  2568. const block_q8_0 * restrict x0 = &x[i + 0];
  2569. const block_q8_0 * restrict x1 = &x[i + 1];
  2570. const block_q8_0 * restrict y0 = &y[i + 0];
  2571. const block_q8_0 * restrict y1 = &y[i + 1];
  2572. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2573. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2574. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2575. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2576. // load y
  2577. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2578. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2579. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2580. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2581. #if defined(__ARM_FEATURE_DOTPROD)
  2582. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2583. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2584. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2585. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2586. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2587. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2588. #else
  2589. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2590. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2591. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2592. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2593. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2594. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2595. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2596. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2597. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2598. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2599. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2600. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2601. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2602. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2603. #endif
  2604. }
  2605. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2606. #elif defined(__AVX2__) || defined(__AVX__)
  2607. // Initialize accumulator with zeros
  2608. __m256 acc = _mm256_setzero_ps();
  2609. // Main loop
  2610. for (int i = 0; i < nb; ++i) {
  2611. // Compute combined scale for the block
  2612. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2613. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2614. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2615. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2616. // Multiply q with scale and accumulate
  2617. #if defined(__AVX2__)
  2618. acc = _mm256_fmadd_ps( d, q, acc );
  2619. #else
  2620. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2621. #endif
  2622. }
  2623. *s = hsum_float_8(acc);
  2624. #else
  2625. // scalar
  2626. float sumf = 0.0;
  2627. for (int i = 0; i < nb; i++) {
  2628. int sumi = 0;
  2629. for (int j = 0; j < qk; j++) {
  2630. sumi += x[i].qs[j]*y[i].qs[j];
  2631. }
  2632. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2633. }
  2634. *s = sumf;
  2635. #endif
  2636. }
  2637. // compute GGML_VEC_DOT_UNROLL dot products at once
  2638. // xs - x row stride in bytes
  2639. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2640. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2641. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2642. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2643. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2644. }
  2645. #if defined(GGML_SIMD)
  2646. const int np = (n & ~(GGML_F16_STEP - 1));
  2647. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2648. GGML_F16_VEC ax[GGML_F16_ARR];
  2649. GGML_F16_VEC ay[GGML_F16_ARR];
  2650. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2651. for (int j = 0; j < GGML_F16_ARR; j++) {
  2652. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2653. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2654. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2655. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2656. }
  2657. }
  2658. }
  2659. // reduce sum0..sum3 to sum0
  2660. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2661. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2662. }
  2663. // leftovers
  2664. for (int i = np; i < n; ++i) {
  2665. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2666. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2667. }
  2668. }
  2669. #else
  2670. for (int i = 0; i < n; ++i) {
  2671. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2672. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2673. }
  2674. }
  2675. #endif
  2676. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2677. s[i] = sumf[i];
  2678. }
  2679. }
  2680. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2681. #if defined(GGML_SIMD)
  2682. const int np = (n & ~(GGML_F32_STEP - 1));
  2683. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2684. GGML_F32_VEC ax[GGML_F32_ARR];
  2685. GGML_F32_VEC ay[GGML_F32_ARR];
  2686. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2687. for (int j = 0; j < GGML_F32_ARR; j++) {
  2688. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2689. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2690. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2691. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2692. }
  2693. }
  2694. // leftovers
  2695. for (int i = np; i < n; ++i) {
  2696. y[i] += x[i]*v;
  2697. }
  2698. #else
  2699. // scalar
  2700. for (int i = 0; i < n; ++i) {
  2701. y[i] += x[i]*v;
  2702. }
  2703. #endif
  2704. }
  2705. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2706. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2707. #if defined(GGML_SIMD)
  2708. const int np = (n & ~(GGML_F32_STEP - 1));
  2709. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2710. GGML_F32_VEC ay[GGML_F32_ARR];
  2711. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2712. for (int j = 0; j < GGML_F32_ARR; j++) {
  2713. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2714. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2715. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2716. }
  2717. }
  2718. // leftovers
  2719. for (int i = np; i < n; ++i) {
  2720. y[i] *= v;
  2721. }
  2722. #else
  2723. // scalar
  2724. for (int i = 0; i < n; ++i) {
  2725. y[i] *= v;
  2726. }
  2727. #endif
  2728. }
  2729. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2730. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2731. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2732. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2733. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2734. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2735. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2736. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2737. static const float GELU_COEF_A = 0.044715f;
  2738. static const float GELU_QUICK_COEF = -1.702f;
  2739. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2740. inline static float ggml_gelu_f32(float x) {
  2741. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2742. }
  2743. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2744. const uint16_t * i16 = (const uint16_t *) x;
  2745. for (int i = 0; i < n; ++i) {
  2746. y[i] = table_gelu_f16[i16[i]];
  2747. }
  2748. }
  2749. #ifdef GGML_GELU_FP16
  2750. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2751. uint16_t t;
  2752. for (int i = 0; i < n; ++i) {
  2753. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2754. memcpy(&t, &fp16, sizeof(uint16_t));
  2755. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2756. }
  2757. }
  2758. #else
  2759. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2760. for (int i = 0; i < n; ++i) {
  2761. y[i] = ggml_gelu_f32(x[i]);
  2762. }
  2763. }
  2764. #endif
  2765. inline static float ggml_gelu_quick_f32(float x) {
  2766. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2767. }
  2768. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2769. // const uint16_t * i16 = (const uint16_t *) x;
  2770. // for (int i = 0; i < n; ++i) {
  2771. // y[i] = table_gelu_quick_f16[i16[i]];
  2772. // }
  2773. //}
  2774. #ifdef GGML_GELU_QUICK_FP16
  2775. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2776. uint16_t t;
  2777. for (int i = 0; i < n; ++i) {
  2778. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2779. memcpy(&t, &fp16, sizeof(uint16_t));
  2780. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2781. }
  2782. }
  2783. #else
  2784. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2785. for (int i = 0; i < n; ++i) {
  2786. y[i] = ggml_gelu_quick_f32(x[i]);
  2787. }
  2788. }
  2789. #endif
  2790. // Sigmoid Linear Unit (SiLU) function
  2791. inline static float ggml_silu_f32(float x) {
  2792. return x/(1.0f + expf(-x));
  2793. }
  2794. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2795. // const uint16_t * i16 = (const uint16_t *) x;
  2796. // for (int i = 0; i < n; ++i) {
  2797. // y[i] = table_silu_f16[i16[i]];
  2798. // }
  2799. //}
  2800. #ifdef GGML_SILU_FP16
  2801. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2802. uint16_t t;
  2803. for (int i = 0; i < n; ++i) {
  2804. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2805. memcpy(&t, &fp16, sizeof(uint16_t));
  2806. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2807. }
  2808. }
  2809. #else
  2810. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2811. for (int i = 0; i < n; ++i) {
  2812. y[i] = ggml_silu_f32(x[i]);
  2813. }
  2814. }
  2815. #endif
  2816. inline static float ggml_silu_backward_f32(float x, float dy) {
  2817. const float s = 1.0f/(1.0f + expf(-x));
  2818. return dy*s*(1.0f + x*(1.0f - s));
  2819. }
  2820. #ifdef GGML_SILU_FP16
  2821. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2822. for (int i = 0; i < n; ++i) {
  2823. // we did not use x[i] to compute forward silu but its f16 equivalent
  2824. // take derivative at f16 of x[i]:
  2825. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2826. float usedx = GGML_FP16_TO_FP32(fp16);
  2827. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2828. }
  2829. }
  2830. #else
  2831. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2832. for (int i = 0; i < n; ++i) {
  2833. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2834. }
  2835. }
  2836. #endif
  2837. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2838. #ifndef GGML_USE_ACCELERATE
  2839. ggml_float sum = 0.0;
  2840. for (int i = 0; i < n; ++i) {
  2841. sum += (ggml_float)x[i];
  2842. }
  2843. *s = sum;
  2844. #else
  2845. vDSP_sve(x, 1, s, n);
  2846. #endif
  2847. }
  2848. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2849. ggml_float sum = 0.0;
  2850. for (int i = 0; i < n; ++i) {
  2851. sum += (ggml_float)x[i];
  2852. }
  2853. *s = sum;
  2854. }
  2855. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2856. #ifndef GGML_USE_ACCELERATE
  2857. float max = -INFINITY;
  2858. for (int i = 0; i < n; ++i) {
  2859. max = MAX(max, x[i]);
  2860. }
  2861. *s = max;
  2862. #else
  2863. vDSP_maxv(x, 1, s, n);
  2864. #endif
  2865. }
  2866. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2867. ggml_vec_norm_f32(n, s, x);
  2868. *s = 1.f/(*s);
  2869. }
  2870. //
  2871. // logging
  2872. //
  2873. #if (GGML_DEBUG >= 1)
  2874. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2875. #else
  2876. #define GGML_PRINT_DEBUG(...)
  2877. #endif
  2878. #if (GGML_DEBUG >= 5)
  2879. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2880. #else
  2881. #define GGML_PRINT_DEBUG_5(...)
  2882. #endif
  2883. #if (GGML_DEBUG >= 10)
  2884. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2885. #else
  2886. #define GGML_PRINT_DEBUG_10(...)
  2887. #endif
  2888. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2889. //
  2890. // data types
  2891. //
  2892. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2893. [GGML_TYPE_F32] = 1,
  2894. [GGML_TYPE_F16] = 1,
  2895. [GGML_TYPE_Q4_0] = QK4_0,
  2896. [GGML_TYPE_Q4_1] = QK4_1,
  2897. [GGML_TYPE_Q5_0] = QK5_0,
  2898. [GGML_TYPE_Q5_1] = QK5_1,
  2899. [GGML_TYPE_Q8_0] = QK8_0,
  2900. [GGML_TYPE_Q8_1] = QK8_1,
  2901. #ifdef GGML_USE_K_QUANTS
  2902. [GGML_TYPE_Q2_K] = QK_K,
  2903. [GGML_TYPE_Q3_K] = QK_K,
  2904. [GGML_TYPE_Q4_K] = QK_K,
  2905. [GGML_TYPE_Q5_K] = QK_K,
  2906. [GGML_TYPE_Q6_K] = QK_K,
  2907. [GGML_TYPE_Q8_K] = QK_K,
  2908. #endif
  2909. [GGML_TYPE_I8] = 1,
  2910. [GGML_TYPE_I16] = 1,
  2911. [GGML_TYPE_I32] = 1,
  2912. };
  2913. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2914. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2915. [GGML_TYPE_F32] = sizeof(float),
  2916. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2917. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2918. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2919. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2920. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2921. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2922. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2923. #ifdef GGML_USE_K_QUANTS
  2924. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2925. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2926. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2927. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2928. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2929. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2930. #endif
  2931. [GGML_TYPE_I8] = sizeof(int8_t),
  2932. [GGML_TYPE_I16] = sizeof(int16_t),
  2933. [GGML_TYPE_I32] = sizeof(int32_t),
  2934. };
  2935. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2936. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2937. [GGML_TYPE_F32] = "f32",
  2938. [GGML_TYPE_F16] = "f16",
  2939. [GGML_TYPE_Q4_0] = "q4_0",
  2940. [GGML_TYPE_Q4_1] = "q4_1",
  2941. [GGML_TYPE_Q5_0] = "q5_0",
  2942. [GGML_TYPE_Q5_1] = "q5_1",
  2943. [GGML_TYPE_Q8_0] = "q8_0",
  2944. [GGML_TYPE_Q8_1] = "q8_1",
  2945. [GGML_TYPE_Q2_K] = "q2_K",
  2946. [GGML_TYPE_Q3_K] = "q3_K",
  2947. [GGML_TYPE_Q4_K] = "q4_K",
  2948. [GGML_TYPE_Q5_K] = "q5_K",
  2949. [GGML_TYPE_Q6_K] = "q6_K",
  2950. [GGML_TYPE_Q8_K] = "q8_K",
  2951. [GGML_TYPE_I8] = "i8",
  2952. [GGML_TYPE_I16] = "i16",
  2953. [GGML_TYPE_I32] = "i32",
  2954. };
  2955. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2956. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2957. [GGML_TYPE_F32] = false,
  2958. [GGML_TYPE_F16] = false,
  2959. [GGML_TYPE_Q4_0] = true,
  2960. [GGML_TYPE_Q4_1] = true,
  2961. [GGML_TYPE_Q5_0] = true,
  2962. [GGML_TYPE_Q5_1] = true,
  2963. [GGML_TYPE_Q8_0] = true,
  2964. [GGML_TYPE_Q8_1] = true,
  2965. [GGML_TYPE_Q2_K] = true,
  2966. [GGML_TYPE_Q3_K] = true,
  2967. [GGML_TYPE_Q4_K] = true,
  2968. [GGML_TYPE_Q5_K] = true,
  2969. [GGML_TYPE_Q6_K] = true,
  2970. [GGML_TYPE_Q8_K] = true,
  2971. [GGML_TYPE_I8] = false,
  2972. [GGML_TYPE_I16] = false,
  2973. [GGML_TYPE_I32] = false,
  2974. };
  2975. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2976. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2977. "NONE",
  2978. "DUP",
  2979. "ADD",
  2980. "ADD1",
  2981. "ACC",
  2982. "SUB",
  2983. "MUL",
  2984. "DIV",
  2985. "SQR",
  2986. "SQRT",
  2987. "LOG",
  2988. "SUM",
  2989. "SUM_ROWS",
  2990. "MEAN",
  2991. "REPEAT",
  2992. "REPEAT_BACK",
  2993. "ABS",
  2994. "SGN",
  2995. "NEG",
  2996. "STEP",
  2997. "RELU",
  2998. "GELU",
  2999. "GELU_QUICK",
  3000. "SILU",
  3001. "SILU_BACK",
  3002. "NORM",
  3003. "RMS_NORM",
  3004. "RMS_NORM_BACK",
  3005. "MUL_MAT",
  3006. "OUT_PROD",
  3007. "SCALE",
  3008. "SET",
  3009. "CPY",
  3010. "CONT",
  3011. "RESHAPE",
  3012. "VIEW",
  3013. "PERMUTE",
  3014. "TRANSPOSE",
  3015. "GET_ROWS",
  3016. "GET_ROWS_BACK",
  3017. "DIAG",
  3018. "DIAG_MASK_INF",
  3019. "DIAG_MASK_ZERO",
  3020. "SOFT_MAX",
  3021. "SOFT_MAX_BACK",
  3022. "ROPE",
  3023. "ROPE_BACK",
  3024. "ALIBI",
  3025. "CLAMP",
  3026. "CONV_1D_S1_PH",
  3027. "CONV_1D_S2_PH",
  3028. "CONV_2D_SK_P0",
  3029. "FLASH_ATTN",
  3030. "FLASH_FF",
  3031. "FLASH_ATTN_BACK",
  3032. "WIN_PART",
  3033. "WIN_UNPART",
  3034. "MAP_UNARY",
  3035. "MAP_BINARY",
  3036. "CROSS_ENTROPY_LOSS",
  3037. "CROSS_ENTROPY_LOSS_BACK",
  3038. };
  3039. static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61");
  3040. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3041. "none",
  3042. "x",
  3043. "x+y",
  3044. "x+y",
  3045. "view(x,nb,offset)+=y->x",
  3046. "x-y",
  3047. "x*y",
  3048. "x/y",
  3049. "x^2",
  3050. "√x",
  3051. "log(x)",
  3052. "Σx",
  3053. "Σx_k",
  3054. "Σx/n",
  3055. "repeat(x)",
  3056. "repeat_back(x)",
  3057. "abs(x)",
  3058. "sgn(x)",
  3059. "-x",
  3060. "step(x)",
  3061. "relu(x)",
  3062. "gelu(x)",
  3063. "gelu_quick(x)",
  3064. "silu(x)",
  3065. "silu_back(x)",
  3066. "norm(x)",
  3067. "rms_norm(x)",
  3068. "rms_norm_back(x)",
  3069. "X*Y",
  3070. "X*Y",
  3071. "x*v",
  3072. "y-\\>view(x)",
  3073. "x-\\>y",
  3074. "cont(x)",
  3075. "reshape(x)",
  3076. "view(x)",
  3077. "permute(x)",
  3078. "transpose(x)",
  3079. "get_rows(x)",
  3080. "get_rows_back(x)",
  3081. "diag(x)",
  3082. "diag_mask_inf(x)",
  3083. "diag_mask_zero(x)",
  3084. "soft_max(x)",
  3085. "soft_max_back(x)",
  3086. "rope(x)",
  3087. "rope_back(x)",
  3088. "alibi(x)",
  3089. "clamp(x)",
  3090. "conv_1d_s1_ph(x)",
  3091. "conv_1d_s2_ph(x)",
  3092. "conv_2d_sk_p0(x)",
  3093. "flash_attn(x)",
  3094. "flash_ff(x)",
  3095. "flash_attn_back(x)",
  3096. "win_part(x)",
  3097. "win_unpart(x)",
  3098. "f(x)",
  3099. "f(x,y)",
  3100. "cross_entropy_loss(x,y)",
  3101. "cross_entropy_loss_back(x,y)",
  3102. };
  3103. static_assert(GGML_OP_COUNT == 61, "GGML_OP_COUNT != 61");
  3104. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3105. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3106. //
  3107. // ggml context
  3108. //
  3109. struct ggml_context {
  3110. size_t mem_size;
  3111. void * mem_buffer;
  3112. bool mem_buffer_owned;
  3113. bool no_alloc;
  3114. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3115. int n_objects;
  3116. struct ggml_object * objects_begin;
  3117. struct ggml_object * objects_end;
  3118. struct ggml_scratch scratch;
  3119. struct ggml_scratch scratch_save;
  3120. };
  3121. struct ggml_context_container {
  3122. bool used;
  3123. struct ggml_context context;
  3124. };
  3125. //
  3126. // ggml state
  3127. //
  3128. struct ggml_state {
  3129. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3130. };
  3131. // global state
  3132. static struct ggml_state g_state;
  3133. static atomic_int g_state_barrier = 0;
  3134. // barrier via spin lock
  3135. inline static void ggml_critical_section_start(void) {
  3136. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3137. while (processing > 0) {
  3138. // wait for other threads to finish
  3139. atomic_fetch_sub(&g_state_barrier, 1);
  3140. sched_yield(); // TODO: reconsider this
  3141. processing = atomic_fetch_add(&g_state_barrier, 1);
  3142. }
  3143. }
  3144. // TODO: make this somehow automatically executed
  3145. // some sort of "sentry" mechanism
  3146. inline static void ggml_critical_section_end(void) {
  3147. atomic_fetch_sub(&g_state_barrier, 1);
  3148. }
  3149. ////////////////////////////////////////////////////////////////////////////////
  3150. void ggml_print_object(const struct ggml_object * obj) {
  3151. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3152. obj->offs, obj->size, (const void *) obj->next);
  3153. }
  3154. void ggml_print_objects(const struct ggml_context * ctx) {
  3155. struct ggml_object * obj = ctx->objects_begin;
  3156. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3157. while (obj != NULL) {
  3158. ggml_print_object(obj);
  3159. obj = obj->next;
  3160. }
  3161. GGML_PRINT("%s: --- end ---\n", __func__);
  3162. }
  3163. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3164. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3165. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3166. }
  3167. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3168. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3169. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3170. }
  3171. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3172. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3173. // this should handle cases where the tensor is not contiguous in memory
  3174. // probaby just:
  3175. //
  3176. // return tensor->ne[3]*tensor->nb[3]
  3177. //
  3178. // is enough, but just in case, adding the second part
  3179. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3180. }
  3181. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3182. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3183. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3184. }
  3185. int ggml_blck_size(enum ggml_type type) {
  3186. return GGML_BLCK_SIZE[type];
  3187. }
  3188. size_t ggml_type_size(enum ggml_type type) {
  3189. return GGML_TYPE_SIZE[type];
  3190. }
  3191. float ggml_type_sizef(enum ggml_type type) {
  3192. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3193. }
  3194. const char * ggml_type_name(enum ggml_type type) {
  3195. return GGML_TYPE_NAME[type];
  3196. }
  3197. const char * ggml_op_name(enum ggml_op op) {
  3198. return GGML_OP_NAME[op];
  3199. }
  3200. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3201. return GGML_TYPE_SIZE[tensor->type];
  3202. }
  3203. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3204. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3205. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3206. }
  3207. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3208. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3209. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3210. }
  3211. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3212. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3213. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3214. }
  3215. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3216. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3217. return
  3218. (t0->ne[0] == t1->ne[0]) &&
  3219. (t0->ne[2] == t1->ne[2]) &&
  3220. (t0->ne[3] == t1->ne[3]);
  3221. }
  3222. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3223. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3224. return
  3225. (t0->ne[1] == t1->ne[1]) &&
  3226. (t0->ne[2] == t1->ne[2]) &&
  3227. (t0->ne[3] == t1->ne[3]);
  3228. }
  3229. bool ggml_is_quantized(enum ggml_type type) {
  3230. return GGML_IS_QUANTIZED[type];
  3231. }
  3232. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3233. enum ggml_type wtype = GGML_TYPE_COUNT;
  3234. switch (ftype) {
  3235. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3236. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3237. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3238. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3239. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3240. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3241. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3242. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3243. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3244. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3245. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3246. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3247. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3248. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3249. }
  3250. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3251. return wtype;
  3252. }
  3253. size_t ggml_tensor_overhead(void) {
  3254. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3255. }
  3256. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3257. return tensor->nb[0] > tensor->nb[1];
  3258. }
  3259. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3260. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3261. return
  3262. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3263. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3264. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3265. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3266. }
  3267. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3268. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3269. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3270. }
  3271. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3272. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3273. return
  3274. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3275. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3276. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3277. }
  3278. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3279. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3280. return
  3281. (t0->ne[0] == t1->ne[0] ) &&
  3282. (t0->ne[1] == t1->ne[1] ) &&
  3283. (t0->ne[2] == t1->ne[2] ) &&
  3284. (t0->ne[3] == t1->ne[3] );
  3285. }
  3286. // check if t1 can be represented as a repeatition of t0
  3287. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3288. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3289. return
  3290. (t1->ne[0]%t0->ne[0] == 0) &&
  3291. (t1->ne[1]%t0->ne[1] == 0) &&
  3292. (t1->ne[2]%t0->ne[2] == 0) &&
  3293. (t1->ne[3]%t0->ne[3] == 0);
  3294. }
  3295. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3296. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3297. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3298. }
  3299. static inline int ggml_up32(int n) {
  3300. return (n + 31) & ~31;
  3301. }
  3302. //static inline int ggml_up64(int n) {
  3303. // return (n + 63) & ~63;
  3304. //}
  3305. static inline int ggml_up(int n, int m) {
  3306. // assert m is a power of 2
  3307. GGML_ASSERT((m & (m - 1)) == 0);
  3308. return (n + m - 1) & ~(m - 1);
  3309. }
  3310. // assert that pointer is aligned to GGML_MEM_ALIGN
  3311. #define ggml_assert_aligned(ptr) \
  3312. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3313. ////////////////////////////////////////////////////////////////////////////////
  3314. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3315. // make this function thread safe
  3316. ggml_critical_section_start();
  3317. static bool is_first_call = true;
  3318. if (is_first_call) {
  3319. // initialize time system (required on Windows)
  3320. ggml_time_init();
  3321. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3322. {
  3323. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3324. ggml_fp16_t ii;
  3325. for (int i = 0; i < (1 << 16); ++i) {
  3326. uint16_t ui = i;
  3327. memcpy(&ii, &ui, sizeof(ii));
  3328. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3329. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3330. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3331. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3332. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3333. }
  3334. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3335. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3336. }
  3337. // initialize g_state
  3338. {
  3339. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3340. g_state = (struct ggml_state) {
  3341. /*.contexts =*/ { { 0 } },
  3342. };
  3343. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3344. g_state.contexts[i].used = false;
  3345. }
  3346. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3347. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3348. }
  3349. #if defined(GGML_USE_CUBLAS)
  3350. ggml_init_cublas();
  3351. #elif defined(GGML_USE_CLBLAST)
  3352. ggml_cl_init();
  3353. #endif
  3354. is_first_call = false;
  3355. }
  3356. // find non-used context in g_state
  3357. struct ggml_context * ctx = NULL;
  3358. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3359. if (!g_state.contexts[i].used) {
  3360. g_state.contexts[i].used = true;
  3361. ctx = &g_state.contexts[i].context;
  3362. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3363. break;
  3364. }
  3365. }
  3366. if (ctx == NULL) {
  3367. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3368. ggml_critical_section_end();
  3369. return NULL;
  3370. }
  3371. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3372. *ctx = (struct ggml_context) {
  3373. /*.mem_size =*/ mem_size,
  3374. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3375. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3376. /*.no_alloc =*/ params.no_alloc,
  3377. /*.no_alloc_save =*/ params.no_alloc,
  3378. /*.n_objects =*/ 0,
  3379. /*.objects_begin =*/ NULL,
  3380. /*.objects_end =*/ NULL,
  3381. /*.scratch =*/ { 0, 0, NULL, },
  3382. /*.scratch_save =*/ { 0, 0, NULL, },
  3383. };
  3384. GGML_ASSERT(ctx->mem_buffer != NULL);
  3385. ggml_assert_aligned(ctx->mem_buffer);
  3386. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3387. ggml_critical_section_end();
  3388. return ctx;
  3389. }
  3390. void ggml_free(struct ggml_context * ctx) {
  3391. // make this function thread safe
  3392. ggml_critical_section_start();
  3393. bool found = false;
  3394. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3395. if (&g_state.contexts[i].context == ctx) {
  3396. g_state.contexts[i].used = false;
  3397. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3398. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3399. if (ctx->mem_buffer_owned) {
  3400. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3401. }
  3402. found = true;
  3403. break;
  3404. }
  3405. }
  3406. if (!found) {
  3407. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3408. }
  3409. ggml_critical_section_end();
  3410. }
  3411. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3412. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3413. }
  3414. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3415. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3416. ctx->scratch = scratch;
  3417. return result;
  3418. }
  3419. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3420. ctx->no_alloc = no_alloc;
  3421. }
  3422. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3423. return ctx->mem_buffer;
  3424. }
  3425. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3426. return ctx->mem_size;
  3427. }
  3428. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3429. size_t max_size = 0;
  3430. struct ggml_object * obj = ctx->objects_begin;
  3431. while (obj != NULL) {
  3432. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3433. const size_t size = ggml_nbytes(tensor);
  3434. if (max_size < size) {
  3435. max_size = size;
  3436. }
  3437. obj = obj->next;
  3438. }
  3439. return max_size;
  3440. }
  3441. // IMPORTANT:
  3442. // when creating "opt" tensors, always save and load the scratch buffer
  3443. // this is an error prone process, but it is necessary to support inplace
  3444. // operators when using scratch buffers
  3445. // TODO: implement a better way
  3446. void ggml_scratch_save(struct ggml_context * ctx) {
  3447. // this is needed to allow opt tensors to store their data
  3448. // TODO: again, need to find a better way
  3449. ctx->no_alloc_save = ctx->no_alloc;
  3450. ctx->no_alloc = false;
  3451. ctx->scratch_save = ctx->scratch;
  3452. ctx->scratch.data = NULL;
  3453. }
  3454. void ggml_scratch_load(struct ggml_context * ctx) {
  3455. ctx->no_alloc = ctx->no_alloc_save;
  3456. ctx->scratch = ctx->scratch_save;
  3457. }
  3458. ////////////////////////////////////////////////////////////////////////////////
  3459. struct ggml_tensor * ggml_new_tensor_impl(
  3460. struct ggml_context * ctx,
  3461. enum ggml_type type,
  3462. int n_dims,
  3463. const int64_t* ne,
  3464. void* data) {
  3465. // always insert objects at the end of the context's memory pool
  3466. struct ggml_object * obj_cur = ctx->objects_end;
  3467. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3468. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3469. const size_t cur_end = cur_offs + cur_size;
  3470. size_t size_needed = 0;
  3471. if (data == NULL && !ctx->no_alloc) {
  3472. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3473. for (int i = 1; i < n_dims; i++) {
  3474. size_needed *= ne[i];
  3475. }
  3476. // align to GGML_MEM_ALIGN
  3477. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3478. }
  3479. char * const mem_buffer = ctx->mem_buffer;
  3480. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3481. if (ctx->scratch.data == NULL || data != NULL) {
  3482. size_needed += GGML_TENSOR_SIZE;
  3483. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3484. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3485. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3486. assert(false);
  3487. return NULL;
  3488. }
  3489. *obj_new = (struct ggml_object) {
  3490. .offs = cur_end + GGML_OBJECT_SIZE,
  3491. .size = size_needed,
  3492. .next = NULL,
  3493. };
  3494. } else {
  3495. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3496. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3497. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3498. assert(false);
  3499. return NULL;
  3500. }
  3501. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3502. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3503. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3504. assert(false);
  3505. return NULL;
  3506. }
  3507. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3508. *obj_new = (struct ggml_object) {
  3509. .offs = cur_end + GGML_OBJECT_SIZE,
  3510. .size = GGML_TENSOR_SIZE,
  3511. .next = NULL,
  3512. };
  3513. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3514. ctx->scratch.offs += size_needed;
  3515. }
  3516. if (obj_cur != NULL) {
  3517. obj_cur->next = obj_new;
  3518. } else {
  3519. // this is the first object in this context
  3520. ctx->objects_begin = obj_new;
  3521. }
  3522. ctx->objects_end = obj_new;
  3523. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3524. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3525. ggml_assert_aligned(result);
  3526. *result = (struct ggml_tensor) {
  3527. /*.type =*/ type,
  3528. /*.backend =*/ GGML_BACKEND_CPU,
  3529. /*.n_dims =*/ n_dims,
  3530. /*.ne =*/ { 1, 1, 1, 1 },
  3531. /*.nb =*/ { 0, 0, 0, 0 },
  3532. /*.op =*/ GGML_OP_NONE,
  3533. /*.is_param =*/ false,
  3534. /*.grad =*/ NULL,
  3535. /*.src0 =*/ NULL,
  3536. /*.src1 =*/ NULL,
  3537. /*.opt =*/ { NULL },
  3538. /*.n_tasks =*/ 0,
  3539. /*.perf_runs =*/ 0,
  3540. /*.perf_cycles =*/ 0,
  3541. /*.perf_time_us =*/ 0,
  3542. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3543. /*.name =*/ { 0 },
  3544. /*.extra =*/ NULL,
  3545. /*.pad =*/ { 0 },
  3546. };
  3547. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3548. //ggml_assert_aligned(result->data);
  3549. for (int i = 0; i < n_dims; i++) {
  3550. result->ne[i] = ne[i];
  3551. }
  3552. result->nb[0] = GGML_TYPE_SIZE[type];
  3553. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3554. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3555. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3556. }
  3557. ctx->n_objects++;
  3558. return result;
  3559. }
  3560. struct ggml_tensor * ggml_new_tensor(
  3561. struct ggml_context * ctx,
  3562. enum ggml_type type,
  3563. int n_dims,
  3564. const int64_t * ne) {
  3565. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3566. }
  3567. struct ggml_tensor * ggml_new_tensor_1d(
  3568. struct ggml_context * ctx,
  3569. enum ggml_type type,
  3570. int64_t ne0) {
  3571. return ggml_new_tensor(ctx, type, 1, &ne0);
  3572. }
  3573. struct ggml_tensor * ggml_new_tensor_2d(
  3574. struct ggml_context * ctx,
  3575. enum ggml_type type,
  3576. int64_t ne0,
  3577. int64_t ne1) {
  3578. const int64_t ne[2] = { ne0, ne1 };
  3579. return ggml_new_tensor(ctx, type, 2, ne);
  3580. }
  3581. struct ggml_tensor * ggml_new_tensor_3d(
  3582. struct ggml_context * ctx,
  3583. enum ggml_type type,
  3584. int64_t ne0,
  3585. int64_t ne1,
  3586. int64_t ne2) {
  3587. const int64_t ne[3] = { ne0, ne1, ne2 };
  3588. return ggml_new_tensor(ctx, type, 3, ne);
  3589. }
  3590. struct ggml_tensor * ggml_new_tensor_4d(
  3591. struct ggml_context * ctx,
  3592. enum ggml_type type,
  3593. int64_t ne0,
  3594. int64_t ne1,
  3595. int64_t ne2,
  3596. int64_t ne3) {
  3597. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3598. return ggml_new_tensor(ctx, type, 4, ne);
  3599. }
  3600. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3601. ggml_scratch_save(ctx);
  3602. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3603. ggml_scratch_load(ctx);
  3604. ggml_set_i32(result, value);
  3605. return result;
  3606. }
  3607. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3608. ggml_scratch_save(ctx);
  3609. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3610. ggml_scratch_load(ctx);
  3611. ggml_set_f32(result, value);
  3612. return result;
  3613. }
  3614. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3615. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3616. }
  3617. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3618. memset(tensor->data, 0, ggml_nbytes(tensor));
  3619. return tensor;
  3620. }
  3621. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3622. const int n = ggml_nrows(tensor);
  3623. const int nc = tensor->ne[0];
  3624. const size_t n1 = tensor->nb[1];
  3625. char * const data = tensor->data;
  3626. switch (tensor->type) {
  3627. case GGML_TYPE_I8:
  3628. {
  3629. assert(tensor->nb[0] == sizeof(int8_t));
  3630. for (int i = 0; i < n; i++) {
  3631. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3632. }
  3633. } break;
  3634. case GGML_TYPE_I16:
  3635. {
  3636. assert(tensor->nb[0] == sizeof(int16_t));
  3637. for (int i = 0; i < n; i++) {
  3638. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3639. }
  3640. } break;
  3641. case GGML_TYPE_I32:
  3642. {
  3643. assert(tensor->nb[0] == sizeof(int32_t));
  3644. for (int i = 0; i < n; i++) {
  3645. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3646. }
  3647. } break;
  3648. case GGML_TYPE_F16:
  3649. {
  3650. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3651. for (int i = 0; i < n; i++) {
  3652. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3653. }
  3654. } break;
  3655. case GGML_TYPE_F32:
  3656. {
  3657. assert(tensor->nb[0] == sizeof(float));
  3658. for (int i = 0; i < n; i++) {
  3659. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3660. }
  3661. } break;
  3662. default:
  3663. {
  3664. GGML_ASSERT(false);
  3665. } break;
  3666. }
  3667. return tensor;
  3668. }
  3669. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3670. const int n = ggml_nrows(tensor);
  3671. const int nc = tensor->ne[0];
  3672. const size_t n1 = tensor->nb[1];
  3673. char * const data = tensor->data;
  3674. switch (tensor->type) {
  3675. case GGML_TYPE_I8:
  3676. {
  3677. assert(tensor->nb[0] == sizeof(int8_t));
  3678. for (int i = 0; i < n; i++) {
  3679. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3680. }
  3681. } break;
  3682. case GGML_TYPE_I16:
  3683. {
  3684. assert(tensor->nb[0] == sizeof(int16_t));
  3685. for (int i = 0; i < n; i++) {
  3686. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3687. }
  3688. } break;
  3689. case GGML_TYPE_I32:
  3690. {
  3691. assert(tensor->nb[0] == sizeof(int32_t));
  3692. for (int i = 0; i < n; i++) {
  3693. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3694. }
  3695. } break;
  3696. case GGML_TYPE_F16:
  3697. {
  3698. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3699. for (int i = 0; i < n; i++) {
  3700. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3701. }
  3702. } break;
  3703. case GGML_TYPE_F32:
  3704. {
  3705. assert(tensor->nb[0] == sizeof(float));
  3706. for (int i = 0; i < n; i++) {
  3707. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3708. }
  3709. } break;
  3710. default:
  3711. {
  3712. GGML_ASSERT(false);
  3713. } break;
  3714. }
  3715. return tensor;
  3716. }
  3717. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3718. switch (tensor->type) {
  3719. case GGML_TYPE_I8:
  3720. {
  3721. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3722. return ((int8_t *)(tensor->data))[i];
  3723. } break;
  3724. case GGML_TYPE_I16:
  3725. {
  3726. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3727. return ((int16_t *)(tensor->data))[i];
  3728. } break;
  3729. case GGML_TYPE_I32:
  3730. {
  3731. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3732. return ((int32_t *)(tensor->data))[i];
  3733. } break;
  3734. case GGML_TYPE_F16:
  3735. {
  3736. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3737. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3738. } break;
  3739. case GGML_TYPE_F32:
  3740. {
  3741. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3742. return ((float *)(tensor->data))[i];
  3743. } break;
  3744. default:
  3745. {
  3746. GGML_ASSERT(false);
  3747. } break;
  3748. }
  3749. return 0.0f;
  3750. }
  3751. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3752. switch (tensor->type) {
  3753. case GGML_TYPE_I8:
  3754. {
  3755. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3756. ((int8_t *)(tensor->data))[i] = value;
  3757. } break;
  3758. case GGML_TYPE_I16:
  3759. {
  3760. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3761. ((int16_t *)(tensor->data))[i] = value;
  3762. } break;
  3763. case GGML_TYPE_I32:
  3764. {
  3765. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3766. ((int32_t *)(tensor->data))[i] = value;
  3767. } break;
  3768. case GGML_TYPE_F16:
  3769. {
  3770. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3771. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3772. } break;
  3773. case GGML_TYPE_F32:
  3774. {
  3775. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3776. ((float *)(tensor->data))[i] = value;
  3777. } break;
  3778. default:
  3779. {
  3780. GGML_ASSERT(false);
  3781. } break;
  3782. }
  3783. }
  3784. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3785. switch (tensor->type) {
  3786. case GGML_TYPE_I8:
  3787. {
  3788. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3789. return ((int8_t *)(tensor->data))[i];
  3790. } break;
  3791. case GGML_TYPE_I16:
  3792. {
  3793. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3794. return ((int16_t *)(tensor->data))[i];
  3795. } break;
  3796. case GGML_TYPE_I32:
  3797. {
  3798. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3799. return ((int32_t *)(tensor->data))[i];
  3800. } break;
  3801. case GGML_TYPE_F16:
  3802. {
  3803. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3804. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3805. } break;
  3806. case GGML_TYPE_F32:
  3807. {
  3808. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3809. return ((float *)(tensor->data))[i];
  3810. } break;
  3811. default:
  3812. {
  3813. GGML_ASSERT(false);
  3814. } break;
  3815. }
  3816. return 0.0f;
  3817. }
  3818. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3819. switch (tensor->type) {
  3820. case GGML_TYPE_I8:
  3821. {
  3822. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3823. ((int8_t *)(tensor->data))[i] = value;
  3824. } break;
  3825. case GGML_TYPE_I16:
  3826. {
  3827. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3828. ((int16_t *)(tensor->data))[i] = value;
  3829. } break;
  3830. case GGML_TYPE_I32:
  3831. {
  3832. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3833. ((int32_t *)(tensor->data))[i] = value;
  3834. } break;
  3835. case GGML_TYPE_F16:
  3836. {
  3837. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3838. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3839. } break;
  3840. case GGML_TYPE_F32:
  3841. {
  3842. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3843. ((float *)(tensor->data))[i] = value;
  3844. } break;
  3845. default:
  3846. {
  3847. GGML_ASSERT(false);
  3848. } break;
  3849. }
  3850. }
  3851. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3852. return tensor->data;
  3853. }
  3854. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3855. assert(tensor->type == GGML_TYPE_F32);
  3856. return (float *)(tensor->data);
  3857. }
  3858. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3859. return tensor->name;
  3860. }
  3861. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3862. strncpy(tensor->name, name, sizeof(tensor->name));
  3863. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3864. return tensor;
  3865. }
  3866. struct ggml_tensor * ggml_view_tensor(
  3867. struct ggml_context * ctx,
  3868. const struct ggml_tensor * src) {
  3869. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3870. result->nb[0] = src->nb[0];
  3871. result->nb[1] = src->nb[1];
  3872. result->nb[2] = src->nb[2];
  3873. result->nb[3] = src->nb[3];
  3874. return result;
  3875. }
  3876. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3877. struct ggml_object * obj = ctx->objects_begin;
  3878. char * const mem_buffer = ctx->mem_buffer;
  3879. while (obj != NULL) {
  3880. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3881. if (strcmp(cur->name, name) == 0) {
  3882. return cur;
  3883. }
  3884. obj = obj->next;
  3885. }
  3886. return NULL;
  3887. }
  3888. ////////////////////////////////////////////////////////////////////////////////
  3889. // ggml_dup
  3890. struct ggml_tensor * ggml_dup_impl(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. bool inplace) {
  3894. bool is_node = false;
  3895. if (!inplace && (a->grad)) {
  3896. is_node = true;
  3897. }
  3898. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3899. result->op = GGML_OP_DUP;
  3900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3901. result->src0 = a;
  3902. result->src1 = NULL;
  3903. return result;
  3904. }
  3905. struct ggml_tensor * ggml_dup(
  3906. struct ggml_context * ctx,
  3907. struct ggml_tensor * a) {
  3908. return ggml_dup_impl(ctx, a, false);
  3909. }
  3910. struct ggml_tensor * ggml_dup_inplace(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a) {
  3913. return ggml_dup_impl(ctx, a, true);
  3914. }
  3915. // ggml_add
  3916. struct ggml_tensor * ggml_add_impl(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a,
  3919. struct ggml_tensor * b,
  3920. bool inplace) {
  3921. GGML_ASSERT(ggml_are_same_shape(a, b));
  3922. bool is_node = false;
  3923. if (a->grad || b->grad) {
  3924. is_node = true;
  3925. }
  3926. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3927. result->op = GGML_OP_ADD;
  3928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3929. result->src0 = a;
  3930. result->src1 = b;
  3931. return result;
  3932. }
  3933. struct ggml_tensor * ggml_add(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a,
  3936. struct ggml_tensor * b) {
  3937. return ggml_add_impl(ctx, a, b, false);
  3938. }
  3939. struct ggml_tensor * ggml_add_inplace(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a,
  3942. struct ggml_tensor * b) {
  3943. return ggml_add_impl(ctx, a, b, true);
  3944. }
  3945. // ggml_add1
  3946. struct ggml_tensor * ggml_add1_impl(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a,
  3949. struct ggml_tensor * b,
  3950. bool inplace) {
  3951. GGML_ASSERT(ggml_is_scalar(b));
  3952. GGML_ASSERT(ggml_is_padded_1d(a));
  3953. bool is_node = false;
  3954. if (a->grad || b->grad) {
  3955. is_node = true;
  3956. }
  3957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3958. result->op = GGML_OP_ADD1;
  3959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3960. result->src0 = a;
  3961. result->src1 = b;
  3962. return result;
  3963. }
  3964. struct ggml_tensor * ggml_add1(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a,
  3967. struct ggml_tensor * b) {
  3968. return ggml_add1_impl(ctx, a, b, false);
  3969. }
  3970. struct ggml_tensor * ggml_add1_inplace(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. struct ggml_tensor * b) {
  3974. return ggml_add1_impl(ctx, a, b, true);
  3975. }
  3976. // ggml_acc
  3977. struct ggml_tensor * ggml_acc_impl(
  3978. struct ggml_context * ctx,
  3979. struct ggml_tensor * a,
  3980. struct ggml_tensor * b,
  3981. size_t nb1,
  3982. size_t nb2,
  3983. size_t nb3,
  3984. size_t offset,
  3985. bool inplace) {
  3986. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3987. GGML_ASSERT(ggml_is_contiguous(a));
  3988. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3989. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3990. bool is_node = false;
  3991. if (!inplace && (a->grad || b->grad)) {
  3992. is_node = true;
  3993. }
  3994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. ggml_scratch_save(ctx);
  3996. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3997. ((int32_t *) c->data)[0] = nb1;
  3998. ((int32_t *) c->data)[1] = nb2;
  3999. ((int32_t *) c->data)[2] = nb3;
  4000. ((int32_t *) c->data)[3] = offset;
  4001. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4002. ggml_scratch_load(ctx);
  4003. result->op = GGML_OP_ACC;
  4004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4005. result->src0 = a;
  4006. result->src1 = b;
  4007. result->opt[0] = c;
  4008. return result;
  4009. }
  4010. struct ggml_tensor * ggml_acc(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b,
  4014. size_t nb1,
  4015. size_t nb2,
  4016. size_t nb3,
  4017. size_t offset) {
  4018. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4019. }
  4020. struct ggml_tensor * ggml_acc_inplace(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a,
  4023. struct ggml_tensor * b,
  4024. size_t nb1,
  4025. size_t nb2,
  4026. size_t nb3,
  4027. size_t offset) {
  4028. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4029. }
  4030. // ggml_sub
  4031. struct ggml_tensor * ggml_sub_impl(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. struct ggml_tensor * b,
  4035. bool inplace) {
  4036. GGML_ASSERT(ggml_are_same_shape(a, b));
  4037. bool is_node = false;
  4038. if (!inplace && (a->grad || b->grad)) {
  4039. is_node = true;
  4040. }
  4041. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4042. result->op = GGML_OP_SUB;
  4043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4044. result->src0 = a;
  4045. result->src1 = b;
  4046. return result;
  4047. }
  4048. struct ggml_tensor * ggml_sub(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. struct ggml_tensor * b) {
  4052. return ggml_sub_impl(ctx, a, b, false);
  4053. }
  4054. struct ggml_tensor * ggml_sub_inplace(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a,
  4057. struct ggml_tensor * b) {
  4058. return ggml_sub_impl(ctx, a, b, true);
  4059. }
  4060. // ggml_mul
  4061. struct ggml_tensor * ggml_mul_impl(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. struct ggml_tensor * b,
  4065. bool inplace) {
  4066. // TODO: support less-strict constraint
  4067. // GGML_ASSERT(ggml_can_repeat(b, a));
  4068. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4069. bool is_node = false;
  4070. if (!inplace && (a->grad || b->grad)) {
  4071. // TODO: support backward pass for broadcasting
  4072. GGML_ASSERT(ggml_are_same_shape(a, b));
  4073. is_node = true;
  4074. }
  4075. if (inplace) {
  4076. GGML_ASSERT(is_node == false);
  4077. }
  4078. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4079. result->op = GGML_OP_MUL;
  4080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4081. result->src0 = a;
  4082. result->src1 = b;
  4083. return result;
  4084. }
  4085. struct ggml_tensor * ggml_mul(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. struct ggml_tensor * b) {
  4089. return ggml_mul_impl(ctx, a, b, false);
  4090. }
  4091. struct ggml_tensor * ggml_mul_inplace(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. struct ggml_tensor * b) {
  4095. return ggml_mul_impl(ctx, a, b, true);
  4096. }
  4097. // ggml_div
  4098. struct ggml_tensor * ggml_div_impl(
  4099. struct ggml_context * ctx,
  4100. struct ggml_tensor * a,
  4101. struct ggml_tensor * b,
  4102. bool inplace) {
  4103. GGML_ASSERT(ggml_are_same_shape(a, b));
  4104. bool is_node = false;
  4105. if (!inplace && (a->grad || b->grad)) {
  4106. is_node = true;
  4107. }
  4108. if (inplace) {
  4109. GGML_ASSERT(is_node == false);
  4110. }
  4111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4112. result->op = GGML_OP_DIV;
  4113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4114. result->src0 = a;
  4115. result->src1 = b;
  4116. return result;
  4117. }
  4118. struct ggml_tensor * ggml_div(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a,
  4121. struct ggml_tensor * b) {
  4122. return ggml_div_impl(ctx, a, b, false);
  4123. }
  4124. struct ggml_tensor * ggml_div_inplace(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b) {
  4128. return ggml_div_impl(ctx, a, b, true);
  4129. }
  4130. // ggml_sqr
  4131. struct ggml_tensor * ggml_sqr_impl(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. bool inplace) {
  4135. bool is_node = false;
  4136. if (!inplace && (a->grad)) {
  4137. is_node = true;
  4138. }
  4139. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4140. result->op = GGML_OP_SQR;
  4141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4142. result->src0 = a;
  4143. result->src1 = NULL;
  4144. return result;
  4145. }
  4146. struct ggml_tensor * ggml_sqr(
  4147. struct ggml_context * ctx,
  4148. struct ggml_tensor * a) {
  4149. return ggml_sqr_impl(ctx, a, false);
  4150. }
  4151. struct ggml_tensor * ggml_sqr_inplace(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a) {
  4154. return ggml_sqr_impl(ctx, a, true);
  4155. }
  4156. // ggml_sqrt
  4157. struct ggml_tensor * ggml_sqrt_impl(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. bool inplace) {
  4161. bool is_node = false;
  4162. if (!inplace && (a->grad)) {
  4163. is_node = true;
  4164. }
  4165. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4166. result->op = GGML_OP_SQRT;
  4167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4168. result->src0 = a;
  4169. result->src1 = NULL;
  4170. return result;
  4171. }
  4172. struct ggml_tensor * ggml_sqrt(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a) {
  4175. return ggml_sqrt_impl(ctx, a, false);
  4176. }
  4177. struct ggml_tensor * ggml_sqrt_inplace(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a) {
  4180. return ggml_sqrt_impl(ctx, a, true);
  4181. }
  4182. // ggml_log
  4183. struct ggml_tensor * ggml_log_impl(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a,
  4186. bool inplace) {
  4187. bool is_node = false;
  4188. if (!inplace && (a->grad)) {
  4189. is_node = true;
  4190. }
  4191. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4192. result->op = GGML_OP_LOG;
  4193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4194. result->src0 = a;
  4195. result->src1 = NULL;
  4196. return result;
  4197. }
  4198. struct ggml_tensor * ggml_log(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a) {
  4201. return ggml_log_impl(ctx, a, false);
  4202. }
  4203. struct ggml_tensor * ggml_log_inplace(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a) {
  4206. return ggml_log_impl(ctx, a, true);
  4207. }
  4208. // ggml_sum
  4209. struct ggml_tensor * ggml_sum(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. bool is_node = false;
  4213. if (a->grad) {
  4214. is_node = true;
  4215. }
  4216. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4217. result->op = GGML_OP_SUM;
  4218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4219. result->src0 = a;
  4220. result->src1 = NULL;
  4221. return result;
  4222. }
  4223. // ggml_sum_rows
  4224. struct ggml_tensor * ggml_sum_rows(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a) {
  4227. bool is_node = false;
  4228. if (a->grad) {
  4229. is_node = true;
  4230. }
  4231. int64_t ne[4] = {1,1,1,1};
  4232. for (int i=1; i<a->n_dims; ++i) {
  4233. ne[i] = a->ne[i];
  4234. }
  4235. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4236. result->op = GGML_OP_SUM_ROWS;
  4237. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4238. result->src0 = a;
  4239. result->src1 = NULL;
  4240. return result;
  4241. }
  4242. // ggml_mean
  4243. struct ggml_tensor * ggml_mean(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a) {
  4246. bool is_node = false;
  4247. if (a->grad) {
  4248. GGML_ASSERT(false); // TODO: implement
  4249. is_node = true;
  4250. }
  4251. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4252. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4253. result->op = GGML_OP_MEAN;
  4254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4255. result->src0 = a;
  4256. result->src1 = NULL;
  4257. return result;
  4258. }
  4259. // ggml_repeat
  4260. struct ggml_tensor * ggml_repeat(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a,
  4263. struct ggml_tensor * b) {
  4264. GGML_ASSERT(ggml_can_repeat(a, b));
  4265. bool is_node = false;
  4266. if (a->grad) {
  4267. is_node = true;
  4268. }
  4269. if (ggml_are_same_shape(a, b) && !is_node) {
  4270. return a;
  4271. }
  4272. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4273. result->op = GGML_OP_REPEAT;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src0 = a;
  4276. result->src1 = b;
  4277. return result;
  4278. }
  4279. // ggml_repeat_back
  4280. struct ggml_tensor * ggml_repeat_back(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a,
  4283. struct ggml_tensor * b) {
  4284. GGML_ASSERT(ggml_can_repeat(b, a));
  4285. bool is_node = false;
  4286. if (a->grad) {
  4287. is_node = true;
  4288. }
  4289. if (ggml_are_same_shape(a, b) && !is_node) {
  4290. return a;
  4291. }
  4292. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4293. result->op = GGML_OP_REPEAT_BACK;
  4294. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4295. result->src0 = a;
  4296. result->src1 = b;
  4297. return result;
  4298. }
  4299. // ggml_abs
  4300. struct ggml_tensor * ggml_abs_impl(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. bool inplace) {
  4304. bool is_node = false;
  4305. if (!inplace && (a->grad)) {
  4306. is_node = true;
  4307. }
  4308. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4309. result->op = GGML_OP_ABS;
  4310. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4311. result->src0 = a;
  4312. result->src1 = NULL;
  4313. return result;
  4314. }
  4315. struct ggml_tensor * ggml_abs(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a) {
  4318. return ggml_abs_impl(ctx, a, false);
  4319. }
  4320. struct ggml_tensor * ggml_abs_inplace(
  4321. struct ggml_context * ctx,
  4322. struct ggml_tensor * a) {
  4323. return ggml_abs_impl(ctx, a, true);
  4324. }
  4325. // ggml_sgn
  4326. struct ggml_tensor * ggml_sgn_impl(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a,
  4329. bool inplace) {
  4330. bool is_node = false;
  4331. if (!inplace && (a->grad)) {
  4332. is_node = true;
  4333. }
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. result->op = GGML_OP_SGN;
  4336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4337. result->src0 = a;
  4338. result->src1 = NULL;
  4339. return result;
  4340. }
  4341. struct ggml_tensor * ggml_sgn(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a) {
  4344. return ggml_sgn_impl(ctx, a, false);
  4345. }
  4346. struct ggml_tensor * ggml_sgn_inplace(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a) {
  4349. return ggml_sgn_impl(ctx, a, true);
  4350. }
  4351. // ggml_neg
  4352. struct ggml_tensor * ggml_neg_impl(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. bool inplace) {
  4356. bool is_node = false;
  4357. if (!inplace && (a->grad)) {
  4358. is_node = true;
  4359. }
  4360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4361. result->op = GGML_OP_NEG;
  4362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4363. result->src0 = a;
  4364. result->src1 = NULL;
  4365. return result;
  4366. }
  4367. struct ggml_tensor * ggml_neg(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a) {
  4370. return ggml_neg_impl(ctx, a, false);
  4371. }
  4372. struct ggml_tensor * ggml_neg_inplace(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a) {
  4375. return ggml_neg_impl(ctx, a, true);
  4376. }
  4377. // ggml_step
  4378. struct ggml_tensor * ggml_step_impl(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. bool inplace) {
  4382. bool is_node = false;
  4383. if (!inplace && (a->grad)) {
  4384. is_node = true;
  4385. }
  4386. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4387. result->op = GGML_OP_STEP;
  4388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4389. result->src0 = a;
  4390. result->src1 = NULL;
  4391. return result;
  4392. }
  4393. struct ggml_tensor * ggml_step(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a) {
  4396. return ggml_step_impl(ctx, a, false);
  4397. }
  4398. struct ggml_tensor * ggml_step_inplace(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a) {
  4401. return ggml_step_impl(ctx, a, true);
  4402. }
  4403. // ggml_relu
  4404. struct ggml_tensor * ggml_relu_impl(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. bool inplace) {
  4408. bool is_node = false;
  4409. if (!inplace && (a->grad)) {
  4410. is_node = true;
  4411. }
  4412. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4413. result->op = GGML_OP_RELU;
  4414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4415. result->src0 = a;
  4416. result->src1 = NULL;
  4417. return result;
  4418. }
  4419. struct ggml_tensor * ggml_relu(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a) {
  4422. return ggml_relu_impl(ctx, a, false);
  4423. }
  4424. struct ggml_tensor * ggml_relu_inplace(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a) {
  4427. return ggml_relu_impl(ctx, a, true);
  4428. }
  4429. // ggml_gelu
  4430. struct ggml_tensor * ggml_gelu_impl(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. bool inplace) {
  4434. bool is_node = false;
  4435. if (!inplace && (a->grad)) {
  4436. is_node = true;
  4437. }
  4438. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4439. result->op = GGML_OP_GELU;
  4440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4441. result->src0 = a;
  4442. result->src1 = NULL;
  4443. return result;
  4444. }
  4445. struct ggml_tensor * ggml_gelu(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. return ggml_gelu_impl(ctx, a, false);
  4449. }
  4450. struct ggml_tensor * ggml_gelu_inplace(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a) {
  4453. return ggml_gelu_impl(ctx, a, true);
  4454. }
  4455. // ggml_gelu_quick
  4456. struct ggml_tensor * ggml_gelu_quick_impl(
  4457. struct ggml_context * ctx,
  4458. struct ggml_tensor * a,
  4459. bool inplace) {
  4460. bool is_node = false;
  4461. if (!inplace && (a->grad)) {
  4462. is_node = true;
  4463. }
  4464. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4465. result->op = GGML_OP_GELU_QUICK;
  4466. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4467. result->src0 = a;
  4468. result->src1 = NULL;
  4469. return result;
  4470. }
  4471. struct ggml_tensor * ggml_gelu_quick(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a) {
  4474. return ggml_gelu_quick_impl(ctx, a, false);
  4475. }
  4476. struct ggml_tensor * ggml_gelu_quick_inplace(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a) {
  4479. return ggml_gelu_quick_impl(ctx, a, true);
  4480. }
  4481. // ggml_silu
  4482. struct ggml_tensor * ggml_silu_impl(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. bool inplace) {
  4486. bool is_node = false;
  4487. if (!inplace && (a->grad)) {
  4488. is_node = true;
  4489. }
  4490. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4491. result->op = GGML_OP_SILU;
  4492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4493. result->src0 = a;
  4494. result->src1 = NULL;
  4495. return result;
  4496. }
  4497. struct ggml_tensor * ggml_silu(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a) {
  4500. return ggml_silu_impl(ctx, a, false);
  4501. }
  4502. struct ggml_tensor * ggml_silu_inplace(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a) {
  4505. return ggml_silu_impl(ctx, a, true);
  4506. }
  4507. // ggml_silu_back
  4508. struct ggml_tensor * ggml_silu_back(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. bool is_node = false;
  4513. if (a->grad || b->grad) {
  4514. // TODO: implement backward
  4515. is_node = true;
  4516. }
  4517. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4518. result->op = GGML_OP_SILU_BACK;
  4519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4520. result->src0 = a;
  4521. result->src1 = b;
  4522. return result;
  4523. }
  4524. // ggml_norm
  4525. struct ggml_tensor * ggml_norm_impl(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a,
  4528. bool inplace) {
  4529. bool is_node = false;
  4530. if (!inplace && (a->grad)) {
  4531. GGML_ASSERT(false); // TODO: implement backward
  4532. is_node = true;
  4533. }
  4534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4535. result->op = GGML_OP_NORM;
  4536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4537. result->src0 = a;
  4538. result->src1 = NULL; // TODO: maybe store epsilon here?
