llama-bench.cpp 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. // utils
  23. static uint64_t get_time_ns() {
  24. using clock = std::chrono::high_resolution_clock;
  25. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  26. }
  27. template<class T>
  28. static std::string join(const std::vector<T> & values, const std::string & delim) {
  29. std::ostringstream str;
  30. for (size_t i = 0; i < values.size(); i++) {
  31. str << values[i];
  32. if (i < values.size() - 1) {
  33. str << delim;
  34. }
  35. }
  36. return str.str();
  37. }
  38. template<class T>
  39. static std::vector<T> split(const std::string & str, char delim) {
  40. std::vector<T> values;
  41. std::istringstream str_stream(str);
  42. std::string token;
  43. while (std::getline(str_stream, token, delim)) {
  44. T value;
  45. std::istringstream token_stream(token);
  46. token_stream >> value;
  47. values.push_back(value);
  48. }
  49. return values;
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. }
  98. #endif
  99. // TODO: other platforms
  100. return id;
  101. }
  102. static std::string get_gpu_info() {
  103. std::string id;
  104. #ifdef GGML_USE_CUBLAS
  105. int count = ggml_cuda_get_device_count();
  106. for (int i = 0; i < count; i++) {
  107. char buf[128];
  108. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  109. id += buf;
  110. if (i < count - 1) {
  111. id += "/";
  112. }
  113. }
  114. #endif
  115. // TODO: other backends
  116. return id;
  117. }
  118. // command line params
  119. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  120. static const char * output_format_str(output_formats format) {
  121. switch (format) {
  122. case CSV: return "csv";
  123. case JSON: return "json";
  124. case MARKDOWN: return "md";
  125. case SQL: return "sql";
  126. default: GGML_ASSERT(!"invalid output format");
  127. }
  128. }
  129. static const char * split_mode_str(llama_split_mode mode) {
  130. switch (mode) {
  131. case LLAMA_SPLIT_NONE: return "none";
  132. case LLAMA_SPLIT_LAYER: return "layer";
  133. case LLAMA_SPLIT_ROW: return "row";
  134. default: GGML_ASSERT(!"invalid split mode");
  135. }
  136. }
  137. struct cmd_params {
  138. std::vector<std::string> model;
  139. std::vector<int> n_prompt;
  140. std::vector<int> n_gen;
  141. std::vector<int> n_batch;
  142. std::vector<ggml_type> type_k;
  143. std::vector<ggml_type> type_v;
  144. std::vector<int> n_threads;
  145. std::vector<int> n_gpu_layers;
  146. std::vector<llama_split_mode> split_mode;
  147. std::vector<int> main_gpu;
  148. std::vector<bool> no_kv_offload;
  149. std::vector<bool> mul_mat_q;
  150. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  151. int reps;
  152. bool verbose;
  153. output_formats output_format;
  154. };
  155. static const cmd_params cmd_params_defaults = {
  156. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  157. /* n_prompt */ {512},
  158. /* n_gen */ {128},
  159. /* n_batch */ {512},
  160. /* type_k */ {GGML_TYPE_F16},
  161. /* type_v */ {GGML_TYPE_F16},
  162. /* n_threads */ {get_num_physical_cores()},
  163. /* n_gpu_layers */ {99},
  164. /* split_mode */ {LLAMA_SPLIT_LAYER},
  165. /* main_gpu */ {0},
  166. /* no_kv_offload */ {false},
  167. /* mul_mat_q */ {true},
  168. /* tensor_split */ {{}},
  169. /* reps */ 5,
  170. /* verbose */ false,
  171. /* output_format */ MARKDOWN
  172. };
  173. static void print_usage(int /* argc */, char ** argv) {
  174. printf("usage: %s [options]\n", argv[0]);
  175. printf("\n");
  176. printf("options:\n");
  177. printf(" -h, --help\n");
  178. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  179. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  180. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  181. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  182. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  183. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  184. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  185. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  186. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  187. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  188. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  189. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  190. printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
