clip.cpp 182 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. int32_t proj_scale_factor = 0; // idefics3
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. int32_t spatial_merge_size = 0;
  167. // audio
  168. int32_t n_mel_bins = 0; // whisper preprocessor
  169. int32_t proj_stack_factor = 0; // ultravox
  170. // legacy
  171. bool has_llava_projector = false;
  172. int minicpmv_version = 0;
  173. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  174. };
  175. struct clip_layer {
  176. // attention
  177. ggml_tensor * k_w = nullptr;
  178. ggml_tensor * k_b = nullptr;
  179. ggml_tensor * q_w = nullptr;
  180. ggml_tensor * q_b = nullptr;
  181. ggml_tensor * v_w = nullptr;
  182. ggml_tensor * v_b = nullptr;
  183. ggml_tensor * o_w = nullptr;
  184. ggml_tensor * o_b = nullptr;
  185. ggml_tensor * k_norm = nullptr;
  186. ggml_tensor * q_norm = nullptr;
  187. // layernorm 1
  188. ggml_tensor * ln_1_w = nullptr;
  189. ggml_tensor * ln_1_b = nullptr;
  190. ggml_tensor * ff_up_w = nullptr;
  191. ggml_tensor * ff_up_b = nullptr;
  192. ggml_tensor * ff_gate_w = nullptr;
  193. ggml_tensor * ff_gate_b = nullptr;
  194. ggml_tensor * ff_down_w = nullptr;
  195. ggml_tensor * ff_down_b = nullptr;
  196. // layernorm 2
  197. ggml_tensor * ln_2_w = nullptr;
  198. ggml_tensor * ln_2_b = nullptr;
  199. // layer scale (no bias)
  200. ggml_tensor * ls_1_w = nullptr;
  201. ggml_tensor * ls_2_w = nullptr;
  202. };
  203. struct clip_model {
  204. clip_modality modality = CLIP_MODALITY_VISION;
  205. projector_type proj_type = PROJECTOR_TYPE_MLP;
  206. clip_hparams hparams;
  207. // embeddings
  208. ggml_tensor * class_embedding = nullptr;
  209. ggml_tensor * patch_embeddings_0 = nullptr;
  210. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  211. ggml_tensor * patch_bias = nullptr;
  212. ggml_tensor * position_embeddings = nullptr;
  213. ggml_tensor * pre_ln_w = nullptr;
  214. ggml_tensor * pre_ln_b = nullptr;
  215. std::vector<clip_layer> layers;
  216. ggml_tensor * post_ln_w;
  217. ggml_tensor * post_ln_b;
  218. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  219. ggml_tensor * mm_fc_w;
  220. ggml_tensor * mm_fc_b;
  221. // LLaVA projection
  222. ggml_tensor * mm_input_norm_w = nullptr;
  223. ggml_tensor * mm_input_norm_b = nullptr;
  224. ggml_tensor * mm_0_w = nullptr;
  225. ggml_tensor * mm_0_b = nullptr;
  226. ggml_tensor * mm_2_w = nullptr;
  227. ggml_tensor * mm_2_b = nullptr;
  228. ggml_tensor * image_newline = nullptr;
  229. // Yi type models with mlp+normalization projection
  230. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  231. ggml_tensor * mm_1_b = nullptr;
  232. ggml_tensor * mm_3_w = nullptr;
  233. ggml_tensor * mm_3_b = nullptr;
  234. ggml_tensor * mm_4_w = nullptr;
  235. ggml_tensor * mm_4_b = nullptr;
  236. // GLMV-Edge projection
  237. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  238. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  239. ggml_tensor * mm_glm_tok_boi = nullptr;
  240. ggml_tensor * mm_glm_tok_eoi = nullptr;
  241. // MobileVLM projection
  242. ggml_tensor * mm_model_mlp_1_w = nullptr;
  243. ggml_tensor * mm_model_mlp_1_b = nullptr;
  244. ggml_tensor * mm_model_mlp_3_w = nullptr;
  245. ggml_tensor * mm_model_mlp_3_b = nullptr;
  246. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  247. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  248. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  249. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  250. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  251. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  252. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  253. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  254. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  255. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  256. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  257. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  258. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  259. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  260. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  261. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  262. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  263. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  264. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  265. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  266. // MobileVLM_V2 projection
  267. ggml_tensor * mm_model_mlp_0_w = nullptr;
  268. ggml_tensor * mm_model_mlp_0_b = nullptr;
  269. ggml_tensor * mm_model_mlp_2_w = nullptr;
  270. ggml_tensor * mm_model_mlp_2_b = nullptr;
  271. ggml_tensor * mm_model_peg_0_w = nullptr;
  272. ggml_tensor * mm_model_peg_0_b = nullptr;
  273. // MINICPMV projection
  274. ggml_tensor * mm_model_pos_embed_k = nullptr;
  275. ggml_tensor * mm_model_query = nullptr;
  276. ggml_tensor * mm_model_proj = nullptr;
  277. ggml_tensor * mm_model_kv_proj = nullptr;
  278. ggml_tensor * mm_model_attn_q_w = nullptr;
  279. ggml_tensor * mm_model_attn_q_b = nullptr;
  280. ggml_tensor * mm_model_attn_k_w = nullptr;
  281. ggml_tensor * mm_model_attn_k_b = nullptr;
  282. ggml_tensor * mm_model_attn_v_w = nullptr;
  283. ggml_tensor * mm_model_attn_v_b = nullptr;
  284. ggml_tensor * mm_model_attn_o_w = nullptr;
  285. ggml_tensor * mm_model_attn_o_b = nullptr;
  286. ggml_tensor * mm_model_ln_q_w = nullptr;
  287. ggml_tensor * mm_model_ln_q_b = nullptr;
  288. ggml_tensor * mm_model_ln_kv_w = nullptr;
  289. ggml_tensor * mm_model_ln_kv_b = nullptr;
  290. ggml_tensor * mm_model_ln_post_w = nullptr;
  291. ggml_tensor * mm_model_ln_post_b = nullptr;
  292. // gemma3
  293. ggml_tensor * mm_input_proj_w = nullptr;
  294. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  295. // pixtral
  296. ggml_tensor * token_embd_img_break = nullptr;
  297. ggml_tensor * mm_patch_merger_w = nullptr;
  298. // ultravox / whisper encoder
  299. ggml_tensor * conv1d_1_w = nullptr;
  300. ggml_tensor * conv1d_1_b = nullptr;
  301. ggml_tensor * conv1d_2_w = nullptr;
  302. ggml_tensor * conv1d_2_b = nullptr;
  303. ggml_tensor * mm_norm_pre_w = nullptr;
  304. ggml_tensor * mm_norm_mid_w = nullptr;
  305. bool audio_has_avgpool() const {
  306. return proj_type == PROJECTOR_TYPE_QWEN2A
  307. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  308. }
  309. bool audio_has_stack_frames() const {
  310. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  311. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  312. }
  313. };
  314. struct clip_ctx {
  315. clip_model model;
  316. gguf_context_ptr ctx_gguf;
  317. ggml_context_ptr ctx_data;
  318. std::vector<uint8_t> buf_compute_meta;
  319. std::vector<ggml_backend_t> backend_ptrs;
  320. std::vector<ggml_backend_buffer_type_t> backend_buft;
  321. ggml_backend_t backend = nullptr;
  322. ggml_backend_t backend_cpu = nullptr;
  323. ggml_backend_buffer_ptr buf;
  324. int max_nodes = 8192;
  325. ggml_backend_sched_ptr sched;
  326. // for debugging
  327. bool debug_graph = false;
  328. std::vector<ggml_tensor *> debug_print_tensors;
  329. clip_ctx(clip_context_params & ctx_params) {
  330. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  331. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  332. if (!backend_cpu) {
  333. throw std::runtime_error("failed to initialize CPU backend");
  334. }
  335. if (ctx_params.use_gpu) {
  336. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  337. if (backend_name != nullptr) {
  338. backend = ggml_backend_init_by_name(backend_name, nullptr);
  339. if (!backend) {
  340. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  341. }
  342. }
  343. if (!backend) {
  344. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  345. }
  346. }
  347. if (backend) {
  348. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  349. backend_ptrs.push_back(backend);
  350. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  351. } else {
  352. backend = backend_cpu;
  353. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  354. }
  355. backend_ptrs.push_back(backend_cpu);
  356. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  357. sched.reset(
  358. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  359. );
  360. }
  361. ~clip_ctx() {
  362. ggml_backend_free(backend);
  363. if (backend != backend_cpu) {
  364. ggml_backend_free(backend_cpu);
  365. }
  366. }
  367. // this function is added so that we don't change too much of the existing code
  368. projector_type proj_type() const {
  369. return model.proj_type;
  370. }
  371. };
  372. struct clip_graph {
  373. clip_ctx * ctx;
  374. const clip_model & model;
  375. const clip_hparams & hparams;
  376. // we only support single image per batch
  377. const clip_image_f32 & img;
  378. const int patch_size;
  379. const int n_patches_x;
  380. const int n_patches_y;
  381. const int n_patches;
  382. const int n_embd;
  383. const int n_head;
  384. const int d_head;
  385. const int n_layer;
  386. const float eps;
  387. const float kq_scale;
  388. ggml_context_ptr ctx0_ptr;
  389. ggml_context * ctx0;
  390. ggml_cgraph * gf;
  391. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  392. ctx(ctx),
  393. model(ctx->model),
  394. hparams(model.hparams),
  395. img(img),
  396. patch_size(hparams.patch_size),
  397. n_patches_x(img.nx / patch_size),
  398. n_patches_y(img.ny / patch_size),
  399. n_patches(n_patches_x * n_patches_y),
  400. n_embd(hparams.n_embd),
  401. n_head(hparams.n_head),
  402. d_head(n_embd / n_head),
  403. n_layer(hparams.n_layer),
  404. eps(hparams.eps),
  405. kq_scale(1.0f / sqrtf((float)d_head)) {
  406. struct ggml_init_params params = {
  407. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  408. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  409. /*.no_alloc =*/ true,
  410. };
  411. ctx0_ptr.reset(ggml_init(params));
  412. ctx0 = ctx0_ptr.get();
  413. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  414. }
  415. ggml_cgraph * build_siglip() {
  416. ggml_tensor * inp = build_inp();
  417. ggml_tensor * learned_pos_embd = model.position_embeddings;
  418. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  419. learned_pos_embd = resize_position_embeddings();
  420. }
  421. ggml_tensor * cur = build_vit(
  422. inp, n_patches,
  423. NORM_TYPE_NORMAL,
  424. hparams.ffn_op,
  425. learned_pos_embd,
  426. nullptr);
  427. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  428. const int batch_size = 1;
  429. GGML_ASSERT(n_patches_x == n_patches_y);
  430. const int patches_per_image = n_patches_x;
  431. const int kernel_size = hparams.proj_scale_factor;
  432. cur = ggml_transpose(ctx0, cur);
  433. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  434. // doing a pool2d to reduce the number of output tokens
  435. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  436. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  437. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  438. // apply norm before projection
  439. cur = ggml_rms_norm(ctx0, cur, eps);
  440. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  441. // apply projection
  442. cur = ggml_mul_mat(ctx0,
  443. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  444. cur);
  445. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  446. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  447. const int scale_factor = model.hparams.proj_scale_factor;
  448. const int n_embd = cur->ne[0];
  449. const int seq = cur->ne[1];
  450. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  451. const int height = std::sqrt(seq);
  452. const int width = std::sqrt(seq);
  453. GGML_ASSERT(scale_factor != 0);
  454. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
  455. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  456. cur = ggml_cont_4d(ctx0, cur,
  457. n_embd * scale_factor * scale_factor,
  458. height / scale_factor,
  459. width / scale_factor,
  460. bsz);
  461. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  462. cur = ggml_cont_3d(ctx0, cur,
  463. n_embd * scale_factor * scale_factor,
  464. seq / (scale_factor * scale_factor),
  465. bsz);
  466. cur = ggml_mul_mat(ctx0, model.projection, cur);
  467. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  468. // pixel unshuffle block
  469. const int scale_factor = model.hparams.proj_scale_factor;
  470. GGML_ASSERT(scale_factor > 1);
  471. const int n_embd = cur->ne[0];
  472. int width = img.nx / patch_size;
  473. int height = img.ny / patch_size;
  474. // pad width and height to factor
  475. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  476. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  477. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  478. if (pad_width || pad_height) {
  479. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  480. width += pad_width;
  481. height += pad_height;
  482. }
  483. // unshuffle h
  484. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  485. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  486. // unshuffle w
  487. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  488. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  489. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  490. // projection
  491. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  492. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  493. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  494. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  495. cur = ggml_add(ctx0, cur, model.mm_1_b);
  496. cur = ggml_gelu(ctx0, cur);
  497. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  498. cur = ggml_add(ctx0, cur, model.mm_2_b);
  499. } else {
  500. GGML_ABORT("SigLIP: Unsupported projector type");
  501. }
  502. // build the graph
  503. ggml_build_forward_expand(gf, cur);
  504. return gf;
  505. }
  506. ggml_cgraph * build_pixtral() {
  507. const int n_merge = hparams.spatial_merge_size;
  508. // 2D input positions
  509. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  510. ggml_set_name(pos_h, "pos_h");
  511. ggml_set_input(pos_h);
  512. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  513. ggml_set_name(pos_w, "pos_w");
  514. ggml_set_input(pos_w);
  515. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  516. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  517. };
  518. ggml_tensor * inp = build_inp();
  519. ggml_tensor * cur = build_vit(
  520. inp, n_patches,
  521. NORM_TYPE_RMS,
  522. hparams.ffn_op,
  523. nullptr, // no learned pos embd
  524. add_pos);
  525. // mistral small 3.1 patch merger
  526. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  527. if (model.mm_patch_merger_w) {
  528. GGML_ASSERT(hparams.spatial_merge_size > 0);
  529. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  530. // reshape image tokens to 2D grid
  531. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  532. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  533. cur = ggml_cont(ctx0, cur);
  534. // torch.nn.functional.unfold is just an im2col under the hood
  535. // we just need a dummy kernel to make it work
  536. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  537. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  538. // project to n_embd
  539. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  540. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  541. }
  542. // LlavaMultiModalProjector (always using GELU activation)
  543. {
  544. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  545. if (model.mm_1_b) {
  546. cur = ggml_add(ctx0, cur, model.mm_1_b);
  547. }
  548. cur = ggml_gelu(ctx0, cur);
  549. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  550. if (model.mm_2_b) {
  551. cur = ggml_add(ctx0, cur, model.mm_2_b);
  552. }
  553. }
  554. // arrangement of the [IMG_BREAK] token
  555. {
  556. // not efficient, but works
  557. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  558. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  559. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  560. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  561. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  562. const int p_total = p_x * p_y;
  563. const int n_embd_text = cur->ne[0];