  4539. return result;
  4540. }
  4541. struct ggml_tensor * ggml_norm(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a) {
  4544. return ggml_norm_impl(ctx, a, false);
  4545. }
  4546. struct ggml_tensor * ggml_norm_inplace(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a) {
  4549. return ggml_norm_impl(ctx, a, true);
  4550. }
  4551. struct ggml_tensor * ggml_rms_norm_impl(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a,
  4554. bool inplace) {
  4555. bool is_node = false;
  4556. if (!inplace && (a->grad)) {
  4557. is_node = true;
  4558. }
  4559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4560. result->op = GGML_OP_RMS_NORM;
  4561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4562. result->src0 = a;
  4563. result->src1 = NULL; // TODO: maybe store epsilon here?
  4564. return result;
  4565. }
  4566. struct ggml_tensor * ggml_rms_norm(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a) {
  4569. return ggml_rms_norm_impl(ctx, a, false);
  4570. }
  4571. struct ggml_tensor * ggml_rms_norm_inplace(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a) {
  4574. return ggml_rms_norm_impl(ctx, a, true);
  4575. }
  4576. struct ggml_tensor * ggml_rms_norm_back(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a,
  4579. struct ggml_tensor * b) {
  4580. bool is_node = false;
  4581. if (a->grad) {
  4582. // TODO: implement backward
  4583. is_node = true;
  4584. }
  4585. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4586. result->op = GGML_OP_RMS_NORM_BACK;
  4587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4588. result->src0 = a;
  4589. result->src1 = b;
  4590. return result;
  4591. }
  4592. // ggml_mul_mat
  4593. struct ggml_tensor * ggml_mul_mat(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a,
  4596. struct ggml_tensor * b) {
  4597. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4598. GGML_ASSERT(!ggml_is_transposed(a));
  4599. bool is_node = false;
  4600. if (a->grad || b->grad) {
  4601. is_node = true;
  4602. }
  4603. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4604. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4605. result->op = GGML_OP_MUL_MAT;
  4606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4607. result->src0 = a;
  4608. result->src1 = b;
  4609. return result;
  4610. }
  4611. // ggml_out_prod
  4612. struct ggml_tensor * ggml_out_prod(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. struct ggml_tensor * b) {
  4616. GGML_ASSERT(ggml_can_out_prod(a, b));
  4617. GGML_ASSERT(!ggml_is_transposed(a));
  4618. bool is_node = false;
  4619. if (a->grad || b->grad) {
  4620. is_node = true;
  4621. }
  4622. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4623. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4624. result->op = GGML_OP_OUT_PROD;
  4625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4626. result->src0 = a;
  4627. result->src1 = b;
  4628. return result;
  4629. }
  4630. // ggml_scale
  4631. struct ggml_tensor * ggml_scale_impl(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a,
  4634. struct ggml_tensor * b,
  4635. bool inplace) {
  4636. GGML_ASSERT(ggml_is_scalar(b));
  4637. GGML_ASSERT(ggml_is_padded_1d(a));
  4638. bool is_node = false;
  4639. if (a->grad || b->grad) {
  4640. is_node = true;
  4641. }
  4642. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4643. result->op = GGML_OP_SCALE;
  4644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4645. result->src0 = a;
  4646. result->src1 = b;
  4647. return result;
  4648. }
  4649. struct ggml_tensor * ggml_scale(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. struct ggml_tensor * b) {
  4653. return ggml_scale_impl(ctx, a, b, false);
  4654. }
  4655. struct ggml_tensor * ggml_scale_inplace(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. struct ggml_tensor * b) {
  4659. return ggml_scale_impl(ctx, a, b, true);
  4660. }
  4661. // ggml_set
  4662. struct ggml_tensor * ggml_set_impl(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. struct ggml_tensor * b,
  4666. size_t nb1,
  4667. size_t nb2,
  4668. size_t nb3,
  4669. size_t offset,
  4670. bool inplace) {
  4671. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4672. bool is_node = false;
  4673. if (a->grad || b->grad) {
  4674. is_node = true;
  4675. }
  4676. // make a view of the destination
  4677. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4678. ggml_scratch_save(ctx);
  4679. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4680. (( int32_t * ) c->data)[0] = nb1;
  4681. (( int32_t * ) c->data)[1] = nb2;
  4682. (( int32_t * ) c->data)[2] = nb3;
  4683. (( int32_t * ) c->data)[3] = offset;
  4684. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4685. ggml_scratch_load(ctx);
  4686. result->op = GGML_OP_SET;
  4687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4688. result->src0 = a;
  4689. result->src1 = b;
  4690. result->opt[0] = c;
  4691. return result;
  4692. }
  4693. struct ggml_tensor * ggml_set(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. struct ggml_tensor * b,
  4697. size_t nb1,
  4698. size_t nb2,
  4699. size_t nb3,
  4700. size_t offset) {
  4701. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4702. }
  4703. struct ggml_tensor * ggml_set_inplace(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. struct ggml_tensor * b,
  4707. size_t nb1,
  4708. size_t nb2,
  4709. size_t nb3,
  4710. size_t offset) {
  4711. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4712. }
  4713. struct ggml_tensor * ggml_set_1d(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * b,
  4717. size_t offset) {
  4718. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4719. }
  4720. struct ggml_tensor * ggml_set_1d_inplace(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b,
  4724. size_t offset) {
  4725. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4726. }
  4727. struct ggml_tensor * ggml_set_2d(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. struct ggml_tensor * b,
  4731. size_t nb1,
  4732. size_t offset) {
  4733. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4734. }
  4735. struct ggml_tensor * ggml_set_2d_inplace(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. struct ggml_tensor * b,
  4739. size_t nb1,
  4740. size_t offset) {
  4741. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4742. }
  4743. // ggml_cpy
  4744. struct ggml_tensor * ggml_cpy_impl(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. struct ggml_tensor * b,
  4748. bool inplace) {
  4749. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4750. bool is_node = false;
  4751. if (!inplace && (a->grad || b->grad)) {
  4752. is_node = true;
  4753. }
  4754. // make a view of the destination
  4755. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4756. result->op = GGML_OP_CPY;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src0 = a;
  4759. result->src1 = b;
  4760. return result;
  4761. }
  4762. struct ggml_tensor * ggml_cpy(
  4763. struct ggml_context * ctx,
  4764. struct ggml_tensor * a,
  4765. struct ggml_tensor * b) {
  4766. return ggml_cpy_impl(ctx, a, b, false);
  4767. }
  4768. struct ggml_tensor * ggml_cpy_inplace(
  4769. struct ggml_context * ctx,
  4770. struct ggml_tensor * a,
  4771. struct ggml_tensor * b) {
  4772. return ggml_cpy_impl(ctx, a, b, true);
  4773. }
  4774. // ggml_cont
  4775. struct ggml_tensor * ggml_cont_impl(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. bool inplace) {
  4779. bool is_node = false;
  4780. if (!inplace && a->grad) {
  4781. is_node = true;
  4782. }
  4783. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4784. result->op = GGML_OP_CONT;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src0 = a;
  4787. result->src1 = NULL;
  4788. return result;
  4789. }
  4790. struct ggml_tensor * ggml_cont(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a) {
  4793. return ggml_cont_impl(ctx, a, false);
  4794. }
  4795. struct ggml_tensor * ggml_cont_inplace(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a) {
  4798. return ggml_cont_impl(ctx, a, true);
  4799. }
  4800. // ggml_reshape
  4801. struct ggml_tensor * ggml_reshape(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a,
  4804. struct ggml_tensor * b) {
  4805. GGML_ASSERT(ggml_is_contiguous(a));
  4806. GGML_ASSERT(ggml_is_contiguous(b));
  4807. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4808. bool is_node = false;
  4809. if (a->grad) {
  4810. is_node = true;
  4811. }
  4812. if (b->grad) {
  4813. // gradient propagation is not supported
  4814. //GGML_ASSERT(false);
  4815. }
  4816. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4817. result->op = GGML_OP_RESHAPE;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src0 = a;
  4820. result->src1 = NULL;
  4821. return result;
  4822. }
  4823. struct ggml_tensor * ggml_reshape_1d(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. int64_t ne0) {
  4827. GGML_ASSERT(ggml_is_contiguous(a));
  4828. GGML_ASSERT(ggml_nelements(a) == ne0);
  4829. bool is_node = false;
  4830. if (a->grad) {
  4831. is_node = true;
  4832. }
  4833. const int64_t ne[1] = { ne0 };
  4834. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4835. result->op = GGML_OP_RESHAPE;
  4836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4837. result->src0 = a;
  4838. result->src1 = NULL;
  4839. return result;
  4840. }
  4841. struct ggml_tensor * ggml_reshape_2d(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. int64_t ne0,
  4845. int64_t ne1) {
  4846. GGML_ASSERT(ggml_is_contiguous(a));
  4847. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4848. bool is_node = false;
  4849. if (a->grad) {
  4850. is_node = true;
  4851. }
  4852. const int64_t ne[2] = { ne0, ne1 };
  4853. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4854. result->op = GGML_OP_RESHAPE;
  4855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4856. result->src0 = a;
  4857. result->src1 = NULL;
  4858. return result;
  4859. }
  4860. struct ggml_tensor * ggml_reshape_3d(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. int64_t ne0,
  4864. int64_t ne1,
  4865. int64_t ne2) {
  4866. GGML_ASSERT(ggml_is_contiguous(a));
  4867. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4868. bool is_node = false;
  4869. if (a->grad) {
  4870. is_node = true;
  4871. }
  4872. const int64_t ne[3] = { ne0, ne1, ne2 };
  4873. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4874. result->op = GGML_OP_RESHAPE;
  4875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4876. result->src0 = a;
  4877. result->src1 = NULL;
  4878. return result;
  4879. }
  4880. struct ggml_tensor * ggml_reshape_4d(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. int64_t ne0,
  4884. int64_t ne1,
  4885. int64_t ne2,
  4886. int64_t ne3) {
  4887. GGML_ASSERT(ggml_is_contiguous(a));
  4888. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4889. bool is_node = false;
  4890. if (a->grad) {
  4891. is_node = true;
  4892. }
  4893. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4894. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4895. result->op = GGML_OP_RESHAPE;
  4896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4897. result->src0 = a;
  4898. result->src1 = NULL;
  4899. return result;
  4900. }
  4901. // ggml_view_1d
  4902. struct ggml_tensor * ggml_view_1d(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. int64_t ne0,
  4906. size_t offset) {
  4907. bool is_node = false;
  4908. if (a->grad) {
  4909. is_node = true;
  4910. }
  4911. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4912. ggml_scratch_save(ctx);
  4913. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4914. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4915. ggml_scratch_load(ctx);
  4916. result->op = GGML_OP_VIEW;
  4917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4918. result->src0 = a;
  4919. result->src1 = NULL;
  4920. result->opt[0] = offs;
  4921. return result;
  4922. }
  4923. // ggml_view_2d
  4924. struct ggml_tensor * ggml_view_2d(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. int64_t ne0,
  4928. int64_t ne1,
  4929. size_t nb1,
  4930. size_t offset) {
  4931. bool is_node = false;
  4932. if (a->grad) {
  4933. is_node = true;
  4934. }
  4935. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4936. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4937. ggml_scratch_save(ctx);
  4938. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4939. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4940. ggml_scratch_load(ctx);
  4941. result->nb[1] = nb1;
  4942. result->nb[2] = result->nb[1]*ne1;
  4943. result->nb[3] = result->nb[2];
  4944. result->op = GGML_OP_VIEW;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src0 = a;
  4947. result->src1 = NULL;
  4948. result->opt[0] = offs;
  4949. return result;
  4950. }
  4951. // ggml_view_3d
  4952. struct ggml_tensor * ggml_view_3d(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. int64_t ne0,
  4956. int64_t ne1,
  4957. int64_t ne2,
  4958. size_t nb1,
  4959. size_t nb2,
  4960. size_t offset) {
  4961. bool is_node = false;
  4962. if (a->grad) {
  4963. is_node = true;
  4964. }
  4965. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4966. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4967. ggml_scratch_save(ctx);
  4968. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4969. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4970. ggml_scratch_load(ctx);
  4971. result->nb[1] = nb1;
  4972. result->nb[2] = nb2;
  4973. result->nb[3] = result->nb[2]*ne2;
  4974. result->op = GGML_OP_VIEW;
  4975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4976. result->src0 = a;
  4977. result->src1 = NULL;
  4978. result->opt[0] = offs;
  4979. return result;
  4980. }
  4981. // ggml_view_4d
  4982. struct ggml_tensor * ggml_view_4d(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. int64_t ne0,
  4986. int64_t ne1,
  4987. int64_t ne2,
  4988. int64_t ne3,
  4989. size_t nb1,
  4990. size_t nb2,
  4991. size_t nb3,
  4992. size_t offset) {
  4993. bool is_node = false;
  4994. if (a->grad) {
  4995. is_node = true;
  4996. }
  4997. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4998. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4999. ggml_scratch_save(ctx);
  5000. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5001. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5002. ggml_scratch_load(ctx);
  5003. result->nb[1] = nb1;
  5004. result->nb[2] = nb2;
  5005. result->nb[3] = nb3;
  5006. result->op = GGML_OP_VIEW;
  5007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5008. result->src0 = a;
  5009. result->src1 = NULL;
  5010. result->opt[0] = offs;
  5011. return result;
  5012. }
  5013. // ggml_permute
  5014. struct ggml_tensor * ggml_permute(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. int axis0,
  5018. int axis1,
  5019. int axis2,
  5020. int axis3) {
  5021. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5022. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5023. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5024. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5025. GGML_ASSERT(axis0 != axis1);
  5026. GGML_ASSERT(axis0 != axis2);
  5027. GGML_ASSERT(axis0 != axis3);
  5028. GGML_ASSERT(axis1 != axis2);
  5029. GGML_ASSERT(axis1 != axis3);
  5030. GGML_ASSERT(axis2 != axis3);
  5031. bool is_node = false;
  5032. if (a->grad) {
  5033. is_node = true;
  5034. }
  5035. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5036. int ne[GGML_MAX_DIMS];
  5037. int nb[GGML_MAX_DIMS];
  5038. ne[axis0] = a->ne[0];
  5039. ne[axis1] = a->ne[1];
  5040. ne[axis2] = a->ne[2];
  5041. ne[axis3] = a->ne[3];
  5042. nb[axis0] = a->nb[0];
  5043. nb[axis1] = a->nb[1];
  5044. nb[axis2] = a->nb[2];
  5045. nb[axis3] = a->nb[3];
  5046. result->ne[0] = ne[0];
  5047. result->ne[1] = ne[1];
  5048. result->ne[2] = ne[2];
  5049. result->ne[3] = ne[3];
  5050. result->nb[0] = nb[0];
  5051. result->nb[1] = nb[1];
  5052. result->nb[2] = nb[2];
  5053. result->nb[3] = nb[3];
  5054. result->op = GGML_OP_PERMUTE;
  5055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5056. result->src0 = a;
  5057. result->src1 = NULL;
  5058. if (is_node) {
  5059. ggml_scratch_save(ctx);
  5060. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5061. ((int32_t *) b->data)[0] = axis0;
  5062. ((int32_t *) b->data)[1] = axis1;
  5063. ((int32_t *) b->data)[2] = axis2;
  5064. ((int32_t *) b->data)[3] = axis3;
  5065. ggml_scratch_load(ctx);
  5066. result->opt[0] = b;
  5067. }
  5068. return result;
  5069. }
  5070. // ggml_transpose
  5071. struct ggml_tensor * ggml_transpose(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a) {
  5074. bool is_node = false;
  5075. if (a->grad) {
  5076. is_node = true;
  5077. }
  5078. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5079. result->ne[0] = a->ne[1];
  5080. result->ne[1] = a->ne[0];
  5081. result->nb[0] = a->nb[1];
  5082. result->nb[1] = a->nb[0];
  5083. result->op = GGML_OP_TRANSPOSE;
  5084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5085. result->src0 = a;
  5086. result->src1 = NULL;
  5087. return result;
  5088. }
  5089. // ggml_get_rows
  5090. struct ggml_tensor * ggml_get_rows(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. struct ggml_tensor * b) {
  5094. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5095. bool is_node = false;
  5096. if (a->grad || b->grad) {
  5097. is_node = true;
  5098. }
  5099. // TODO: implement non F32 return
  5100. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5101. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5102. result->op = GGML_OP_GET_ROWS;
  5103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5104. result->src0 = a;
  5105. result->src1 = b;
  5106. return result;
  5107. }
  5108. // ggml_get_rows_back
  5109. struct ggml_tensor * ggml_get_rows_back(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a,
  5112. struct ggml_tensor * b,
  5113. struct ggml_tensor * c) {
  5114. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5115. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5116. bool is_node = false;
  5117. if (a->grad || b->grad) {
  5118. is_node = true;
  5119. }
  5120. // TODO: implement non F32 return
  5121. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5122. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5123. result->op = GGML_OP_GET_ROWS_BACK;
  5124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5125. result->src0 = a;
  5126. result->src1 = b;
  5127. result->opt[0] = c;
  5128. return result;
  5129. }
  5130. // ggml_diag
  5131. struct ggml_tensor * ggml_diag(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a) {
  5134. GGML_ASSERT(a->ne[1] == 1);
  5135. bool is_node = false;
  5136. if (a->grad) {
  5137. is_node = true;
  5138. }
  5139. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5140. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5141. result->op = GGML_OP_DIAG;
  5142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5143. result->src0 = a;
  5144. result->src1 = NULL;
  5145. return result;
  5146. }
  5147. // ggml_diag_mask_inf
  5148. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5149. struct ggml_context * ctx,
  5150. struct ggml_tensor * a,
  5151. int n_past,
  5152. bool inplace) {
  5153. bool is_node = false;
  5154. if (a->grad) {
  5155. is_node = true;
  5156. }
  5157. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5158. ggml_scratch_save(ctx);
  5159. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5160. ((int32_t *) b->data)[0] = n_past;
  5161. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5162. ggml_scratch_load(ctx);
  5163. result->op = GGML_OP_DIAG_MASK_INF;
  5164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5165. result->src0 = a;
  5166. result->src1 = b;
  5167. return result;
  5168. }
  5169. struct ggml_tensor * ggml_diag_mask_inf(
  5170. struct ggml_context * ctx,
  5171. struct ggml_tensor * a,
  5172. int n_past) {
  5173. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5174. }
  5175. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. int n_past) {
  5179. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5180. }
  5181. // ggml_diag_mask_zero
  5182. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5183. struct ggml_context * ctx,
  5184. struct ggml_tensor * a,
  5185. int n_past,
  5186. bool inplace) {
  5187. bool is_node = false;
  5188. if (a->grad) {
  5189. is_node = true;
  5190. }
  5191. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5192. ggml_scratch_save(ctx);
  5193. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5194. ggml_set_name(b, "n_past, inplace");
  5195. ((int32_t *) b->data)[0] = n_past;
  5196. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5197. ggml_scratch_load(ctx);
  5198. result->op = GGML_OP_DIAG_MASK_ZERO;
  5199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5200. result->src0 = a;
  5201. result->src1 = b;
  5202. return result;
  5203. }
  5204. struct ggml_tensor * ggml_diag_mask_zero(
  5205. struct ggml_context * ctx,
  5206. struct ggml_tensor * a,
  5207. int n_past) {
  5208. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5209. }
  5210. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. int n_past) {
  5214. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5215. }
  5216. // ggml_soft_max
  5217. struct ggml_tensor * ggml_soft_max_impl(
  5218. struct ggml_context * ctx,
  5219. struct ggml_tensor * a,
  5220. bool inplace) {
  5221. bool is_node = false;
  5222. if (a->grad) {
  5223. is_node = true;
  5224. }
  5225. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5226. result->op = GGML_OP_SOFT_MAX;
  5227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5228. result->src0 = a;
  5229. result->src1 = NULL;
  5230. return result;
  5231. }
  5232. struct ggml_tensor * ggml_soft_max(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a) {
  5235. return ggml_soft_max_impl(ctx, a, false);
  5236. }
  5237. struct ggml_tensor * ggml_soft_max_inplace(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a) {
  5240. return ggml_soft_max_impl(ctx, a, true);
  5241. }
  5242. // ggml_soft_max_back
  5243. struct ggml_tensor * ggml_soft_max_back_impl(
  5244. struct ggml_context * ctx,
  5245. struct ggml_tensor * a,
  5246. struct ggml_tensor * b,
  5247. bool inplace) {
  5248. bool is_node = false;
  5249. if (a->grad || b->grad) {
  5250. is_node = true; // TODO : implement backward pass
  5251. }
  5252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5253. result->op = GGML_OP_SOFT_MAX_BACK;
  5254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5255. result->src0 = a;
  5256. result->src1 = b;
  5257. return result;
  5258. }
  5259. struct ggml_tensor * ggml_soft_max_back(
  5260. struct ggml_context * ctx,
  5261. struct ggml_tensor * a,
  5262. struct ggml_tensor * b) {
  5263. return ggml_soft_max_back_impl(ctx, a, b, false);
  5264. }
  5265. struct ggml_tensor * ggml_soft_max_back_inplace(
  5266. struct ggml_context * ctx,
  5267. struct ggml_tensor * a,
  5268. struct ggml_tensor * b) {
  5269. return ggml_soft_max_back_impl(ctx, a, b, true);
  5270. }
  5271. // ggml_rope
  5272. struct ggml_tensor * ggml_rope_impl(
  5273. struct ggml_context * ctx,
  5274. struct ggml_tensor * a,
  5275. int n_past,
  5276. int n_dims,
  5277. int mode,
  5278. bool inplace) {
  5279. GGML_ASSERT(n_past >= 0);
  5280. bool is_node = false;
  5281. if (a->grad) {
  5282. is_node = true;
  5283. }
  5284. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5285. ggml_scratch_save(ctx);
  5286. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5287. ((int32_t *) b->data)[0] = n_past;
  5288. ((int32_t *) b->data)[1] = n_dims;
  5289. ((int32_t *) b->data)[2] = mode;
  5290. ggml_scratch_load(ctx);
  5291. result->op = GGML_OP_ROPE;
  5292. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5293. result->src0 = a;
  5294. result->src1 = b;
  5295. return result;
  5296. }
  5297. struct ggml_tensor * ggml_rope(
  5298. struct ggml_context * ctx,
  5299. struct ggml_tensor * a,
  5300. int n_past,
  5301. int n_dims,
  5302. int mode) {
  5303. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5304. }
  5305. struct ggml_tensor * ggml_rope_inplace(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. int n_past,
  5309. int n_dims,
  5310. int mode) {
  5311. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5312. }
  5313. // ggml_rope_back
  5314. struct ggml_tensor * ggml_rope_back(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * a,
  5317. int n_past,
  5318. int n_dims,
  5319. int mode) {
  5320. GGML_ASSERT(n_past >= 0);
  5321. bool is_node = false;
  5322. if (a->grad) {
  5323. is_node = false; // TODO: implement backward
  5324. }
  5325. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5326. ggml_scratch_save(ctx);
  5327. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5328. ggml_set_name(b, "n_past, n_dims, mode");
  5329. ((int32_t *) b->data)[0] = n_past;
  5330. ((int32_t *) b->data)[1] = n_dims;
  5331. ((int32_t *) b->data)[2] = mode;
  5332. ggml_scratch_load(ctx);
  5333. result->op = GGML_OP_ROPE_BACK;
  5334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5335. result->src0 = a;
  5336. result->src1 = b;
  5337. return result;
  5338. }
  5339. // ggml_alibi
  5340. struct ggml_tensor * ggml_alibi(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. int n_past,
  5344. int n_head,
  5345. float bias_max) {
  5346. GGML_ASSERT(n_past >= 0);
  5347. bool is_node = false;
  5348. if (a->grad) {
  5349. GGML_ASSERT(false); // TODO: implement backward
  5350. is_node = true;
  5351. }
  5352. // TODO: when implement backward, fix this:
  5353. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5354. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5355. ggml_scratch_save(ctx);
  5356. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5357. ((int32_t *) b->data)[0] = n_past;
  5358. ((int32_t *) b->data)[1] = n_head;
  5359. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5360. (((float *) b->data)[2]) = bias_max;
  5361. ggml_scratch_load(ctx);
  5362. result->op = GGML_OP_ALIBI;
  5363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5364. result->src0 = a;
  5365. result->src1 = b;
  5366. return result;
  5367. }
  5368. // ggml_clamp
  5369. struct ggml_tensor * ggml_clamp(
  5370. struct ggml_context * ctx,
  5371. struct ggml_tensor * a,
  5372. float min,
  5373. float max) {
  5374. bool is_node = false;
  5375. if (a->grad) {
  5376. GGML_ASSERT(false); // TODO: implement backward
  5377. is_node = true;
  5378. }
  5379. // TODO: when implement backward, fix this:
  5380. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5381. ggml_scratch_save(ctx);
  5382. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5383. ((float *) b->data)[0] = min;
  5384. ((float *) b->data)[1] = max;
  5385. ggml_scratch_load(ctx);
  5386. result->op = GGML_OP_CLAMP;
  5387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5388. result->src0 = a;
  5389. result->src1 = b;
  5390. return result;
  5391. }
  5392. // ggml_conv_1d_s1_ph
  5393. struct ggml_tensor * ggml_conv_1d_s1_ph(
  5394. struct ggml_context * ctx,
  5395. struct ggml_tensor * a,
  5396. struct ggml_tensor * b) {
  5397. GGML_ASSERT(ggml_is_matrix(b));
  5398. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5399. GGML_ASSERT(a->ne[3] == 1);
  5400. bool is_node = false;
  5401. if (a->grad || b->grad) {
  5402. GGML_ASSERT(false); // TODO: implement backward
  5403. is_node = true;
  5404. }
  5405. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5406. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5407. result->op = GGML_OP_CONV_1D_S1_PH;
  5408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5409. result->src0 = a;
  5410. result->src1 = b;
  5411. return result;
  5412. }
  5413. // ggml_conv_1d_s2_ph
  5414. struct ggml_tensor * ggml_conv_1d_s2_ph(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * a,
  5417. struct ggml_tensor * b) {
  5418. GGML_ASSERT(ggml_is_matrix(b));
  5419. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5420. GGML_ASSERT(a->ne[3] == 1);
  5421. bool is_node = false;
  5422. if (a->grad || b->grad) {
  5423. GGML_ASSERT(false); // TODO: implement backward
  5424. is_node = true;
  5425. }
  5426. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5427. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5428. result->op = GGML_OP_CONV_1D_S2_PH;
  5429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5430. result->src0 = a;
  5431. result->src1 = b;
  5432. return result;
  5433. }
  5434. // ggml_conv_2d_sk_p0
  5435. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. struct ggml_tensor * b) {
  5439. GGML_ASSERT(b->ne[3] == 1);
  5440. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5441. GGML_ASSERT(b->ne[0] % a->ne[0] == 0);
  5442. GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
  5443. bool is_node = false;
  5444. if (a->grad || b->grad) {
  5445. GGML_ASSERT(false); // TODO: implement backward
  5446. is_node = true;
  5447. }
  5448. const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, };
  5449. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5450. result->op = GGML_OP_CONV_2D_SK_P0;
  5451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5452. result->src0 = a;
  5453. result->src1 = b;
  5454. return result;
  5455. }
  5456. // ggml_flash_attn
  5457. struct ggml_tensor * ggml_flash_attn(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * q,
  5460. struct ggml_tensor * k,
  5461. struct ggml_tensor * v,
  5462. bool masked) {
  5463. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5464. // TODO: check if vT can be multiplied by (k*qT)
  5465. bool is_node = false;
  5466. if (q->grad || k->grad || v->grad) {
  5467. is_node = true;
  5468. }
  5469. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5470. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5471. result->op = GGML_OP_FLASH_ATTN;
  5472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5473. result->src0 = q;
  5474. result->src1 = k;
  5475. result->opt[0] = v;
  5476. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5477. return result;
  5478. }
  5479. // ggml_flash_ff
  5480. struct ggml_tensor * ggml_flash_ff(
  5481. struct ggml_context * ctx,
  5482. struct ggml_tensor * a,
  5483. struct ggml_tensor * b0,
  5484. struct ggml_tensor * b1,
  5485. struct ggml_tensor * c0,
  5486. struct ggml_tensor * c1) {
  5487. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5488. // TODO: more checks
  5489. bool is_node = false;
  5490. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5491. is_node = true;
  5492. }
  5493. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5494. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5495. result->op = GGML_OP_FLASH_FF;
  5496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5497. result->src0 = a;
  5498. result->src1 = b0;
  5499. result->opt[0] = b1;
  5500. result->opt[1] = c0;
  5501. result->opt[2] = c1;
  5502. return result;
  5503. }
  5504. // ggml_flash_attn_back
  5505. struct ggml_tensor * ggml_flash_attn_back(
  5506. struct ggml_context * ctx,
  5507. struct ggml_tensor * q,
  5508. struct ggml_tensor * k,
  5509. struct ggml_tensor * v,
  5510. struct ggml_tensor * d,
  5511. bool masked) {
  5512. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5513. // TODO: check if vT can be multiplied by (k*qT)
  5514. // d shape [D,N,ne2,ne3]
  5515. // q shape [D,N,ne2,ne3]
  5516. // k shape [D,M,ne2,ne3]
  5517. // v shape [M,D,ne2,ne3]
  5518. const int64_t D = q->ne[0];
  5519. const int64_t N = q->ne[1];
  5520. const int64_t M = k->ne[1];
  5521. const int64_t ne2 = q->ne[2];
  5522. const int64_t ne3 = q->ne[3];
  5523. GGML_ASSERT(k->ne[0] == D);
  5524. GGML_ASSERT(v->ne[0] == M);
  5525. GGML_ASSERT(v->ne[1] == D);
  5526. GGML_ASSERT(d->ne[0] == D);
  5527. GGML_ASSERT(d->ne[1] == N);
  5528. GGML_ASSERT(k->ne[2] == ne2);
  5529. GGML_ASSERT(k->ne[3] == ne3);
  5530. GGML_ASSERT(v->ne[2] == ne2);
  5531. GGML_ASSERT(v->ne[3] == ne3);
  5532. GGML_ASSERT(d->ne[2] == ne2);
  5533. GGML_ASSERT(d->ne[3] == ne3);
  5534. bool is_node = false;
  5535. if (q->grad || k->grad || v->grad) {
  5536. // when using this operation (in backwards pass) these grads are set.
  5537. // we don't want to create (big) grad of our result, so is_node is false.
  5538. is_node = false;
  5539. }
  5540. // store gradients of q, k and v as continuous tensors concatenated in result.
  5541. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5542. // gradq->data = result->data
  5543. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5544. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5545. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5546. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5547. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5548. result->op = GGML_OP_FLASH_ATTN_BACK;
  5549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5550. result->src0 = q;
  5551. result->src1 = k;
  5552. result->opt[0] = v;
  5553. result->opt[1] = d;
  5554. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5555. return result;
  5556. }
  5557. // ggml_win_part
  5558. struct ggml_tensor * ggml_win_part(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. int w) {
  5562. GGML_ASSERT(a->ne[3] == 1);
  5563. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5564. bool is_node = false;
  5565. if (a->grad) {
  5566. GGML_ASSERT(false); // TODO: implement backward
  5567. is_node = true;
  5568. }
  5569. // padding
  5570. const int px = (w - a->ne[1]%w)%w;
  5571. const int py = (w - a->ne[2]%w)%w;
  5572. const int npx = (px + a->ne[1])/w;
  5573. const int npy = (py + a->ne[2])/w;
  5574. const int np = npx*npy;
  5575. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5576. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5577. ggml_scratch_save(ctx);
  5578. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5579. ((int32_t *) b->data)[0] = npx;
  5580. ((int32_t *) b->data)[1] = npy;
  5581. ((int32_t *) b->data)[2] = w;
  5582. ggml_scratch_load(ctx);
  5583. result->op = GGML_OP_WIN_PART;
  5584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5585. result->src0 = a;
  5586. result->src1 = NULL;
  5587. result->opt[0] = b;
  5588. return result;
  5589. }
  5590. // ggml_win_unpart
  5591. struct ggml_tensor * ggml_win_unpart(
  5592. struct ggml_context * ctx,
  5593. struct ggml_tensor * a,
  5594. int w0,
  5595. int h0,
  5596. int w) {
  5597. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5598. bool is_node = false;
  5599. if (a->grad) {
  5600. GGML_ASSERT(false); // TODO: implement backward
  5601. is_node = true;
  5602. }
  5603. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5604. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5605. ggml_scratch_save(ctx);
  5606. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5607. ((int32_t *) b->data)[0] = w;
  5608. ggml_scratch_load(ctx);
  5609. result->op = GGML_OP_WIN_UNPART;
  5610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5611. result->src0 = a;
  5612. result->src1 = NULL;
  5613. result->opt[0] = b;
  5614. return result;
  5615. }
  5616. // ggml_map_unary
  5617. struct ggml_tensor * ggml_map_unary_impl_f32(
  5618. struct ggml_context * ctx,
  5619. struct ggml_tensor * a,
  5620. const ggml_unary_op_f32_t fun,
  5621. bool inplace) {
  5622. bool is_node = false;
  5623. if (!inplace && a->grad) {
  5624. is_node = true;
  5625. }
  5626. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5627. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5628. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5629. result->op = GGML_OP_MAP_UNARY;
  5630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5631. result->src0 = a;
  5632. result->opt[0] = addr_tensor;
  5633. return result;
  5634. }
  5635. struct ggml_tensor * ggml_map_unary_f32(
  5636. struct ggml_context * ctx,
  5637. struct ggml_tensor * a,
  5638. const ggml_unary_op_f32_t fun) {
  5639. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5640. }
  5641. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5642. struct ggml_context * ctx,
  5643. struct ggml_tensor * a,
  5644. const ggml_unary_op_f32_t fun) {
  5645. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5646. }
  5647. // ggml_map_binary
  5648. struct ggml_tensor * ggml_map_binary_impl_f32(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a,
  5651. struct ggml_tensor * b,
  5652. const ggml_binary_op_f32_t fun,
  5653. bool inplace) {
  5654. GGML_ASSERT(ggml_are_same_shape(a, b));
  5655. bool is_node = false;
  5656. if (!inplace && (a->grad || b->grad)) {
  5657. is_node = true;
  5658. }
  5659. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5660. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5661. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5662. result->op = GGML_OP_MAP_BINARY;
  5663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5664. result->src0 = a;
  5665. result->src1 = b;
  5666. result->opt[0] = addr_tensor;
  5667. return result;
  5668. }
  5669. struct ggml_tensor * ggml_map_binary_f32(
  5670. struct ggml_context * ctx,
  5671. struct ggml_tensor * a,
  5672. struct ggml_tensor * b,
  5673. const ggml_binary_op_f32_t fun) {
  5674. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5675. }
  5676. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5677. struct ggml_context * ctx,
  5678. struct ggml_tensor * a,
  5679. struct ggml_tensor * b,
  5680. const ggml_binary_op_f32_t fun) {
  5681. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5682. }
  5683. // ggml_cross_entropy_loss
  5684. struct ggml_tensor * ggml_cross_entropy_loss(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. struct ggml_tensor * b) {
  5688. GGML_ASSERT(ggml_are_same_shape(a, b));
  5689. bool is_node = false;
  5690. if (a->grad || b->grad) {
  5691. is_node = true;
  5692. }
  5693. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5694. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5696. result->src0 = a;
  5697. result->src1 = b;
  5698. return result;
  5699. }
  5700. // ggml_cross_entropy_loss_back
  5701. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5702. struct ggml_context * ctx,
  5703. struct ggml_tensor * a,
  5704. struct ggml_tensor * b,
  5705. struct ggml_tensor * c) {
  5706. GGML_ASSERT(ggml_are_same_shape(a, b));
  5707. GGML_ASSERT(ggml_is_scalar(c));
  5708. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5709. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5710. result->grad = NULL;
  5711. result->src0 = a;
  5712. result->src1 = b;
  5713. result->opt[0] = c;
  5714. return result;
  5715. }
  5716. ////////////////////////////////////////////////////////////////////////////////
  5717. void ggml_set_param(
  5718. struct ggml_context * ctx,
  5719. struct ggml_tensor * tensor) {
  5720. tensor->is_param = true;
  5721. GGML_ASSERT(tensor->grad == NULL);
  5722. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5723. }
  5724. // ggml_compute_forward_dup
  5725. static void ggml_compute_forward_dup_same_cont(
  5726. const struct ggml_compute_params * params,
  5727. const struct ggml_tensor * src0,
  5728. struct ggml_tensor * dst) {
  5729. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5730. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5731. GGML_ASSERT(src0->type == dst->type);
  5732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5733. return;
  5734. }
  5735. const size_t nb00 = src0->nb[0];
  5736. const size_t nb0 = dst->nb[0];
  5737. const int ith = params->ith; // thread index
  5738. const int nth = params->nth; // number of threads
  5739. // parallelize by elements
  5740. const int ne = ggml_nelements(dst);
  5741. const int dr = (ne + nth - 1) / nth;
  5742. const int ie0 = dr * ith;
  5743. const int ie1 = MIN(ie0 + dr, ne);
  5744. if (ie0 < ie1) {
  5745. memcpy(
  5746. ((char *) dst->data + ie0*nb0),
  5747. ((char *) src0->data + ie0*nb00),
  5748. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5749. }
  5750. }
  5751. static void ggml_compute_forward_dup_f16(
  5752. const struct ggml_compute_params * params,
  5753. const struct ggml_tensor * src0,
  5754. struct ggml_tensor * dst) {
  5755. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5757. return;
  5758. }
  5759. const int64_t ne00 = src0->ne[0];
  5760. const int64_t ne01 = src0->ne[1];
  5761. const int64_t ne02 = src0->ne[2];
  5762. const int64_t ne03 = src0->ne[3];
  5763. const int64_t ne0 = dst->ne[0];
  5764. const int64_t ne1 = dst->ne[1];
  5765. const int64_t ne2 = dst->ne[2];
  5766. const int64_t ne3 = dst->ne[3];
  5767. const size_t nb00 = src0->nb[0];
  5768. const size_t nb01 = src0->nb[1];
  5769. const size_t nb02 = src0->nb[2];
  5770. const size_t nb03 = src0->nb[3];
  5771. const size_t nb0 = dst->nb[0];
  5772. const size_t nb1 = dst->nb[1];
  5773. const size_t nb2 = dst->nb[2];
  5774. const size_t nb3 = dst->nb[3];
  5775. const int ith = params->ith; // thread index
  5776. const int nth = params->nth; // number of threads
  5777. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5778. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5779. return;
  5780. }
  5781. // parallelize by rows
  5782. const int nr = ne01;
  5783. // number of rows per thread
  5784. const int dr = (nr + nth - 1) / nth;
  5785. // row range for this thread
  5786. const int ir0 = dr * ith;
  5787. const int ir1 = MIN(ir0 + dr, nr);
  5788. if (src0->type == dst->type &&
  5789. ne00 == ne0 &&
  5790. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5791. // copy by rows
  5792. const size_t rs = ne00*nb00;
  5793. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5794. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5795. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5796. memcpy(
  5797. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5798. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5799. rs);
  5800. }
  5801. }
  5802. }
  5803. return;
  5804. }
  5805. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5806. if (ggml_is_contiguous(dst)) {
  5807. if (nb00 == sizeof(ggml_fp16_t)) {
  5808. if (dst->type == GGML_TYPE_F16) {
  5809. size_t id = 0;
  5810. const size_t rs = ne00 * nb00;
  5811. char * dst_ptr = (char *) dst->data;
  5812. for (int i03 = 0; i03 < ne03; i03++) {
  5813. for (int i02 = 0; i02 < ne02; i02++) {
  5814. id += rs * ir0;
  5815. for (int i01 = ir0; i01 < ir1; i01++) {
  5816. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5817. memcpy(dst_ptr + id, src0_ptr, rs);
  5818. id += rs;
  5819. }
  5820. id += rs * (ne01 - ir1);
  5821. }
  5822. }
  5823. } else if (dst->type == GGML_TYPE_F32) {
  5824. size_t id = 0;
  5825. float * dst_ptr = (float *) dst->data;
  5826. for (int i03 = 0; i03 < ne03; i03++) {
  5827. for (int i02 = 0; i02 < ne02; i02++) {
  5828. id += ne00 * ir0;
  5829. for (int i01 = ir0; i01 < ir1; i01++) {
  5830. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5831. for (int i00 = 0; i00 < ne00; i00++) {
  5832. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5833. id++;
  5834. }
  5835. }
  5836. id += ne00 * (ne01 - ir1);
  5837. }
  5838. }
  5839. } else if (ggml_is_quantized(dst->type)) {
  5840. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5841. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5842. size_t id = 0;
  5843. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5844. char * dst_ptr = (char *) dst->data;
  5845. for (int i03 = 0; i03 < ne03; i03++) {
  5846. for (int i02 = 0; i02 < ne02; i02++) {
  5847. id += rs * ir0;
  5848. for (int i01 = ir0; i01 < ir1; i01++) {
  5849. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5850. for (int i00 = 0; i00 < ne00; i00++) {
  5851. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5852. }
  5853. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5854. id += rs;
  5855. }
  5856. id += rs * (ne01 - ir1);
  5857. }
  5858. }
  5859. } else {
  5860. GGML_ASSERT(false); // TODO: implement
  5861. }
  5862. } else {
  5863. //printf("%s: this is not optimal - fix me\n", __func__);
  5864. if (dst->type == GGML_TYPE_F32) {
  5865. size_t id = 0;
  5866. float * dst_ptr = (float *) dst->data;
  5867. for (int i03 = 0; i03 < ne03; i03++) {
  5868. for (int i02 = 0; i02 < ne02; i02++) {
  5869. id += ne00 * ir0;
  5870. for (int i01 = ir0; i01 < ir1; i01++) {
  5871. for (int i00 = 0; i00 < ne00; i00++) {
  5872. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5873. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5874. id++;
  5875. }
  5876. }
  5877. id += ne00 * (ne01 - ir1);
  5878. }
  5879. }
  5880. } else if (dst->type == GGML_TYPE_F16) {
  5881. size_t id = 0;
  5882. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5883. for (int i03 = 0; i03 < ne03; i03++) {
  5884. for (int i02 = 0; i02 < ne02; i02++) {
  5885. id += ne00 * ir0;
  5886. for (int i01 = ir0; i01 < ir1; i01++) {
  5887. for (int i00 = 0; i00 < ne00; i00++) {
  5888. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5889. dst_ptr[id] = *src0_ptr;
  5890. id++;
  5891. }
  5892. }
  5893. id += ne00 * (ne01 - ir1);
  5894. }
  5895. }
  5896. } else {
  5897. GGML_ASSERT(false); // TODO: implement
  5898. }
  5899. }
  5900. return;
  5901. }
  5902. // dst counters
  5903. int64_t i10 = 0;
  5904. int64_t i11 = 0;
  5905. int64_t i12 = 0;
  5906. int64_t i13 = 0;
  5907. if (dst->type == GGML_TYPE_F16) {
  5908. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5909. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5910. i10 += ne00 * ir0;
  5911. while (i10 >= ne0) {
  5912. i10 -= ne0;
  5913. if (++i11 == ne1) {
  5914. i11 = 0;
  5915. if (++i12 == ne2) {
  5916. i12 = 0;
  5917. if (++i13 == ne3) {
  5918. i13 = 0;
  5919. }
  5920. }
  5921. }
  5922. }
  5923. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5924. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5925. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5926. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5927. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5928. if (++i10 == ne00) {
  5929. i10 = 0;
  5930. if (++i11 == ne01) {
  5931. i11 = 0;
  5932. if (++i12 == ne02) {
  5933. i12 = 0;
  5934. if (++i13 == ne03) {
  5935. i13 = 0;
  5936. }
  5937. }
  5938. }
  5939. }
  5940. }
  5941. }
  5942. i10 += ne00 * (ne01 - ir1);
  5943. while (i10 >= ne0) {
  5944. i10 -= ne0;
  5945. if (++i11 == ne1) {
  5946. i11 = 0;
  5947. if (++i12 == ne2) {
  5948. i12 = 0;
  5949. if (++i13 == ne3) {
  5950. i13 = 0;
  5951. }
  5952. }
  5953. }
  5954. }
  5955. }
  5956. }
  5957. } else if (dst->type == GGML_TYPE_F32) {
  5958. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5959. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5960. i10 += ne00 * ir0;
  5961. while (i10 >= ne0) {
  5962. i10 -= ne0;
  5963. if (++i11 == ne1) {
  5964. i11 = 0;
  5965. if (++i12 == ne2) {
  5966. i12 = 0;
  5967. if (++i13 == ne3) {
  5968. i13 = 0;
  5969. }
  5970. }
  5971. }
  5972. }
  5973. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5974. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5975. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5976. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5977. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5978. if (++i10 == ne0) {
  5979. i10 = 0;
  5980. if (++i11 == ne1) {
  5981. i11 = 0;
  5982. if (++i12 == ne2) {
  5983. i12 = 0;
  5984. if (++i13 == ne3) {
  5985. i13 = 0;
  5986. }
  5987. }
  5988. }
  5989. }
  5990. }
  5991. }
  5992. i10 += ne00 * (ne01 - ir1);
  5993. while (i10 >= ne0) {
  5994. i10 -= ne0;
  5995. if (++i11 == ne1) {
  5996. i11 = 0;
  5997. if (++i12 == ne2) {
  5998. i12 = 0;
  5999. if (++i13 == ne3) {
  6000. i13 = 0;
  6001. }
  6002. }
  6003. }
  6004. }
  6005. }
  6006. }
  6007. } else {
  6008. GGML_ASSERT(false); // TODO: implement
  6009. }
  6010. }
  6011. static void ggml_compute_forward_dup_f32(
  6012. const struct ggml_compute_params * params,
  6013. const struct ggml_tensor * src0,
  6014. struct ggml_tensor * dst) {
  6015. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6017. return;
  6018. }
  6019. const int64_t ne00 = src0->ne[0];
  6020. const int64_t ne01 = src0->ne[1];
  6021. const int64_t ne02 = src0->ne[2];
  6022. const int64_t ne03 = src0->ne[3];
  6023. const int64_t ne0 = dst->ne[0];
  6024. const int64_t ne1 = dst->ne[1];
  6025. const int64_t ne2 = dst->ne[2];
  6026. const int64_t ne3 = dst->ne[3];
  6027. const size_t nb00 = src0->nb[0];
  6028. const size_t nb01 = src0->nb[1];
  6029. const size_t nb02 = src0->nb[2];
  6030. const size_t nb03 = src0->nb[3];
  6031. const size_t nb0 = dst->nb[0];
  6032. const size_t nb1 = dst->nb[1];
  6033. const size_t nb2 = dst->nb[2];
  6034. const size_t nb3 = dst->nb[3];
  6035. const int ith = params->ith; // thread index
  6036. const int nth = params->nth; // number of threads
  6037. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6038. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6039. return;
  6040. }
  6041. // parallelize by rows
  6042. const int nr = ne01;
  6043. // number of rows per thread
  6044. const int dr = (nr + nth - 1) / nth;
  6045. // row range for this thread
  6046. const int ir0 = dr * ith;
  6047. const int ir1 = MIN(ir0 + dr, nr);
  6048. if (src0->type == dst->type &&
  6049. ne00 == ne0 &&
  6050. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6051. // copy by rows
  6052. const size_t rs = ne00*nb00;
  6053. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6054. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6055. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6056. memcpy(
  6057. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6058. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6059. rs);
  6060. }
  6061. }
  6062. }
  6063. return;
  6064. }
  6065. if (ggml_is_contiguous(dst)) {
  6066. // TODO: simplify
  6067. if (nb00 == sizeof(float)) {
  6068. if (dst->type == GGML_TYPE_F32) {
  6069. size_t id = 0;
  6070. const size_t rs = ne00 * nb00;
  6071. char * dst_ptr = (char *) dst->data;
  6072. for (int i03 = 0; i03 < ne03; i03++) {
  6073. for (int i02 = 0; i02 < ne02; i02++) {
  6074. id += rs * ir0;
  6075. for (int i01 = ir0; i01 < ir1; i01++) {
  6076. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6077. memcpy(dst_ptr + id, src0_ptr, rs);
  6078. id += rs;
  6079. }
  6080. id += rs * (ne01 - ir1);
  6081. }
  6082. }
  6083. } else if (dst->type == GGML_TYPE_F16) {
  6084. size_t id = 0;
  6085. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6086. for (int i03 = 0; i03 < ne03; i03++) {
  6087. for (int i02 = 0; i02 < ne02; i02++) {
  6088. id += ne00 * ir0;
  6089. for (int i01 = ir0; i01 < ir1; i01++) {
  6090. for (int i00 = 0; i00 < ne00; i00++) {
  6091. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6092. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6093. id++;
  6094. }
  6095. }
  6096. id += ne00 * (ne01 - ir1);
  6097. }
  6098. }
  6099. } else if (ggml_is_quantized(dst->type)) {
  6100. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6101. size_t id = 0;
  6102. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6103. char * dst_ptr = (char *) dst->data;
  6104. for (int i03 = 0; i03 < ne03; i03++) {
  6105. for (int i02 = 0; i02 < ne02; i02++) {
  6106. id += rs * ir0;
  6107. for (int i01 = ir0; i01 < ir1; i01++) {
  6108. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6109. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6110. id += rs;