  191. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  192. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  193. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  194. printf("\n");
  195. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  196. }
  197. static ggml_type ggml_type_from_name(const std::string & s) {
  198. if (s == "f16") {
  199. return GGML_TYPE_F16;
  200. }
  201. if (s == "q8_0") {
  202. return GGML_TYPE_Q8_0;
  203. }
  204. if (s == "q4_0") {
  205. return GGML_TYPE_Q4_0;
  206. }
  207. if (s == "q4_1") {
  208. return GGML_TYPE_Q4_1;
  209. }
  210. if (s == "q5_0") {
  211. return GGML_TYPE_Q5_0;
  212. }
  213. if (s == "q5_1") {
  214. return GGML_TYPE_Q5_1;
  215. }
  216. return GGML_TYPE_COUNT;
  217. }
  218. static cmd_params parse_cmd_params(int argc, char ** argv) {
  219. cmd_params params;
  220. std::string arg;
  221. bool invalid_param = false;
  222. const std::string arg_prefix = "--";
  223. const char split_delim = ',';
  224. params.verbose = cmd_params_defaults.verbose;
  225. params.output_format = cmd_params_defaults.output_format;
  226. params.reps = cmd_params_defaults.reps;
  227. for (int i = 1; i < argc; i++) {
  228. arg = argv[i];
  229. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  230. std::replace(arg.begin(), arg.end(), '_', '-');
  231. }
  232. if (arg == "-h" || arg == "--help") {
  233. print_usage(argc, argv);
  234. exit(0);
  235. } else if (arg == "-m" || arg == "--model") {
  236. if (++i >= argc) {
  237. invalid_param = true;
  238. break;
  239. }
  240. auto p = split<std::string>(argv[i], split_delim);
  241. params.model.insert(params.model.end(), p.begin(), p.end());
  242. } else if (arg == "-p" || arg == "--n-prompt") {
  243. if (++i >= argc) {
  244. invalid_param = true;
  245. break;
  246. }
  247. auto p = split<int>(argv[i], split_delim);
  248. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  249. } else if (arg == "-n" || arg == "--n-gen") {
  250. if (++i >= argc) {
  251. invalid_param = true;
  252. break;
  253. }
  254. auto p = split<int>(argv[i], split_delim);
  255. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  256. } else if (arg == "-b" || arg == "--batch-size") {
  257. if (++i >= argc) {
  258. invalid_param = true;
  259. break;
  260. }
  261. auto p = split<int>(argv[i], split_delim);
  262. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  263. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  264. if (++i >= argc) {
  265. invalid_param = true;
  266. break;
  267. }
  268. auto p = split<std::string>(argv[i], split_delim);
  269. std::vector<ggml_type> types;
  270. for (const auto & t : p) {
  271. ggml_type gt = ggml_type_from_name(t);
  272. if (gt == GGML_TYPE_COUNT) {
  273. invalid_param = true;
  274. break;
  275. }
  276. types.push_back(gt);
  277. }
  278. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  279. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  280. if (++i >= argc) {
  281. invalid_param = true;
  282. break;
  283. }
  284. auto p = split<std::string>(argv[i], split_delim);
  285. std::vector<ggml_type> types;
  286. for (const auto & t : p) {
  287. ggml_type gt = ggml_type_from_name(t);
  288. if (gt == GGML_TYPE_COUNT) {
  289. invalid_param = true;
  290. break;
  291. }
  292. types.push_back(gt);
  293. }
  294. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  295. } else if (arg == "-t" || arg == "--threads") {
  296. if (++i >= argc) {
  297. invalid_param = true;
  298. break;
  299. }
  300. auto p = split<int>(argv[i], split_delim);
  301. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  302. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  303. if (++i >= argc) {
  304. invalid_param = true;
  305. break;
  306. }
  307. auto p = split<int>(argv[i], split_delim);
  308. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  309. } else if (arg == "-sm" || arg == "--split-mode") {
  310. if (++i >= argc) {
  311. invalid_param = true;
  312. break;
  313. }
  314. auto p = split<std::string>(argv[i], split_delim);
