1
0

test-backend-ops.cpp 172 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdint>
  23. #include <cstdio>
  24. #include <cstdlib>
  25. #include <cstring>
  26. #include <future>
  27. #include <memory>
  28. #include <random>
  29. #include <regex>
  30. #include <string>
  31. #include <thread>
  32. #include <vector>
  33. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  34. size_t nels = ggml_nelements(tensor);
  35. std::vector<float> data(nels);
  36. {
  37. // parallel initialization
  38. static const size_t n_threads = std::thread::hardware_concurrency();
  39. // static RNG initialization (revisit if n_threads stops being constant)
  40. static std::vector<std::default_random_engine> generators = []() {
  41. std::random_device rd;
  42. std::vector<std::default_random_engine> vec;
  43. vec.reserve(n_threads);
  44. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  45. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  46. return vec;
  47. }();
  48. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  49. std::uniform_real_distribution<float> distribution(min, max);
  50. auto & gen = generators[ith];
  51. for (size_t i = start; i < end; i++) {
  52. data[i] = distribution(gen);
  53. }
  54. };
  55. std::vector<std::future<void>> tasks;
  56. tasks.reserve(n_threads);
  57. for (size_t i = 0; i < n_threads; i++) {
  58. size_t start = i*nels/n_threads;
  59. size_t end = (i+1)*nels/n_threads;
  60. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  61. }
  62. for (auto & t : tasks) {
  63. t.get();
  64. }
  65. }
  66. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  67. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  68. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  69. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  70. // dummy importance matrix
  71. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  72. const float * im = imatrix.data();
  73. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  74. // when the imatrix is optional, we want to test both quantization with and without imatrix
  75. // use one of the random numbers to decide
  76. if (data[0] > 0.5f*(min + max)) {
  77. im = nullptr;
  78. }
  79. }
  80. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  81. {
  82. // parallel quantization by block
  83. size_t blck_size = ggml_blck_size(tensor->type);
  84. size_t n_blocks = nels / blck_size;
  85. auto quantize_thread = [&](size_t start, size_t end) {
  86. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  87. start * blck_size, end - start, blck_size, im);
  88. };
  89. const size_t min_blocks_per_thread = 1;
  90. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  91. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  92. std::vector<std::future<void>> tasks;
  93. tasks.reserve(n_threads);
  94. for (size_t i = 0; i < n_threads; i++) {
  95. size_t start = i*n_blocks/n_threads;
  96. size_t end = (i+1)*n_blocks/n_threads;
  97. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  98. }
  99. for (auto & t : tasks) {
  100. t.get();
  101. }
  102. }
  103. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  104. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  105. // This is going to create some weird integers though.
  106. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  107. } else if (tensor->type == GGML_TYPE_I64) {
  108. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  109. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  110. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  111. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  112. } else {
  113. GGML_ABORT("fatal error");
  114. }
  115. }
  116. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  117. std::vector<float> tv;
  118. tv.reserve(ggml_nelements(t));
  119. std::vector<uint8_t> buf(ggml_nbytes(t));
  120. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  121. const auto * tt = ggml_get_type_traits(t->type);
  122. size_t bs = ggml_blck_size(t->type);
  123. std::vector<float> vq(ggml_blck_size(t->type));
  124. bool quantized = ggml_is_quantized(t->type);
  125. // access elements by index to avoid gaps in views
  126. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  127. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  128. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  129. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  130. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  131. if (t->type == GGML_TYPE_F16) {
  132. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_BF16) {
  134. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_F32) {
  136. tv.push_back(*(float *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I64) {
  138. tv.push_back((float)*(int64_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I32) {
  140. tv.push_back((float)*(int32_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I16) {
  142. tv.push_back((float)*(int16_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I8) {
  144. tv.push_back((float)*(int8_t *) &buf[i]);
  145. } else if (quantized) {
  146. tt->to_float(&buf[i], vq.data(), bs);
  147. tv.insert(tv.end(), vq.begin(), vq.end());
  148. } else {
  149. GGML_ABORT("fatal error");
  150. }
  151. }
  152. }
  153. }
  154. }
  155. return tv;
  156. }
  157. // normalized mean squared error = mse(a, b) / mse(a, 0)
  158. static double nmse(const float * a, const float * b, size_t n) {
  159. double mse_a_b = 0.0;
  160. double mse_a_0 = 0.0;
  161. for (size_t i = 0; i < n; i++) {
  162. float a_i = a[i];
  163. float b_i = b[i];
  164. mse_a_b += (a_i - b_i) * (a_i - b_i);
  165. mse_a_0 += a_i * a_i;
  166. }
  167. return mse_a_b / mse_a_0;
  168. }
  169. // maximum absolute asymmetry between a and b
  170. // asymmetry: (a - b) / (a + b)
  171. // This is more stable than relative error if one of the values fluctuates towards zero.
  172. // n: number of values to compare.
  173. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  174. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  175. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  176. double sum = 0.0f;
  177. size_t nvalid = 0;
  178. for (size_t i = 0; i < n; i++) {
  179. if (!expected_vals.empty()) {
  180. bool matches_any = false;
  181. for (const float & ev : expected_vals) {
  182. if (fabsf(a[i] - ev) < 1e-3f) {
  183. matches_any = true;
  184. break;
  185. }
  186. }
  187. if (!matches_any) {
  188. continue;
  189. }
  190. }
  191. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  192. sum += fabsf(asymm);
  193. nvalid++;
  194. }
  195. return sum/nvalid;
  196. }
  197. // utils for printing the variables of the test cases
  198. template<typename T>
  199. static std::string var_to_str(const T & x) {
  200. return std::to_string(x);
  201. }
  202. template<typename T, size_t N>
  203. static std::string var_to_str(const T (&x)[N]) {
  204. std::string s = "[";
  205. for (size_t i = 0; i < N; i++) {
  206. if (i > 0) {
  207. s += ",";
  208. }
  209. s += var_to_str(x[i]);
  210. }
  211. s += "]";
  212. return s;
  213. }
  214. template<typename T, size_t N>
  215. static std::string var_to_str(const std::array<T, N> & x) {
  216. std::string s = "[";
  217. for (size_t i = 0; i < N; i++) {
  218. if (i > 0) {
  219. s += ",";
  220. }
  221. s += var_to_str(x[i]);
  222. }
  223. s += "]";
  224. return s;
  225. }
  226. static std::string var_to_str(ggml_type type) {
  227. return ggml_type_name(type);
  228. }
  229. static std::string var_to_str(ggml_prec prec) {
  230. return prec == GGML_PREC_F32 ? "f32" : "def";
  231. }
  232. static std::string var_to_str(ggml_op_pool pool) {
  233. switch (pool) {
  234. case GGML_OP_POOL_AVG: return "avg";
  235. case GGML_OP_POOL_MAX: return "max";
  236. default: return std::to_string(pool);
  237. }
  238. }
  239. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  240. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  241. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  242. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  243. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  244. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  245. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  246. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  247. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  248. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  249. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  250. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  251. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  252. #ifdef GGML_USE_SYCL
  253. static bool inline _isinf(float f) {
  254. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  255. }
  256. #else
  257. static bool inline _isinf(float f) { return std::isinf(f); }
  258. #endif
  259. // accept FLT_MAX as infinity
  260. static bool isinf_or_max(float f) {
  261. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  262. }
  263. static bool ggml_is_view_op(enum ggml_op op) {
  264. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  265. }
  266. enum test_mode {
  267. MODE_TEST,
  268. MODE_PERF,
  269. MODE_GRAD,
  270. };
  271. struct test_case {
  272. virtual ~test_case() {}
  273. virtual std::string op_desc(ggml_tensor * t) {
  274. return ggml_op_desc(t);
  275. }
  276. virtual std::string vars() {
  277. return "";
  278. }
  279. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  280. virtual double max_nmse_err() {
  281. return 1e-7;
  282. }
  283. virtual double max_maa_err() {
  284. return 1e-4;
  285. }
  286. virtual float grad_eps() {
  287. return 1e-1f;
  288. }
  289. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  290. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  291. virtual bool grad_precise() {
  292. return false;
  293. }
  294. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  295. virtual int64_t grad_nmax() {
  296. return 10000;
  297. }
  298. // No effect if empty.
  299. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  300. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  301. virtual std::vector<float> grad_expect() {
  302. return {};
  303. }
  304. virtual void initialize_tensors(ggml_context * ctx) {
  305. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  306. init_tensor_uniform(t);
  307. }
  308. }
  309. virtual size_t op_size(ggml_tensor * t) {
  310. size_t size = ggml_nbytes(t);
  311. // add source tensors
  312. for (int i = 0; i < GGML_MAX_SRC; i++) {
  313. if (t->src[i] != NULL) {
  314. size += ggml_nbytes(t->src[i]);
  315. }
  316. }
  317. return size;
  318. }
  319. virtual uint64_t op_flops(ggml_tensor * t) {
  320. GGML_UNUSED(t);
  321. return 0;
  322. }
  323. ggml_cgraph * gf = nullptr;
  324. ggml_cgraph * gb = nullptr;
  325. static const int sentinel_size = 1024;
  326. test_mode mode;
  327. std::vector<ggml_tensor *> sentinels;
  328. void add_sentinel(ggml_context * ctx) {
  329. if (mode == MODE_PERF || mode == MODE_GRAD) {
  330. return;
  331. }
  332. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  333. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  334. sentinels.push_back(sentinel);
  335. }
  336. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  337. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  338. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  339. add_sentinel(ctx);
  340. return t;
  341. }
  342. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  343. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  344. add_sentinel(ctx);
  345. return t;
  346. }
  347. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  348. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  349. add_sentinel(ctx);
  350. return t;
  351. }
  352. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  353. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  354. add_sentinel(ctx);
  355. return t;
  356. }
  357. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  358. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  359. add_sentinel(ctx);
  360. return t;
  361. }
  362. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  363. mode = MODE_TEST;
  364. ggml_init_params params = {
  365. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  366. /* .mem_base = */ NULL,
  367. /* .no_alloc = */ true,
  368. };
  369. ggml_context * ctx = ggml_init(params);
  370. GGML_ASSERT(ctx);
  371. gf = ggml_new_graph(ctx);
  372. // pre-graph sentinel
  373. add_sentinel(ctx);
  374. ggml_tensor * out = build_graph(ctx);
  375. if (op_name != nullptr && op_desc(out) != op_name) {
  376. //printf(" %s: skipping\n", op_desc(out).c_str());
  377. ggml_free(ctx);
  378. return true;
  379. }
  380. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  381. fflush(stdout);
  382. // check if the backends support the ops
  383. bool supported = true;
  384. for (ggml_backend_t backend : {backend1, backend2}) {
  385. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  386. if (!ggml_backend_supports_op(backend, t)) {
  387. printf("not supported [%s] ", ggml_backend_name(backend));
  388. supported = false;
  389. break;
  390. }
  391. }
  392. }
  393. if (!supported) {
  394. printf("\n");
  395. ggml_free(ctx);
  396. return true;
  397. }
  398. // post-graph sentinel
  399. add_sentinel(ctx);
  400. // allocate
  401. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  402. if (buf == NULL) {
  403. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  404. ggml_free(ctx);
  405. return false;
  406. }
  407. // build graph
  408. ggml_build_forward_expand(gf, out);
  409. // add sentinels as graph nodes so that they are checked in the callback
  410. for (ggml_tensor * sentinel : sentinels) {
  411. ggml_graph_add_node(gf, sentinel);
  412. }
  413. // randomize tensors
  414. initialize_tensors(ctx);
  415. // compare
  416. struct callback_userdata {
  417. bool ok;
  418. double max_err;
  419. ggml_backend_t backend1;
  420. ggml_backend_t backend2;
  421. };
  422. callback_userdata ud {
  423. true,
  424. max_nmse_err(),
  425. backend1,
  426. backend2
  427. };
  428. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  429. callback_userdata * ud = (callback_userdata *) user_data;
  430. const char * bn1 = ggml_backend_name(ud->backend1);
  431. const char * bn2 = ggml_backend_name(ud->backend2);
  432. if (t1->op == GGML_OP_NONE) {
  433. // sentinels must be unchanged
  434. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  435. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  436. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  437. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  438. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  439. printf("sentinel mismatch: %s ", t1->name);
  440. ud->ok = false;
  441. return true;
  442. }
  443. }
  444. std::vector<float> f1 = tensor_to_float(t1);
  445. std::vector<float> f2 = tensor_to_float(t2);
  446. for (size_t i = 0; i < f1.size(); i++) {
  447. // check for nans
  448. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  449. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  450. ud->ok = false;
  451. return true;
  452. }
  453. // check for infs: both must be inf of the same sign, or both must be finite
  454. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  455. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  456. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  457. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  458. ud->ok = false;
  459. return true;
  460. }
  461. } else {
  462. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  463. ud->ok = false;
  464. return true;
  465. }
  466. }
  467. }
  468. double err = nmse(f1.data(), f2.data(), f1.size());
  469. if (err > ud->max_err) {
  470. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  471. //for (int i = 0; i < (int) f1.size(); i++) {
  472. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  473. //}
  474. //printf("\n");
  475. //exit(1);
  476. ud->ok = false;
  477. }
  478. return true;
  479. GGML_UNUSED(index);
  480. };
  481. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  482. if (!cmp_ok) {
  483. printf("compare failed ");
  484. }
  485. ggml_backend_buffer_free(buf);
  486. ggml_free(ctx);
  487. if (ud.ok && cmp_ok) {
  488. printf("\033[1;32mOK\033[0m\n");
  489. return true;
  490. }
  491. printf("\033[1;31mFAIL\033[0m\n");
  492. return false;
  493. }
  494. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  495. mode = MODE_PERF;
  496. static const size_t graph_nodes = 8192;
  497. ggml_init_params params = {
  498. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  499. /* .mem_base = */ NULL,
  500. /* .no_alloc = */ true,
  501. };
  502. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  503. GGML_ASSERT(ctx);
  504. ggml_tensor * out = build_graph(ctx.get());
  505. if (op_name != nullptr && op_desc(out) != op_name) {
  506. //printf(" %s: skipping\n", op_desc(out).c_str());
  507. return true;
  508. }
  509. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  510. fflush(stdout);
  511. // check if backends support op
  512. if (!ggml_backend_supports_op(backend, out)) {
  513. printf("not supported\n");
  514. return true;
  515. }