  564. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  565. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  566. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  567. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  568. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  569. tmp = ggml_concat(ctx0, tmp, tok, 1);
  570. cur = ggml_view_2d(ctx0, tmp,
  571. n_embd_text, n_tokens_output,
  572. ggml_row_size(tmp->type, n_embd_text), 0);
  573. }
  574. // build the graph
  575. ggml_build_forward_expand(gf, cur);
  576. return gf;
  577. }
  578. // Qwen2VL and Qwen2.5VL use M-RoPE
  579. ggml_cgraph * build_qwen2vl() {
  580. GGML_ASSERT(model.patch_bias == nullptr);
  581. GGML_ASSERT(model.class_embedding == nullptr);
  582. const int batch_size = 1;
  583. const bool use_window_attn = hparams.n_wa_pattern > 0;
  584. const int n_wa_pattern = hparams.n_wa_pattern;
  585. const int n_pos = n_patches;
  586. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  587. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  588. ? NORM_TYPE_RMS // qwen 2.5 vl
  589. : NORM_TYPE_NORMAL; // qwen 2 vl
  590. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  591. ggml_tensor * inp_raw = build_inp_raw();
  592. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  593. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  594. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  595. // second conv dimension
  596. {
  597. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  598. inp = ggml_add(ctx0, inp, inp_1);
  599. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  600. inp = ggml_cont_4d(
  601. ctx0, inp,
  602. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  603. inp = ggml_reshape_4d(
  604. ctx0, inp,
  605. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  606. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  607. inp = ggml_cont_3d(
  608. ctx0, inp,
  609. n_embd, n_patches_x * n_patches_y, batch_size);
  610. }
  611. ggml_tensor * inpL = inp;
  612. ggml_tensor * window_mask = nullptr;
  613. ggml_tensor * window_idx = nullptr;
  614. ggml_tensor * inv_window_idx = nullptr;
  615. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  616. ggml_set_name(positions, "positions");
  617. ggml_set_input(positions);
  618. // pre-layernorm
  619. if (model.pre_ln_w) {
  620. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  621. }
  622. if (use_window_attn) {
  623. // handle window attention inputs
  624. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  625. ggml_set_name(inv_window_idx, "inv_window_idx");
  626. ggml_set_input(inv_window_idx);
  627. // mask for window attention
  628. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  629. ggml_set_name(window_mask, "window_mask");
  630. ggml_set_input(window_mask);
  631. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  632. GGML_ASSERT(batch_size == 1);
  633. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  634. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  635. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  636. }
  637. // loop over layers
  638. for (int il = 0; il < n_layer; il++) {
  639. auto & layer = model.layers[il];
  640. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  641. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  642. // layernorm1
  643. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  644. cb(cur, "ln1", il);
  645. // self-attention
  646. {
  647. ggml_tensor * Qcur = ggml_add(ctx0,
  648. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  649. ggml_tensor * Kcur = ggml_add(ctx0,
  650. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  651. ggml_tensor * Vcur = ggml_add(ctx0,
  652. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  653. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  654. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  655. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  656. cb(Qcur, "Qcur", il);
  657. cb(Kcur, "Kcur", il);
  658. cb(Vcur, "Vcur", il);
  659. // apply M-RoPE
  660. Qcur = ggml_rope_multi(
  661. ctx0, Qcur, positions, nullptr,
  662. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  663. Kcur = ggml_rope_multi(
  664. ctx0, Kcur, positions, nullptr,
  665. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  666. cb(Qcur, "Qcur_rope", il);
  667. cb(Kcur, "Kcur_rope", il);
  668. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  669. cur = build_attn(layer.o_w, layer.o_b,
  670. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  671. cb(cur, "attn_out", il);
  672. }
  673. // re-add the layer input, e.g., residual
  674. cur = ggml_add(ctx0, cur, inpL);
  675. inpL = cur; // inpL = residual, cur = hidden_states
  676. cb(cur, "ffn_inp", il);
  677. // layernorm2
  678. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  679. cb(cur, "ffn_inp_normed", il);
  680. // ffn
  681. cur = build_ffn(cur,
  682. layer.ff_up_w, layer.ff_up_b,
  683. layer.ff_gate_w, layer.ff_gate_b,
  684. layer.ff_down_w, layer.ff_down_b,
  685. hparams.ffn_op, il);
  686. cb(cur, "ffn_out", il);
  687. // residual 2
  688. cur = ggml_add(ctx0, inpL, cur);
  689. cb(cur, "layer_out", il);
  690. inpL = cur;
  691. }
  692. // post-layernorm
  693. if (model.post_ln_w) {
  694. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  695. }
  696. // multimodal projection
  697. ggml_tensor * embeddings = inpL;
  698. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  699. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  700. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  701. // GELU activation
  702. embeddings = ggml_gelu(ctx0, embeddings);
  703. // Second linear layer
  704. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  705. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  706. if (use_window_attn) {
  707. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  708. ggml_set_name(window_idx, "window_idx");
  709. ggml_set_input(window_idx);
  710. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  711. GGML_ASSERT(batch_size == 1);
  712. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  713. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  714. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  715. }
  716. // build the graph
  717. ggml_build_forward_expand(gf, embeddings);
  718. return gf;
  719. }
  720. ggml_cgraph * build_minicpmv() {
  721. const int batch_size = 1;
  722. GGML_ASSERT(model.class_embedding == nullptr);
  723. const int n_pos = n_patches;
  724. // position embeddings for the projector (not for ViT)
  725. int n_output_dim = clip_n_mmproj_embd(ctx);
  726. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  727. ggml_set_name(pos_embed, "pos_embed");
  728. ggml_set_input(pos_embed);
  729. // for selecting learned pos embd, used by ViT
  730. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  731. ggml_set_name(positions, "positions");
  732. ggml_set_input(positions);
  733. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  734. ggml_tensor * inp = build_inp();
  735. ggml_tensor * embeddings = build_vit(
  736. inp, n_patches,
  737. NORM_TYPE_NORMAL,
  738. hparams.ffn_op,
  739. learned_pos_embd,
  740. nullptr);
  741. // resampler projector (it is just another transformer)
  742. ggml_tensor * q = model.mm_model_query;
  743. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  744. // norm
  745. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  746. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  747. // k = v + pos_embed
  748. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  749. // attention
  750. {
  751. int n_embd = clip_n_mmproj_embd(ctx);
  752. const int d_head = 128;
  753. int n_head = n_embd/d_head;
  754. // Use actual config value if available, otherwise fall back to hardcoded values
  755. int num_query = ctx->model.hparams.minicpmv_query_num;
  756. ggml_tensor * Q = ggml_add(ctx0,
  757. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  758. model.mm_model_attn_q_b);
  759. ggml_tensor * K = ggml_add(ctx0,
  760. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  761. model.mm_model_attn_k_b);
  762. ggml_tensor * V = ggml_add(ctx0,
  763. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  764. model.mm_model_attn_v_b);
  765. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  766. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  767. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  768. cb(Q, "resampler_Q", -1);
  769. cb(K, "resampler_K", -1);
  770. cb(V, "resampler_V", -1);
  771. embeddings = build_attn(
  772. model.mm_model_attn_o_w,
  773. model.mm_model_attn_o_b,
  774. Q, K, V, nullptr, kq_scale, -1);
  775. cb(embeddings, "resampler_attn_out", -1);
  776. }
  777. // layernorm
  778. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  779. // projection
  780. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  781. // build the graph
  782. ggml_build_forward_expand(gf, embeddings);
  783. return gf;
  784. }
  785. ggml_cgraph * build_internvl() {
  786. GGML_ASSERT(model.class_embedding != nullptr);
  787. GGML_ASSERT(model.position_embeddings != nullptr);
  788. const int n_pos = n_patches + 1;
  789. ggml_tensor * inp = build_inp();
  790. // add CLS token
  791. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  792. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  793. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  794. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  795. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  796. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  797. ggml_tensor * cur = build_vit(
  798. inp, n_pos,
  799. norm_t,
  800. hparams.ffn_op,
  801. model.position_embeddings,
  802. nullptr);
  803. // remove CLS token
  804. cur = ggml_view_2d(ctx0, cur,
  805. n_embd, n_patches,
  806. ggml_row_size(cur->type, n_embd), 0);
  807. // pixel shuffle
  808. {
  809. const int scale_factor = model.hparams.proj_scale_factor;
  810. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  811. const int height = n_patches_y;
  812. const int width = n_patches_x;
  813. GGML_ASSERT(scale_factor > 0);
  814. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  815. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  816. cur = ggml_cont_4d(ctx0, cur,
  817. n_embd * scale_factor * scale_factor,
  818. height / scale_factor,
  819. width / scale_factor,
  820. bsz);
  821. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  822. // flatten to 2D
  823. cur = ggml_cont_2d(ctx0, cur,
  824. n_embd * scale_factor * scale_factor,
  825. cur->ne[1] * cur->ne[2]);
  826. }
  827. // projector (always using GELU activation)
  828. {
  829. // projector LayerNorm uses pytorch's default eps = 1e-5
  830. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  831. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  832. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  833. cur = ggml_add(ctx0, cur, model.mm_1_b);
  834. cur = ggml_gelu(ctx0, cur);
  835. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  836. cur = ggml_add(ctx0, cur, model.mm_3_b);
  837. }
  838. // build the graph
  839. ggml_build_forward_expand(gf, cur);
  840. return gf;
  841. }
  842. ggml_cgraph * build_llama4() {
  843. GGML_ASSERT(model.class_embedding != nullptr);
  844. GGML_ASSERT(model.position_embeddings != nullptr);
  845. const int n_pos = n_patches + 1; // +1 for [CLS]
  846. // 2D input positions
  847. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  848. ggml_set_name(pos_h, "pos_h");
  849. ggml_set_input(pos_h);
  850. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  851. ggml_set_name(pos_w, "pos_w");
  852. ggml_set_input(pos_w);
  853. ggml_tensor * inp = build_inp_raw();
  854. // Llama4UnfoldConvolution
  855. {
  856. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  857. patch_size, patch_size, 3, n_embd);
  858. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  859. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  860. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  861. cb(inp, "patch_conv", -1);
  862. }
  863. // add CLS token
  864. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  865. // build ViT with 2D position embeddings
  866. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  867. // first half is X axis and second half is Y axis
  868. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  869. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  870. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  871. };
  872. ggml_tensor * cur = build_vit(
  873. inp, n_pos,
  874. NORM_TYPE_NORMAL,
  875. hparams.ffn_op,
  876. model.position_embeddings,
  877. add_pos);
  878. // remove CLS token
  879. cur = ggml_view_2d(ctx0, cur,
  880. n_embd, n_patches,
  881. ggml_row_size(cur->type, n_embd), 0);
  882. // pixel shuffle
  883. // based on Llama4VisionPixelShuffleMLP
  884. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  885. {
  886. const int scale_factor = model.hparams.proj_scale_factor;
  887. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  888. GGML_ASSERT(scale_factor > 0);
  889. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  890. cur = ggml_reshape_4d(ctx0, cur,
  891. n_embd * scale_factor,
  892. n_patches_x / scale_factor,
  893. n_patches_y,
  894. bsz);
  895. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  896. cur = ggml_cont_4d(ctx0, cur,
  897. n_embd * scale_factor * scale_factor,
  898. n_patches_x / scale_factor,
  899. n_patches_y / scale_factor,
  900. bsz);
  901. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  902. // flatten to 2D
  903. cur = ggml_cont_2d(ctx0, cur,
  904. n_embd * scale_factor * scale_factor,
  905. n_patches / scale_factor / scale_factor);
  906. cb(cur, "pixel_shuffle", -1);
  907. }
  908. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  909. {
  910. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  911. cur = ggml_gelu(ctx0, cur);
  912. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  913. cur = ggml_gelu(ctx0, cur);
  914. cb(cur, "adapter_mlp", -1);
  915. }
  916. // Llama4MultiModalProjector
  917. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  918. cb(cur, "projected", -1);
  919. // build the graph
  920. ggml_build_forward_expand(gf, cur);
  921. return gf;
  922. }
  923. // this graph is used by llava, granite and glm
  924. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  925. ggml_cgraph * build_llava() {
  926. const int batch_size = 1;
  927. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  928. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  929. // Calculate the deepest feature layer based on hparams and projector type
  930. int max_feature_layer = n_layer;
  931. {
  932. // Get the index of the second to last layer; this is the default for models that have a llava projector
  933. int il_last = hparams.n_layer - 1;
  934. int deepest_feature_layer = -1;
  935. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  936. il_last += 1;
  937. }
  938. // If we set explicit vision feature layers, only go up to the deepest one
  939. // NOTE: only used by granite-vision models for now
  940. for (const auto & feature_layer : hparams.vision_feature_layer) {
  941. if (feature_layer > deepest_feature_layer) {
  942. deepest_feature_layer = feature_layer;
  943. }
  944. }
  945. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  946. }
  947. ggml_tensor * inp = build_inp();
  948. // concat class_embeddings and patch_embeddings
  949. if (model.class_embedding) {
  950. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  951. }
  952. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  953. ggml_set_name(positions, "positions");
  954. ggml_set_input(positions);
  955. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  956. ggml_tensor * inpL = inp;
  957. // pre-layernorm
  958. if (model.pre_ln_w) {
  959. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  960. cb(inpL, "pre_ln", -1);
  961. }
  962. std::vector<ggml_tensor *> embedding_stack;
  963. const auto & vision_feature_layer = hparams.vision_feature_layer;
  964. // loop over layers
  965. for (int il = 0; il < max_feature_layer; il++) {
  966. auto & layer = model.layers[il];
  967. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  968. // If this is an embedding feature layer, save the output.