  315. std::vector<llama_split_mode> modes;
  316. for (const auto & m : p) {
  317. llama_split_mode mode;
  318. if (m == "none") {
  319. mode = LLAMA_SPLIT_NONE;
  320. } else if (m == "layer") {
  321. mode = LLAMA_SPLIT_LAYER;
  322. } else if (m == "row") {
  323. mode = LLAMA_SPLIT_ROW;
  324. } else {
  325. invalid_param = true;
  326. break;
  327. }
  328. modes.push_back(mode);
  329. }
  330. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  331. } else if (arg == "-mg" || arg == "--main-gpu") {
  332. if (++i >= argc) {
  333. invalid_param = true;
  334. break;
  335. }
  336. params.main_gpu = split<int>(argv[i], split_delim);
  337. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  338. if (++i >= argc) {
  339. invalid_param = true;
  340. break;
  341. }
  342. auto p = split<bool>(argv[i], split_delim);
  343. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  344. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  345. if (++i >= argc) {
  346. invalid_param = true;
  347. break;
  348. }
  349. auto p = split<bool>(argv[i], split_delim);
  350. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  351. } else if (arg == "-ts" || arg == "--tensor-split") {
  352. if (++i >= argc) {
  353. invalid_param = true;
  354. break;
  355. }
  356. for (auto ts : split<std::string>(argv[i], split_delim)) {
  357. // split string by ; and /
  358. const std::regex regex{R"([;/]+)"};
  359. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  360. std::vector<std::string> split_arg{it, {}};
  361. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  362. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  363. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  364. if (i < split_arg.size()) {
  365. tensor_split[i] = std::stof(split_arg[i]);
  366. } else {
  367. tensor_split[i] = 0.0f;
  368. }
  369. }
  370. params.tensor_split.push_back(tensor_split);
  371. }
  372. } else if (arg == "-r" || arg == "--repetitions") {
  373. if (++i >= argc) {
  374. invalid_param = true;
  375. break;
  376. }
  377. params.reps = std::stoi(argv[i]);
  378. } else if (arg == "-o" || arg == "--output") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. if (argv[i] == std::string("csv")) {
  384. params.output_format = CSV;
  385. } else if (argv[i] == std::string("json")) {
  386. params.output_format = JSON;
  387. } else if (argv[i] == std::string("md")) {
  388. params.output_format = MARKDOWN;
  389. } else if (argv[i] == std::string("sql")) {
  390. params.output_format = SQL;
  391. } else {
  392. invalid_param = true;
  393. break;
  394. }
  395. } else if (arg == "-v" || arg == "--verbose") {
  396. params.verbose = true;
  397. } else {
  398. invalid_param = true;
  399. break;
  400. }
  401. }
  402. if (invalid_param) {
  403. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  404. print_usage(argc, argv);
  405. exit(1);
  406. }
  407. // set defaults
  408. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  409. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  410. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  411. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  412. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  413. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  414. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  415. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  416. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  417. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  418. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  419. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  420. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  421. return params;
  422. }
  423. struct cmd_params_instance {
  424. std::string model;
  425. int n_prompt;
  426. int n_gen;
  427. int n_batch;
  428. ggml_type type_k;
  429. ggml_type type_v;
  430. int n_threads;
  431. int n_gpu_layers;
  432. llama_split_mode split_mode;
  433. int main_gpu;
  434. bool no_kv_offload;
  435. bool mul_mat_q;
  436. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  437. llama_model_params to_llama_mparams() const {
  438. llama_model_params mparams = llama_model_default_params();