  516. // align while also leaving some margin for variations in parameters
  517. int align = 8;
  518. int last = (len + align - 1) / align * align;
  519. if (last - len < 5) {
  520. last += align;
  521. }
  522. printf("%*s", last - len, "");
  523. // allocate
  524. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  525. if (buf == NULL) {
  526. printf("failed to allocate tensors\n");
  527. return false;
  528. }
  529. // randomize tensors
  530. initialize_tensors(ctx.get());
  531. // build graph
  532. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  533. ggml_build_forward_expand(gf, out);
  534. // warmup run
  535. ggml_status status = ggml_backend_graph_compute(backend, gf);
  536. if (status != GGML_STATUS_SUCCESS) {
  537. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  538. return false;
  539. }
  540. // determine number of runs
  541. int n_runs;
  542. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  543. if (op_flops(out) > 0) {
  544. // based on flops
  545. const uint64_t GFLOP = 1000 * 1000 * 1000;
  546. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  547. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  548. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  549. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  550. } else {
  551. // based on memory size
  552. const size_t GB = 1ULL << 30;
  553. const size_t target_size_cpu = 8 * GB;
  554. const size_t target_size_gpu = 32 * GB;
  555. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  556. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  557. }
  558. // duplicate the op
  559. for (int i = 1; i < n_runs; i++) {
  560. ggml_graph_add_node(gf, out);
  561. }
  562. // calculate memory
  563. size_t mem = n_runs * op_size(out);
  564. auto tensor_op_size = [](ggml_tensor * t) {
  565. size_t size = ggml_nbytes(t);
  566. // add source tensors
  567. for (int i = 0; i < GGML_MAX_SRC; i++) {
  568. if (t->src[i] != NULL) {
  569. size += ggml_nbytes(t->src[i]);
  570. }
  571. }
  572. return size;
  573. };
  574. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  575. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  576. continue;
  577. }
  578. mem += tensor_op_size(ggml_graph_node(gf, i));
  579. }
  580. // run
  581. int64_t total_time_us = 0;
  582. int64_t total_mem = 0;
  583. int total_runs = 0;
  584. do {
  585. int64_t start_time = ggml_time_us();
  586. ggml_status status = ggml_backend_graph_compute(backend, gf);
  587. if (status != GGML_STATUS_SUCCESS) {
  588. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  589. return false;
  590. }
  591. int64_t end_time = ggml_time_us();
  592. total_time_us += end_time - start_time;
  593. total_mem += mem;
  594. total_runs += n_runs;
  595. } while (total_time_us < 1000*1000); // run for at least 1 second
  596. printf(" %8d runs - %8.2f us/run - ",
  597. total_runs,
  598. (double)total_time_us / total_runs);
  599. if (op_flops(out) > 0) {
  600. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  601. auto format_flops = [](double flops) -> std::string {
  602. char buf[256];
  603. if (flops >= 1e12) {
  604. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  605. } else if (flops >= 1e9) {
  606. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  607. } else if (flops >= 1e6) {
  608. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  609. } else {
  610. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  611. }
  612. return buf;
  613. };
  614. printf("%s/run - \033[1;34m%sS\033[0m",
  615. format_flops(op_flops(out)).c_str(),
  616. format_flops(flops_per_sec).c_str());
  617. } else {
  618. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  619. op_size(out) / 1024,
  620. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  621. }
  622. printf("\n");
  623. return true;
  624. }
  625. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  626. mode = MODE_GRAD;
  627. const std::vector<float> expect = grad_expect();
  628. ggml_init_params params = {
  629. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  630. /* .mem_base = */ NULL,
  631. /* .no_alloc = */ true,
  632. };
  633. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  634. GGML_ASSERT(ctx);
  635. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  636. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  637. ggml_tensor * out = build_graph(ctx.get());
  638. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  639. //printf(" %s: skipping\n", op_desc(out).c_str());
  640. return true;
  641. }
  642. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  643. fflush(stdout);
  644. if (out->type != GGML_TYPE_F32) {
  645. printf("not supported [%s->type != FP32]\n", out->name);
  646. return true;
  647. }
  648. // check if the backend supports the ops
  649. bool supported = true;
  650. bool any_params = false;
  651. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  652. if (!ggml_backend_supports_op(backend, t)) {
  653. printf("not supported [%s] ", ggml_backend_name(backend));
  654. supported = false;
  655. break;
  656. }
  657. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  658. any_params = true;
  659. if (t->type != GGML_TYPE_F32) {
  660. printf("not supported [%s->type != FP32] ", t->name);
  661. supported = false;
  662. break;
  663. }
  664. }
  665. }
  666. if (!any_params) {
  667. printf("not supported [%s] \n", op_desc(out).c_str());
  668. supported = false;
  669. }
  670. if (!supported) {
  671. printf("\n");
  672. return true;
  673. }
  674. int64_t ngrads = 0;
  675. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  676. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  677. ngrads += ggml_nelements(t);
  678. }
  679. }
  680. if (ngrads > grad_nmax()) {
  681. printf("skipping large tensors for speed \n");
  682. return true;
  683. }
  684. if (!ggml_is_scalar(out)) {
  685. out = ggml_sum(ctx.get(), out);
  686. ggml_set_name(out, "sum_of_out");
  687. }
  688. ggml_set_loss(out);
  689. ggml_build_forward_expand(gf, out);
  690. ggml_graph_cpy(gf, gb);
  691. ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
  692. if (expect.size() != 1 || expect[0] != 0.0f) {
  693. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  694. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  695. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  696. }
  697. }
  698. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  699. if (!ggml_backend_supports_op(backend, t)) {
  700. printf("not supported [%s] ", ggml_backend_name(backend));
  701. supported = false;
  702. break;
  703. }
  704. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  705. printf("not supported [%s->type != FP32] ", t->name);
  706. supported = false;
  707. break;
  708. }
  709. }
  710. if (!supported) {
  711. printf("\n");
  712. return true;
  713. }
  714. // allocate
  715. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  716. if (buf == NULL) {
  717. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  718. return false;
  719. }
  720. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  721. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  722. ggml_status status = ggml_backend_graph_compute(backend, gf);
  723. if (status != GGML_STATUS_SUCCESS) {
  724. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  725. return false;
  726. }
  727. status = ggml_backend_graph_compute(backend, gb);
  728. if (status != GGML_STATUS_SUCCESS) {
  729. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  730. return false;
  731. }
  732. bool ok = true;
  733. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  734. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  735. continue;
  736. }
  737. const char * bn = ggml_backend_name(backend);
  738. const int64_t ne = ggml_nelements(t);
  739. std::vector<float> ga;
  740. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  741. if (grad) {
  742. ga = tensor_to_float(grad);
  743. } else {
  744. ga.resize(ne); // default value is 0.0f
  745. }
  746. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  747. // check for nans
  748. if (!std::isfinite(ga[i])) {
  749. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  750. ok = false;
  751. break;
  752. }
  753. }
  754. if (!ok) {
  755. break;
  756. }
  757. std::vector<float> gn(ne); // gradient numeric
  758. GGML_ASSERT(ga.size() == gn.size());
  759. std::vector<float> x0 = tensor_to_float(t); // original t data
  760. GGML_ASSERT(ggml_is_scalar(out));
  761. GGML_ASSERT(out->type == GGML_TYPE_F32);
  762. const float eps = grad_eps();
  763. for (int64_t i = 0; i < ne; ++i) {
  764. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  765. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  766. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  767. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  768. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  769. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  770. status = ggml_backend_graph_compute(backend, gf);
  771. if (status != GGML_STATUS_SUCCESS) {
  772. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  773. return false;
  774. }
  775. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  776. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  777. status = ggml_backend_graph_compute(backend, gf);
  778. if (status != GGML_STATUS_SUCCESS) {
  779. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  780. return false;
  781. }
  782. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  783. if (grad_precise()) {
  784. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  785. status = ggml_backend_graph_compute(backend, gf);
  786. if (status != GGML_STATUS_SUCCESS) {
  787. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  788. return false;
  789. }
  790. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  791. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  792. status = ggml_backend_graph_compute(backend, gf);
  793. if (status != GGML_STATUS_SUCCESS) {
  794. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  795. return false;
  796. }
  797. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  798. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  799. } else {
  800. gn[i] = (fu - fd) / (2.0f*eps);
  801. }
  802. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  803. }
  804. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  805. if (err > max_maa_err()) {
  806. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  807. ok = false;
  808. break;
  809. }
  810. if (!ok) {
  811. break;
  812. }
  813. }
  814. if (!ok) {
  815. printf("compare failed ");
  816. }
  817. if (ok) {
  818. printf("\033[1;32mOK\033[0m\n");
  819. return true;
  820. }
  821. printf("\033[1;31mFAIL\033[0m\n");
  822. return false;
  823. }
  824. };
  825. // ###################################
  826. // ## Section 2: GGML Op Defintions ##
  827. // ###################################
  828. // The following is an example showing the bare minimum for creating a test for a GGML op.
  829. // GGML_OP_EXAMPLE
  830. struct test_example : public test_case {
  831. // Always define these 2 or variants thereof:
  832. const ggml_type type; // The type of the input tensors.
  833. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  834. // For some ops it's necessary to define multiple types or shapes for the inputs.
  835. // Or they may need additional parameters.
  836. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  837. // In most cases these are just the properties of the struct that you defined above.
  838. // This is needed for info prints.
  839. std::string vars() override {
  840. return VARS_TO_STR2(type, ne);
  841. }
  842. // Define a constructor for the struct.
  843. // In most cases it will be sufficient to have the same arguments as the struct has properties
  844. // and just use initializer lists.
  845. test_example(ggml_type type = GGML_TYPE_F32,
  846. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  847. : type(type), ne(ne) {}
  848. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  849. ggml_tensor * build_graph(ggml_context * ctx) override {
  850. // Step 1: create input tensors that don't depend on any other tensors:
  851. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  852. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  853. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  854. ggml_set_name(b, "b");
  855. // Step 2: use the op that you want to test in the GGML compute graph.
  856. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  857. ggml_set_name(out, "out");
  858. // Step 3: return the output tensor.
  859. return out;
  860. }
  861. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  862. // immediately after you create the tensors.
  863. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  864. };
  865. // GGML_OP_UNARY
  866. struct test_unary : public test_case {
  867. const ggml_unary_op op;
  868. const ggml_type type;
  869. const std::array<int64_t, 4> ne_a;
  870. int v; // view (1 : non-contiguous a)
  871. std::string vars() override {
  872. return VARS_TO_STR3(type, ne_a, v);
  873. }
  874. test_unary(ggml_unary_op op,
  875. ggml_type type = GGML_TYPE_F32,
  876. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  877. int v = 0)
  878. : op(op), type(type), ne_a(ne_a), v(v) {}
  879. ggml_tensor * build_graph(ggml_context * ctx) override {
  880. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  881. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  882. ggml_tensor * a;
  883. if (v & 1) {
  884. auto ne = ne_a; ne[0] *= 3;
  885. a = ggml_new_tensor(ctx, type, 4, ne.data());
  886. if (grad_supported) {
  887. ggml_set_param(ctx, a);
  888. }
  889. ggml_set_name(a, "a");
  890. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  891. ggml_set_name(a, "view_of_a");
  892. } else {
  893. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  894. if (grad_supported) {
  895. ggml_set_param(ctx, a);
  896. }
  897. ggml_set_name(a, "a");
  898. }
  899. ggml_tensor * out = ggml_unary(ctx, a, op);
  900. ggml_set_name(out, "out");
  901. return out;
  902. }
  903. void initialize_tensors(ggml_context * ctx) override {
  904. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  905. // test extended range of values to check for NaNs in GELU
  906. init_tensor_uniform(t, -150.f, 150.f);
  907. }
  908. }
  909. float grad_eps() override {
  910. return 15.0f;
  911. }
  912. std::vector<float> grad_expect() override {
  913. if (op == GGML_UNARY_OP_ABS) {
  914. return {-1.0f, 1.0f};
  915. }
  916. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  917. return {0.0f};
  918. }
  919. if (op == GGML_UNARY_OP_RELU) {
  920. return {0.0f, 1.0f};
  921. }
  922. return {};
  923. }
  924. };
  925. // GGML_OP_GET_ROWS
  926. struct test_get_rows : public test_case {
  927. const ggml_type type;
  928. const int n; // cols
  929. const int m; // rows
  930. const int r; // rows to get
  931. const int b; // batch size
  932. const bool v; // view (non-contiguous src1)
  933. std::string vars() override {
  934. return VARS_TO_STR6(type, n, m, r, b, v);
  935. }
  936. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  937. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  938. ggml_tensor * build_graph(ggml_context * ctx) override {
  939. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  940. ggml_set_name(in, "in");
  941. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  942. ggml_set_name(rows, "rows");
  943. if (v) {
  944. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  945. ggml_set_name(rows, "view_of_rows");
  946. }
  947. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  948. if (grad_supported) {
  949. ggml_set_param(ctx, in);
  950. // rows is a constant input -> no gradients
  951. }
  952. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  953. ggml_set_name(out, "out");
  954. return out;
  955. }
  956. void initialize_tensors(ggml_context * ctx) override {
  957. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  958. if (t->type == GGML_TYPE_I32) {
  959. if (ggml_is_view_op(t->op)) { continue; }
  960. // rows
  961. std::vector<int> data(r*b);
  962. for (int i = 0; i < r*b; i++) {
  963. data[i] = rand() % m;
  964. }
  965. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  966. } else {
  967. init_tensor_uniform(t);
  968. }
  969. }
  970. }
  971. };
  972. // GGML_OP_GET_ROWS_BACK
  973. struct test_get_rows_back : public test_case {
  974. const ggml_type type;
  975. const int n; // cols
  976. const int m; // rows
  977. const int r; // rows to get
  978. const int b; // batch size
  979. const bool v; // view (non-contiguous src1)
  980. std::string vars() override {
  981. return VARS_TO_STR6(type, n, m, r, b, v);
  982. }
  983. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  984. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  985. ggml_tensor * build_graph(ggml_context * ctx) override {
  986. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  987. ggml_set_name(in_forward, "in_forward");
  988. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  989. ggml_set_name(rows, "rows");
  990. if (v) {