  6111. }
  6112. id += rs * (ne01 - ir1);
  6113. }
  6114. }
  6115. } else {
  6116. GGML_ASSERT(false); // TODO: implement
  6117. }
  6118. } else {
  6119. //printf("%s: this is not optimal - fix me\n", __func__);
  6120. if (dst->type == GGML_TYPE_F32) {
  6121. size_t id = 0;
  6122. float * dst_ptr = (float *) dst->data;
  6123. for (int i03 = 0; i03 < ne03; i03++) {
  6124. for (int i02 = 0; i02 < ne02; i02++) {
  6125. id += ne00 * ir0;
  6126. for (int i01 = ir0; i01 < ir1; i01++) {
  6127. for (int i00 = 0; i00 < ne00; i00++) {
  6128. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6129. dst_ptr[id] = *src0_ptr;
  6130. id++;
  6131. }
  6132. }
  6133. id += ne00 * (ne01 - ir1);
  6134. }
  6135. }
  6136. } else if (dst->type == GGML_TYPE_F16) {
  6137. size_t id = 0;
  6138. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6139. for (int i03 = 0; i03 < ne03; i03++) {
  6140. for (int i02 = 0; i02 < ne02; i02++) {
  6141. id += ne00 * ir0;
  6142. for (int i01 = ir0; i01 < ir1; i01++) {
  6143. for (int i00 = 0; i00 < ne00; i00++) {
  6144. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6145. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6146. id++;
  6147. }
  6148. }
  6149. id += ne00 * (ne01 - ir1);
  6150. }
  6151. }
  6152. } else {
  6153. GGML_ASSERT(false); // TODO: implement
  6154. }
  6155. }
  6156. return;
  6157. }
  6158. // dst counters
  6159. int64_t i10 = 0;
  6160. int64_t i11 = 0;
  6161. int64_t i12 = 0;
  6162. int64_t i13 = 0;
  6163. if (dst->type == GGML_TYPE_F32) {
  6164. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6165. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6166. i10 += ne00 * ir0;
  6167. while (i10 >= ne0) {
  6168. i10 -= ne0;
  6169. if (++i11 == ne1) {
  6170. i11 = 0;
  6171. if (++i12 == ne2) {
  6172. i12 = 0;
  6173. if (++i13 == ne3) {
  6174. i13 = 0;
  6175. }
  6176. }
  6177. }
  6178. }
  6179. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6180. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6181. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6182. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6183. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6184. if (++i10 == ne0) {
  6185. i10 = 0;
  6186. if (++i11 == ne1) {
  6187. i11 = 0;
  6188. if (++i12 == ne2) {
  6189. i12 = 0;
  6190. if (++i13 == ne3) {
  6191. i13 = 0;
  6192. }
  6193. }
  6194. }
  6195. }
  6196. }
  6197. }
  6198. i10 += ne00 * (ne01 - ir1);
  6199. while (i10 >= ne0) {
  6200. i10 -= ne0;
  6201. if (++i11 == ne1) {
  6202. i11 = 0;
  6203. if (++i12 == ne2) {
  6204. i12 = 0;
  6205. if (++i13 == ne3) {
  6206. i13 = 0;
  6207. }
  6208. }
  6209. }
  6210. }
  6211. }
  6212. }
  6213. } else if (dst->type == GGML_TYPE_F16) {
  6214. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6216. i10 += ne00 * ir0;
  6217. while (i10 >= ne0) {
  6218. i10 -= ne0;
  6219. if (++i11 == ne1) {
  6220. i11 = 0;
  6221. if (++i12 == ne2) {
  6222. i12 = 0;
  6223. if (++i13 == ne3) {
  6224. i13 = 0;
  6225. }
  6226. }
  6227. }
  6228. }
  6229. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6230. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6231. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6232. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6233. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6234. if (++i10 == ne0) {
  6235. i10 = 0;
  6236. if (++i11 == ne1) {
  6237. i11 = 0;
  6238. if (++i12 == ne2) {
  6239. i12 = 0;
  6240. if (++i13 == ne3) {
  6241. i13 = 0;
  6242. }
  6243. }
  6244. }
  6245. }
  6246. }
  6247. }
  6248. i10 += ne00 * (ne01 - ir1);
  6249. while (i10 >= ne0) {
  6250. i10 -= ne0;
  6251. if (++i11 == ne1) {
  6252. i11 = 0;
  6253. if (++i12 == ne2) {
  6254. i12 = 0;
  6255. if (++i13 == ne3) {
  6256. i13 = 0;
  6257. }
  6258. }
  6259. }
  6260. }
  6261. }
  6262. }
  6263. } else {
  6264. GGML_ASSERT(false); // TODO: implement
  6265. }
  6266. }
  6267. static void ggml_compute_forward_dup(
  6268. const struct ggml_compute_params * params,
  6269. const struct ggml_tensor * src0,
  6270. struct ggml_tensor * dst) {
  6271. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6272. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6273. return;
  6274. }
  6275. switch (src0->type) {
  6276. case GGML_TYPE_F16:
  6277. {
  6278. ggml_compute_forward_dup_f16(params, src0, dst);
  6279. } break;
  6280. case GGML_TYPE_F32:
  6281. {
  6282. ggml_compute_forward_dup_f32(params, src0, dst);
  6283. } break;
  6284. default:
  6285. {
  6286. GGML_ASSERT(false);
  6287. } break;
  6288. }
  6289. }
  6290. // ggml_compute_forward_add
  6291. static void ggml_compute_forward_add_f32(
  6292. const struct ggml_compute_params * params,
  6293. const struct ggml_tensor * src0,
  6294. const struct ggml_tensor * src1,
  6295. struct ggml_tensor * dst) {
  6296. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6298. return;
  6299. }
  6300. const int ith = params->ith;
  6301. const int nth = params->nth;
  6302. const int nr = ggml_nrows(src0);
  6303. const int64_t ne0 = src0->ne[0];
  6304. const int64_t ne1 = src0->ne[1];
  6305. const int64_t ne2 = src0->ne[2];
  6306. const size_t nb00 = src0->nb[0];
  6307. const size_t nb01 = src0->nb[1];
  6308. const size_t nb02 = src0->nb[2];
  6309. const size_t nb03 = src0->nb[3];
  6310. const size_t nb10 = src1->nb[0];
  6311. const size_t nb11 = src1->nb[1];
  6312. const size_t nb12 = src1->nb[2];
  6313. const size_t nb13 = src1->nb[3];
  6314. const size_t nb0 = dst->nb[0];
  6315. const size_t nb1 = dst->nb[1];
  6316. const size_t nb2 = dst->nb[2];
  6317. const size_t nb3 = dst->nb[3];
  6318. GGML_ASSERT( nb0 == sizeof(float));
  6319. GGML_ASSERT(nb00 == sizeof(float));
  6320. // rows per thread
  6321. const int dr = (nr + nth - 1)/nth;
  6322. // row range for this thread
  6323. const int ir0 = dr*ith;
  6324. const int ir1 = MIN(ir0 + dr, nr);
  6325. if (nb10 == sizeof(float)) {
  6326. for (int ir = ir0; ir < ir1; ++ir) {
  6327. // src0, src1 and dst are same shape => same indices
  6328. const int i3 = ir/(ne2*ne1);
  6329. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6330. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6331. #ifdef GGML_USE_ACCELERATE
  6332. vDSP_vadd(
  6333. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6334. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6335. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6336. ne0);
  6337. #else
  6338. ggml_vec_add_f32(ne0,
  6339. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6340. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6341. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6342. #endif
  6343. // }
  6344. // }
  6345. }
  6346. } else {
  6347. // src1 is not contiguous
  6348. for (int ir = ir0; ir < ir1; ++ir) {
  6349. // src0, src1 and dst are same shape => same indices
  6350. const int i3 = ir/(ne2*ne1);
  6351. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6352. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6353. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6354. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6355. for (int i0 = 0; i0 < ne0; i0++) {
  6356. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6357. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6358. }
  6359. }
  6360. }
  6361. }
  6362. static void ggml_compute_forward_add_f16_f32(
  6363. const struct ggml_compute_params * params,
  6364. const struct ggml_tensor * src0,
  6365. const struct ggml_tensor * src1,
  6366. struct ggml_tensor * dst) {
  6367. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6369. return;
  6370. }
  6371. const int ith = params->ith;
  6372. const int nth = params->nth;
  6373. const int nr = ggml_nrows(src0);
  6374. const int64_t ne0 = src0->ne[0];
  6375. const int64_t ne1 = src0->ne[1];
  6376. const int64_t ne2 = src0->ne[2];
  6377. const size_t nb00 = src0->nb[0];
  6378. const size_t nb01 = src0->nb[1];
  6379. const size_t nb02 = src0->nb[2];
  6380. const size_t nb03 = src0->nb[3];
  6381. const size_t nb10 = src1->nb[0];
  6382. const size_t nb11 = src1->nb[1];
  6383. const size_t nb12 = src1->nb[2];
  6384. const size_t nb13 = src1->nb[3];
  6385. const size_t nb0 = dst->nb[0];
  6386. const size_t nb1 = dst->nb[1];
  6387. const size_t nb2 = dst->nb[2];
  6388. const size_t nb3 = dst->nb[3];
  6389. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6390. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6391. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6392. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6393. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6394. // rows per thread
  6395. const int dr = (nr + nth - 1)/nth;
  6396. // row range for this thread
  6397. const int ir0 = dr*ith;
  6398. const int ir1 = MIN(ir0 + dr, nr);
  6399. if (nb10 == sizeof(float)) {
  6400. for (int ir = ir0; ir < ir1; ++ir) {
  6401. // src0, src1 and dst are same shape => same indices
  6402. const int i3 = ir/(ne2*ne1);
  6403. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6404. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6405. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6406. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6407. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6408. for (int i = 0; i < ne0; i++) {
  6409. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6410. }
  6411. }
  6412. }
  6413. else {
  6414. // src1 is not contiguous
  6415. GGML_ASSERT(false);
  6416. }
  6417. }
  6418. static void ggml_compute_forward_add_f16_f16(
  6419. const struct ggml_compute_params * params,
  6420. const struct ggml_tensor * src0,
  6421. const struct ggml_tensor * src1,
  6422. struct ggml_tensor * dst) {
  6423. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6425. return;
  6426. }
  6427. const int ith = params->ith;
  6428. const int nth = params->nth;
  6429. const int nr = ggml_nrows(src0);
  6430. const int64_t ne0 = src0->ne[0];
  6431. const int64_t ne1 = src0->ne[1];
  6432. const int64_t ne2 = src0->ne[2];
  6433. const size_t nb00 = src0->nb[0];
  6434. const size_t nb01 = src0->nb[1];
  6435. const size_t nb02 = src0->nb[2];
  6436. const size_t nb03 = src0->nb[3];
  6437. const size_t nb10 = src1->nb[0];
  6438. const size_t nb11 = src1->nb[1];
  6439. const size_t nb12 = src1->nb[2];
  6440. const size_t nb13 = src1->nb[3];
  6441. const size_t nb0 = dst->nb[0];
  6442. const size_t nb1 = dst->nb[1];
  6443. const size_t nb2 = dst->nb[2];
  6444. const size_t nb3 = dst->nb[3];
  6445. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6446. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6447. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6448. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6449. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6450. // rows per thread
  6451. const int dr = (nr + nth - 1)/nth;
  6452. // row range for this thread
  6453. const int ir0 = dr*ith;
  6454. const int ir1 = MIN(ir0 + dr, nr);
  6455. if (nb10 == sizeof(ggml_fp16_t)) {
  6456. for (int ir = ir0; ir < ir1; ++ir) {
  6457. // src0, src1 and dst are same shape => same indices
  6458. const int i3 = ir/(ne2*ne1);
  6459. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6460. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6461. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6462. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6463. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6464. for (int i = 0; i < ne0; i++) {
  6465. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6466. }
  6467. }
  6468. }
  6469. else {
  6470. // src1 is not contiguous
  6471. GGML_ASSERT(false);
  6472. }
  6473. }
  6474. static void ggml_compute_forward_add_q_f32(
  6475. const struct ggml_compute_params * params,
  6476. const struct ggml_tensor * src0,
  6477. const struct ggml_tensor * src1,
  6478. struct ggml_tensor * dst) {
  6479. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6481. return;
  6482. }
  6483. const int nr = ggml_nrows(src0);
  6484. const int64_t ne00 = src0->ne[0];
  6485. const int64_t ne01 = src0->ne[1];
  6486. const int64_t ne02 = src0->ne[2];
  6487. //const int64_t ne03 = src0->ne[3];
  6488. const size_t nb00 = src0->nb[0];
  6489. const size_t nb01 = src0->nb[1];
  6490. const size_t nb02 = src0->nb[2];
  6491. const size_t nb03 = src0->nb[3];
  6492. const size_t nb10 = src1->nb[0];
  6493. const size_t nb11 = src1->nb[1];
  6494. const size_t nb12 = src1->nb[2];
  6495. const size_t nb13 = src1->nb[3];
  6496. const size_t nb0 = dst->nb[0];
  6497. const size_t nb1 = dst->nb[1];
  6498. const size_t nb2 = dst->nb[2];
  6499. const size_t nb3 = dst->nb[3];
  6500. const int ith = params->ith;
  6501. const int nth = params->nth;
  6502. const enum ggml_type type = src0->type;
  6503. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6504. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6505. // we don't support permuted src0 or src1
  6506. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6507. GGML_ASSERT(nb10 == sizeof(float));
  6508. // dst cannot be transposed or permuted
  6509. GGML_ASSERT(nb0 <= nb1);
  6510. GGML_ASSERT(nb1 <= nb2);
  6511. GGML_ASSERT(nb2 <= nb3);
  6512. GGML_ASSERT(ggml_is_quantized(src0->type));
  6513. GGML_ASSERT(dst->type == src0->type);
  6514. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6515. // rows per thread
  6516. const int dr = (nr + nth - 1)/nth;
  6517. // row range for this thread
  6518. const int ir0 = dr*ith;
  6519. const int ir1 = MIN(ir0 + dr, nr);
  6520. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6521. for (int ir = ir0; ir < ir1; ++ir) {
  6522. // src0 indices
  6523. const int i03 = ir/(ne02*ne01);
  6524. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6525. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6526. // src1 and dst are same shape as src0 => same indices
  6527. const int i13 = i03;
  6528. const int i12 = i02;
  6529. const int i11 = i01;
  6530. const int i3 = i03;
  6531. const int i2 = i02;
  6532. const int i1 = i01;
  6533. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6534. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6535. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6536. assert(ne00 % 32 == 0);
  6537. // unquantize row from src0 to temp buffer
  6538. dequantize_row_q(src0_row, wdata, ne00);
  6539. // add src1
  6540. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6541. // quantize row to dst
  6542. quantize_row_q(wdata, dst_row, ne00);
  6543. }
  6544. }
  6545. static void ggml_compute_forward_add(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. const struct ggml_tensor * src1,
  6549. struct ggml_tensor * dst) {
  6550. switch (src0->type) {
  6551. case GGML_TYPE_F32:
  6552. {
  6553. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6554. } break;
  6555. case GGML_TYPE_F16:
  6556. {
  6557. if (src1->type == GGML_TYPE_F16) {
  6558. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6559. }
  6560. else if (src1->type == GGML_TYPE_F32) {
  6561. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6562. }
  6563. else {
  6564. GGML_ASSERT(false);
  6565. }
  6566. } break;
  6567. case GGML_TYPE_Q4_0:
  6568. case GGML_TYPE_Q4_1:
  6569. case GGML_TYPE_Q5_0:
  6570. case GGML_TYPE_Q5_1:
  6571. case GGML_TYPE_Q8_0:
  6572. case GGML_TYPE_Q2_K:
  6573. case GGML_TYPE_Q3_K:
  6574. case GGML_TYPE_Q4_K:
  6575. case GGML_TYPE_Q5_K:
  6576. case GGML_TYPE_Q6_K:
  6577. {
  6578. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6579. } break;
  6580. default:
  6581. {
  6582. GGML_ASSERT(false);
  6583. } break;
  6584. }
  6585. }
  6586. // ggml_compute_forward_add1
  6587. static void ggml_compute_forward_add1_f32(
  6588. const struct ggml_compute_params * params,
  6589. const struct ggml_tensor * src0,
  6590. const struct ggml_tensor * src1,
  6591. struct ggml_tensor * dst) {
  6592. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6593. GGML_ASSERT(ggml_is_scalar(src1));
  6594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6595. return;
  6596. }
  6597. const int ith = params->ith;
  6598. const int nth = params->nth;
  6599. const int nr = ggml_nrows(src0);
  6600. const int64_t ne0 = src0->ne[0];
  6601. const int64_t ne1 = src0->ne[1];
  6602. const int64_t ne2 = src0->ne[2];
  6603. const size_t nb00 = src0->nb[0];
  6604. const size_t nb01 = src0->nb[1];
  6605. const size_t nb02 = src0->nb[2];
  6606. const size_t nb03 = src0->nb[3];
  6607. const size_t nb0 = dst->nb[0];
  6608. const size_t nb1 = dst->nb[1];
  6609. const size_t nb2 = dst->nb[2];
  6610. const size_t nb3 = dst->nb[3];
  6611. GGML_ASSERT( nb0 == sizeof(float));
  6612. GGML_ASSERT(nb00 == sizeof(float));
  6613. // rows per thread
  6614. const int dr = (nr + nth - 1)/nth;
  6615. // row range for this thread
  6616. const int ir0 = dr*ith;
  6617. const int ir1 = MIN(ir0 + dr, nr);
  6618. for (int ir = ir0; ir < ir1; ++ir) {
  6619. // src0 and dst are same shape => same indices
  6620. const int i3 = ir/(ne2*ne1);
  6621. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6622. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6623. #ifdef GGML_USE_ACCELERATE
  6624. UNUSED(ggml_vec_add1_f32);
  6625. vDSP_vadd(
  6626. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6627. (float *) ((char *) src1->data), 0,
  6628. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6629. ne0);
  6630. #else
  6631. ggml_vec_add1_f32(ne0,
  6632. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6633. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6634. *(float *) src1->data);
  6635. #endif
  6636. }
  6637. }
  6638. static void ggml_compute_forward_add1_f16_f32(
  6639. const struct ggml_compute_params * params,
  6640. const struct ggml_tensor * src0,
  6641. const struct ggml_tensor * src1,
  6642. struct ggml_tensor * dst) {
  6643. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6644. GGML_ASSERT(ggml_is_scalar(src1));
  6645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6646. return;
  6647. }
  6648. // scalar to add
  6649. const float v = *(float *) src1->data;
  6650. const int ith = params->ith;
  6651. const int nth = params->nth;
  6652. const int nr = ggml_nrows(src0);
  6653. const int64_t ne0 = src0->ne[0];
  6654. const int64_t ne1 = src0->ne[1];
  6655. const int64_t ne2 = src0->ne[2];
  6656. const size_t nb00 = src0->nb[0];
  6657. const size_t nb01 = src0->nb[1];
  6658. const size_t nb02 = src0->nb[2];
  6659. const size_t nb03 = src0->nb[3];
  6660. const size_t nb0 = dst->nb[0];
  6661. const size_t nb1 = dst->nb[1];
  6662. const size_t nb2 = dst->nb[2];
  6663. const size_t nb3 = dst->nb[3];
  6664. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6665. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6666. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6667. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6668. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6669. // rows per thread
  6670. const int dr = (nr + nth - 1)/nth;
  6671. // row range for this thread
  6672. const int ir0 = dr*ith;
  6673. const int ir1 = MIN(ir0 + dr, nr);
  6674. for (int ir = ir0; ir < ir1; ++ir) {
  6675. // src0 and dst are same shape => same indices
  6676. const int i3 = ir/(ne2*ne1);
  6677. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6678. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6679. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6680. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6681. for (int i = 0; i < ne0; i++) {
  6682. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6683. }
  6684. }
  6685. }
  6686. static void ggml_compute_forward_add1_f16_f16(
  6687. const struct ggml_compute_params * params,
  6688. const struct ggml_tensor * src0,
  6689. const struct ggml_tensor * src1,
  6690. struct ggml_tensor * dst) {
  6691. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6692. GGML_ASSERT(ggml_is_scalar(src1));
  6693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6694. return;
  6695. }
  6696. // scalar to add
  6697. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6698. const int ith = params->ith;
  6699. const int nth = params->nth;
  6700. const int nr = ggml_nrows(src0);
  6701. const int64_t ne0 = src0->ne[0];
  6702. const int64_t ne1 = src0->ne[1];
  6703. const int64_t ne2 = src0->ne[2];
  6704. const size_t nb00 = src0->nb[0];
  6705. const size_t nb01 = src0->nb[1];
  6706. const size_t nb02 = src0->nb[2];
  6707. const size_t nb03 = src0->nb[3];
  6708. const size_t nb0 = dst->nb[0];
  6709. const size_t nb1 = dst->nb[1];
  6710. const size_t nb2 = dst->nb[2];
  6711. const size_t nb3 = dst->nb[3];
  6712. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6713. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6714. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6715. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6716. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6717. // rows per thread
  6718. const int dr = (nr + nth - 1)/nth;
  6719. // row range for this thread
  6720. const int ir0 = dr*ith;
  6721. const int ir1 = MIN(ir0 + dr, nr);
  6722. for (int ir = ir0; ir < ir1; ++ir) {
  6723. // src0 and dst are same shape => same indices
  6724. const int i3 = ir/(ne2*ne1);
  6725. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6726. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6727. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6728. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6729. for (int i = 0; i < ne0; i++) {
  6730. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6731. }
  6732. }
  6733. }
  6734. static void ggml_compute_forward_add1_q_f32(
  6735. const struct ggml_compute_params * params,
  6736. const struct ggml_tensor * src0,
  6737. const struct ggml_tensor * src1,
  6738. struct ggml_tensor * dst) {
  6739. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6740. GGML_ASSERT(ggml_is_scalar(src1));
  6741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6742. return;
  6743. }
  6744. // scalar to add
  6745. const float v = *(float *) src1->data;
  6746. const int ith = params->ith;
  6747. const int nth = params->nth;
  6748. const int nr = ggml_nrows(src0);
  6749. const int64_t ne0 = src0->ne[0];
  6750. const int64_t ne1 = src0->ne[1];
  6751. const int64_t ne2 = src0->ne[2];
  6752. const size_t nb00 = src0->nb[0];
  6753. const size_t nb01 = src0->nb[1];
  6754. const size_t nb02 = src0->nb[2];
  6755. const size_t nb03 = src0->nb[3];
  6756. const size_t nb0 = dst->nb[0];
  6757. const size_t nb1 = dst->nb[1];
  6758. const size_t nb2 = dst->nb[2];
  6759. const size_t nb3 = dst->nb[3];
  6760. const enum ggml_type type = src0->type;
  6761. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6762. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6763. // we don't support permuted src0
  6764. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6765. // dst cannot be transposed or permuted
  6766. GGML_ASSERT(nb0 <= nb1);
  6767. GGML_ASSERT(nb1 <= nb2);
  6768. GGML_ASSERT(nb2 <= nb3);
  6769. GGML_ASSERT(ggml_is_quantized(src0->type));
  6770. GGML_ASSERT(dst->type == src0->type);
  6771. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6772. // rows per thread
  6773. const int dr = (nr + nth - 1)/nth;
  6774. // row range for this thread
  6775. const int ir0 = dr*ith;
  6776. const int ir1 = MIN(ir0 + dr, nr);
  6777. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6778. for (int ir = ir0; ir < ir1; ++ir) {
  6779. // src0 and dst are same shape => same indices
  6780. const int i3 = ir/(ne2*ne1);
  6781. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6782. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6783. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6784. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6785. assert(ne0 % 32 == 0);
  6786. // unquantize row from src0 to temp buffer
  6787. dequantize_row_q(src0_row, wdata, ne0);
  6788. // add src1
  6789. ggml_vec_acc1_f32(ne0, wdata, v);
  6790. // quantize row to dst
  6791. quantize_row_q(wdata, dst_row, ne0);
  6792. }
  6793. }
  6794. static void ggml_compute_forward_add1(
  6795. const struct ggml_compute_params * params,
  6796. const struct ggml_tensor * src0,
  6797. const struct ggml_tensor * src1,
  6798. struct ggml_tensor * dst) {
  6799. switch (src0->type) {
  6800. case GGML_TYPE_F32:
  6801. {
  6802. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6803. } break;
  6804. case GGML_TYPE_F16:
  6805. {
  6806. if (src1->type == GGML_TYPE_F16) {
  6807. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6808. }
  6809. else if (src1->type == GGML_TYPE_F32) {
  6810. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6811. }
  6812. else {
  6813. GGML_ASSERT(false);
  6814. }
  6815. } break;
  6816. case GGML_TYPE_Q4_0:
  6817. case GGML_TYPE_Q4_1:
  6818. case GGML_TYPE_Q5_0:
  6819. case GGML_TYPE_Q5_1:
  6820. case GGML_TYPE_Q8_0:
  6821. case GGML_TYPE_Q8_1:
  6822. case GGML_TYPE_Q2_K:
  6823. case GGML_TYPE_Q3_K:
  6824. case GGML_TYPE_Q4_K:
  6825. case GGML_TYPE_Q5_K:
  6826. case GGML_TYPE_Q6_K:
  6827. {
  6828. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6829. } break;
  6830. default:
  6831. {
  6832. GGML_ASSERT(false);
  6833. } break;
  6834. }
  6835. }
  6836. // ggml_compute_forward_acc
  6837. static void ggml_compute_forward_acc_f32(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. const struct ggml_tensor * src1,
  6841. const struct ggml_tensor * opt0,
  6842. struct ggml_tensor * dst) {
  6843. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6844. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6845. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6846. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6847. // view src0 and dst with these strides and data offset inbytes during acc
  6848. // nb0 is implicitely element_size because src0 and dst are contiguous
  6849. size_t nb1 = ((int32_t *) opt0->data)[0];
  6850. size_t nb2 = ((int32_t *) opt0->data)[1];
  6851. size_t nb3 = ((int32_t *) opt0->data)[2];
  6852. size_t offset = ((int32_t *) opt0->data)[3];
  6853. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6854. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6855. // memcpy needs to be synchronized across threads to avoid race conditions.
  6856. // => do it in INIT phase
  6857. memcpy(
  6858. ((char *) dst->data),
  6859. ((char *) src0->data),
  6860. ggml_nbytes(dst));
  6861. }
  6862. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6863. return;
  6864. }
  6865. const int ith = params->ith;
  6866. const int nth = params->nth;
  6867. const int nr = ggml_nrows(src1);
  6868. const int nc = src1->ne[0];
  6869. const int64_t ne10 = src1->ne[0];
  6870. const int64_t ne11 = src1->ne[1];
  6871. const int64_t ne12 = src1->ne[2];
  6872. const int64_t ne13 = src1->ne[3];
  6873. const size_t nb10 = src1->nb[0];
  6874. const size_t nb11 = src1->nb[1];
  6875. const size_t nb12 = src1->nb[2];
  6876. const size_t nb13 = src1->nb[3];
  6877. // src0 and dst as viewed during acc
  6878. const size_t nb0 = ggml_element_size(src0);
  6879. const size_t nb00 = nb0;
  6880. const size_t nb01 = nb1;
  6881. const size_t nb02 = nb2;
  6882. const size_t nb03 = nb3;
  6883. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6884. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6885. GGML_ASSERT(nb10 == sizeof(float));
  6886. // rows per thread
  6887. const int dr = (nr + nth - 1)/nth;
  6888. // row range for this thread
  6889. const int ir0 = dr*ith;
  6890. const int ir1 = MIN(ir0 + dr, nr);
  6891. for (int ir = ir0; ir < ir1; ++ir) {
  6892. // src0 and dst are viewed with shape of src1 and offset
  6893. // => same indices
  6894. const int i3 = ir/(ne12*ne11);
  6895. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6896. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6897. #ifdef GGML_USE_ACCELERATE
  6898. vDSP_vadd(
  6899. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6900. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6901. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6902. #else
  6903. ggml_vec_add_f32(nc,
  6904. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6905. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6906. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6907. #endif
  6908. }
  6909. }
  6910. static void ggml_compute_forward_acc(
  6911. const struct ggml_compute_params * params,
  6912. const struct ggml_tensor * src0,
  6913. const struct ggml_tensor * src1,
  6914. const struct ggml_tensor * opt0,
  6915. struct ggml_tensor * dst) {
  6916. switch (src0->type) {
  6917. case GGML_TYPE_F32:
  6918. {
  6919. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6920. } break;
  6921. case GGML_TYPE_F16:
  6922. case GGML_TYPE_Q4_0:
  6923. case GGML_TYPE_Q4_1:
  6924. case GGML_TYPE_Q5_0:
  6925. case GGML_TYPE_Q5_1:
  6926. case GGML_TYPE_Q8_0:
  6927. case GGML_TYPE_Q8_1:
  6928. case GGML_TYPE_Q2_K:
  6929. case GGML_TYPE_Q3_K:
  6930. case GGML_TYPE_Q4_K:
  6931. case GGML_TYPE_Q5_K:
  6932. case GGML_TYPE_Q6_K:
  6933. default:
  6934. {
  6935. GGML_ASSERT(false);
  6936. } break;
  6937. }
  6938. }
  6939. // ggml_compute_forward_sub
  6940. static void ggml_compute_forward_sub_f32(
  6941. const struct ggml_compute_params * params,
  6942. const struct ggml_tensor * src0,
  6943. const struct ggml_tensor * src1,
  6944. struct ggml_tensor * dst) {
  6945. assert(params->ith == 0);
  6946. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6948. return;
  6949. }
  6950. const int nr = ggml_nrows(src0);
  6951. const int64_t ne0 = src0->ne[0];
  6952. const int64_t ne1 = src0->ne[1];
  6953. const int64_t ne2 = src0->ne[2];
  6954. const size_t nb00 = src0->nb[0];
  6955. const size_t nb01 = src0->nb[1];
  6956. const size_t nb02 = src0->nb[2];
  6957. const size_t nb03 = src0->nb[3];
  6958. const size_t nb10 = src1->nb[0];
  6959. const size_t nb11 = src1->nb[1];
  6960. const size_t nb12 = src1->nb[2];
  6961. const size_t nb13 = src1->nb[3];
  6962. const size_t nb0 = dst->nb[0];
  6963. const size_t nb1 = dst->nb[1];
  6964. const size_t nb2 = dst->nb[2];
  6965. const size_t nb3 = dst->nb[3];
  6966. GGML_ASSERT( nb0 == sizeof(float));
  6967. GGML_ASSERT(nb00 == sizeof(float));
  6968. if (nb10 == sizeof(float)) {
  6969. for (int ir = 0; ir < nr; ++ir) {
  6970. // src0, src1 and dst are same shape => same indices
  6971. const int i3 = ir/(ne2*ne1);
  6972. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6973. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6974. #ifdef GGML_USE_ACCELERATE
  6975. vDSP_vsub(
  6976. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6977. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6978. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6979. ne0);
  6980. #else
  6981. ggml_vec_sub_f32(ne0,
  6982. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6983. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6984. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6985. #endif
  6986. // }
  6987. // }
  6988. }
  6989. } else {
  6990. // src1 is not contiguous
  6991. for (int ir = 0; ir < nr; ++ir) {
  6992. // src0, src1 and dst are same shape => same indices
  6993. const int i3 = ir/(ne2*ne1);
  6994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6996. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6997. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6998. for (int i0 = 0; i0 < ne0; i0++) {
  6999. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7000. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7001. }
  7002. }
  7003. }
  7004. }
  7005. static void ggml_compute_forward_sub(
  7006. const struct ggml_compute_params * params,
  7007. const struct ggml_tensor * src0,
  7008. const struct ggml_tensor * src1,
  7009. struct ggml_tensor * dst) {
  7010. switch (src0->type) {
  7011. case GGML_TYPE_F32:
  7012. {
  7013. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7014. } break;
  7015. default:
  7016. {
  7017. GGML_ASSERT(false);
  7018. } break;
  7019. }
  7020. }
  7021. // ggml_compute_forward_mul
  7022. static void ggml_compute_forward_mul_f32(
  7023. const struct ggml_compute_params * params,
  7024. const struct ggml_tensor * src0,
  7025. const struct ggml_tensor * src1,
  7026. struct ggml_tensor * dst) {
  7027. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7029. return;
  7030. }
  7031. const int ith = params->ith;
  7032. const int nth = params->nth;
  7033. #ifdef GGML_USE_CLBLAST
  7034. if (src1->backend == GGML_BACKEND_GPU) {
  7035. if (ith == 0) {
  7036. ggml_cl_mul(src0, src1, dst);
  7037. }
  7038. return;
  7039. }
  7040. #endif
  7041. const int64_t nr = ggml_nrows(src0);
  7042. const int64_t ne00 = src0->ne[0];
  7043. const int64_t ne01 = src0->ne[1];
  7044. const int64_t ne02 = src0->ne[2];
  7045. const int64_t ne10 = src1->ne[0];
  7046. const int64_t ne11 = src1->ne[1];
  7047. const int64_t ne12 = src1->ne[2];
  7048. const int64_t ne13 = src1->ne[3];
  7049. const size_t nb00 = src0->nb[0];
  7050. const size_t nb01 = src0->nb[1];
  7051. const size_t nb02 = src0->nb[2];
  7052. const size_t nb03 = src0->nb[3];
  7053. const size_t nb10 = src1->nb[0];
  7054. const size_t nb11 = src1->nb[1];
  7055. const size_t nb12 = src1->nb[2];
  7056. const size_t nb13 = src1->nb[3];
  7057. const size_t nb0 = dst->nb[0];
  7058. const size_t nb1 = dst->nb[1];
  7059. const size_t nb2 = dst->nb[2];
  7060. const size_t nb3 = dst->nb[3];
  7061. GGML_ASSERT( nb0 == sizeof(float));
  7062. GGML_ASSERT(nb00 == sizeof(float));
  7063. GGML_ASSERT(ne00 == ne10);
  7064. if (nb10 == sizeof(float)) {
  7065. for (int64_t ir = ith; ir < nr; ir += nth) {
  7066. // src0 and dst are same shape => same indices
  7067. const int64_t i03 = ir/(ne02*ne01);
  7068. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7069. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7070. const int64_t i13 = i03 % ne13;
  7071. const int64_t i12 = i02 % ne12;
  7072. const int64_t i11 = i01 % ne11;
  7073. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7074. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7075. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7076. #ifdef GGML_USE_ACCELERATE
  7077. UNUSED(ggml_vec_mul_f32);
  7078. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7079. #else
  7080. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7081. #endif
  7082. // }
  7083. // }
  7084. }
  7085. } else {
  7086. // src1 is not contiguous
  7087. for (int64_t ir = ith; ir < nr; ir += nth) {
  7088. // src0 and dst are same shape => same indices
  7089. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7090. const int64_t i03 = ir/(ne02*ne01);
  7091. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7092. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7093. const int64_t i13 = i03 % ne13;
  7094. const int64_t i12 = i02 % ne12;
  7095. const int64_t i11 = i01 % ne11;
  7096. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7097. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7098. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7099. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7100. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7101. }
  7102. }
  7103. }
  7104. }
  7105. static void ggml_compute_forward_mul(
  7106. const struct ggml_compute_params * params,
  7107. const struct ggml_tensor * src0,
  7108. const struct ggml_tensor * src1,
  7109. struct ggml_tensor * dst) {
  7110. switch (src0->type) {
  7111. case GGML_TYPE_F32:
  7112. {
  7113. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7114. } break;
  7115. default:
  7116. {
  7117. GGML_ASSERT(false);
  7118. } break;
  7119. }
  7120. }
  7121. // ggml_compute_forward_div
  7122. static void ggml_compute_forward_div_f32(
  7123. const struct ggml_compute_params * params,
  7124. const struct ggml_tensor * src0,
  7125. const struct ggml_tensor * src1,
  7126. struct ggml_tensor * dst) {
  7127. assert(params->ith == 0);
  7128. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7130. return;
  7131. }
  7132. const int nr = ggml_nrows(src0);
  7133. const int64_t ne0 = src0->ne[0];
  7134. const int64_t ne1 = src0->ne[1];
  7135. const int64_t ne2 = src0->ne[2];
  7136. const size_t nb00 = src0->nb[0];
  7137. const size_t nb01 = src0->nb[1];
  7138. const size_t nb02 = src0->nb[2];
  7139. const size_t nb03 = src0->nb[3];
  7140. const size_t nb10 = src1->nb[0];
  7141. const size_t nb11 = src1->nb[1];
  7142. const size_t nb12 = src1->nb[2];
  7143. const size_t nb13 = src1->nb[3];
  7144. const size_t nb0 = dst->nb[0];
  7145. const size_t nb1 = dst->nb[1];
  7146. const size_t nb2 = dst->nb[2];
  7147. const size_t nb3 = dst->nb[3];
  7148. GGML_ASSERT( nb0 == sizeof(float));
  7149. GGML_ASSERT(nb00 == sizeof(float));
  7150. if (nb10 == sizeof(float)) {
  7151. for (int ir = 0; ir < nr; ++ir) {
  7152. // src0, src1 and dst are same shape => same indices
  7153. const int i3 = ir/(ne2*ne1);
  7154. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7155. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7156. #ifdef GGML_USE_ACCELERATE
  7157. vDSP_vdiv(
  7158. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7159. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7160. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7161. ne0);
  7162. #else
  7163. ggml_vec_div_f32(ne0,
  7164. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7165. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7166. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7167. #endif
  7168. // }
  7169. // }
  7170. }
  7171. } else {
  7172. // src1 is not contiguous
  7173. for (int ir = 0; ir < nr; ++ir) {
  7174. // src0, src1 and dst are same shape => same indices
  7175. const int i3 = ir/(ne2*ne1);
  7176. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7177. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7178. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7179. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7180. for (int i0 = 0; i0 < ne0; i0++) {
  7181. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7182. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7183. }
  7184. }
  7185. }
  7186. }
  7187. static void ggml_compute_forward_div(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0,
  7190. const struct ggml_tensor * src1,
  7191. struct ggml_tensor * dst) {
  7192. switch (src0->type) {
  7193. case GGML_TYPE_F32:
  7194. {
  7195. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7196. } break;
  7197. default:
  7198. {
  7199. GGML_ASSERT(false);
  7200. } break;
  7201. }
  7202. }
  7203. // ggml_compute_forward_sqr
  7204. static void ggml_compute_forward_sqr_f32(
  7205. const struct ggml_compute_params * params,
  7206. const struct ggml_tensor * src0,
  7207. struct ggml_tensor * dst) {
  7208. assert(params->ith == 0);
  7209. assert(ggml_are_same_shape(src0, dst));
  7210. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7211. return;
  7212. }
  7213. const int n = ggml_nrows(src0);
  7214. const int nc = src0->ne[0];
  7215. assert( dst->nb[0] == sizeof(float));
  7216. assert(src0->nb[0] == sizeof(float));
  7217. for (int i = 0; i < n; i++) {
  7218. ggml_vec_sqr_f32(nc,
  7219. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7220. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7221. }
  7222. }
  7223. static void ggml_compute_forward_sqr(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. struct ggml_tensor * dst) {
  7227. switch (src0->type) {
  7228. case GGML_TYPE_F32:
  7229. {
  7230. ggml_compute_forward_sqr_f32(params, src0, dst);
  7231. } break;
  7232. default:
  7233. {
  7234. GGML_ASSERT(false);
  7235. } break;
  7236. }
  7237. }
  7238. // ggml_compute_forward_sqrt
  7239. static void ggml_compute_forward_sqrt_f32(
  7240. const struct ggml_compute_params * params,
  7241. const struct ggml_tensor * src0,
  7242. struct ggml_tensor * dst) {
  7243. assert(params->ith == 0);
  7244. assert(ggml_are_same_shape(src0, dst));
  7245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7246. return;
  7247. }
  7248. const int n = ggml_nrows(src0);
  7249. const int nc = src0->ne[0];
  7250. assert( dst->nb[0] == sizeof(float));
  7251. assert(src0->nb[0] == sizeof(float));
  7252. for (int i = 0; i < n; i++) {
  7253. ggml_vec_sqrt_f32(nc,
  7254. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7255. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7256. }
  7257. }
  7258. static void ggml_compute_forward_sqrt(
  7259. const struct ggml_compute_params * params,
  7260. const struct ggml_tensor * src0,
  7261. struct ggml_tensor * dst) {
  7262. switch (src0->type) {
  7263. case GGML_TYPE_F32:
  7264. {
  7265. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7266. } break;
  7267. default:
  7268. {
  7269. GGML_ASSERT(false);
  7270. } break;
  7271. }
  7272. }
  7273. // ggml_compute_forward_log
  7274. static void ggml_compute_forward_log_f32(
  7275. const struct ggml_compute_params * params,
  7276. const struct ggml_tensor * src0,
  7277. struct ggml_tensor * dst) {
  7278. GGML_ASSERT(params->ith == 0);
  7279. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7281. return;
  7282. }
  7283. const int n = ggml_nrows(src0);
  7284. const int nc = src0->ne[0];
  7285. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7286. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7287. for (int i = 0; i < n; i++) {
  7288. ggml_vec_log_f32(nc,
  7289. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7290. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7291. }
  7292. }
  7293. static void ggml_compute_forward_log(
  7294. const struct ggml_compute_params * params,
  7295. const struct ggml_tensor * src0,
  7296. struct ggml_tensor * dst) {
  7297. switch (src0->type) {
  7298. case GGML_TYPE_F32:
  7299. {
  7300. ggml_compute_forward_log_f32(params, src0, dst);
  7301. } break;
  7302. default:
  7303. {
  7304. GGML_ASSERT(false);
  7305. } break;
  7306. }
  7307. }
  7308. // ggml_compute_forward_sum
  7309. static void ggml_compute_forward_sum_f32(
  7310. const struct ggml_compute_params * params,
  7311. const struct ggml_tensor * src0,
  7312. struct ggml_tensor * dst) {
  7313. assert(params->ith == 0);
  7314. assert(ggml_is_scalar(dst));
  7315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7316. return;
  7317. }
  7318. assert(ggml_is_scalar(dst));
  7319. assert(src0->nb[0] == sizeof(float));
  7320. const int64_t ne00 = src0->ne[0];
  7321. const int64_t ne01 = src0->ne[1];
  7322. const int64_t ne02 = src0->ne[2];
  7323. const int64_t ne03 = src0->ne[3];
  7324. const size_t nb01 = src0->nb[1];
  7325. const size_t nb02 = src0->nb[2];
  7326. const size_t nb03 = src0->nb[3];
  7327. ggml_float sum = 0;
  7328. ggml_float row_sum = 0;
  7329. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7331. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7332. ggml_vec_sum_ggf(ne00,
  7333. &row_sum,
  7334. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7335. sum += row_sum;
  7336. }
  7337. }
  7338. }
  7339. ((float *) dst->data)[0] = sum;
  7340. }
  7341. static void ggml_compute_forward_sum(
  7342. const struct ggml_compute_params * params,
  7343. const struct ggml_tensor * src0,
  7344. struct ggml_tensor * dst) {
  7345. switch (src0->type) {
  7346. case GGML_TYPE_F32:
  7347. {
  7348. ggml_compute_forward_sum_f32(params, src0, dst);
  7349. } break;
  7350. default:
  7351. {
  7352. GGML_ASSERT(false);
  7353. } break;
  7354. }
  7355. }
  7356. // ggml_compute_forward_sum_rows
  7357. static void ggml_compute_forward_sum_rows_f32(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. struct ggml_tensor * dst) {
  7361. GGML_ASSERT(params->ith == 0);
  7362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7363. return;
  7364. }
  7365. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7366. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7367. const int64_t ne00 = src0->ne[0];
  7368. const int64_t ne01 = src0->ne[1];
  7369. const int64_t ne02 = src0->ne[2];
  7370. const int64_t ne03 = src0->ne[3];
  7371. const int64_t ne0 = dst->ne[0];
  7372. const int64_t ne1 = dst->ne[1];
  7373. const int64_t ne2 = dst->ne[2];
  7374. const int64_t ne3 = dst->ne[3];
  7375. GGML_ASSERT(ne0 == 1);
  7376. GGML_ASSERT(ne1 == ne01);
  7377. GGML_ASSERT(ne2 == ne02);
  7378. GGML_ASSERT(ne3 == ne03);
  7379. const size_t nb01 = src0->nb[1];
  7380. const size_t nb02 = src0->nb[2];
  7381. const size_t nb03 = src0->nb[3];
  7382. const size_t nb1 = dst->nb[1];
  7383. const size_t nb2 = dst->nb[2];
  7384. const size_t nb3 = dst->nb[3];
  7385. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7386. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7387. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7388. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7389. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7390. float row_sum = 0;
  7391. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7392. dst_row[0] = row_sum;
  7393. }
  7394. }
  7395. }
  7396. }
  7397. static void ggml_compute_forward_sum_rows(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. struct ggml_tensor * dst) {
  7401. switch (src0->type) {
  7402. case GGML_TYPE_F32:
  7403. {
  7404. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7405. } break;
  7406. default:
  7407. {
  7408. GGML_ASSERT(false);
  7409. } break;
  7410. }
  7411. }
  7412. // ggml_compute_forward_mean
  7413. static void ggml_compute_forward_mean_f32(
  7414. const struct ggml_compute_params * params,
  7415. const struct ggml_tensor * src0,
  7416. struct ggml_tensor * dst) {
  7417. assert(params->ith == 0);
  7418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7419. return;
  7420. }
  7421. assert(src0->nb[0] == sizeof(float));
  7422. const int64_t ne00 = src0->ne[0];
  7423. const int64_t ne01 = src0->ne[1];
  7424. const int64_t ne02 = src0->ne[2];
  7425. const int64_t ne03 = src0->ne[3];
  7426. const size_t nb01 = src0->nb[1];
  7427. const size_t nb02 = src0->nb[2];
  7428. const size_t nb03 = src0->nb[3];
  7429. const int64_t ne0 = dst->ne[0];
  7430. const int64_t ne1 = dst->ne[1];
  7431. const int64_t ne2 = dst->ne[2];
  7432. const int64_t ne3 = dst->ne[3];
  7433. assert(ne0 == 1);
  7434. assert(ne1 == ne01);
  7435. assert(ne2 == ne02);
  7436. assert(ne3 == ne03);
  7437. UNUSED(ne0);
  7438. UNUSED(ne1);
  7439. UNUSED(ne2);
  7440. UNUSED(ne3);
  7441. const size_t nb1 = dst->nb[1];
  7442. const size_t nb2 = dst->nb[2];
  7443. const size_t nb3 = dst->nb[3];
  7444. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7445. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7446. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7447. ggml_vec_sum_f32(ne00,
  7448. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7449. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7450. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7451. }
  7452. }
  7453. }
  7454. }
  7455. static void ggml_compute_forward_mean(
  7456. const struct ggml_compute_params * params,
  7457. const struct ggml_tensor * src0,
  7458. struct ggml_tensor * dst) {
  7459. switch (src0->type) {
  7460. case GGML_TYPE_F32:
  7461. {
  7462. ggml_compute_forward_mean_f32(params, src0, dst);
  7463. } break;
  7464. default:
  7465. {
  7466. GGML_ASSERT(false);
  7467. } break;
  7468. }
  7469. }
  7470. // ggml_compute_forward_repeat
  7471. static void ggml_compute_forward_repeat_f32(
  7472. const struct ggml_compute_params * params,
  7473. const struct ggml_tensor * src0,
  7474. struct ggml_tensor * dst) {
  7475. GGML_ASSERT(params->ith == 0);
  7476. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7477. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7478. return;
  7479. }
  7480. const int64_t ne0 = dst->ne[0];
  7481. const int64_t ne1 = dst->ne[1];
  7482. const int64_t ne2 = dst->ne[2];
  7483. const int64_t ne3 = dst->ne[3];
  7484. const int64_t ne00 = src0->ne[0];
  7485. const int64_t ne01 = src0->ne[1];
  7486. const int64_t ne02 = src0->ne[2];
  7487. const int64_t ne03 = src0->ne[3];
  7488. const size_t nb0 = dst->nb[0];
  7489. const size_t nb1 = dst->nb[1];
  7490. const size_t nb2 = dst->nb[2];
  7491. const size_t nb3 = dst->nb[3];
  7492. const size_t nb00 = src0->nb[0];
  7493. const size_t nb01 = src0->nb[1];
  7494. const size_t nb02 = src0->nb[2];
  7495. const size_t nb03 = src0->nb[3];
  7496. // guaranteed to be an integer due to the check in ggml_can_repeat
  7497. const int nr0 = (int)(ne0/ne00);
  7498. const int nr1 = (int)(ne1/ne01);
  7499. const int nr2 = (int)(ne2/ne02);
  7500. const int nr3 = (int)(ne3/ne03);
  7501. // TODO: support for transposed / permuted tensors
  7502. GGML_ASSERT(nb0 == sizeof(float));
  7503. GGML_ASSERT(nb00 == sizeof(float));
  7504. // TODO: maybe this is not optimal?
  7505. for (int i3 = 0; i3 < nr3; i3++) {
  7506. for (int k3 = 0; k3 < ne03; k3++) {
  7507. for (int i2 = 0; i2 < nr2; i2++) {
  7508. for (int k2 = 0; k2 < ne02; k2++) {
  7509. for (int i1 = 0; i1 < nr1; i1++) {
  7510. for (int k1 = 0; k1 < ne01; k1++) {
  7511. for (int i0 = 0; i0 < nr0; i0++) {
  7512. ggml_vec_cpy_f32(ne00,
  7513. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7514. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7515. }
  7516. }
  7517. }
  7518. }
  7519. }
  7520. }
  7521. }
  7522. }
  7523. static void ggml_compute_forward_repeat(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. switch (src0->type) {
  7528. case GGML_TYPE_F32:
  7529. {
  7530. ggml_compute_forward_repeat_f32(params, src0, dst);
  7531. } break;
  7532. default:
  7533. {
  7534. GGML_ASSERT(false);
  7535. } break;
  7536. }
  7537. }
  7538. // ggml_compute_forward_repeat_back
  7539. static void ggml_compute_forward_repeat_back_f32(
  7540. const struct ggml_compute_params * params,
  7541. const struct ggml_tensor * src0,
  7542. struct ggml_tensor * dst) {
  7543. GGML_ASSERT(params->ith == 0);
  7544. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7546. return;
  7547. }
  7548. const int64_t ne0 = dst->ne[0];
  7549. const int64_t ne1 = dst->ne[1];
  7550. const int64_t ne2 = dst->ne[2];
  7551. const int64_t ne3 = dst->ne[3];
  7552. const int64_t ne00 = src0->ne[0];
  7553. const int64_t ne01 = src0->ne[1];
  7554. const int64_t ne02 = src0->ne[2];
  7555. const int64_t ne03 = src0->ne[3];
  7556. const size_t nb0 = dst->nb[0];
  7557. const size_t nb1 = dst->nb[1];
  7558. const size_t nb2 = dst->nb[2];
  7559. const size_t nb3 = dst->nb[3];
  7560. const size_t nb00 = src0->nb[0];
  7561. const size_t nb01 = src0->nb[1];
  7562. const size_t nb02 = src0->nb[2];
  7563. const size_t nb03 = src0->nb[3];
  7564. // guaranteed to be an integer due to the check in ggml_can_repeat
  7565. const int nr0 = (int)(ne00/ne0);
  7566. const int nr1 = (int)(ne01/ne1);
  7567. const int nr2 = (int)(ne02/ne2);
  7568. const int nr3 = (int)(ne03/ne3);
  7569. // TODO: support for transposed / permuted tensors
  7570. GGML_ASSERT(nb0 == sizeof(float));
  7571. GGML_ASSERT(nb00 == sizeof(float));
  7572. if (ggml_is_contiguous(dst)) {
  7573. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7574. } else {
  7575. for (int k3 = 0; k3 < ne3; k3++) {
  7576. for (int k2 = 0; k2 < ne2; k2++) {
  7577. for (int k1 = 0; k1 < ne1; k1++) {
  7578. ggml_vec_set_f32(ne0,
  7579. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7580. 0);
  7581. }
  7582. }
  7583. }
  7584. }
  7585. // TODO: maybe this is not optimal?