  439. mparams.n_gpu_layers = n_gpu_layers;
  440. mparams.split_mode = split_mode;
  441. mparams.main_gpu = main_gpu;
  442. mparams.tensor_split = tensor_split.data();
  443. return mparams;
  444. }
  445. bool equal_mparams(const cmd_params_instance & other) const {
  446. return model == other.model &&
  447. n_gpu_layers == other.n_gpu_layers &&
  448. split_mode == other.split_mode &&
  449. main_gpu == other.main_gpu &&
  450. tensor_split == other.tensor_split;
  451. }
  452. llama_context_params to_llama_cparams() const {
  453. llama_context_params cparams = llama_context_default_params();
  454. cparams.n_ctx = n_prompt + n_gen;
  455. cparams.n_batch = n_batch;
  456. cparams.type_k = type_k;
  457. cparams.type_v = type_v;
  458. cparams.mul_mat_q = mul_mat_q;
  459. cparams.offload_kqv = !no_kv_offload;
  460. return cparams;
  461. }
  462. };
  463. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  464. std::vector<cmd_params_instance> instances;
  465. // this ordering minimizes the number of times that each model needs to be reloaded
  466. for (const auto & m : params.model)
  467. for (const auto & nl : params.n_gpu_layers)
  468. for (const auto & sm : params.split_mode)
  469. for (const auto & mg : params.main_gpu)
  470. for (const auto & ts : params.tensor_split)
  471. for (const auto & nb : params.n_batch)
  472. for (const auto & tk : params.type_k)
  473. for (const auto & tv : params.type_v)
  474. for (const auto & mmq : params.mul_mat_q)
  475. for (const auto & nkvo : params.no_kv_offload)
  476. for (const auto & nt : params.n_threads) {
  477. for (const auto & n_prompt : params.n_prompt) {
  478. if (n_prompt == 0) {
  479. continue;
  480. }
  481. cmd_params_instance instance = {
  482. /* .model = */ m,
  483. /* .n_prompt = */ n_prompt,
  484. /* .n_gen = */ 0,
  485. /* .n_batch = */ nb,
  486. /* .type_k = */ tk,
  487. /* .type_v = */ tv,
  488. /* .n_threads = */ nt,
  489. /* .n_gpu_layers = */ nl,
  490. /* .split_mode = */ sm,
  491. /* .main_gpu = */ mg,
  492. /* .no_kv_offload= */ nkvo,
  493. /* .mul_mat_q = */ mmq,
  494. /* .tensor_split = */ ts,
  495. };
  496. instances.push_back(instance);
  497. }
  498. for (const auto & n_gen : params.n_gen) {
  499. if (n_gen == 0) {
  500. continue;
  501. }
  502. cmd_params_instance instance = {
  503. /* .model = */ m,
  504. /* .n_prompt = */ 0,
  505. /* .n_gen = */ n_gen,
  506. /* .n_batch = */ nb,
  507. /* .type_k = */ tk,
  508. /* .type_v = */ tv,
  509. /* .n_threads = */ nt,
  510. /* .n_gpu_layers = */ nl,
  511. /* .split_mode = */ sm,
  512. /* .main_gpu = */ mg,
  513. /* .no_kv_offload= */ nkvo,
  514. /* .mul_mat_q = */ mmq,
  515. /* .tensor_split = */ ts,
  516. };
  517. instances.push_back(instance);
  518. }
  519. }
  520. return instances;
  521. }
  522. struct test {
  523. static const std::string build_commit;
  524. static const int build_number;
  525. static const bool cuda;
  526. static const bool opencl;
  527. static const bool metal;
  528. static const bool gpu_blas;
  529. static const bool blas;
  530. static const std::string cpu_info;
  531. static const std::string gpu_info;
  532. std::string model_filename;
  533. std::string model_type;
  534. uint64_t model_size;
  535. uint64_t model_n_params;
  536. int n_batch;
  537. int n_threads;
  538. ggml_type type_k;
  539. ggml_type type_v;
  540. int n_gpu_layers;
  541. llama_split_mode split_mode;
  542. int main_gpu;
  543. bool no_kv_offload;
  544. bool mul_mat_q;
  545. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  546. int n_prompt;
  547. int n_gen;
  548. std::string test_time;
  549. std::vector<uint64_t> samples_ns;
  550. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  551. model_filename = inst.model;
  552. char buf[128];
  553. llama_model_desc(lmodel, buf, sizeof(buf));
  554. model_type = buf;
  555. model_size = llama_model_size(lmodel);
  556. model_n_params = llama_model_n_params(lmodel);
  557. n_batch = inst.n_batch;
  558. n_threads = inst.n_threads;
  559. type_k = inst.type_k;
  560. type_v = inst.type_v;
  561. n_gpu_layers = inst.n_gpu_layers;
  562. split_mode = inst.split_mode;
  563. main_gpu = inst.main_gpu;