  991. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  992. ggml_set_name(rows, "view_of_rows");
  993. }
  994. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  995. ggml_set_name(grad, "grad");
  996. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  997. ggml_set_name(out, "out");
  998. return out;
  999. }
  1000. void initialize_tensors(ggml_context * ctx) override {
  1001. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1002. if (t->type == GGML_TYPE_I32) {
  1003. if (ggml_is_view_op(t->op)) { continue; }
  1004. // rows
  1005. std::vector<int> data(r*b);
  1006. for (int i = 0; i < r*b; i++) {
  1007. data[i] = rand() % m;
  1008. }
  1009. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1010. } else {
  1011. init_tensor_uniform(t);
  1012. }
  1013. }
  1014. }
  1015. };
  1016. // GGML_OP_ARGMAX
  1017. struct test_argmax : public test_case {
  1018. const ggml_type type;
  1019. const std::array<int64_t, 4> ne;
  1020. std::string vars() override {
  1021. return VARS_TO_STR2(type, ne);
  1022. }
  1023. test_argmax(ggml_type type = GGML_TYPE_F32,
  1024. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1025. : type(type), ne(ne) {}
  1026. ggml_tensor * build_graph(ggml_context * ctx) override {
  1027. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1028. ggml_set_name(a, "a");
  1029. ggml_tensor * out = ggml_argmax(ctx, a);
  1030. ggml_set_name(out, "out");
  1031. return out;
  1032. }
  1033. void initialize_tensors(ggml_context * ctx) override {
  1034. std::random_device rd;
  1035. std::default_random_engine rng(rd());
  1036. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1037. if (t->type == GGML_TYPE_F32) {
  1038. // initialize with unique values to avoid ties
  1039. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1040. std::vector<float> data(t->ne[0]);
  1041. for (int i = 0; i < t->ne[0]; i++) {
  1042. data[i] = i;
  1043. }
  1044. std::shuffle(data.begin(), data.end(), rng);
  1045. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1046. }
  1047. } else {
  1048. init_tensor_uniform(t);
  1049. }
  1050. }
  1051. }
  1052. double max_nmse_err() override {
  1053. return 0.0;
  1054. }
  1055. };
  1056. // GGML_OP_COUNT_EQUAL
  1057. struct test_count_equal : public test_case {
  1058. const ggml_type type;
  1059. const std::array<int64_t, 4> ne;
  1060. std::string vars() override {
  1061. return VARS_TO_STR2(type, ne);
  1062. }
  1063. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1064. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1065. : type(type), ne(ne) {}
  1066. ggml_tensor * build_graph(ggml_context * ctx) override {
  1067. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1068. ggml_set_name(a, "a");
  1069. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1070. ggml_set_name(a_argmax, "a_argmax");
  1071. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1072. ggml_set_name(b, "b");
  1073. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1074. ggml_set_name(b_argmax, "b_argmax");
  1075. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1076. ggml_set_name(out, "out");
  1077. return out;
  1078. }
  1079. double max_nmse_err() override {
  1080. return 0.0;
  1081. }
  1082. };
  1083. // GGML_OP_REPEAT
  1084. struct test_repeat : public test_case {
  1085. const ggml_type type;
  1086. const std::array<int64_t, 4> ne;
  1087. const std::array<int, 4> nr;
  1088. std::string vars() override {
  1089. return VARS_TO_STR3(type, ne, nr);
  1090. }
  1091. size_t op_size(ggml_tensor * t) override {
  1092. return ggml_nbytes(t) * 2;
  1093. }
  1094. test_repeat(ggml_type type = GGML_TYPE_F32,
  1095. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1096. std::array<int, 4> nr = {2, 2, 2, 2})
  1097. : type(type), ne(ne), nr(nr) {}
  1098. ggml_tensor * build_graph(ggml_context * ctx) override {
  1099. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1100. ggml_set_name(target, "target");
  1101. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1102. ggml_set_param(ctx, src);
  1103. ggml_set_name(src, "src");
  1104. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1105. ggml_set_name(out, "out");
  1106. return out;
  1107. }
  1108. };
  1109. // GGML_OP_REPEAT_BACK
  1110. struct test_repeat_back : public test_case {
  1111. const ggml_type type;
  1112. const std::array<int64_t, 4> ne;
  1113. const std::array<int, 4> nr;
  1114. const bool v; // whether src is a noncontiguous view
  1115. std::string vars() override {
  1116. return VARS_TO_STR4(type, ne, nr, v);
  1117. }
  1118. size_t op_size(ggml_tensor * t) override {
  1119. return ggml_nbytes(t) * 2;
  1120. }
  1121. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1122. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1123. std::array<int, 4> nr = {2, 2, 2, 2},
  1124. bool v = false)
  1125. : type(type), ne(ne), nr(nr), v(v) {}
  1126. ggml_tensor * build_graph(ggml_context * ctx) override {
  1127. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1128. ggml_set_name(src, "src");
  1129. if (v) {
  1130. GGML_ASSERT(ne[0] % 2 == 0);
  1131. GGML_ASSERT(ne[1] % 2 == 0);
  1132. GGML_ASSERT(ne[2] % 2 == 0);
  1133. GGML_ASSERT(ne[3] % 2 == 0);
  1134. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1135. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1136. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1137. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1138. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1139. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1140. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1141. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1142. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1143. }
  1144. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1145. ggml_set_name(target, "target");
  1146. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1147. ggml_set_name(out, "out");
  1148. return out;
  1149. }
  1150. };
  1151. // GGML_OP_DUP
  1152. struct test_dup : public test_case {
  1153. const ggml_type type;
  1154. const std::array<int64_t, 4> ne;
  1155. const std::array<int64_t, 4> permute;
  1156. bool _use_permute;
  1157. std::string vars() override {
  1158. std::string v = VARS_TO_STR2(type, ne);
  1159. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1160. return v;
  1161. }
  1162. test_dup(ggml_type type = GGML_TYPE_F32,
  1163. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1164. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1165. : type(type), ne(ne), permute(permute),
  1166. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1167. ggml_tensor * build_graph(ggml_context * ctx) override {
  1168. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1169. ggml_set_param(ctx, src);
  1170. ggml_set_name(src, "src");
  1171. if (_use_permute) {
  1172. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1173. ggml_set_name(src, "src_permuted");
  1174. }
  1175. ggml_tensor * out = ggml_dup(ctx, src);
  1176. ggml_set_name(out, "out");
  1177. return out;
  1178. }
  1179. };
  1180. // GGML_OP_SET
  1181. struct test_set : public test_case {
  1182. const ggml_type type_src;
  1183. const ggml_type type_dst;
  1184. const std::array<int64_t, 4> ne;
  1185. const int dim;
  1186. std::string vars() override {
  1187. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1188. }
  1189. size_t op_size(ggml_tensor * t) override {
  1190. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1191. }
  1192. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1193. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1194. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1195. ggml_tensor * build_graph(ggml_context * ctx) override {
  1196. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1197. ggml_set_param(ctx, src);
  1198. ggml_set_name(src, "src");
  1199. auto ne_dst = ne;
  1200. for (int i = 0; i < dim; ++i) {
  1201. ne_dst[i] *= 2;
  1202. }
  1203. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1204. ggml_set_param(ctx, dst);
  1205. ggml_set_name(dst, "dst");
  1206. size_t offset = 0;
  1207. for (int i = 0; i < dim; ++i) {
  1208. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1209. }
  1210. ggml_tensor * out = ggml_set(ctx, dst, src,
  1211. // The backward pass requires setting a contiguous region:
  1212. src->nb[1], src->nb[2], src->nb[3], offset);
  1213. ggml_set_name(out, "out");
  1214. return out;
  1215. }
  1216. };
  1217. // GGML_OP_CPY
  1218. struct test_cpy : public test_case {
  1219. const ggml_type type_src;
  1220. const ggml_type type_dst;
  1221. const std::array<int64_t, 4> ne;
  1222. const std::array<int64_t, 4> permute_src;
  1223. const std::array<int64_t, 4> permute_dst;
  1224. bool _src_use_permute;
  1225. bool _dst_use_permute;
  1226. std::string vars() override {
  1227. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  1228. }
  1229. double max_nmse_err() override {
  1230. return 1e-6;
  1231. }
  1232. size_t op_size(ggml_tensor * t) override {
  1233. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1234. }
  1235. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1236. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1237. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  1238. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  1239. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  1240. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  1241. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  1242. ggml_tensor * build_graph(ggml_context * ctx) override {
  1243. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1244. ggml_set_param(ctx, src);
  1245. ggml_set_name(src, "src");
  1246. if (_src_use_permute) {
  1247. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  1248. ggml_set_name(src, "src_permuted");
  1249. }
  1250. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1251. ggml_set_name(dst, "dst");
  1252. if (_dst_use_permute) {
  1253. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  1254. ggml_set_name(dst, "dst_permuted");
  1255. }
  1256. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1257. ggml_set_name(out, "out");
  1258. return out;
  1259. }
  1260. };
  1261. // GGML_OP_CONT
  1262. struct test_cont : public test_case {
  1263. const ggml_type type;
  1264. const std::array<int64_t, 4> ne;
  1265. std::string vars() override {
  1266. return VARS_TO_STR2(type, ne);
  1267. }
  1268. test_cont(ggml_type type = GGML_TYPE_F32,
  1269. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1270. : type(type), ne(ne) {}
  1271. ggml_tensor * build_graph(ggml_context * ctx) override {
  1272. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1273. ggml_set_param(ctx, src);
  1274. ggml_set_name(src, "src");
  1275. src = ggml_transpose(ctx, src);
  1276. ggml_set_name(src, "src_transposed");
  1277. ggml_tensor * out = ggml_cont(ctx, src);
  1278. ggml_set_name(out, "out");
  1279. return out;
  1280. }
  1281. };
  1282. // GGML_OP_ADD
  1283. // GGML_OP_SUB
  1284. // GGML_OP_MUL
  1285. // GGML_OP_DIV
  1286. struct test_bin_bcast : public test_case {
  1287. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1288. op_t op;
  1289. const ggml_type type;
  1290. const std::array<int64_t, 4> ne;
  1291. const std::array<int, 4> nr;
  1292. std::string vars() override {
  1293. return VARS_TO_STR3(type, ne, nr);
  1294. }
  1295. size_t op_size(ggml_tensor * t) override {
  1296. return ggml_nbytes(t) * 3;
  1297. }
  1298. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1299. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1300. std::array<int, 4> nr = {1, 2, 1, 1})
  1301. : op(op), type(type), ne(ne), nr(nr) {}
  1302. ggml_tensor * build_graph(ggml_context * ctx) override {
  1303. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1304. ggml_set_name(a, "a");
  1305. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1306. ggml_set_name(b, "b");
  1307. // The backward pass supports broadcasting only for GGML_ADD:
  1308. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1309. if (grad_supported) {
  1310. ggml_set_param(ctx, a);
  1311. ggml_set_param(ctx, b);
  1312. }
  1313. ggml_tensor * out = op(ctx, a, b);
  1314. ggml_set_name(out, "out");
  1315. return out;
  1316. }
  1317. void initialize_tensors(ggml_context * ctx) override {
  1318. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1319. if (op == ggml_mul || op == ggml_div) {
  1320. // MUL and DIV have numerical issues around zero:
  1321. init_tensor_uniform(t, 0.9f, 1.1f);
  1322. } else {
  1323. init_tensor_uniform(t);
  1324. }
  1325. }
  1326. }
  1327. float grad_eps() override {
  1328. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1329. }
  1330. bool grad_precise() override {
  1331. return op == ggml_div;
  1332. }
  1333. double max_maa_err() override {
  1334. return op == ggml_add ? 1e-4 : 1e-3;
  1335. }
  1336. };
  1337. // GGML_OP_ADD1
  1338. struct test_add1 : public test_case {
  1339. const ggml_type type;
  1340. const std::array<int64_t, 4> ne;
  1341. std::string vars() override {
  1342. return VARS_TO_STR2(type, ne);
  1343. }
  1344. test_add1(ggml_type type = GGML_TYPE_F32,
  1345. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1346. : type(type), ne(ne) {}
  1347. ggml_tensor * build_graph(ggml_context * ctx) override {
  1348. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1349. ggml_set_param(ctx, a);
  1350. ggml_set_name(a, "a");
  1351. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1352. // ggml_set_param(ctx, b); // TODO: implement
  1353. ggml_set_name(b, "b");
  1354. ggml_tensor * out = ggml_add1(ctx, a, b);
  1355. ggml_set_name(out, "out");
  1356. return out;
  1357. }
  1358. float grad_eps() override {
  1359. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1360. }
  1361. };
  1362. // GGML_OP_SCALE
  1363. struct test_scale : public test_case {
  1364. const ggml_type type;
  1365. const std::array<int64_t, 4> ne;
  1366. float scale;
  1367. std::string vars() override {
  1368. return VARS_TO_STR3(type, ne, scale);
  1369. }
  1370. test_scale(ggml_type type = GGML_TYPE_F32,
  1371. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1372. float scale = 2.0f)
  1373. : type(type), ne(ne), scale(scale) {}
  1374. ggml_tensor * build_graph(ggml_context * ctx) override {
  1375. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1376. ggml_set_param(ctx, a);
  1377. ggml_set_name(a, "a");
  1378. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1379. ggml_set_name(out, "out");
  1380. return out;
  1381. }
  1382. };
  1383. // GGML_OP_SILU_BACK
  1384. struct test_silu_back : public test_case {
  1385. const ggml_type type;
  1386. const std::array<int64_t, 4> ne;
  1387. float eps;
  1388. std::string vars() override {
  1389. return VARS_TO_STR3(type, ne, eps);
  1390. }
  1391. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1392. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1393. float eps = 1e-6f)
  1394. : type(type), ne(ne), eps(eps) {}
  1395. ggml_tensor * build_graph(ggml_context * ctx) override {
  1396. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1397. ggml_set_name(a, "a");
  1398. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1399. ggml_set_name(grad, "grad");
  1400. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1401. ggml_set_name(out, "out");
  1402. return out;
  1403. }
  1404. bool grad_precise() override {
  1405. return true;
  1406. }
  1407. };
  1408. // GGML_OP_NORM
  1409. struct test_norm : public test_case {
  1410. const ggml_type type;
  1411. const std::array<int64_t, 4> ne;
  1412. const bool v; // whether a is a non-contiguous view
  1413. const float eps;
  1414. std::string vars() override {
  1415. return VARS_TO_STR4(type, ne, v, eps);
  1416. }
  1417. test_norm(ggml_type type = GGML_TYPE_F32,
  1418. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1419. bool v = false,
  1420. float eps = 1e-6f)
  1421. : type(type), ne(ne), v(v), eps(eps) {}
  1422. ggml_tensor * build_graph(ggml_context * ctx) override {
  1423. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1424. ggml_set_name(a, "a");
  1425. if (v) {
  1426. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1427. ggml_set_name(a, "view of a");
  1428. }
  1429. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1430. ggml_set_name(out, "out");
  1431. return out;
  1432. }
  1433. };
  1434. // GGML_OP_RMS_NORM
  1435. struct test_rms_norm : public test_case {
  1436. const ggml_type type;
  1437. const std::array<int64_t, 4> ne;
  1438. const bool v; // whether a is a non-contiguous view
  1439. const float eps;
  1440. std::string vars() override {
  1441. return VARS_TO_STR4(type, ne, v, eps);
  1442. }
  1443. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1444. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1445. bool v = false,
  1446. float eps = 1e-6f)
  1447. : type(type), ne(ne), v(v), eps(eps) {}
  1448. ggml_tensor * build_graph(ggml_context * ctx) override {
  1449. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1450. ggml_set_param(ctx, a);
  1451. ggml_set_name(a, "a");
  1452. if (v) {
  1453. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1454. ggml_set_name(a, "view of a");
  1455. }
  1456. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1457. ggml_set_name(out, "out");