  7586. for (int i3 = 0; i3 < nr3; i3++) {
  7587. for (int k3 = 0; k3 < ne3; k3++) {
  7588. for (int i2 = 0; i2 < nr2; i2++) {
  7589. for (int k2 = 0; k2 < ne2; k2++) {
  7590. for (int i1 = 0; i1 < nr1; i1++) {
  7591. for (int k1 = 0; k1 < ne1; k1++) {
  7592. for (int i0 = 0; i0 < nr0; i0++) {
  7593. ggml_vec_acc_f32(ne0,
  7594. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7595. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7596. }
  7597. }
  7598. }
  7599. }
  7600. }
  7601. }
  7602. }
  7603. }
  7604. static void ggml_compute_forward_repeat_back(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. struct ggml_tensor * dst) {
  7608. switch (src0->type) {
  7609. case GGML_TYPE_F32:
  7610. {
  7611. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7612. } break;
  7613. default:
  7614. {
  7615. GGML_ASSERT(false);
  7616. } break;
  7617. }
  7618. }
  7619. // ggml_compute_forward_abs
  7620. static void ggml_compute_forward_abs_f32(
  7621. const struct ggml_compute_params * params,
  7622. const struct ggml_tensor * src0,
  7623. struct ggml_tensor * dst) {
  7624. assert(params->ith == 0);
  7625. assert(ggml_are_same_shape(src0, dst));
  7626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7627. return;
  7628. }
  7629. const int n = ggml_nrows(src0);
  7630. const int nc = src0->ne[0];
  7631. assert(dst->nb[0] == sizeof(float));
  7632. assert(src0->nb[0] == sizeof(float));
  7633. for (int i = 0; i < n; i++) {
  7634. ggml_vec_abs_f32(nc,
  7635. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7636. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7637. }
  7638. }
  7639. static void ggml_compute_forward_abs(
  7640. const struct ggml_compute_params * params,
  7641. const struct ggml_tensor * src0,
  7642. struct ggml_tensor * dst) {
  7643. switch (src0->type) {
  7644. case GGML_TYPE_F32:
  7645. {
  7646. ggml_compute_forward_abs_f32(params, src0, dst);
  7647. } break;
  7648. default:
  7649. {
  7650. GGML_ASSERT(false);
  7651. } break;
  7652. }
  7653. }
  7654. // ggml_compute_forward_sgn
  7655. static void ggml_compute_forward_sgn_f32(
  7656. const struct ggml_compute_params * params,
  7657. const struct ggml_tensor * src0,
  7658. struct ggml_tensor * dst) {
  7659. assert(params->ith == 0);
  7660. assert(ggml_are_same_shape(src0, dst));
  7661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7662. return;
  7663. }
  7664. const int n = ggml_nrows(src0);
  7665. const int nc = src0->ne[0];
  7666. assert(dst->nb[0] == sizeof(float));
  7667. assert(src0->nb[0] == sizeof(float));
  7668. for (int i = 0; i < n; i++) {
  7669. ggml_vec_sgn_f32(nc,
  7670. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7671. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7672. }
  7673. }
  7674. static void ggml_compute_forward_sgn(
  7675. const struct ggml_compute_params * params,
  7676. const struct ggml_tensor * src0,
  7677. struct ggml_tensor * dst) {
  7678. switch (src0->type) {
  7679. case GGML_TYPE_F32:
  7680. {
  7681. ggml_compute_forward_sgn_f32(params, src0, dst);
  7682. } break;
  7683. default:
  7684. {
  7685. GGML_ASSERT(false);
  7686. } break;
  7687. }
  7688. }
  7689. // ggml_compute_forward_neg
  7690. static void ggml_compute_forward_neg_f32(
  7691. const struct ggml_compute_params * params,
  7692. const struct ggml_tensor * src0,
  7693. struct ggml_tensor * dst) {
  7694. assert(params->ith == 0);
  7695. assert(ggml_are_same_shape(src0, dst));
  7696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7697. return;
  7698. }
  7699. const int n = ggml_nrows(src0);
  7700. const int nc = src0->ne[0];
  7701. assert(dst->nb[0] == sizeof(float));
  7702. assert(src0->nb[0] == sizeof(float));
  7703. for (int i = 0; i < n; i++) {
  7704. ggml_vec_neg_f32(nc,
  7705. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7706. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7707. }
  7708. }
  7709. static void ggml_compute_forward_neg(
  7710. const struct ggml_compute_params * params,
  7711. const struct ggml_tensor * src0,
  7712. struct ggml_tensor * dst) {
  7713. switch (src0->type) {
  7714. case GGML_TYPE_F32:
  7715. {
  7716. ggml_compute_forward_neg_f32(params, src0, dst);
  7717. } break;
  7718. default:
  7719. {
  7720. GGML_ASSERT(false);
  7721. } break;
  7722. }
  7723. }
  7724. // ggml_compute_forward_step
  7725. static void ggml_compute_forward_step_f32(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. struct ggml_tensor * dst) {
  7729. assert(params->ith == 0);
  7730. assert(ggml_are_same_shape(src0, dst));
  7731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7732. return;
  7733. }
  7734. const int n = ggml_nrows(src0);
  7735. const int nc = src0->ne[0];
  7736. assert(dst->nb[0] == sizeof(float));
  7737. assert(src0->nb[0] == sizeof(float));
  7738. for (int i = 0; i < n; i++) {
  7739. ggml_vec_step_f32(nc,
  7740. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7741. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7742. }
  7743. }
  7744. static void ggml_compute_forward_step(
  7745. const struct ggml_compute_params * params,
  7746. const struct ggml_tensor * src0,
  7747. struct ggml_tensor * dst) {
  7748. switch (src0->type) {
  7749. case GGML_TYPE_F32:
  7750. {
  7751. ggml_compute_forward_step_f32(params, src0, dst);
  7752. } break;
  7753. default:
  7754. {
  7755. GGML_ASSERT(false);
  7756. } break;
  7757. }
  7758. }
  7759. // ggml_compute_forward_relu
  7760. static void ggml_compute_forward_relu_f32(
  7761. const struct ggml_compute_params * params,
  7762. const struct ggml_tensor * src0,
  7763. struct ggml_tensor * dst) {
  7764. assert(params->ith == 0);
  7765. assert(ggml_are_same_shape(src0, dst));
  7766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7767. return;
  7768. }
  7769. const int n = ggml_nrows(src0);
  7770. const int nc = src0->ne[0];
  7771. assert(dst->nb[0] == sizeof(float));
  7772. assert(src0->nb[0] == sizeof(float));
  7773. for (int i = 0; i < n; i++) {
  7774. ggml_vec_relu_f32(nc,
  7775. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7776. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7777. }
  7778. }
  7779. static void ggml_compute_forward_relu(
  7780. const struct ggml_compute_params * params,
  7781. const struct ggml_tensor * src0,
  7782. struct ggml_tensor * dst) {
  7783. switch (src0->type) {
  7784. case GGML_TYPE_F32:
  7785. {
  7786. ggml_compute_forward_relu_f32(params, src0, dst);
  7787. } break;
  7788. default:
  7789. {
  7790. GGML_ASSERT(false);
  7791. } break;
  7792. }
  7793. }
  7794. // ggml_compute_forward_gelu
  7795. static void ggml_compute_forward_gelu_f32(
  7796. const struct ggml_compute_params * params,
  7797. const struct ggml_tensor * src0,
  7798. struct ggml_tensor * dst) {
  7799. GGML_ASSERT(ggml_is_contiguous(src0));
  7800. GGML_ASSERT(ggml_is_contiguous(dst));
  7801. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7803. return;
  7804. }
  7805. const int ith = params->ith;
  7806. const int nth = params->nth;
  7807. const int nc = src0->ne[0];
  7808. const int nr = ggml_nrows(src0);
  7809. // rows per thread
  7810. const int dr = (nr + nth - 1)/nth;
  7811. // row range for this thread
  7812. const int ir0 = dr*ith;
  7813. const int ir1 = MIN(ir0 + dr, nr);
  7814. for (int i1 = ir0; i1 < ir1; i1++) {
  7815. ggml_vec_gelu_f32(nc,
  7816. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7817. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7818. #ifndef NDEBUG
  7819. for (int k = 0; k < nc; k++) {
  7820. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7821. UNUSED(x);
  7822. assert(!isnan(x));
  7823. assert(!isinf(x));
  7824. }
  7825. #endif
  7826. }
  7827. }
  7828. static void ggml_compute_forward_gelu(
  7829. const struct ggml_compute_params * params,
  7830. const struct ggml_tensor * src0,
  7831. struct ggml_tensor * dst) {
  7832. switch (src0->type) {
  7833. case GGML_TYPE_F32:
  7834. {
  7835. ggml_compute_forward_gelu_f32(params, src0, dst);
  7836. } break;
  7837. default:
  7838. {
  7839. GGML_ASSERT(false);
  7840. } break;
  7841. }
  7842. }
  7843. // ggml_compute_forward_gelu_quick
  7844. static void ggml_compute_forward_gelu_quick_f32(
  7845. const struct ggml_compute_params * params,
  7846. const struct ggml_tensor * src0,
  7847. struct ggml_tensor * dst) {
  7848. GGML_ASSERT(ggml_is_contiguous(src0));
  7849. GGML_ASSERT(ggml_is_contiguous(dst));
  7850. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7851. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7852. return;
  7853. }
  7854. const int ith = params->ith;
  7855. const int nth = params->nth;
  7856. const int nc = src0->ne[0];
  7857. const int nr = ggml_nrows(src0);
  7858. // rows per thread
  7859. const int dr = (nr + nth - 1)/nth;
  7860. // row range for this thread
  7861. const int ir0 = dr*ith;
  7862. const int ir1 = MIN(ir0 + dr, nr);
  7863. for (int i1 = ir0; i1 < ir1; i1++) {
  7864. ggml_vec_gelu_quick_f32(nc,
  7865. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7866. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7867. #ifndef NDEBUG
  7868. for (int k = 0; k < nc; k++) {
  7869. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7870. UNUSED(x);
  7871. assert(!isnan(x));
  7872. assert(!isinf(x));
  7873. }
  7874. #endif
  7875. }
  7876. }
  7877. static void ggml_compute_forward_gelu_quick(
  7878. const struct ggml_compute_params * params,
  7879. const struct ggml_tensor * src0,
  7880. struct ggml_tensor * dst) {
  7881. switch (src0->type) {
  7882. case GGML_TYPE_F32:
  7883. {
  7884. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7885. } break;
  7886. default:
  7887. {
  7888. GGML_ASSERT(false);
  7889. } break;
  7890. }
  7891. }
  7892. // ggml_compute_forward_silu
  7893. static void ggml_compute_forward_silu_f32(
  7894. const struct ggml_compute_params * params,
  7895. const struct ggml_tensor * src0,
  7896. struct ggml_tensor * dst) {
  7897. GGML_ASSERT(ggml_is_contiguous(src0));
  7898. GGML_ASSERT(ggml_is_contiguous(dst));
  7899. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7900. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7901. return;
  7902. }
  7903. const int ith = params->ith;
  7904. const int nth = params->nth;
  7905. const int nc = src0->ne[0];
  7906. const int nr = ggml_nrows(src0);
  7907. // rows per thread
  7908. const int dr = (nr + nth - 1)/nth;
  7909. // row range for this thread
  7910. const int ir0 = dr*ith;
  7911. const int ir1 = MIN(ir0 + dr, nr);
  7912. for (int i1 = ir0; i1 < ir1; i1++) {
  7913. ggml_vec_silu_f32(nc,
  7914. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7915. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7916. #ifndef NDEBUG
  7917. for (int k = 0; k < nc; k++) {
  7918. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7919. UNUSED(x);
  7920. assert(!isnan(x));
  7921. assert(!isinf(x));
  7922. }
  7923. #endif
  7924. }
  7925. }
  7926. static void ggml_compute_forward_silu(
  7927. const struct ggml_compute_params * params,
  7928. const struct ggml_tensor * src0,
  7929. struct ggml_tensor * dst) {
  7930. switch (src0->type) {
  7931. case GGML_TYPE_F32:
  7932. {
  7933. ggml_compute_forward_silu_f32(params, src0, dst);
  7934. } break;
  7935. default:
  7936. {
  7937. GGML_ASSERT(false);
  7938. } break;
  7939. }
  7940. }
  7941. // ggml_compute_forward_silu_back
  7942. static void ggml_compute_forward_silu_back_f32(
  7943. const struct ggml_compute_params * params,
  7944. const struct ggml_tensor * src0,
  7945. const struct ggml_tensor * grad,
  7946. struct ggml_tensor * dst) {
  7947. GGML_ASSERT(ggml_is_contiguous(grad));
  7948. GGML_ASSERT(ggml_is_contiguous(src0));
  7949. GGML_ASSERT(ggml_is_contiguous(dst));
  7950. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7951. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7953. return;
  7954. }
  7955. const int ith = params->ith;
  7956. const int nth = params->nth;
  7957. const int nc = src0->ne[0];
  7958. const int nr = ggml_nrows(src0);
  7959. // rows per thread
  7960. const int dr = (nr + nth - 1)/nth;
  7961. // row range for this thread
  7962. const int ir0 = dr*ith;
  7963. const int ir1 = MIN(ir0 + dr, nr);
  7964. for (int i1 = ir0; i1 < ir1; i1++) {
  7965. ggml_vec_silu_backward_f32(nc,
  7966. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7967. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7968. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7969. #ifndef NDEBUG
  7970. for (int k = 0; k < nc; k++) {
  7971. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7972. UNUSED(x);
  7973. assert(!isnan(x));
  7974. assert(!isinf(x));
  7975. }
  7976. #endif
  7977. }
  7978. }
  7979. static void ggml_compute_forward_silu_back(
  7980. const struct ggml_compute_params * params,
  7981. const struct ggml_tensor * src0,
  7982. const struct ggml_tensor * grad,
  7983. struct ggml_tensor * dst) {
  7984. switch (src0->type) {
  7985. case GGML_TYPE_F32:
  7986. {
  7987. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7988. } break;
  7989. default:
  7990. {
  7991. GGML_ASSERT(false);
  7992. } break;
  7993. }
  7994. }
  7995. // ggml_compute_forward_norm
  7996. static void ggml_compute_forward_norm_f32(
  7997. const struct ggml_compute_params * params,
  7998. const struct ggml_tensor * src0,
  7999. struct ggml_tensor * dst) {
  8000. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8002. return;
  8003. }
  8004. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8005. const int ith = params->ith;
  8006. const int nth = params->nth;
  8007. const int64_t ne00 = src0->ne[0];
  8008. const int64_t ne01 = src0->ne[1];
  8009. const int64_t ne02 = src0->ne[2];
  8010. const int64_t ne03 = src0->ne[3];
  8011. const size_t nb01 = src0->nb[1];
  8012. const size_t nb02 = src0->nb[2];
  8013. const size_t nb03 = src0->nb[3];
  8014. const size_t nb1 = dst->nb[1];
  8015. const size_t nb2 = dst->nb[2];
  8016. const size_t nb3 = dst->nb[3];
  8017. const float eps = 1e-5f; // TODO: make this a parameter
  8018. // TODO: optimize
  8019. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8020. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8021. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8022. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8023. ggml_float sum = 0.0;
  8024. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8025. sum += (ggml_float)x[i00];
  8026. }
  8027. float mean = sum/ne00;
  8028. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8029. ggml_float sum2 = 0.0;
  8030. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8031. float v = x[i00] - mean;
  8032. y[i00] = v;
  8033. sum2 += (ggml_float)(v*v);
  8034. }
  8035. float variance = sum2/ne00;
  8036. const float scale = 1.0f/sqrtf(variance + eps);
  8037. ggml_vec_scale_f32(ne00, y, scale);
  8038. }
  8039. }
  8040. }
  8041. }
  8042. static void ggml_compute_forward_norm(
  8043. const struct ggml_compute_params * params,
  8044. const struct ggml_tensor * src0,
  8045. struct ggml_tensor * dst) {
  8046. switch (src0->type) {
  8047. case GGML_TYPE_F32:
  8048. {
  8049. ggml_compute_forward_norm_f32(params, src0, dst);
  8050. } break;
  8051. default:
  8052. {
  8053. GGML_ASSERT(false);
  8054. } break;
  8055. }
  8056. }
  8057. static void ggml_compute_forward_rms_norm_f32(
  8058. const struct ggml_compute_params * params,
  8059. const struct ggml_tensor * src0,
  8060. struct ggml_tensor * dst) {
  8061. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8062. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8063. return;
  8064. }
  8065. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8066. const int ith = params->ith;
  8067. const int nth = params->nth;
  8068. const int64_t ne00 = src0->ne[0];
  8069. const int64_t ne01 = src0->ne[1];
  8070. const int64_t ne02 = src0->ne[2];
  8071. const int64_t ne03 = src0->ne[3];
  8072. const size_t nb01 = src0->nb[1];
  8073. const size_t nb02 = src0->nb[2];
  8074. const size_t nb03 = src0->nb[3];
  8075. const size_t nb1 = dst->nb[1];
  8076. const size_t nb2 = dst->nb[2];
  8077. const size_t nb3 = dst->nb[3];
  8078. const float eps = 1e-6f; // TODO: make this a parameter
  8079. // TODO: optimize
  8080. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8081. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8082. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8083. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8084. ggml_float sum = 0.0;
  8085. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8086. sum += (ggml_float)(x[i00] * x[i00]);
  8087. }
  8088. const float mean = sum/ne00;
  8089. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8090. memcpy(y, x, ne00 * sizeof(float));
  8091. // for (int i00 = 0; i00 < ne00; i00++) {
  8092. // y[i00] = x[i00];
  8093. // }
  8094. const float scale = 1.0f/sqrtf(mean + eps);
  8095. ggml_vec_scale_f32(ne00, y, scale);
  8096. }
  8097. }
  8098. }
  8099. }
  8100. static void ggml_compute_forward_rms_norm(
  8101. const struct ggml_compute_params * params,
  8102. const struct ggml_tensor * src0,
  8103. struct ggml_tensor * dst) {
  8104. switch (src0->type) {
  8105. case GGML_TYPE_F32:
  8106. {
  8107. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8108. } break;
  8109. default:
  8110. {
  8111. GGML_ASSERT(false);
  8112. } break;
  8113. }
  8114. }
  8115. static void ggml_compute_forward_rms_norm_back_f32(
  8116. const struct ggml_compute_params * params,
  8117. const struct ggml_tensor * src0,
  8118. const struct ggml_tensor * src1,
  8119. struct ggml_tensor * dst) {
  8120. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8121. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8122. return;
  8123. }
  8124. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8125. const int ith = params->ith;
  8126. const int nth = params->nth;
  8127. const int64_t ne00 = src0->ne[0];
  8128. const int64_t ne01 = src0->ne[1];
  8129. const int64_t ne02 = src0->ne[2];
  8130. const int64_t ne03 = src0->ne[3];
  8131. const size_t nb01 = src0->nb[1];
  8132. const size_t nb02 = src0->nb[2];
  8133. const size_t nb03 = src0->nb[3];
  8134. const size_t nb11 = src1->nb[1];
  8135. const size_t nb12 = src1->nb[2];
  8136. const size_t nb13 = src1->nb[3];
  8137. const size_t nb1 = dst->nb[1];
  8138. const size_t nb2 = dst->nb[2];
  8139. const size_t nb3 = dst->nb[3];
  8140. const float eps = 1e-6f; // TODO: make this a parameter
  8141. // TODO: optimize
  8142. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8143. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8144. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8145. // src1 is same shape as src0 => same indices
  8146. const int64_t i11 = i01;
  8147. const int64_t i12 = i02;
  8148. const int64_t i13 = i03;
  8149. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8150. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8151. ggml_float sum_xx = 0.0;
  8152. ggml_float sum_xdz = 0.0;
  8153. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8154. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8155. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8156. }
  8157. //const float mean = (float)(sum_xx)/ne00;
  8158. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8159. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8160. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8161. // we could cache rms from forward pass to improve performance.
  8162. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8163. //const float rms = sqrtf(mean_eps);
  8164. const float rrms = 1.0f / sqrtf(mean_eps);
  8165. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8166. {
  8167. // z = rms_norm(x)
  8168. //
  8169. // rms_norm(src0) =
  8170. // scale(
  8171. // src0,
  8172. // div(
  8173. // 1,
  8174. // sqrt(
  8175. // add(
  8176. // scale(
  8177. // sum(
  8178. // sqr(
  8179. // src0)),
  8180. // (1.0/N)),
  8181. // eps))));
  8182. // postorder:
  8183. // ## op args grad
  8184. // 00 param src0 grad[#00]
  8185. // 01 const 1
  8186. // 02 sqr (#00) grad[#02]
  8187. // 03 sum (#02) grad[#03]
  8188. // 04 const 1/N
  8189. // 05 scale (#03, #04) grad[#05]
  8190. // 06 const eps
  8191. // 07 add (#05, #06) grad[#07]
  8192. // 08 sqrt (#07) grad[#08]
  8193. // 09 div (#01,#08) grad[#09]
  8194. // 10 scale (#00,#09) grad[#10]
  8195. //
  8196. // backward pass, given grad[#10]
  8197. // #10: scale
  8198. // grad[#00] += scale(grad[#10],#09)
  8199. // grad[#09] += sum(mul(grad[#10],#00))
  8200. // #09: div
  8201. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8202. // #08: sqrt
  8203. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8204. // #07: add
  8205. // grad[#05] += grad[#07]
  8206. // #05: scale
  8207. // grad[#03] += scale(grad[#05],#04)
  8208. // #03: sum
  8209. // grad[#02] += repeat(grad[#03], #02)
  8210. // #02:
  8211. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8212. //
  8213. // substitute and simplify:
  8214. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8215. // grad[#02] = repeat(grad[#03], #02)
  8216. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8217. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8218. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8219. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8220. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8221. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8222. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8223. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8224. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8225. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8226. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8227. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8228. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8229. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8230. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8231. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8232. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8233. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8234. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8235. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8236. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8237. // a = b*c + d*e
  8238. // a = b*c*f/f + d*e*f/f
  8239. // a = (b*c*f + d*e*f)*(1/f)
  8240. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8241. // a = (b + d*e/c)*c
  8242. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8243. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8244. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8245. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8246. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8247. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8248. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8249. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8250. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8251. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8252. }
  8253. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8254. // post-order:
  8255. // dx := x
  8256. // dx := scale(dx,-mean_xdz/mean_eps)
  8257. // dx := add(dx, dz)
  8258. // dx := scale(dx, rrms)
  8259. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8260. ggml_vec_cpy_f32 (ne00, dx, x);
  8261. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8262. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8263. ggml_vec_acc_f32 (ne00, dx, dz);
  8264. ggml_vec_scale_f32(ne00, dx, rrms);
  8265. }
  8266. }
  8267. }
  8268. }
  8269. static void ggml_compute_forward_rms_norm_back(
  8270. const struct ggml_compute_params * params,
  8271. const struct ggml_tensor * src0,
  8272. const struct ggml_tensor * src1,
  8273. struct ggml_tensor * dst) {
  8274. switch (src0->type) {
  8275. case GGML_TYPE_F32:
  8276. {
  8277. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8278. } break;
  8279. default:
  8280. {
  8281. GGML_ASSERT(false);
  8282. } break;
  8283. }
  8284. }
  8285. // ggml_compute_forward_mul_mat
  8286. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8287. // helper function to determine if it is better to use BLAS or not
  8288. // for large matrices, BLAS is faster
  8289. static bool ggml_compute_forward_mul_mat_use_blas(
  8290. const struct ggml_tensor * src0,
  8291. const struct ggml_tensor * src1,
  8292. struct ggml_tensor * dst) {
  8293. //const int64_t ne00 = src0->ne[0];
  8294. //const int64_t ne01 = src0->ne[1];
  8295. const int64_t ne10 = src1->ne[0];
  8296. const int64_t ne0 = dst->ne[0];
  8297. const int64_t ne1 = dst->ne[1];
  8298. // TODO: find the optimal values for these
  8299. if (ggml_is_contiguous(src0) &&
  8300. ggml_is_contiguous(src1) &&
  8301. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8302. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8303. return true;
  8304. }
  8305. return false;
  8306. }
  8307. #endif
  8308. static void ggml_compute_forward_mul_mat_f32(
  8309. const struct ggml_compute_params * params,
  8310. const struct ggml_tensor * src0,
  8311. const struct ggml_tensor * src1,
  8312. struct ggml_tensor * dst) {
  8313. int64_t t0 = ggml_perf_time_us();
  8314. UNUSED(t0);
  8315. const int64_t ne00 = src0->ne[0];
  8316. const int64_t ne01 = src0->ne[1];
  8317. const int64_t ne02 = src0->ne[2];
  8318. const int64_t ne03 = src0->ne[3];
  8319. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8320. const int64_t ne10 = src1->ne[0];
  8321. #endif
  8322. const int64_t ne11 = src1->ne[1];
  8323. #ifndef NDEBUG
  8324. const int64_t ne12 = src1->ne[2];
  8325. const int64_t ne13 = src1->ne[3];
  8326. const int64_t ne0 = dst->ne[0];
  8327. const int64_t ne1 = dst->ne[1];
  8328. const int64_t ne2 = dst->ne[2];
  8329. const int64_t ne3 = dst->ne[3];
  8330. const int nb00 = src0->nb[0];
  8331. #endif
  8332. const int nb01 = src0->nb[1];
  8333. const int nb02 = src0->nb[2];
  8334. const int nb03 = src0->nb[3];
  8335. #ifndef NDEBUG
  8336. const int nb10 = src1->nb[0];
  8337. #endif
  8338. const int nb11 = src1->nb[1];
  8339. const int nb12 = src1->nb[2];
  8340. const int nb13 = src1->nb[3];
  8341. const int nb0 = dst->nb[0];
  8342. const int nb1 = dst->nb[1];
  8343. const int nb2 = dst->nb[2];
  8344. const int nb3 = dst->nb[3];
  8345. const int ith = params->ith;
  8346. const int nth = params->nth;
  8347. assert(ne02 == ne12);
  8348. assert(ne03 == ne13);
  8349. assert(ne2 == ne12);
  8350. assert(ne3 == ne13);
  8351. // we don't support permuted src0 or src1
  8352. assert(nb00 == sizeof(float));
  8353. assert(nb10 == sizeof(float));
  8354. // dst cannot be transposed or permuted
  8355. assert(nb0 == sizeof(float));
  8356. assert(nb0 <= nb1);
  8357. assert(nb1 <= nb2);
  8358. assert(nb2 <= nb3);
  8359. assert(ne0 == ne01);
  8360. assert(ne1 == ne11);
  8361. assert(ne2 == ne02);
  8362. assert(ne3 == ne03);
  8363. // nb01 >= nb00 - src0 is not transposed
  8364. // compute by src0 rows
  8365. #if defined(GGML_USE_CLBLAST)
  8366. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8367. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8368. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8369. }
  8370. return;
  8371. }
  8372. #endif
  8373. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8374. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8375. if (params->ith != 0) {
  8376. return;
  8377. }
  8378. if (params->type == GGML_TASK_INIT) {
  8379. return;
  8380. }
  8381. if (params->type == GGML_TASK_FINALIZE) {
  8382. return;
  8383. }
  8384. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8385. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8386. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8387. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8388. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8389. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8390. ne11, ne01, ne10,
  8391. 1.0f, y, ne10,
  8392. x, ne00,
  8393. 0.0f, d, ne01);
  8394. }
  8395. }
  8396. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8397. return;
  8398. }
  8399. #endif
  8400. if (params->type == GGML_TASK_INIT) {
  8401. return;
  8402. }
  8403. if (params->type == GGML_TASK_FINALIZE) {
  8404. return;
  8405. }
  8406. // parallelize by src0 rows using ggml_vec_dot_f32
  8407. // total rows in src0
  8408. const int nr = ne01*ne02*ne03;
  8409. // rows per thread
  8410. const int dr = (nr + nth - 1)/nth;
  8411. // row range for this thread
  8412. const int ir0 = dr*ith;
  8413. const int ir1 = MIN(ir0 + dr, nr);
  8414. for (int ir = ir0; ir < ir1; ++ir) {
  8415. // src0 indices
  8416. const int i03 = ir/(ne02*ne01);
  8417. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8418. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8419. for (int64_t ic = 0; ic < ne11; ++ic) {
  8420. // src1 indices
  8421. const int i13 = i03;
  8422. const int i12 = i02;
  8423. const int i11 = ic;
  8424. // dst indices
  8425. const int i0 = i01;
  8426. const int i1 = i11;
  8427. const int i2 = i02;
  8428. const int i3 = i03;
  8429. ggml_vec_dot_f32(ne00,
  8430. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8431. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8432. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8433. }
  8434. }
  8435. //int64_t t1 = ggml_perf_time_us();
  8436. //static int64_t acc = 0;
  8437. //acc += t1 - t0;
  8438. //if (t1 - t0 > 10) {
  8439. // printf("\n");
  8440. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8441. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8442. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8443. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8444. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8445. //}
  8446. }
  8447. static void ggml_compute_forward_mul_mat_f16_f32(
  8448. const struct ggml_compute_params * params,
  8449. const struct ggml_tensor * src0,
  8450. const struct ggml_tensor * src1,
  8451. struct ggml_tensor * dst) {
  8452. int64_t t0 = ggml_perf_time_us();
  8453. UNUSED(t0);
  8454. const int64_t ne00 = src0->ne[0];
  8455. const int64_t ne01 = src0->ne[1];
  8456. const int64_t ne02 = src0->ne[2];
  8457. const int64_t ne03 = src0->ne[3];
  8458. const int64_t ne10 = src1->ne[0];
  8459. const int64_t ne11 = src1->ne[1];
  8460. const int64_t ne12 = src1->ne[2];
  8461. const int64_t ne13 = src1->ne[3];
  8462. const int64_t ne0 = dst->ne[0];
  8463. const int64_t ne1 = dst->ne[1];
  8464. const int64_t ne2 = dst->ne[2];
  8465. const int64_t ne3 = dst->ne[3];
  8466. //const int64_t ne = ne0*ne1*ne2*ne3;
  8467. const int nb00 = src0->nb[0];
  8468. const int nb01 = src0->nb[1];
  8469. const int nb02 = src0->nb[2];
  8470. const int nb03 = src0->nb[3];
  8471. const int nb10 = src1->nb[0];
  8472. const int nb11 = src1->nb[1];
  8473. const int nb12 = src1->nb[2];
  8474. const int nb13 = src1->nb[3];
  8475. const int nb0 = dst->nb[0];
  8476. const int nb1 = dst->nb[1];
  8477. const int nb2 = dst->nb[2];
  8478. const int nb3 = dst->nb[3];
  8479. const int ith = params->ith;
  8480. const int nth = params->nth;
  8481. GGML_ASSERT(ne02 == ne12);
  8482. GGML_ASSERT(ne03 == ne13);
  8483. GGML_ASSERT(ne2 == ne12);
  8484. GGML_ASSERT(ne3 == ne13);
  8485. // TODO: we don't support permuted src0
  8486. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8487. // dst cannot be transposed or permuted
  8488. GGML_ASSERT(nb0 == sizeof(float));
  8489. GGML_ASSERT(nb0 <= nb1);
  8490. GGML_ASSERT(nb1 <= nb2);
  8491. GGML_ASSERT(nb2 <= nb3);
  8492. GGML_ASSERT(ne0 == ne01);
  8493. GGML_ASSERT(ne1 == ne11);
  8494. GGML_ASSERT(ne2 == ne02);
  8495. GGML_ASSERT(ne3 == ne03);
  8496. // nb01 >= nb00 - src0 is not transposed
  8497. // compute by src0 rows
  8498. #if defined(GGML_USE_CLBLAST)
  8499. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8500. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8501. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8502. }
  8503. return;
  8504. }
  8505. #endif
  8506. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8507. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8508. GGML_ASSERT(nb10 == sizeof(float));
  8509. if (params->ith != 0) {
  8510. return;
  8511. }
  8512. if (params->type == GGML_TASK_INIT) {
  8513. return;
  8514. }
  8515. if (params->type == GGML_TASK_FINALIZE) {
  8516. return;
  8517. }
  8518. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8519. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8520. float * const wdata = params->wdata;
  8521. {
  8522. size_t id = 0;
  8523. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8524. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8525. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8526. }
  8527. }
  8528. assert(id*sizeof(float) <= params->wsize);
  8529. }
  8530. const float * x = wdata;
  8531. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8532. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8533. // zT = y * xT
  8534. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8535. ne11, ne01, ne10,
  8536. 1.0f, y, ne10,
  8537. x, ne00,
  8538. 0.0f, d, ne01);
  8539. }
  8540. }
  8541. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8542. return;
  8543. }
  8544. #endif
  8545. if (params->type == GGML_TASK_INIT) {
  8546. ggml_fp16_t * const wdata = params->wdata;
  8547. size_t id = 0;
  8548. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8549. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8550. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8551. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8552. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8553. }
  8554. }
  8555. }
  8556. }
  8557. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8558. return;
  8559. }
  8560. if (params->type == GGML_TASK_FINALIZE) {
  8561. return;
  8562. }
  8563. // fp16 -> half the size, so divide by 2
  8564. // TODO: do not support transposed src1
  8565. assert(nb10/2 == sizeof(ggml_fp16_t));
  8566. // parallelize by src0 rows using ggml_vec_dot_f16
  8567. // total rows in src0
  8568. const int nr = ne01*ne02*ne03;
  8569. // rows per thread
  8570. const int dr = (nr + nth - 1)/nth;
  8571. // row range for this thread
  8572. const int ir0 = dr*ith;
  8573. const int ir1 = MIN(ir0 + dr, nr);
  8574. ggml_fp16_t * wdata = params->wdata;
  8575. for (int ir = ir0; ir < ir1; ++ir) {
  8576. // src0 indices
  8577. const int i03 = ir/(ne02*ne01);
  8578. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8579. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8580. const int i13 = i03;
  8581. const int i12 = i02;
  8582. const int i0 = i01;
  8583. const int i2 = i02;
  8584. const int i3 = i03;
  8585. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8586. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8587. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8588. for (int64_t ic = 0; ic < ne11; ++ic) {
  8589. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8590. }
  8591. }
  8592. //int64_t t1 = ggml_time_us();
  8593. //static int64_t acc = 0;
  8594. //acc += t1 - t0;
  8595. //if (t1 - t0 > 10) {
  8596. // printf("\n");
  8597. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8598. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8599. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8600. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8601. //}
  8602. }
  8603. static void ggml_compute_forward_mul_mat_q_f32(
  8604. const struct ggml_compute_params * params,
  8605. const struct ggml_tensor * src0,
  8606. const struct ggml_tensor * src1,
  8607. struct ggml_tensor * dst) {
  8608. int64_t t0 = ggml_perf_time_us();
  8609. UNUSED(t0);
  8610. const int64_t ne00 = src0->ne[0];
  8611. const int64_t ne01 = src0->ne[1];
  8612. const int64_t ne02 = src0->ne[2];
  8613. const int64_t ne03 = src0->ne[3];
  8614. const int64_t ne10 = src1->ne[0];
  8615. const int64_t ne11 = src1->ne[1];
  8616. const int64_t ne12 = src1->ne[2];
  8617. const int64_t ne13 = src1->ne[3];
  8618. const int64_t ne0 = dst->ne[0];
  8619. const int64_t ne1 = dst->ne[1];
  8620. const int64_t ne2 = dst->ne[2];
  8621. const int64_t ne3 = dst->ne[3];
  8622. const int nb00 = src0->nb[0];
  8623. const int nb01 = src0->nb[1];
  8624. const int nb02 = src0->nb[2];
  8625. const int nb03 = src0->nb[3];
  8626. const int nb10 = src1->nb[0];
  8627. const int nb11 = src1->nb[1];
  8628. const int nb12 = src1->nb[2];
  8629. const int nb13 = src1->nb[3];
  8630. const int nb0 = dst->nb[0];
  8631. const int nb1 = dst->nb[1];
  8632. const int nb2 = dst->nb[2];
  8633. const int nb3 = dst->nb[3];
  8634. const int ith = params->ith;
  8635. const int nth = params->nth;
  8636. GGML_ASSERT(ne02 == ne12);
  8637. GGML_ASSERT(ne03 == ne13);
  8638. GGML_ASSERT(ne2 == ne12);
  8639. GGML_ASSERT(ne3 == ne13);
  8640. const enum ggml_type type = src0->type;
  8641. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8642. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8643. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8644. // we don't support permuted src0 or src1
  8645. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8646. GGML_ASSERT(nb10 == sizeof(float));
  8647. // dst cannot be transposed or permuted
  8648. GGML_ASSERT(nb0 == sizeof(float));
  8649. GGML_ASSERT(nb0 <= nb1);
  8650. GGML_ASSERT(nb1 <= nb2);
  8651. GGML_ASSERT(nb2 <= nb3);
  8652. GGML_ASSERT(ne0 == ne01);
  8653. GGML_ASSERT(ne1 == ne11);
  8654. GGML_ASSERT(ne2 == ne02);
  8655. GGML_ASSERT(ne3 == ne03);
  8656. // nb01 >= nb00 - src0 is not transposed
  8657. // compute by src0 rows
  8658. #if defined(GGML_USE_CLBLAST)
  8659. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8660. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8661. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8662. }
  8663. return;
  8664. }
  8665. #endif
  8666. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8667. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8668. if (params->ith != 0) {
  8669. return;
  8670. }
  8671. if (params->type == GGML_TASK_INIT) {
  8672. return;
  8673. }
  8674. if (params->type == GGML_TASK_FINALIZE) {
  8675. return;
  8676. }
  8677. float * const wdata = params->wdata;
  8678. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8679. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8680. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8681. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8682. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8683. {
  8684. size_t id = 0;
  8685. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8686. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8687. id += ne00;
  8688. }
  8689. assert(id*sizeof(float) <= params->wsize);
  8690. }
  8691. const float * x = wdata;
  8692. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8693. ne11, ne01, ne10,
  8694. 1.0f, y, ne10,
  8695. x, ne00,
  8696. 0.0f, d, ne01);
  8697. }
  8698. }
  8699. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8700. return;
  8701. }
  8702. #endif
  8703. if (params->type == GGML_TASK_INIT) {
  8704. char * wdata = params->wdata;
  8705. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8706. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8707. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8708. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8709. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8710. wdata += row_size;
  8711. }
  8712. }
  8713. }
  8714. return;
  8715. }
  8716. if (params->type == GGML_TASK_FINALIZE) {
  8717. return;
  8718. }
  8719. // parallelize by src0 rows using ggml_vec_dot_q
  8720. // total rows in src0
  8721. const int nr = ne01*ne02*ne03;
  8722. // rows per thread
  8723. const int dr = (nr + nth - 1)/nth;
  8724. // row range for this thread
  8725. const int ir0 = dr*ith;
  8726. const int ir1 = MIN(ir0 + dr, nr);
  8727. void * wdata = params->wdata;
  8728. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8729. for (int ir = ir0; ir < ir1; ++ir) {
  8730. // src0 indices
  8731. const int i03 = ir/(ne02*ne01);
  8732. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8733. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8734. const int i13 = i03;
  8735. const int i12 = i02;
  8736. const int i0 = i01;
  8737. const int i2 = i02;
  8738. const int i3 = i03;
  8739. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8740. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8741. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8742. assert(ne00 % 32 == 0);
  8743. for (int64_t ic = 0; ic < ne11; ++ic) {
  8744. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8745. }
  8746. }
  8747. //int64_t t1 = ggml_time_us();
  8748. //static int64_t acc = 0;
  8749. //acc += t1 - t0;
  8750. //if (t1 - t0 > 10) {
  8751. // printf("\n");
  8752. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8753. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8754. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8755. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8756. //}
  8757. }
  8758. static void ggml_compute_forward_mul_mat(
  8759. const struct ggml_compute_params * params,
  8760. const struct ggml_tensor * src0,
  8761. const struct ggml_tensor * src1,
  8762. struct ggml_tensor * dst) {
  8763. switch (src0->type) {
  8764. case GGML_TYPE_Q4_0:
  8765. case GGML_TYPE_Q4_1:
  8766. case GGML_TYPE_Q5_0:
  8767. case GGML_TYPE_Q5_1:
  8768. case GGML_TYPE_Q8_0:
  8769. case GGML_TYPE_Q8_1:
  8770. case GGML_TYPE_Q2_K:
  8771. case GGML_TYPE_Q3_K:
  8772. case GGML_TYPE_Q4_K:
  8773. case GGML_TYPE_Q5_K:
  8774. case GGML_TYPE_Q6_K:
  8775. {
  8776. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8777. } break;
  8778. case GGML_TYPE_F16:
  8779. {
  8780. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8781. } break;
  8782. case GGML_TYPE_F32:
  8783. {
  8784. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8785. } break;
  8786. default:
  8787. {
  8788. GGML_ASSERT(false);
  8789. } break;
  8790. }
  8791. }
  8792. // ggml_compute_forward_out_prod
  8793. static void ggml_compute_forward_out_prod_f32(
  8794. const struct ggml_compute_params * params,
  8795. const struct ggml_tensor * src0,
  8796. const struct ggml_tensor * src1,
  8797. struct ggml_tensor * dst) {
  8798. int64_t t0 = ggml_perf_time_us();
  8799. UNUSED(t0);
  8800. const int64_t ne00 = src0->ne[0];
  8801. const int64_t ne01 = src0->ne[1];
  8802. const int64_t ne02 = src0->ne[2];
  8803. const int64_t ne03 = src0->ne[3];
  8804. const int64_t ne10 = src1->ne[0];
  8805. //const int64_t ne11 = src1->ne[1];
  8806. const int64_t ne12 = src1->ne[2];
  8807. const int64_t ne13 = src1->ne[3];
  8808. const int64_t ne0 = dst->ne[0];
  8809. const int64_t ne1 = dst->ne[1];
  8810. const int64_t ne2 = dst->ne[2];
  8811. const int64_t ne3 = dst->ne[3];
  8812. const int nb00 = src0->nb[0];
  8813. const int nb01 = src0->nb[1];
  8814. const int nb02 = src0->nb[2];
  8815. const int nb03 = src0->nb[3];
  8816. const int nb10 = src1->nb[0];
  8817. const int nb11 = src1->nb[1];
  8818. const int nb12 = src1->nb[2];
  8819. const int nb13 = src1->nb[3];
  8820. const int nb0 = dst->nb[0];
  8821. const int nb1 = dst->nb[1];
  8822. const int nb2 = dst->nb[2];
  8823. const int nb3 = dst->nb[3];
  8824. const int ith = params->ith;
  8825. const int nth = params->nth;
  8826. GGML_ASSERT(ne02 == ne12);
  8827. GGML_ASSERT(ne03 == ne13);
  8828. GGML_ASSERT(ne2 == ne12);
  8829. GGML_ASSERT(ne3 == ne13);
  8830. // we don't support permuted src0 or src1
  8831. GGML_ASSERT(nb00 == sizeof(float));
  8832. // dst cannot be transposed or permuted
  8833. GGML_ASSERT(nb0 == sizeof(float));
  8834. // GGML_ASSERT(nb0 <= nb1);
  8835. // GGML_ASSERT(nb1 <= nb2);
  8836. // GGML_ASSERT(nb2 <= nb3);
  8837. GGML_ASSERT(ne0 == ne00);
  8838. GGML_ASSERT(ne1 == ne10);
  8839. GGML_ASSERT(ne2 == ne02);
  8840. GGML_ASSERT(ne3 == ne03);
  8841. // nb01 >= nb00 - src0 is not transposed
  8842. // compute by src0 rows
  8843. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8844. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8845. if (params->type == GGML_TASK_INIT) {
  8846. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8847. return;
  8848. }
  8849. if (params->type == GGML_TASK_FINALIZE) {
  8850. return;
  8851. }
  8852. // parallelize by last three dimensions
  8853. // total rows in dst
  8854. const int64_t nr = ne1*ne2*ne3;
  8855. // rows per thread
  8856. const int64_t dr = (nr + nth - 1)/nth;
  8857. // row range for this thread
  8858. const int64_t ir0 = dr*ith;
  8859. const int64_t ir1 = MIN(ir0 + dr, nr);
  8860. // dst[:,:,:,:] = 0
  8861. // for i2,i3:
  8862. // for i1:
  8863. // for i01:
  8864. // for i0:
  8865. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8866. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8867. // dst indices
  8868. const int64_t i3 = ir/(ne2*ne1);
  8869. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8870. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8871. const int64_t i02 = i2;
  8872. const int64_t i03 = i3;
  8873. //const int64_t i10 = i1;
  8874. const int64_t i12 = i2;
  8875. const int64_t i13 = i3;
  8876. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8877. const int64_t i11 = i01;
  8878. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8879. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8880. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8881. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8882. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8883. // d[i0] += s0[i0] * s1[i1];
  8884. // }
  8885. }
  8886. }
  8887. //int64_t t1 = ggml_perf_time_us();
  8888. //static int64_t acc = 0;
  8889. //acc += t1 - t0;
  8890. //if (t1 - t0 > 10) {
  8891. // printf("\n");
  8892. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8893. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8894. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8895. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8896. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8897. //}
  8898. }
  8899. static void ggml_compute_forward_out_prod(
  8900. const struct ggml_compute_params * params,
  8901. const struct ggml_tensor * src0,
  8902. const struct ggml_tensor * src1,
  8903. struct ggml_tensor * dst) {
  8904. switch (src0->type) {
  8905. case GGML_TYPE_Q4_0:
  8906. case GGML_TYPE_Q4_1:
  8907. case GGML_TYPE_Q5_0:
  8908. case GGML_TYPE_Q5_1:
  8909. case GGML_TYPE_Q8_0:
  8910. case GGML_TYPE_Q8_1:
  8911. {
  8912. GGML_ASSERT(false); // todo
  8913. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8914. } break;
  8915. case GGML_TYPE_F16:
  8916. {
  8917. GGML_ASSERT(false); // todo
  8918. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8919. } break;
  8920. case GGML_TYPE_F32:
  8921. {
  8922. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8923. } break;
  8924. default:
  8925. {
  8926. GGML_ASSERT(false);
  8927. } break;
  8928. }
  8929. }
  8930. // ggml_compute_forward_scale
  8931. static void ggml_compute_forward_scale_f32(
  8932. const struct ggml_compute_params * params,
  8933. const struct ggml_tensor * src0,
  8934. const struct ggml_tensor * src1,
  8935. struct ggml_tensor * dst) {
  8936. GGML_ASSERT(ggml_is_contiguous(src0));
  8937. GGML_ASSERT(ggml_is_contiguous(dst));
  8938. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8939. GGML_ASSERT(ggml_is_scalar(src1));
  8940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8941. return;
  8942. }
  8943. // scale factor
  8944. const float v = *(float *) src1->data;
  8945. const int ith = params->ith;
  8946. const int nth = params->nth;
  8947. const int nc = src0->ne[0];
  8948. const int nr = ggml_nrows(src0);
  8949. // rows per thread
  8950. const int dr = (nr + nth - 1)/nth;
  8951. // row range for this thread
  8952. const int ir0 = dr*ith;
  8953. const int ir1 = MIN(ir0 + dr, nr);
  8954. const size_t nb01 = src0->nb[1];
  8955. const size_t nb1 = dst->nb[1];
  8956. for (int i1 = ir0; i1 < ir1; i1++) {
  8957. if (dst->data != src0->data) {
  8958. // src0 is same shape as dst => same indices
  8959. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8960. }
  8961. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8962. }
  8963. }
  8964. static void ggml_compute_forward_scale(
  8965. const struct ggml_compute_params * params,
  8966. const struct ggml_tensor * src0,
  8967. const struct ggml_tensor * src1,
  8968. struct ggml_tensor * dst) {
  8969. switch (src0->type) {
  8970. case GGML_TYPE_F32:
  8971. {
  8972. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8973. } break;
  8974. default:
  8975. {
  8976. GGML_ASSERT(false);
  8977. } break;
  8978. }
  8979. }
  8980. // ggml_compute_forward_set
  8981. static void ggml_compute_forward_set_f32(
  8982. const struct ggml_compute_params * params,
  8983. const struct ggml_tensor * src0,
  8984. const struct ggml_tensor * src1,
  8985. const struct ggml_tensor * opt0,
  8986. struct ggml_tensor * dst) {
  8987. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8988. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8989. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8990. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8991. // view src0 and dst with these strides and data offset inbytes during set
  8992. // nb0 is implicitely element_size because src0 and dst are contiguous
  8993. size_t nb1 = ((int32_t *) opt0->data)[0];
  8994. size_t nb2 = ((int32_t *) opt0->data)[1];
  8995. size_t nb3 = ((int32_t *) opt0->data)[2];
  8996. size_t offset = ((int32_t *) opt0->data)[3];
  8997. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8998. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8999. // memcpy needs to be synchronized across threads to avoid race conditions.