  564. no_kv_offload = inst.no_kv_offload;
  565. mul_mat_q = inst.mul_mat_q;
  566. tensor_split = inst.tensor_split;
  567. n_prompt = inst.n_prompt;
  568. n_gen = inst.n_gen;
  569. // RFC 3339 date-time format
  570. time_t t = time(NULL);
  571. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  572. test_time = buf;
  573. (void) ctx;
  574. }
  575. uint64_t avg_ns() const {
  576. return ::avg(samples_ns);
  577. }
  578. uint64_t stdev_ns() const {
  579. return ::stdev(samples_ns);
  580. }
  581. std::vector<double> get_ts() const {
  582. int n_tokens = n_prompt + n_gen;
  583. std::vector<double> ts;
  584. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  585. return ts;
  586. }
  587. double avg_ts() const {
  588. return ::avg(get_ts());
  589. }
  590. double stdev_ts() const {
  591. return ::stdev(get_ts());
  592. }
  593. static std::string get_backend() {
  594. if (cuda) {
  595. return GGML_CUDA_NAME;
  596. }
  597. if (opencl) {
  598. return "OpenCL";
  599. }
  600. if (metal) {
  601. return "Metal";
  602. }
  603. if (gpu_blas) {
  604. return "GPU BLAS";
  605. }
  606. if (blas) {
  607. return "BLAS";
  608. }
  609. return "CPU";
  610. }
  611. static const std::vector<std::string> & get_fields() {
  612. static const std::vector<std::string> fields = {
  613. "build_commit", "build_number",
  614. "cuda", "opencl", "metal", "gpu_blas", "blas",
  615. "cpu_info", "gpu_info",
  616. "model_filename", "model_type", "model_size", "model_n_params",
  617. "n_batch", "n_threads", "type_k", "type_v",
  618. "n_gpu_layers", "split_mode",
  619. "main_gpu", "no_kv_offload",
  620. "mul_mat_q", "tensor_split",
  621. "n_prompt", "n_gen", "test_time",
  622. "avg_ns", "stddev_ns",
  623. "avg_ts", "stddev_ts"
  624. };
  625. return fields;
  626. }
  627. enum field_type {STRING, BOOL, INT, FLOAT};
  628. static field_type get_field_type(const std::string & field) {
  629. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  630. field == "model_size" || field == "model_n_params" ||
  631. field == "n_gpu_layers" || field == "main_gpu" ||
  632. field == "n_prompt" || field == "n_gen" ||
  633. field == "avg_ns" || field == "stddev_ns") {
  634. return INT;
  635. }
  636. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  637. field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
  638. return BOOL;
  639. }
  640. if (field == "avg_ts" || field == "stddev_ts") {
  641. return FLOAT;
  642. }
  643. return STRING;
  644. }
  645. std::vector<std::string> get_values() const {
  646. std::string tensor_split_str;
  647. int max_nonzero = 0;
  648. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  649. if (tensor_split[i] > 0) {
  650. max_nonzero = i;
  651. }
  652. }
  653. for (int i = 0; i <= max_nonzero; i++) {
  654. char buf[32];
  655. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  656. tensor_split_str += buf;
  657. if (i < max_nonzero) {
  658. tensor_split_str += "/";
  659. }
  660. }
  661. std::vector<std::string> values = {
  662. build_commit, std::to_string(build_number),
  663. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  664. cpu_info, gpu_info,
  665. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  666. std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  667. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  668. std::to_string(main_gpu), std::to_string(no_kv_offload),
  669. std::to_string(mul_mat_q), tensor_split_str,
  670. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  671. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  672. std::to_string(avg_ts()), std::to_string(stdev_ts())
  673. };
  674. return values;
  675. }
  676. std::map<std::string, std::string> get_map() const {
  677. std::map<std::string, std::string> map;
  678. auto fields = get_fields();
  679. auto values = get_values();
  680. std::transform(fields.begin(), fields.end(), values.begin(),
  681. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  682. return map;
  683. }
  684. };
  685. const std::string test::build_commit = LLAMA_COMMIT;
  686. const int test::build_number = LLAMA_BUILD_NUMBER;
  687. const bool test::cuda = !!ggml_cpu_has_cublas();
  688. const bool test::opencl = !!ggml_cpu_has_clblast();