  969. // NOTE: 0 index here refers to the input to the encoder.
  970. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  971. embedding_stack.push_back(cur);
  972. }
  973. // layernorm1
  974. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  975. cb(cur, "layer_inp_normed", il);
  976. // self-attention
  977. {
  978. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  979. if (layer.q_b) {
  980. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  981. }
  982. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  983. if (layer.k_b) {
  984. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  985. }
  986. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  987. if (layer.v_b) {
  988. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  989. }
  990. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  991. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  992. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  993. cb(Qcur, "Qcur", il);
  994. cb(Kcur, "Kcur", il);
  995. cb(Vcur, "Vcur", il);
  996. cur = build_attn(layer.o_w, layer.o_b,
  997. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  998. cb(cur, "attn_out", il);
  999. }
  1000. // re-add the layer input, e.g., residual
  1001. cur = ggml_add(ctx0, cur, inpL);
  1002. inpL = cur; // inpL = residual, cur = hidden_states
  1003. cb(cur, "ffn_inp", il);
  1004. // layernorm2
  1005. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1006. cb(cur, "ffn_inp_normed", il);
  1007. // ffn
  1008. cur = build_ffn(cur,
  1009. layer.ff_up_w, layer.ff_up_b,
  1010. layer.ff_gate_w, layer.ff_gate_b,
  1011. layer.ff_down_w, layer.ff_down_b,
  1012. hparams.ffn_op, il);
  1013. cb(cur, "ffn_out", il);
  1014. // residual 2
  1015. cur = ggml_add(ctx0, inpL, cur);
  1016. cb(cur, "layer_out", il);
  1017. inpL = cur;
  1018. }
  1019. // post-layernorm
  1020. if (model.post_ln_w) {
  1021. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1022. }
  1023. ggml_tensor * embeddings = inpL;
  1024. // process vision feature layers (used by granite)
  1025. {
  1026. // final layer is a vision feature layer
  1027. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1028. embedding_stack.push_back(inpL);
  1029. }
  1030. // If feature layers are explicitly set, stack them (if we have multiple)
  1031. if (!embedding_stack.empty()) {
  1032. embeddings = embedding_stack[0];
  1033. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1034. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1035. }
  1036. }
  1037. }
  1038. // llava projector (also used by granite)
  1039. if (ctx->model.hparams.has_llava_projector) {
  1040. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1041. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1042. ggml_set_name(patches, "patches");
  1043. ggml_set_input(patches);
  1044. // shape [1, 576, 1024]
  1045. // ne is whcn, ne = [1024, 576, 1, 1]
  1046. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1047. // print_tensor_info(embeddings, "embeddings");
  1048. // llava projector
  1049. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1050. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1051. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1052. embeddings = ggml_gelu(ctx0, embeddings);
  1053. if (model.mm_2_w) {
  1054. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1055. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1056. }
  1057. }
  1058. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1059. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1060. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1061. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1062. // First LayerNorm
  1063. embeddings = ggml_norm(ctx0, embeddings, eps);
  1064. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1065. model.mm_1_b);
  1066. // GELU activation
  1067. embeddings = ggml_gelu(ctx0, embeddings);
  1068. // Second linear layer
  1069. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1070. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1071. // Second LayerNorm
  1072. embeddings = ggml_norm(ctx0, embeddings, eps);
  1073. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1074. model.mm_4_b);
  1075. }
  1076. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1077. // MobileVLM projector
  1078. int n_patch = 24;
  1079. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1080. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1081. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1082. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1083. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1084. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1085. // block 1
  1086. ggml_tensor * block_1 = nullptr;
  1087. {
  1088. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1089. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1090. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1091. // stride = 1, padding = 1, bias is nullptr
  1092. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1093. // layer norm
  1094. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1095. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1096. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1097. block_1 = ggml_norm(ctx0, block_1, eps);
  1098. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1099. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1100. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1101. // hardswish
  1102. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1103. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1104. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1105. // pointwise conv
  1106. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1107. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1108. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1109. block_1 = ggml_relu(ctx0, block_1);
  1110. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1111. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1112. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1113. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1114. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1115. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1116. int w = block_1->ne[0], h = block_1->ne[1];
  1117. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1118. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1119. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1120. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1121. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1122. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1123. block_1 = ggml_norm(ctx0, block_1, eps);
  1124. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1125. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1126. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1127. // residual
  1128. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1129. }
  1130. // block_2
  1131. {
  1132. // stride = 2
  1133. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1134. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1135. // layer norm
  1136. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1137. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1138. block_1 = ggml_norm(ctx0, block_1, eps);
  1139. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1140. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1141. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1142. // hardswish
  1143. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1144. // not sure the parameters is right for globalAvgPooling
  1145. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1146. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1147. // pointwise conv
  1148. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1149. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1150. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1151. block_1 = ggml_relu(ctx0, block_1);
  1152. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1153. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1154. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1155. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1156. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1157. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1158. int w = block_1->ne[0], h = block_1->ne[1];
  1159. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1160. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1161. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1162. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1163. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1164. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1165. block_1 = ggml_norm(ctx0, block_1, eps);
  1166. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1167. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1168. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1169. }
  1170. embeddings = block_1;
  1171. }
  1172. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1173. {
  1174. int n_patch = 24;
  1175. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1176. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1177. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1178. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1179. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1180. // mlp_2 ne = [2048, 576, 1, 1]
  1181. // // AVG Pool Layer 2*2, strides = 2
  1182. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1183. // mlp_2 ne = [576, 2048, 1, 1]
  1184. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1185. // mlp_2 ne [24, 24, 2048, 1]
  1186. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1187. // weight ne = [3, 3, 2048, 1]
  1188. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1189. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1190. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1191. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1192. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1193. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1194. embeddings = peg_0;
  1195. }
  1196. else {
  1197. GGML_ABORT("fatal error");
  1198. }
  1199. }
  1200. // glm projector
  1201. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1202. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1203. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1204. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1205. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1206. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1207. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1208. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1209. // GLU
  1210. {
  1211. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1212. embeddings = ggml_norm(ctx0, embeddings, eps);
  1213. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1214. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1215. ggml_tensor * x = embeddings;
  1216. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1217. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1218. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1219. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1220. }
  1221. // arrangement of BOI/EOI token embeddings
  1222. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1223. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1224. {
  1225. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1226. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1227. }
  1228. }
  1229. else {
  1230. GGML_ABORT("llava: unknown projector type");
  1231. }
  1232. // build the graph
  1233. ggml_build_forward_expand(gf, embeddings);
  1234. return gf;
  1235. }
  1236. // whisper encoder with custom projector
  1237. ggml_cgraph * build_whisper_enc() {
  1238. const int n_frames = img.nx;
  1239. const int n_pos = n_frames / 2;
  1240. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1241. ggml_tensor * inp = build_inp_raw(1);
  1242. // conv1d block
  1243. {
  1244. // convolution + gelu
  1245. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1246. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1247. cur = ggml_gelu_erf(ctx0, cur);
  1248. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1249. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1250. cur = ggml_gelu_erf(ctx0, cur);
  1251. // transpose
  1252. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1253. cb(inp, "after_conv1d", -1);
  1254. }
  1255. // sanity check (only check one layer, but it should be the same for all)
  1256. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1257. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1258. GGML_ASSERT(model.layers[0].q_b);
  1259. GGML_ASSERT(model.layers[0].v_b);
  1260. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1261. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1262. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1263. ctx0, model.position_embeddings,
  1264. model.position_embeddings->ne[0], n_pos,
  1265. model.position_embeddings->nb[1], 0
  1266. );
  1267. ggml_tensor * cur = build_vit(
  1268. inp, n_pos,
  1269. NORM_TYPE_NORMAL,
  1270. hparams.ffn_op,
  1271. pos_embd_selected,
  1272. nullptr);
  1273. cb(cur, "after_transformer", -1);
  1274. if (model.audio_has_stack_frames()) {
  1275. // StackAudioFrames
  1276. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1277. int64_t stride = n_embd * hparams.proj_stack_factor;
  1278. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1279. int64_t pad = padded_len - ggml_nelements(cur);
  1280. if (pad > 0) {
  1281. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1282. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1283. }
  1284. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1285. ggml_row_size(cur->type, stride), 0);
  1286. cb(cur, "after_stacked", -1);
  1287. }
  1288. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1289. // UltravoxProjector
  1290. // pre-norm
  1291. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1292. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1293. // ffn in
  1294. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1295. // swiglu
  1296. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1297. cur = ggml_swiglu_swapped(ctx0, cur);
  1298. // mid-norm
  1299. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1300. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1301. // ffn out
  1302. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1303. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1304. // projector
  1305. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1306. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1307. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1308. // projector
  1309. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1310. cur = ggml_gelu_erf(ctx0, cur);
  1311. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1312. } else {
  1313. GGML_ABORT("%s: unknown projector type", __func__);
  1314. }
  1315. cb(cur, "projected", -1);
  1316. ggml_build_forward_expand(gf, cur);
  1317. return gf;
  1318. }
  1319. private:
  1320. //
  1321. // utility functions
  1322. //
  1323. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1324. if (ctx->debug_graph) {
  1325. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1326. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1327. ggml_set_name(cur, cur_name.c_str());
  1328. ggml_set_output(cur);
  1329. ggml_build_forward_expand(gf, cur);
  1330. ctx->debug_print_tensors.push_back(cur);
  1331. }
  1332. }
  1333. // siglip2 naflex
  1334. ggml_tensor * resize_position_embeddings() {
  1335. ggml_tensor * pos_embd = model.position_embeddings;
  1336. const int height = img.ny / patch_size;
  1337. const int width = img.nx / patch_size;
  1338. if (!pos_embd || height * width == pos_embd->ne[1]) {
  1339. return pos_embd;
  1340. }
  1341. const int n_pos_embd = std::sqrt(pos_embd->ne[1]);
  1342. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_pos_embd, n_pos_embd); // -> (n_embd, n_pos_embd, n_pos_embd)
  1343. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_pos_embd, n_pos_embd, n_embd)
  1344. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, 1); // -> (width, height, n_embd)
  1345. pos_embd = ggml_reshape_2d(ctx0, pos_embd, height * width, n_embd); // -> (height * width, n_embd)
  1346. pos_embd = ggml_transpose(ctx0, pos_embd); // -> (n_embd, height * width)
  1347. pos_embd = ggml_cont(ctx0, pos_embd);
  1348. return pos_embd;
  1349. }
  1350. // build vision transformer (ViT) cgraph
  1351. // this function should cover most of the models
  1352. // if your model has specific features, you should probably duplicate this function
  1353. ggml_tensor * build_vit(
  1354. ggml_tensor * inp,
  1355. int64_t n_pos,
  1356. norm_type norm_t,
  1357. ffn_op_type ffn_t,
  1358. ggml_tensor * learned_pos_embd,
  1359. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1360. ) {
  1361. if (learned_pos_embd) {
  1362. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1363. cb(inp, "pos_embed", -1);
  1364. }
  1365. ggml_tensor * inpL = inp;
  1366. // pre-layernorm
  1367. if (model.pre_ln_w) {
  1368. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1369. cb(inpL, "pre_ln", -1);
  1370. }
  1371. // loop over layers
  1372. for (int il = 0; il < n_layer; il++) {
  1373. auto & layer = model.layers[il];
  1374. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1375. // layernorm1
  1376. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1377. cb(cur, "layer_inp_normed", il);
  1378. // self-attention
  1379. {
  1380. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1381. if (layer.q_b) {
  1382. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1383. }
  1384. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1385. if (layer.k_b) {
  1386. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1387. }
  1388. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1389. if (layer.v_b) {
  1390. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1391. }
  1392. if (layer.q_norm) {
  1393. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1394. cb(Qcur, "Qcur_norm", il);
  1395. }
  1396. if (layer.k_norm) {
  1397. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1398. cb(Kcur, "Kcur_norm", il);
  1399. }
  1400. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1401. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1402. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1403. cb(Qcur, "Qcur", il);
  1404. cb(Kcur, "Kcur", il);
  1405. cb(Vcur, "Vcur", il);
  1406. if (add_pos) {
  1407. Qcur = add_pos(Qcur, layer);
  1408. Kcur = add_pos(Kcur, layer);
  1409. cb(Qcur, "Qcur_pos", il);
  1410. cb(Kcur, "Kcur_pos", il);