  1458. return out;
  1459. }
  1460. void initialize_tensors(ggml_context * ctx) override {
  1461. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1462. init_tensor_uniform(t, -10.f, 10.f);
  1463. }
  1464. }
  1465. float grad_eps() override {
  1466. return 1.0f;
  1467. }
  1468. bool grad_precise() override {
  1469. return true;
  1470. }
  1471. };
  1472. // GGML_OP_RMS_NORM_BACK
  1473. struct test_rms_norm_back : public test_case {
  1474. const ggml_type type;
  1475. const std::array<int64_t, 4> ne;
  1476. const float eps;
  1477. std::string vars() override {
  1478. return VARS_TO_STR3(type, ne, eps);
  1479. }
  1480. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1481. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1482. float eps = 1e-6f)
  1483. : type(type), ne(ne), eps(eps) {}
  1484. ggml_tensor * build_graph(ggml_context * ctx) override {
  1485. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1486. ggml_set_name(a, "a");
  1487. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1488. ggml_set_name(b, "b");
  1489. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1490. ggml_set_name(out, "out");
  1491. return out;
  1492. }
  1493. void initialize_tensors(ggml_context * ctx) override {
  1494. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1495. init_tensor_uniform(t, -10.f, 10.f);
  1496. }
  1497. }
  1498. };
  1499. // GGML_OP_SSM_CONV
  1500. struct test_ssm_conv : public test_case {
  1501. const ggml_type type;
  1502. const std::array<int64_t, 4> ne_a;
  1503. const std::array<int64_t, 4> ne_b;
  1504. std::string vars() override {
  1505. return VARS_TO_STR3(type, ne_a, ne_b);
  1506. }
  1507. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1508. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1509. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1510. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1511. ggml_tensor * build_graph(ggml_context * ctx) override {
  1512. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1513. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1514. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1515. return out;
  1516. }
  1517. };
  1518. // GGML_OP_SSM_SCAN
  1519. struct test_ssm_scan : public test_case {
  1520. const ggml_type type;
  1521. const int64_t d_state;
  1522. const int64_t d_inner;
  1523. const int64_t n_seq_tokens;
  1524. const int64_t n_seqs;
  1525. std::string vars() override {
  1526. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1527. }
  1528. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1529. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1530. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1531. ggml_tensor * build_graph(ggml_context * ctx) override {
  1532. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1533. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1534. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1535. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1536. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1537. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1538. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1539. return out;
  1540. }
  1541. };
  1542. // GGML_OP_RWKV_WKV6
  1543. struct test_rwkv_wkv6 : public test_case {
  1544. const ggml_type type;
  1545. const int64_t head_count;
  1546. const int64_t head_size;
  1547. const int64_t n_seq_tokens;
  1548. const int64_t n_seqs;
  1549. std::string vars() override {
  1550. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1551. }
  1552. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1553. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1554. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1555. ggml_tensor * build_graph(ggml_context * ctx) override {
  1556. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1557. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1558. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1559. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1560. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1561. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1562. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1563. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1564. return out;
  1565. }
  1566. };
  1567. // GGML_OP_GATED_LINEAR_ATTN
  1568. struct test_gla : public test_case {
  1569. const ggml_type type;
  1570. const int64_t head_count;
  1571. const int64_t head_size;
  1572. const int64_t n_seq_tokens;
  1573. const int64_t n_seqs;
  1574. std::string vars() override {
  1575. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1576. }
  1577. test_gla(ggml_type type = GGML_TYPE_F32,
  1578. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1579. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1580. ggml_tensor * build_graph(ggml_context * ctx) override {
  1581. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1582. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1583. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1584. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1585. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1586. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1587. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1588. return out;
  1589. }
  1590. };
  1591. // GGML_OP_RWKV_WKV7
  1592. struct test_rwkv_wkv7 : public test_case {
  1593. const ggml_type type;
  1594. const int64_t head_count;
  1595. const int64_t head_size;
  1596. const int64_t n_seq_tokens;
  1597. const int64_t n_seqs;
  1598. std::string vars() override {
  1599. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1600. }
  1601. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  1602. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1603. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1604. ggml_tensor * build_graph(ggml_context * ctx) override {
  1605. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1606. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1607. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1608. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1609. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1610. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1611. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1612. // Outputs may become NaN with long seqlen without these normalization
  1613. a = ggml_l2_norm(ctx, a, 1e-7F);
  1614. b = ggml_l2_norm(ctx, b, 1e-7F);
  1615. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1616. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  1617. return out;
  1618. }
  1619. };
  1620. // GGML_OP_MUL_MAT
  1621. struct test_mul_mat : public test_case {
  1622. const ggml_type type_a;
  1623. const ggml_type type_b;
  1624. const int64_t m;
  1625. const int64_t n;
  1626. const int64_t k;
  1627. const std::array<int64_t, 2> bs; // dims 3 and 4
  1628. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1629. const std::array<int64_t, 4> per; // permutation of dimensions
  1630. const bool v; // whether a is a non-contiguous view
  1631. std::string vars() override {
  1632. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  1633. }
  1634. double max_nmse_err() override {
  1635. return 5e-4;
  1636. }
  1637. int64_t grad_nmax() override {
  1638. return 20000;
  1639. }
  1640. uint64_t op_flops(ggml_tensor * t) override {
  1641. GGML_UNUSED(t);
  1642. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1643. }
  1644. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1645. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1646. std::array<int64_t, 2> bs = {10, 10},
  1647. std::array<int64_t, 2> nr = {2, 2},
  1648. std::array<int64_t, 4> per = {0, 1, 2, 3},
  1649. bool v = false)
  1650. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  1651. ggml_tensor * build_graph(ggml_context * ctx) override {
  1652. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1653. ggml_tensor * a;
  1654. ggml_tensor * b;
  1655. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1656. if (npermuted > 0) {
  1657. GGML_ASSERT(npermuted == 2);
  1658. GGML_ASSERT(!v); // not handled
  1659. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1660. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1661. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1662. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1663. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1664. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1665. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1666. if (!ggml_is_quantized(type_a)) {
  1667. if (bs[1] == 1 && nr[1] == 1) {
  1668. ggml_set_param(ctx, a);
  1669. }
  1670. ggml_set_param(ctx, b);
  1671. }
  1672. ggml_set_name(a, "a");
  1673. ggml_set_name(b, "b");
  1674. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1675. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1676. ggml_set_name(a, "a_permuted");
  1677. ggml_set_name(b, "b_permuted");
  1678. } else {
  1679. if (v) {
  1680. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  1681. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  1682. } else {
  1683. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1684. }
  1685. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1686. if (!ggml_is_quantized(type_a)) {
  1687. if (bs[1] == 1 && nr[1] == 1) {
  1688. ggml_set_param(ctx, a);
  1689. }
  1690. ggml_set_param(ctx, b);
  1691. }
  1692. ggml_set_name(a, "a");
  1693. ggml_set_name(b, "b");
  1694. }
  1695. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1696. ggml_set_name(out, "out");
  1697. return out;
  1698. }
  1699. };
  1700. // GGML_OP_MUL_MAT_ID
  1701. struct test_mul_mat_id : public test_case {
  1702. const ggml_type type_a;
  1703. const ggml_type type_b;
  1704. const int n_mats;
  1705. const int n_used;
  1706. const bool b; // brodcast b matrix
  1707. const int64_t m;
  1708. const int64_t n;
  1709. const int64_t k;
  1710. std::string vars() override {
  1711. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1712. }
  1713. double max_nmse_err() override {
  1714. return 5e-4;
  1715. }
  1716. uint64_t op_flops(ggml_tensor * t) override {
  1717. GGML_UNUSED(t);
  1718. return 2 * m * k * n * n_used;
  1719. }
  1720. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1721. int n_mats = 8, int n_used = 2, bool b = false,
  1722. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1723. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1724. m(m), n(n), k(k) {
  1725. GGML_ASSERT(n_used <= n_mats);
  1726. }
  1727. ggml_tensor * build_graph(ggml_context * ctx) override {
  1728. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1729. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1730. ggml_set_name(as, "as");
  1731. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1732. ggml_set_name(ids, "ids");
  1733. if (n_used != n_mats) {
  1734. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1735. ggml_set_name(ids, "view_of_ids");
  1736. }
  1737. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1738. ggml_set_name(b, "b");
  1739. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1740. ggml_set_name(out, "out");
  1741. return out;
  1742. }
  1743. void initialize_tensors(ggml_context * ctx) override {
  1744. std::random_device rd;
  1745. std::default_random_engine rng(rd());
  1746. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1747. if (t->type == GGML_TYPE_I32) {
  1748. if (ggml_is_view_op(t->op)) { continue; }
  1749. // ids
  1750. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1751. std::vector<int32_t> data(t->ne[0]);
  1752. for (int i = 0; i < t->ne[0]; i++) {
  1753. data[i] = i % n_mats;
  1754. }
  1755. std::shuffle(data.begin(), data.end(), rng);
  1756. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1757. }
  1758. } else {
  1759. init_tensor_uniform(t);
  1760. }
  1761. }
  1762. }
  1763. };
  1764. // GGML_OP_OUT_PROD
  1765. struct test_out_prod : public test_case {
  1766. const ggml_type type_a;
  1767. const ggml_type type_b;
  1768. const int64_t m;
  1769. const int64_t n;
  1770. const int64_t k;
  1771. const std::array<int64_t, 2> bs; // dims 3 and 4
  1772. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1773. const bool trans_b;
  1774. std::string vars() override {
  1775. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1776. }
  1777. double max_nmse_err() override {
  1778. return 5e-4;
  1779. }
  1780. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1781. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1782. std::array<int64_t, 2> bs = {10, 10},
  1783. std::array<int64_t, 2> nr = {2, 2},
  1784. bool trans_b = false)
  1785. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1786. ggml_tensor * build_graph(ggml_context * ctx) override {
  1787. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1788. ggml_set_name(a, "a");
  1789. ggml_tensor * b;
  1790. if (trans_b) {
  1791. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1792. b = ggml_transpose(ctx, b);
  1793. } else {
  1794. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1795. }
  1796. ggml_set_name(b, "b");
  1797. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1798. ggml_set_name(out, "out");
  1799. return out;
  1800. }
  1801. };
  1802. // GGML_OP_SQR
  1803. struct test_sqr : public test_case {
  1804. const ggml_type type;
  1805. const std::array<int64_t, 4> ne;
  1806. std::string vars() override {
  1807. return VARS_TO_STR2(type, ne);
  1808. }
  1809. test_sqr(ggml_type type = GGML_TYPE_F32,
  1810. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1811. : type(type), ne(ne) {}
  1812. ggml_tensor * build_graph(ggml_context * ctx) override {
  1813. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1814. ggml_set_param(ctx, a);
  1815. ggml_set_name(a, "a");
  1816. ggml_tensor * out = ggml_sqr(ctx, a);
  1817. ggml_set_name(out, "out");
  1818. return out;
  1819. }
  1820. float grad_eps() override {
  1821. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1822. }
  1823. };
  1824. // GGML_OP_SQRT
  1825. struct test_sqrt : public test_case {
  1826. const ggml_type type;
  1827. const std::array<int64_t, 4> ne;
  1828. std::string vars() override {
  1829. return VARS_TO_STR2(type, ne);
  1830. }
  1831. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1832. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1833. : type(type), ne(ne) {}
  1834. ggml_tensor * build_graph(ggml_context * ctx) override {
  1835. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1836. ggml_set_param(ctx, a);
  1837. ggml_set_name(a, "a");
  1838. ggml_tensor * out = ggml_sqrt(ctx, a);
  1839. ggml_set_name(out, "out");
  1840. return out;
  1841. }
  1842. void initialize_tensors(ggml_context * ctx) override {
  1843. // fill with positive values
  1844. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1845. init_tensor_uniform(t, 50.0f, 100.0f);
  1846. }
  1847. }
  1848. float grad_eps() override {
  1849. return 20.0f;
  1850. }
  1851. bool grad_precise() override {
  1852. return true;
  1853. }
  1854. };
  1855. // GGML_OP_LOG
  1856. struct test_log : public test_case {
  1857. const ggml_type type;
  1858. const std::array<int64_t, 4> ne;
  1859. std::string vars() override {
  1860. return VARS_TO_STR2(type, ne);
  1861. }
  1862. test_log(ggml_type type = GGML_TYPE_F32,
  1863. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1864. : type(type), ne(ne) {}
  1865. ggml_tensor * build_graph(ggml_context * ctx) override {
  1866. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1867. ggml_set_param(ctx, a);
  1868. ggml_set_name(a, "a");
  1869. ggml_tensor * out = ggml_log(ctx, a);
  1870. ggml_set_name(out, "out");
  1871. return out;
  1872. }
  1873. void initialize_tensors(ggml_context * ctx) override {
  1874. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1875. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1876. init_tensor_uniform(t, 0.9f, 1.1f);
  1877. }
  1878. }
  1879. bool grad_precise() override {
  1880. return true;
  1881. }
  1882. };
  1883. // GGML_OP_SIN
  1884. struct test_sin : public test_case {
  1885. const ggml_type type;
  1886. const std::array<int64_t, 4> ne;
  1887. std::string vars() override {
  1888. return VARS_TO_STR2(type, ne);
  1889. }
  1890. test_sin(ggml_type type = GGML_TYPE_F32,
  1891. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1892. : type(type), ne(ne) {}
  1893. ggml_tensor * build_graph(ggml_context * ctx) override {
  1894. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1895. ggml_set_param(ctx, a);
  1896. ggml_set_name(a, "a");
  1897. ggml_tensor * out = ggml_sin(ctx, a);
  1898. ggml_set_name(out, "out");
  1899. return out;
  1900. }
  1901. void initialize_tensors(ggml_context * ctx) override {
  1902. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1903. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1904. }
  1905. }
  1906. double max_maa_err() override {
  1907. return 1e-3;
  1908. }
  1909. float grad_eps() override {
  1910. return 0.2f;
  1911. }
  1912. bool grad_precise() override {
  1913. return true;
  1914. }
  1915. };
  1916. // GGML_OP_COS
  1917. struct test_cos : public test_case {
  1918. const ggml_type type;
  1919. const std::array<int64_t, 4> ne;