  689. const bool test::metal = !!ggml_cpu_has_metal();
  690. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  691. const bool test::blas = !!ggml_cpu_has_blas();
  692. const std::string test::cpu_info = get_cpu_info();
  693. const std::string test::gpu_info = get_gpu_info();
  694. struct printer {
  695. virtual ~printer() {}
  696. FILE * fout;
  697. virtual void print_header(const cmd_params & params) { (void) params; }
  698. virtual void print_test(const test & t) = 0;
  699. virtual void print_footer() { }
  700. };
  701. struct csv_printer : public printer {
  702. static std::string escape_csv(const std::string & field) {
  703. std::string escaped = "\"";
  704. for (auto c : field) {
  705. if (c == '"') {
  706. escaped += "\"";
  707. }
  708. escaped += c;
  709. }
  710. escaped += "\"";
  711. return escaped;
  712. }
  713. void print_header(const cmd_params & params) override {
  714. std::vector<std::string> fields = test::get_fields();
  715. fprintf(fout, "%s\n", join(fields, ",").c_str());
  716. (void) params;
  717. }
  718. void print_test(const test & t) override {
  719. std::vector<std::string> values = t.get_values();
  720. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  721. fprintf(fout, "%s\n", join(values, ",").c_str());
  722. }
  723. };
  724. struct json_printer : public printer {
  725. bool first = true;
  726. static std::string escape_json(const std::string & value) {
  727. std::string escaped;
  728. for (auto c : value) {
  729. if (c == '"') {
  730. escaped += "\\\"";
  731. } else if (c == '\\') {
  732. escaped += "\\\\";
  733. } else if (c <= 0x1f) {
  734. char buf[8];
  735. snprintf(buf, sizeof(buf), "\\u%04x", c);
  736. escaped += buf;
  737. } else {
  738. escaped += c;
  739. }
  740. }
  741. return escaped;
  742. }
  743. static std::string format_value(const std::string & field, const std::string & value) {
  744. switch (test::get_field_type(field)) {
  745. case test::STRING:
  746. return "\"" + escape_json(value) + "\"";
  747. case test::BOOL:
  748. return value == "0" ? "false" : "true";
  749. default:
  750. return value;
  751. }
  752. }
  753. void print_header(const cmd_params & params) override {
  754. fprintf(fout, "[\n");
  755. (void) params;
  756. }
  757. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  758. assert(fields.size() == values.size());
  759. for (size_t i = 0; i < fields.size(); i++) {
  760. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  761. }
  762. }
  763. void print_test(const test & t) override {
  764. if (first) {
  765. first = false;
  766. } else {
  767. fprintf(fout, ",\n");
  768. }
  769. fprintf(fout, " {\n");
  770. print_fields(test::get_fields(), t.get_values());
  771. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  772. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  773. fprintf(fout, " }");
  774. fflush(fout);
  775. }
  776. void print_footer() override {
  777. fprintf(fout, "\n]\n");
  778. }
  779. };
  780. struct markdown_printer : public printer {
  781. std::vector<std::string> fields;
  782. static int get_field_width(const std::string & field) {
  783. if (field == "model") {
  784. return -30;
  785. }
  786. if (field == "t/s") {
  787. return 16;
  788. }
  789. if (field == "size" || field == "params") {
  790. return 10;
  791. }
  792. if (field == "n_gpu_layers") {
  793. return 3;
  794. }
  795. int width = std::max((int)field.length(), 10);
  796. if (test::get_field_type(field) == test::STRING) {
  797. return -width;
  798. }
  799. return width;
  800. }
  801. static std::string get_field_display_name(const std::string & field) {
  802. if (field == "n_gpu_layers") {
  803. return "ngl";
  804. }
  805. if (field == "split_mode") {
  806. return "sm";
  807. }
  808. if (field == "n_threads") {
  809. return "threads";
  810. }
  811. if (field == "mul_mat_q") {
  812. return "mmq";
  813. }
  814. if (field == "no_kv_offload") {
  815. return "nkvo";
  816. }
  817. if (field == "tensor_split") {
  818. return "ts";
  819. }
  820. return field;
  821. }
  822. void print_header(const cmd_params & params) override {
  823. // select fields to print
  824. fields.push_back("model");