  9000. // => do it in INIT phase
  9001. memcpy(
  9002. ((char *) dst->data),
  9003. ((char *) src0->data),
  9004. ggml_nbytes(dst));
  9005. }
  9006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9007. return;
  9008. }
  9009. const int ith = params->ith;
  9010. const int nth = params->nth;
  9011. const int nr = ggml_nrows(src1);
  9012. const int nc = src1->ne[0];
  9013. const int64_t ne10 = src1->ne[0];
  9014. const int64_t ne11 = src1->ne[1];
  9015. const int64_t ne12 = src1->ne[2];
  9016. const int64_t ne13 = src1->ne[3];
  9017. const size_t nb10 = src1->nb[0];
  9018. const size_t nb11 = src1->nb[1];
  9019. const size_t nb12 = src1->nb[2];
  9020. const size_t nb13 = src1->nb[3];
  9021. // src0 and dst as viewed during set
  9022. const size_t nb0 = ggml_element_size(src0);
  9023. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9024. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9025. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9026. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9027. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9028. GGML_ASSERT(nb10 == sizeof(float));
  9029. // rows per thread
  9030. const int dr = (nr + nth - 1)/nth;
  9031. // row range for this thread
  9032. const int ir0 = dr*ith;
  9033. const int ir1 = MIN(ir0 + dr, nr);
  9034. for (int ir = ir0; ir < ir1; ++ir) {
  9035. // src0 and dst are viewed with shape of src1 and offset
  9036. // => same indices
  9037. const int i3 = ir/(ne12*ne11);
  9038. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9039. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9040. ggml_vec_cpy_f32(nc,
  9041. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9042. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9043. }
  9044. }
  9045. static void ggml_compute_forward_set(
  9046. const struct ggml_compute_params * params,
  9047. const struct ggml_tensor * src0,
  9048. const struct ggml_tensor * src1,
  9049. const struct ggml_tensor * opt0,
  9050. struct ggml_tensor * dst) {
  9051. switch (src0->type) {
  9052. case GGML_TYPE_F32:
  9053. {
  9054. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9055. } break;
  9056. case GGML_TYPE_F16:
  9057. case GGML_TYPE_Q4_0:
  9058. case GGML_TYPE_Q4_1:
  9059. case GGML_TYPE_Q5_0:
  9060. case GGML_TYPE_Q5_1:
  9061. case GGML_TYPE_Q8_0:
  9062. case GGML_TYPE_Q8_1:
  9063. case GGML_TYPE_Q2_K:
  9064. case GGML_TYPE_Q3_K:
  9065. case GGML_TYPE_Q4_K:
  9066. case GGML_TYPE_Q5_K:
  9067. case GGML_TYPE_Q6_K:
  9068. default:
  9069. {
  9070. GGML_ASSERT(false);
  9071. } break;
  9072. }
  9073. }
  9074. // ggml_compute_forward_cpy
  9075. static void ggml_compute_forward_cpy(
  9076. const struct ggml_compute_params * params,
  9077. const struct ggml_tensor * src0,
  9078. struct ggml_tensor * dst) {
  9079. ggml_compute_forward_dup(params, src0, dst);
  9080. }
  9081. // ggml_compute_forward_cont
  9082. static void ggml_compute_forward_cont(
  9083. const struct ggml_compute_params * params,
  9084. const struct ggml_tensor * src0,
  9085. struct ggml_tensor * dst) {
  9086. ggml_compute_forward_dup(params, src0, dst);
  9087. }
  9088. // ggml_compute_forward_reshape
  9089. static void ggml_compute_forward_reshape(
  9090. const struct ggml_compute_params * params,
  9091. const struct ggml_tensor * src0,
  9092. struct ggml_tensor * dst) {
  9093. // NOP
  9094. UNUSED(params);
  9095. UNUSED(src0);
  9096. UNUSED(dst);
  9097. }
  9098. // ggml_compute_forward_view
  9099. static void ggml_compute_forward_view(
  9100. const struct ggml_compute_params * params,
  9101. const struct ggml_tensor * src0) {
  9102. // NOP
  9103. UNUSED(params);
  9104. UNUSED(src0);
  9105. }
  9106. // ggml_compute_forward_permute
  9107. static void ggml_compute_forward_permute(
  9108. const struct ggml_compute_params * params,
  9109. const struct ggml_tensor * src0) {
  9110. // NOP
  9111. UNUSED(params);
  9112. UNUSED(src0);
  9113. }
  9114. // ggml_compute_forward_transpose
  9115. static void ggml_compute_forward_transpose(
  9116. const struct ggml_compute_params * params,
  9117. const struct ggml_tensor * src0) {
  9118. // NOP
  9119. UNUSED(params);
  9120. UNUSED(src0);
  9121. }
  9122. // ggml_compute_forward_get_rows
  9123. static void ggml_compute_forward_get_rows_q(
  9124. const struct ggml_compute_params * params,
  9125. const struct ggml_tensor * src0,
  9126. const struct ggml_tensor * src1,
  9127. struct ggml_tensor * dst) {
  9128. assert(params->ith == 0);
  9129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9130. return;
  9131. }
  9132. const int nc = src0->ne[0];
  9133. const int nr = ggml_nelements(src1);
  9134. const enum ggml_type type = src0->type;
  9135. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  9136. assert( dst->ne[0] == nc);
  9137. assert( dst->ne[1] == nr);
  9138. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9139. for (int i = 0; i < nr; ++i) {
  9140. const int r = ((int32_t *) src1->data)[i];
  9141. dequantize_row_q(
  9142. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9143. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9144. }
  9145. }
  9146. static void ggml_compute_forward_get_rows_f16(
  9147. const struct ggml_compute_params * params,
  9148. const struct ggml_tensor * src0,
  9149. const struct ggml_tensor * src1,
  9150. struct ggml_tensor * dst) {
  9151. assert(params->ith == 0);
  9152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9153. return;
  9154. }
  9155. const int nc = src0->ne[0];
  9156. const int nr = ggml_nelements(src1);
  9157. assert( dst->ne[0] == nc);
  9158. assert( dst->ne[1] == nr);
  9159. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9160. for (int i = 0; i < nr; ++i) {
  9161. const int r = ((int32_t *) src1->data)[i];
  9162. for (int j = 0; j < nc; ++j) {
  9163. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9164. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9165. }
  9166. }
  9167. }
  9168. static void ggml_compute_forward_get_rows_f32(
  9169. const struct ggml_compute_params * params,
  9170. const struct ggml_tensor * src0,
  9171. const struct ggml_tensor * src1,
  9172. struct ggml_tensor * dst) {
  9173. assert(params->ith == 0);
  9174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9175. return;
  9176. }
  9177. const int nc = src0->ne[0];
  9178. const int nr = ggml_nelements(src1);
  9179. assert( dst->ne[0] == nc);
  9180. assert( dst->ne[1] == nr);
  9181. assert(src0->nb[0] == sizeof(float));
  9182. for (int i = 0; i < nr; ++i) {
  9183. const int r = ((int32_t *) src1->data)[i];
  9184. ggml_vec_cpy_f32(nc,
  9185. (float *) ((char *) dst->data + i*dst->nb[1]),
  9186. (float *) ((char *) src0->data + r*src0->nb[1]));
  9187. }
  9188. }
  9189. static void ggml_compute_forward_get_rows(
  9190. const struct ggml_compute_params * params,
  9191. const struct ggml_tensor * src0,
  9192. const struct ggml_tensor * src1,
  9193. struct ggml_tensor * dst) {
  9194. switch (src0->type) {
  9195. case GGML_TYPE_Q4_0:
  9196. case GGML_TYPE_Q4_1:
  9197. case GGML_TYPE_Q5_0:
  9198. case GGML_TYPE_Q5_1:
  9199. case GGML_TYPE_Q8_0:
  9200. case GGML_TYPE_Q8_1:
  9201. case GGML_TYPE_Q2_K:
  9202. case GGML_TYPE_Q3_K:
  9203. case GGML_TYPE_Q4_K:
  9204. case GGML_TYPE_Q5_K:
  9205. case GGML_TYPE_Q6_K:
  9206. {
  9207. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9208. } break;
  9209. case GGML_TYPE_F16:
  9210. {
  9211. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9212. } break;
  9213. case GGML_TYPE_F32:
  9214. {
  9215. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9216. } break;
  9217. default:
  9218. {
  9219. GGML_ASSERT(false);
  9220. } break;
  9221. }
  9222. //static bool first = true;
  9223. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9224. //if (first) {
  9225. // first = false;
  9226. //} else {
  9227. // for (int k = 0; k < dst->ne[1]; ++k) {
  9228. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9229. // for (int i = 0; i < 16; ++i) {
  9230. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9231. // }
  9232. // printf("\n");
  9233. // }
  9234. // printf("\n");
  9235. // }
  9236. // printf("\n");
  9237. // exit(0);
  9238. //}
  9239. }
  9240. // ggml_compute_forward_get_rows_back
  9241. static void ggml_compute_forward_get_rows_back_f32_f16(
  9242. const struct ggml_compute_params * params,
  9243. const struct ggml_tensor * src0,
  9244. const struct ggml_tensor * src1,
  9245. const struct ggml_tensor * opt0,
  9246. struct ggml_tensor * dst) {
  9247. GGML_ASSERT(params->ith == 0);
  9248. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9249. GGML_ASSERT(ggml_is_contiguous(opt0));
  9250. GGML_ASSERT(ggml_is_contiguous(dst));
  9251. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9253. return;
  9254. }
  9255. const int nc = src0->ne[0];
  9256. const int nr = ggml_nelements(src1);
  9257. GGML_ASSERT( dst->ne[0] == nc);
  9258. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9259. for (int i = 0; i < nr; ++i) {
  9260. const int r = ((int32_t *) src1->data)[i];
  9261. for (int j = 0; j < nc; ++j) {
  9262. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9263. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9264. }
  9265. }
  9266. }
  9267. static void ggml_compute_forward_get_rows_back_f32(
  9268. const struct ggml_compute_params * params,
  9269. const struct ggml_tensor * src0,
  9270. const struct ggml_tensor * src1,
  9271. const struct ggml_tensor * opt0,
  9272. struct ggml_tensor * dst) {
  9273. GGML_ASSERT(params->ith == 0);
  9274. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9275. GGML_ASSERT(ggml_is_contiguous(opt0));
  9276. GGML_ASSERT(ggml_is_contiguous(dst));
  9277. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9278. if (params->type == GGML_TASK_INIT) {
  9279. memset(dst->data, 0, ggml_nbytes(dst));
  9280. }
  9281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9282. return;
  9283. }
  9284. const int nc = src0->ne[0];
  9285. const int nr = ggml_nelements(src1);
  9286. GGML_ASSERT( dst->ne[0] == nc);
  9287. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9288. for (int i = 0; i < nr; ++i) {
  9289. const int r = ((int32_t *) src1->data)[i];
  9290. ggml_vec_add_f32(nc,
  9291. (float *) ((char *) dst->data + r*dst->nb[1]),
  9292. (float *) ((char *) dst->data + r*dst->nb[1]),
  9293. (float *) ((char *) src0->data + i*src0->nb[1]));
  9294. }
  9295. }
  9296. static void ggml_compute_forward_get_rows_back(
  9297. const struct ggml_compute_params * params,
  9298. const struct ggml_tensor * src0,
  9299. const struct ggml_tensor * src1,
  9300. const struct ggml_tensor * opt0,
  9301. struct ggml_tensor * dst) {
  9302. switch (src0->type) {
  9303. case GGML_TYPE_F16:
  9304. {
  9305. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9306. } break;
  9307. case GGML_TYPE_F32:
  9308. {
  9309. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9310. } break;
  9311. default:
  9312. {
  9313. GGML_ASSERT(false);
  9314. } break;
  9315. }
  9316. //static bool first = true;
  9317. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9318. //if (first) {
  9319. // first = false;
  9320. //} else {
  9321. // for (int k = 0; k < dst->ne[1]; ++k) {
  9322. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9323. // for (int i = 0; i < 16; ++i) {
  9324. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9325. // }
  9326. // printf("\n");
  9327. // }
  9328. // printf("\n");
  9329. // }
  9330. // printf("\n");
  9331. // exit(0);
  9332. //}
  9333. }
  9334. // ggml_compute_forward_diag
  9335. static void ggml_compute_forward_diag_f32(
  9336. const struct ggml_compute_params * params,
  9337. const struct ggml_tensor * src0,
  9338. struct ggml_tensor * dst) {
  9339. GGML_ASSERT(params->ith == 0);
  9340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9341. return;
  9342. }
  9343. // TODO: handle transposed/permuted matrices
  9344. const int ne00 = src0->ne[0];
  9345. const int ne01 = src0->ne[1];
  9346. const int ne02 = src0->ne[2];
  9347. const int ne03 = src0->ne[3];
  9348. const int ne0 = dst->ne[0];
  9349. const int ne1 = dst->ne[1];
  9350. const int ne2 = dst->ne[2];
  9351. const int ne3 = dst->ne[3];
  9352. GGML_ASSERT(ne00 == ne0);
  9353. GGML_ASSERT(ne00 == ne1);
  9354. GGML_ASSERT(ne01 == 1);
  9355. GGML_ASSERT(ne02 == ne2);
  9356. GGML_ASSERT(ne03 == ne3);
  9357. const int nb00 = src0->nb[0];
  9358. //const int nb01 = src0->nb[1];
  9359. const int nb02 = src0->nb[2];
  9360. const int nb03 = src0->nb[3];
  9361. const int nb0 = dst->nb[0];
  9362. const int nb1 = dst->nb[1];
  9363. const int nb2 = dst->nb[2];
  9364. const int nb3 = dst->nb[3];
  9365. GGML_ASSERT(nb00 == sizeof(float));
  9366. GGML_ASSERT(nb0 == sizeof(float));
  9367. for (int i3 = 0; i3 < ne3; i3++) {
  9368. for (int i2 = 0; i2 < ne2; i2++) {
  9369. for (int i1 = 0; i1 < ne1; i1++) {
  9370. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9371. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9372. for (int i0 = 0; i0 < i1; i0++) {
  9373. d[i0] = 0;
  9374. }
  9375. d[i1] = s[i1];
  9376. for (int i0 = i1+1; i0 < ne0; i0++) {
  9377. d[i0] = 0;
  9378. }
  9379. }
  9380. }
  9381. }
  9382. }
  9383. static void ggml_compute_forward_diag(
  9384. const struct ggml_compute_params * params,
  9385. const struct ggml_tensor * src0,
  9386. struct ggml_tensor * dst) {
  9387. switch (src0->type) {
  9388. case GGML_TYPE_F32:
  9389. {
  9390. ggml_compute_forward_diag_f32(params, src0, dst);
  9391. } break;
  9392. default:
  9393. {
  9394. GGML_ASSERT(false);
  9395. } break;
  9396. }
  9397. }
  9398. // ggml_compute_forward_diag_mask_inf
  9399. static void ggml_compute_forward_diag_mask_f32(
  9400. const struct ggml_compute_params * params,
  9401. const struct ggml_tensor * src0,
  9402. const struct ggml_tensor * src1,
  9403. struct ggml_tensor * dst,
  9404. const float value) {
  9405. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9406. GGML_ASSERT(ggml_nelements(src1) == 2);
  9407. const int ith = params->ith;
  9408. const int nth = params->nth;
  9409. const int n_past = ((int32_t *) src1->data)[0];
  9410. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9411. GGML_ASSERT(n_past >= 0);
  9412. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9413. // memcpy needs to be synchronized across threads to avoid race conditions.
  9414. // => do it in INIT phase
  9415. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9416. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9417. memcpy(
  9418. ((char *) dst->data),
  9419. ((char *) src0->data),
  9420. ggml_nbytes(dst));
  9421. }
  9422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9423. return;
  9424. }
  9425. // TODO: handle transposed/permuted matrices
  9426. const int n = ggml_nrows(src0);
  9427. const int nc = src0->ne[0];
  9428. const int nr = src0->ne[1];
  9429. const int nz = n/nr;
  9430. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9431. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9432. for (int k = 0; k < nz; k++) {
  9433. for (int j = ith; j < nr; j += nth) {
  9434. for (int i = n_past; i < nc; i++) {
  9435. if (i > n_past + j) {
  9436. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9437. }
  9438. }
  9439. }
  9440. }
  9441. }
  9442. static void ggml_compute_forward_diag_mask_inf(
  9443. const struct ggml_compute_params * params,
  9444. const struct ggml_tensor * src0,
  9445. const struct ggml_tensor * src1,
  9446. struct ggml_tensor * dst) {
  9447. switch (src0->type) {
  9448. case GGML_TYPE_F32:
  9449. {
  9450. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9451. } break;
  9452. default:
  9453. {
  9454. GGML_ASSERT(false);
  9455. } break;
  9456. }
  9457. }
  9458. static void ggml_compute_forward_diag_mask_zero(
  9459. const struct ggml_compute_params * params,
  9460. const struct ggml_tensor * src0,
  9461. const struct ggml_tensor * src1,
  9462. struct ggml_tensor * dst) {
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F32:
  9465. {
  9466. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9467. } break;
  9468. default:
  9469. {
  9470. GGML_ASSERT(false);
  9471. } break;
  9472. }
  9473. }
  9474. // ggml_compute_forward_soft_max
  9475. static void ggml_compute_forward_soft_max_f32(
  9476. const struct ggml_compute_params * params,
  9477. const struct ggml_tensor * src0,
  9478. struct ggml_tensor * dst) {
  9479. GGML_ASSERT(ggml_is_contiguous(src0));
  9480. GGML_ASSERT(ggml_is_contiguous(dst));
  9481. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9483. return;
  9484. }
  9485. // TODO: handle transposed/permuted matrices
  9486. const int ith = params->ith;
  9487. const int nth = params->nth;
  9488. const int nc = src0->ne[0];
  9489. const int nr = ggml_nrows(src0);
  9490. // rows per thread
  9491. const int dr = (nr + nth - 1)/nth;
  9492. // row range for this thread
  9493. const int ir0 = dr*ith;
  9494. const int ir1 = MIN(ir0 + dr, nr);
  9495. for (int i1 = ir0; i1 < ir1; i1++) {
  9496. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9497. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9498. #ifndef NDEBUG
  9499. for (int i = 0; i < nc; ++i) {
  9500. //printf("p[%d] = %f\n", i, p[i]);
  9501. assert(!isnan(sp[i]));
  9502. }
  9503. #endif
  9504. float max = -INFINITY;
  9505. ggml_vec_max_f32(nc, &max, sp);
  9506. ggml_float sum = 0.0;
  9507. uint16_t scvt;
  9508. for (int i = 0; i < nc; i++) {
  9509. if (sp[i] == -INFINITY) {
  9510. dp[i] = 0.0f;
  9511. } else {
  9512. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9513. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9514. memcpy(&scvt, &s, sizeof(scvt));
  9515. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9516. sum += (ggml_float)val;
  9517. dp[i] = val;
  9518. }
  9519. }
  9520. assert(sum > 0.0);
  9521. sum = 1.0/sum;
  9522. ggml_vec_scale_f32(nc, dp, sum);
  9523. #ifndef NDEBUG
  9524. for (int i = 0; i < nc; ++i) {
  9525. assert(!isnan(dp[i]));
  9526. assert(!isinf(dp[i]));
  9527. }
  9528. #endif
  9529. }
  9530. }
  9531. static void ggml_compute_forward_soft_max(
  9532. const struct ggml_compute_params * params,
  9533. const struct ggml_tensor * src0,
  9534. struct ggml_tensor * dst) {
  9535. switch (src0->type) {
  9536. case GGML_TYPE_F32:
  9537. {
  9538. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9539. } break;
  9540. default:
  9541. {
  9542. GGML_ASSERT(false);
  9543. } break;
  9544. }
  9545. }
  9546. // ggml_compute_forward_soft_max_back
  9547. static void ggml_compute_forward_soft_max_back_f32(
  9548. const struct ggml_compute_params * params,
  9549. const struct ggml_tensor * src0,
  9550. const struct ggml_tensor * src1,
  9551. struct ggml_tensor * dst) {
  9552. GGML_ASSERT(ggml_is_contiguous(src0));
  9553. GGML_ASSERT(ggml_is_contiguous(src1));
  9554. GGML_ASSERT(ggml_is_contiguous(dst));
  9555. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9556. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9558. return;
  9559. }
  9560. // TODO: handle transposed/permuted matrices
  9561. const int ith = params->ith;
  9562. const int nth = params->nth;
  9563. const int nc = src0->ne[0];
  9564. const int nr = ggml_nrows(src0);
  9565. // rows per thread
  9566. const int dr = (nr + nth - 1)/nth;
  9567. // row range for this thread
  9568. const int ir0 = dr*ith;
  9569. const int ir1 = MIN(ir0 + dr, nr);
  9570. for (int i1 = ir0; i1 < ir1; i1++) {
  9571. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9572. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9573. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9574. #ifndef NDEBUG
  9575. for (int i = 0; i < nc; ++i) {
  9576. //printf("p[%d] = %f\n", i, p[i]);
  9577. assert(!isnan(dy[i]));
  9578. assert(!isnan(y[i]));
  9579. }
  9580. #endif
  9581. // Jii = yi - yi*yi
  9582. // Jij = -yi*yj
  9583. // J = diag(y)-y.T*y
  9584. // dx = J * dy
  9585. // dxk = sum_i(Jki * dyi)
  9586. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9587. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9588. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9589. // dxk = -yk * dot(y, dy) + yk*dyk
  9590. // dxk = yk * (- dot(y, dy) + dyk)
  9591. // dxk = yk * (dyk - dot(y, dy))
  9592. //
  9593. // post-order:
  9594. // dot_y_dy := dot(y, dy)
  9595. // dx := dy
  9596. // dx := dx - dot_y_dy
  9597. // dx := dx * y
  9598. // linear runtime, no additional memory
  9599. float dot_y_dy = 0;
  9600. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9601. ggml_vec_cpy_f32 (nc, dx, dy);
  9602. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9603. ggml_vec_mul_f32 (nc, dx, dx, y);
  9604. #ifndef NDEBUG
  9605. for (int i = 0; i < nc; ++i) {
  9606. assert(!isnan(dx[i]));
  9607. assert(!isinf(dx[i]));
  9608. }
  9609. #endif
  9610. }
  9611. }
  9612. static void ggml_compute_forward_soft_max_back(
  9613. const struct ggml_compute_params * params,
  9614. const struct ggml_tensor * src0,
  9615. const struct ggml_tensor * src1,
  9616. struct ggml_tensor * dst) {
  9617. switch (src0->type) {
  9618. case GGML_TYPE_F32:
  9619. {
  9620. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9621. } break;
  9622. default:
  9623. {
  9624. GGML_ASSERT(false);
  9625. } break;
  9626. }
  9627. }
  9628. // ggml_compute_forward_alibi
  9629. static void ggml_compute_forward_alibi_f32(
  9630. const struct ggml_compute_params * params,
  9631. const struct ggml_tensor * src0,
  9632. const struct ggml_tensor * src1,
  9633. struct ggml_tensor * dst) {
  9634. assert(params->ith == 0);
  9635. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9636. GGML_ASSERT(ggml_nelements(src1) == 3);
  9637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9638. return;
  9639. }
  9640. const int n_past = ((int32_t *) src1->data)[0];
  9641. const int n_head = ((int32_t *) src1->data)[1];
  9642. const float max_bias = ((float *) src1->data)[2];
  9643. assert(n_past >= 0);
  9644. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9645. const int ne1 = src0->ne[1]; // seq_len_without_past
  9646. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9647. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9648. const int n = ggml_nrows(src0);
  9649. const int ne2_ne3 = n/ne1; // ne2*ne3
  9650. const int nb0 = src0->nb[0];
  9651. const int nb1 = src0->nb[1];
  9652. const int nb2 = src0->nb[2];
  9653. //const int nb3 = src0->nb[3];
  9654. assert(nb0 == sizeof(float));
  9655. assert(ne1 + n_past == ne0); (void) n_past;
  9656. // add alibi to src0 (KQ_scaled)
  9657. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9658. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9659. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9660. for (int i = 0; i < ne0; i++) {
  9661. for (int j = 0; j < ne1; j++) {
  9662. for (int k = 0; k < ne2_ne3; k++) {
  9663. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9664. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9665. // TODO: k*nb2 or k*nb3
  9666. float m_k;
  9667. if (k < n_heads_log2_floor) {
  9668. m_k = powf(m0, k + 1);
  9669. } else {
  9670. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9671. }
  9672. pdst[0] = (i-ne0+1) * m_k + src[0];
  9673. }
  9674. }
  9675. }
  9676. }
  9677. static void ggml_compute_forward_alibi_f16(
  9678. const struct ggml_compute_params * params,
  9679. const struct ggml_tensor * src0,
  9680. const struct ggml_tensor * src1,
  9681. struct ggml_tensor * dst) {
  9682. assert(params->ith == 0);
  9683. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9684. GGML_ASSERT(ggml_nelements(src1) == 3);
  9685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9686. return;
  9687. }
  9688. const int n_past = ((int32_t *) src1->data)[0];
  9689. const int n_head = ((int32_t *) src1->data)[1];
  9690. const float max_bias = ((float *) src1->data)[2];
  9691. assert(n_past >= 0);
  9692. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9693. const int ne1 = src0->ne[1]; // seq_len_without_past
  9694. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9695. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9696. const int n = ggml_nrows(src0);
  9697. const int ne2_ne3 = n/ne1; // ne2*ne3
  9698. const int nb0 = src0->nb[0];
  9699. const int nb1 = src0->nb[1];
  9700. const int nb2 = src0->nb[2];
  9701. //const int nb3 = src0->nb[3];
  9702. assert(nb0 == sizeof(ggml_fp16_t));
  9703. assert(ne1 + n_past == ne0); (void) n_past;
  9704. // add alibi to src0 (KQ_scaled)
  9705. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9706. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9707. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9708. for (int i = 0; i < ne0; i++) {
  9709. for (int j = 0; j < ne1; j++) {
  9710. for (int k = 0; k < ne2_ne3; k++) {
  9711. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9712. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9713. // TODO: k*nb2 or k*nb3
  9714. float m_k;
  9715. if (k < n_heads_log2_floor) {
  9716. m_k = powf(m0, k + 1);
  9717. } else {
  9718. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9719. }
  9720. // we return F32
  9721. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9722. }
  9723. }
  9724. }
  9725. }
  9726. static void ggml_compute_forward_alibi(
  9727. const struct ggml_compute_params * params,
  9728. const struct ggml_tensor * src0,
  9729. const struct ggml_tensor * src1,
  9730. struct ggml_tensor * dst) {
  9731. switch (src0->type) {
  9732. case GGML_TYPE_F16:
  9733. {
  9734. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9735. } break;
  9736. case GGML_TYPE_F32:
  9737. {
  9738. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9739. } break;
  9740. case GGML_TYPE_Q4_0:
  9741. case GGML_TYPE_Q4_1:
  9742. case GGML_TYPE_Q5_0:
  9743. case GGML_TYPE_Q5_1:
  9744. case GGML_TYPE_Q8_0:
  9745. case GGML_TYPE_Q8_1:
  9746. case GGML_TYPE_Q2_K:
  9747. case GGML_TYPE_Q3_K:
  9748. case GGML_TYPE_Q4_K:
  9749. case GGML_TYPE_Q5_K:
  9750. case GGML_TYPE_Q6_K:
  9751. case GGML_TYPE_Q8_K:
  9752. case GGML_TYPE_I8:
  9753. case GGML_TYPE_I16:
  9754. case GGML_TYPE_I32:
  9755. case GGML_TYPE_COUNT:
  9756. {
  9757. GGML_ASSERT(false);
  9758. } break;
  9759. }
  9760. }
  9761. // ggml_compute_forward_clamp
  9762. static void ggml_compute_forward_clamp_f32(
  9763. const struct ggml_compute_params * params,
  9764. const struct ggml_tensor * src0,
  9765. const struct ggml_tensor * src1,
  9766. struct ggml_tensor * dst) {
  9767. assert(params->ith == 0);
  9768. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9769. GGML_ASSERT(ggml_nelements(src1) == 2);
  9770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9771. return;
  9772. }
  9773. const float min = ((float *) src1->data)[0];
  9774. const float max = ((float *) src1->data)[1];
  9775. const int ith = params->ith;
  9776. const int nth = params->nth;
  9777. const int n = ggml_nrows(src0);
  9778. const int nc = src0->ne[0];
  9779. const size_t nb00 = src0->nb[0];
  9780. const size_t nb01 = src0->nb[1];
  9781. const size_t nb0 = dst->nb[0];
  9782. const size_t nb1 = dst->nb[1];
  9783. GGML_ASSERT( nb0 == sizeof(float));
  9784. GGML_ASSERT(nb00 == sizeof(float));
  9785. for (int j = ith; j < n; j += nth) {
  9786. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9787. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9788. for (int i = 0; i < nc; i++) {
  9789. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9790. }
  9791. }
  9792. }
  9793. static void ggml_compute_forward_clamp(
  9794. const struct ggml_compute_params * params,
  9795. const struct ggml_tensor * src0,
  9796. const struct ggml_tensor * src1,
  9797. struct ggml_tensor * dst) {
  9798. switch (src0->type) {
  9799. case GGML_TYPE_F32:
  9800. {
  9801. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9802. } break;
  9803. case GGML_TYPE_F16:
  9804. case GGML_TYPE_Q4_0:
  9805. case GGML_TYPE_Q4_1:
  9806. case GGML_TYPE_Q5_0:
  9807. case GGML_TYPE_Q5_1:
  9808. case GGML_TYPE_Q8_0:
  9809. case GGML_TYPE_Q8_1:
  9810. case GGML_TYPE_Q2_K:
  9811. case GGML_TYPE_Q3_K:
  9812. case GGML_TYPE_Q4_K:
  9813. case GGML_TYPE_Q5_K:
  9814. case GGML_TYPE_Q6_K:
  9815. case GGML_TYPE_Q8_K:
  9816. case GGML_TYPE_I8:
  9817. case GGML_TYPE_I16:
  9818. case GGML_TYPE_I32:
  9819. case GGML_TYPE_COUNT:
  9820. {
  9821. GGML_ASSERT(false);
  9822. } break;
  9823. }
  9824. }
  9825. // ggml_compute_forward_rope
  9826. static void ggml_compute_forward_rope_f32(
  9827. const struct ggml_compute_params * params,
  9828. const struct ggml_tensor * src0,
  9829. const struct ggml_tensor * src1,
  9830. struct ggml_tensor * dst) {
  9831. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9832. GGML_ASSERT(ggml_nelements(src1) == 3);
  9833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9834. return;
  9835. }
  9836. const int n_past = ((int32_t *) src1->data)[0];
  9837. const int n_dims = ((int32_t *) src1->data)[1];
  9838. const int mode = ((int32_t *) src1->data)[2];
  9839. assert(n_past >= 0);
  9840. const size_t nb00 = src0->nb[0];
  9841. const size_t nb01 = src0->nb[1];
  9842. const size_t nb02 = src0->nb[2];
  9843. const size_t nb03 = src0->nb[3];
  9844. const int64_t ne0 = dst->ne[0];
  9845. const int64_t ne1 = dst->ne[1];
  9846. const int64_t ne2 = dst->ne[2];
  9847. const int64_t ne3 = dst->ne[3];
  9848. const size_t nb0 = dst->nb[0];
  9849. const size_t nb1 = dst->nb[1];
  9850. const size_t nb2 = dst->nb[2];
  9851. const size_t nb3 = dst->nb[3];
  9852. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9853. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9854. GGML_ASSERT(nb00 == sizeof(float));
  9855. const int ith = params->ith;
  9856. const int nth = params->nth;
  9857. const int nr = ggml_nrows(dst);
  9858. GGML_ASSERT(n_dims <= ne0);
  9859. GGML_ASSERT(n_dims % 2 == 0);
  9860. // rows per thread
  9861. const int dr = (nr + nth - 1)/nth;
  9862. // row range for this thread
  9863. const int ir0 = dr*ith;
  9864. const int ir1 = MIN(ir0 + dr, nr);
  9865. // row index used to determine which thread to use
  9866. int ir = 0;
  9867. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9868. const bool is_neox = mode & 2;
  9869. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9870. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9871. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9872. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9873. if (ir++ < ir0) continue;
  9874. if (ir > ir1) break;
  9875. float theta = (float)p;
  9876. if (!is_neox) {
  9877. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9878. const float cos_theta = cosf(theta);
  9879. const float sin_theta = sinf(theta);
  9880. theta *= theta_scale;
  9881. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9882. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9883. const float x0 = src[0];
  9884. const float x1 = src[1];
  9885. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9886. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9887. }
  9888. } else {
  9889. // TODO: this is probably wrong, but I can't figure it out ..
  9890. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9891. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9892. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9893. const float cos_theta = cosf(theta);
  9894. const float sin_theta = sinf(theta);
  9895. theta *= theta_scale;
  9896. const int64_t i0 = ib*n_dims + ic/2;
  9897. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9898. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9899. const float x0 = src[0];
  9900. const float x1 = src[n_dims/2];
  9901. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9902. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9903. }
  9904. }
  9905. }
  9906. }
  9907. }
  9908. }
  9909. }
  9910. static void ggml_compute_forward_rope_f16(
  9911. const struct ggml_compute_params * params,
  9912. const struct ggml_tensor * src0,
  9913. const struct ggml_tensor * src1,
  9914. struct ggml_tensor * dst) {
  9915. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9916. GGML_ASSERT(ggml_nelements(src1) == 3);
  9917. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9918. return;
  9919. }
  9920. const int n_past = ((int32_t *) src1->data)[0];
  9921. const int n_dims = ((int32_t *) src1->data)[1];
  9922. const int mode = ((int32_t *) src1->data)[2];
  9923. assert(n_past >= 0);
  9924. const size_t nb00 = src0->nb[0];
  9925. const size_t nb01 = src0->nb[1];
  9926. const size_t nb02 = src0->nb[2];
  9927. const size_t nb03 = src0->nb[3];
  9928. const int64_t ne0 = dst->ne[0];
  9929. const int64_t ne1 = dst->ne[1];
  9930. const int64_t ne2 = dst->ne[2];
  9931. const int64_t ne3 = dst->ne[3];
  9932. const size_t nb0 = dst->nb[0];
  9933. const size_t nb1 = dst->nb[1];
  9934. const size_t nb2 = dst->nb[2];
  9935. const size_t nb3 = dst->nb[3];
  9936. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9937. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9938. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9939. const int ith = params->ith;
  9940. const int nth = params->nth;
  9941. const int nr = ggml_nrows(dst);
  9942. GGML_ASSERT(n_dims <= ne0);
  9943. GGML_ASSERT(n_dims % 2 == 0);
  9944. // rows per thread
  9945. const int dr = (nr + nth - 1)/nth;
  9946. // row range for this thread
  9947. const int ir0 = dr*ith;
  9948. const int ir1 = MIN(ir0 + dr, nr);
  9949. // row index used to determine which thread to use
  9950. int ir = 0;
  9951. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9952. const bool is_neox = mode & 2;
  9953. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9954. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9955. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9956. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9957. if (ir++ < ir0) continue;
  9958. if (ir > ir1) break;
  9959. float theta = (float)p;
  9960. if (!is_neox) {
  9961. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9962. const float cos_theta = cosf(theta);
  9963. const float sin_theta = sinf(theta);
  9964. theta *= theta_scale;
  9965. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9966. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9967. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9968. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9969. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9970. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9971. }
  9972. } else {
  9973. // TODO: this is probably wrong, but I can't figure it out ..
  9974. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9975. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9976. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9977. const float cos_theta = cosf(theta);
  9978. const float sin_theta = sinf(theta);
  9979. theta *= theta_scale;
  9980. const int64_t i0 = ib*n_dims + ic/2;
  9981. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9982. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9983. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9984. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9985. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9986. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9987. }
  9988. }
  9989. }
  9990. }
  9991. }
  9992. }
  9993. }
  9994. static void ggml_compute_forward_rope(
  9995. const struct ggml_compute_params * params,
  9996. const struct ggml_tensor * src0,
  9997. const struct ggml_tensor * src1,
  9998. struct ggml_tensor * dst) {
  9999. switch (src0->type) {
  10000. case GGML_TYPE_F16:
  10001. {
  10002. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10003. } break;
  10004. case GGML_TYPE_F32:
  10005. {
  10006. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10007. } break;
  10008. default:
  10009. {
  10010. GGML_ASSERT(false);
  10011. } break;
  10012. }
  10013. }
  10014. // ggml_compute_forward_rope_back
  10015. static void ggml_compute_forward_rope_back_f32(
  10016. const struct ggml_compute_params * params,
  10017. const struct ggml_tensor * src0,
  10018. const struct ggml_tensor * src1,
  10019. struct ggml_tensor * dst) {
  10020. assert(src1->type == GGML_TYPE_I32);
  10021. assert(ggml_nelements(src1) == 3);
  10022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10023. return;
  10024. }
  10025. // y = rope(x, src1)
  10026. // dx = rope_back(dy, src1)
  10027. // src0 is dy, src1 contains options
  10028. const int n_past = ((int32_t *) src1->data)[0];
  10029. const int n_dims = ((int32_t *) src1->data)[1];
  10030. const int mode = ((int32_t *) src1->data)[2];
  10031. assert(n_past >= 0);
  10032. const size_t nb00 = src0->nb[0];
  10033. const size_t nb01 = src0->nb[1];
  10034. const size_t nb02 = src0->nb[2];
  10035. const size_t nb03 = src0->nb[3];
  10036. const int64_t ne0 = dst->ne[0];
  10037. const int64_t ne1 = dst->ne[1];
  10038. const int64_t ne2 = dst->ne[2];
  10039. const int64_t ne3 = dst->ne[3];
  10040. const size_t nb0 = dst->nb[0];
  10041. const size_t nb1 = dst->nb[1];
  10042. const size_t nb2 = dst->nb[2];
  10043. const size_t nb3 = dst->nb[3];
  10044. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10045. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10046. assert(nb0 == sizeof(float));
  10047. const int ith = params->ith;
  10048. const int nth = params->nth;
  10049. const int nr = ggml_nrows(dst);
  10050. // rows per thread
  10051. const int dr = (nr + nth - 1)/nth;
  10052. // row range for this thread
  10053. const int ir0 = dr*ith;
  10054. const int ir1 = MIN(ir0 + dr, nr);
  10055. // row index used to determine which thread to use
  10056. int ir = 0;
  10057. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10058. const bool is_neox = mode & 2;
  10059. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10060. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10061. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10062. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10063. if (ir++ < ir0) continue;
  10064. if (ir > ir1) break;
  10065. float theta = (float)p;
  10066. if (!is_neox) {
  10067. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10068. const float cos_theta = cosf(theta);
  10069. const float sin_theta = sinf(theta);
  10070. theta *= theta_scale;
  10071. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10072. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10073. const float dy0 = dy[0];
  10074. const float dy1 = dy[1];
  10075. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10076. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10077. }
  10078. } else {
  10079. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10080. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10081. const float cos_theta = cosf(theta);
  10082. const float sin_theta = sinf(theta);
  10083. theta *= theta_scale;
  10084. const int64_t i0 = ib*n_dims + ic/2;
  10085. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10086. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10087. const float dy0 = dy[0];
  10088. const float dy1 = dy[n_dims/2];
  10089. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10090. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10091. }
  10092. }
  10093. }
  10094. }
  10095. }
  10096. }
  10097. }
  10098. static void ggml_compute_forward_rope_back_f16(
  10099. const struct ggml_compute_params * params,
  10100. const struct ggml_tensor * src0,
  10101. const struct ggml_tensor * src1,
  10102. struct ggml_tensor * dst) {
  10103. assert(src1->type == GGML_TYPE_I32);
  10104. assert(ggml_nelements(src1) == 3);
  10105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10106. return;
  10107. }
  10108. // y = rope(x, src1)
  10109. // dx = rope_back(dy, src1)
  10110. // src0 is dy, src1 contains options
  10111. const int n_past = ((int32_t *) src1->data)[0];
  10112. const int n_dims = ((int32_t *) src1->data)[1];
  10113. const int mode = ((int32_t *) src1->data)[2];
  10114. assert(n_past >= 0);
  10115. const size_t nb00 = src0->nb[0];
  10116. const size_t nb01 = src0->nb[1];
  10117. const size_t nb02 = src0->nb[2];
  10118. const size_t nb03 = src0->nb[3];
  10119. const int64_t ne0 = dst->ne[0];
  10120. const int64_t ne1 = dst->ne[1];
  10121. const int64_t ne2 = dst->ne[2];
  10122. const int64_t ne3 = dst->ne[3];
  10123. const size_t nb0 = dst->nb[0];
  10124. const size_t nb1 = dst->nb[1];
  10125. const size_t nb2 = dst->nb[2];
  10126. const size_t nb3 = dst->nb[3];
  10127. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10128. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10129. assert(nb0 == sizeof(ggml_fp16_t));
  10130. const int ith = params->ith;
  10131. const int nth = params->nth;
  10132. const int nr = ggml_nrows(dst);
  10133. // rows per thread
  10134. const int dr = (nr + nth - 1)/nth;
  10135. // row range for this thread
  10136. const int ir0 = dr*ith;
  10137. const int ir1 = MIN(ir0 + dr, nr);
  10138. // row index used to determine which thread to use
  10139. int ir = 0;
  10140. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10141. const bool is_neox = mode & 2;
  10142. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10143. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10144. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10145. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10146. if (ir++ < ir0) continue;
  10147. if (ir > ir1) break;
  10148. float theta = (float)p;
  10149. if (!is_neox) {
  10150. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10151. const float cos_theta = cosf(theta);
  10152. const float sin_theta = sinf(theta);
  10153. theta *= theta_scale;
  10154. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10155. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10156. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10157. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10158. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10159. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10160. }
  10161. } else {
  10162. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10163. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10164. const float cos_theta = cosf(theta);
  10165. const float sin_theta = sinf(theta);
  10166. theta *= theta_scale;
  10167. const int64_t i0 = ib*n_dims + ic/2;
  10168. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10169. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10170. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10171. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10172. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10173. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10174. }
  10175. }
  10176. }
  10177. }
  10178. }
  10179. }
  10180. }
  10181. static void ggml_compute_forward_rope_back(
  10182. const struct ggml_compute_params * params,
  10183. const struct ggml_tensor * src0,
  10184. const struct ggml_tensor * src1,
  10185. struct ggml_tensor * dst) {
  10186. switch (src0->type) {
  10187. case GGML_TYPE_F16:
  10188. {
  10189. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10190. } break;
  10191. case GGML_TYPE_F32:
  10192. {
  10193. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10194. } break;
  10195. default:
  10196. {
  10197. GGML_ASSERT(false);
  10198. } break;
  10199. }
  10200. }
  10201. // ggml_compute_forward_conv_1d_s1_ph
  10202. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10203. const struct ggml_compute_params * params,
  10204. const struct ggml_tensor * src0,
  10205. const struct ggml_tensor * src1,
  10206. struct ggml_tensor * dst) {
  10207. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10208. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10209. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10210. int64_t t0 = ggml_perf_time_us();
  10211. UNUSED(t0);
  10212. const int64_t ne00 = src0->ne[0];
  10213. const int64_t ne01 = src0->ne[1];
  10214. const int64_t ne02 = src0->ne[2];
  10215. //const int64_t ne03 = src0->ne[3];
  10216. const int64_t ne10 = src1->ne[0];
  10217. const int64_t ne11 = src1->ne[1];
  10218. //const int64_t ne12 = src1->ne[2];
  10219. //const int64_t ne13 = src1->ne[3];
  10220. //const int64_t ne0 = dst->ne[0];
  10221. //const int64_t ne1 = dst->ne[1];
  10222. //const int64_t ne2 = dst->ne[2];
  10223. //const int64_t ne3 = dst->ne[3];
  10224. //const int64_t ne = ne0*ne1*ne2*ne3;
  10225. const int nb00 = src0->nb[0];
  10226. const int nb01 = src0->nb[1];
  10227. const int nb02 = src0->nb[2];
  10228. //const int nb03 = src0->nb[3];
  10229. const int nb10 = src1->nb[0];
  10230. const int nb11 = src1->nb[1];
  10231. //const int nb12 = src1->nb[2];
  10232. //const int nb13 = src1->nb[3];
  10233. //const int nb0 = dst->nb[0];
  10234. const int nb1 = dst->nb[1];
  10235. //const int nb2 = dst->nb[2];
  10236. //const int nb3 = dst->nb[3];
  10237. const int ith = params->ith;
  10238. const int nth = params->nth;
  10239. const int nk = ne00;
  10240. const int nh = nk/2;
  10241. const int ew0 = ggml_up32(ne01);
  10242. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10243. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10244. GGML_ASSERT(nb10 == sizeof(float));
  10245. if (params->type == GGML_TASK_INIT) {
  10246. // TODO: fix this memset (wsize is overestimated)
  10247. memset(params->wdata, 0, params->wsize);
  10248. // prepare kernel data (src0)
  10249. {
  10250. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10251. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10252. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10253. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10254. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10255. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10256. dst_data[i00*ew0 + i01] = src[i00];
  10257. }
  10258. }
  10259. }
  10260. }
  10261. // prepare source data (src1)
  10262. {
  10263. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10264. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10265. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10266. ggml_fp16_t * dst_data = wdata;
  10267. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10268. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10269. }
  10270. }
  10271. }
  10272. return;
  10273. }
  10274. if (params->type == GGML_TASK_FINALIZE) {
  10275. return;
  10276. }
  10277. // total rows in dst
  10278. const int nr = ne02;
  10279. // rows per thread
  10280. const int dr = (nr + nth - 1)/nth;
  10281. // row range for this thread
  10282. const int ir0 = dr*ith;
  10283. const int ir1 = MIN(ir0 + dr, nr);
  10284. for (int i1 = ir0; i1 < ir1; i1++) {
  10285. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10286. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10287. dst_data[i0] = 0;
  10288. for (int k = -nh; k <= nh; k++) {
  10289. float v = 0.0f;
  10290. ggml_vec_dot_f16(ew0, &v,
  10291. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10292. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10293. dst_data[i0] += v;
  10294. }
  10295. }
  10296. }
  10297. }
  10298. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10299. const struct ggml_compute_params * params,
  10300. const struct ggml_tensor * src0,
  10301. const struct ggml_tensor * src1,
  10302. struct ggml_tensor * dst) {
  10303. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10304. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10305. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10306. int64_t t0 = ggml_perf_time_us();
  10307. UNUSED(t0);
  10308. const int64_t ne00 = src0->ne[0];
  10309. const int64_t ne01 = src0->ne[1];
  10310. const int64_t ne02 = src0->ne[2];
  10311. //const int64_t ne03 = src0->ne[3];
  10312. const int64_t ne10 = src1->ne[0];
  10313. const int64_t ne11 = src1->ne[1];
  10314. //const int64_t ne12 = src1->ne[2];
  10315. //const int64_t ne13 = src1->ne[3];
  10316. //const int64_t ne0 = dst->ne[0];
  10317. //const int64_t ne1 = dst->ne[1];
  10318. //const int64_t ne2 = dst->ne[2];
  10319. //const int64_t ne3 = dst->ne[3];
  10320. //const int64_t ne = ne0*ne1*ne2*ne3;
  10321. const int nb00 = src0->nb[0];
  10322. const int nb01 = src0->nb[1];
  10323. const int nb02 = src0->nb[2];
  10324. //const int nb03 = src0->nb[3];
  10325. const int nb10 = src1->nb[0];
  10326. const int nb11 = src1->nb[1];
  10327. //const int nb12 = src1->nb[2];
  10328. //const int nb13 = src1->nb[3];
  10329. //const int nb0 = dst->nb[0];
  10330. const int nb1 = dst->nb[1];
  10331. //const int nb2 = dst->nb[2];
  10332. //const int nb3 = dst->nb[3];
  10333. const int ith = params->ith;
  10334. const int nth = params->nth;
  10335. const int nk = ne00;
  10336. const int nh = nk/2;
  10337. const int ew0 = ggml_up32(ne01);
  10338. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10339. GGML_ASSERT(nb00 == sizeof(float));
  10340. GGML_ASSERT(nb10 == sizeof(float));
  10341. if (params->type == GGML_TASK_INIT) {
  10342. // TODO: fix this memset (wsize is overestimated)
  10343. memset(params->wdata, 0, params->wsize);
  10344. // prepare kernel data (src0)
  10345. {
  10346. float * const wdata = (float *) params->wdata + 0;
  10347. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10348. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10349. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10350. float * dst_data = wdata + i02*ew0*ne00;
  10351. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10352. dst_data[i00*ew0 + i01] = src[i00];
  10353. }
  10354. }
  10355. }
  10356. }
  10357. // prepare source data (src1)
  10358. {
  10359. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10360. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10361. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10362. float * dst_data = wdata;
  10363. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10364. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10365. }
  10366. }
  10367. }
  10368. return;
  10369. }
  10370. if (params->type == GGML_TASK_FINALIZE) {
  10371. return;
  10372. }
  10373. // total rows in dst
  10374. const int nr = ne02;
  10375. // rows per thread
  10376. const int dr = (nr + nth - 1)/nth;
  10377. // row range for this thread
  10378. const int ir0 = dr*ith;
  10379. const int ir1 = MIN(ir0 + dr, nr);
  10380. for (int i1 = ir0; i1 < ir1; i1++) {
  10381. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10382. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10383. dst_data[i0] = 0;
  10384. for (int k = -nh; k <= nh; k++) {
  10385. float v = 0.0f;
  10386. ggml_vec_dot_f32(ew0, &v,
  10387. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10388. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10389. dst_data[i0] += v;
  10390. }
  10391. }
  10392. }
  10393. }
  10394. static void ggml_compute_forward_conv_1d_s1_ph(
  10395. const struct ggml_compute_params * params,
  10396. const struct ggml_tensor * src0,
  10397. const struct ggml_tensor * src1,
  10398. struct ggml_tensor * dst) {
  10399. switch (src0->type) {
  10400. case GGML_TYPE_F16:
  10401. {
  10402. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10403. } break;
  10404. case GGML_TYPE_F32:
  10405. {
  10406. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10407. } break;
  10408. default:
  10409. {
  10410. GGML_ASSERT(false);
  10411. } break;
  10412. }
  10413. }
  10414. // ggml_compute_forward_conv_1d_s2_ph
  10415. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10416. const struct ggml_compute_params * params,
  10417. const struct ggml_tensor * src0,
  10418. const struct ggml_tensor * src1,
  10419. struct ggml_tensor * dst) {
  10420. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10421. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10422. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10423. int64_t t0 = ggml_perf_time_us();
  10424. UNUSED(t0);
  10425. const int64_t ne00 = src0->ne[0];
  10426. const int64_t ne01 = src0->ne[1];
  10427. const int64_t ne02 = src0->ne[2];
  10428. //const int64_t ne03 = src0->ne[3];
  10429. const int64_t ne10 = src1->ne[0];
  10430. const int64_t ne11 = src1->ne[1];
  10431. //const int64_t ne12 = src1->ne[2];
  10432. //const int64_t ne13 = src1->ne[3];
  10433. //const int64_t ne0 = dst->ne[0];
  10434. //const int64_t ne1 = dst->ne[1];
  10435. //const int64_t ne2 = dst->ne[2];
  10436. //const int64_t ne3 = dst->ne[3];
  10437. //const int64_t ne = ne0*ne1*ne2*ne3;
  10438. const int nb00 = src0->nb[0];
  10439. const int nb01 = src0->nb[1];
  10440. const int nb02 = src0->nb[2];
  10441. //const int nb03 = src0->nb[3];
  10442. const int nb10 = src1->nb[0];
  10443. const int nb11 = src1->nb[1];
  10444. //const int nb12 = src1->nb[2];
  10445. //const int nb13 = src1->nb[3];
  10446. //const int nb0 = dst->nb[0];
  10447. const int nb1 = dst->nb[1];
  10448. //const int nb2 = dst->nb[2];
  10449. //const int nb3 = dst->nb[3];
  10450. const int ith = params->ith;
  10451. const int nth = params->nth;
  10452. const int nk = ne00;
  10453. const int nh = nk/2;
  10454. const int ew0 = ggml_up32(ne01);
  10455. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10456. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10457. GGML_ASSERT(nb10 == sizeof(float));
  10458. if (params->type == GGML_TASK_INIT) {
  10459. // TODO: fix this memset (wsize is overestimated)
  10460. memset(params->wdata, 0, params->wsize);
  10461. // prepare kernel data (src0)
  10462. {
  10463. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10465. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10466. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10467. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10468. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10469. dst_data[i00*ew0 + i01] = src[i00];
  10470. }
  10471. }
  10472. }
  10473. }
  10474. // prepare source data (src1)
  10475. {
  10476. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10477. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10478. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10479. ggml_fp16_t * dst_data = wdata;
  10480. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10481. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10482. }
  10483. }
  10484. }
  10485. return;
  10486. }
  10487. if (params->type == GGML_TASK_FINALIZE) {
  10488. return;
  10489. }
  10490. // total rows in dst
  10491. const int nr = ne02;
  10492. // rows per thread
  10493. const int dr = (nr + nth - 1)/nth;
  10494. // row range for this thread
  10495. const int ir0 = dr*ith;
  10496. const int ir1 = MIN(ir0 + dr, nr);
  10497. for (int i1 = ir0; i1 < ir1; i1++) {
  10498. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10499. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10500. dst_data[i0/2] = 0;
  10501. for (int k = -nh; k <= nh; k++) {
  10502. float v = 0.0f;
  10503. ggml_vec_dot_f16(ew0, &v,
  10504. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10505. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10506. dst_data[i0/2] += v;
  10507. }
  10508. }
  10509. }
  10510. }
  10511. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10512. const struct ggml_compute_params * params,
  10513. const struct ggml_tensor * src0,
  10514. const struct ggml_tensor * src1,
  10515. struct ggml_tensor * dst) {
  10516. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10517. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10518. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10519. int64_t t0 = ggml_perf_time_us();
  10520. UNUSED(t0);
  10521. const int64_t ne00 = src0->ne[0];
  10522. const int64_t ne01 = src0->ne[1];
  10523. const int64_t ne02 = src0->ne[2];
  10524. //const int64_t ne03 = src0->ne[3];
  10525. const int64_t ne10 = src1->ne[0];
  10526. const int64_t ne11 = src1->ne[1];
  10527. //const int64_t ne12 = src1->ne[2];