  1411. }
  1412. cur = build_attn(layer.o_w, layer.o_b,
  1413. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1414. cb(cur, "attn_out", il);
  1415. }
  1416. if (layer.ls_1_w) {
  1417. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1418. cb(cur, "attn_out_scaled", il);
  1419. }
  1420. // re-add the layer input, e.g., residual
  1421. cur = ggml_add(ctx0, cur, inpL);
  1422. inpL = cur; // inpL = residual, cur = hidden_states
  1423. cb(cur, "ffn_inp", il);
  1424. // layernorm2
  1425. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1426. cb(cur, "ffn_inp_normed", il);
  1427. // ffn
  1428. cur = build_ffn(cur,
  1429. layer.ff_up_w, layer.ff_up_b,
  1430. layer.ff_gate_w, layer.ff_gate_b,
  1431. layer.ff_down_w, layer.ff_down_b,
  1432. ffn_t, il);
  1433. cb(cur, "ffn_out", il);
  1434. if (layer.ls_2_w) {
  1435. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1436. cb(cur, "ffn_out_scaled", il);
  1437. }
  1438. // residual 2
  1439. cur = ggml_add(ctx0, inpL, cur);
  1440. cb(cur, "layer_out", il);
  1441. inpL = cur;
  1442. }
  1443. if (ctx->model.audio_has_avgpool()) {
  1444. ggml_tensor * cur = inpL;
  1445. cur = ggml_transpose(ctx0, cur);
  1446. cur = ggml_cont(ctx0, cur);
  1447. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1448. cur = ggml_transpose(ctx0, cur);
  1449. cur = ggml_cont(ctx0, cur);
  1450. inpL = cur;
  1451. }
  1452. // post-layernorm
  1453. if (model.post_ln_w) {
  1454. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1455. }
  1456. return inpL;
  1457. }
  1458. // build the input after conv2d (inp_raw --> patches)
  1459. // returns tensor with shape [n_embd, n_patches]
  1460. ggml_tensor * build_inp() {
  1461. ggml_tensor * inp_raw = build_inp_raw();
  1462. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1463. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1464. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1465. if (model.patch_bias) {
  1466. inp = ggml_add(ctx0, inp, model.patch_bias);
  1467. cb(inp, "patch_bias", -1);
  1468. }
  1469. return inp;
  1470. }
  1471. ggml_tensor * build_inp_raw(int channels = 3) {
  1472. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1473. ggml_set_name(inp_raw, "inp_raw");
  1474. ggml_set_input(inp_raw);
  1475. return inp_raw;
  1476. }
  1477. ggml_tensor * build_norm(
  1478. ggml_tensor * cur,
  1479. ggml_tensor * mw,
  1480. ggml_tensor * mb,
  1481. norm_type type,
  1482. float norm_eps,
  1483. int il) const {
  1484. cur = type == NORM_TYPE_RMS
  1485. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1486. : ggml_norm(ctx0, cur, norm_eps);
  1487. if (mw || mb) {
  1488. cb(cur, "norm", il);
  1489. }
  1490. if (mw) {
  1491. cur = ggml_mul(ctx0, cur, mw);
  1492. if (mb) {
  1493. cb(cur, "norm_w", il);
  1494. }
  1495. }
  1496. if (mb) {
  1497. cur = ggml_add(ctx0, cur, mb);
  1498. }
  1499. return cur;
  1500. }
  1501. ggml_tensor * build_ffn(
  1502. ggml_tensor * cur,
  1503. ggml_tensor * up,
  1504. ggml_tensor * up_b,
  1505. ggml_tensor * gate,
  1506. ggml_tensor * gate_b,
  1507. ggml_tensor * down,
  1508. ggml_tensor * down_b,
  1509. ffn_op_type type_op,
  1510. int il) const {
  1511. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1512. cb(tmp, "ffn_up", il);
  1513. if (up_b) {
  1514. tmp = ggml_add(ctx0, tmp, up_b);
  1515. cb(tmp, "ffn_up_b", il);
  1516. }
  1517. if (gate) {
  1518. cur = ggml_mul_mat(ctx0, gate, cur);
  1519. cb(cur, "ffn_gate", il);
  1520. if (gate_b) {
  1521. cur = ggml_add(ctx0, cur, gate_b);
  1522. cb(cur, "ffn_gate_b", il);
  1523. }
  1524. } else {
  1525. cur = tmp;
  1526. }
  1527. // we only support parallel ffn for now
  1528. switch (type_op) {
  1529. case FFN_SILU:
  1530. if (gate) {
  1531. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1532. cb(cur, "ffn_swiglu", il);
  1533. } else {
  1534. cur = ggml_silu(ctx0, cur);
  1535. cb(cur, "ffn_silu", il);
  1536. } break;
  1537. case FFN_GELU:
  1538. if (gate) {
  1539. cur = ggml_geglu_split(ctx0, cur, tmp);
  1540. cb(cur, "ffn_geglu", il);
  1541. } else {
  1542. cur = ggml_gelu(ctx0, cur);
  1543. cb(cur, "ffn_gelu", il);
  1544. } break;
  1545. case FFN_GELU_ERF:
  1546. if (gate) {
  1547. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1548. cb(cur, "ffn_geglu_erf", il);
  1549. } else {
  1550. cur = ggml_gelu_erf(ctx0, cur);
  1551. cb(cur, "ffn_gelu_erf", il);
  1552. } break;
  1553. case FFN_GELU_QUICK:
  1554. if (gate) {
  1555. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1556. cb(cur, "ffn_geglu_quick", il);
  1557. } else {
  1558. cur = ggml_gelu_quick(ctx0, cur);
  1559. cb(cur, "ffn_gelu_quick", il);
  1560. } break;
  1561. }
  1562. if (down) {
  1563. cur = ggml_mul_mat(ctx0, down, cur);
  1564. }
  1565. if (down_b) {
  1566. cb(cur, "ffn_down", il);
  1567. }
  1568. if (down_b) {
  1569. cur = ggml_add(ctx0, cur, down_b);
  1570. }
  1571. return cur;
  1572. }
  1573. ggml_tensor * build_attn(
  1574. ggml_tensor * wo,
  1575. ggml_tensor * wo_b,
  1576. ggml_tensor * q_cur,
  1577. ggml_tensor * k_cur,
  1578. ggml_tensor * v_cur,
  1579. ggml_tensor * kq_mask,
  1580. float kq_scale,
  1581. int il) const {
  1582. // these nodes are added to the graph together so that they are not reordered
  1583. // by doing so, the number of splits in the graph is reduced
  1584. ggml_build_forward_expand(gf, q_cur);
  1585. ggml_build_forward_expand(gf, k_cur);
  1586. ggml_build_forward_expand(gf, v_cur);
  1587. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1588. //cb(q, "q", il);
  1589. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1590. //cb(k, "k", il);
  1591. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1592. v = ggml_cont(ctx0, v);
  1593. //cb(k, "v", il);
  1594. ggml_tensor * cur;
  1595. // TODO @ngxson : support flash attention
  1596. {
  1597. const auto n_tokens = q->ne[1];
  1598. const auto n_head = q->ne[2];
  1599. // const auto n_kv = k->ne[1]; // for flash attention
  1600. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1601. // F32 may not needed for vision encoders?
  1602. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1603. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1604. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1605. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1606. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1607. }
  1608. cb(cur, "kqv_out", il);
  1609. if (wo) {
  1610. cur = ggml_mul_mat(ctx0, wo, cur);
  1611. }
  1612. if (wo_b) {
  1613. cur = ggml_add(ctx0, cur, wo_b);
  1614. }
  1615. return cur;
  1616. }
  1617. // implementation of the 2D RoPE without adding a new op in ggml
  1618. // this is not efficient (use double the memory), but works on all backends
  1619. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1620. static ggml_tensor * build_rope_2d(
  1621. ggml_context * ctx0,
  1622. ggml_tensor * cur,
  1623. ggml_tensor * pos_a, // first half
  1624. ggml_tensor * pos_b, // second half
  1625. const float freq_base,
  1626. const bool interleave_freq
  1627. ) {
  1628. const int64_t n_dim = cur->ne[0];
  1629. const int64_t n_head = cur->ne[1];
  1630. const int64_t n_pos = cur->ne[2];
  1631. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1632. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1633. // first half of cur will use 1e-0, 1e-2 (even)
  1634. // second half of cur will use 1e-1, 1e-3 (odd)
  1635. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1636. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1637. // then for the second half, we use freq_scale to shift the inv_freq
  1638. // ^ why? replace (2i) with (2i+1) in the above equation
  1639. const float freq_scale_odd = interleave_freq
  1640. ? std::pow(freq_base, (float)-2/n_dim)
  1641. : 1.0;
  1642. // first half
  1643. ggml_tensor * first;
  1644. {
  1645. first = ggml_view_3d(ctx0, cur,
  1646. n_dim/2, n_head, n_pos,
  1647. ggml_row_size(cur->type, n_dim),
  1648. ggml_row_size(cur->type, n_dim*n_head),
  1649. 0);
  1650. first = ggml_rope_ext(
  1651. ctx0,
  1652. first,
  1653. pos_a, // positions
  1654. nullptr, // freq factors
  1655. n_dim/2, // n_dims
  1656. 0, 0, freq_base,
  1657. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1658. );
  1659. }
  1660. // second half
  1661. ggml_tensor * second;
  1662. {
  1663. second = ggml_view_3d(ctx0, cur,
  1664. n_dim/2, n_head, n_pos,
  1665. ggml_row_size(cur->type, n_dim),
  1666. ggml_row_size(cur->type, n_dim*n_head),
  1667. n_dim/2 * ggml_element_size(cur));
  1668. second = ggml_rope_ext(
  1669. ctx0,
  1670. second,
  1671. pos_b, // positions
  1672. nullptr, // freq factors
  1673. n_dim/2, // n_dims
  1674. 0, 0, freq_base,
  1675. freq_scale_odd,
  1676. 0.0f, 1.0f, 0.0f, 0.0f
  1677. );
  1678. }
  1679. cur = ggml_concat(ctx0, first, second, 0);
  1680. return cur;
  1681. }
  1682. };
  1683. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1684. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1685. clip_graph graph(ctx, *imgs.entries[0]);
  1686. ggml_cgraph * res;
  1687. switch (ctx->proj_type()) {
  1688. case PROJECTOR_TYPE_GEMMA3:
  1689. case PROJECTOR_TYPE_IDEFICS3:
  1690. case PROJECTOR_TYPE_LFM2:
  1691. {
  1692. res = graph.build_siglip();
  1693. } break;
  1694. case PROJECTOR_TYPE_PIXTRAL:
  1695. {
  1696. res = graph.build_pixtral();
  1697. } break;
  1698. case PROJECTOR_TYPE_QWEN2VL:
  1699. case PROJECTOR_TYPE_QWEN25VL:
  1700. {
  1701. res = graph.build_qwen2vl();
  1702. } break;
  1703. case PROJECTOR_TYPE_MINICPMV:
  1704. {
  1705. res = graph.build_minicpmv();
  1706. } break;
  1707. case PROJECTOR_TYPE_INTERNVL:
  1708. {
  1709. res = graph.build_internvl();
  1710. } break;
  1711. case PROJECTOR_TYPE_LLAMA4:
  1712. {
  1713. res = graph.build_llama4();
  1714. } break;
  1715. case PROJECTOR_TYPE_ULTRAVOX:
  1716. case PROJECTOR_TYPE_VOXTRAL:
  1717. case PROJECTOR_TYPE_QWEN2A:
  1718. {
  1719. res = graph.build_whisper_enc();
  1720. } break;
  1721. default:
  1722. {
  1723. res = graph.build_llava();
  1724. } break;
  1725. }
  1726. return res;
  1727. }
  1728. struct clip_model_loader {
  1729. ggml_context_ptr ctx_meta;
  1730. gguf_context_ptr ctx_gguf;
  1731. std::string fname;
  1732. size_t model_size = 0; // in bytes
  1733. bool has_vision = false;
  1734. bool has_audio = false;
  1735. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  1736. clip_model_loader(const char * fname) : fname(fname) {
  1737. struct ggml_context * meta = nullptr;
  1738. struct gguf_init_params params = {
  1739. /*.no_alloc = */ true,
  1740. /*.ctx = */ &meta,
  1741. };
  1742. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1743. if (!ctx_gguf.get()) {
  1744. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1745. }
  1746. ctx_meta.reset(meta);
  1747. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1748. // print gguf info
  1749. {
  1750. std::string name;
  1751. get_string(KEY_NAME, name, false);
  1752. std::string description;
  1753. get_string(KEY_DESCRIPTION, description, false);
  1754. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1755. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1756. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1757. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1758. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1759. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1760. LOG_INF("\n");
  1761. }
  1762. // modalities
  1763. {
  1764. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  1765. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  1766. if (has_vision) {
  1767. LOG_INF("%s: has vision encoder\n", __func__);
  1768. }
  1769. if (has_audio) {
  1770. LOG_INF("%s: has audio encoder\n", __func__);
  1771. }
  1772. }
  1773. // tensors
  1774. {
  1775. for (int i = 0; i < n_tensors; ++i) {
  1776. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1777. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1778. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1779. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1780. size_t tensor_size = ggml_nbytes(cur);
  1781. model_size += tensor_size;
  1782. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1783. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1784. }
  1785. }
  1786. }
  1787. void load_hparams(clip_model & model, clip_modality modality) {
  1788. auto & hparams = model.hparams;
  1789. std::string log_ffn_op; // for logging
  1790. // sanity check
  1791. if (modality == CLIP_MODALITY_VISION) {
  1792. GGML_ASSERT(has_vision);
  1793. } else if (modality == CLIP_MODALITY_AUDIO) {
  1794. GGML_ASSERT(has_audio);
  1795. }
  1796. model.modality = modality;
  1797. // projector type
  1798. std::string proj_type;
  1799. {
  1800. get_string(KEY_PROJ_TYPE, proj_type, false);
  1801. if (!proj_type.empty()) {
  1802. model.proj_type = clip_projector_type_from_string(proj_type);
  1803. }
  1804. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1805. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1806. }
  1807. // correct arch for multimodal models
  1808. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  1809. model.proj_type = modality == CLIP_MODALITY_VISION
  1810. ? PROJECTOR_TYPE_QWEN25VL
  1811. : PROJECTOR_TYPE_QWEN2A;
  1812. }
  1813. }
  1814. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  1815. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  1816. // other hparams
  1817. {
  1818. const char * prefix = is_vision ? "vision" : "audio";
  1819. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  1820. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  1821. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  1822. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  1823. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  1824. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  1825. if (is_vision) {
  1826. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1827. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1828. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1829. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  1830. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  1831. if (hparams.minicpmv_query_num == 0) {
  1832. // Fallback to hardcoded values for legacy models
  1833. if (hparams.minicpmv_version == 3) {
  1834. hparams.minicpmv_query_num = 64;
  1835. } else if (hparams.minicpmv_version == 4) {
  1836. hparams.minicpmv_query_num = 64;
  1837. } else if (hparams.minicpmv_version == 5) {
  1838. hparams.minicpmv_query_num = 64;
  1839. } else {
  1840. hparams.minicpmv_query_num = 96;
  1841. }
  1842. }
  1843. } else if (is_audio) {
  1844. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  1845. } else {
  1846. GGML_ASSERT(false && "unknown modality");
  1847. }
  1848. // for pinpoints, we need to convert it into a list of resolution candidates
  1849. {
  1850. std::vector<int> pinpoints;
  1851. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  1852. if (!pinpoints.empty()) {
  1853. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  1854. hparams.image_res_candidates.push_back({
  1855. pinpoints[i],
  1856. pinpoints[i+1],
  1857. });
  1858. }
  1859. }
  1860. }
  1861. // default warmup value
  1862. hparams.warmup_image_size = hparams.image_size;
  1863. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  1864. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1865. || model.proj_type == PROJECTOR_TYPE_LDP
  1866. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  1867. {
  1868. bool use_gelu = false;
  1869. bool use_silu = false;
  1870. get_bool(KEY_USE_GELU, use_gelu, false);
  1871. get_bool(KEY_USE_SILU, use_silu, false);
  1872. if (use_gelu && use_silu) {
  1873. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1874. }
  1875. if (use_gelu) {
  1876. hparams.ffn_op = FFN_GELU;
  1877. log_ffn_op = "gelu";
  1878. } else if (use_silu) {
  1879. hparams.ffn_op = FFN_SILU;
  1880. log_ffn_op = "silu";
  1881. } else {
  1882. hparams.ffn_op = FFN_GELU_QUICK;
  1883. log_ffn_op = "gelu_quick";
  1884. }
  1885. }
  1886. {
  1887. std::string mm_patch_merge_type;
  1888. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1889. if (mm_patch_merge_type == "spatial_unpad") {
  1890. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1891. }
  1892. }
  1893. if (is_vision) {
  1894. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1895. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1896. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1897. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1898. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1899. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1900. for (int i = 0; i < 3; ++i) {
  1901. hparams.image_mean[i] = mean_data[i];
  1902. hparams.image_std[i] = std_data[i];
  1903. }
  1904. }
  1905. // Load the vision feature layer indices if they are explicitly provided;
  1906. // if multiple vision feature layers are present, the values will be concatenated
  1907. // to form the final visual features.
  1908. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1909. // be non-negative, since we use -1 to mark values as unset here.
  1910. std::vector<int> vision_feature_layer;
  1911. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1912. // convert std::vector to std::unordered_set
  1913. for (auto & layer : vision_feature_layer) {
  1914. hparams.vision_feature_layer.insert(layer);
  1915. }
  1916. // model-specific params
  1917. switch (model.proj_type) {
  1918. case PROJECTOR_TYPE_MINICPMV:
  1919. {
  1920. if (hparams.minicpmv_version == 0) {
  1921. hparams.minicpmv_version = 2; // default to 2 if not set
  1922. }
  1923. } break;
  1924. case PROJECTOR_TYPE_IDEFICS3:
  1925. case PROJECTOR_TYPE_LFM2:
  1926. case PROJECTOR_TYPE_INTERNVL:
  1927. {
  1928. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1929. } break;
  1930. case PROJECTOR_TYPE_PIXTRAL:
  1931. {
  1932. hparams.rope_theta = 10000.0f;
  1933. hparams.warmup_image_size = hparams.patch_size * 8;
  1934. // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
  1935. // ref: https://github.com/ggml-org/llama.cpp/issues/14310
  1936. hparams.image_size = 1024;
  1937. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1938. } break;
  1939. case PROJECTOR_TYPE_GEMMA3:
  1940. {
  1941. // default value (used by all model sizes in gemma 3 family)
  1942. // number of patches for each **side** is reduced by a factor of 4
  1943. hparams.proj_scale_factor = 4;
  1944. // test model (tinygemma3) has a different value, we optionally read it
  1945. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1946. } break;
  1947. case PROJECTOR_TYPE_QWEN2VL:
  1948. {
  1949. // max image size = sqrt(max_pixels) = 3584
  1950. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  1951. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1952. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1953. hparams.image_size = 1024;
  1954. hparams.warmup_image_size = hparams.patch_size * 8;
  1955. } break;
  1956. case PROJECTOR_TYPE_QWEN25VL:
  1957. {
  1958. // max image size = sqrt(max_pixels)
  1959. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  1960. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1961. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1962. hparams.image_size = 1024;
  1963. hparams.warmup_image_size = hparams.patch_size * 8;
  1964. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  1965. } break;
  1966. case PROJECTOR_TYPE_LLAMA4:
  1967. {
  1968. hparams.rope_theta = 10000.0f;
  1969. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  1970. set_llava_uhd_res_candidates(model, 3);
  1971. } break;
  1972. case PROJECTOR_TYPE_ULTRAVOX:
  1973. case PROJECTOR_TYPE_QWEN2A:
  1974. case PROJECTOR_TYPE_VOXTRAL:
  1975. {
  1976. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  1977. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  1978. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  1979. if (hparams.n_mel_bins != 128) {
  1980. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  1981. }
  1982. hparams.ffn_op = FFN_GELU_ERF;
  1983. log_ffn_op = "gelu_erf"; // temporary solution for logging
  1984. } break;
  1985. default:
  1986. break;
  1987. }
  1988. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1989. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1990. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1991. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1992. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1993. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1994. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1995. if (is_vision) {
  1996. LOG_INF("\n--- vision hparams ---\n");
  1997. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1998. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1999. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2000. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2001. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  2002. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2003. } else if (is_audio) {
  2004. LOG_INF("\n--- audio hparams ---\n");
  2005. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2006. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2007. }
  2008. LOG_INF("\n");
  2009. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2010. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2011. }
  2012. }
  2013. void load_tensors(clip_ctx & ctx_clip) {
  2014. auto & model = ctx_clip.model;
  2015. auto & hparams = model.hparams;
  2016. std::map<std::string, size_t> tensor_offset;
  2017. std::vector<ggml_tensor *> tensors_to_load;
  2018. // TODO @ngxson : support both audio and video in the future
  2019. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2020. // get offsets
  2021. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2022. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2023. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2024. }
  2025. // create data context
  2026. struct ggml_init_params params = {
  2027. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2028. /*.mem_buffer =*/ NULL,
  2029. /*.no_alloc =*/ true,
  2030. };
  2031. ctx_clip.ctx_data.reset(ggml_init(params));
  2032. if (!ctx_clip.ctx_data) {
  2033. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2034. }
  2035. // helper function
  2036. auto get_tensor = [&](const std::string & name, bool required = true) {
  2037. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2038. if (!cur && required) {
  2039. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2040. }
  2041. if (cur) {
  2042. tensors_to_load.push_back(cur);
  2043. // add tensors to context
  2044. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2045. ggml_set_name(data_tensor, cur->name);
  2046. cur = data_tensor;
  2047. }
  2048. return cur;
  2049. };
  2050. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2051. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2052. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2053. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2054. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2055. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2056. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2057. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2058. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2059. // layers
  2060. model.layers.resize(hparams.n_layer);
  2061. for (int il = 0; il < hparams.n_layer; ++il) {
  2062. auto & layer = model.layers[il];
  2063. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
  2064. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
  2065. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
  2066. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2067. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2068. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2069. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2070. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2071. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2072. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2073. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2074. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2075. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2076. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2077. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2078. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2079. // ffn
  2080. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2081. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2082. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2083. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2084. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2085. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2086. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2087. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2088. if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
  2089. // swap up and down weights
  2090. ggml_tensor * tmp = layer.ff_up_w;
  2091. layer.ff_up_w = layer.ff_down_w;
  2092. layer.ff_down_w = tmp;
  2093. // swap up and down biases
  2094. tmp = layer.ff_up_b;
  2095. layer.ff_up_b = layer.ff_down_b;
  2096. layer.ff_down_b = tmp;
  2097. }
  2098. }
  2099. switch (model.proj_type) {
  2100. case PROJECTOR_TYPE_MLP:
  2101. case PROJECTOR_TYPE_MLP_NORM:
  2102. {
  2103. // LLaVA projection
  2104. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2105. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2106. // Yi-type llava
  2107. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2108. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2109. // missing in Yi-type llava
  2110. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2111. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2112. // Yi-type llava
  2113. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2114. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2115. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2116. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2117. if (model.mm_3_w) {
  2118. // TODO: this is a hack to support Yi-type llava
  2119. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2120. }
  2121. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2122. } break;
  2123. case PROJECTOR_TYPE_LDP:
  2124. {
  2125. // MobileVLM projection
  2126. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2127. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2128. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2129. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2130. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2131. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2132. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2133. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2134. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2135. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2136. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2137. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2138. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2139. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2140. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2141. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2142. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2143. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2144. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2145. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2146. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2147. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2148. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2149. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2150. } break;
  2151. case PROJECTOR_TYPE_LDPV2:
  2152. {
  2153. // MobilVLM_V2 projection
  2154. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2155. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2156. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2157. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2158. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2159. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2160. } break;
  2161. case PROJECTOR_TYPE_MINICPMV:
  2162. {
  2163. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2164. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2165. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2166. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2167. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2168. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2169. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2170. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2171. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2172. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2173. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2174. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2175. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2176. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2177. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2178. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2179. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2180. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2181. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2182. } break;
  2183. case PROJECTOR_TYPE_GLM_EDGE:
  2184. {
  2185. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2186. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2187. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2188. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2189. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2190. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2191. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2192. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2193. model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2194. model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2195. } break;
  2196. case PROJECTOR_TYPE_QWEN2VL:
  2197. case PROJECTOR_TYPE_QWEN25VL:
  2198. {
  2199. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2200. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2201. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2202. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2203. } break;
  2204. case PROJECTOR_TYPE_GEMMA3:
  2205. {
  2206. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2207. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2208. } break;
  2209. case PROJECTOR_TYPE_IDEFICS3:
  2210. {
  2211. model.projection = get_tensor(TN_MM_PROJECTOR);
  2212. } break;
  2213. case PROJECTOR_TYPE_LFM2:
  2214. {
  2215. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2216. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2217. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2218. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2219. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2220. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2221. } break;
  2222. case PROJECTOR_TYPE_PIXTRAL:
  2223. {
  2224. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2225. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2226. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2227. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2228. // [IMG_BREAK] token embedding
  2229. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2230. // for mistral small 3.1
  2231. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2232. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2233. } break;
  2234. case PROJECTOR_TYPE_ULTRAVOX:
  2235. {
  2236. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2237. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2238. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2239. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2240. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2241. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2242. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2243. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2244. } break;
  2245. case PROJECTOR_TYPE_QWEN2A:
  2246. {
  2247. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2248. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2249. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2250. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2251. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2252. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2253. } break;
  2254. case PROJECTOR_TYPE_VOXTRAL:
  2255. {
  2256. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2257. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2258. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2259. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2260. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2261. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2262. } break;
  2263. case PROJECTOR_TYPE_INTERNVL:
  2264. {
  2265. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2266. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2267. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2268. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2269. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2270. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2271. } break;
  2272. case PROJECTOR_TYPE_LLAMA4:
  2273. {
  2274. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2275. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2276. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2277. } break;
  2278. default:
  2279. GGML_ASSERT(false && "unknown projector type");
  2280. }
  2281. // load data
  2282. {
  2283. std::vector<uint8_t> read_buf;
  2284. auto fin = std::ifstream(fname, std::ios::binary);
  2285. if (!fin) {
  2286. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2287. }
  2288. // alloc memory and offload data
  2289. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2290. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2291. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2292. for (auto & t : tensors_to_load) {
  2293. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2294. const size_t offset = tensor_offset[t->name];
  2295. fin.seekg(offset, std::ios::beg);
  2296. if (!fin) {
  2297. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2298. }
  2299. size_t num_bytes = ggml_nbytes(cur);
  2300. if (ggml_backend_buft_is_host(buft)) {
  2301. // for the CPU and Metal backend, we can read directly into the tensor
  2302. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2303. } else {
  2304. // read into a temporary buffer first, then copy to device memory
  2305. read_buf.resize(num_bytes);
  2306. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2307. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2308. }
  2309. }
  2310. fin.close();
  2311. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2312. }
  2313. }
  2314. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2315. const auto & hparams = ctx_clip.model.hparams;
  2316. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2317. // create a fake batch
  2318. clip_image_f32_batch batch;
  2319. clip_image_f32_ptr img(clip_image_f32_init());
  2320. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2321. img->nx = hparams.warmup_image_size;
  2322. img->ny = hparams.warmup_image_size;
  2323. } else {
  2324. img->nx = hparams.warmup_audio_size;
  2325. img->ny = hparams.n_mel_bins;
  2326. }
  2327. batch.entries.push_back(std::move(img));
  2328. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2329. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2330. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2331. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2332. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2333. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2334. if (size > 1) {
  2335. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2336. ggml_backend_buft_name(buft),
  2337. size / 1024.0 / 1024.0);
  2338. }
  2339. }
  2340. }
  2341. void get_bool(const std::string & key, bool & output, bool required = true) {
  2342. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2343. if (i < 0) {
  2344. if (required) throw std::runtime_error("Key not found: " + key);
  2345. return;
  2346. }
  2347. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2348. }
  2349. void get_i32(const std::string & key, int & output, bool required = true) {
  2350. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2351. if (i < 0) {
  2352. if (required) throw std::runtime_error("Key not found: " + key);
  2353. return;
  2354. }
  2355. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2356. }
  2357. void get_u32(const std::string & key, int & output, bool required = true) {
  2358. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2359. if (i < 0) {
  2360. if (required) throw std::runtime_error("Key not found: " + key);
  2361. return;
  2362. }
  2363. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2364. }
  2365. void get_f32(const std::string & key, float & output, bool required = true) {
  2366. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2367. if (i < 0) {
  2368. if (required) throw std::runtime_error("Key not found: " + key);
  2369. return;
  2370. }
  2371. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2372. }