  825. fields.push_back("size");
  826. fields.push_back("params");
  827. fields.push_back("backend");
  828. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  829. if (!is_cpu_backend) {
  830. fields.push_back("n_gpu_layers");
  831. }
  832. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  833. fields.push_back("n_threads");
  834. }
  835. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  836. fields.push_back("n_batch");
  837. }
  838. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  839. fields.push_back("type_k");
  840. }
  841. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  842. fields.push_back("type_v");
  843. }
  844. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  845. fields.push_back("main_gpu");
  846. }
  847. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  848. fields.push_back("split_mode");
  849. }
  850. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  851. fields.push_back("mul_mat_q");
  852. }
  853. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  854. fields.push_back("no_kv_offload");
  855. }
  856. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  857. fields.push_back("tensor_split");
  858. }
  859. fields.push_back("test");
  860. fields.push_back("t/s");
  861. fprintf(fout, "|");
  862. for (const auto & field : fields) {
  863. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  864. }
  865. fprintf(fout, "\n");
  866. fprintf(fout, "|");
  867. for (const auto & field : fields) {
  868. int width = get_field_width(field);
  869. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  870. }
  871. fprintf(fout, "\n");
  872. }
  873. void print_test(const test & t) override {
  874. std::map<std::string, std::string> vmap = t.get_map();
  875. fprintf(fout, "|");
  876. for (const auto & field : fields) {
  877. std::string value;
  878. char buf[128];
  879. if (field == "model") {
  880. value = t.model_type;
  881. } else if (field == "size") {
  882. if (t.model_size < 1024*1024*1024) {
  883. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  884. } else {
  885. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  886. }
  887. value = buf;
  888. } else if (field == "params") {
  889. if (t.model_n_params < 1000*1000*1000) {
  890. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  891. } else {
  892. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  893. }
  894. value = buf;
  895. } else if (field == "backend") {
  896. value = test::get_backend();
  897. } else if (field == "test") {
  898. if (t.n_prompt > 0 && t.n_gen == 0) {
  899. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  900. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  901. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  902. } else {
  903. assert(false);
  904. exit(1);
  905. }
  906. value = buf;
  907. } else if (field == "t/s") {
  908. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  909. value = buf;
  910. } else if (vmap.find(field) != vmap.end()) {
  911. value = vmap.at(field);
  912. } else {
  913. assert(false);
  914. exit(1);
  915. }
  916. int width = get_field_width(field);
  917. if (field == "t/s") {
  918. // HACK: the utf-8 character is 2 bytes
  919. width += 1;
  920. }
  921. fprintf(fout, " %*s |", width, value.c_str());
  922. }
  923. fprintf(fout, "\n");
  924. }
  925. void print_footer() override {
  926. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  927. }
  928. };
  929. struct sql_printer : public printer {
  930. static std::string get_sql_field_type(const std::string & field) {
  931. switch (test::get_field_type(field)) {
  932. case test::STRING:
  933. return "TEXT";
  934. case test::BOOL:
  935. case test::INT:
  936. return "INTEGER";
  937. case test::FLOAT:
  938. return "REAL";
  939. default:
  940. assert(false);
  941. exit(1);
  942. }
  943. }
  944. void print_header(const cmd_params & params) override {
  945. std::vector<std::string> fields = test::get_fields();
  946. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  947. for (size_t i = 0; i < fields.size(); i++) {
  948. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  949. }
  950. fprintf(fout, ");\n");
  951. fprintf(fout, "\n");