  10528. //const int64_t ne13 = src1->ne[3];
  10529. //const int64_t ne0 = dst->ne[0];
  10530. //const int64_t ne1 = dst->ne[1];
  10531. //const int64_t ne2 = dst->ne[2];
  10532. //const int64_t ne3 = dst->ne[3];
  10533. //const int64_t ne = ne0*ne1*ne2*ne3;
  10534. const int nb00 = src0->nb[0];
  10535. const int nb01 = src0->nb[1];
  10536. const int nb02 = src0->nb[2];
  10537. //const int nb03 = src0->nb[3];
  10538. const int nb10 = src1->nb[0];
  10539. const int nb11 = src1->nb[1];
  10540. //const int nb12 = src1->nb[2];
  10541. //const int nb13 = src1->nb[3];
  10542. //const int nb0 = dst->nb[0];
  10543. const int nb1 = dst->nb[1];
  10544. //const int nb2 = dst->nb[2];
  10545. //const int nb3 = dst->nb[3];
  10546. const int ith = params->ith;
  10547. const int nth = params->nth;
  10548. const int nk = ne00;
  10549. const int nh = nk/2;
  10550. const int ew0 = ggml_up32(ne01);
  10551. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10552. GGML_ASSERT(nb00 == sizeof(float));
  10553. GGML_ASSERT(nb10 == sizeof(float));
  10554. if (params->type == GGML_TASK_INIT) {
  10555. // TODO: fix this memset (wsize is overestimated)
  10556. memset(params->wdata, 0, params->wsize);
  10557. // prepare kernel data (src0)
  10558. {
  10559. float * const wdata = (float *) params->wdata + 0;
  10560. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10561. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10562. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10563. float * dst_data = wdata + i02*ew0*ne00;
  10564. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10565. dst_data[i00*ew0 + i01] = src[i00];
  10566. }
  10567. }
  10568. }
  10569. }
  10570. // prepare source data (src1)
  10571. {
  10572. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10573. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10574. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10575. float * dst_data = wdata;
  10576. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10577. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10578. }
  10579. }
  10580. }
  10581. return;
  10582. }
  10583. if (params->type == GGML_TASK_FINALIZE) {
  10584. return;
  10585. }
  10586. // total rows in dst
  10587. const int nr = ne02;
  10588. // rows per thread
  10589. const int dr = (nr + nth - 1)/nth;
  10590. // row range for this thread
  10591. const int ir0 = dr*ith;
  10592. const int ir1 = MIN(ir0 + dr, nr);
  10593. for (int i1 = ir0; i1 < ir1; i1++) {
  10594. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10595. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10596. dst_data[i0/2] = 0;
  10597. for (int k = -nh; k <= nh; k++) {
  10598. float v = 0.0f;
  10599. ggml_vec_dot_f32(ew0, &v,
  10600. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10601. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10602. dst_data[i0/2] += v;
  10603. }
  10604. }
  10605. }
  10606. }
  10607. static void ggml_compute_forward_conv_1d_s2_ph(
  10608. const struct ggml_compute_params * params,
  10609. const struct ggml_tensor * src0,
  10610. const struct ggml_tensor * src1,
  10611. struct ggml_tensor * dst) {
  10612. switch (src0->type) {
  10613. case GGML_TYPE_F16:
  10614. {
  10615. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10616. } break;
  10617. case GGML_TYPE_F32:
  10618. {
  10619. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10620. } break;
  10621. default:
  10622. {
  10623. GGML_ASSERT(false);
  10624. } break;
  10625. }
  10626. }
  10627. // ggml_compute_forward_conv_2d_sk_p0
  10628. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10629. const struct ggml_compute_params * params,
  10630. const struct ggml_tensor * src0,
  10631. const struct ggml_tensor * src1,
  10632. struct ggml_tensor * dst) {
  10633. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10634. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10635. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10636. int64_t t0 = ggml_perf_time_us();
  10637. UNUSED(t0);
  10638. const int ne00 = src0->ne[0];
  10639. const int ne01 = src0->ne[1];
  10640. const int ne02 = src0->ne[2];
  10641. //const int ne03 = src0->ne[3];
  10642. const int ne10 = src1->ne[0];
  10643. //const int ne11 = src1->ne[1];
  10644. const int ne12 = src1->ne[2];
  10645. //const int ne13 = src1->ne[3];
  10646. const int ne0 = dst->ne[0];
  10647. const int ne1 = dst->ne[1];
  10648. const int ne2 = dst->ne[2];
  10649. //const int ne3 = dst->ne[3];
  10650. //const int ne = ne0*ne1*ne2*ne3;
  10651. const int nb00 = src0->nb[0];
  10652. //const int nb01 = src0->nb[1];
  10653. //const int nb02 = src0->nb[2];
  10654. const int nb03 = src0->nb[3];
  10655. const int nb10 = src1->nb[0];
  10656. //const int nb11 = src1->nb[1];
  10657. const int nb12 = src1->nb[2];
  10658. //const int nb13 = src1->nb[3];
  10659. //const int nb0 = dst->nb[0];
  10660. //const int nb1 = dst->nb[1];
  10661. const int nb2 = dst->nb[2];
  10662. //const int nb3 = dst->nb[3];
  10663. const int ith = params->ith;
  10664. const int nth = params->nth;
  10665. const int nk0 = ne00;
  10666. const int nk1 = ne01;
  10667. // size of the convolution row - the kernel size unrolled across all channels
  10668. // round-up so it is more suitable for SIMD
  10669. const int ew0 = ggml_up32(nk0*nk1*ne02);
  10670. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10671. GGML_ASSERT(nb10 == sizeof(float));
  10672. if (params->type == GGML_TASK_INIT) {
  10673. // TODO: fix this memset (wsize is overestimated)
  10674. memset(params->wdata, 0, params->wsize);
  10675. // prepare source data (src1)
  10676. {
  10677. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10678. for (int i12 = 0; i12 < ne12; i12++) {
  10679. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10680. ggml_fp16_t * dst_data = wdata;
  10681. for (int i1 = 0; i1 < ne1; i1++) {
  10682. for (int i0 = 0; i0 < ne0; i0++) {
  10683. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10684. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10685. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10686. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10687. }
  10688. }
  10689. }
  10690. }
  10691. }
  10692. }
  10693. return;
  10694. }
  10695. if (params->type == GGML_TASK_FINALIZE) {
  10696. return;
  10697. }
  10698. // total patches in dst
  10699. const int np = ne2;
  10700. // patches per thread
  10701. const int dp = (np + nth - 1)/nth;
  10702. // patch range for this thread
  10703. const int ip0 = dp*ith;
  10704. const int ip1 = MIN(ip0 + dp, np);
  10705. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10706. for (int i2 = ip0; i2 < ip1; i2++) {
  10707. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10708. for (int i1 = 0; i1 < ne1; ++i1) {
  10709. for (int i0 = 0; i0 < ne0; ++i0) {
  10710. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10711. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10712. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10713. }
  10714. }
  10715. }
  10716. }
  10717. static void ggml_compute_forward_conv_2d_sk_p0(
  10718. const struct ggml_compute_params * params,
  10719. const struct ggml_tensor * src0,
  10720. const struct ggml_tensor * src1,
  10721. struct ggml_tensor * dst) {
  10722. switch (src0->type) {
  10723. case GGML_TYPE_F16:
  10724. {
  10725. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10726. } break;
  10727. case GGML_TYPE_F32:
  10728. {
  10729. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10730. GGML_ASSERT(false);
  10731. } break;
  10732. default:
  10733. {
  10734. GGML_ASSERT(false);
  10735. } break;
  10736. }
  10737. }
  10738. // ggml_compute_forward_flash_attn
  10739. static void ggml_compute_forward_flash_attn_f32(
  10740. const struct ggml_compute_params * params,
  10741. const struct ggml_tensor * q,
  10742. const struct ggml_tensor * k,
  10743. const struct ggml_tensor * v,
  10744. const bool masked,
  10745. struct ggml_tensor * dst) {
  10746. int64_t t0 = ggml_perf_time_us();
  10747. UNUSED(t0);
  10748. const int64_t neq0 = q->ne[0];
  10749. const int64_t neq1 = q->ne[1];
  10750. const int64_t neq2 = q->ne[2];
  10751. const int64_t neq3 = q->ne[3];
  10752. const int64_t nek0 = k->ne[0];
  10753. const int64_t nek1 = k->ne[1];
  10754. //const int64_t nek2 = k->ne[2];
  10755. //const int64_t nek3 = k->ne[3];
  10756. //const int64_t nev0 = v->ne[0];
  10757. const int64_t nev1 = v->ne[1];
  10758. //const int64_t nev2 = v->ne[2];
  10759. //const int64_t nev3 = v->ne[3];
  10760. const int64_t ne0 = dst->ne[0];
  10761. const int64_t ne1 = dst->ne[1];
  10762. //const int64_t ne2 = dst->ne[2];
  10763. //const int64_t ne3 = dst->ne[3];
  10764. const int nbk0 = k->nb[0];
  10765. const int nbk1 = k->nb[1];
  10766. const int nbk2 = k->nb[2];
  10767. const int nbk3 = k->nb[3];
  10768. const int nbq0 = q->nb[0];
  10769. const int nbq1 = q->nb[1];
  10770. const int nbq2 = q->nb[2];
  10771. const int nbq3 = q->nb[3];
  10772. const int nbv0 = v->nb[0];
  10773. const int nbv1 = v->nb[1];
  10774. const int nbv2 = v->nb[2];
  10775. const int nbv3 = v->nb[3];
  10776. const int nb0 = dst->nb[0];
  10777. const int nb1 = dst->nb[1];
  10778. const int nb2 = dst->nb[2];
  10779. const int nb3 = dst->nb[3];
  10780. const int ith = params->ith;
  10781. const int nth = params->nth;
  10782. const int64_t D = neq0;
  10783. const int64_t N = neq1;
  10784. const int64_t P = nek1 - N;
  10785. const int64_t M = P + N;
  10786. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10787. GGML_ASSERT(ne0 == D);
  10788. GGML_ASSERT(ne1 == N);
  10789. GGML_ASSERT(P >= 0);
  10790. GGML_ASSERT(nbq0 == sizeof(float));
  10791. GGML_ASSERT(nbk0 == sizeof(float));
  10792. GGML_ASSERT(nbv0 == sizeof(float));
  10793. GGML_ASSERT(neq0 == D);
  10794. GGML_ASSERT(nek0 == D);
  10795. GGML_ASSERT(nev1 == D);
  10796. GGML_ASSERT(neq1 == N);
  10797. GGML_ASSERT(nek1 == N + P);
  10798. GGML_ASSERT(nev1 == D);
  10799. // dst cannot be transposed or permuted
  10800. GGML_ASSERT(nb0 == sizeof(float));
  10801. GGML_ASSERT(nb0 <= nb1);
  10802. GGML_ASSERT(nb1 <= nb2);
  10803. GGML_ASSERT(nb2 <= nb3);
  10804. if (params->type == GGML_TASK_INIT) {
  10805. return;
  10806. }
  10807. if (params->type == GGML_TASK_FINALIZE) {
  10808. return;
  10809. }
  10810. // parallelize by q rows using ggml_vec_dot_f32
  10811. // total rows in q
  10812. const int nr = neq1*neq2*neq3;
  10813. // rows per thread
  10814. const int dr = (nr + nth - 1)/nth;
  10815. // row range for this thread
  10816. const int ir0 = dr*ith;
  10817. const int ir1 = MIN(ir0 + dr, nr);
  10818. const float scale = 1.0f/sqrtf(D);
  10819. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10820. for (int ir = ir0; ir < ir1; ++ir) {
  10821. // q indices
  10822. const int iq3 = ir/(neq2*neq1);
  10823. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10824. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10825. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10826. for (int i = M; i < Mup; ++i) {
  10827. S[i] = -INFINITY;
  10828. }
  10829. for (int64_t ic = 0; ic < nek1; ++ic) {
  10830. // k indices
  10831. const int ik3 = iq3;
  10832. const int ik2 = iq2;
  10833. const int ik1 = ic;
  10834. // S indices
  10835. const int i1 = ik1;
  10836. ggml_vec_dot_f32(neq0,
  10837. S + i1,
  10838. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10839. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10840. }
  10841. // scale
  10842. ggml_vec_scale_f32(nek1, S, scale);
  10843. if (masked) {
  10844. for (int64_t i = P; i < M; i++) {
  10845. if (i > P + iq1) {
  10846. S[i] = -INFINITY;
  10847. }
  10848. }
  10849. }
  10850. // softmax
  10851. {
  10852. float max = -INFINITY;
  10853. ggml_vec_max_f32(M, &max, S);
  10854. ggml_float sum = 0.0;
  10855. {
  10856. #ifdef GGML_SOFT_MAX_ACCELERATE
  10857. max = -max;
  10858. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10859. vvexpf(S, S, &Mup);
  10860. ggml_vec_sum_f32(Mup, &sum, S);
  10861. #else
  10862. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10863. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10864. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10865. float * SS = S + i;
  10866. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10867. if (SS[j] == -INFINITY) {
  10868. SS[j] = 0.0f;
  10869. } else {
  10870. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10871. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10872. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10873. sump[j] += (ggml_float)val;
  10874. SS[j] = val;
  10875. }
  10876. }
  10877. }
  10878. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10879. sum += sump[i];
  10880. }
  10881. #endif
  10882. }
  10883. assert(sum > 0.0);
  10884. sum = 1.0/sum;
  10885. ggml_vec_scale_f32(M, S, sum);
  10886. #ifndef NDEBUG
  10887. for (int i = 0; i < M; ++i) {
  10888. assert(!isnan(S[i]));
  10889. assert(!isinf(S[i]));
  10890. }
  10891. #endif
  10892. }
  10893. for (int64_t ic = 0; ic < nev1; ++ic) {
  10894. // dst indices
  10895. const int i1 = iq1;
  10896. const int i2 = iq2;
  10897. const int i3 = iq3;
  10898. ggml_vec_dot_f32(nek1,
  10899. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10900. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10901. S);
  10902. }
  10903. }
  10904. }
  10905. static void ggml_compute_forward_flash_attn_f16(
  10906. const struct ggml_compute_params * params,
  10907. const struct ggml_tensor * q,
  10908. const struct ggml_tensor * k,
  10909. const struct ggml_tensor * v,
  10910. const bool masked,
  10911. struct ggml_tensor * dst) {
  10912. int64_t t0 = ggml_perf_time_us();
  10913. UNUSED(t0);
  10914. const int64_t neq0 = q->ne[0];
  10915. const int64_t neq1 = q->ne[1];
  10916. const int64_t neq2 = q->ne[2];
  10917. const int64_t neq3 = q->ne[3];
  10918. const int64_t nek0 = k->ne[0];
  10919. const int64_t nek1 = k->ne[1];
  10920. //const int64_t nek2 = k->ne[2];
  10921. //const int64_t nek3 = k->ne[3];
  10922. //const int64_t nev0 = v->ne[0];
  10923. const int64_t nev1 = v->ne[1];
  10924. //const int64_t nev2 = v->ne[2];
  10925. //const int64_t nev3 = v->ne[3];
  10926. const int64_t ne0 = dst->ne[0];
  10927. const int64_t ne1 = dst->ne[1];
  10928. //const int64_t ne2 = dst->ne[2];
  10929. //const int64_t ne3 = dst->ne[3];
  10930. const int nbk0 = k->nb[0];
  10931. const int nbk1 = k->nb[1];
  10932. const int nbk2 = k->nb[2];
  10933. const int nbk3 = k->nb[3];
  10934. const int nbq0 = q->nb[0];
  10935. const int nbq1 = q->nb[1];
  10936. const int nbq2 = q->nb[2];
  10937. const int nbq3 = q->nb[3];
  10938. const int nbv0 = v->nb[0];
  10939. const int nbv1 = v->nb[1];
  10940. const int nbv2 = v->nb[2];
  10941. const int nbv3 = v->nb[3];
  10942. const int nb0 = dst->nb[0];
  10943. const int nb1 = dst->nb[1];
  10944. const int nb2 = dst->nb[2];
  10945. const int nb3 = dst->nb[3];
  10946. const int ith = params->ith;
  10947. const int nth = params->nth;
  10948. const int64_t D = neq0;
  10949. const int64_t N = neq1;
  10950. const int64_t P = nek1 - N;
  10951. const int64_t M = P + N;
  10952. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10953. GGML_ASSERT(ne0 == D);
  10954. GGML_ASSERT(ne1 == N);
  10955. GGML_ASSERT(P >= 0);
  10956. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10957. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10958. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10959. GGML_ASSERT(neq0 == D);
  10960. GGML_ASSERT(nek0 == D);
  10961. GGML_ASSERT(nev1 == D);
  10962. GGML_ASSERT(neq1 == N);
  10963. GGML_ASSERT(nek1 == N + P);
  10964. GGML_ASSERT(nev1 == D);
  10965. // dst cannot be transposed or permuted
  10966. GGML_ASSERT(nb0 == sizeof(float));
  10967. GGML_ASSERT(nb0 <= nb1);
  10968. GGML_ASSERT(nb1 <= nb2);
  10969. GGML_ASSERT(nb2 <= nb3);
  10970. if (params->type == GGML_TASK_INIT) {
  10971. return;
  10972. }
  10973. if (params->type == GGML_TASK_FINALIZE) {
  10974. return;
  10975. }
  10976. // parallelize by q rows using ggml_vec_dot_f32
  10977. // total rows in q
  10978. const int nr = neq1*neq2*neq3;
  10979. // rows per thread
  10980. const int dr = (nr + nth - 1)/nth;
  10981. // row range for this thread
  10982. const int ir0 = dr*ith;
  10983. const int ir1 = MIN(ir0 + dr, nr);
  10984. const float scale = 1.0f/sqrtf(D);
  10985. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10986. for (int ir = ir0; ir < ir1; ++ir) {
  10987. // q indices
  10988. const int iq3 = ir/(neq2*neq1);
  10989. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10990. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10991. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10992. for (int i = M; i < Mup; ++i) {
  10993. S[i] = -INFINITY;
  10994. }
  10995. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10996. for (int64_t ic = 0; ic < nek1; ++ic) {
  10997. // k indices
  10998. const int ik3 = iq3;
  10999. const int ik2 = iq2;
  11000. const int ik1 = ic;
  11001. // S indices
  11002. const int i1 = ik1;
  11003. ggml_vec_dot_f16(neq0,
  11004. S + i1,
  11005. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11006. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11007. }
  11008. } else {
  11009. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11010. // k indices
  11011. const int ik3 = iq3;
  11012. const int ik2 = iq2;
  11013. const int ik1 = ic;
  11014. // S indices
  11015. const int i1 = ik1;
  11016. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11017. S + i1,
  11018. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11019. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11020. }
  11021. }
  11022. // scale
  11023. ggml_vec_scale_f32(nek1, S, scale);
  11024. if (masked) {
  11025. for (int64_t i = P; i < M; i++) {
  11026. if (i > P + iq1) {
  11027. S[i] = -INFINITY;
  11028. }
  11029. }
  11030. }
  11031. // softmax
  11032. {
  11033. float max = -INFINITY;
  11034. ggml_vec_max_f32(M, &max, S);
  11035. ggml_float sum = 0.0;
  11036. {
  11037. #ifdef GGML_SOFT_MAX_ACCELERATE
  11038. max = -max;
  11039. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11040. vvexpf(S, S, &Mup);
  11041. ggml_vec_sum_f32(Mup, &sum, S);
  11042. #else
  11043. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11044. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11045. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11046. float * SS = S + i;
  11047. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11048. if (SS[j] == -INFINITY) {
  11049. SS[j] = 0.0f;
  11050. } else {
  11051. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11052. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11053. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11054. sump[j] += (ggml_float)val;
  11055. SS[j] = val;
  11056. }
  11057. }
  11058. }
  11059. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11060. sum += sump[i];
  11061. }
  11062. #endif
  11063. }
  11064. assert(sum > 0.0);
  11065. sum = 1.0/sum;
  11066. ggml_vec_scale_f32(M, S, sum);
  11067. #ifndef NDEBUG
  11068. for (int i = 0; i < M; ++i) {
  11069. assert(!isnan(S[i]));
  11070. assert(!isinf(S[i]));
  11071. }
  11072. #endif
  11073. }
  11074. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11075. for (int64_t i = 0; i < M; i++) {
  11076. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11077. }
  11078. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11079. for (int64_t ic = 0; ic < nev1; ++ic) {
  11080. // dst indices
  11081. const int i1 = iq1;
  11082. const int i2 = iq2;
  11083. const int i3 = iq3;
  11084. ggml_vec_dot_f16(nek1,
  11085. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11086. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11087. S16);
  11088. }
  11089. } else {
  11090. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11091. // dst indices
  11092. const int i1 = iq1;
  11093. const int i2 = iq2;
  11094. const int i3 = iq3;
  11095. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11096. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11097. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11098. S16);
  11099. }
  11100. }
  11101. }
  11102. }
  11103. static void ggml_compute_forward_flash_attn(
  11104. const struct ggml_compute_params * params,
  11105. const struct ggml_tensor * q,
  11106. const struct ggml_tensor * k,
  11107. const struct ggml_tensor * v,
  11108. const bool masked,
  11109. struct ggml_tensor * dst) {
  11110. switch (q->type) {
  11111. case GGML_TYPE_F16:
  11112. {
  11113. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11114. } break;
  11115. case GGML_TYPE_F32:
  11116. {
  11117. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11118. } break;
  11119. default:
  11120. {
  11121. GGML_ASSERT(false);
  11122. } break;
  11123. }
  11124. }
  11125. // ggml_compute_forward_flash_ff
  11126. static void ggml_compute_forward_flash_ff_f16(
  11127. const struct ggml_compute_params * params,
  11128. const struct ggml_tensor * a, // F16
  11129. const struct ggml_tensor * b0, // F16 fc_w
  11130. const struct ggml_tensor * b1, // F32 fc_b
  11131. const struct ggml_tensor * c0, // F16 proj_w
  11132. const struct ggml_tensor * c1, // F32 proj_b
  11133. struct ggml_tensor * dst) {
  11134. int64_t t0 = ggml_perf_time_us();
  11135. UNUSED(t0);
  11136. const int64_t nea0 = a->ne[0];
  11137. const int64_t nea1 = a->ne[1];
  11138. const int64_t nea2 = a->ne[2];
  11139. const int64_t nea3 = a->ne[3];
  11140. const int64_t neb00 = b0->ne[0];
  11141. const int64_t neb01 = b0->ne[1];
  11142. //const int64_t neb02 = b0->ne[2];
  11143. //const int64_t neb03 = b0->ne[3];
  11144. const int64_t neb10 = b1->ne[0];
  11145. const int64_t neb11 = b1->ne[1];
  11146. //const int64_t neb12 = b1->ne[2];
  11147. //const int64_t neb13 = b1->ne[3];
  11148. const int64_t nec00 = c0->ne[0];
  11149. const int64_t nec01 = c0->ne[1];
  11150. //const int64_t nec02 = c0->ne[2];
  11151. //const int64_t nec03 = c0->ne[3];
  11152. const int64_t nec10 = c1->ne[0];
  11153. const int64_t nec11 = c1->ne[1];
  11154. //const int64_t nec12 = c1->ne[2];
  11155. //const int64_t nec13 = c1->ne[3];
  11156. const int64_t ne0 = dst->ne[0];
  11157. const int64_t ne1 = dst->ne[1];
  11158. const int64_t ne2 = dst->ne[2];
  11159. //const int64_t ne3 = dst->ne[3];
  11160. const int nba0 = a->nb[0];
  11161. const int nba1 = a->nb[1];
  11162. const int nba2 = a->nb[2];
  11163. const int nba3 = a->nb[3];
  11164. const int nbb00 = b0->nb[0];
  11165. const int nbb01 = b0->nb[1];
  11166. const int nbb02 = b0->nb[2];
  11167. const int nbb03 = b0->nb[3];
  11168. const int nbb10 = b1->nb[0];
  11169. //const int nbb11 = b1->nb[1];
  11170. //const int nbb12 = b1->nb[2];
  11171. //const int nbb13 = b1->nb[3];
  11172. const int nbc00 = c0->nb[0];
  11173. const int nbc01 = c0->nb[1];
  11174. const int nbc02 = c0->nb[2];
  11175. const int nbc03 = c0->nb[3];
  11176. const int nbc10 = c1->nb[0];
  11177. //const int nbc11 = c1->nb[1];
  11178. //const int nbc12 = c1->nb[2];
  11179. //const int nbc13 = c1->nb[3];
  11180. const int nb0 = dst->nb[0];
  11181. const int nb1 = dst->nb[1];
  11182. const int nb2 = dst->nb[2];
  11183. const int nb3 = dst->nb[3];
  11184. const int ith = params->ith;
  11185. const int nth = params->nth;
  11186. const int64_t D = nea0;
  11187. //const int64_t N = nea1;
  11188. const int64_t M = neb01;
  11189. GGML_ASSERT(ne0 == nea0);
  11190. GGML_ASSERT(ne1 == nea1);
  11191. GGML_ASSERT(ne2 == nea2);
  11192. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11193. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11194. GGML_ASSERT(nbb10 == sizeof(float));
  11195. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11196. GGML_ASSERT(nbc10 == sizeof(float));
  11197. GGML_ASSERT(neb00 == D);
  11198. GGML_ASSERT(neb01 == M);
  11199. GGML_ASSERT(neb10 == M);
  11200. GGML_ASSERT(neb11 == 1);
  11201. GGML_ASSERT(nec00 == M);
  11202. GGML_ASSERT(nec01 == D);
  11203. GGML_ASSERT(nec10 == D);
  11204. GGML_ASSERT(nec11 == 1);
  11205. // dst cannot be transposed or permuted
  11206. GGML_ASSERT(nb0 == sizeof(float));
  11207. GGML_ASSERT(nb0 <= nb1);
  11208. GGML_ASSERT(nb1 <= nb2);
  11209. GGML_ASSERT(nb2 <= nb3);
  11210. if (params->type == GGML_TASK_INIT) {
  11211. return;
  11212. }
  11213. if (params->type == GGML_TASK_FINALIZE) {
  11214. return;
  11215. }
  11216. // parallelize by a rows using ggml_vec_dot_f32
  11217. // total rows in a
  11218. const int nr = nea1*nea2*nea3;
  11219. // rows per thread
  11220. const int dr = (nr + nth - 1)/nth;
  11221. // row range for this thread
  11222. const int ir0 = dr*ith;
  11223. const int ir1 = MIN(ir0 + dr, nr);
  11224. for (int ir = ir0; ir < ir1; ++ir) {
  11225. // a indices
  11226. const int ia3 = ir/(nea2*nea1);
  11227. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11228. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11229. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11230. for (int64_t ic = 0; ic < neb01; ++ic) {
  11231. // b0 indices
  11232. const int ib03 = ia3;
  11233. const int ib02 = ia2;
  11234. const int ib01 = ic;
  11235. // S indices
  11236. const int i1 = ib01;
  11237. ggml_vec_dot_f16(nea0,
  11238. S + i1,
  11239. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11240. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11241. }
  11242. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11243. //ggml_vec_gelu_f32(neb01, S, S);
  11244. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11245. for (int64_t i = 0; i < M; i++) {
  11246. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11247. }
  11248. ggml_vec_gelu_f16(neb01, S16, S16);
  11249. {
  11250. // dst indices
  11251. const int i1 = ia1;
  11252. const int i2 = ia2;
  11253. const int i3 = ia3;
  11254. for (int64_t ic = 0; ic < nec01; ++ic) {
  11255. ggml_vec_dot_f16(neb01,
  11256. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11257. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11258. S16);
  11259. }
  11260. ggml_vec_add_f32(nec01,
  11261. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11262. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11263. (float *) c1->data);
  11264. }
  11265. }
  11266. }
  11267. static void ggml_compute_forward_flash_ff(
  11268. const struct ggml_compute_params * params,
  11269. const struct ggml_tensor * a,
  11270. const struct ggml_tensor * b0,
  11271. const struct ggml_tensor * b1,
  11272. const struct ggml_tensor * c0,
  11273. const struct ggml_tensor * c1,
  11274. struct ggml_tensor * dst) {
  11275. switch (b0->type) {
  11276. case GGML_TYPE_F16:
  11277. {
  11278. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11279. } break;
  11280. case GGML_TYPE_F32:
  11281. {
  11282. GGML_ASSERT(false); // TODO
  11283. } break;
  11284. default:
  11285. {
  11286. GGML_ASSERT(false);
  11287. } break;
  11288. }
  11289. }
  11290. // ggml_compute_forward_flash_attn_back
  11291. static void ggml_compute_forward_flash_attn_back_f32(
  11292. const struct ggml_compute_params * params,
  11293. const struct ggml_tensor * q,
  11294. const struct ggml_tensor * k,
  11295. const struct ggml_tensor * v,
  11296. const struct ggml_tensor * d,
  11297. const bool masked,
  11298. struct ggml_tensor * dst) {
  11299. int64_t t0 = ggml_perf_time_us();
  11300. UNUSED(t0);
  11301. const int64_t neq0 = q->ne[0];
  11302. const int64_t neq1 = q->ne[1];
  11303. const int64_t neq2 = q->ne[2];
  11304. const int64_t neq3 = q->ne[3];
  11305. const int64_t nek0 = k->ne[0];
  11306. const int64_t nek1 = k->ne[1];
  11307. //const int64_t nek2 = k->ne[2];
  11308. //const int64_t nek3 = k->ne[3];
  11309. const int64_t nev0 = v->ne[0];
  11310. const int64_t nev1 = v->ne[1];
  11311. //const int64_t nev2 = v->ne[2];
  11312. //const int64_t nev3 = v->ne[3];
  11313. const int64_t ned0 = d->ne[0];
  11314. const int64_t ned1 = d->ne[1];
  11315. //const int64_t ned2 = d->ne[2];
  11316. //const int64_t ned3 = d->ne[3];
  11317. const int64_t ne0 = dst->ne[0];
  11318. const int64_t ne1 = dst->ne[1];
  11319. const int64_t ne2 = dst->ne[2];
  11320. const int64_t ne3 = dst->ne[3];
  11321. const int nbk0 = k->nb[0];
  11322. const int nbk1 = k->nb[1];
  11323. const int nbk2 = k->nb[2];
  11324. const int nbk3 = k->nb[3];
  11325. const int nbq0 = q->nb[0];
  11326. const int nbq1 = q->nb[1];
  11327. const int nbq2 = q->nb[2];
  11328. const int nbq3 = q->nb[3];
  11329. const int nbv0 = v->nb[0];
  11330. const int nbv1 = v->nb[1];
  11331. const int nbv2 = v->nb[2];
  11332. const int nbv3 = v->nb[3];
  11333. const int nbd0 = d->nb[0];
  11334. const int nbd1 = d->nb[1];
  11335. const int nbd2 = d->nb[2];
  11336. const int nbd3 = d->nb[3];
  11337. const int nb0 = dst->nb[0];
  11338. const int nb1 = dst->nb[1];
  11339. const int nb2 = dst->nb[2];
  11340. const int nb3 = dst->nb[3];
  11341. const int ith = params->ith;
  11342. const int nth = params->nth;
  11343. const int64_t D = neq0;
  11344. const int64_t N = neq1;
  11345. const int64_t P = nek1 - N;
  11346. const int64_t M = P + N;
  11347. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11348. const int mxDM = MAX(D, Mup);
  11349. // GGML_ASSERT(ne0 == D);
  11350. // GGML_ASSERT(ne1 == N);
  11351. GGML_ASSERT(P >= 0);
  11352. GGML_ASSERT(nbq0 == sizeof(float));
  11353. GGML_ASSERT(nbk0 == sizeof(float));
  11354. GGML_ASSERT(nbv0 == sizeof(float));
  11355. GGML_ASSERT(neq0 == D);
  11356. GGML_ASSERT(nek0 == D);
  11357. GGML_ASSERT(nev1 == D);
  11358. GGML_ASSERT(ned0 == D);
  11359. GGML_ASSERT(neq1 == N);
  11360. GGML_ASSERT(nek1 == N + P);
  11361. GGML_ASSERT(nev1 == D);
  11362. GGML_ASSERT(ned1 == N);
  11363. // dst cannot be transposed or permuted
  11364. GGML_ASSERT(nb0 == sizeof(float));
  11365. GGML_ASSERT(nb0 <= nb1);
  11366. GGML_ASSERT(nb1 <= nb2);
  11367. GGML_ASSERT(nb2 <= nb3);
  11368. if (params->type == GGML_TASK_INIT) {
  11369. if (ith == 0) {
  11370. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11371. }
  11372. return;
  11373. }
  11374. if (params->type == GGML_TASK_FINALIZE) {
  11375. return;
  11376. }
  11377. // parallelize by q rows using ggml_vec_dot_f32
  11378. // total rows in q
  11379. const int nr = neq2*neq3;
  11380. // rows per thread
  11381. const int dr = (nr + nth - 1)/nth;
  11382. // row range for this thread
  11383. const int ir0 = dr*ith;
  11384. const int ir1 = MIN(ir0 + dr, nr);
  11385. const float scale = 1.0f/sqrtf(D);
  11386. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11387. for (int ir = ir0; ir < ir1; ++ir) {
  11388. // q indices
  11389. const int iq3 = ir/(neq2);
  11390. const int iq2 = ir - iq3*neq2;
  11391. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11392. // not sure about CACHE_LINE_SIZE_F32..
  11393. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11394. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11395. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11396. for (int i = M; i < Mup; ++i) {
  11397. S[i] = -INFINITY;
  11398. }
  11399. for (int64_t ic = 0; ic < nek1; ++ic) {
  11400. // k indices
  11401. const int ik3 = iq3;
  11402. const int ik2 = iq2;
  11403. const int ik1 = ic;
  11404. // S indices
  11405. const int i1 = ik1;
  11406. ggml_vec_dot_f32(neq0,
  11407. S + i1,
  11408. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11409. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11410. }
  11411. // scale
  11412. ggml_vec_scale_f32(nek1, S, scale);
  11413. if (masked) {
  11414. for (int64_t i = P; i < M; i++) {
  11415. if (i > P + iq1) {
  11416. S[i] = -INFINITY;
  11417. }
  11418. }
  11419. }
  11420. // softmax
  11421. {
  11422. float max = -INFINITY;
  11423. ggml_vec_max_f32(M, &max, S);
  11424. ggml_float sum = 0.0;
  11425. {
  11426. #ifdef GGML_SOFT_MAX_ACCELERATE
  11427. max = -max;
  11428. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11429. vvexpf(SM, SM, &Mup);
  11430. ggml_vec_sum_f32(Mup, &sum, SM);
  11431. #else
  11432. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11433. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11434. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11435. float * SR = S + i;
  11436. float * SW = SM + i;
  11437. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11438. if (SR[j] == -INFINITY) {
  11439. SW[j] = 0.0f;
  11440. } else {
  11441. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11442. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11443. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11444. sump[j] += (ggml_float)val;
  11445. SW[j] = val;
  11446. }
  11447. }
  11448. }
  11449. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11450. sum += sump[i];
  11451. }
  11452. #endif
  11453. }
  11454. assert(sum > 0.0);
  11455. sum = 1.0/sum;
  11456. ggml_vec_scale_f32(M, SM, sum);
  11457. }
  11458. // step-by-step explanation
  11459. {
  11460. // forward-process shape grads from backward process
  11461. // parallel_for iq2,iq3:
  11462. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11463. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11464. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11465. // for iq1:
  11466. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11467. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11468. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11469. // S0 = -Inf [D,1,1,1]
  11470. // ~S1[i] = dot(kcur[:D,i], qcur)
  11471. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11472. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11473. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11474. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11475. // ~S5[i] = dot(vcur[:,i], S4)
  11476. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11477. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11478. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11479. // dst backward-/ grad[dst] = d
  11480. //
  11481. // output gradients with their dependencies:
  11482. //
  11483. // grad[kcur] = grad[S1].T @ qcur
  11484. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11485. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11486. // grad[S4] = grad[S5] @ vcur
  11487. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11488. // grad[qcur] = grad[S1] @ kcur
  11489. // grad[vcur] = grad[S5].T @ S4
  11490. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11491. //
  11492. // in post-order:
  11493. //
  11494. // S1 = qcur @ kcur.T
  11495. // S2 = S1 * scale
  11496. // S3 = diag_mask_inf(S2, P)
  11497. // S4 = softmax(S3)
  11498. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11499. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11500. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11501. // grad[qcur] = grad[S1] @ kcur
  11502. // grad[kcur] = grad[S1].T @ qcur
  11503. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11504. //
  11505. // using less variables (SM=S4):
  11506. //
  11507. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11508. // SM = softmax(S)
  11509. // S = d[:D,iq1,iq2,iq3] @ vcur
  11510. // dot_SM_gradSM = dot(SM, S)
  11511. // S = SM * (S - dot(SM, S))
  11512. // S = diag_mask_zero(S, P) * scale
  11513. //
  11514. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11515. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11516. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11517. }
  11518. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11519. // S = d[:D,iq1,iq2,iq3] @ vcur
  11520. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11521. ggml_vec_set_f32(M, S, 0);
  11522. for (int64_t ic = 0; ic < D; ++ic) {
  11523. // dst indices
  11524. const int i1 = iq1;
  11525. const int i2 = iq2;
  11526. const int i3 = iq3;
  11527. ggml_vec_mad_f32(M,
  11528. S,
  11529. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11530. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11531. }
  11532. // S = SM * (S - dot(SM, S))
  11533. float dot_SM_gradSM = 0;
  11534. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11535. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11536. ggml_vec_mul_f32 (M, S, S, SM);
  11537. // S = diag_mask_zero(S, P) * scale
  11538. if (masked) {
  11539. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11540. // S[i] = 0;
  11541. // }
  11542. for (int64_t i = P; i < M; i++) {
  11543. if (i > P + iq1) {
  11544. S[i] = 0;
  11545. }
  11546. }
  11547. }
  11548. ggml_vec_scale_f32(M, S, scale);
  11549. void * grad_q = (char *) dst->data;
  11550. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11551. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11552. const size_t nbgq1 = nb0*neq0;
  11553. const size_t nbgq2 = nb0*neq0*neq1;
  11554. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11555. const size_t nbgk1 = nb0*nek0;
  11556. const size_t nbgk2 = nb0*nek0*nek1;
  11557. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11558. const size_t nbgv1 = nb0*nev0;
  11559. const size_t nbgv2 = nb0*nev0*nev1;
  11560. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11561. // S shape [M,1]
  11562. // SM shape [M,1]
  11563. // kcur shape [D,M]
  11564. // qcur shape [D,1]
  11565. // vcur shape [M,D]
  11566. //
  11567. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11568. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11569. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11570. //
  11571. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11572. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11573. for (int64_t ic = 0; ic < M; ++ic) {
  11574. // dst indices
  11575. const int i1 = iq1;
  11576. const int i2 = iq2;
  11577. const int i3 = iq3;
  11578. ggml_vec_mad_f32(D,
  11579. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11580. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11581. S[ic]);
  11582. }
  11583. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11584. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11585. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11586. for (int64_t ic = 0; ic < M; ++ic) {
  11587. // dst indices
  11588. const int i1 = iq1;
  11589. const int i2 = iq2;
  11590. const int i3 = iq3;
  11591. // ggml_vec_set_f32(D,
  11592. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11593. // 0);
  11594. ggml_vec_mad_f32(D,
  11595. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11596. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11597. S[ic]);
  11598. }
  11599. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11600. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11601. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11602. for (int64_t ic = 0; ic < D; ++ic) {
  11603. // dst indices
  11604. const int i1 = iq1;
  11605. const int i2 = iq2;
  11606. const int i3 = iq3;
  11607. // ggml_vec_set_f32(M,
  11608. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11609. // 0);
  11610. ggml_vec_mad_f32(M,
  11611. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11612. SM,
  11613. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11614. }
  11615. }
  11616. }
  11617. }
  11618. static void ggml_compute_forward_flash_attn_back(
  11619. const struct ggml_compute_params * params,
  11620. const struct ggml_tensor * q,
  11621. const struct ggml_tensor * k,
  11622. const struct ggml_tensor * v,
  11623. const struct ggml_tensor * d,
  11624. const bool masked,
  11625. struct ggml_tensor * dst) {
  11626. switch (q->type) {
  11627. case GGML_TYPE_F32:
  11628. {
  11629. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11630. } break;
  11631. default:
  11632. {
  11633. GGML_ASSERT(false);
  11634. } break;
  11635. }
  11636. }
  11637. // ggml_compute_forward_win_part
  11638. static void ggml_compute_forward_win_part_f32(
  11639. const struct ggml_compute_params * params,
  11640. const struct ggml_tensor * src0,
  11641. const struct ggml_tensor * opt0,
  11642. struct ggml_tensor * dst) {
  11643. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11644. return;
  11645. }
  11646. const int64_t ne00 = src0->ne[0]; UNUSED(ne00);
  11647. const int64_t ne01 = src0->ne[1];
  11648. const int64_t ne02 = src0->ne[2];
  11649. const int64_t ne03 = src0->ne[3]; UNUSED(ne03);
  11650. const int64_t ne0 = dst->ne[0];
  11651. const int64_t ne1 = dst->ne[1];
  11652. const int64_t ne2 = dst->ne[2];
  11653. const int64_t ne3 = dst->ne[3]; UNUSED(ne3);
  11654. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11655. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11656. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11657. assert(ne00 == ne0);
  11658. assert(ne3 == nep0*nep1);
  11659. // TODO: optimize / multi-thread
  11660. for (int py = 0; py < nep1; ++py) {
  11661. for (int px = 0; px < nep0; ++px) {
  11662. const int64_t i3 = py*nep0 + px;
  11663. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11664. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11665. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11666. const int64_t i02 = py*w + i2;
  11667. const int64_t i01 = px*w + i1;
  11668. const int64_t i00 = i0;
  11669. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11670. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11671. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11672. ((float *) dst->data)[i] = 0.0f;
  11673. } else {
  11674. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11675. }
  11676. }
  11677. }
  11678. }
  11679. }
  11680. }
  11681. }
  11682. static void ggml_compute_forward_win_part(
  11683. const struct ggml_compute_params * params,
  11684. const struct ggml_tensor * src0,
  11685. const struct ggml_tensor * opt0,
  11686. struct ggml_tensor * dst) {
  11687. switch (src0->type) {
  11688. case GGML_TYPE_F32:
  11689. {
  11690. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11691. } break;
  11692. default:
  11693. {
  11694. GGML_ASSERT(false);
  11695. } break;
  11696. }
  11697. }
  11698. // ggml_compute_forward_win_unpart
  11699. static void ggml_compute_forward_win_unpart_f32(
  11700. const struct ggml_compute_params * params,
  11701. const struct ggml_tensor * src0,
  11702. const struct ggml_tensor * opt0,
  11703. struct ggml_tensor * dst) {
  11704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11705. return;
  11706. }
  11707. const int64_t ne00 = src0->ne[0];
  11708. const int64_t ne01 = src0->ne[1];
  11709. const int64_t ne02 = src0->ne[2];
  11710. //const int64_t ne03 = src0->ne[3];
  11711. const int64_t ne0 = dst->ne[0];
  11712. const int64_t ne1 = dst->ne[1];
  11713. const int64_t ne2 = dst->ne[2];
  11714. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11715. // padding
  11716. const int px = (w - ne1%w)%w;
  11717. //const int py = (w - ne2%w)%w;
  11718. const int npx = (px + ne1)/w;
  11719. //const int npy = (py + ne2)/w;
  11720. assert(ne0 == ne00);
  11721. // TODO: optimize / multi-thread
  11722. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11723. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11724. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11725. const int ip2 = i2/w;
  11726. const int ip1 = i1/w;
  11727. const int64_t i02 = i2%w;
  11728. const int64_t i01 = i1%w;
  11729. const int64_t i00 = i0;
  11730. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11731. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11732. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11733. }
  11734. }
  11735. }
  11736. }
  11737. static void ggml_compute_forward_win_unpart(
  11738. const struct ggml_compute_params * params,
  11739. const struct ggml_tensor * src0,
  11740. const struct ggml_tensor * opt0,
  11741. struct ggml_tensor * dst) {
  11742. switch (src0->type) {
  11743. case GGML_TYPE_F32:
  11744. {
  11745. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11746. } break;
  11747. default:
  11748. {
  11749. GGML_ASSERT(false);
  11750. } break;
  11751. }
  11752. }
  11753. // ggml_compute_forward_map_unary
  11754. static void ggml_compute_forward_map_unary_f32(
  11755. const struct ggml_compute_params * params,
  11756. const struct ggml_tensor * src0,
  11757. struct ggml_tensor * dst,
  11758. const ggml_unary_op_f32_t fun) {
  11759. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11760. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11761. return;
  11762. }
  11763. const int n = ggml_nrows(src0);
  11764. const int nc = src0->ne[0];
  11765. assert( dst->nb[0] == sizeof(float));
  11766. assert(src0->nb[0] == sizeof(float));
  11767. for (int i = 0; i < n; i++) {
  11768. fun(nc,
  11769. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11770. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11771. }
  11772. }
  11773. static void ggml_compute_forward_map_unary(
  11774. const struct ggml_compute_params * params,
  11775. const struct ggml_tensor * src0,
  11776. struct ggml_tensor * dst,
  11777. const ggml_unary_op_f32_t fun) {
  11778. switch (src0->type) {
  11779. case GGML_TYPE_F32:
  11780. {
  11781. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11782. } break;
  11783. default:
  11784. {
  11785. GGML_ASSERT(false);
  11786. } break;
  11787. }
  11788. }
  11789. // ggml_compute_forward_map_binary
  11790. static void ggml_compute_forward_map_binary_f32(
  11791. const struct ggml_compute_params * params,
  11792. const struct ggml_tensor * src0,
  11793. const struct ggml_tensor * src1,
  11794. struct ggml_tensor * dst,
  11795. const ggml_binary_op_f32_t fun) {
  11796. assert(params->ith == 0);
  11797. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11799. return;
  11800. }
  11801. const int n = ggml_nrows(src0);
  11802. const int nc = src0->ne[0];
  11803. assert( dst->nb[0] == sizeof(float));
  11804. assert(src0->nb[0] == sizeof(float));
  11805. assert(src1->nb[0] == sizeof(float));
  11806. for (int i = 0; i < n; i++) {
  11807. fun(nc,
  11808. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11809. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11810. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11811. }
  11812. }
  11813. static void ggml_compute_forward_map_binary(
  11814. const struct ggml_compute_params * params,
  11815. const struct ggml_tensor * src0,
  11816. const struct ggml_tensor * src1,
  11817. struct ggml_tensor * dst,
  11818. const ggml_binary_op_f32_t fun) {
  11819. switch (src0->type) {
  11820. case GGML_TYPE_F32:
  11821. {
  11822. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11823. } break;
  11824. default:
  11825. {
  11826. GGML_ASSERT(false);
  11827. } break;
  11828. }
  11829. }
  11830. // ggml_compute_forward_cross_entropy_loss
  11831. static void ggml_compute_forward_cross_entropy_loss_f32(
  11832. const struct ggml_compute_params * params,
  11833. const struct ggml_tensor * src0,
  11834. const struct ggml_tensor * src1,
  11835. struct ggml_tensor * dst) {
  11836. GGML_ASSERT(ggml_is_contiguous(src0));
  11837. GGML_ASSERT(ggml_is_contiguous(src1));
  11838. GGML_ASSERT(ggml_is_scalar(dst));
  11839. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11840. const int ith = params->ith;
  11841. const int nth = params->nth;
  11842. float * sums = (float *) params->wdata;
  11843. // TODO: handle transposed/permuted matrices
  11844. const int nc = src0->ne[0];
  11845. const int nr = ggml_nrows(src0);
  11846. if (params->type == GGML_TASK_INIT) {
  11847. if (ith == 0) {
  11848. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11849. }
  11850. return;
  11851. }
  11852. if (params->type == GGML_TASK_FINALIZE) {
  11853. if (ith == 0) {
  11854. float * dp = (float *) dst->data;
  11855. ggml_vec_sum_f32(nth, dp, sums);
  11856. dp[0] *= -1.0f;
  11857. }
  11858. return;
  11859. }
  11860. const double eps = 1e-9;
  11861. // rows per thread
  11862. const int dr = (nr + nth - 1)/nth;
  11863. // row range for this thread
  11864. const int ir0 = dr*ith;
  11865. const int ir1 = MIN(ir0 + dr, nr);
  11866. for (int i1 = ir0; i1 < ir1; i1++) {
  11867. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11868. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11869. float * st = (float *) params->wdata + nth + ith*nc;
  11870. #ifndef NDEBUG
  11871. for (int i = 0; i < nc; ++i) {
  11872. //printf("p[%d] = %f\n", i, p[i]);
  11873. assert(!isnan(s0[i]));
  11874. assert(!isnan(s1[i]));
  11875. }
  11876. #endif
  11877. // soft_max
  11878. ggml_float sum = 0.0;
  11879. {
  11880. float max = -INFINITY;
  11881. ggml_vec_max_f32(nc, &max, s0);
  11882. uint16_t scvt;
  11883. for (int i = 0; i < nc; i++) {
  11884. if (s0[i] == -INFINITY) {
  11885. st[i] = 0.0f;
  11886. } else {
  11887. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11888. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11889. memcpy(&scvt, &s, sizeof(scvt));
  11890. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11891. sum += (ggml_float)val;
  11892. st[i] = val;
  11893. }
  11894. }
  11895. assert(sum > 0.0);
  11896. // sum = 1.0/sum;
  11897. }
  11898. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11899. sum = (1.0 - eps) / sum;
  11900. ggml_vec_scale_f32(nc, st, sum);
  11901. ggml_vec_add1_f32(nc, st, st, eps);
  11902. ggml_vec_log_f32(nc, st, st);
  11903. ggml_vec_mul_f32(nc, st, st, s1);
  11904. ggml_vec_sum_f32(nc, sums + ith, st);
  11905. #ifndef NDEBUG
  11906. for (int i = 0; i < nc; ++i) {
  11907. assert(!isnan(st[i]));
  11908. assert(!isinf(st[i]));
  11909. }
  11910. #endif
  11911. }
  11912. }
  11913. static void ggml_compute_forward_cross_entropy_loss(
  11914. const struct ggml_compute_params * params,
  11915. const struct ggml_tensor * src0,
  11916. const struct ggml_tensor * src1,
  11917. struct ggml_tensor * dst) {
  11918. switch (src0->type) {
  11919. case GGML_TYPE_F32:
  11920. {
  11921. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11922. } break;
  11923. default:
  11924. {
  11925. GGML_ASSERT(false);
  11926. } break;
  11927. }
  11928. }
  11929. // ggml_compute_forward_cross_entropy_loss_back
  11930. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11931. const struct ggml_compute_params * params,
  11932. const struct ggml_tensor * src0,
  11933. const struct ggml_tensor * src1,
  11934. const struct ggml_tensor * opt0,
  11935. struct ggml_tensor * dst) {
  11936. GGML_ASSERT(ggml_is_contiguous(dst));
  11937. GGML_ASSERT(ggml_is_contiguous(src0));
  11938. GGML_ASSERT(ggml_is_contiguous(src1));
  11939. GGML_ASSERT(ggml_is_contiguous(opt0));
  11940. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11941. const int64_t ith = params->ith;
  11942. const int64_t nth = params->nth;
  11943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11944. return;
  11945. }
  11946. const float eps = 1e-9f;
  11947. // TODO: handle transposed/permuted matrices
  11948. const int64_t nc = src0->ne[0];
  11949. const int64_t nr = ggml_nrows(src0);
  11950. // rows per thread
  11951. const int64_t dr = (nr + nth - 1)/nth;
  11952. // row range for this thread
  11953. const int64_t ir0 = dr*ith;
  11954. const int64_t ir1 = MIN(ir0 + dr, nr);
  11955. float * d = (float *) opt0->data;
  11956. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11957. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11958. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11959. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11960. float * sm = (float *) params->wdata + ith*nc;
  11961. #ifndef NDEBUG
  11962. for (int i = 0; i < nc; ++i) {
  11963. //printf("p[%d] = %f\n", i, p[i]);
  11964. assert(!isnan(s0[i]));
  11965. assert(!isnan(s1[i]));
  11966. }
  11967. #endif
  11968. // step by step explanation:
  11969. {
  11970. //float * sums = (float *) params->wdata;
  11971. // forward pass with annotated gradients from backward pass
  11972. // (built by going in reverse operation order, adding to gradients of current operation args)
  11973. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11974. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11975. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11976. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11977. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11978. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11979. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11980. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11981. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11982. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11983. // postorder:
  11984. // grad[st1] := softmax(s0)
  11985. // grad[st1] := grad[st1]*(1.0 - eps)
  11986. // grad[st1] := grad[st1] + eps
  11987. // grad[st1] := s1 / grad[st1]
  11988. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11989. // src0 gradients by going through softmax_back
  11990. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11991. // from softmax_back:
  11992. // dxk = yk * (dyk - dot(y, dy))
  11993. // dot_y_dy := dot(y, dy)
  11994. // dx := dy
  11995. // dx := dx - dot_y_dy
  11996. // dx := dx * y
  11997. // postorder:
  11998. // dot_st1_dst1 := dot(st1, grad[st1])
  11999. // grad[s0] := grad[st1]
  12000. // grad[s0] := grad[s0] - dot_st1_dst1
  12001. // grad[s0] := grad[s0] * st1
  12002. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12003. // sm := softmax(s0)
  12004. // grad[s0] := sm*(1.0 - eps)
  12005. // grad[s0] := grad[s0] + eps
  12006. // grad[s0] := s1 / grad[s0]
  12007. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12008. // dot_st1_dst1 := dot(sm, grad[s0])
  12009. // grad[s0] := grad[s0] - dot_st1_dst1
  12010. // grad[s0] := grad[s0] * sm
  12011. }
  12012. // soft_max
  12013. ggml_float sum = 0.0;
  12014. {
  12015. float max = -INFINITY;
  12016. ggml_vec_max_f32(nc, &max, s0);
  12017. uint16_t scvt;
  12018. for (int i = 0; i < nc; i++) {
  12019. if (s0[i] == -INFINITY) {
  12020. sm[i] = 0.0f;
  12021. } else {
  12022. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12023. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12024. memcpy(&scvt, &s, sizeof(scvt));
  12025. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12026. sum += (ggml_float)val;
  12027. sm[i] = val;
  12028. }
  12029. }
  12030. assert(sum > 0.0);
  12031. sum = 1.0/sum;
  12032. }
  12033. float dot_st1_dst1 = 0;
  12034. ggml_vec_scale_f32(nc, sm, sum);
  12035. ggml_vec_cpy_f32 (nc, ds0, sm);
  12036. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12037. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12038. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12039. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12040. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12041. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12042. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12043. #ifndef NDEBUG
  12044. for (int i = 0; i < nc; ++i) {
  12045. assert(!isnan(sm[i]));
  12046. assert(!isinf(sm[i]));
  12047. assert(!isnan(ds0[i]));
  12048. assert(!isinf(ds0[i]));
  12049. }
  12050. #endif
  12051. }
  12052. }
  12053. static void ggml_compute_forward_cross_entropy_loss_back(
  12054. const struct ggml_compute_params * params,
  12055. const struct ggml_tensor * src0,
  12056. const struct ggml_tensor * src1,
  12057. const struct ggml_tensor * opt0,
  12058. struct ggml_tensor * dst) {
  12059. switch (src0->type) {
  12060. case GGML_TYPE_F32:
  12061. {
  12062. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12063. } break;
  12064. default:
  12065. {
  12066. GGML_ASSERT(false);
  12067. } break;
  12068. }
  12069. }
  12070. /////////////////////////////////
  12071. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12072. GGML_ASSERT(params);
  12073. #ifdef GGML_USE_CUBLAS
  12074. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12075. if (skip_cpu) {
  12076. return;
  12077. }
  12078. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  12079. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  12080. #endif // GGML_USE_CUBLAS
