perplexity.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <cstring>
  6. #include <ctime>
  7. #include <sstream>
  8. #include <thread>
  9. #include <mutex>
  10. #include <vector>
  11. #if defined(_MSC_VER)
  12. #pragma warning(disable: 4244 4267) // possible loss of data
  13. #endif
  14. struct results_perplexity {
  15. std::vector<llama_token> tokens;
  16. double ppl_value;
  17. std::vector<float> logits;
  18. std::vector<float> probs;
  19. };
  20. struct results_log_softmax {
  21. double log_softmax;
  22. float logit;
  23. float prob;
  24. };
  25. static void write_logfile(
  26. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  27. const struct results_perplexity & results
  28. ) {
  29. if (params.logdir.empty()) {
  30. return;
  31. }
  32. if (params.hellaswag) {
  33. fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  34. return;
  35. }
  36. const std::string timestamp = get_sortable_timestamp();
  37. const bool success = create_directory_with_parents(params.logdir);
  38. if (!success) {
  39. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  40. __func__, params.logdir.c_str());
  41. return;
  42. }
  43. const std::string logfile_path = params.logdir + timestamp + ".yml";
  44. FILE * logfile = fopen(logfile_path.c_str(), "w");
  45. if (logfile == NULL) {
  46. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  47. return;
  48. }
  49. fprintf(logfile, "binary: main\n");
  50. char model_desc[128];
  51. llama_model_desc(model, model_desc, sizeof(model_desc));
  52. dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
  53. fprintf(logfile, "\n");
  54. fprintf(logfile, "######################\n");
  55. fprintf(logfile, "# Perplexity Results #\n");
  56. fprintf(logfile, "######################\n");
  57. fprintf(logfile, "\n");
  58. dump_vector_float_yaml(logfile, "logits", results.logits);
  59. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  60. dump_vector_float_yaml(logfile, "probs", results.probs);
  61. llama_dump_timing_info_yaml(logfile, ctx);
  62. fclose(logfile);
  63. }
  64. static std::vector<float> softmax(const std::vector<float>& logits) {
  65. std::vector<float> probs(logits.size());
  66. float max_logit = logits[0];
  67. for (float v : logits) {
  68. max_logit = std::max(max_logit, v);
  69. }
  70. double sum_exp = 0.0;
  71. for (size_t i = 0; i < logits.size(); i++) {
  72. // Subtract the maximum logit value from the current logit value for numerical stability
  73. const float logit = logits[i] - max_logit;
  74. const float exp_logit = expf(logit);
  75. sum_exp += exp_logit;
  76. probs[i] = exp_logit;
  77. }
  78. for (size_t i = 0; i < probs.size(); i++) {
  79. probs[i] /= sum_exp;
  80. }
  81. return probs;
  82. }
  83. static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  84. float max_logit = logits[0];
  85. for (int i = 1; i < n_vocab; ++i) {
  86. max_logit = std::max(max_logit, logits[i]);
  87. }
  88. double sum_exp = 0.0;
  89. for (int i = 0; i < n_vocab; ++i) {
  90. sum_exp += expf(logits[i] - max_logit);
  91. }
  92. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  93. }
  94. static void process_logits(
  95. int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  96. double & nll, double & nll2, float * logit_history, float * prob_history
  97. ) {
  98. std::mutex mutex;
  99. int counter = 0;
  100. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  101. double local_nll = 0;
  102. double local_nll2 = 0;
  103. while (true) {
  104. std::unique_lock<std::mutex> lock(mutex);
  105. int i = counter++;
  106. if (i >= n_token) {
  107. nll += local_nll; nll2 += local_nll2;
  108. break;
  109. }
  110. lock.unlock();
  111. const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
  112. const double v = -results.log_softmax;
  113. local_nll += v;
  114. local_nll2 += v*v;
  115. logit_history[i] = results.logit;
  116. prob_history[i] = results.prob;
  117. }
  118. };
  119. for (auto & w : workers) {
  120. w = std::thread(compute);
  121. }
  122. compute();
  123. for (auto & w : workers) {
  124. w.join();
  125. }
  126. }
  127. static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
  128. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  129. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  130. // Output: `perplexity: 13.5106 [114/114]`
  131. // BOS tokens will be added for each chunk before eval
  132. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  133. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  134. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  135. const int n_ctx = llama_n_ctx(ctx);
  136. if (int(tokens.size()) < 2*n_ctx) {
  137. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  138. n_ctx);