  952. (void) params;
  953. }
  954. void print_test(const test & t) override {
  955. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  956. fprintf(fout, "VALUES (");
  957. std::vector<std::string> values = t.get_values();
  958. for (size_t i = 0; i < values.size(); i++) {
  959. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  960. }
  961. fprintf(fout, ");\n");
  962. }
  963. };
  964. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  965. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  966. int n_processed = 0;
  967. llama_set_n_threads(ctx, n_threads, n_threads);
  968. while (n_processed < n_prompt) {
  969. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  970. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  971. n_processed += n_tokens;
  972. }
  973. }
  974. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  975. llama_token token = llama_token_bos(llama_get_model(ctx));
  976. llama_set_n_threads(ctx, n_threads, n_threads);
  977. for (int i = 0; i < n_gen; i++) {
  978. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  979. }
  980. }
  981. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  982. (void) level;
  983. (void) text;
  984. (void) user_data;
  985. }
  986. int main(int argc, char ** argv) {
  987. // try to set locale for unicode characters in markdown
  988. setlocale(LC_CTYPE, ".UTF-8");
  989. #if !defined(NDEBUG)
  990. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  991. #endif
  992. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  993. fprintf(stderr, "warning: debug build, performance may be affected\n");
  994. #endif
  995. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  996. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  997. #endif
  998. cmd_params params = parse_cmd_params(argc, argv);
  999. // initialize llama.cpp
  1000. if (!params.verbose) {
  1001. llama_log_set(llama_null_log_callback, NULL);
  1002. }
  1003. bool numa = false;
  1004. llama_backend_init(numa);
  1005. // initialize printer
  1006. std::unique_ptr<printer> p;
  1007. switch (params.output_format) {
  1008. case CSV:
  1009. p.reset(new csv_printer());
  1010. break;
  1011. case JSON:
  1012. p.reset(new json_printer());
  1013. break;
  1014. case MARKDOWN:
  1015. p.reset(new markdown_printer());
  1016. break;
  1017. case SQL:
  1018. p.reset(new sql_printer());
  1019. break;
  1020. default:
  1021. assert(false);
  1022. exit(1);
  1023. }
  1024. p->fout = stdout;
  1025. p->print_header(params);
  1026. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1027. llama_model * lmodel = nullptr;
  1028. const cmd_params_instance * prev_inst = nullptr;
  1029. for (const auto & inst : params_instances) {
  1030. // keep the same model between tests when possible
  1031. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1032. if (lmodel) {
  1033. llama_free_model(lmodel);
  1034. }
  1035. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1036. if (lmodel == NULL) {
  1037. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1038. return 1;
  1039. }
  1040. prev_inst = &inst;
  1041. }
  1042. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1043. if (ctx == NULL) {
  1044. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1045. llama_free_model(lmodel);
  1046. return 1;
  1047. }
  1048. test t(inst, lmodel, ctx);
  1049. llama_kv_cache_clear(ctx);
  1050. // warmup run
  1051. if (t.n_prompt > 0) {
  1052. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  1053. }
  1054. if (t.n_gen > 0) {
  1055. test_gen(ctx, 1, 0, t.n_threads);
  1056. }
  1057. for (int i = 0; i < params.reps; i++) {
  1058. llama_kv_cache_clear(ctx);
  1059. uint64_t t_start = get_time_ns();
  1060. if (t.n_prompt > 0) {
  1061. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1062. }
  1063. if (t.n_gen > 0) {
  1064. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1065. }
  1066. uint64_t t_ns = get_time_ns() - t_start;
  1067. t.samples_ns.push_back(t_ns);
  1068. }
  1069. p->print_test(t);
  1070. llama_print_timings(ctx);
  1071. llama_free(ctx);
  1072. }
  1073. llama_free_model(lmodel);
  1074. p->print_footer();
  1075. llama_backend_free();
  1076. return 0;
  1077. }