  1920. std::string vars() override {
  1921. return VARS_TO_STR2(type, ne);
  1922. }
  1923. test_cos(ggml_type type = GGML_TYPE_F32,
  1924. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1925. : type(type), ne(ne) {}
  1926. ggml_tensor * build_graph(ggml_context * ctx) override {
  1927. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1928. ggml_set_param(ctx, a);
  1929. ggml_set_name(a, "a");
  1930. ggml_tensor * out = ggml_cos(ctx, a);
  1931. ggml_set_name(out, "out");
  1932. return out;
  1933. }
  1934. void initialize_tensors(ggml_context * ctx) override {
  1935. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1936. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1937. }
  1938. }
  1939. double max_maa_err() override {
  1940. return 1e-3;
  1941. }
  1942. float grad_eps() override {
  1943. return 0.2f;
  1944. }
  1945. bool grad_precise() override {
  1946. return true;
  1947. }
  1948. };
  1949. // GGML_OP_CLAMP
  1950. struct test_clamp : public test_case {
  1951. const ggml_type type;
  1952. const std::array<int64_t, 4> ne;
  1953. float min;
  1954. float max;
  1955. std::string vars() override {
  1956. return VARS_TO_STR4(type, ne, min, max);
  1957. }
  1958. test_clamp(ggml_type type = GGML_TYPE_F32,
  1959. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1960. float min = -0.5f, float max = 0.5f)
  1961. : type(type), ne(ne), min(min), max(max) {}
  1962. ggml_tensor * build_graph(ggml_context * ctx) override {
  1963. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1964. ggml_set_name(a, "a");
  1965. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1966. ggml_set_name(out, "out");
  1967. return out;
  1968. }
  1969. float grad_eps() override {
  1970. return 1e-2f;
  1971. }
  1972. std::vector<float> grad_expect() override {
  1973. return {0.0f, 1.0f};
  1974. }
  1975. };
  1976. // GGML_OP_DIAG_MASK_INF
  1977. struct test_diag_mask_inf : public test_case {
  1978. const ggml_type type;
  1979. const std::array<int64_t, 4> ne;
  1980. const int n_past;
  1981. std::string vars() override {
  1982. return VARS_TO_STR3(type, ne, n_past);
  1983. }
  1984. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1985. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1986. int n_past = 5)
  1987. : type(type), ne(ne), n_past(n_past) {}
  1988. ggml_tensor * build_graph(ggml_context * ctx) override {
  1989. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1990. ggml_set_param(ctx, a);
  1991. ggml_set_name(a, "a");
  1992. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  1993. ggml_set_name(out, "out");
  1994. return out;
  1995. }
  1996. };
  1997. // GGML_OP_SOFT_MAX
  1998. struct test_soft_max : public test_case {
  1999. const ggml_type type;
  2000. const std::array<int64_t, 4> ne;
  2001. const bool mask;
  2002. const ggml_type m_prec;
  2003. const float scale;
  2004. const float max_bias;
  2005. std::string vars() override {
  2006. return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
  2007. }
  2008. // the 1024 test with bias occasionally fails:
  2009. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2010. virtual double max_nmse_err() override {
  2011. return 1e-6;
  2012. }
  2013. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2014. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2015. bool mask = false,
  2016. ggml_type m_prec = GGML_TYPE_F32,
  2017. float scale = 1.0f,
  2018. float max_bias = 0.0f)
  2019. : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
  2020. ggml_tensor * build_graph(ggml_context * ctx) override {
  2021. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2022. ggml_set_param(ctx, a);
  2023. ggml_set_name(a, "a");
  2024. ggml_tensor * mask = nullptr;
  2025. if (this->mask) {
  2026. mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
  2027. ggml_set_name(mask, "mask");
  2028. }
  2029. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2030. ggml_set_name(out, "out");
  2031. return out;
  2032. }
  2033. bool grad_precise() override {
  2034. return true;
  2035. }
  2036. };
  2037. // GGML_OP_SOFT_MAX_BACK
  2038. struct test_soft_max_back : public test_case {
  2039. const ggml_type type;
  2040. const std::array<int64_t, 4> ne;
  2041. const float scale;
  2042. const float max_bias;
  2043. std::string vars() override {
  2044. return VARS_TO_STR4(type, ne, scale, max_bias);
  2045. }
  2046. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2047. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2048. float scale = 1.0f,
  2049. float max_bias = 0.0f)
  2050. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2051. ggml_tensor * build_graph(ggml_context * ctx) override {
  2052. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2053. ggml_set_name(a, "a");
  2054. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2055. ggml_set_name(a, "a");
  2056. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2057. ggml_set_name(out, "out");
  2058. return out;
  2059. }
  2060. };
  2061. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2062. struct test_rope : public test_case {
  2063. const ggml_type type;
  2064. const std::array<int64_t, 4> ne_a;
  2065. int n_dims;
  2066. int mode;
  2067. int n_ctx; // used to generate positions
  2068. float fs; // freq_scale
  2069. float ef; // ext_factor
  2070. float af; // attn_factor
  2071. bool ff;
  2072. int v; // view (1 : non-contiguous a)
  2073. bool forward;
  2074. std::string vars() override {
  2075. // forward can be inferred from the op, does not need to be printed
  2076. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2077. }
  2078. test_rope(ggml_type type = GGML_TYPE_F32,
  2079. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2080. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2081. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2082. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2083. ggml_tensor * build_graph(ggml_context * ctx) override {
  2084. ggml_tensor * a;
  2085. if (v & 1) {
  2086. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2087. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2088. if (forward) {
  2089. ggml_set_param(ctx, a);
  2090. }
  2091. ggml_set_name(a, "a");
  2092. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2093. ggml_set_name(a, "view_of_a");
  2094. } else {
  2095. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2096. if (forward) {
  2097. ggml_set_param(ctx, a);
  2098. }
  2099. ggml_set_name(a, "a");
  2100. }
  2101. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2102. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2103. ggml_tensor * pos;
  2104. if (is_mrope || is_vision) {
  2105. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2106. } else {
  2107. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2108. }
  2109. ggml_set_name(pos, "pos");
  2110. ggml_tensor * freq = nullptr;
  2111. if (ff) {
  2112. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2113. ggml_set_name(freq, "freq");
  2114. }
  2115. ggml_tensor * out;
  2116. if (is_mrope) {
  2117. if (is_vision) {
  2118. GGML_ASSERT(n_dims/4 > 0);
  2119. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2120. if (forward) {
  2121. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2122. } else {
  2123. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2124. }
  2125. } else {
  2126. GGML_ASSERT(n_dims/3 > 0);
  2127. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2128. if (forward) {
  2129. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2130. } else {
  2131. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2132. }
  2133. }
  2134. } else {
  2135. if (forward) {
  2136. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2137. } else {
  2138. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2139. }
  2140. }
  2141. ggml_set_name(out, "out");
  2142. return out;
  2143. }
  2144. void initialize_tensors(ggml_context * ctx) override {
  2145. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2146. if (t->type == GGML_TYPE_I32) {
  2147. // pos
  2148. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2149. std::vector<int> data(num_pos_ids);
  2150. for (int i = 0; i < num_pos_ids; i++) {
  2151. data[i] = rand() % n_ctx;
  2152. }
  2153. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2154. } else {
  2155. if (t->ne[0] == n_dims/2) {
  2156. // frequency factors in the range [0.9f, 1.1f]
  2157. init_tensor_uniform(t, 0.9f, 1.1f);
  2158. } else {
  2159. init_tensor_uniform(t);
  2160. }
  2161. }
  2162. }
  2163. }
  2164. double max_maa_err() override {
  2165. return 1e-3;
  2166. }
  2167. bool grad_precise() override {
  2168. return true;
  2169. }
  2170. };
  2171. // GGML_OP_POOL2D
  2172. struct test_pool2d : public test_case {
  2173. enum ggml_op_pool pool_type;
  2174. const ggml_type type_input;
  2175. const std::array<int64_t, 4> ne_input;
  2176. // kernel size
  2177. const int k0;
  2178. const int k1;
  2179. // stride
  2180. const int s0;
  2181. const int s1;
  2182. // padding
  2183. const int p0;
  2184. const int p1;
  2185. std::string vars() override {
  2186. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2187. }
  2188. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2189. ggml_type type_input = GGML_TYPE_F32,
  2190. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2191. int k0 = 3, int k1 = 3,
  2192. int s0 = 1, int s1 = 1,
  2193. int p0 = 1, int p1 = 1)
  2194. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2195. ggml_tensor * build_graph(ggml_context * ctx) override {
  2196. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2197. ggml_set_param(ctx, input);
  2198. ggml_set_name(input, "input");
  2199. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2200. ggml_set_name(out, "out");
  2201. return out;
  2202. }
  2203. };
  2204. // GGML_OP_CONV_TRANSPOSE_1D
  2205. struct test_conv_transpose_1d : public test_case {
  2206. const std::array<int64_t, 4> ne_input;
  2207. const std::array<int64_t, 4> ne_kernel;
  2208. const int s0; // stride
  2209. const int p0; // padding
  2210. const int d0; // dilation
  2211. std::string vars() override {
  2212. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2213. }
  2214. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2215. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2216. int s0 = 1, int p0 = 0, int d0 = 1)
  2217. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2218. ggml_tensor * build_graph(ggml_context * ctx) override {
  2219. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2220. ggml_set_name(input, "input");
  2221. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2222. ggml_set_name(kernel, "kernel");
  2223. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2224. ggml_set_name(out, "out");
  2225. return out;
  2226. }
  2227. };
  2228. // GGML_OP_IM2COL
  2229. struct test_im2col : public test_case {
  2230. const ggml_type type_input;
  2231. const ggml_type type_kernel;
  2232. const ggml_type dst_type;
  2233. const std::array<int64_t, 4> ne_input;
  2234. const std::array<int64_t, 4> ne_kernel;
  2235. // stride
  2236. const int s0;
  2237. const int s1;
  2238. // padding
  2239. const int p0;
  2240. const int p1;
  2241. // dilation
  2242. const int d0;
  2243. const int d1;
  2244. // mode
  2245. const bool is_2D;
  2246. std::string vars() override {
  2247. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2248. }
  2249. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2250. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2251. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2252. int s0 = 1, int s1 = 1,
  2253. int p0 = 1, int p1 = 1,
  2254. int d0 = 1, int d1 = 1,
  2255. bool is_2D = true)
  2256. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2257. ggml_tensor * build_graph(ggml_context * ctx) override {
  2258. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2259. ggml_set_param(ctx, input);
  2260. ggml_set_name(input, "input");
  2261. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2262. ggml_set_name(kernel, "kernel");
  2263. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2264. ggml_set_name(out, "out");
  2265. return out;
  2266. }
  2267. };
  2268. // GGML_OP_CONCAT
  2269. struct test_concat : public test_case {
  2270. const ggml_type type;
  2271. const std::array<int64_t, 4> ne_a;
  2272. const int64_t ne_b_d;
  2273. const int dim;
  2274. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2275. std::string vars() override {
  2276. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2277. }
  2278. test_concat(ggml_type type = GGML_TYPE_F32,
  2279. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2280. int64_t ne_b_d = 5,
  2281. int dim = 2, int v = 0)
  2282. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2283. ggml_tensor * build_graph(ggml_context * ctx) override {
  2284. auto ne_b = ne_a;
  2285. ne_b[dim] = ne_b_d;
  2286. ggml_tensor * a;
  2287. if (v & 1) {
  2288. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2289. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2290. ggml_set_name(a, "a");
  2291. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2292. ggml_set_name(a, "view_of_a");
  2293. } else {
  2294. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2295. ggml_set_name(a, "a");
  2296. }
  2297. ggml_tensor * b;
  2298. if (v & 2) {
  2299. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2300. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2301. ggml_set_name(b, "b");
  2302. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2303. ggml_set_name(b, "view_of_b");
  2304. } else {
  2305. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2306. ggml_set_name(b, "b");
  2307. }
  2308. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2309. ggml_set_name(out, "out");
  2310. return out;
  2311. }
  2312. };
  2313. // GGML_OP_ARGSORT
  2314. struct test_argsort : public test_case {
  2315. const ggml_type type;
  2316. const std::array<int64_t, 4> ne;
  2317. ggml_sort_order order;
  2318. std::string vars() override {
  2319. return VARS_TO_STR3(type, ne, order);
  2320. }
  2321. test_argsort(ggml_type type = GGML_TYPE_F32,
  2322. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2323. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2324. : type(type), ne(ne), order(order) {}
  2325. ggml_tensor * build_graph(ggml_context * ctx) override {
  2326. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2327. ggml_set_name(a, "a");
  2328. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2329. ggml_set_name(out, "out");
  2330. return out;
  2331. }
  2332. void initialize_tensors(ggml_context * ctx) override {
  2333. std::random_device rd;
  2334. std::default_random_engine rng(rd());
  2335. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2336. if (t->type == GGML_TYPE_I32) {
  2337. // indices
  2338. std::vector<int> data(ggml_nelements(t));
  2339. for (int i = 0; i < ggml_nelements(t); i++) {
  2340. data[i] = rand();
  2341. }
  2342. std::shuffle(data.begin(), data.end(), rng);
  2343. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2344. } else if (t->type == GGML_TYPE_F32) {
  2345. // initialize with unique values to avoid ties
  2346. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2347. std::vector<float> data(t->ne[0]);
  2348. for (int i = 0; i < t->ne[0]; i++) {
  2349. data[i] = i;
  2350. }
  2351. std::shuffle(data.begin(), data.end(), rng);
  2352. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2353. }
  2354. } else {
  2355. GGML_ABORT("fatal error");
  2356. }
  2357. }
  2358. }
  2359. };
  2360. // GGML_OP_SUM
  2361. struct test_sum : public test_case {
  2362. const ggml_type type;
  2363. const std::array<int64_t, 4> ne;
  2364. std::string vars() override {
  2365. return VARS_TO_STR2(type, ne);
  2366. }
  2367. test_sum(ggml_type type = GGML_TYPE_F32,
  2368. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2369. : type(type), ne(ne) {}
  2370. ggml_tensor * build_graph(ggml_context * ctx) override {
  2371. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2372. ggml_set_param(ctx, a);
  2373. ggml_set_name(a, "a");
  2374. ggml_tensor * out = ggml_sum(ctx, a);
  2375. ggml_set_name(out, "out");
  2376. return out;
  2377. }
  2378. float grad_eps() override {
  2379. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2380. }
  2381. };
  2382. // GGML_OP_SUM_ROWS
  2383. struct test_sum_rows : public test_case {
  2384. const ggml_type type;
  2385. const std::array<int64_t, 4> ne;
  2386. std::string vars() override {
  2387. return VARS_TO_STR2(type, ne);
  2388. }
  2389. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2390. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2391. : type(type), ne(ne) {}
  2392. ggml_tensor * build_graph(ggml_context * ctx) override {
  2393. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2394. ggml_set_param(ctx, a);
  2395. ggml_set_name(a, "a");
  2396. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2397. ggml_set_name(out, "out");
  2398. return out;
  2399. }
  2400. };
  2401. // GGML_OP_MEAN
  2402. struct test_mean : public test_case {
  2403. const ggml_type type;
  2404. const std::array<int64_t, 4> ne;
  2405. std::string vars() override {
  2406. return VARS_TO_STR2(type, ne);