  139. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  140. return {std::move(tokens), 0., {}, {}};
  141. }
  142. std::vector<float> logit_history;
  143. std::vector<float> prob_history;
  144. logit_history.resize(tokens.size());
  145. prob_history.resize(tokens.size());
  146. if (params.ppl_stride <= 0) {
  147. fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  148. return {tokens, -1, logit_history, prob_history};
  149. }
  150. const int calc_chunk = n_ctx;
  151. fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  152. if (int(tokens.size()) <= calc_chunk) {
  153. fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  154. tokens.size(), n_ctx, params.ppl_stride);
  155. return {tokens, -1, logit_history, prob_history};
  156. }
  157. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  158. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  159. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  160. const int n_batch = params.n_batch;
  161. int count = 0;
  162. double nll = 0.0;
  163. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  164. for (int i = 0; i < n_chunk; ++i) {
  165. const int start = i * params.ppl_stride;
  166. const int end = start + calc_chunk;
  167. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  168. //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  169. std::vector<float> logits;
  170. const auto t_start = std::chrono::high_resolution_clock::now();
  171. // clear the KV cache
  172. llama_kv_cache_clear(ctx);
  173. for (int j = 0; j < num_batches; ++j) {
  174. const int batch_start = start + j * n_batch;
  175. const int batch_size = std::min(end - batch_start, n_batch);
  176. //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  177. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  178. //fprintf(stderr, "%s : failed to eval\n", __func__);
  179. return {tokens, -1, logit_history, prob_history};
  180. }
  181. // save original token and restore it after eval
  182. const auto token_org = tokens[batch_start];
  183. // add BOS token for the first batch of each chunk
  184. if (add_bos && j == 0) {
  185. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  186. }
  187. const auto batch_logits = llama_get_logits(ctx);
  188. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  189. if (j == 0) {
  190. tokens[batch_start] = token_org;
  191. }
  192. }
  193. const auto t_end = std::chrono::high_resolution_clock::now();
  194. if (i == 0) {
  195. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  196. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  197. int total_seconds = (int)(t_total * n_chunk);
  198. if (total_seconds >= 60*60) {
  199. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  200. total_seconds = total_seconds % (60*60);
  201. }
  202. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  203. }
  204. //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  205. for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
  206. // Calculate probability of next token, given the previous ones.
  207. const std::vector<float> tok_logits(
  208. logits.begin() + (j + 0) * n_vocab,
  209. logits.begin() + (j + 1) * n_vocab);
  210. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  211. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  212. prob_history[start + j + 1] = prob;
  213. nll += -std::log(prob);
  214. ++count;
  215. }
  216. // perplexity is e^(average negative log-likelihood)
  217. if (params.ppl_output_type == 0) {
  218. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  219. } else {
  220. printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  221. }
  222. fflush(stdout);
  223. }
  224. printf("\n");
  225. return {tokens, std::exp(nll / count), logit_history, prob_history};
  226. }
  227. static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
  228. if (params.ppl_stride > 0) {
  229. return perplexity_v2(ctx, params);
  230. }
  231. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  232. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  233. // Output: `perplexity: 13.5106 [114/114]`
  234. // BOS tokens will be added for each chunk before eval
  235. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  236. const int n_ctx = llama_n_ctx(ctx);
  237. auto tim1 = std::chrono::high_resolution_clock::now();
  238. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  239. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  240. auto tim2 = std::chrono::high_resolution_clock::now();
  241. fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  242. if (int(tokens.size()) < 2*n_ctx) {
  243. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  244. n_ctx);
  245. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  246. return {std::move(tokens), 0., {}, {}};
  247. }
  248. std::vector<float> logit_history;