  12081. switch (tensor->op) {
  12082. case GGML_OP_DUP:
  12083. {
  12084. ggml_compute_forward_dup(params, tensor->src0, tensor);
  12085. } break;
  12086. case GGML_OP_ADD:
  12087. {
  12088. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  12089. } break;
  12090. case GGML_OP_ADD1:
  12091. {
  12092. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  12093. } break;
  12094. case GGML_OP_ACC:
  12095. {
  12096. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12097. } break;
  12098. case GGML_OP_SUB:
  12099. {
  12100. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  12101. } break;
  12102. case GGML_OP_MUL:
  12103. {
  12104. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  12105. } break;
  12106. case GGML_OP_DIV:
  12107. {
  12108. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  12109. } break;
  12110. case GGML_OP_SQR:
  12111. {
  12112. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  12113. } break;
  12114. case GGML_OP_SQRT:
  12115. {
  12116. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  12117. } break;
  12118. case GGML_OP_LOG:
  12119. {
  12120. ggml_compute_forward_log(params, tensor->src0, tensor);
  12121. } break;
  12122. case GGML_OP_SUM:
  12123. {
  12124. ggml_compute_forward_sum(params, tensor->src0, tensor);
  12125. } break;
  12126. case GGML_OP_SUM_ROWS:
  12127. {
  12128. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  12129. } break;
  12130. case GGML_OP_MEAN:
  12131. {
  12132. ggml_compute_forward_mean(params, tensor->src0, tensor);
  12133. } break;
  12134. case GGML_OP_REPEAT:
  12135. {
  12136. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  12137. } break;
  12138. case GGML_OP_REPEAT_BACK:
  12139. {
  12140. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  12141. } break;
  12142. case GGML_OP_ABS:
  12143. {
  12144. ggml_compute_forward_abs(params, tensor->src0, tensor);
  12145. } break;
  12146. case GGML_OP_SGN:
  12147. {
  12148. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  12149. } break;
  12150. case GGML_OP_NEG:
  12151. {
  12152. ggml_compute_forward_neg(params, tensor->src0, tensor);
  12153. } break;
  12154. case GGML_OP_STEP:
  12155. {
  12156. ggml_compute_forward_step(params, tensor->src0, tensor);
  12157. } break;
  12158. case GGML_OP_RELU:
  12159. {
  12160. ggml_compute_forward_relu(params, tensor->src0, tensor);
  12161. } break;
  12162. case GGML_OP_GELU:
  12163. {
  12164. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  12165. } break;
  12166. case GGML_OP_GELU_QUICK:
  12167. {
  12168. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  12169. } break;
  12170. case GGML_OP_SILU:
  12171. {
  12172. ggml_compute_forward_silu(params, tensor->src0, tensor);
  12173. } break;
  12174. case GGML_OP_SILU_BACK:
  12175. {
  12176. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  12177. } break;
  12178. case GGML_OP_NORM:
  12179. {
  12180. ggml_compute_forward_norm(params, tensor->src0, tensor);
  12181. } break;
  12182. case GGML_OP_RMS_NORM:
  12183. {
  12184. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  12185. } break;
  12186. case GGML_OP_RMS_NORM_BACK:
  12187. {
  12188. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  12189. } break;
  12190. case GGML_OP_MUL_MAT:
  12191. {
  12192. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  12193. } break;
  12194. case GGML_OP_OUT_PROD:
  12195. {
  12196. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  12197. } break;
  12198. case GGML_OP_SCALE:
  12199. {
  12200. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  12201. } break;
  12202. case GGML_OP_SET:
  12203. {
  12204. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12205. } break;
  12206. case GGML_OP_CPY:
  12207. {
  12208. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  12209. } break;
  12210. case GGML_OP_CONT:
  12211. {
  12212. ggml_compute_forward_cont(params, tensor->src0, tensor);
  12213. } break;
  12214. case GGML_OP_RESHAPE:
  12215. {
  12216. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  12217. } break;
  12218. case GGML_OP_VIEW:
  12219. {
  12220. ggml_compute_forward_view(params, tensor->src0);
  12221. } break;
  12222. case GGML_OP_PERMUTE:
  12223. {
  12224. ggml_compute_forward_permute(params, tensor->src0);
  12225. } break;
  12226. case GGML_OP_TRANSPOSE:
  12227. {
  12228. ggml_compute_forward_transpose(params, tensor->src0);
  12229. } break;
  12230. case GGML_OP_GET_ROWS:
  12231. {
  12232. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  12233. } break;
  12234. case GGML_OP_GET_ROWS_BACK:
  12235. {
  12236. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12237. } break;
  12238. case GGML_OP_DIAG:
  12239. {
  12240. ggml_compute_forward_diag(params, tensor->src0, tensor);
  12241. } break;
  12242. case GGML_OP_DIAG_MASK_INF:
  12243. {
  12244. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  12245. } break;
  12246. case GGML_OP_DIAG_MASK_ZERO:
  12247. {
  12248. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12249. } break;
  12250. case GGML_OP_SOFT_MAX:
  12251. {
  12252. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12253. } break;
  12254. case GGML_OP_SOFT_MAX_BACK:
  12255. {
  12256. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12257. } break;
  12258. case GGML_OP_ROPE:
  12259. {
  12260. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12261. } break;
  12262. case GGML_OP_ROPE_BACK:
  12263. {
  12264. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12265. } break;
  12266. case GGML_OP_ALIBI:
  12267. {
  12268. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12269. } break;
  12270. case GGML_OP_CLAMP:
  12271. {
  12272. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12273. } break;
  12274. case GGML_OP_CONV_1D_S1_PH:
  12275. {
  12276. ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor);
  12277. } break;
  12278. case GGML_OP_CONV_1D_S2_PH:
  12279. {
  12280. ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor);
  12281. } break;
  12282. case GGML_OP_CONV_2D_SK_P0:
  12283. {
  12284. ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor);
  12285. } break;
  12286. case GGML_OP_FLASH_ATTN:
  12287. {
  12288. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12289. GGML_ASSERT(t == 0 || t == 1);
  12290. const bool masked = t != 0;
  12291. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12292. } break;
  12293. case GGML_OP_FLASH_FF:
  12294. {
  12295. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12296. } break;
  12297. case GGML_OP_FLASH_ATTN_BACK:
  12298. {
  12299. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12300. GGML_ASSERT(t == 0 || t == 1);
  12301. bool masked = t != 0;
  12302. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12303. } break;
  12304. case GGML_OP_WIN_PART:
  12305. {
  12306. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12307. } break;
  12308. case GGML_OP_WIN_UNPART:
  12309. {
  12310. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12311. } break;
  12312. case GGML_OP_MAP_UNARY:
  12313. {
  12314. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12315. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12316. }
  12317. break;
  12318. case GGML_OP_MAP_BINARY:
  12319. {
  12320. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12321. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12322. }
  12323. break;
  12324. case GGML_OP_CROSS_ENTROPY_LOSS:
  12325. {
  12326. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12327. }
  12328. break;
  12329. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12330. {
  12331. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12332. }
  12333. break;
  12334. case GGML_OP_NONE:
  12335. {
  12336. // nop
  12337. } break;
  12338. case GGML_OP_COUNT:
  12339. {
  12340. GGML_ASSERT(false);
  12341. } break;
  12342. }
  12343. }
  12344. ////////////////////////////////////////////////////////////////////////////////
  12345. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12346. struct ggml_tensor * src0 = tensor->src0;
  12347. struct ggml_tensor * src1 = tensor->src1;
  12348. switch (tensor->op) {
  12349. case GGML_OP_DUP:
  12350. {
  12351. if (src0->grad) {
  12352. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12353. }
  12354. } break;
  12355. case GGML_OP_ADD:
  12356. {
  12357. if (src0->grad) {
  12358. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12359. }
  12360. if (src1->grad) {
  12361. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12362. }
  12363. } break;
  12364. case GGML_OP_ADD1:
  12365. {
  12366. if (src0->grad) {
  12367. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12368. }
  12369. if (src1->grad) {
  12370. src1->grad = ggml_add_impl(ctx,
  12371. src1->grad,
  12372. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12373. inplace);
  12374. }
  12375. } break;
  12376. case GGML_OP_ACC:
  12377. {
  12378. if (src0->grad) {
  12379. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12380. }
  12381. if (src1->grad) {
  12382. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12383. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12384. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12385. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12386. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12387. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12388. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12389. tensor->grad,
  12390. src1->grad->ne[0],
  12391. src1->grad->ne[1],
  12392. src1->grad->ne[2],
  12393. src1->grad->ne[3],
  12394. nb1, nb2, nb3, offset);
  12395. src1->grad =
  12396. ggml_add_impl(ctx,
  12397. src1->grad,
  12398. ggml_reshape(ctx,
  12399. ggml_cont(ctx, tensor_grad_view),
  12400. src1->grad),
  12401. inplace);
  12402. }
  12403. } break;
  12404. case GGML_OP_SUB:
  12405. {
  12406. if (src0->grad) {
  12407. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12408. }
  12409. if (src1->grad) {
  12410. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12411. }
  12412. } break;
  12413. case GGML_OP_MUL:
  12414. {
  12415. if (src0->grad) {
  12416. src0->grad =
  12417. ggml_add_impl(ctx,
  12418. src0->grad,
  12419. ggml_mul(ctx, src1, tensor->grad),
  12420. inplace);
  12421. }
  12422. if (src1->grad) {
  12423. src1->grad =
  12424. ggml_add_impl(ctx,
  12425. src1->grad,
  12426. ggml_mul(ctx, src0, tensor->grad),
  12427. inplace);
  12428. }
  12429. } break;
  12430. case GGML_OP_DIV:
  12431. {
  12432. if (src0->grad) {
  12433. src0->grad =
  12434. ggml_add_impl(ctx,
  12435. src0->grad,
  12436. ggml_div(ctx, tensor->grad, src1),
  12437. inplace);
  12438. }
  12439. if (src1->grad) {
  12440. src1->grad =
  12441. ggml_sub_impl(ctx,
  12442. src1->grad,
  12443. ggml_mul(ctx,
  12444. tensor->grad,
  12445. ggml_div(ctx, tensor, src1)),
  12446. inplace);
  12447. }
  12448. } break;
  12449. case GGML_OP_SQR:
  12450. {
  12451. if (src0->grad) {
  12452. src0->grad =
  12453. ggml_add_impl(ctx,
  12454. src0->grad,
  12455. ggml_scale(ctx,
  12456. ggml_mul(ctx, src0, tensor->grad),
  12457. ggml_new_f32(ctx, 2.0f)),
  12458. inplace);
  12459. }
  12460. } break;
  12461. case GGML_OP_SQRT:
  12462. {
  12463. if (src0->grad) {
  12464. src0->grad =
  12465. ggml_add_impl(ctx,
  12466. src0->grad,
  12467. ggml_scale(ctx,
  12468. ggml_div(ctx,
  12469. tensor->grad,
  12470. tensor),
  12471. ggml_new_f32(ctx, 0.5f)),
  12472. inplace);
  12473. }
  12474. } break;
  12475. case GGML_OP_LOG:
  12476. {
  12477. if (src0->grad) {
  12478. src0->grad =
  12479. ggml_add_impl(ctx,
  12480. src0->grad,
  12481. ggml_div(ctx,
  12482. tensor->grad,
  12483. src0),
  12484. inplace);
  12485. }
  12486. } break;
  12487. case GGML_OP_SUM:
  12488. {
  12489. if (src0->grad) {
  12490. src0->grad =
  12491. ggml_add1_impl(ctx,
  12492. src0->grad,
  12493. tensor->grad,
  12494. inplace);
  12495. }
  12496. } break;
  12497. case GGML_OP_SUM_ROWS:
  12498. {
  12499. if (src0->grad) {
  12500. src0->grad =
  12501. ggml_add_impl(ctx,
  12502. src0->grad,
  12503. ggml_repeat(ctx,
  12504. tensor->grad,
  12505. src0->grad),
  12506. inplace);
  12507. }
  12508. } break;
  12509. case GGML_OP_MEAN:
  12510. {
  12511. GGML_ASSERT(false); // TODO: implement
  12512. } break;
  12513. case GGML_OP_REPEAT:
  12514. {
  12515. // necessary for llama
  12516. if (src0->grad) {
  12517. src0->grad = ggml_add_impl(ctx,
  12518. src0->grad,
  12519. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12520. inplace);
  12521. }
  12522. } break;
  12523. case GGML_OP_REPEAT_BACK:
  12524. {
  12525. if (src0->grad) {
  12526. // TODO: test this
  12527. src0->grad = ggml_add_impl(ctx,
  12528. src0->grad,
  12529. ggml_repeat(ctx, tensor->grad, src0->grad),
  12530. inplace);
  12531. }
  12532. } break;
  12533. case GGML_OP_ABS:
  12534. {
  12535. if (src0->grad) {
  12536. src0->grad =
  12537. ggml_add_impl(ctx,
  12538. src0->grad,
  12539. ggml_mul(ctx,
  12540. ggml_sgn(ctx, src0),
  12541. tensor->grad),
  12542. inplace);
  12543. }
  12544. } break;
  12545. case GGML_OP_SGN:
  12546. {
  12547. if (src0->grad) {
  12548. // noop
  12549. }
  12550. } break;
  12551. case GGML_OP_NEG:
  12552. {
  12553. if (src0->grad) {
  12554. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12555. }
  12556. } break;
  12557. case GGML_OP_STEP:
  12558. {
  12559. if (src0->grad) {
  12560. // noop
  12561. }
  12562. } break;
  12563. case GGML_OP_RELU:
  12564. {
  12565. if (src0->grad) {
  12566. src0->grad = ggml_sub_impl(ctx,
  12567. src0->grad,
  12568. ggml_mul(ctx,
  12569. ggml_step(ctx, src0),
  12570. tensor->grad),
  12571. inplace);
  12572. }
  12573. } break;
  12574. case GGML_OP_GELU:
  12575. {
  12576. GGML_ASSERT(false); // TODO: not implemented
  12577. } break;
  12578. case GGML_OP_GELU_QUICK:
  12579. {
  12580. GGML_ASSERT(false); // TODO: not implemented
  12581. } break;
  12582. case GGML_OP_ALIBI:
  12583. {
  12584. GGML_ASSERT(false); // TODO: not implemented
  12585. } break;
  12586. case GGML_OP_CLAMP:
  12587. {
  12588. GGML_ASSERT(false); // TODO: not implemented
  12589. } break;
  12590. case GGML_OP_SILU:
  12591. {
  12592. // necessary for llama
  12593. if (src0->grad) {
  12594. src0->grad = ggml_add_impl(ctx,
  12595. src0->grad,
  12596. ggml_silu_back(ctx, src0, tensor->grad),
  12597. inplace);
  12598. }
  12599. } break;
  12600. case GGML_OP_SILU_BACK:
  12601. {
  12602. GGML_ASSERT(false); // TODO: not implemented
  12603. } break;
  12604. case GGML_OP_NORM:
  12605. {
  12606. GGML_ASSERT(false); // TODO: not implemented
  12607. } break;
  12608. case GGML_OP_RMS_NORM:
  12609. {
  12610. // necessary for llama
  12611. if (src0->grad) {
  12612. src0->grad = ggml_add_impl(ctx,
  12613. src0->grad,
  12614. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12615. inplace);
  12616. }
  12617. } break;
  12618. case GGML_OP_RMS_NORM_BACK:
  12619. {
  12620. GGML_ASSERT(false); // TODO: not implemented
  12621. } break;
  12622. case GGML_OP_MUL_MAT:
  12623. {
  12624. // https://cs231n.github.io/optimization-2/#staged
  12625. // # forward pass
  12626. // s0 = np.random.randn(5, 10)
  12627. // s1 = np.random.randn(10, 3)
  12628. // t = s0.dot(s1)
  12629. // # now suppose we had the gradient on t from above in the circuit
  12630. // dt = np.random.randn(*t.shape) # same shape as t
  12631. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12632. // ds1 = t.T.dot(dt)
  12633. // tensor.shape [m,p]
  12634. // src0.shape [n,m]
  12635. // src1.shape [n,p]
  12636. // necessary for llama
  12637. if (src0->grad) {
  12638. src0->grad =
  12639. ggml_add_impl(ctx,
  12640. src0->grad,
  12641. ggml_out_prod(ctx, // [n,m]
  12642. src1, // [n,p]
  12643. tensor->grad), // [m,p]
  12644. inplace);
  12645. }
  12646. if (src1->grad) {
  12647. src1->grad =
  12648. ggml_add_impl(ctx,
  12649. src1->grad,
  12650. // ggml_mul_mat(ctx, // [n,p]
  12651. // ggml_cont(ctx, // [m,n]
  12652. // ggml_transpose(ctx, src0)), // [m,n]
  12653. // tensor->grad), // [m,p]
  12654. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12655. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12656. // // and then use ggml_out_prod
  12657. ggml_out_prod(ctx, // [n,p]
  12658. src0, // [n,m]
  12659. ggml_transpose(ctx, // [p,m]
  12660. tensor->grad)), // [m,p]
  12661. inplace);
  12662. }
  12663. } break;
  12664. case GGML_OP_OUT_PROD:
  12665. {
  12666. GGML_ASSERT(false); // TODO: not implemented
  12667. } break;
  12668. case GGML_OP_SCALE:
  12669. {
  12670. // necessary for llama
  12671. if (src0->grad) {
  12672. src0->grad =
  12673. ggml_add_impl(ctx,
  12674. src0->grad,
  12675. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12676. inplace);
  12677. }
  12678. if (src1->grad) {
  12679. src1->grad =
  12680. ggml_add_impl(ctx,
  12681. src1->grad,
  12682. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12683. inplace);
  12684. }
  12685. } break;
  12686. case GGML_OP_SET:
  12687. {
  12688. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12689. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12690. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12691. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12692. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12693. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12694. struct ggml_tensor * tensor_grad_view = NULL;
  12695. if (src0->grad || src1->grad) {
  12696. GGML_ASSERT(src0->type == tensor->type);
  12697. GGML_ASSERT(tensor->grad->type == tensor->type);
  12698. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12699. tensor_grad_view = ggml_view_4d(ctx,
  12700. tensor->grad,
  12701. src1->grad->ne[0],
  12702. src1->grad->ne[1],
  12703. src1->grad->ne[2],
  12704. src1->grad->ne[3],
  12705. nb1, nb2, nb3, offset);
  12706. }
  12707. if (src0->grad) {
  12708. src0->grad = ggml_add_impl(ctx,
  12709. src0->grad,
  12710. ggml_acc_impl(ctx,
  12711. tensor->grad,
  12712. ggml_neg(ctx, tensor_grad_view),
  12713. nb1, nb2, nb3, offset, false),
  12714. inplace);
  12715. }
  12716. if (src1->grad) {
  12717. src1->grad =
  12718. ggml_add_impl(ctx,
  12719. src1->grad,
  12720. ggml_reshape(ctx,
  12721. ggml_cont(ctx, tensor_grad_view),
  12722. src1->grad),
  12723. inplace);
  12724. }
  12725. } break;
  12726. case GGML_OP_CPY:
  12727. {
  12728. // necessary for llama
  12729. // cpy overwrites value of src1 by src0 and returns view(src1)
  12730. // the overwriting is mathematically equivalent to:
  12731. // tensor = src0 * 1 + src1 * 0
  12732. if (src0->grad) {
  12733. // dsrc0 = dtensor * 1
  12734. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12735. }
  12736. if (src1->grad) {
  12737. // dsrc1 = dtensor * 0 -> noop
  12738. }
  12739. } break;
  12740. case GGML_OP_CONT:
  12741. {
  12742. // same as cpy
  12743. if (src0->grad) {
  12744. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12745. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12746. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12747. }
  12748. } break;
  12749. case GGML_OP_RESHAPE:
  12750. {
  12751. // necessary for llama
  12752. if (src0->grad) {
  12753. src0->grad =
  12754. ggml_add_impl(ctx, src0->grad,
  12755. ggml_reshape(ctx, tensor->grad, src0->grad),
  12756. inplace);
  12757. }
  12758. } break;
  12759. case GGML_OP_VIEW:
  12760. {
  12761. // necessary for llama
  12762. if (src0->grad) {
  12763. size_t offset;
  12764. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12765. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12766. size_t nb1 = tensor->nb[1];
  12767. size_t nb2 = tensor->nb[2];
  12768. size_t nb3 = tensor->nb[3];
  12769. if (src0->type != src0->grad->type) {
  12770. // gradient is typically F32, but src0 could be other type
  12771. size_t ng = ggml_element_size(src0->grad);
  12772. size_t n0 = ggml_element_size(src0);
  12773. GGML_ASSERT(offset % n0 == 0);
  12774. GGML_ASSERT(nb1 % n0 == 0);
  12775. GGML_ASSERT(nb2 % n0 == 0);
  12776. GGML_ASSERT(nb3 % n0 == 0);
  12777. offset = (offset / n0) * ng;
  12778. nb1 = (nb1 / n0) * ng;
  12779. nb2 = (nb2 / n0) * ng;
  12780. nb3 = (nb3 / n0) * ng;
  12781. }
  12782. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12783. }
  12784. } break;
  12785. case GGML_OP_PERMUTE:
  12786. {
  12787. // necessary for llama
  12788. if (src0->grad) {
  12789. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12790. int axis0 = axes[0] & 0x3;
  12791. int axis1 = axes[1] & 0x3;
  12792. int axis2 = axes[2] & 0x3;
  12793. int axis3 = axes[3] & 0x3;
  12794. int axes_backward[4] = {0,0,0,0};
  12795. axes_backward[axis0] = 0;
  12796. axes_backward[axis1] = 1;
  12797. axes_backward[axis2] = 2;
  12798. axes_backward[axis3] = 3;
  12799. src0->grad =
  12800. ggml_add_impl(ctx, src0->grad,
  12801. ggml_permute(ctx,
  12802. tensor->grad,
  12803. axes_backward[0],
  12804. axes_backward[1],
  12805. axes_backward[2],
  12806. axes_backward[3]),
  12807. inplace);
  12808. }
  12809. } break;
  12810. case GGML_OP_TRANSPOSE:
  12811. {
  12812. // necessary for llama
  12813. if (src0->grad) {
  12814. src0->grad =
  12815. ggml_add_impl(ctx, src0->grad,
  12816. ggml_transpose(ctx, tensor->grad),
  12817. inplace);
  12818. }
  12819. } break;
  12820. case GGML_OP_GET_ROWS:
  12821. {
  12822. // necessary for llama (only for tokenizer)
  12823. if (src0->grad) {
  12824. src0->grad =
  12825. ggml_add_impl(ctx, src0->grad,
  12826. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12827. inplace);
  12828. }
  12829. if (src1->grad) {
  12830. // noop
  12831. }
  12832. } break;
  12833. case GGML_OP_GET_ROWS_BACK:
  12834. {
  12835. GGML_ASSERT(false); // TODO: not implemented
  12836. } break;
  12837. case GGML_OP_DIAG:
  12838. {
  12839. GGML_ASSERT(false); // TODO: not implemented
  12840. } break;
  12841. case GGML_OP_DIAG_MASK_INF:
  12842. {
  12843. // necessary for llama
  12844. if (src0->grad) {
  12845. assert(src1->type == GGML_TYPE_I32);
  12846. assert(ggml_nelements(src1) == 2);
  12847. const int n_past = ((int32_t *) src1->data)[0];
  12848. src0->grad =
  12849. ggml_add_impl(ctx, src0->grad,
  12850. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12851. inplace);
  12852. }
  12853. if (src1->grad) {
  12854. // noop
  12855. }
  12856. } break;
  12857. case GGML_OP_DIAG_MASK_ZERO:
  12858. {
  12859. // necessary for llama
  12860. if (src0->grad) {
  12861. assert(src1->type == GGML_TYPE_I32);
  12862. assert(ggml_nelements(src1) == 2);
  12863. const int n_past = ((int32_t *) src1->data)[0];
  12864. src0->grad =
  12865. ggml_add_impl(ctx, src0->grad,
  12866. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12867. inplace);
  12868. }
  12869. if (src1->grad) {
  12870. // noop
  12871. }
  12872. } break;
  12873. case GGML_OP_SOFT_MAX:
  12874. {
  12875. // necessary for llama
  12876. if (src0->grad) {
  12877. src0->grad =
  12878. ggml_add_impl(ctx, src0->grad,
  12879. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12880. inplace);
  12881. }
  12882. } break;
  12883. case GGML_OP_SOFT_MAX_BACK:
  12884. {
  12885. GGML_ASSERT(false); // TODO: not implemented
  12886. } break;
  12887. case GGML_OP_ROPE:
  12888. {
  12889. // necessary for llama
  12890. if (src0->grad) {
  12891. assert(src1->type == GGML_TYPE_I32);
  12892. assert(ggml_nelements(src1) == 3);
  12893. const int n_past = ((int32_t *) src1->data)[0];
  12894. const int n_dims = ((int32_t *) src1->data)[1];
  12895. const int mode = ((int32_t *) src1->data)[2];
  12896. src0->grad = ggml_add_impl(ctx,
  12897. src0->grad,
  12898. ggml_rope_back(ctx,
  12899. tensor->grad,
  12900. n_past,
  12901. n_dims,
  12902. mode),
  12903. inplace);
  12904. }
  12905. if (src1->grad) {
  12906. // noop
  12907. }
  12908. } break;
  12909. case GGML_OP_ROPE_BACK:
  12910. {
  12911. if (src0->grad) {
  12912. assert(src1->type == GGML_TYPE_I32);
  12913. assert(ggml_nelements(src1) == 3);
  12914. const int n_past = ((int32_t *) src1->data)[0];
  12915. const int n_dims = ((int32_t *) src1->data)[1];
  12916. const int mode = ((int32_t *) src1->data)[2];
  12917. src0->grad = ggml_add_impl(ctx,
  12918. src0->grad,
  12919. ggml_rope(ctx,
  12920. tensor->grad,
  12921. n_past,
  12922. n_dims,
  12923. mode),
  12924. inplace);
  12925. }
  12926. if (src1->grad) {
  12927. // noop
  12928. }
  12929. } break;
  12930. case GGML_OP_CONV_1D_S1_PH:
  12931. {
  12932. GGML_ASSERT(false); // TODO: not implemented
  12933. } break;
  12934. case GGML_OP_CONV_1D_S2_PH:
  12935. {
  12936. GGML_ASSERT(false); // TODO: not implemented
  12937. } break;
  12938. case GGML_OP_CONV_2D_SK_P0:
  12939. {
  12940. GGML_ASSERT(false); // TODO: not implemented
  12941. } break;
  12942. case GGML_OP_FLASH_ATTN:
  12943. {
  12944. struct ggml_tensor * flash_grad = NULL;
  12945. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12946. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12947. GGML_ASSERT(t == 0 || t == 1);
  12948. bool masked = t != 0;
  12949. flash_grad =
  12950. ggml_flash_attn_back(ctx,
  12951. src0,
  12952. src1,
  12953. tensor->opt[0],
  12954. tensor->grad,
  12955. masked);
  12956. }
  12957. if (src0->grad) {
  12958. struct ggml_tensor * grad_q = NULL;
  12959. const size_t nb0 = flash_grad->nb[0];
  12960. const size_t offset = 0;
  12961. switch(src0->n_dims) {
  12962. case 2:
  12963. {
  12964. grad_q = ggml_view_2d(ctx,
  12965. flash_grad,
  12966. src0->ne[0],
  12967. src0->ne[1],
  12968. nb0*src0->ne[0],
  12969. offset);
  12970. } break;
  12971. case 3:
  12972. {
  12973. grad_q = ggml_view_3d(ctx,
  12974. flash_grad,
  12975. src0->ne[0],
  12976. src0->ne[1],
  12977. src0->ne[2],
  12978. nb0*src0->ne[0],
  12979. nb0*src0->ne[0]*src0->ne[1],
  12980. offset);
  12981. } break;
  12982. case 4:
  12983. {
  12984. grad_q = ggml_view_4d(ctx,
  12985. flash_grad,
  12986. src0->ne[0],
  12987. src0->ne[1],
  12988. src0->ne[2],
  12989. src0->ne[3],
  12990. nb0*src0->ne[0],
  12991. nb0*src0->ne[0]*src0->ne[1],
  12992. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12993. offset);
  12994. } break;
  12995. }
  12996. src0->grad = ggml_add_impl(ctx,
  12997. src0->grad,
  12998. grad_q,
  12999. inplace);
  13000. }
  13001. if (src1->grad) {
  13002. struct ggml_tensor * grad_k = NULL;
  13003. const size_t nb0 = flash_grad->nb[0];
  13004. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13005. switch(src1->n_dims) {
  13006. case 2:
  13007. {
  13008. grad_k = ggml_view_2d(ctx,
  13009. flash_grad,
  13010. src1->ne[0],
  13011. src1->ne[1],
  13012. nb0*src1->ne[0],
  13013. offset);
  13014. } break;
  13015. case 3:
  13016. {
  13017. grad_k = ggml_view_3d(ctx,
  13018. flash_grad,
  13019. src1->ne[0],
  13020. src1->ne[1],
  13021. src1->ne[2],
  13022. nb0*src1->ne[0],
  13023. nb0*src1->ne[0]*src1->ne[1],
  13024. offset);
  13025. } break;
  13026. case 4:
  13027. {
  13028. grad_k = ggml_view_4d(ctx,
  13029. flash_grad,
  13030. src1->ne[0],
  13031. src1->ne[1],
  13032. src1->ne[2],
  13033. src1->ne[3],
  13034. nb0*src1->ne[0],
  13035. nb0*src1->ne[0]*src1->ne[1],
  13036. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13037. offset);
  13038. } break;
  13039. }
  13040. src1->grad = ggml_add_impl(ctx,
  13041. src1->grad,
  13042. grad_k,
  13043. inplace);
  13044. }
  13045. struct ggml_tensor * opt0 = tensor->opt[0];
  13046. if (opt0->grad) {
  13047. struct ggml_tensor * grad_v = NULL;
  13048. const size_t nb0 = flash_grad->nb[0];
  13049. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13050. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13051. switch(opt0->n_dims) {
  13052. case 2:
  13053. {
  13054. grad_v = ggml_view_2d(ctx,
  13055. flash_grad,
  13056. opt0->ne[0],
  13057. opt0->ne[1],
  13058. nb0*opt0->ne[0],
  13059. offset);
  13060. } break;
  13061. case 3:
  13062. {
  13063. grad_v = ggml_view_3d(ctx,
  13064. flash_grad,
  13065. opt0->ne[0],
  13066. opt0->ne[1],
  13067. opt0->ne[2],
  13068. nb0*opt0->ne[0],
  13069. nb0*opt0->ne[0]*opt0->ne[1],
  13070. offset);
  13071. } break;
  13072. case 4:
  13073. {
  13074. grad_v = ggml_view_4d(ctx,
  13075. flash_grad,
  13076. opt0->ne[0],
  13077. opt0->ne[1],
  13078. opt0->ne[2],
  13079. opt0->ne[3],
  13080. nb0*opt0->ne[0],
  13081. nb0*opt0->ne[0]*opt0->ne[1],
  13082. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13083. offset);
  13084. } break;
  13085. }
  13086. opt0->grad = ggml_add_impl(ctx,
  13087. opt0->grad,
  13088. grad_v,
  13089. inplace);
  13090. }
  13091. } break;
  13092. case GGML_OP_FLASH_FF:
  13093. {
  13094. GGML_ASSERT(false); // not supported
  13095. } break;
  13096. case GGML_OP_FLASH_ATTN_BACK:
  13097. {
  13098. GGML_ASSERT(false); // not supported
  13099. } break;
  13100. case GGML_OP_WIN_PART:
  13101. case GGML_OP_WIN_UNPART:
  13102. case GGML_OP_MAP_UNARY:
  13103. case GGML_OP_MAP_BINARY:
  13104. {
  13105. GGML_ASSERT(false); // not supported
  13106. } break;
  13107. case GGML_OP_CROSS_ENTROPY_LOSS:
  13108. {
  13109. if (src0->grad) {
  13110. src0->grad = ggml_add_impl(ctx,
  13111. src0->grad,
  13112. ggml_cross_entropy_loss_back(ctx,
  13113. src0,
  13114. src1,
  13115. tensor->grad),
  13116. inplace);
  13117. }
  13118. } break;
  13119. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13120. {
  13121. GGML_ASSERT(false); // not supported
  13122. } break;
  13123. case GGML_OP_NONE:
  13124. {
  13125. // nop
  13126. } break;
  13127. case GGML_OP_COUNT:
  13128. {
  13129. GGML_ASSERT(false);
  13130. } break;
  13131. }
  13132. }
  13133. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13134. if (node->grad == NULL) {
  13135. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13136. // it can also happen during forward pass, if the user performs computations with constants
  13137. if (node->op != GGML_OP_NONE) {
  13138. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13139. }
  13140. }
  13141. // check if already visited
  13142. for (int i = 0; i < cgraph->n_nodes; i++) {
  13143. if (cgraph->nodes[i] == node) {
  13144. return;
  13145. }
  13146. }
  13147. for (int i = 0; i < cgraph->n_leafs; i++) {
  13148. if (cgraph->leafs[i] == node) {
  13149. return;
  13150. }
  13151. }
  13152. if (node->src0) {
  13153. ggml_visit_parents(cgraph, node->src0);
  13154. }
  13155. if (node->src1) {
  13156. ggml_visit_parents(cgraph, node->src1);
  13157. }
  13158. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  13159. if (node->opt[i]) {
  13160. ggml_visit_parents(cgraph, node->opt[i]);
  13161. }
  13162. }
  13163. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13164. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13165. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13166. if (strlen(node->name) == 0) {
  13167. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  13168. }
  13169. cgraph->leafs[cgraph->n_leafs] = node;
  13170. cgraph->n_leafs++;
  13171. } else {
  13172. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13173. if (strlen(node->name) == 0) {
  13174. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  13175. }
  13176. cgraph->nodes[cgraph->n_nodes] = node;
  13177. cgraph->grads[cgraph->n_nodes] = node->grad;
  13178. cgraph->n_nodes++;
  13179. }
  13180. }
  13181. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13182. if (!expand) {
  13183. cgraph->n_nodes = 0;
  13184. cgraph->n_leafs = 0;
  13185. }
  13186. const int n0 = cgraph->n_nodes;
  13187. UNUSED(n0);
  13188. ggml_visit_parents(cgraph, tensor);
  13189. const int n_new = cgraph->n_nodes - n0;
  13190. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13191. if (n_new > 0) {
  13192. // the last added node should always be starting point
  13193. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13194. }
  13195. }
  13196. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13197. ggml_build_forward_impl(cgraph, tensor, true);
  13198. }
  13199. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13200. struct ggml_cgraph result = {
  13201. /*.n_nodes =*/ 0,
  13202. /*.n_leafs =*/ 0,
  13203. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  13204. /*.work_size =*/ 0,
  13205. /*.work =*/ NULL,
  13206. /*.nodes =*/ { NULL },
  13207. /*.grads =*/ { NULL },
  13208. /*.leafs =*/ { NULL },
  13209. /*.perf_runs =*/ 0,
  13210. /*.perf_cycles =*/ 0,
  13211. /*.perf_time_us =*/ 0,
  13212. };
  13213. ggml_build_forward_impl(&result, tensor, false);
  13214. return result;
  13215. }
  13216. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13217. struct ggml_cgraph result = *gf;
  13218. GGML_ASSERT(gf->n_nodes > 0);
  13219. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13220. if (keep) {
  13221. for (int i = 0; i < gf->n_nodes; i++) {
  13222. struct ggml_tensor * node = gf->nodes[i];
  13223. if (node->grad) {
  13224. node->grad = ggml_dup_tensor(ctx, node);
  13225. gf->grads[i] = node->grad;
  13226. }
  13227. }
  13228. }
  13229. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13230. struct ggml_tensor * node = gf->nodes[i];
  13231. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13232. if (node->grad) {
  13233. ggml_compute_backward(ctx, node, keep);
  13234. }
  13235. }
  13236. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13237. struct ggml_tensor * node = gf->nodes[i];
  13238. if (node->is_param) {
  13239. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13240. ggml_build_forward_impl(&result, node->grad, true);
  13241. }
  13242. }
  13243. return result;
  13244. }
  13245. //
  13246. // thread data
  13247. //
  13248. // synchronization is done via busy loops
  13249. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13250. //
  13251. #ifdef __APPLE__
  13252. //#include <os/lock.h>
  13253. //
  13254. //typedef os_unfair_lock ggml_lock_t;
  13255. //
  13256. //#define ggml_lock_init(x) UNUSED(x)
  13257. //#define ggml_lock_destroy(x) UNUSED(x)
  13258. //#define ggml_lock_lock os_unfair_lock_lock
  13259. //#define ggml_lock_unlock os_unfair_lock_unlock
  13260. //
  13261. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13262. typedef int ggml_lock_t;
  13263. #define ggml_lock_init(x) UNUSED(x)
  13264. #define ggml_lock_destroy(x) UNUSED(x)
  13265. #define ggml_lock_lock(x) UNUSED(x)
  13266. #define ggml_lock_unlock(x) UNUSED(x)
  13267. #define GGML_LOCK_INITIALIZER 0
  13268. typedef pthread_t ggml_thread_t;
  13269. #define ggml_thread_create pthread_create
  13270. #define ggml_thread_join pthread_join
  13271. #else
  13272. //typedef pthread_spinlock_t ggml_lock_t;
  13273. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13274. //#define ggml_lock_destroy pthread_spin_destroy
  13275. //#define ggml_lock_lock pthread_spin_lock
  13276. //#define ggml_lock_unlock pthread_spin_unlock
  13277. typedef int ggml_lock_t;
  13278. #define ggml_lock_init(x) UNUSED(x)
  13279. #define ggml_lock_destroy(x) UNUSED(x)
  13280. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13281. #define ggml_lock_lock(x) _mm_pause()
  13282. #else
  13283. #define ggml_lock_lock(x) UNUSED(x)
  13284. #endif
  13285. #define ggml_lock_unlock(x) UNUSED(x)
  13286. #define GGML_LOCK_INITIALIZER 0
  13287. typedef pthread_t ggml_thread_t;
  13288. #define ggml_thread_create pthread_create
  13289. #define ggml_thread_join pthread_join
  13290. #endif
  13291. struct ggml_compute_state_shared {
  13292. ggml_lock_t spin;
  13293. int n_threads;
  13294. // synchronization primitives
  13295. atomic_int n_ready;
  13296. atomic_bool has_work;
  13297. atomic_bool stop; // stop all threads
  13298. };
  13299. struct ggml_compute_state {
  13300. ggml_thread_t thrd;
  13301. struct ggml_compute_params params;
  13302. struct ggml_tensor * node;
  13303. struct ggml_compute_state_shared * shared;
  13304. };
  13305. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13306. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13307. const int n_threads = state->shared->n_threads;
  13308. while (true) {
  13309. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  13310. atomic_store(&state->shared->has_work, false);
  13311. } else {
  13312. while (atomic_load(&state->shared->has_work)) {
  13313. if (atomic_load(&state->shared->stop)) {
  13314. return 0;
  13315. }
  13316. ggml_lock_lock (&state->shared->spin);
  13317. ggml_lock_unlock(&state->shared->spin);
  13318. }
  13319. }
  13320. atomic_fetch_sub(&state->shared->n_ready, 1);
  13321. // wait for work
  13322. while (!atomic_load(&state->shared->has_work)) {
  13323. if (atomic_load(&state->shared->stop)) {
  13324. return 0;
  13325. }
  13326. ggml_lock_lock (&state->shared->spin);
  13327. ggml_lock_unlock(&state->shared->spin);
  13328. }
  13329. // check if we should stop
  13330. if (atomic_load(&state->shared->stop)) {
  13331. break;
  13332. }
  13333. if (state->node) {
  13334. if (state->params.ith < state->params.nth) {
  13335. ggml_compute_forward(&state->params, state->node);
  13336. }
  13337. state->node = NULL;
  13338. } else {
  13339. break;
  13340. }
  13341. }
  13342. return 0;
  13343. }
  13344. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13345. const int n_threads = cgraph->n_threads;
  13346. struct ggml_compute_state_shared state_shared = {
  13347. /*.spin =*/ GGML_LOCK_INITIALIZER,
  13348. /*.n_threads =*/ n_threads,
  13349. /*.n_ready =*/ 0,
  13350. /*.has_work =*/ false,
  13351. /*.stop =*/ false,
  13352. };
  13353. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  13354. // create thread pool
  13355. if (n_threads > 1) {
  13356. ggml_lock_init(&state_shared.spin);
  13357. atomic_store(&state_shared.has_work, true);
  13358. for (int j = 0; j < n_threads - 1; j++) {
  13359. workers[j] = (struct ggml_compute_state) {
  13360. .thrd = 0,
  13361. .params = {
  13362. .type = GGML_TASK_COMPUTE,
  13363. .ith = j + 1,
  13364. .nth = n_threads,
  13365. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13366. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13367. },
  13368. .node = NULL,
  13369. .shared = &state_shared,
  13370. };
  13371. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13372. GGML_ASSERT(rc == 0);
  13373. UNUSED(rc);
  13374. }
  13375. }
  13376. // initialize tasks + work buffer
  13377. {
  13378. size_t work_size = 0;
  13379. // thread scheduling for the different operations
  13380. for (int i = 0; i < cgraph->n_nodes; i++) {
  13381. struct ggml_tensor * node = cgraph->nodes[i];
  13382. switch (node->op) {
  13383. case GGML_OP_CPY:
  13384. case GGML_OP_DUP:
  13385. {
  13386. node->n_tasks = n_threads;
  13387. size_t cur = 0;
  13388. if (ggml_is_quantized(node->type)) {
  13389. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  13390. }
  13391. work_size = MAX(work_size, cur);
  13392. } break;
  13393. case GGML_OP_ADD:
  13394. case GGML_OP_ADD1:
  13395. {
  13396. node->n_tasks = n_threads;
  13397. size_t cur = 0;
  13398. if (ggml_is_quantized(node->src0->type)) {
  13399. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  13400. }
  13401. work_size = MAX(work_size, cur);
  13402. } break;
  13403. case GGML_OP_ACC:
  13404. {
  13405. node->n_tasks = n_threads;
  13406. size_t cur = 0;
  13407. if (ggml_is_quantized(node->src0->type)) {
  13408. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  13409. }
  13410. work_size = MAX(work_size, cur);
  13411. } break;
  13412. case GGML_OP_SUB:
  13413. case GGML_OP_DIV:
  13414. case GGML_OP_SQR:
  13415. case GGML_OP_SQRT:
  13416. case GGML_OP_LOG:
  13417. case GGML_OP_SUM:
  13418. case GGML_OP_SUM_ROWS:
  13419. case GGML_OP_MEAN:
  13420. case GGML_OP_REPEAT:
  13421. case GGML_OP_REPEAT_BACK:
  13422. case GGML_OP_ABS:
  13423. case GGML_OP_SGN:
  13424. case GGML_OP_NEG:
  13425. case GGML_OP_STEP:
  13426. case GGML_OP_RELU:
  13427. {
  13428. node->n_tasks = 1;
  13429. } break;
  13430. case GGML_OP_MUL:
  13431. case GGML_OP_GELU:
  13432. case GGML_OP_GELU_QUICK:
  13433. case GGML_OP_SILU:
  13434. case GGML_OP_SILU_BACK:
  13435. case GGML_OP_NORM:
  13436. case GGML_OP_RMS_NORM:
  13437. case GGML_OP_RMS_NORM_BACK:
  13438. {
  13439. node->n_tasks = n_threads;
  13440. } break;
  13441. case GGML_OP_MUL_MAT:
  13442. case GGML_OP_OUT_PROD:
  13443. {
  13444. node->n_tasks = n_threads;
  13445. // TODO: use different scheduling for different matrix sizes
  13446. //const int nr0 = ggml_nrows(node->src0);
  13447. //const int nr1 = ggml_nrows(node->src1);
  13448. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13449. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  13450. size_t cur = 0;
  13451. #if defined(GGML_USE_CUBLAS)
  13452. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13453. node->n_tasks = 1; // TODO: this actually is doing nothing
  13454. // the threads are still spinning
  13455. }
  13456. else
  13457. #elif defined(GGML_USE_CLBLAST)
  13458. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13459. node->n_tasks = 1; // TODO: this actually is doing nothing
  13460. // the threads are still spinning
  13461. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13462. }
  13463. else
  13464. #endif
  13465. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  13466. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13467. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13468. node->n_tasks = 1; // TODO: this actually is doing nothing
  13469. // the threads are still spinning
  13470. // here we need memory just for single 2D matrix from src0
  13471. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13472. } else {
  13473. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13474. }
  13475. #else
  13476. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  13477. #endif
  13478. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  13479. cur = 0;
  13480. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13481. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13482. node->n_tasks = 1;
  13483. }
  13484. #endif
  13485. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  13486. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13487. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13488. node->n_tasks = 1;
  13489. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13490. } else
  13491. #endif
  13492. {
  13493. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13494. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13495. }
  13496. } else {
  13497. GGML_ASSERT(false);
  13498. }
  13499. work_size = MAX(work_size, cur);
  13500. } break;
  13501. case GGML_OP_SCALE:
  13502. {
  13503. node->n_tasks = n_threads;
  13504. } break;
  13505. case GGML_OP_SET:
  13506. case GGML_OP_CONT:
  13507. case GGML_OP_RESHAPE:
  13508. case GGML_OP_VIEW:
  13509. case GGML_OP_PERMUTE:
  13510. case GGML_OP_TRANSPOSE:
  13511. case GGML_OP_GET_ROWS:
  13512. case GGML_OP_GET_ROWS_BACK:
  13513. case GGML_OP_DIAG:
  13514. case GGML_OP_DIAG_MASK_ZERO:
  13515. {
  13516. node->n_tasks = 1;
  13517. } break;
  13518. case GGML_OP_DIAG_MASK_INF:
  13519. case GGML_OP_SOFT_MAX:
  13520. case GGML_OP_SOFT_MAX_BACK:
  13521. case GGML_OP_ROPE:
  13522. case GGML_OP_ROPE_BACK:
  13523. {
  13524. node->n_tasks = n_threads;
  13525. } break;
  13526. case GGML_OP_ALIBI:
  13527. {
  13528. node->n_tasks = 1; //TODO
  13529. } break;
  13530. case GGML_OP_CLAMP:
  13531. {
  13532. node->n_tasks = 1; //TODO
  13533. } break;
  13534. case GGML_OP_CONV_1D_S1_PH:
  13535. case GGML_OP_CONV_1D_S2_PH:
  13536. {
  13537. node->n_tasks = n_threads;
  13538. GGML_ASSERT(node->src0->ne[3] == 1);
  13539. GGML_ASSERT(node->src1->ne[2] == 1);
  13540. GGML_ASSERT(node->src1->ne[3] == 1);
  13541. size_t cur = 0;
  13542. const int nk = node->src0->ne[0];
  13543. if (node->src0->type == GGML_TYPE_F16 &&
  13544. node->src1->type == GGML_TYPE_F32) {
  13545. cur = sizeof(ggml_fp16_t)*(
  13546. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13547. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13548. );
  13549. } else if (node->src0->type == GGML_TYPE_F32 &&
  13550. node->src1->type == GGML_TYPE_F32) {
  13551. cur = sizeof(float)*(
  13552. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13553. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13554. );
  13555. } else {
  13556. GGML_ASSERT(false);
  13557. }
  13558. work_size = MAX(work_size, cur);
  13559. } break;
  13560. case GGML_OP_CONV_2D_SK_P0:
  13561. {
  13562. node->n_tasks = n_threads;
  13563. GGML_ASSERT(node->src1->ne[3] == 1);
  13564. const int64_t ne00 = node->src0->ne[0]; // W
  13565. const int64_t ne01 = node->src0->ne[1]; // H
  13566. const int64_t ne02 = node->src0->ne[2]; // C
  13567. const int64_t ne03 = node->src0->ne[3]; // N
  13568. const int64_t ne10 = node->src1->ne[0]; // W
  13569. const int64_t ne11 = node->src1->ne[1]; // H
  13570. const int64_t ne12 = node->src1->ne[2]; // C
  13571. const int64_t nk = ne00*ne01;
  13572. UNUSED(ne02);
  13573. UNUSED(ne03);
  13574. UNUSED(nk);
  13575. size_t cur = 0;
  13576. if (node->src0->type == GGML_TYPE_F16 &&
  13577. node->src1->type == GGML_TYPE_F32) {
  13578. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13579. } else if (node->src0->type == GGML_TYPE_F32 &&
  13580. node->src1->type == GGML_TYPE_F32) {
  13581. cur = sizeof(float)* (ne10*ne11*ne12);
  13582. } else {
  13583. GGML_ASSERT(false);
  13584. }
  13585. work_size = MAX(work_size, cur);
  13586. } break;
  13587. case GGML_OP_FLASH_ATTN:
  13588. {
  13589. node->n_tasks = n_threads;
  13590. size_t cur = 0;
  13591. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13592. if (node->src1->type == GGML_TYPE_F32) {
  13593. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13594. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13595. }
  13596. if (node->src1->type == GGML_TYPE_F16) {
  13597. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13598. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13599. }
  13600. work_size = MAX(work_size, cur);
  13601. } break;
  13602. case GGML_OP_FLASH_FF:
  13603. {
  13604. node->n_tasks = n_threads;
  13605. size_t cur = 0;
  13606. if (node->src1->type == GGML_TYPE_F32) {
  13607. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13608. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13609. }
  13610. if (node->src1->type == GGML_TYPE_F16) {
  13611. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13612. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13613. }
  13614. work_size = MAX(work_size, cur);
  13615. } break;
  13616. case GGML_OP_FLASH_ATTN_BACK:
  13617. {
  13618. node->n_tasks = n_threads;
  13619. size_t cur = 0;
  13620. const int64_t D = node->src0->ne[0];
  13621. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13622. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13623. if (node->src1->type == GGML_TYPE_F32) {
  13624. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13625. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13626. }
  13627. if (node->src1->type == GGML_TYPE_F16) {
  13628. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13629. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13630. }
  13631. work_size = MAX(work_size, cur);
  13632. } break;
  13633. case GGML_OP_WIN_PART:
  13634. case GGML_OP_WIN_UNPART:
  13635. case GGML_OP_MAP_UNARY:
  13636. case GGML_OP_MAP_BINARY:
  13637. {
  13638. node->n_tasks = 1;
  13639. } break;
  13640. case GGML_OP_CROSS_ENTROPY_LOSS:
  13641. {
  13642. node->n_tasks = n_threads;
  13643. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13644. work_size = MAX(work_size, cur);
  13645. } break;
  13646. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13647. {
  13648. node->n_tasks = n_threads;
  13649. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13650. work_size = MAX(work_size, cur);
  13651. } break;
  13652. case GGML_OP_NONE:
  13653. {
  13654. node->n_tasks = 1;
  13655. } break;
  13656. case GGML_OP_COUNT:
  13657. {
  13658. GGML_ASSERT(false);
  13659. } break;
  13660. }
  13661. }
  13662. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13663. GGML_ASSERT(false); // TODO: better handling
  13664. }
  13665. if (work_size > 0 && cgraph->work == NULL) {
  13666. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13667. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13668. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13669. }
  13670. }
  13671. const int64_t perf_start_cycles = ggml_perf_cycles();
  13672. const int64_t perf_start_time_us = ggml_perf_time_us();
  13673. for (int i = 0; i < cgraph->n_nodes; i++) {
  13674. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  13675. struct ggml_tensor * node = cgraph->nodes[i];
  13676. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  13677. //if (node->grad == NULL && node->perf_runs > 0) {
  13678. // continue;
  13679. //}
  13680. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  13681. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  13682. // INIT
  13683. struct ggml_compute_params params = {
  13684. /*.type =*/ GGML_TASK_INIT,
  13685. /*.ith =*/ 0,
  13686. /*.nth =*/ node->n_tasks,
  13687. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13688. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13689. };
  13690. ggml_compute_forward(&params, node);
  13691. // COMPUTE
  13692. if (node->n_tasks > 1) {
  13693. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13694. atomic_store(&state_shared.has_work, false);
  13695. }
  13696. while (atomic_load(&state_shared.has_work)) {
  13697. ggml_lock_lock (&state_shared.spin);
  13698. ggml_lock_unlock(&state_shared.spin);
  13699. }
  13700. // launch thread pool
  13701. for (int j = 0; j < n_threads - 1; j++) {
  13702. workers[j].params = (struct ggml_compute_params) {
  13703. .type = GGML_TASK_COMPUTE,
  13704. .ith = j + 1,
  13705. .nth = node->n_tasks,
  13706. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13707. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13708. };
  13709. workers[j].node = node;
  13710. }
  13711. atomic_fetch_sub(&state_shared.n_ready, 1);
  13712. while (atomic_load(&state_shared.n_ready) > 0) {
  13713. ggml_lock_lock (&state_shared.spin);
  13714. ggml_lock_unlock(&state_shared.spin);
  13715. }
  13716. atomic_store(&state_shared.has_work, true);
  13717. }
  13718. params.type = GGML_TASK_COMPUTE;
  13719. ggml_compute_forward(&params, node);
  13720. // wait for thread pool
  13721. if (node->n_tasks > 1) {
  13722. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13723. atomic_store(&state_shared.has_work, false);
  13724. }
  13725. while (atomic_load(&state_shared.has_work)) {
  13726. ggml_lock_lock (&state_shared.spin);
  13727. ggml_lock_unlock(&state_shared.spin);
  13728. }
  13729. atomic_fetch_sub(&state_shared.n_ready, 1);
  13730. while (atomic_load(&state_shared.n_ready) != 0) {
  13731. ggml_lock_lock (&state_shared.spin);
  13732. ggml_lock_unlock(&state_shared.spin);
  13733. }
  13734. }
  13735. // FINALIZE
  13736. if (node->n_tasks > 1) {
  13737. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13738. atomic_store(&state_shared.has_work, false);
  13739. }
  13740. while (atomic_load(&state_shared.has_work)) {
  13741. ggml_lock_lock (&state_shared.spin);
  13742. ggml_lock_unlock(&state_shared.spin);
  13743. }
  13744. // launch thread pool
  13745. for (int j = 0; j < n_threads - 1; j++) {
  13746. workers[j].params = (struct ggml_compute_params) {
  13747. .type = GGML_TASK_FINALIZE,
  13748. .ith = j + 1,
  13749. .nth = node->n_tasks,
  13750. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13751. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13752. };
  13753. workers[j].node = node;
  13754. }
  13755. atomic_fetch_sub(&state_shared.n_ready, 1);
  13756. while (atomic_load(&state_shared.n_ready) > 0) {
  13757. ggml_lock_lock (&state_shared.spin);
  13758. ggml_lock_unlock(&state_shared.spin);
  13759. }
  13760. atomic_store(&state_shared.has_work, true);
  13761. }
  13762. params.type = GGML_TASK_FINALIZE;
  13763. ggml_compute_forward(&params, node);
  13764. // wait for thread pool
  13765. if (node->n_tasks > 1) {
  13766. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13767. atomic_store(&state_shared.has_work, false);
  13768. }
  13769. while (atomic_load(&state_shared.has_work)) {
  13770. ggml_lock_lock (&state_shared.spin);
  13771. ggml_lock_unlock(&state_shared.spin);
  13772. }
  13773. atomic_fetch_sub(&state_shared.n_ready, 1);
  13774. while (atomic_load(&state_shared.n_ready) != 0) {
  13775. ggml_lock_lock (&state_shared.spin);
  13776. ggml_lock_unlock(&state_shared.spin);
  13777. }
  13778. }
  13779. // performance stats (node)
  13780. {
  13781. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  13782. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  13783. node->perf_runs++;
  13784. node->perf_cycles += perf_cycles_cur;
  13785. node->perf_time_us += perf_time_us_cur;
  13786. }
  13787. }
  13788. // join thread pool
  13789. if (n_threads > 1) {
  13790. atomic_store(&state_shared.stop, true);
  13791. atomic_store(&state_shared.has_work, true);
  13792. for (int j = 0; j < n_threads - 1; j++) {
  13793. int rc = ggml_thread_join(workers[j].thrd, NULL);
  13794. GGML_ASSERT(rc == 0);
  13795. UNUSED(rc);
  13796. }
  13797. ggml_lock_destroy(&state_shared.spin);
  13798. }
  13799. // performance stats (graph)
  13800. {
  13801. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13802. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13803. cgraph->perf_runs++;
  13804. cgraph->perf_cycles += perf_cycles_cur;
  13805. cgraph->perf_time_us += perf_time_us_cur;
  13806. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13807. __func__, cgraph->perf_runs,
  13808. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13809. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13810. (double) perf_time_us_cur / 1000.0,
  13811. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13812. }
  13813. }
  13814. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13815. for (int i = 0; i < cgraph->n_nodes; i++) {
  13816. struct ggml_tensor * grad = cgraph->grads[i];
  13817. if (grad) {
  13818. ggml_set_zero(grad);
  13819. }
  13820. }
  13821. }
  13822. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13823. for (int i = 0; i < cgraph->n_leafs; i++) {
  13824. struct ggml_tensor * leaf = cgraph->leafs[i];
  13825. if (strcmp(leaf->name, name) == 0) {
  13826. return leaf;
  13827. }
  13828. }
  13829. for (int i = 0; i < cgraph->n_nodes; i++) {
  13830. struct ggml_tensor * node = cgraph->nodes[i];
  13831. if (strcmp(node->name, name) == 0) {
  13832. return node;
  13833. }
  13834. }
  13835. return NULL;
  13836. }
  13837. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13838. const int64_t * ne = tensor->ne;
  13839. const size_t * nb = tensor->nb;
  13840. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13841. ggml_type_name(tensor->type),
  13842. ggml_op_name (tensor->op),
  13843. tensor->n_dims,
  13844. ne[0], ne[1], ne[2], ne[3],
  13845. nb[0], nb[1], nb[2], nb[3],
  13846. tensor->data,
  13847. tensor->name);
  13848. }
  13849. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13850. const int64_t * ne = tensor->ne;
  13851. const size_t * nb = tensor->nb;
  13852. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  13853. arg,
  13854. ggml_type_name(tensor->type),
  13855. ggml_op_name (tensor->op),
  13856. tensor->n_dims,
  13857. ne[0], ne[1], ne[2], ne[3],
  13858. nb[0], nb[1], nb[2], nb[3],
  13859. tensor->n_tasks,
  13860. tensor->data,
  13861. tensor->name);
  13862. }
  13863. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13864. //assert(cgraph->work == NULL);
  13865. //assert(cgraph->work_size == 0);
  13866. uint64_t size_eval = 0;
  13867. // compute size of intermediate results
  13868. // TODO: does not take into account scratch buffers !!!!