  2373. void get_string(const std::string & key, std::string & output, bool required = true) {
  2374. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2375. if (i < 0) {
  2376. if (required) throw std::runtime_error("Key not found: " + key);
  2377. return;
  2378. }
  2379. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2380. }
  2381. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2382. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2383. if (i < 0) {
  2384. if (required) throw std::runtime_error("Key not found: " + key);
  2385. return;
  2386. }
  2387. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2388. output.resize(n);
  2389. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2390. for (int i = 0; i < n; ++i) {
  2391. output[i] = values[i];
  2392. }
  2393. }
  2394. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2395. auto & hparams = model.hparams;
  2396. for (int x = 1; x <= max_patches_per_side; x++) {
  2397. for (int y = 1; y <= max_patches_per_side; y++) {
  2398. if (x == 1 && y == 1) {
  2399. continue; // skip the first point
  2400. }
  2401. hparams.image_res_candidates.push_back(clip_image_size{
  2402. x*hparams.image_size,
  2403. y*hparams.image_size,
  2404. });
  2405. }
  2406. }
  2407. }
  2408. };
  2409. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2410. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2411. clip_ctx * ctx_vision = nullptr;
  2412. clip_ctx * ctx_audio = nullptr;
  2413. try {
  2414. clip_model_loader loader(fname);
  2415. if (loader.has_vision) {
  2416. ctx_vision = new clip_ctx(ctx_params);
  2417. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2418. loader.load_tensors(*ctx_vision);
  2419. loader.alloc_compute_meta(*ctx_vision);
  2420. }
  2421. if (loader.has_audio) {
  2422. ctx_audio = new clip_ctx(ctx_params);
  2423. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2424. loader.load_tensors(*ctx_audio);
  2425. loader.alloc_compute_meta(*ctx_audio);
  2426. }
  2427. } catch (const std::exception & e) {
  2428. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2429. if (ctx_vision) {
  2430. delete ctx_vision;
  2431. }
  2432. if (ctx_audio) {
  2433. delete ctx_audio;
  2434. }
  2435. return {nullptr, nullptr};
  2436. }
  2437. return {ctx_vision, ctx_audio};
  2438. }
  2439. struct clip_image_size * clip_image_size_init() {
  2440. struct clip_image_size * load_image_size = new struct clip_image_size();
  2441. load_image_size->width = 448;
  2442. load_image_size->height = 448;
  2443. return load_image_size;
  2444. }
  2445. struct clip_image_u8 * clip_image_u8_init() {
  2446. return new clip_image_u8();
  2447. }
  2448. struct clip_image_f32 * clip_image_f32_init() {
  2449. return new clip_image_f32();
  2450. }
  2451. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2452. return new clip_image_f32_batch();
  2453. }
  2454. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2455. if (nx) *nx = img->nx;
  2456. if (ny) *ny = img->ny;
  2457. return img->buf.data();
  2458. }
  2459. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2460. if (load_image_size == nullptr) {
  2461. return;
  2462. }
  2463. delete load_image_size;
  2464. }
  2465. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2466. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2467. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2468. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2469. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2470. return batch->entries.size();
  2471. }
  2472. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2473. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2474. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2475. return 0;
  2476. }
  2477. return batch->entries[idx]->nx;
  2478. }
  2479. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2480. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2481. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2482. return 0;
  2483. }
  2484. return batch->entries[idx]->ny;
  2485. }
  2486. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2487. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2488. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2489. return nullptr;
  2490. }
  2491. return batch->entries[idx].get();
  2492. }
  2493. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2494. img->nx = nx;
  2495. img->ny = ny;
  2496. img->buf.resize(3 * nx * ny);
  2497. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2498. }
  2499. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2500. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2501. dst.nx = src.nx;
  2502. dst.ny = src.ny;
  2503. dst.buf.resize(src.buf.size());
  2504. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2505. for (size_t i = 0; i < src.buf.size(); ++i) {
  2506. int c = i % 3; // rgb
  2507. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2508. }
  2509. }
  2510. // set of tools to manupulate images
  2511. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2512. struct image_manipulation {
  2513. // Bilinear resize function
  2514. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2515. dst.nx = target_width;
  2516. dst.ny = target_height;
  2517. dst.buf.resize(3 * target_width * target_height);
  2518. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2519. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2520. for (int y = 0; y < target_height; y++) {
  2521. for (int x = 0; x < target_width; x++) {
  2522. float px = x_ratio * x;
  2523. float py = y_ratio * y;
  2524. int x_floor = static_cast<int>(px);
  2525. int y_floor = static_cast<int>(py);
  2526. float x_lerp = px - x_floor;
  2527. float y_lerp = py - y_floor;
  2528. for (int c = 0; c < 3; c++) {
  2529. float top = lerp(
  2530. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2531. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2532. x_lerp
  2533. );
  2534. float bottom = lerp(
  2535. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2536. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2537. x_lerp
  2538. );
  2539. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2540. }
  2541. }
  2542. }
  2543. }
  2544. // Bicubic resize function
  2545. // part of image will be cropped if the aspect ratio is different
  2546. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2547. const int nx = img.nx;
  2548. const int ny = img.ny;
  2549. dst.nx = target_width;
  2550. dst.ny = target_height;
  2551. dst.buf.resize(3 * target_width * target_height);
  2552. float Cc;
  2553. float C[5];
  2554. float d0, d2, d3, a0, a1, a2, a3;
  2555. int i, j, k, jj;
  2556. int x, y;
  2557. float dx, dy;
  2558. float tx, ty;
  2559. tx = (float)nx / (float)target_width;
  2560. ty = (float)ny / (float)target_height;
  2561. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2562. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2563. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2564. for (i = 0; i < target_height; i++) {
  2565. for (j = 0; j < target_width; j++) {
  2566. x = (int)(tx * j);
  2567. y = (int)(ty * i);
  2568. dx = tx * j - x;
  2569. dy = ty * i - y;
  2570. for (k = 0; k < 3; k++) {
  2571. for (jj = 0; jj <= 3; jj++) {
  2572. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2573. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2574. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2575. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2576. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2577. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2578. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2579. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2580. d0 = C[0] - C[1];
  2581. d2 = C[2] - C[1];
  2582. d3 = C[3] - C[1];
  2583. a0 = C[1];
  2584. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2585. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2586. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2587. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2588. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2589. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2590. }
  2591. }
  2592. }
  2593. }
  2594. return true;
  2595. }
  2596. // llava-1.6 type of resize_and_pad
  2597. // if the ratio is not 1:1, padding with pad_color will be applied
  2598. // pad_color is single channel, default is 0 (black)
  2599. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2600. int target_width = target_resolution.width;
  2601. int target_height = target_resolution.height;
  2602. float scale_w = static_cast<float>(target_width) / image.nx;
  2603. float scale_h = static_cast<float>(target_height) / image.ny;
  2604. int new_width, new_height;
  2605. if (scale_w < scale_h) {
  2606. new_width = target_width;
  2607. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2608. } else {
  2609. new_height = target_height;
  2610. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2611. }
  2612. clip_image_u8 resized_image;
  2613. bicubic_resize(image, resized_image, new_width, new_height);
  2614. clip_image_u8 padded_image;
  2615. padded_image.nx = target_width;
  2616. padded_image.ny = target_height;
  2617. padded_image.buf.resize(3 * target_width * target_height);
  2618. // Fill the padded image with the fill color
  2619. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2620. padded_image.buf[i] = pad_color[0];
  2621. padded_image.buf[i + 1] = pad_color[1];
  2622. padded_image.buf[i + 2] = pad_color[2];
  2623. }
  2624. // Calculate padding offsets
  2625. int pad_x = (target_width - new_width) / 2;
  2626. int pad_y = (target_height - new_height) / 2;
  2627. // Copy the resized image into the center of the padded buffer
  2628. for (int y = 0; y < new_height; ++y) {
  2629. for (int x = 0; x < new_width; ++x) {
  2630. for (int c = 0; c < 3; ++c) {
  2631. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2632. }
  2633. }
  2634. }
  2635. dst = std::move(padded_image);
  2636. }
  2637. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2638. dst.nx = w;
  2639. dst.ny = h;
  2640. dst.buf.resize(3 * w * h);
  2641. for (int i = 0; i < h; ++i) {
  2642. for (int j = 0; j < w; ++j) {
  2643. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2644. int dst_idx = 3 * (i*w + j);
  2645. dst.buf[dst_idx] = image.buf[src_idx];
  2646. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2647. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2648. }
  2649. }
  2650. }
  2651. // calculate the size of the **resized** image, while preserving the aspect ratio
  2652. // the calculated size will be aligned to the nearest multiple of align_size
  2653. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2654. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2655. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2656. return {0, 0};
  2657. }
  2658. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2659. static_cast<float>(max_dimension) / inp_size.height));
  2660. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2661. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2662. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2663. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2664. return {aligned_width, aligned_height};
  2665. }
  2666. private:
  2667. static inline int clip(int x, int lower, int upper) {
  2668. return std::max(lower, std::min(x, upper));
  2669. }
  2670. // Linear interpolation between two points
  2671. static inline float lerp(float s, float e, float t) {
  2672. return s + (e - s) * t;
  2673. }
  2674. };
  2675. /**
  2676. * implementation of LLaVA-UHD:
  2677. * - https://arxiv.org/pdf/2403.11703
  2678. * - https://github.com/thunlp/LLaVA-UHD
  2679. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2680. *
  2681. * overview:
  2682. * - an image always have a single overview (downscaled image)
  2683. * - an image can have 0 or multiple slices, depending on the image size
  2684. * - each slice can then be considered as a separate image
  2685. *
  2686. * for example:
  2687. *
  2688. * [overview] --> [slice 1] --> [slice 2]
  2689. * | |
  2690. * +--> [slice 3] --> [slice 4]
  2691. */
  2692. struct llava_uhd {
  2693. struct slice_coordinates {
  2694. int x;
  2695. int y;
  2696. clip_image_size size;
  2697. };
  2698. struct slice_instructions {
  2699. clip_image_size overview_size; // size of downscaled image
  2700. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2701. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2702. std::vector<slice_coordinates> slices;
  2703. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2704. };
  2705. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2706. slice_instructions res;
  2707. const int patch_size = clip_get_patch_size(ctx);
  2708. const int slice_size = clip_get_image_size(ctx);
  2709. const int original_width = original_size.width;
  2710. const int original_height = original_size.height;
  2711. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  2712. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  2713. if (!has_slices) {
  2714. // skip slicing logic
  2715. res.overview_size = clip_image_size{slice_size, slice_size};
  2716. res.refined_size = clip_image_size{0, 0};
  2717. res.grid_size = clip_image_size{0, 0};
  2718. return res;
  2719. }
  2720. if (has_pinpoints) {
  2721. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2722. auto refine_size = llava_uhd::select_best_resolution(
  2723. original_size,
  2724. ctx->model.hparams.image_res_candidates);
  2725. res.overview_size = clip_image_size{slice_size, slice_size};
  2726. res.refined_size = refine_size;
  2727. res.grid_size = clip_image_size{0, 0};
  2728. res.padding_refined = true;
  2729. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  2730. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  2731. __func__, original_width, original_height,
  2732. res.overview_size.width, res.overview_size.height,
  2733. res.refined_size.width, res.refined_size.height);
  2734. for (int y = 0; y < refine_size.height; y += slice_size) {
  2735. for (int x = 0; x < refine_size.width; x += slice_size) {
  2736. slice_coordinates slice;
  2737. slice.x = x;
  2738. slice.y = y;
  2739. slice.size.width = std::min(slice_size, refine_size.width - x);
  2740. slice.size.height = std::min(slice_size, refine_size.height - y);
  2741. res.slices.push_back(slice);
  2742. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2743. __func__, (int)res.slices.size() - 1,
  2744. slice.x, slice.y, slice.size.width, slice.size.height);
  2745. }
  2746. }
  2747. res.grid_size.height = refine_size.height / slice_size;
  2748. res.grid_size.width = refine_size.width / slice_size;
  2749. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2750. return res;
  2751. }
  2752. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2753. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2754. res.overview_size = best_size;
  2755. {
  2756. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2757. const float log_ratio = log((float)original_width / original_height);
  2758. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2759. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2760. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2761. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2762. res.grid_size = best_grid;
  2763. res.refined_size = refine_size;
  2764. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2765. __func__, original_width, original_height,
  2766. res.overview_size.width, res.overview_size.height,
  2767. res.refined_size.width, res.refined_size.height,
  2768. res.grid_size.width, res.grid_size.height);
  2769. int width = refine_size.width;
  2770. int height = refine_size.height;
  2771. int grid_x = int(width / best_grid.width);
  2772. int grid_y = int(height / best_grid.height);
  2773. for (int patches_y = 0, ic = 0;
  2774. patches_y < refine_size.height && ic < best_grid.height;
  2775. patches_y += grid_y, ic += 1) {
  2776. for (int patches_x = 0, jc = 0;
  2777. patches_x < refine_size.width && jc < best_grid.width;
  2778. patches_x += grid_x, jc += 1) {
  2779. slice_coordinates slice;
  2780. slice.x = patches_x;
  2781. slice.y = patches_y;
  2782. slice.size.width = grid_x;
  2783. slice.size.height = grid_y;
  2784. res.slices.push_back(slice);
  2785. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2786. __func__, (int)res.slices.size() - 1,
  2787. slice.x, slice.y, slice.size.width, slice.size.height);
  2788. }
  2789. }
  2790. }
  2791. return res;
  2792. }
  2793. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2794. std::vector<clip_image_u8_ptr> output;
  2795. // resize to overview size
  2796. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2797. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2798. output.push_back(std::move(resized_img));
  2799. if (inst.slices.empty()) {
  2800. // no slices, just return the resized image
  2801. return output;
  2802. }
  2803. // resize to refined size
  2804. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2805. if (inst.padding_refined) {
  2806. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2807. } else {
  2808. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2809. }
  2810. // create slices
  2811. for (const auto & slice : inst.slices) {
  2812. int x = slice.x;
  2813. int y = slice.y;
  2814. int w = slice.size.width;
  2815. int h = slice.size.height;
  2816. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2817. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2818. output.push_back(std::move(img_slice));
  2819. }
  2820. return output;
  2821. }
  2822. private:
  2823. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2824. int width = original_size.width;
  2825. int height = original_size.height;
  2826. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2827. float r = static_cast<float>(width) / height;
  2828. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2829. width = static_cast<int>(height * r);
  2830. }
  2831. clip_image_size res;
  2832. res.width = ensure_divide(width, patch_size);
  2833. res.height = ensure_divide(height, patch_size);
  2834. return res;
  2835. }
  2836. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2837. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2838. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2839. float scale = std::min(scale_width, scale_height);
  2840. return clip_image_size{
  2841. static_cast<int>(orig.width * scale),
  2842. static_cast<int>(orig.height * scale),
  2843. };
  2844. }
  2845. /**
  2846. * Selects the best resolution from a list of possible resolutions based on the original size.