  249. logit_history.resize(tokens.size());
  250. std::vector<float> prob_history;
  251. prob_history.resize(tokens.size());
  252. const int n_chunk_max = tokens.size() / n_ctx;
  253. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  254. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  255. const int n_batch = params.n_batch;
  256. int count = 0;
  257. double nll = 0.0;
  258. double nll2 = 0.0;
  259. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  260. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  261. for (int i = 0; i < n_chunk; ++i) {
  262. const int start = i * n_ctx;
  263. const int end = start + n_ctx;
  264. const int num_batches = (n_ctx + n_batch - 1) / n_batch;
  265. std::vector<float> logits;
  266. const auto t_start = std::chrono::high_resolution_clock::now();
  267. // clear the KV cache
  268. llama_kv_cache_clear(ctx);
  269. for (int j = 0; j < num_batches; ++j) {
  270. const int batch_start = start + j * n_batch;
  271. const int batch_size = std::min(end - batch_start, n_batch);
  272. // save original token and restore it after eval
  273. const auto token_org = tokens[batch_start];
  274. // add BOS token for the first batch of each chunk
  275. if (add_bos && j == 0) {
  276. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  277. }
  278. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  279. fprintf(stderr, "%s : failed to eval\n", __func__);
  280. return {tokens, -1, logit_history, prob_history};
  281. }
  282. // restore the original token in case it was set to BOS
  283. tokens[batch_start] = token_org;
  284. const auto * batch_logits = llama_get_logits(ctx);
  285. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  286. }
  287. const auto t_end = std::chrono::high_resolution_clock::now();
  288. if (i == 0) {
  289. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  290. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  291. int total_seconds = (int)(t_total * n_chunk);
  292. if (total_seconds >= 60*60) {
  293. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  294. total_seconds = total_seconds % (60*60);
  295. }
  296. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  297. }
  298. // We get the logits for all the tokens in the context window (params.n_ctx)
  299. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  300. // calculate the perplexity over the last half of the window (so the model always has
  301. // some context to predict the token).
  302. //
  303. // We rely on the fact that attention in the forward pass only looks at previous
  304. // tokens here, so the logits returned for each token are an accurate representation
  305. // of what the model would have predicted at that point.
  306. //
  307. // Example, we have a context window of 512, we will compute perplexity for each of the
  308. // last 256 tokens. Then, we split the input up into context window size chunks to
  309. // process the entire prompt.
  310. const int first = n_ctx/2;
  311. process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  312. workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
  313. count += n_ctx - first - 1;
  314. // perplexity is e^(average negative log-likelihood)
  315. if (params.ppl_output_type == 0) {
  316. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  317. } else {
  318. double av = nll/count;
  319. double av2 = nll2/count - av*av;
  320. if (av2 > 0) av2 = sqrt(av2/(count-1));
  321. printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
  322. }
  323. fflush(stdout);
  324. }
  325. printf("\n");
  326. nll2 /= count;
  327. nll /= count;
  328. const double ppl = exp(nll);
  329. nll2 -= nll * nll;
  330. if (nll2 > 0) {
  331. nll2 = sqrt(nll2/(count-1));
  332. printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  333. } else {
  334. printf("Unexpected negative standard deviation of log(prob)\n");
  335. }
  336. return {tokens, ppl, logit_history, prob_history};
  337. }
  338. static std::vector<float> hellaswag_evaluate_tokens(
  339. llama_context * ctx, std::vector<int> & tokens, int n_past, int n_batch, int n_vocab
  340. ) {
  341. std::vector<float> result;
  342. result.reserve(tokens.size() * n_vocab);
  343. size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
  344. for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
  345. size_t n_tokens = tokens.size() - i_chunk * n_batch;
  346. n_tokens = std::min(n_tokens, size_t(n_batch));
  347. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  348. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) {
  349. fprintf(stderr, "%s : failed to eval\n", __func__);
  350. return {};
  351. }
  352. const auto logits = llama_get_logits(ctx);
  353. result.insert(result.end(), logits, logits + n_tokens * n_vocab);