  2407. }
  2408. test_mean(ggml_type type = GGML_TYPE_F32,
  2409. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2410. : type(type), ne(ne) {}
  2411. ggml_tensor * build_graph(ggml_context * ctx) override {
  2412. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2413. ggml_set_param(ctx, a);
  2414. ggml_set_name(a, "a");
  2415. ggml_tensor * out = ggml_mean(ctx, a);
  2416. ggml_set_name(out, "out");
  2417. return out;
  2418. }
  2419. float grad_eps() override {
  2420. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2421. }
  2422. };
  2423. // GGML_OP_UPSCALE
  2424. struct test_upscale : public test_case {
  2425. const ggml_type type;
  2426. const std::array<int64_t, 4> ne;
  2427. const int32_t scale_factor;
  2428. const bool transpose;
  2429. std::string vars() override {
  2430. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  2431. }
  2432. test_upscale(ggml_type type = GGML_TYPE_F32,
  2433. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2434. int32_t scale_factor = 2, bool transpose = false)
  2435. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  2436. ggml_tensor * build_graph(ggml_context * ctx) override {
  2437. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2438. ggml_set_name(a, "a");
  2439. if (transpose) {
  2440. a = ggml_transpose(ctx, a);
  2441. ggml_set_name(a, "a_transposed");
  2442. }
  2443. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  2444. ggml_set_name(out, "out");
  2445. return out;
  2446. }
  2447. };
  2448. // GGML_OP_UPSCALE (ext)
  2449. struct test_upscale_ext : public test_case {
  2450. const ggml_type type;
  2451. const std::array<int64_t, 4> ne;
  2452. const std::array<int64_t, 4> ne_tgt;
  2453. std::string vars() override {
  2454. return VARS_TO_STR3(type, ne, ne_tgt);
  2455. }
  2456. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2457. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2458. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  2459. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  2460. ggml_tensor * build_graph(ggml_context * ctx) override {
  2461. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2462. ggml_set_name(a, "a");
  2463. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  2464. ggml_set_name(out, "out");
  2465. return out;
  2466. }
  2467. };
  2468. // GGML_OP_GROUP_NORM
  2469. struct test_group_norm : public test_case {
  2470. const ggml_type type;
  2471. const std::array<int64_t, 4> ne;
  2472. const int32_t num_groups;
  2473. const float eps;
  2474. std::string vars() override {
  2475. return VARS_TO_STR4(type, ne, num_groups, eps);
  2476. }
  2477. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2478. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2479. int32_t num_groups = 32,
  2480. float eps = 1e-6f)
  2481. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2482. ggml_tensor * build_graph(ggml_context * ctx) override {
  2483. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2484. ggml_set_name(a, "a");
  2485. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2486. ggml_set_name(out, "out");
  2487. return out;
  2488. }
  2489. };
  2490. // GGML_OP_L2_NORM
  2491. struct test_l2_norm : public test_case {
  2492. const ggml_type type;
  2493. const std::array<int64_t, 4> ne;
  2494. const float eps;
  2495. std::string vars() override {
  2496. return VARS_TO_STR2(type, ne);
  2497. }
  2498. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  2499. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2500. float eps = 1e-12f)
  2501. : type(type), ne(ne), eps(eps) {}
  2502. ggml_tensor * build_graph(ggml_context * ctx) override {
  2503. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2504. ggml_set_name(a, "a");
  2505. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  2506. ggml_set_name(out, "out");
  2507. return out;
  2508. }
  2509. };
  2510. // GGML_OP_ACC
  2511. struct test_acc : public test_case {
  2512. const ggml_type type;
  2513. const std::array<int64_t, 4> ne_a;
  2514. const std::array<int64_t, 4> ne_b;
  2515. std::string vars() override {
  2516. return VARS_TO_STR3(type, ne_a, ne_b);
  2517. }
  2518. test_acc(ggml_type type = GGML_TYPE_F32,
  2519. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2520. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2521. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2522. ggml_tensor * build_graph(ggml_context * ctx) override {
  2523. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2524. ggml_set_param(ctx, a);
  2525. ggml_set_name(a, "a");
  2526. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2527. ggml_set_param(ctx, b);
  2528. ggml_set_name(b, "b");
  2529. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2530. ggml_set_name(out, "out");
  2531. return out;
  2532. }
  2533. };
  2534. // GGML_OP_PAD
  2535. struct test_pad : public test_case {
  2536. const ggml_type type;
  2537. const std::array<int64_t, 4> ne_a;
  2538. const int pad_0;
  2539. const int pad_1;
  2540. std::string vars() override {
  2541. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2542. }
  2543. test_pad(ggml_type type = GGML_TYPE_F32,
  2544. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2545. int pad_0 = 1, int pad_1 = 1)
  2546. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2547. ggml_tensor * build_graph(ggml_context * ctx) override {
  2548. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2549. ggml_set_name(a, "a");
  2550. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2551. ggml_set_name(out, "out");
  2552. return out;
  2553. }
  2554. };
  2555. // GGML_OP_PAD_REFLECT_1D
  2556. struct test_pad_reflect_1d : public test_case {
  2557. const ggml_type type;
  2558. const std::array<int64_t, 4> ne_a;
  2559. const int pad_0;
  2560. const int pad_1;
  2561. std::string vars() override {
  2562. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2563. }
  2564. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2565. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2566. int pad_0 = 10, int pad_1 = 9)
  2567. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2568. ggml_tensor * build_graph(ggml_context * ctx) override {
  2569. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2570. ggml_set_name(a, "a");
  2571. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2572. ggml_set_name(out, "out");
  2573. return out;
  2574. }
  2575. };
  2576. // GGML_OP_ARANGE
  2577. struct test_arange : public test_case {
  2578. const ggml_type type;
  2579. const float start;
  2580. const float stop;
  2581. const float step;
  2582. std::string vars() override {
  2583. return VARS_TO_STR4(type, start, stop, step);
  2584. }
  2585. test_arange(ggml_type type = GGML_TYPE_F32,
  2586. float start = 0.f, float stop = 10.f, float step = 1.f)
  2587. : type(type), start(start), stop(stop), step(step) {}
  2588. ggml_tensor * build_graph(ggml_context * ctx) override {
  2589. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2590. ggml_set_name(out, "out");
  2591. return out;
  2592. }
  2593. };
  2594. // GGML_OP_TIMESTEP_EMBEDDING
  2595. struct test_timestep_embedding : public test_case {
  2596. const ggml_type type;
  2597. const std::array<int64_t, 4> ne_a;
  2598. const int dim;
  2599. const int max_period;
  2600. std::string vars() override {
  2601. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2602. }
  2603. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2604. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2605. int dim = 320, int max_period=10000)
  2606. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2607. ggml_tensor * build_graph(ggml_context * ctx) override {
  2608. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2609. ggml_set_name(a, "a");
  2610. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2611. ggml_set_name(out, "out");
  2612. return out;
  2613. }
  2614. };
  2615. // GGML_OP_LEAKY_RELU
  2616. struct test_leaky_relu : public test_case {
  2617. const ggml_type type;
  2618. const std::array<int64_t, 4> ne_a;
  2619. const float negative_slope;
  2620. std::string vars() override {
  2621. return VARS_TO_STR3(type, ne_a, negative_slope);
  2622. }
  2623. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2624. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2625. float negative_slope = 0.1f)
  2626. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2627. ggml_tensor * build_graph(ggml_context * ctx) override {
  2628. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2629. ggml_set_name(a, "a");
  2630. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2631. ggml_set_name(out, "out");
  2632. return out;
  2633. }
  2634. };
  2635. // GGML_OP_FLASH_ATTN_EXT
  2636. struct test_flash_attn_ext : public test_case {
  2637. const int64_t hs; // head size
  2638. const int64_t nh; // num heads
  2639. const int64_t nr; // repeat in Q, tests for grouped-query attention
  2640. const int64_t kv; // kv size
  2641. const int64_t nb; // batch size
  2642. const bool mask; // use mask
  2643. const float max_bias; // ALiBi
  2644. const float logit_softcap; // Gemma 2
  2645. const ggml_prec prec;
  2646. const ggml_type type_KV;
  2647. std::array<int32_t, 4> permute;
  2648. std::string vars() override {
  2649. return VARS_TO_STR11(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  2650. }
  2651. double max_nmse_err() override {
  2652. return 5e-4;
  2653. }
  2654. uint64_t op_flops(ggml_tensor * t) override {
  2655. GGML_UNUSED(t);
  2656. // Just counting matmul costs:
  2657. // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
  2658. return 2 * 2 * nh*nr * nb * hs * kv;
  2659. }
  2660. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
  2661. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  2662. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2663. : hs(hs), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  2664. ggml_tensor * build_graph(ggml_context * ctx) override {
  2665. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  2666. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2667. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2668. int64_t ne_perm[4];
  2669. for (int i = 0; i < 4; ++i) {
  2670. ne_perm[permute[i]] = ne[i];
  2671. }
  2672. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2673. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2674. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2675. }
  2676. return t;
  2677. };
  2678. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hs_padded, nb, nh*nr, 1);
  2679. ggml_set_name(q, "q");
  2680. ggml_tensor * k = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2681. ggml_set_name(k, "k");
  2682. ggml_tensor * v = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2683. ggml_set_name(v, "v");
  2684. ggml_tensor * m = nullptr;
  2685. if (mask) {
  2686. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2687. ggml_set_name(m, "m");
  2688. }
  2689. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
  2690. ggml_flash_attn_ext_set_prec(out, prec);
  2691. ggml_set_name(out, "out");
  2692. return out;
  2693. }
  2694. bool grad_precise() override {
  2695. return true;
  2696. }
  2697. };
  2698. // GGML_OP_CROSS_ENTROPY_LOSS
  2699. struct test_cross_entropy_loss : public test_case {
  2700. const ggml_type type;
  2701. const std::array<int64_t, 4> ne;
  2702. std::string vars() override {
  2703. return VARS_TO_STR2(type, ne);
  2704. }
  2705. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2706. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2707. : type(type), ne(ne) {}
  2708. ggml_tensor * build_graph(ggml_context * ctx) override {
  2709. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2710. ggml_set_param(ctx, logits);
  2711. ggml_set_name(logits, "logits");
  2712. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2713. // The labels are assumed to be constant -> no gradients.
  2714. ggml_set_name(labels, "labels");
  2715. // Ensure labels add up to 1:
  2716. labels = ggml_soft_max(ctx, labels);
  2717. ggml_set_name(labels, "labels_normalized");
  2718. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2719. ggml_set_name(out, "out");
  2720. return out;
  2721. }
  2722. void initialize_tensors(ggml_context * ctx) override {
  2723. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2724. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2725. init_tensor_uniform(t, -100.0f, 100.0f);
  2726. }
  2727. }
  2728. float grad_eps() override {
  2729. return 1.0f;
  2730. }
  2731. bool grad_precise() override {
  2732. return true;
  2733. }
  2734. };
  2735. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2736. struct test_cross_entropy_loss_back : public test_case {
  2737. const ggml_type type;
  2738. const std::array<int64_t, 4> ne;
  2739. std::string vars() override {
  2740. return VARS_TO_STR2(type, ne);
  2741. }
  2742. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2743. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2744. : type(type), ne(ne) {}
  2745. ggml_tensor * build_graph(ggml_context * ctx) override {
  2746. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2747. ggml_set_name(grad, "grad");
  2748. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2749. ggml_set_name(logits, "logits");
  2750. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2751. ggml_set_name(labels, "labels");
  2752. // Ensure labels add up to 1:
  2753. labels = ggml_soft_max(ctx, labels);
  2754. ggml_set_name(labels, "labels_normalized");
  2755. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2756. ggml_set_name(out, "out");
  2757. return out;
  2758. }
  2759. };
  2760. // GGML_OP_OPT_STEP_ADAMW
  2761. struct test_opt_step_adamw : public test_case {
  2762. const ggml_type type;
  2763. const std::array<int64_t, 4> ne;
  2764. std::string vars() override {
  2765. return VARS_TO_STR2(type, ne);
  2766. }
  2767. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2768. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2769. : type(type), ne(ne) {}
  2770. ggml_tensor * build_graph(ggml_context * ctx) override {
  2771. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2772. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2773. ggml_set_name(a, "a");
  2774. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2775. ggml_set_name(grad, "grad");
  2776. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2777. ggml_set_name(grad_m, "grad_m");
  2778. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2779. ggml_set_name(grad_v, "grad_v");
  2780. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2781. ggml_set_name(adamw_params, "adamw_params");
  2782. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2783. ggml_set_name(out, "out");
  2784. return out;
  2785. }
  2786. void initialize_tensors(ggml_context * ctx) override {
  2787. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2788. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2789. }
  2790. }
  2791. bool grad_precise() override {
  2792. return true;
  2793. }
  2794. };
  2795. enum llm_norm_type {
  2796. LLM_NORM,
  2797. LLM_NORM_RMS,
  2798. };
  2799. struct llama_hparams {
  2800. uint32_t n_vocab;
  2801. uint32_t n_embd;
  2802. uint32_t n_head;
  2803. uint32_t n_head_kv;
  2804. static constexpr uint32_t n_layer = 1;
  2805. uint32_t n_rot;
  2806. uint32_t n_embd_head; // dimension of values (d_v)
  2807. uint32_t n_ff;
  2808. float f_norm_eps;
  2809. float f_norm_rms_eps;
  2810. // cparams
  2811. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2812. static constexpr uint32_t n_ctx_orig = n_ctx;
  2813. // batch
  2814. int32_t n_tokens;
  2815. // llm_build_context
  2816. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2817. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2818. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2819. return n_embd_head * n_head_kv;
  2820. }
  2821. };
  2822. // LLM base class
  2823. struct test_llm : public test_case {
  2824. llama_hparams hp;
  2825. protected:
  2826. test_llm(llama_hparams hp)
  2827. : hp(std::move(hp)) {
  2828. }
  2829. public:
  2830. struct ggml_tensor * llm_build_norm(
  2831. struct ggml_context * ctx,
  2832. struct ggml_tensor * cur,
  2833. struct ggml_tensor * mw,
  2834. struct ggml_tensor * mb,
  2835. llm_norm_type type) {
  2836. switch (type) {
  2837. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2838. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2839. }
  2840. cur = ggml_mul(ctx, cur, mw);
  2841. if (mb) {
  2842. cur = ggml_add(ctx, cur, mb);
  2843. }
  2844. return cur;
  2845. }
  2846. void llm_build_kv_store(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * k_l,
  2849. struct ggml_tensor * v_l,
  2850. struct ggml_tensor * k_cur,
  2851. struct ggml_tensor * v_cur) {
  2852. // compute the transposed [n_tokens, n_embd] V matrix
  2853. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2854. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2855. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2856. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2857. ( hp.n_ctx)*ggml_element_size(v_l),
  2858. (hp.kv_head)*ggml_element_size(v_l));
  2859. // important: storing RoPE-ed version of K in the KV cache!