  2847. *
  2848. * For example, when given a list of resolutions:
  2849. * - 100x100
  2850. * - 200x100
  2851. * - 100x200
  2852. * - 200x200
  2853. *
  2854. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2855. *
  2856. * @param original_size The original size of the image
  2857. * @param possible_resolutions A list of possible resolutions
  2858. * @return The best fit resolution
  2859. */
  2860. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2861. clip_image_size best_fit;
  2862. int min_wasted_area = std::numeric_limits<int>::max();
  2863. int max_effective_resolution = 0;
  2864. for (const clip_image_size & candidate : possible_resolutions) {
  2865. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2866. int effective_resolution = std::min(
  2867. target_size.width * target_size.height,
  2868. original_size.width * original_size.height);
  2869. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2870. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2871. max_effective_resolution = effective_resolution;
  2872. min_wasted_area = wasted_area;
  2873. best_fit = candidate;
  2874. }
  2875. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2876. }
  2877. return best_fit;
  2878. }
  2879. static int ensure_divide(int length, int patch_size) {
  2880. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2881. }
  2882. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2883. int width = original_size.width;
  2884. int height = original_size.height;
  2885. int grid_x = grid.width;
  2886. int grid_y = grid.height;
  2887. int refine_width = ensure_divide(width, grid_x);
  2888. int refine_height = ensure_divide(height, grid_y);
  2889. clip_image_size grid_size;
  2890. grid_size.width = refine_width / grid_x;
  2891. grid_size.height = refine_height / grid_y;
  2892. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2893. int best_grid_width = best_grid_size.width;
  2894. int best_grid_height = best_grid_size.height;
  2895. clip_image_size refine_size;
  2896. refine_size.width = best_grid_width * grid_x;
  2897. refine_size.height = best_grid_height * grid_y;
  2898. return refine_size;
  2899. }
  2900. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2901. std::vector<int> candidate_split_grids_nums;
  2902. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2903. if (i == 1 || i > max_slice_nums) {
  2904. continue;
  2905. }
  2906. candidate_split_grids_nums.push_back(i);
  2907. }
  2908. std::vector<clip_image_size> candidate_grids;
  2909. for (int split_grids_nums : candidate_split_grids_nums) {
  2910. int m = 1;
  2911. while (m <= split_grids_nums) {
  2912. if (split_grids_nums % m == 0) {
  2913. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2914. }
  2915. ++m;
  2916. }
  2917. }
  2918. clip_image_size best_grid{1, 1};
  2919. float min_error = std::numeric_limits<float>::infinity();
  2920. for (const auto& grid : candidate_grids) {
  2921. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2922. if (error < min_error) {
  2923. best_grid = grid;
  2924. min_error = error;
  2925. }
  2926. }
  2927. return best_grid;
  2928. }
  2929. };
  2930. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2931. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2932. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2933. clip_image_size original_size{img->nx, img->ny};
  2934. bool pad_to_square = true;
  2935. auto & params = ctx->model.hparams;
  2936. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2937. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  2938. pad_to_square = false;
  2939. }
  2940. if (clip_is_minicpmv(ctx)) {
  2941. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2942. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2943. for (size_t i = 0; i < imgs.size(); ++i) {
  2944. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2945. clip_image_f32_ptr res(clip_image_f32_init());
  2946. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2947. res_imgs->entries.push_back(std::move(res));
  2948. }
  2949. res_imgs->grid_x = inst.grid_size.width;
  2950. res_imgs->grid_y = inst.grid_size.height;
  2951. return true;
  2952. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  2953. clip_image_u8 resized;
  2954. auto patch_size = params.patch_size * 2;
  2955. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  2956. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  2957. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2958. // clip_image_f32_ptr res(clip_image_f32_init());
  2959. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  2960. // res_imgs->data[0] = *res;
  2961. res_imgs->entries.push_back(std::move(img_f32));
  2962. return true;
  2963. }
  2964. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
  2965. || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
  2966. || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
  2967. || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  2968. ) {
  2969. clip_image_u8 resized_image;
  2970. int sz = params.image_size;
  2971. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  2972. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2973. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2974. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2975. res_imgs->entries.push_back(std::move(img_f32));
  2976. return true;
  2977. } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
  2978. clip_image_u8 resized_image;
  2979. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  2980. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  2981. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2982. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2983. res_imgs->entries.push_back(std::move(img_f32));
  2984. return true;
  2985. } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
  2986. GGML_ASSERT(!params.image_res_candidates.empty());
  2987. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2988. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2989. for (size_t i = 0; i < imgs.size(); ++i) {
  2990. clip_image_f32_ptr res(clip_image_f32_init());
  2991. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2992. res_imgs->entries.push_back(std::move(res));
  2993. }
  2994. res_imgs->grid_x = inst.grid_size.width;
  2995. res_imgs->grid_y = inst.grid_size.height;
  2996. return true;
  2997. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  2998. GGML_ASSERT(params.proj_scale_factor);
  2999. // smart resize
  3000. const int width = img->nx;
  3001. const int height = img->ny;
  3002. const int total_factor = params.patch_size * params.proj_scale_factor;
  3003. constexpr int min_image_tokens = 64;
  3004. constexpr int max_image_tokens = 256;
  3005. const float min_pixels = min_image_tokens * total_factor * total_factor;
  3006. const float max_pixels = max_image_tokens * total_factor * total_factor;
  3007. auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
  3008. auto ceil_by_factor = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3009. auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3010. int h_bar = std::max(total_factor, round_by_factor(height));
  3011. int w_bar = std::max(total_factor, round_by_factor(width));
  3012. if (h_bar * w_bar > max_pixels) {
  3013. const auto beta = std::sqrt((height * width) / max_pixels);
  3014. h_bar = std::max(total_factor, floor_by_factor(height / beta));
  3015. w_bar = std::max(total_factor, floor_by_factor(width / beta));
  3016. } else if (h_bar * w_bar < min_pixels) {
  3017. const auto beta = std::sqrt(min_pixels / (height * width));
  3018. h_bar = ceil_by_factor(height * beta);
  3019. w_bar = ceil_by_factor(width * beta);
  3020. }
  3021. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3022. clip_image_u8 resized_img;
  3023. image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
  3024. clip_image_f32_ptr res(clip_image_f32_init());
  3025. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3026. res_imgs->entries.push_back(std::move(res));
  3027. return true;
  3028. }
  3029. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3030. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3031. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3032. if (pad_to_square) {
  3033. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3034. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3035. const int longer_side = std::max(img->nx, img->ny);
  3036. temp->nx = longer_side;
  3037. temp->ny = longer_side;
  3038. temp->buf.resize(3 * longer_side * longer_side);
  3039. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3040. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3041. // resize the image to the target_size
  3042. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  3043. clip_image_f32_ptr res(clip_image_f32_init());
  3044. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3045. res_imgs->entries.push_back(std::move(res));
  3046. return true;
  3047. } else if (!params.image_res_candidates.empty()) {
  3048. // "spatial_unpad" with "anyres" processing for llava-1.6
  3049. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3050. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3051. for (size_t i = 0; i < imgs.size(); ++i) {
  3052. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3053. clip_image_f32_ptr res(clip_image_f32_init());
  3054. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3055. res_imgs->entries.push_back(std::move(res));
  3056. }
  3057. return true;
  3058. }
  3059. GGML_ASSERT(false && "Unknown image preprocessing type");
  3060. }
  3061. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3062. return ctx->model.image_newline;
  3063. }
  3064. void clip_free(clip_ctx * ctx) {
  3065. if (ctx == nullptr) {
  3066. return;
  3067. }
  3068. delete ctx;
  3069. }
  3070. // deprecated
  3071. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3072. const int32_t nx = ctx->model.hparams.image_size;
  3073. const int32_t ny = ctx->model.hparams.image_size;
  3074. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3075. }
  3076. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3077. clip_image_f32 img;
  3078. img.nx = img_w;
  3079. img.ny = img_h;
  3080. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3081. }
  3082. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3083. return ctx->model.hparams.image_size;
  3084. }
  3085. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3086. return ctx->model.hparams.patch_size;
  3087. }
  3088. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3089. return ctx->model.hparams.n_embd;
  3090. }
  3091. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3092. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3093. }
  3094. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3095. const auto & params = ctx->model.hparams;
  3096. const int n_total = clip_n_output_tokens(ctx, img);
  3097. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3098. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  3099. }
  3100. return n_total;
  3101. }
  3102. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3103. const auto & params = ctx->model.hparams;
  3104. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3105. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  3106. }
  3107. return 1;
  3108. }
  3109. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3110. const auto & params = ctx->model.hparams;
  3111. // only for models using fixed size square images
  3112. int n_patches_sq = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  3113. projector_type proj = ctx->proj_type();
  3114. switch (proj) {
  3115. case PROJECTOR_TYPE_MLP:
  3116. case PROJECTOR_TYPE_MLP_NORM:
  3117. {
  3118. // do nothing
  3119. } break;
  3120. case PROJECTOR_TYPE_LDP:
  3121. case PROJECTOR_TYPE_LDPV2:
  3122. case PROJECTOR_TYPE_GLM_EDGE:
  3123. {
  3124. n_patches_sq /= 4;
  3125. if (ctx->model.mm_glm_tok_boi) {
  3126. n_patches_sq += 2; // for BOI and EOI token embeddings
  3127. }
  3128. } break;
  3129. case PROJECTOR_TYPE_MINICPMV:
  3130. {
  3131. // Use actual config value if available, otherwise fall back to hardcoded values
  3132. if (params.minicpmv_query_num > 0) {
  3133. n_patches_sq = params.minicpmv_query_num;
  3134. } else {
  3135. // Fallback to hardcoded values for legacy models
  3136. if (params.minicpmv_version == 2) {
  3137. n_patches_sq = 96;
  3138. } else if (params.minicpmv_version == 3) {
  3139. n_patches_sq = 64;
  3140. } else if (params.minicpmv_version == 4) {
  3141. n_patches_sq = 64;
  3142. } else if (params.minicpmv_version == 5) {
  3143. // MiniCPM-V 4.0
  3144. n_patches_sq = 64;
  3145. } else {
  3146. GGML_ABORT("Unknown minicpmv version");
  3147. }
  3148. }
  3149. } break;
  3150. case PROJECTOR_TYPE_QWEN2VL:
  3151. case PROJECTOR_TYPE_QWEN25VL:
  3152. {
  3153. // dynamic size
  3154. int patch_size = params.patch_size * 2;
  3155. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  3156. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  3157. n_patches_sq = x_patch * y_patch;
  3158. } break;
  3159. case PROJECTOR_TYPE_GEMMA3:
  3160. {
  3161. int n_per_side = params.image_size / params.patch_size;