  354. n_past += n_tokens;
  355. }
  356. return result;
  357. }
  358. static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
  359. // Calculates hellaswag score (acc_norm) from prompt
  360. //
  361. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  362. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  363. //
  364. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  365. //
  366. // Datafile layout:
  367. // ['??'] denotes json fields
  368. // 6 lines per task:
  369. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  370. // ['label'] - The index the best common sense ending aka gold ending
  371. // ['endings'][0] - Endings added to the first part of the query
  372. // ['endings'][1]
  373. // ['endings'][2]
  374. // ['endings'][3]
  375. std::vector<std::string> prompt_lines;
  376. std::istringstream strstream(params.prompt);
  377. std::string line;
  378. while (std::getline(strstream,line,'\n')) {
  379. prompt_lines.push_back(line);
  380. }
  381. if( prompt_lines.size() % 6 != 0) {
  382. fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
  383. return;
  384. }
  385. size_t hs_task_count = prompt_lines.size()/6;
  386. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  387. const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
  388. fprintf(stderr, "================================= is_spm = %d\n", is_spm);
  389. // This is needed as usual for LLaMA models
  390. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  391. // Number of tasks to use when computing the score
  392. if ( params.hellaswag_tasks < hs_task_count ) {
  393. hs_task_count = params.hellaswag_tasks;
  394. }
  395. // The tasks should be randomized so the score stabilizes quickly.
  396. bool randomize_tasks = true;
  397. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  398. std::mt19937 rng(1);
  399. // Dataholder for hellaswag tasks
  400. struct hs_data_t {
  401. std::string context;
  402. size_t gold_ending_idx;
  403. std::string ending[4];
  404. size_t ending_logprob_count[4];
  405. double ending_logprob[4];
  406. };
  407. fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  408. // Select and read data from prompt lines
  409. hs_data_t *hs_data = new hs_data_t[hs_task_count];
  410. for (size_t i=0; i < hs_task_count; i++) {
  411. size_t idx = i;
  412. // Select a random example of those left in the prompt
  413. if (randomize_tasks) {
  414. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  415. idx = dist(rng);
  416. }
  417. hs_data[i].context = prompt_lines[idx*6];
  418. hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  419. for (size_t j=0; j < 4; j++) {
  420. hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
  421. }
  422. // Delete the selected random example from the prompt
  423. if (randomize_tasks) {
  424. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  425. }
  426. }
  427. fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
  428. printf("\ntask\tacc_norm\n");
  429. double acc = 0.0f;
  430. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  431. const int n_ctx = llama_n_ctx(ctx);
  432. std::vector<std::vector<int>> ending_tokens(4);
  433. std::vector<float> tok_logits(n_vocab);
  434. for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
  435. // Tokenize the context to count tokens
  436. std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
  437. size_t context_size = context_embd.size();
  438. for (int i = 0; i < 4; ++i) {
  439. ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
  440. for (int k = 0; k < int(context_size); ++k) {
  441. if (ending_tokens[i][k] != context_embd[k]) {
  442. fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
  443. break;
  444. }
  445. }
  446. }
  447. // Do the 1st ending
  448. // In this case we include the context when evaluating
  449. //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
  450. auto query_embd = ending_tokens[0];
  451. auto query_size = query_embd.size();
  452. // Stop if query wont fit the ctx window
  453. if (query_size > (size_t)n_ctx) {
  454. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  455. return;
  456. }
  457. // Speedup small evaluations by evaluating atleast 32 tokens
  458. if (query_size < 32) {
  459. query_embd.resize(32);
  460. }
  461. // clear the KV cache
  462. llama_kv_cache_clear(ctx);
  463. auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
  464. if (logits.empty()) {
  465. fprintf(stderr, "%s : failed to eval\n", __func__);
  466. return;
  467. }
  468. std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
  469. const auto first_probs = softmax(tok_logits);
  470. hs_data[task_idx].ending_logprob_count[0] = 1;
  471. hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
  472. // Calculate the logprobs over the ending