  2860. ggml_cpy(ctx, k_cur, k_cache_view);
  2861. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2862. }
  2863. struct ggml_tensor * llm_build_kqv(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * k_l,
  2866. struct ggml_tensor * v_l,
  2867. struct ggml_tensor * q_cur,
  2868. struct ggml_tensor * kq_mask,
  2869. float kq_scale) {
  2870. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2871. struct ggml_tensor * k =
  2872. ggml_view_3d(ctx, k_l,
  2873. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2874. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2875. ggml_row_size(k_l->type, hp.n_embd_head),
  2876. 0);
  2877. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2878. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2879. // split cached v into n_head heads
  2880. struct ggml_tensor * v =
  2881. ggml_view_3d(ctx, v_l,
  2882. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2883. ggml_element_size(v_l)*hp.n_ctx,
  2884. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2885. 0);
  2886. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2887. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2888. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2889. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2890. cur = ggml_mul_mat(ctx, wo, cur);
  2891. return cur;
  2892. }
  2893. void initialize_tensors(ggml_context * ctx) override {
  2894. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2895. if (t->type == GGML_TYPE_I32) {
  2896. // pos
  2897. std::vector<int> data(hp.n_tokens);
  2898. for (int i = 0; i < hp.n_tokens; i++) {
  2899. data[i] = rand() % hp.n_ctx;
  2900. }
  2901. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2902. } else {
  2903. init_tensor_uniform(t);
  2904. }
  2905. }
  2906. }
  2907. };
  2908. // Llama
  2909. struct test_llama : public test_llm {
  2910. static constexpr float freq_base = 10000.0f;
  2911. static constexpr float freq_scale = 1.0f;
  2912. static constexpr float ext_factor = 0.0f;
  2913. static constexpr float attn_factor = 1.0f;
  2914. static constexpr float beta_fast = 32.0f;
  2915. static constexpr float beta_slow = 1.0f;
  2916. std::string op_desc(ggml_tensor * t) override {
  2917. GGML_UNUSED(t);
  2918. return "LLAMA";
  2919. }
  2920. std::string vars() override {
  2921. auto n_tokens = hp.n_tokens;
  2922. return VARS_TO_STR1(n_tokens);
  2923. }
  2924. double max_nmse_err() override {
  2925. return 2e-3;
  2926. }
  2927. test_llama(int n_tokens = 1)
  2928. : test_llm({
  2929. /*n_vocab =*/ 32000,
  2930. /*n_embd =*/ 3200,
  2931. /*n_head =*/ 32,
  2932. /*n_head_kv =*/ 32,
  2933. /*n_rot =*/ 100,
  2934. /*n_embd_head =*/ 100,
  2935. /*n_ff =*/ 8640,
  2936. /*f_norm_eps =*/ 0.f,
  2937. /*f_norm_rms_eps =*/ 1e-5f,
  2938. /*n_tokens =*/ n_tokens,
  2939. }) {
  2940. }
  2941. ggml_tensor * build_graph(ggml_context * ctx) override {
  2942. struct ggml_tensor * cur;
  2943. struct ggml_tensor * inpL;
  2944. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2945. // inp_pos - contains the positions
  2946. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2947. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2948. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2949. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2950. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2951. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2952. struct ggml_tensor * inpSA = inpL;
  2953. // norm
  2954. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2955. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  2956. // self-attention
  2957. {
  2958. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2959. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2960. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2961. // compute Q and K and RoPE them
  2962. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  2963. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  2964. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  2965. Qcur = ggml_rope_ext(
  2966. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  2967. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2968. ext_factor, attn_factor, beta_fast, beta_slow
  2969. );
  2970. Kcur = ggml_rope_ext(
  2971. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  2972. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2973. ext_factor, attn_factor, beta_fast, beta_slow
  2974. );
  2975. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2976. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2977. }
  2978. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  2979. // feed-forward network
  2980. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2981. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  2982. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2983. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2984. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2985. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  2986. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  2987. cur = ggml_silu(ctx, cur);
  2988. cur = ggml_mul(ctx, cur, tmp);
  2989. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2990. cur = ggml_add(ctx, cur, ffn_inp);
  2991. // input for next layer
  2992. inpL = cur;
  2993. }
  2994. cur = inpL;
  2995. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2996. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  2997. // lm_head
  2998. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  2999. cur = ggml_mul_mat(ctx, output, cur);
  3000. return cur;
  3001. }
  3002. };
  3003. // Falcon
  3004. struct test_falcon : public test_llm {
  3005. static constexpr float freq_base = 10000.0f;
  3006. static constexpr float freq_scale = 1.0f;
  3007. static constexpr float ext_factor = 0.0f;
  3008. static constexpr float attn_factor = 1.0f;
  3009. static constexpr float beta_fast = 32.0f;
  3010. static constexpr float beta_slow = 1.0f;
  3011. std::string op_desc(ggml_tensor * t) override {
  3012. GGML_UNUSED(t);
  3013. return "FALCON";
  3014. }
  3015. std::string vars() override {
  3016. auto n_tokens = hp.n_tokens;
  3017. return VARS_TO_STR1(n_tokens);
  3018. }
  3019. double max_nmse_err() override {
  3020. return 2e-3;
  3021. }
  3022. test_falcon(int n_tokens = 1)
  3023. : test_llm({
  3024. /*n_vocab =*/ 32000,
  3025. /*n_embd =*/ 3200,
  3026. /*n_head =*/ 50,
  3027. /*n_head_kv =*/ 1,
  3028. /*n_rot =*/ 64,
  3029. /*n_embd_head =*/ 64,
  3030. /*n_ff =*/ 8640,
  3031. /*f_norm_eps =*/ 1e-5f,
  3032. /*f_norm_rms_eps =*/ 0.f,
  3033. /*n_tokens =*/ n_tokens,
  3034. }) {
  3035. }
  3036. ggml_tensor * build_graph(ggml_context * ctx) override {
  3037. struct ggml_tensor * cur;
  3038. struct ggml_tensor * inpL;
  3039. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3040. // inp_pos - contains the positions
  3041. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3042. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3043. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3044. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3045. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3046. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3047. // norm
  3048. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3049. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3050. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3051. // self-attention
  3052. {
  3053. cur = attn_norm;
  3054. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3055. cur = ggml_mul_mat(ctx, wqkv, cur);
  3056. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3057. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3058. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3059. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3060. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3061. // using mode = 2 for neox mode
  3062. Qcur = ggml_rope_ext(
  3063. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3064. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3065. );
  3066. Kcur = ggml_rope_ext(
  3067. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3068. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3069. );
  3070. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3071. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3072. }
  3073. struct ggml_tensor * ffn_inp = cur;
  3074. // feed forward
  3075. {
  3076. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3077. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3078. cur = attn_norm;
  3079. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3080. cur = ggml_gelu(ctx, cur);
  3081. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3082. }
  3083. cur = ggml_add(ctx, cur, ffn_inp);
  3084. cur = ggml_add(ctx, cur, inpL);
  3085. // input for next layer
  3086. inpL = cur;
  3087. }
  3088. cur = inpL;
  3089. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3090. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3091. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3092. // lm_head
  3093. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3094. cur = ggml_mul_mat(ctx, output, cur);
  3095. return cur;
  3096. }
  3097. };
  3098. // ###########################################
  3099. // ## Section 3: GGML Op Test Instantiation ##
  3100. // ###########################################
  3101. static const ggml_type all_types[] = {
  3102. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3103. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3104. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3105. GGML_TYPE_Q8_0,
  3106. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3107. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3108. GGML_TYPE_Q6_K,
  3109. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3110. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3111. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3112. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3113. };
  3114. static const ggml_type base_types[] = {
  3115. GGML_TYPE_F32, GGML_TYPE_F16,
  3116. GGML_TYPE_Q8_0, // for I8MM tests
  3117. GGML_TYPE_Q4_0,
  3118. GGML_TYPE_Q4_1, // for I8MM tests
  3119. GGML_TYPE_Q4_K,
  3120. GGML_TYPE_IQ2_XXS
  3121. };
  3122. static const ggml_type other_types[] = {
  3123. GGML_TYPE_Q4_1,
  3124. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3125. GGML_TYPE_Q8_0,
  3126. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3127. GGML_TYPE_Q5_K,
  3128. GGML_TYPE_Q6_K,
  3129. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3130. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3131. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3132. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3133. GGML_TYPE_BF16,
  3134. };
  3135. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3136. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3137. std::vector<std::unique_ptr<test_case>> test_cases;
  3138. std::default_random_engine rng(0);
  3139. // unary ops
  3140. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3141. for (int v : {0, 1}) {
  3142. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3143. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3144. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3145. }
  3146. }
  3147. }
  3148. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3149. for (ggml_type type : all_types) {
  3150. for (int b : {1, 7}) {
  3151. for (bool v : {false, true}) {
  3152. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3153. }
  3154. }
  3155. }
  3156. for (int b : {1, 7}) {
  3157. for (bool v : {false, true}) {
  3158. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3159. }
  3160. }
  3161. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3162. for (ggml_type type : all_types) {
  3163. for (bool v : {false, true}) {
  3164. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3165. }
  3166. }
  3167. for (bool v : {false, true}) {
  3168. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3169. }
  3170. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3171. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3172. for (int k0 : {1, 3}) {
  3173. for (int k1 : {1, 3}) {
  3174. for (int s0 : {1, 2}) {
  3175. for (int s1 : {1, 2}) {
  3176. for (int p0 : {0, 1}) {
  3177. for (int p1 : {0, 1}) {
  3178. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3179. }
  3180. }
  3181. }
  3182. }
  3183. }
  3184. }
  3185. }
  3186. }
  3187. // im2col 1D
  3188. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3189. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3190. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3191. for (int s0 : {1, 3}) {
  3192. for (int p0 : {0, 3}) {
  3193. for (int d0 : {1, 3}) {
  3194. test_cases.emplace_back(new test_im2col(
  3195. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3196. s0, 0, p0, 0, d0, 0, false));
  3197. }
  3198. }
  3199. }
  3200. // im2col 2D
  3201. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3202. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3203. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3204. for (int s0 : {1, 3}) {
  3205. for (int s1 : {1, 3}) {
  3206. for (int p0 : {0, 3}) {
  3207. for (int p1 : {0, 3}) {
  3208. for (int d0 : {1, 3}) {
  3209. for (int d1 : {1, 3}) {
  3210. test_cases.emplace_back(new test_im2col(
  3211. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3212. s0, s1, p0, p1, d0, d1, true));
  3213. }
  3214. }
  3215. }
  3216. }
  3217. }
  3218. }
  3219. // extra tests for im2col 2D
  3220. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3221. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3222. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3223. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3224. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3225. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3226. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3227. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3228. // sycl backend will limit task global_range < MAX_INT
  3229. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3230. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3231. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3232. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3233. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3234. test_cases.emplace_back(new test_conv_transpose_1d());
  3235. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3236. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3237. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3238. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3239. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3240. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3241. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3242. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  3243. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  3244. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3245. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3246. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3247. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3248. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3249. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3250. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3251. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3252. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3253. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3254. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3255. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3256. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3257. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3258. }
  3259. for (bool view : {false, true}) {
  3260. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3261. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3262. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3263. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3264. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3265. }
  3266. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3267. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3268. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3269. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3270. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3271. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3272. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3273. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3274. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3275. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3276. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3277. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3278. }
  3279. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3280. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3281. }
  3282. // same-type copy
  3283. for (ggml_type type : all_types) {
  3284. const auto nk = ggml_blck_size(type);
  3285. for (int k = 1; k < 4; ++k) {
  3286. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  3287. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  3288. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  3289. }
  3290. }
  3291. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  3292. for (ggml_type type_dst : all_types) {
  3293. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3294. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3295. }
  3296. }
  3297. for (ggml_type type_src : all_types) {
  3298. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3299. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3300. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3301. }
  3302. }
  3303. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3304. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3305. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3306. }
  3307. }
  3308. test_cases.emplace_back(new test_cont());
  3309. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3310. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3311. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3312. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3313. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3314. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3315. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3316. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3317. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3318. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3319. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  3320. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3321. }
  3322. };
  3323. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3324. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  3325. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  3326. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  3327. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  3328. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  3329. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  3330. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  3331. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  3332. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  3333. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  3334. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  3335. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  3336. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  3337. // stable diffusion
  3338. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3339. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3340. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3341. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3342. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3343. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3344. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3345. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3346. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3347. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3348. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  3349. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3350. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  3351. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3352. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3353. }