  13869. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13870. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13871. }
  13872. // print
  13873. {
  13874. FILE * fout = stdout;
  13875. fprintf(fout, "\n");
  13876. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13877. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13878. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13879. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13880. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13881. // header
  13882. fprintf(fout, "\n");
  13883. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13884. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13885. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13886. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13887. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13888. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13889. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13890. }
  13891. // header
  13892. fprintf(fout, "\n");
  13893. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13894. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13895. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13896. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13897. if (cgraph->nodes[i]->src0) {
  13898. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13899. }
  13900. if (cgraph->nodes[i]->src1) {
  13901. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13902. }
  13903. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13904. if (cgraph->nodes[i]->opt[j]) {
  13905. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13906. }
  13907. }
  13908. fprintf(fout, "\n");
  13909. }
  13910. fprintf(fout, "\n");
  13911. }
  13912. // write binary data
  13913. {
  13914. FILE * fout = fopen(fname, "wb");
  13915. if (!fout) {
  13916. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13917. return;
  13918. }
  13919. // header
  13920. {
  13921. const uint32_t magic = GGML_FILE_MAGIC;
  13922. const uint32_t version = GGML_FILE_VERSION;
  13923. const uint32_t n_leafs = cgraph->n_leafs;
  13924. const uint32_t nodes = cgraph->n_nodes;
  13925. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13926. fwrite(&version, sizeof(uint32_t), 1, fout);
  13927. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13928. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13929. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13930. }
  13931. // leafs
  13932. {
  13933. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13934. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13935. const uint32_t type = tensor->type;
  13936. const uint32_t op = tensor->op;
  13937. const uint32_t n_dims = tensor->n_dims;
  13938. fwrite(&type, sizeof(uint32_t), 1, fout);
  13939. fwrite(&op, sizeof(uint32_t), 1, fout);
  13940. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13941. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13942. const uint64_t ne = tensor->ne[j];
  13943. const uint64_t nb = tensor->nb[j];
  13944. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13945. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13946. }
  13947. // store the pointer address
  13948. {
  13949. const uint64_t ptr = (uint64_t) tensor->data;
  13950. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13951. }
  13952. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13953. // dump the data
  13954. // TODO: pad this to 32 byte boundary
  13955. {
  13956. const size_t size = ggml_nbytes(tensor);
  13957. fwrite(tensor->data, sizeof(char), size, fout);
  13958. }
  13959. }
  13960. }
  13961. // nodes
  13962. {
  13963. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13964. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13965. const uint32_t type = tensor->type;
  13966. const uint32_t op = tensor->op;
  13967. const uint32_t n_dims = tensor->n_dims;
  13968. fwrite(&type, sizeof(uint32_t), 1, fout);
  13969. fwrite(&op, sizeof(uint32_t), 1, fout);
  13970. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13971. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13972. const uint64_t ne = tensor->ne[j];
  13973. const uint64_t nb = tensor->nb[j];
  13974. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13975. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13976. }
  13977. // store the pointer address
  13978. {
  13979. const uint64_t ptr = (uint64_t) tensor->data;
  13980. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13981. }
  13982. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13983. // output the op arguments
  13984. {
  13985. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13986. args[0] = tensor->src0;
  13987. args[1] = tensor->src1;
  13988. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13989. args[2 + j] = tensor->opt[j];
  13990. }
  13991. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13992. if (args[j]) {
  13993. int32_t idx = -1;
  13994. // check if leaf
  13995. {
  13996. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13997. if (args[j] == cgraph->leafs[k]) {
  13998. idx = k;
  13999. break;
  14000. }
  14001. }
  14002. }
  14003. // check if node
  14004. if (idx == -1) {
  14005. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14006. if (args[j] == cgraph->nodes[k]) {
  14007. idx = GGML_MAX_NODES + k;
  14008. break;
  14009. }
  14010. }
  14011. }
  14012. if (idx == -1) {
  14013. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14014. return;
  14015. }
  14016. fwrite(&idx, sizeof(int32_t), 1, fout);
  14017. } else {
  14018. const int32_t nul = -1;
  14019. fwrite(&nul, sizeof(int32_t), 1, fout);
  14020. }
  14021. }
  14022. }
  14023. }
  14024. }
  14025. fclose(fout);
  14026. }
  14027. }
  14028. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14029. assert(*ctx_data == NULL);
  14030. assert(*ctx_eval == NULL);
  14031. struct ggml_cgraph result = { 0 };
  14032. struct ggml_tensor * data = NULL;
  14033. // read file into data
  14034. {
  14035. FILE * fin = fopen(fname, "rb");
  14036. if (!fin) {
  14037. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14038. return result;
  14039. }
  14040. size_t fsize = 0;
  14041. fseek(fin, 0, SEEK_END);
  14042. fsize = ftell(fin);
  14043. fseek(fin, 0, SEEK_SET);
  14044. // create the data context
  14045. {
  14046. const size_t overhead = 1*ggml_tensor_overhead();
  14047. struct ggml_init_params params = {
  14048. .mem_size = fsize + overhead,
  14049. .mem_buffer = NULL,
  14050. .no_alloc = false,
  14051. };
  14052. *ctx_data = ggml_init(params);
  14053. if (!*ctx_data) {
  14054. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14055. fclose(fin);
  14056. return result;
  14057. }
  14058. }
  14059. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14060. {
  14061. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14062. if (ret != fsize) {
  14063. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14064. fclose(fin);
  14065. return result;
  14066. }
  14067. }
  14068. fclose(fin);
  14069. }
  14070. // populate result
  14071. {
  14072. char * ptr = (char *) data->data;
  14073. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14074. if (magic != GGML_FILE_MAGIC) {
  14075. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14076. return result;
  14077. }
  14078. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14079. if (version != GGML_FILE_VERSION) {
  14080. fprintf(stderr, "%s: invalid version number\n", __func__);
  14081. return result;
  14082. }
  14083. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14084. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14085. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14086. result.n_leafs = n_leafs;
  14087. result.n_nodes = n_nodes;
  14088. // create the data context
  14089. {
  14090. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14091. struct ggml_init_params params = {
  14092. .mem_size = size_eval + overhead,
  14093. .mem_buffer = NULL,
  14094. .no_alloc = true,
  14095. };
  14096. *ctx_eval = ggml_init(params);
  14097. if (!*ctx_eval) {
  14098. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14099. return result;
  14100. }
  14101. }
  14102. // leafs
  14103. {
  14104. uint32_t type;
  14105. uint32_t op;
  14106. uint32_t n_dims;
  14107. for (uint32_t i = 0; i < n_leafs; ++i) {
  14108. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14109. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14110. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14111. int64_t ne[GGML_MAX_DIMS];
  14112. size_t nb[GGML_MAX_DIMS];
  14113. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14114. uint64_t ne_cur;
  14115. uint64_t nb_cur;
  14116. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14117. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14118. ne[j] = ne_cur;
  14119. nb[j] = nb_cur;
  14120. }
  14121. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14122. tensor->op = (enum ggml_op) op;
  14123. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  14124. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14125. tensor->data = (void *) ptr;
  14126. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14127. tensor->nb[j] = nb[j];
  14128. }
  14129. result.leafs[i] = tensor;
  14130. ptr += ggml_nbytes(tensor);
  14131. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14132. }
  14133. }
  14134. ggml_set_no_alloc(*ctx_eval, false);
  14135. // nodes
  14136. {
  14137. uint32_t type;
  14138. uint32_t op;
  14139. uint32_t n_dims;
  14140. for (uint32_t i = 0; i < n_nodes; ++i) {
  14141. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14142. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14143. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14144. enum ggml_op eop = (enum ggml_op) op;
  14145. int64_t ne[GGML_MAX_DIMS];
  14146. size_t nb[GGML_MAX_DIMS];
  14147. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14148. uint64_t ne_cur;
  14149. uint64_t nb_cur;
  14150. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14151. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14152. ne[j] = ne_cur;
  14153. nb[j] = nb_cur;
  14154. }
  14155. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  14156. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14157. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  14158. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14159. // parse args
  14160. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14161. const int32_t arg_idx = ptr_arg_idx[j];
  14162. if (arg_idx == -1) {
  14163. continue;
  14164. }
  14165. if (arg_idx < GGML_MAX_NODES) {
  14166. args[j] = result.leafs[arg_idx];
  14167. } else {
  14168. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14169. }
  14170. }
  14171. // create the tensor
  14172. // "view" operations are handled differently
  14173. // TODO: handle inplace ops - currently a copy is always made
  14174. struct ggml_tensor * tensor = NULL;
  14175. switch (eop) {
  14176. // TODO: implement other view ops
  14177. case GGML_OP_RESHAPE:
  14178. {
  14179. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14180. } break;
  14181. case GGML_OP_VIEW:
  14182. {
  14183. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14184. uint64_t offs;
  14185. memcpy(&offs, args[2]->data, sizeof(offs));
  14186. tensor->data = ((char *) tensor->data) + offs;
  14187. } break;
  14188. case GGML_OP_TRANSPOSE:
  14189. {
  14190. tensor = ggml_transpose(*ctx_eval, args[0]);
  14191. } break;
  14192. case GGML_OP_PERMUTE:
  14193. {
  14194. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14195. } break;
  14196. default:
  14197. {
  14198. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14199. tensor->op = eop;
  14200. } break;
  14201. }
  14202. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14203. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14204. tensor->nb[j] = nb[j];
  14205. }
  14206. tensor->src0 = args[0];
  14207. tensor->src1 = args[1];
  14208. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14209. tensor->opt[j] = args[2 + j];
  14210. }
  14211. result.nodes[i] = tensor;
  14212. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14213. }
  14214. }
  14215. }
  14216. return result;
  14217. }
  14218. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14219. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14220. GGML_PRINT("=== GRAPH ===\n");
  14221. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14222. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14223. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14224. for (int i = 0; i < cgraph->n_nodes; i++) {
  14225. struct ggml_tensor * node = cgraph->nodes[i];
  14226. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14227. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14228. i,
  14229. node->ne[0], node->ne[1], node->ne[2],
  14230. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14231. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14232. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14233. (double) node->perf_time_us / 1000.0,
  14234. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14235. }
  14236. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14237. for (int i = 0; i < cgraph->n_leafs; i++) {
  14238. struct ggml_tensor * node = cgraph->leafs[i];
  14239. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14240. i,
  14241. node->ne[0], node->ne[1],
  14242. GGML_OP_NAME[node->op]);
  14243. }
  14244. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14245. if (perf_total_per_op_us[i] == 0) {
  14246. continue;
  14247. }
  14248. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14249. }
  14250. GGML_PRINT("========================================\n");
  14251. }
  14252. // check if node is part of the graph
  14253. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14254. if (cgraph == NULL) {
  14255. return true;
  14256. }
  14257. for (int i = 0; i < cgraph->n_nodes; i++) {
  14258. if (cgraph->nodes[i] == node) {
  14259. return true;
  14260. }
  14261. }
  14262. return false;
  14263. }
  14264. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14265. for (int i = 0; i < cgraph->n_nodes; i++) {
  14266. struct ggml_tensor * parent = cgraph->nodes[i];
  14267. if (parent->grad == node) {
  14268. return parent;
  14269. }
  14270. }
  14271. return NULL;
  14272. }
  14273. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14274. char color[16];
  14275. FILE * fp = fopen(filename, "w");
  14276. GGML_ASSERT(fp);
  14277. fprintf(fp, "digraph G {\n");
  14278. fprintf(fp, " newrank = true;\n");
  14279. fprintf(fp, " rankdir = LR;\n");
  14280. for (int i = 0; i < gb->n_nodes; i++) {
  14281. struct ggml_tensor * node = gb->nodes[i];
  14282. if (ggml_graph_get_parent(gb, node) != NULL) {
  14283. continue;
  14284. }
  14285. if (node->is_param) {
  14286. snprintf(color, sizeof(color), "yellow");
  14287. } else if (node->grad) {
  14288. if (ggml_graph_find(gf, node)) {
  14289. snprintf(color, sizeof(color), "green");
  14290. } else {
  14291. snprintf(color, sizeof(color), "lightblue");
  14292. }
  14293. } else {
  14294. snprintf(color, sizeof(color), "white");
  14295. }
  14296. fprintf(fp, " \"%p\" [ "
  14297. "style = filled; fillcolor = %s; shape = record; "
  14298. "label=\"",
  14299. (void *) node, color);
  14300. if (strlen(node->name) > 0) {
  14301. fprintf(fp, "%s |", node->name);
  14302. }
  14303. if (node->n_dims == 2) {
  14304. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14305. } else {
  14306. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14307. }
  14308. if (node->grad) {
  14309. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14310. } else {
  14311. fprintf(fp, "\"; ]\n");
  14312. }
  14313. }
  14314. for (int i = 0; i < gb->n_leafs; i++) {
  14315. struct ggml_tensor * node = gb->leafs[i];
  14316. snprintf(color, sizeof(color), "pink");
  14317. fprintf(fp, " \"%p\" [ "
  14318. "style = filled; fillcolor = %s; shape = record; "
  14319. "label=\"<x>",
  14320. (void *) node, color);
  14321. if (strlen(node->name) > 0) {
  14322. fprintf(fp, "%s | ", node->name);
  14323. }
  14324. if (ggml_nelements(node) == 1) {
  14325. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14326. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  14327. }
  14328. else {
  14329. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  14330. }
  14331. }
  14332. else {
  14333. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14334. }
  14335. fprintf(fp, "\"; ]\n");
  14336. }
  14337. for (int i = 0; i < gb->n_nodes; i++) {
  14338. struct ggml_tensor * node = gb->nodes[i];
  14339. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  14340. if (node->src0) {
  14341. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  14342. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  14343. parent0 ? (void *) parent0 : (void *) node->src0,
  14344. parent0 ? "g" : "x",
  14345. parent ? (void *) parent : (void *) node,
  14346. parent ? "g" : "x",
  14347. parent ? "empty" : "vee",
  14348. parent ? "dashed" : "solid");
  14349. }
  14350. if (node->src1) {
  14351. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  14352. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  14353. parent1 ? (void *) parent1 : (void *) node->src1,
  14354. parent1 ? "g" : "x",
  14355. parent ? (void *) parent : (void *) node,
  14356. parent ? "g" : "x",
  14357. parent ? "empty" : "vee",
  14358. parent ? "dashed" : "solid");
  14359. }
  14360. }
  14361. for (int i = 0; i < gb->n_leafs; i++) {
  14362. struct ggml_tensor * node = gb->leafs[i];
  14363. if (node->src0) {
  14364. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  14365. (void *) node->src0, "x",
  14366. (void *) node, "x");
  14367. }
  14368. if (node->src1) {
  14369. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  14370. (void *) node->src1, "x",
  14371. (void *) node, "x");
  14372. }
  14373. }
  14374. fprintf(fp, "}\n");
  14375. fclose(fp);
  14376. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14377. }
  14378. ////////////////////////////////////////////////////////////////////////////////
  14379. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14380. int i = 0;
  14381. for (int p = 0; p < np; ++p) {
  14382. const int64_t ne = ggml_nelements(ps[p]) ;
  14383. // TODO: add function to set tensor from array
  14384. for (int64_t j = 0; j < ne; ++j) {
  14385. ggml_set_f32_1d(ps[p], j, x[i++]);
  14386. }
  14387. }
  14388. }
  14389. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14390. int i = 0;
  14391. for (int p = 0; p < np; ++p) {
  14392. const int64_t ne = ggml_nelements(ps[p]) ;
  14393. // TODO: add function to get all elements at once
  14394. for (int64_t j = 0; j < ne; ++j) {
  14395. x[i++] = ggml_get_f32_1d(ps[p], j);
  14396. }
  14397. }
  14398. }
  14399. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14400. int i = 0;
  14401. for (int p = 0; p < np; ++p) {
  14402. const int64_t ne = ggml_nelements(ps[p]) ;
  14403. // TODO: add function to get all elements at once
  14404. for (int64_t j = 0; j < ne; ++j) {
  14405. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14406. }
  14407. }
  14408. }
  14409. //
  14410. // ADAM
  14411. //
  14412. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14413. //
  14414. static enum ggml_opt_result ggml_opt_adam(
  14415. struct ggml_context * ctx,
  14416. struct ggml_opt_context * opt,
  14417. struct ggml_opt_params params,
  14418. struct ggml_tensor * f,
  14419. struct ggml_cgraph * gf,
  14420. struct ggml_cgraph * gb) {
  14421. GGML_ASSERT(ggml_is_scalar(f));
  14422. gf->n_threads = params.n_threads;
  14423. gb->n_threads = params.n_threads;
  14424. // these will store the parameters we want to optimize
  14425. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14426. int np = 0;
  14427. int nx = 0;
  14428. for (int i = 0; i < gf->n_nodes; ++i) {
  14429. if (gf->nodes[i]->is_param) {
  14430. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14431. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14432. ps[np++] = gf->nodes[i];
  14433. nx += ggml_nelements(gf->nodes[i]);
  14434. }
  14435. }
  14436. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14437. int iter = opt->iter;
  14438. ggml_opt_init(opt->ctx, opt, params, nx);
  14439. opt->iter = iter;
  14440. }
  14441. // constants
  14442. const float sched = params.adam.sched;
  14443. const float decay = params.adam.decay * sched;
  14444. const float alpha = params.adam.alpha * sched;
  14445. const float beta1 = params.adam.beta1;
  14446. const float beta2 = params.adam.beta2;
  14447. const float eps = params.adam.eps;
  14448. float * x = opt->adam.x->data; // view of the parameters
  14449. float * g1 = opt->adam.g1->data; // gradient
  14450. float * g2 = opt->adam.g2->data; // gradient squared
  14451. float * m = opt->adam.m->data; // first moment
  14452. float * v = opt->adam.v->data; // second moment
  14453. float * mh = opt->adam.mh->data; // first moment hat
  14454. float * vh = opt->adam.vh->data; // second moment hat
  14455. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14456. // update view
  14457. ggml_opt_get_params(np, ps, x);
  14458. // compute the function value
  14459. ggml_graph_reset (gf);
  14460. ggml_set_f32 (f->grad, 1.0f);
  14461. ggml_graph_compute(ctx, gb);
  14462. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14463. opt->adam.fx_best = opt->adam.fx_prev;
  14464. if (pf) {
  14465. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14466. }
  14467. // initialize
  14468. if (opt->just_initialized) {
  14469. opt->adam.n_no_improvement = 0;
  14470. opt->just_initialized = false;
  14471. }
  14472. float * fx_best = &opt->adam.fx_best;
  14473. float * fx_prev = &opt->adam.fx_prev;
  14474. int * n_no_improvement = &opt->adam.n_no_improvement;
  14475. int iter0 = opt->iter;
  14476. // run the optimizer
  14477. for (int t = 0; t < params.adam.n_iter; ++t) {
  14478. opt->iter = iter0 + t + 1;
  14479. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14480. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14481. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14482. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14483. for (int i = 0; i < np; ++i) {
  14484. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14485. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14486. }
  14487. const int64_t t_start_wall = ggml_time_us();
  14488. const int64_t t_start_cpu = ggml_cycles();
  14489. UNUSED(t_start_wall);
  14490. UNUSED(t_start_cpu);
  14491. {
  14492. // update the gradient
  14493. ggml_opt_get_grad(np, ps, g1);
  14494. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14495. ggml_vec_scale_f32(nx, m, beta1);
  14496. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14497. // g2 = g1^2
  14498. ggml_vec_sqr_f32 (nx, g2, g1);
  14499. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14500. ggml_vec_scale_f32(nx, v, beta2);
  14501. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14502. // m^hat = m_t / (1 - beta1^t)
  14503. // v^hat = v_t / (1 - beta2^t)
  14504. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14505. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14506. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14507. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14508. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14509. ggml_vec_cpy_f32 (nx, mh, m);
  14510. ggml_vec_cpy_f32 (nx, vh, v);
  14511. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14512. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14513. ggml_vec_sqrt_f32 (nx, vh, vh);
  14514. ggml_vec_acc1_f32 (nx, vh, eps);
  14515. ggml_vec_div_f32 (nx, mh, mh, vh);
  14516. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14517. ggml_vec_sub_f32 (nx, x, x, mh);
  14518. // update the parameters
  14519. ggml_opt_set_params(np, ps, x);
  14520. }
  14521. ggml_graph_reset (gf);
  14522. ggml_set_f32 (f->grad, 1.0f);
  14523. ggml_graph_compute(ctx, gb);
  14524. const float fx = ggml_get_f32_1d(f, 0);
  14525. // check convergence
  14526. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14527. GGML_PRINT_DEBUG("converged\n");
  14528. return GGML_OPT_OK;
  14529. }
  14530. // delta-based convergence test
  14531. if (pf != NULL) {
  14532. // need at least params.past iterations to start checking for convergence
  14533. if (params.past <= iter0 + t) {
  14534. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14535. if (fabsf(rate) < params.delta) {
  14536. return GGML_OPT_OK;
  14537. }
  14538. }
  14539. pf[(iter0 + t)%params.past] = fx;
  14540. }
  14541. // check for improvement
  14542. if (params.max_no_improvement > 0) {
  14543. if (fx_best[0] > fx) {
  14544. fx_best[0] = fx;
  14545. n_no_improvement[0] = 0;
  14546. } else {
  14547. ++n_no_improvement[0];
  14548. if (n_no_improvement[0] >= params.max_no_improvement) {
  14549. return GGML_OPT_OK;
  14550. }
  14551. }
  14552. }
  14553. fx_prev[0] = fx;
  14554. {
  14555. const int64_t t_end_cpu = ggml_cycles();
  14556. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14557. UNUSED(t_end_cpu);
  14558. const int64_t t_end_wall = ggml_time_us();
  14559. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14560. UNUSED(t_end_wall);
  14561. }
  14562. }
  14563. return GGML_OPT_DID_NOT_CONVERGE;
  14564. }
  14565. //
  14566. // L-BFGS
  14567. //
  14568. // the L-BFGS implementation below is based on the following implementation:
  14569. //
  14570. // https://github.com/chokkan/liblbfgs
  14571. //
  14572. struct ggml_lbfgs_iteration_data {
  14573. float alpha;
  14574. float ys;
  14575. float * s;
  14576. float * y;
  14577. };
  14578. static enum ggml_opt_result linesearch_backtracking(
  14579. struct ggml_context * ctx,
  14580. const struct ggml_opt_params * params,
  14581. int nx,
  14582. float * x,
  14583. float * fx,
  14584. float * g,
  14585. float * d,
  14586. float * step,
  14587. const float * xp,
  14588. struct ggml_tensor * f,
  14589. struct ggml_cgraph * gf,
  14590. struct ggml_cgraph * gb,
  14591. const int np,
  14592. struct ggml_tensor * ps[]) {
  14593. int count = 0;
  14594. float width = 0.0f;
  14595. float dg = 0.0f;
  14596. float finit = 0.0f;
  14597. float dginit = 0.0f;
  14598. float dgtest = 0.0f;
  14599. const float dec = 0.5f;
  14600. const float inc = 2.1f;
  14601. if (*step <= 0.f) {
  14602. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14603. }
  14604. // compute the initial gradient in the search direction
  14605. ggml_vec_dot_f32(nx, &dginit, g, d);
  14606. // make sure that d points to a descent direction
  14607. if (0 < dginit) {
  14608. return GGML_LINESEARCH_FAIL;
  14609. }
  14610. // initialize local variables
  14611. finit = *fx;
  14612. dgtest = params->lbfgs.ftol*dginit;
  14613. while (true) {
  14614. ggml_vec_cpy_f32(nx, x, xp);
  14615. ggml_vec_mad_f32(nx, x, d, *step);
  14616. // evaluate the function and gradient values
  14617. {
  14618. ggml_opt_set_params(np, ps, x);
  14619. ggml_graph_reset (gf);
  14620. ggml_set_f32 (f->grad, 1.0f);
  14621. ggml_graph_compute(ctx, gb);
  14622. ggml_opt_get_grad(np, ps, g);
  14623. *fx = ggml_get_f32_1d(f, 0);
  14624. }
  14625. ++count;
  14626. if (*fx > finit + (*step)*dgtest) {
  14627. width = dec;
  14628. } else {
  14629. // Armijo condition is satisfied
  14630. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14631. return count;
  14632. }
  14633. ggml_vec_dot_f32(nx, &dg, g, d);
  14634. // check the Wolfe condition
  14635. if (dg < params->lbfgs.wolfe * dginit) {
  14636. width = inc;
  14637. } else {
  14638. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14639. // regular Wolfe conditions
  14640. return count;
  14641. }
  14642. if(dg > -params->lbfgs.wolfe*dginit) {
  14643. width = dec;
  14644. } else {
  14645. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14646. return count;
  14647. }
  14648. return count;
  14649. }
  14650. }
  14651. if (*step < params->lbfgs.min_step) {
  14652. return GGML_LINESEARCH_MINIMUM_STEP;
  14653. }
  14654. if (*step > params->lbfgs.max_step) {
  14655. return GGML_LINESEARCH_MAXIMUM_STEP;
  14656. }
  14657. if (params->lbfgs.max_linesearch <= count) {
  14658. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14659. }
  14660. (*step) *= width;
  14661. }
  14662. return GGML_LINESEARCH_FAIL;
  14663. }
  14664. static enum ggml_opt_result ggml_opt_lbfgs(
  14665. struct ggml_context * ctx,
  14666. struct ggml_opt_context * opt,
  14667. struct ggml_opt_params params,
  14668. struct ggml_tensor * f,
  14669. struct ggml_cgraph * gf,
  14670. struct ggml_cgraph * gb) {
  14671. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14672. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14673. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14674. return GGML_OPT_INVALID_WOLFE;
  14675. }
  14676. }
  14677. gf->n_threads = params.n_threads;
  14678. gb->n_threads = params.n_threads;
  14679. const int m = params.lbfgs.m;
  14680. // these will store the parameters we want to optimize
  14681. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14682. int np = 0;
  14683. int nx = 0;
  14684. for (int i = 0; i < gf->n_nodes; ++i) {
  14685. if (gf->nodes[i]->is_param) {
  14686. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14687. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14688. ps[np++] = gf->nodes[i];
  14689. nx += ggml_nelements(gf->nodes[i]);
  14690. }
  14691. }
  14692. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14693. int iter = opt->iter;
  14694. ggml_opt_init(ctx, opt, params, nx);
  14695. opt->iter = iter;
  14696. }
  14697. float * x = opt->lbfgs.x->data; // current parameters
  14698. float * xp = opt->lbfgs.xp->data; // previous parameters
  14699. float * g = opt->lbfgs.g->data; // current gradient
  14700. float * gp = opt->lbfgs.gp->data; // previous gradient
  14701. float * d = opt->lbfgs.d->data; // search direction
  14702. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14703. float fx = 0.0f; // cost function value
  14704. float xnorm = 0.0f; // ||x||
  14705. float gnorm = 0.0f; // ||g||
  14706. // initialize x from the graph nodes
  14707. ggml_opt_get_params(np, ps, x);
  14708. // the L-BFGS memory
  14709. float * lm_alpha = opt->lbfgs.lmal->data;
  14710. float * lm_ys = opt->lbfgs.lmys->data;
  14711. float * lm_s = opt->lbfgs.lms->data;
  14712. float * lm_y = opt->lbfgs.lmy->data;
  14713. // evaluate the function value and its gradient
  14714. {
  14715. ggml_opt_set_params(np, ps, x);
  14716. ggml_graph_reset (gf);
  14717. ggml_set_f32 (f->grad, 1.0f);
  14718. ggml_graph_compute(ctx, gb);
  14719. ggml_opt_get_grad(np, ps, g);
  14720. fx = ggml_get_f32_1d(f, 0);
  14721. }
  14722. // search direction = -gradient
  14723. ggml_vec_neg_f32(nx, d, g);
  14724. // ||x||, ||g||
  14725. ggml_vec_norm_f32(nx, &xnorm, x);
  14726. ggml_vec_norm_f32(nx, &gnorm, g);
  14727. if (xnorm < 1.0f) {
  14728. xnorm = 1.0f;
  14729. }
  14730. // already optimized
  14731. if (gnorm/xnorm <= params.lbfgs.eps) {
  14732. return GGML_OPT_OK;
  14733. }
  14734. if (opt->just_initialized) {
  14735. if (pf) {
  14736. pf[0] = fx;
  14737. }
  14738. opt->lbfgs.fx_best = fx;
  14739. // initial step
  14740. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14741. opt->lbfgs.j = 0;
  14742. opt->lbfgs.k = 1;
  14743. opt->lbfgs.end = 0;
  14744. opt->lbfgs.n_no_improvement = 0;
  14745. opt->just_initialized = false;
  14746. }
  14747. float * fx_best = &opt->lbfgs.fx_best;
  14748. float * step = &opt->lbfgs.step;
  14749. int * j = &opt->lbfgs.j;
  14750. int * k = &opt->lbfgs.k;
  14751. int * end = &opt->lbfgs.end;
  14752. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14753. int ls = 0;
  14754. int bound = 0;
  14755. float ys = 0.0f;
  14756. float yy = 0.0f;
  14757. float beta = 0.0f;
  14758. int it = 0;
  14759. while (true) {
  14760. // store the current position and gradient vectors
  14761. ggml_vec_cpy_f32(nx, xp, x);
  14762. ggml_vec_cpy_f32(nx, gp, g);
  14763. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14764. if (ls < 0) {
  14765. // linesearch failed - go back to the previous point and return
  14766. ggml_vec_cpy_f32(nx, x, xp);
  14767. ggml_vec_cpy_f32(nx, g, gp);
  14768. return ls;
  14769. }
  14770. ggml_vec_norm_f32(nx, &xnorm, x);
  14771. ggml_vec_norm_f32(nx, &gnorm, g);
  14772. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14773. if (xnorm < 1.0f) {
  14774. xnorm = 1.0f;
  14775. }
  14776. if (gnorm/xnorm <= params.lbfgs.eps) {
  14777. // converged
  14778. return GGML_OPT_OK;
  14779. }
  14780. // delta-based convergence test
  14781. if (pf != NULL) {
  14782. // need at least params.past iterations to start checking for convergence
  14783. if (params.past <= k[0]) {
  14784. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14785. if (fabsf(rate) < params.delta) {
  14786. return GGML_OPT_OK;
  14787. }
  14788. }
  14789. pf[k[0]%params.past] = fx;
  14790. }
  14791. // check for improvement
  14792. if (params.max_no_improvement > 0) {
  14793. if (fx < fx_best[0]) {
  14794. fx_best[0] = fx;
  14795. n_no_improvement[0] = 0;
  14796. } else {
  14797. n_no_improvement[0]++;
  14798. if (n_no_improvement[0] >= params.max_no_improvement) {
  14799. return GGML_OPT_OK;
  14800. }
  14801. }
  14802. }
  14803. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14804. // reached the maximum number of iterations
  14805. return GGML_OPT_DID_NOT_CONVERGE;
  14806. }
  14807. // update vectors s and y:
  14808. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14809. // y_{k+1} = g_{k+1} - g_{k}.
  14810. //
  14811. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14812. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14813. // compute scalars ys and yy:
  14814. // ys = y^t \cdot s -> 1 / \rho.
  14815. // yy = y^t \cdot y.
  14816. //
  14817. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14818. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14819. lm_ys[end[0]] = ys;
  14820. // find new search direction
  14821. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14822. bound = (m <= k[0]) ? m : k[0];
  14823. k[0]++;
  14824. it++;
  14825. end[0] = (end[0] + 1)%m;
  14826. // initialize search direction with -g
  14827. ggml_vec_neg_f32(nx, d, g);
  14828. j[0] = end[0];
  14829. for (int i = 0; i < bound; ++i) {
  14830. j[0] = (j[0] + m - 1) % m;
  14831. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14832. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14833. lm_alpha[j[0]] /= lm_ys[j[0]];
  14834. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14835. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14836. }
  14837. ggml_vec_scale_f32(nx, d, ys/yy);
  14838. for (int i = 0; i < bound; ++i) {
  14839. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14840. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14841. beta /= lm_ys[j[0]];
  14842. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14843. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14844. j[0] = (j[0] + 1)%m;
  14845. }
  14846. step[0] = 1.0;
  14847. }
  14848. return GGML_OPT_DID_NOT_CONVERGE;
  14849. }
  14850. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14851. struct ggml_opt_params result;
  14852. switch (type) {
  14853. case GGML_OPT_ADAM:
  14854. {
  14855. result = (struct ggml_opt_params) {
  14856. .type = GGML_OPT_ADAM,
  14857. .n_threads = 1,
  14858. .past = 0,
  14859. .delta = 1e-5f,
  14860. .max_no_improvement = 100,
  14861. .print_forward_graph = true,
  14862. .print_backward_graph = true,
  14863. .adam = {
  14864. .n_iter = 10000,
  14865. .sched = 1.000f,
  14866. .decay = 0.001f,
  14867. .alpha = 0.001f,
  14868. .beta1 = 0.9f,
  14869. .beta2 = 0.999f,
  14870. .eps = 1e-8f,
  14871. .eps_f = 1e-5f,
  14872. .eps_g = 1e-3f,
  14873. },
  14874. };
  14875. } break;
  14876. case GGML_OPT_LBFGS:
  14877. {
  14878. result = (struct ggml_opt_params) {
  14879. .type = GGML_OPT_LBFGS,
  14880. .n_threads = 1,
  14881. .past = 0,
  14882. .delta = 1e-5f,
  14883. .max_no_improvement = 0,
  14884. .print_forward_graph = true,
  14885. .print_backward_graph = true,
  14886. .lbfgs = {
  14887. .m = 6,
  14888. .n_iter = 100,
  14889. .max_linesearch = 20,
  14890. .eps = 1e-5f,
  14891. .ftol = 1e-4f,
  14892. .wolfe = 0.9f,
  14893. .min_step = 1e-20f,
  14894. .max_step = 1e+20f,
  14895. .linesearch = GGML_LINESEARCH_DEFAULT,
  14896. },
  14897. };
  14898. } break;
  14899. }
  14900. return result;
  14901. }
  14902. GGML_API void ggml_opt_init(
  14903. struct ggml_context * ctx,
  14904. struct ggml_opt_context * opt,
  14905. struct ggml_opt_params params,
  14906. int64_t nx) {
  14907. opt->ctx = ctx;
  14908. opt->params = params;
  14909. opt->iter = 0;
  14910. opt->nx = nx;
  14911. opt->just_initialized = true;
  14912. switch (opt->params.type) {
  14913. case GGML_OPT_ADAM:
  14914. {
  14915. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14916. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14917. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14918. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14919. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14920. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14921. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14922. opt->adam.pf = params.past > 0
  14923. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14924. : NULL;
  14925. ggml_set_zero(opt->adam.x);
  14926. ggml_set_zero(opt->adam.g1);
  14927. ggml_set_zero(opt->adam.g2);
  14928. ggml_set_zero(opt->adam.m);
  14929. ggml_set_zero(opt->adam.v);
  14930. ggml_set_zero(opt->adam.mh);
  14931. ggml_set_zero(opt->adam.vh);
  14932. if (opt->adam.pf) {
  14933. ggml_set_zero(opt->adam.pf);
  14934. }
  14935. } break;
  14936. case GGML_OPT_LBFGS:
  14937. {
  14938. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14939. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14940. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14941. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14942. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14943. opt->lbfgs.pf = params.past > 0
  14944. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14945. : NULL;
  14946. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14947. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14948. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14949. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14950. ggml_set_zero(opt->lbfgs.x);
  14951. ggml_set_zero(opt->lbfgs.xp);
  14952. ggml_set_zero(opt->lbfgs.g);
  14953. ggml_set_zero(opt->lbfgs.gp);
  14954. ggml_set_zero(opt->lbfgs.d);
  14955. ggml_set_zero(opt->lbfgs.pf);
  14956. if (opt->lbfgs.pf) {
  14957. ggml_set_zero(opt->lbfgs.pf);
  14958. }
  14959. ggml_set_zero(opt->lbfgs.lmal);
  14960. ggml_set_zero(opt->lbfgs.lmys);
  14961. ggml_set_zero(opt->lbfgs.lms);
  14962. ggml_set_zero(opt->lbfgs.lmy);
  14963. } break;
  14964. }
  14965. }
  14966. enum ggml_opt_result ggml_opt(
  14967. struct ggml_context * ctx,
  14968. struct ggml_opt_params params,
  14969. struct ggml_tensor * f) {
  14970. bool free_ctx = false;
  14971. if (ctx == NULL) {
  14972. struct ggml_init_params params_ctx = {
  14973. .mem_size = 16*1024*1024,
  14974. .mem_buffer = NULL,
  14975. .no_alloc = false,
  14976. };
  14977. ctx = ggml_init(params_ctx);
  14978. if (ctx == NULL) {
  14979. return GGML_OPT_NO_CONTEXT;
  14980. }
  14981. free_ctx = true;
  14982. }
  14983. enum ggml_opt_result result = GGML_OPT_OK;
  14984. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14985. ggml_opt_init(ctx, opt, params, 0);
  14986. result = ggml_opt_resume(ctx, opt, f);
  14987. if (free_ctx) {
  14988. ggml_free(ctx);
  14989. }
  14990. return result;
  14991. }
  14992. enum ggml_opt_result ggml_opt_resume(
  14993. struct ggml_context * ctx,
  14994. struct ggml_opt_context * opt,
  14995. struct ggml_tensor * f) {
  14996. // build forward + backward compute graphs
  14997. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14998. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14999. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15000. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15001. *gf = ggml_build_forward (f);
  15002. *gb = ggml_build_backward(ctx, gf, true);
  15003. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15004. }
  15005. enum ggml_opt_result ggml_opt_resume_g(
  15006. struct ggml_context * ctx,
  15007. struct ggml_opt_context * opt,
  15008. struct ggml_tensor * f,
  15009. struct ggml_cgraph * gf,
  15010. struct ggml_cgraph * gb) {
  15011. // build forward + backward compute graphs
  15012. enum ggml_opt_result result = GGML_OPT_OK;
  15013. switch (opt->params.type) {
  15014. case GGML_OPT_ADAM:
  15015. {
  15016. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15017. } break;
  15018. case GGML_OPT_LBFGS:
  15019. {
  15020. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15021. } break;
  15022. }
  15023. if (opt->params.print_forward_graph) {
  15024. ggml_graph_print (gf);
  15025. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15026. }
  15027. if (opt->params.print_backward_graph) {
  15028. ggml_graph_print (gb);
  15029. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15030. }
  15031. return result;
  15032. }
  15033. ////////////////////////////////////////////////////////////////////////////////
  15034. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15035. assert(k % QK4_0 == 0);
  15036. const int nb = k / QK4_0;
  15037. for (int b = 0; b < n; b += k) {
  15038. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15039. quantize_row_q4_0_reference(src + b, y, k);
  15040. for (int i = 0; i < nb; i++) {
  15041. for (int j = 0; j < QK4_0; j += 2) {
  15042. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15043. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15044. hist[vi0]++;
  15045. hist[vi1]++;
  15046. }
  15047. }
  15048. }
  15049. return (n/QK4_0*sizeof(block_q4_0));
  15050. }
  15051. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15052. assert(k % QK4_1 == 0);
  15053. const int nb = k / QK4_1;
  15054. for (int b = 0; b < n; b += k) {
  15055. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15056. quantize_row_q4_1_reference(src + b, y, k);
  15057. for (int i = 0; i < nb; i++) {
  15058. for (int j = 0; j < QK4_1; j += 2) {
  15059. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15060. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15061. hist[vi0]++;
  15062. hist[vi1]++;
  15063. }
  15064. }
  15065. }
  15066. return (n/QK4_1*sizeof(block_q4_1));
  15067. }
  15068. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15069. assert(k % QK5_0 == 0);
  15070. const int nb = k / QK5_0;
  15071. for (int b = 0; b < n; b += k) {
  15072. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15073. quantize_row_q5_0_reference(src + b, y, k);
  15074. for (int i = 0; i < nb; i++) {
  15075. uint32_t qh;
  15076. memcpy(&qh, &y[i].qh, sizeof(qh));
  15077. for (int j = 0; j < QK5_0; j += 2) {
  15078. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15079. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15080. // cast to 16 bins
  15081. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15082. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15083. hist[vi0]++;
  15084. hist[vi1]++;
  15085. }
  15086. }
  15087. }
  15088. return (n/QK5_0*sizeof(block_q5_0));
  15089. }
  15090. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15091. assert(k % QK5_1 == 0);
  15092. const int nb = k / QK5_1;
  15093. for (int b = 0; b < n; b += k) {
  15094. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15095. quantize_row_q5_1_reference(src + b, y, k);
  15096. for (int i = 0; i < nb; i++) {
  15097. uint32_t qh;
  15098. memcpy(&qh, &y[i].qh, sizeof(qh));
  15099. for (int j = 0; j < QK5_1; j += 2) {
  15100. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15101. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15102. // cast to 16 bins
  15103. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15104. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15105. hist[vi0]++;
  15106. hist[vi1]++;
  15107. }
  15108. }
  15109. }
  15110. return (n/QK5_1*sizeof(block_q5_1));
  15111. }
  15112. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15113. assert(k % QK8_0 == 0);
  15114. const int nb = k / QK8_0;
  15115. for (int b = 0; b < n; b += k) {
  15116. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15117. quantize_row_q8_0_reference(src + b, y, k);
  15118. for (int i = 0; i < nb; i++) {
  15119. for (int j = 0; j < QK8_0; ++j) {
  15120. const int8_t vi = y[i].qs[j];
  15121. hist[vi/16 + 8]++;
  15122. }
  15123. }
  15124. }
  15125. return (n/QK8_0*sizeof(block_q8_0));
  15126. }
  15127. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15128. size_t result = 0;
  15129. switch (type) {
  15130. case GGML_TYPE_Q4_0:
  15131. {
  15132. GGML_ASSERT(start % QK4_0 == 0);
  15133. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15134. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15135. } break;
  15136. case GGML_TYPE_Q4_1:
  15137. {
  15138. GGML_ASSERT(start % QK4_1 == 0);
  15139. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15140. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15141. } break;
  15142. case GGML_TYPE_Q5_0:
  15143. {
  15144. GGML_ASSERT(start % QK5_0 == 0);
  15145. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15146. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15147. } break;
  15148. case GGML_TYPE_Q5_1:
  15149. {
  15150. GGML_ASSERT(start % QK5_1 == 0);
  15151. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15152. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15153. } break;
  15154. case GGML_TYPE_Q8_0:
  15155. {
  15156. GGML_ASSERT(start % QK8_0 == 0);
  15157. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15158. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15159. } break;
  15160. #ifdef GGML_USE_K_QUANTS
  15161. case GGML_TYPE_Q2_K:
  15162. {
  15163. GGML_ASSERT(start % QK_K == 0);
  15164. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15165. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15166. } break;
  15167. case GGML_TYPE_Q3_K:
  15168. {
  15169. GGML_ASSERT(start % QK_K == 0);
  15170. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15171. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15172. } break;
  15173. case GGML_TYPE_Q4_K:
  15174. {
  15175. GGML_ASSERT(start % QK_K == 0);
  15176. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15177. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15178. } break;
  15179. case GGML_TYPE_Q5_K:
  15180. {
  15181. GGML_ASSERT(start % QK_K == 0);
  15182. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15183. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15184. } break;
  15185. case GGML_TYPE_Q6_K:
  15186. {
  15187. GGML_ASSERT(start % QK_K == 0);
  15188. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15189. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15190. } break;
  15191. #endif
  15192. case GGML_TYPE_F16:
  15193. {
  15194. int elemsize = sizeof(ggml_fp16_t);
  15195. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15196. result = n * elemsize;
  15197. } break;
  15198. case GGML_TYPE_F32:
  15199. {
  15200. int elemsize = sizeof(float);
  15201. result = n * elemsize;
  15202. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15203. } break;
  15204. default:
  15205. assert(false);
  15206. }
  15207. return result;
  15208. }
  15209. ////////////////////////////////////////////////////////////////////////////////
  15210. int ggml_cpu_has_avx(void) {
  15211. #if defined(__AVX__)
  15212. return 1;
  15213. #else
  15214. return 0;
  15215. #endif
  15216. }
  15217. int ggml_cpu_has_avx2(void) {
  15218. #if defined(__AVX2__)
  15219. return 1;
  15220. #else
  15221. return 0;
  15222. #endif
  15223. }
  15224. int ggml_cpu_has_avx512(void) {
  15225. #if defined(__AVX512F__)
  15226. return 1;
  15227. #else
  15228. return 0;
  15229. #endif
  15230. }
  15231. int ggml_cpu_has_avx512_vbmi(void) {
  15232. #if defined(__AVX512VBMI__)
  15233. return 1;
  15234. #else
  15235. return 0;
  15236. #endif
  15237. }
  15238. int ggml_cpu_has_avx512_vnni(void) {
  15239. #if defined(__AVX512VNNI__)
  15240. return 1;
  15241. #else
  15242. return 0;
  15243. #endif
  15244. }
  15245. int ggml_cpu_has_fma(void) {
  15246. #if defined(__FMA__)
  15247. return 1;
  15248. #else
  15249. return 0;
  15250. #endif
  15251. }
  15252. int ggml_cpu_has_neon(void) {
  15253. #if defined(__ARM_NEON)
  15254. return 1;
  15255. #else
  15256. return 0;
  15257. #endif
  15258. }
  15259. int ggml_cpu_has_arm_fma(void) {
  15260. #if defined(__ARM_FEATURE_FMA)
  15261. return 1;
  15262. #else
  15263. return 0;
  15264. #endif
  15265. }
  15266. int ggml_cpu_has_f16c(void) {
  15267. #if defined(__F16C__)
  15268. return 1;
  15269. #else
  15270. return 0;
  15271. #endif
  15272. }
  15273. int ggml_cpu_has_fp16_va(void) {
  15274. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15275. return 1;
  15276. #else
  15277. return 0;
  15278. #endif
  15279. }
  15280. int ggml_cpu_has_wasm_simd(void) {
  15281. #if defined(__wasm_simd128__)
  15282. return 1;
  15283. #else
  15284. return 0;
  15285. #endif
  15286. }
  15287. int ggml_cpu_has_blas(void) {
  15288. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15289. return 1;
  15290. #else
  15291. return 0;
  15292. #endif
  15293. }
  15294. int ggml_cpu_has_cublas(void) {
  15295. #if defined(GGML_USE_CUBLAS)
  15296. return 1;
  15297. #else
  15298. return 0;
  15299. #endif
  15300. }
  15301. int ggml_cpu_has_clblast(void) {
  15302. #if defined(GGML_USE_CLBLAST)
  15303. return 1;
  15304. #else
  15305. return 0;
  15306. #endif
  15307. }
  15308. int ggml_cpu_has_gpublas(void) {
  15309. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15310. }
  15311. int ggml_cpu_has_sse3(void) {
  15312. #if defined(__SSE3__)
  15313. return 1;
  15314. #else
  15315. return 0;
  15316. #endif
  15317. }
  15318. int ggml_cpu_has_vsx(void) {
  15319. #if defined(__POWER9_VECTOR__)
  15320. return 1;
  15321. #else
  15322. return 0;
  15323. #endif
  15324. }
  15325. ////////////////////////////////////////////////////////////////////////////////