  473. for (size_t j = context_size; j < query_size - 1; j++) {
  474. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  475. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  476. hs_data[task_idx].ending_logprob[0] += std::log(prob);
  477. hs_data[task_idx].ending_logprob_count[0]++;
  478. }
  479. // Calculate the mean token logprob for acc_norm
  480. hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
  481. // Do the remaining endings
  482. // For these, we use the bare ending with n_past = context_size
  483. //
  484. for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
  485. // Tokenize the query
  486. query_embd.resize(ending_tokens[ending_idx].size() - context_size);
  487. std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
  488. query_size = query_embd.size();
  489. // Stop if query wont fit the ctx window
  490. if (context_size + query_size > (size_t)n_ctx) {
  491. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  492. return;
  493. }
  494. // Speedup small evaluations by evaluating atleast 32 tokens
  495. // No, resizing to 32 is actually slightly slower (at least on CUDA)
  496. //if (query_size < 32) {
  497. // query_embd.resize(32);
  498. //}
  499. // Evaluate the query
  500. logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab);
  501. if (logits.empty()) {
  502. fprintf(stderr, "%s : failed to eval\n", __func__);
  503. return;
  504. }
  505. hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
  506. hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
  507. // Calculate the logprobs over the ending
  508. for (size_t j = 0; j < query_size - 1; j++) {
  509. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  510. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  511. hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
  512. hs_data[task_idx].ending_logprob_count[ending_idx]++;
  513. }
  514. // Calculate the mean token logprob for acc_norm
  515. hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
  516. // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
  517. // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
  518. }
  519. // Find the ending with maximum logprob
  520. size_t ending_logprob_max_idx = 0;
  521. double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
  522. for (size_t j = 1; j < 4; j++) {
  523. if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
  524. ending_logprob_max_idx = j;
  525. ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
  526. }
  527. }
  528. // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
  529. // If the gold ending got the maximum logprobe add one accuracy point
  530. if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
  531. acc += 1.0;
  532. }
  533. // Print the accumulated accuracy mean x 100
  534. printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
  535. fflush(stdout);
  536. }
  537. delete [] hs_data;
  538. printf("\n");
  539. }
  540. int main(int argc, char ** argv) {
  541. gpt_params params;
  542. params.n_batch = 512;
  543. if (!gpt_params_parse(argc, argv, params)) {
  544. return 1;
  545. }
  546. params.logits_all = true;
  547. params.n_batch = std::min(params.n_batch, params.n_ctx);
  548. if (params.ppl_stride > 0) {
  549. fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  550. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  551. params.n_ctx += params.ppl_stride/2;
  552. }
  553. print_build_info();
  554. if (params.seed == LLAMA_DEFAULT_SEED) {
  555. params.seed = time(NULL);
  556. }
  557. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  558. std::mt19937 rng(params.seed);
  559. if (params.random_prompt) {
  560. params.prompt = gpt_random_prompt(rng);
  561. }
  562. llama_backend_init(params.numa);
  563. llama_model * model;
  564. llama_context * ctx;
  565. // load the model and apply lora adapter, if any
  566. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  567. if (model == NULL) {
  568. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  569. return 1;
  570. }
  571. const int n_ctx_train = llama_n_ctx_train(model);
  572. if (params.n_ctx > n_ctx_train) {
  573. fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
  574. __func__, n_ctx_train, params.n_ctx);
  575. }
  576. // print system information
  577. {
  578. fprintf(stderr, "\n");
  579. fprintf(stderr, "%s\n", get_system_info(params).c_str());
  580. }
  581. struct results_perplexity results;
  582. if (params.hellaswag) {
  583. hellaswag_score(ctx, params);
  584. } else {
  585. results = perplexity(ctx, params);
  586. }
  587. llama_print_timings(ctx);
  588. write_logfile(ctx, params, model, results);
  589. llama_free(ctx);
  590. llama_free_model(model);
  591. llama_backend_free();
  592. return 0;
  593. }