  3354. test_cases.emplace_back(new test_add1());
  3355. test_cases.emplace_back(new test_scale());
  3356. test_cases.emplace_back(new test_silu_back());
  3357. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3358. for (bool v : {false, true}) {
  3359. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3360. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3361. }
  3362. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3363. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3364. }
  3365. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  3366. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3367. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3368. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3369. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3370. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3371. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3372. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3373. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3374. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  3375. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  3376. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  3377. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  3378. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3379. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3380. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3381. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3382. for (ggml_type type_a : all_types) {
  3383. for (int i = 1; i < 10; ++i) {
  3384. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3385. }
  3386. }
  3387. #if 1
  3388. for (ggml_type type_a : base_types) {
  3389. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3390. // test cases without permutation
  3391. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3392. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
  3393. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
  3394. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
  3395. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
  3396. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
  3397. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
  3398. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
  3399. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
  3400. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
  3401. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
  3402. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
  3403. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
  3404. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
  3405. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
  3406. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
  3407. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
  3408. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
  3409. // test cases with permutation
  3410. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3411. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3412. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3413. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3414. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3415. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3416. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3417. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3418. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3419. }
  3420. }
  3421. for (ggml_type type_a : other_types) {
  3422. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3423. if (ggml_blck_size(type_a) != 256) {
  3424. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3425. }
  3426. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3427. }
  3428. }
  3429. #else
  3430. // m = a rows
  3431. // n = b rows
  3432. // k = cols
  3433. std::uniform_int_distribution<> dist_m(1, 128);
  3434. std::uniform_int_distribution<> dist_n(16, 128);
  3435. std::uniform_int_distribution<> dist_k(1, 16);
  3436. for (int i = 0; i < 1000; i++) {
  3437. for (ggml_type type_a : all_types) {
  3438. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3439. int m = dist_m(rng);
  3440. int n = dist_n(rng);
  3441. int k = dist_k(rng) * ggml_blck_size(type_a);
  3442. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3443. }
  3444. }
  3445. }
  3446. #endif
  3447. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3448. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3449. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3450. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3451. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3452. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3453. for (auto bs : {1,2,4,8}) {
  3454. for (auto nr : {1,4}) {
  3455. for (uint32_t m = 0; m < 2; ++m) {
  3456. for (uint32_t k = 0; k < 2; ++k) {
  3457. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
  3458. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
  3459. }
  3460. }
  3461. }
  3462. }
  3463. // sycl backend will limit task global_range < MAX_INT
  3464. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3465. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3466. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3467. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3468. for (ggml_type type_a : base_types) {
  3469. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3470. for (int n_mats : {4, 8}) {
  3471. for (int n_used : {1, 2, 4}) {
  3472. for (bool b : {false, true}) {
  3473. for (int n : {1, 32, 129}) {
  3474. int m = 512;
  3475. int k = 256;
  3476. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3477. }
  3478. }
  3479. }
  3480. }
  3481. }
  3482. }
  3483. for (ggml_type type_a : other_types) {
  3484. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3485. for (int n_mats : {4}) {
  3486. for (int n_used : {2}) {
  3487. for (bool b : {false}) {
  3488. for (int n : {1, 32}) {
  3489. int m = 512;
  3490. int k = 256;
  3491. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3492. }
  3493. }
  3494. }
  3495. }
  3496. }
  3497. }
  3498. for (ggml_type type_a : base_types) {
  3499. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3500. for (int n : {1, 16}) {
  3501. for (int k : {1, 16}) {
  3502. for (int bs2 : {1, 3}) {
  3503. for (int bs3 : {1, 3}) {
  3504. for (int nr2 : {1, 2}) {
  3505. for (int nr3 : {1, 2}) {
  3506. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3507. }
  3508. }
  3509. }
  3510. }
  3511. }
  3512. }
  3513. }
  3514. }
  3515. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3516. test_cases.emplace_back(new test_sqr(type));
  3517. test_cases.emplace_back(new test_sqrt(type));
  3518. test_cases.emplace_back(new test_log(type));
  3519. test_cases.emplace_back(new test_sin(type));
  3520. test_cases.emplace_back(new test_cos(type));
  3521. test_cases.emplace_back(new test_clamp(type));
  3522. }
  3523. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3524. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3525. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3526. #if 0
  3527. std::uniform_int_distribution<> dist_ne1(1, 50);
  3528. int exponent = 1;
  3529. while (exponent < (1 << 17)) {
  3530. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3531. for (int n = 0; n < 10; ++n) {
  3532. int64_t ne0 = dist_ne0(rng);
  3533. int64_t ne1 = dist_ne1(rng);
  3534. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3535. }
  3536. exponent <<= 1;
  3537. }
  3538. #endif
  3539. for (bool mask : {false, true}) {
  3540. for (float max_bias : {0.0f, 8.0f}) {
  3541. if (!mask && max_bias > 0.0f) continue;
  3542. for (float scale : {1.0f, 0.1f}) {
  3543. for (int64_t ne0 : {16, 1024}) {
  3544. for (int64_t ne1 : {16, 1024}) {
  3545. if (mask) {
  3546. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3547. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
  3548. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
  3549. }
  3550. } else {
  3551. /* The precision of mask here doesn't matter as boolean mask is false */
  3552. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3553. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3554. }
  3555. }
  3556. }
  3557. }
  3558. }
  3559. }
  3560. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3561. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3562. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
  3563. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3564. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3565. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
  3566. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
  3567. for (float max_bias : {0.0f, 8.0f}) {
  3568. for (float scale : {1.0f, 0.1f}) {
  3569. for (int64_t ne0 : {16, 1024}) {
  3570. for (int64_t ne1 : {16, 1024}) {
  3571. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3572. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3573. }
  3574. }
  3575. }
  3576. }
  3577. for (bool fw : {true, false}) { // fw == forward
  3578. bool all = true;
  3579. for (float v : { 0, 1 }) {
  3580. for (float fs : { 1.0f, 1.4245f }) {
  3581. for (float ef : { 0.0f, 0.7465f }) {
  3582. for (float af : { 1.0f, 1.4245f }) {
  3583. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3584. for (bool ff : {false, true}) { // freq_factors
  3585. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3586. if (all) {
  3587. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3588. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3589. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3590. }
  3591. if (all) {
  3592. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3593. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3594. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3595. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3596. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3597. }
  3598. if (all) {
  3599. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3600. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3601. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3602. }
  3603. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3604. }
  3605. }
  3606. all = false;
  3607. }
  3608. }
  3609. }
  3610. }
  3611. }
  3612. for (int v : { 0, 1, 2, 3 }) {
  3613. for (int dim : { 0, 1, 2, 3, }) {
  3614. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3615. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3616. }
  3617. }
  3618. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3619. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3620. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3621. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3622. }
  3623. test_cases.emplace_back(new test_sum());
  3624. test_cases.emplace_back(new test_sum_rows());
  3625. test_cases.emplace_back(new test_mean());
  3626. test_cases.emplace_back(new test_upscale());
  3627. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  3628. test_cases.emplace_back(new test_upscale_ext());
  3629. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3630. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3631. test_cases.emplace_back(new test_acc());
  3632. test_cases.emplace_back(new test_pad());
  3633. test_cases.emplace_back(new test_pad_reflect_1d());
  3634. test_cases.emplace_back(new test_arange());
  3635. test_cases.emplace_back(new test_timestep_embedding());
  3636. test_cases.emplace_back(new test_leaky_relu());
  3637. for (int hs : { 64, 80, 128, 256, }) {
  3638. for (bool mask : { true, false } ) {
  3639. for (float max_bias : { 0.0f, 8.0f }) {
  3640. if (!mask && max_bias > 0.0f) continue;
  3641. for (float logit_softcap : {0.0f, 10.0f}) {
  3642. if (hs != 128 && logit_softcap != 0.0f) continue;
  3643. for (int nh : { 4, }) {
  3644. for (int nr : { 1, 4, 16 }) {
  3645. if (nr == 16 && hs != 128) continue;
  3646. for (int kv : { 512, 1024, }) {
  3647. if (nr != 1 && kv != 512) continue;
  3648. for (int nb : { 1, 3, 32, 35, }) {
  3649. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  3650. if (hs != 128 && prec == GGML_PREC_DEFAULT) continue;
  3651. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3652. test_cases.emplace_back(new test_flash_attn_ext(
  3653. hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  3654. // run fewer test cases permuted
  3655. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  3656. test_cases.emplace_back(new test_flash_attn_ext(
  3657. hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  3658. }
  3659. }
  3660. }
  3661. }
  3662. }
  3663. }
  3664. }
  3665. }
  3666. }
  3667. }
  3668. }
  3669. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3670. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3671. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3672. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3673. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3674. // these tests are disabled to save execution time, but they can be handy for debugging
  3675. #if 0
  3676. test_cases.emplace_back(new test_llama(1));
  3677. test_cases.emplace_back(new test_llama(2));
  3678. test_cases.emplace_back(new test_falcon(1));
  3679. test_cases.emplace_back(new test_falcon(2));
  3680. #endif
  3681. return test_cases;
  3682. }
  3683. // Test cases for performance evaluation: should be representative of real-world use cases
  3684. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3685. std::vector<std::unique_ptr<test_case>> test_cases;
  3686. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3687. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3688. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3689. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3690. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3691. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3692. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3693. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3694. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3695. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3696. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3697. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3698. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3699. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3700. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3701. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  3702. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  3703. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3704. for (ggml_type type_a : all_types) {
  3705. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3706. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3707. }
  3708. }
  3709. }
  3710. for (int K : {3, 5}) {
  3711. for (int IC : {256, 2560}) {
  3712. for (int IW_IH : {32, 64, 256}) {
  3713. if (IC == 2560 && IW_IH == 256) {
  3714. // too big
  3715. continue;
  3716. }
  3717. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3718. }
  3719. }
  3720. }
  3721. return test_cases;
  3722. }
  3723. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
  3724. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  3725. if (params_filter == nullptr) {
  3726. return;
  3727. }
  3728. std::regex params_filter_regex(params_filter);
  3729. for (auto it = test_cases.begin(); it != test_cases.end();) {
  3730. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  3731. it = test_cases.erase(it);
  3732. continue;
  3733. }
  3734. it++;
  3735. }
  3736. };
  3737. if (mode == MODE_TEST) {
  3738. auto test_cases = make_test_cases_eval();
  3739. filter_test_cases(test_cases, params_filter);
  3740. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3741. if (backend_cpu == NULL) {
  3742. printf(" Failed to initialize CPU backend\n");
  3743. return false;
  3744. }
  3745. size_t n_ok = 0;
  3746. for (auto & test : test_cases) {
  3747. if (test->eval(backend, backend_cpu, op_name)) {
  3748. n_ok++;
  3749. }
  3750. }
  3751. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3752. ggml_backend_free(backend_cpu);
  3753. return n_ok == test_cases.size();
  3754. }
  3755. if (mode == MODE_GRAD) {
  3756. auto test_cases = make_test_cases_eval();
  3757. filter_test_cases(test_cases, params_filter);
  3758. size_t n_ok = 0;
  3759. for (auto & test : test_cases) {
  3760. if (test->eval_grad(backend, op_name)) {
  3761. n_ok++;
  3762. }
  3763. }
  3764. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3765. return n_ok == test_cases.size();
  3766. }
  3767. if (mode == MODE_PERF) {
  3768. auto test_cases = make_test_cases_perf();
  3769. filter_test_cases(test_cases, params_filter);
  3770. for (auto & test : test_cases) {
  3771. test->eval_perf(backend, op_name);
  3772. }
  3773. return true;
  3774. }
  3775. GGML_ABORT("fatal error");
  3776. }
  3777. static void usage(char ** argv) {
  3778. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
  3779. printf(" valid modes:\n");
  3780. printf(" - test (default, compare with CPU backend for correctness)\n");
  3781. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3782. printf(" - perf (performance evaluation)\n");
  3783. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3784. }
  3785. int main(int argc, char ** argv) {
  3786. test_mode mode = MODE_TEST;
  3787. const char * op_name_filter = nullptr;
  3788. const char * backend_filter = nullptr;
  3789. const char * params_filter = nullptr;
  3790. for (int i = 1; i < argc; i++) {
  3791. if (strcmp(argv[i], "test") == 0) {
  3792. mode = MODE_TEST;
  3793. } else if (strcmp(argv[i], "perf") == 0) {
  3794. mode = MODE_PERF;
  3795. } else if (strcmp(argv[i], "grad") == 0) {
  3796. mode = MODE_GRAD;
  3797. } else if (strcmp(argv[i], "-o") == 0) {
  3798. if (i + 1 < argc) {
  3799. op_name_filter = argv[++i];
  3800. } else {
  3801. usage(argv);
  3802. return 1;
  3803. }
  3804. } else if (strcmp(argv[i], "-b") == 0) {
  3805. if (i + 1 < argc) {
  3806. backend_filter = argv[++i];
  3807. } else {
  3808. usage(argv);
  3809. return 1;
  3810. }
  3811. } else if (strcmp(argv[i], "-p") == 0) {
  3812. if (i + 1 < argc) {
  3813. params_filter = argv[++i];
  3814. } else {
  3815. usage(argv);
  3816. return 1;
  3817. }
  3818. } else {
  3819. usage(argv);
  3820. return 1;
  3821. }
  3822. }
  3823. // load and enumerate backends
  3824. ggml_backend_load_all();
  3825. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3826. size_t n_ok = 0;
  3827. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3828. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3829. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3830. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3831. printf(" Skipping\n");
  3832. n_ok++;
  3833. continue;
  3834. }
  3835. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3836. printf(" Skipping CPU backend\n");
  3837. n_ok++;
  3838. continue;
  3839. }
  3840. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3841. GGML_ASSERT(backend != NULL);
  3842. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3843. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3844. if (ggml_backend_set_n_threads_fn) {
  3845. // TODO: better value for n_threads
  3846. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3847. }
  3848. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3849. size_t free, total; // NOLINT
  3850. ggml_backend_dev_memory(dev, &free, &total);
  3851. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3852. printf("\n");
  3853. bool ok = test_backend(backend, mode, op_name_filter, params_filter);
  3854. printf(" Backend %s: ", ggml_backend_name(backend));
  3855. if (ok) {
  3856. printf("\033[1;32mOK\033[0m\n");
  3857. n_ok++;
  3858. } else {
  3859. printf("\033[1;31mFAIL\033[0m\n");
  3860. }
  3861. printf("\n");
  3862. ggml_backend_free(backend);
  3863. }
  3864. ggml_quantize_free();
  3865. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3866. if (n_ok != ggml_backend_dev_count()) {
  3867. printf("\033[1;31mFAIL\033[0m\n");
  3868. return 1;
  3869. }
  3870. printf("\033[1;32mOK\033[0m\n");
  3871. return 0;
  3872. }