  3162. int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
  3163. n_patches_sq = n_per_side_2d_pool * n_per_side_2d_pool;
  3164. } break;
  3165. case PROJECTOR_TYPE_IDEFICS3:
  3166. case PROJECTOR_TYPE_INTERNVL:
  3167. {
  3168. // both W and H are divided by proj_scale_factor
  3169. n_patches_sq /= (params.proj_scale_factor * params.proj_scale_factor);
  3170. } break;
  3171. case PROJECTOR_TYPE_PIXTRAL:
  3172. {
  3173. // dynamic size
  3174. int n_merge = params.spatial_merge_size;
  3175. int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
  3176. int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
  3177. n_patches_sq = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3178. } break;
  3179. case PROJECTOR_TYPE_LLAMA4:
  3180. {
  3181. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3182. n_patches_sq /= (scale_factor * scale_factor);
  3183. } break;
  3184. case PROJECTOR_TYPE_VOXTRAL:
  3185. case PROJECTOR_TYPE_ULTRAVOX:
  3186. case PROJECTOR_TYPE_QWEN2A:
  3187. {
  3188. n_patches_sq = img->nx;
  3189. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3190. if (ctx->model.audio_has_stack_frames()) {
  3191. GGML_ASSERT(proj_stack_factor > 0);
  3192. const int n_len = CLIP_ALIGN(n_patches_sq, proj_stack_factor);
  3193. n_patches_sq = n_len / proj_stack_factor;
  3194. }
  3195. // whisper downscales input token by half after conv1d
  3196. n_patches_sq /= 2;
  3197. if (ctx->model.audio_has_avgpool()) {
  3198. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3199. n_patches_sq /= 2;
  3200. }
  3201. } break;
  3202. case PROJECTOR_TYPE_LFM2:
  3203. {
  3204. n_patches_sq = (img->nx / (params.patch_size * params.proj_scale_factor)) * (img->ny / (params.patch_size * params.proj_scale_factor));
  3205. } break;
  3206. default:
  3207. GGML_ABORT("unsupported projector type");
  3208. }
  3209. return n_patches_sq;
  3210. }
  3211. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3212. assert(embed_dim % 2 == 0);
  3213. int H = pos.size();
  3214. int W = pos[0].size();
  3215. std::vector<float> omega(embed_dim / 2);
  3216. for (int i = 0; i < embed_dim / 2; ++i) {
  3217. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3218. }
  3219. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3220. for (int h = 0; h < H; ++h) {
  3221. for (int w = 0; w < W; ++w) {
  3222. for (int d = 0; d < embed_dim / 2; ++d) {
  3223. float out_value = pos[h][w] * omega[d];
  3224. emb[h][w][d] = sin(out_value);
  3225. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3226. }
  3227. }
  3228. }
  3229. return emb;
  3230. }
  3231. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3232. assert(embed_dim % 2 == 0);
  3233. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3234. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3235. int H = emb_h.size();
  3236. int W = emb_h[0].size();
  3237. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3238. for (int h = 0; h < H; ++h) {
  3239. for (int w = 0; w < W; ++w) {
  3240. for (int d = 0; d < embed_dim / 2; ++d) {
  3241. emb[h][w][d] = emb_h[h][w][d];
  3242. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3243. }
  3244. }
  3245. }
  3246. return emb;
  3247. }
  3248. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3249. int grid_h_size = image_size.first;
  3250. int grid_w_size = image_size.second;
  3251. std::vector<float> grid_h(grid_h_size);
  3252. std::vector<float> grid_w(grid_w_size);
  3253. for (int i = 0; i < grid_h_size; ++i) {
  3254. grid_h[i] = static_cast<float>(i);
  3255. }
  3256. for (int i = 0; i < grid_w_size; ++i) {
  3257. grid_w[i] = static_cast<float>(i);
  3258. }
  3259. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3260. for (int h = 0; h < grid_h_size; ++h) {
  3261. for (int w = 0; w < grid_w_size; ++w) {
  3262. grid[h][w] = grid_w[w];
  3263. }
  3264. }
  3265. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3266. for (int h = 0; h < grid_h_size; ++h) {
  3267. for (int w = 0; w < grid_w_size; ++w) {
  3268. grid_2d[0][h][w] = grid_h[h];
  3269. grid_2d[1][h][w] = grid_w[w];
  3270. }
  3271. }
  3272. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3273. int H = image_size.first;
  3274. int W = image_size.second;
  3275. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3276. for (int h = 0; h < H; ++h) {
  3277. for (int w = 0; w < W; ++w) {
  3278. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3279. }
  3280. }
  3281. return pos_embed_2d;
  3282. }
  3283. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3284. clip_image_f32_batch imgs;
  3285. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3286. *img_copy = *img;
  3287. imgs.entries.push_back(std::move(img_copy));
  3288. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3289. }
  3290. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3291. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3292. int batch_size = imgs.entries.size();
  3293. // TODO @ngxson : implement batch size > 1 as a loop
  3294. // we don't need true batching support because the cgraph will gonna be big anyway
  3295. if (batch_size != 1) {
  3296. return false; // only support batch size of 1
  3297. }
  3298. // build the inference graph
  3299. ctx->debug_print_tensors.clear();
  3300. ggml_backend_sched_reset(ctx->sched.get());
  3301. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3302. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3303. // set inputs
  3304. const auto & model = ctx->model;
  3305. const auto & hparams = model.hparams;
  3306. const int image_size_width = imgs.entries[0]->nx;
  3307. const int image_size_height = imgs.entries[0]->ny;
  3308. const int patch_size = hparams.patch_size;
  3309. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3310. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3311. const int pos_w = image_size_width / patch_size;
  3312. const int pos_h = image_size_height / patch_size;
  3313. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3314. auto get_inp_tensor = [&gf](const char * name) {
  3315. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3316. if (inp == nullptr) {
  3317. GGML_ABORT("Failed to get tensor %s", name);
  3318. }
  3319. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3320. GGML_ABORT("Tensor %s is not an input tensor", name);
  3321. }
  3322. return inp;
  3323. };
  3324. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3325. ggml_tensor * cur = get_inp_tensor(name);
  3326. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3327. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3328. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3329. };
  3330. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3331. ggml_tensor * cur = get_inp_tensor(name);
  3332. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3333. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3334. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3335. };
  3336. // set input pixel values
  3337. if (!imgs.is_audio) {
  3338. size_t nelem = 0;
  3339. for (const auto & img : imgs.entries) {
  3340. nelem += img->nx * img->ny * 3;
  3341. }
  3342. std::vector<float> inp_raw(nelem);
  3343. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3344. //
  3345. // ┌──W──┐
  3346. // │ H │ channel = R
  3347. // ├─────┤ │
  3348. // │ H │ channel = G
  3349. // ├─────┤ │
  3350. // │ H │ channel = B
  3351. // └─────┘ │
  3352. // ──────┘ x B
  3353. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3354. const int nx = imgs.entries[i]->nx;
  3355. const int ny = imgs.entries[i]->ny;
  3356. const int n = nx * ny;
  3357. for (int b = 0; b < batch_size; b++) {
  3358. float * batch_entry = inp_raw.data() + b * (3*n);
  3359. for (int y = 0; y < ny; y++) {
  3360. for (int x = 0; x < nx; x++) {
  3361. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3362. size_t base_dst = y * nx + x; // idx of the first channel
  3363. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3364. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3365. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3366. }
  3367. }
  3368. }
  3369. }
  3370. set_input_f32("inp_raw", inp_raw);
  3371. } else {
  3372. // audio input
  3373. GGML_ASSERT(imgs.entries.size() == 1);
  3374. const auto & mel_inp = imgs.entries[0];
  3375. const int n_step = mel_inp->nx;
  3376. const int n_mel = mel_inp->ny;
  3377. std::vector<float> inp_raw(n_step * n_mel);
  3378. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3379. set_input_f32("inp_raw", inp_raw);
  3380. }
  3381. // set input per projector
  3382. switch (ctx->model.proj_type) {
  3383. case PROJECTOR_TYPE_MINICPMV:
  3384. {
  3385. // inspired from siglip:
  3386. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3387. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3388. std::vector<int32_t> positions(pos_h * pos_w);
  3389. int bucket_coords_h[1024];
  3390. int bucket_coords_w[1024];
  3391. for (int i = 0; i < pos_h; i++){
  3392. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3393. }
  3394. for (int i = 0; i < pos_w; i++){
  3395. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3396. }
  3397. for (int i = 0, id = 0; i < pos_h; i++){
  3398. for (int j = 0; j < pos_w; j++){
  3399. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3400. }
  3401. }
  3402. set_input_i32("positions", positions);
  3403. // inspired from resampler of Qwen-VL:
  3404. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3405. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3406. int embed_dim = clip_n_mmproj_embd(ctx);
  3407. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3408. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3409. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3410. for(int i = 0; i < pos_w * pos_h; ++i){
  3411. for(int j = 0; j < embed_dim; ++j){
  3412. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3413. }
  3414. }
  3415. set_input_f32("pos_embed", pos_embed);
  3416. } break;
  3417. case PROJECTOR_TYPE_QWEN2VL:
  3418. {
  3419. const int merge_ratio = 2;
  3420. const int pw = image_size_width / patch_size;
  3421. const int ph = image_size_height / patch_size;
  3422. std::vector<int> positions(n_pos * 4);
  3423. int ptr = 0;
  3424. for (int y = 0; y < ph; y += merge_ratio) {
  3425. for (int x = 0; x < pw; x += merge_ratio) {
  3426. for (int dy = 0; dy < 2; dy++) {
  3427. for (int dx = 0; dx < 2; dx++) {
  3428. positions[ ptr] = y + dy;
  3429. positions[ num_patches + ptr] = x + dx;
  3430. positions[2 * num_patches + ptr] = y + dy;
  3431. positions[3 * num_patches + ptr] = x + dx;
  3432. ptr++;
  3433. }
  3434. }
  3435. }
  3436. }
  3437. set_input_i32("positions", positions);
  3438. } break;
  3439. case PROJECTOR_TYPE_QWEN25VL:
  3440. {
  3441. // pw * ph = number of tokens output by ViT after apply patch merger
  3442. // ipw * ipw = number of vision token been processed inside ViT
  3443. const int merge_ratio = 2;
  3444. const int pw = image_size_width / patch_size / merge_ratio;
  3445. const int ph = image_size_height / patch_size / merge_ratio;
  3446. const int ipw = image_size_width / patch_size;
  3447. const int iph = image_size_height / patch_size;
  3448. std::vector<int> idx (ph * pw);
  3449. std::vector<int> inv_idx(ph * pw);
  3450. if (use_window_attn) {
  3451. const int attn_window_size = 112;
  3452. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3453. int dst = 0;
  3454. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3455. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3456. int mask_row = 0;
  3457. for (int y = 0; y < ph; y += grid_window) {
  3458. for (int x = 0; x < pw; x += grid_window) {
  3459. const int win_h = std::min(grid_window, ph - y);
  3460. const int win_w = std::min(grid_window, pw - x);
  3461. const int dst_0 = dst;
  3462. // group all tokens belong to the same window togather (to a continue range)
  3463. for (int dy = 0; dy < win_h; dy++) {
  3464. for (int dx = 0; dx < win_w; dx++) {
  3465. const int src = (y + dy) * pw + (x + dx);
  3466. GGML_ASSERT(src < (int)idx.size());
  3467. GGML_ASSERT(dst < (int)inv_idx.size());
  3468. idx [src] = dst;
  3469. inv_idx[dst] = src;
  3470. dst++;
  3471. }
  3472. }
  3473. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3474. int row_offset = mask_row * (ipw * iph);
  3475. std::fill(
  3476. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3477. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3478. 0.0);
  3479. mask_row++;
  3480. }
  3481. }
  3482. }
  3483. set_input_i32("window_idx", idx);
  3484. set_input_i32("inv_window_idx", inv_idx);
  3485. set_input_f32("window_mask", mask);
  3486. } else {
  3487. for (int i = 0; i < ph * pw; i++) {
  3488. idx[i] = i;
  3489. }
  3490. }
  3491. const int mpow = merge_ratio * merge_ratio;
  3492. std::vector<int> positions(n_pos * 4);
  3493. int ptr = 0;
  3494. for (int y = 0; y < iph; y += merge_ratio) {
  3495. for (int x = 0; x < ipw; x += merge_ratio) {
  3496. for (int dy = 0; dy < 2; dy++) {
  3497. for (int dx = 0; dx < 2; dx++) {
  3498. auto remap = idx[ptr / mpow];
  3499. remap = (remap * mpow) + (ptr % mpow);
  3500. positions[ remap] = y + dy;
  3501. positions[ num_patches + remap] = x + dx;
  3502. positions[2 * num_patches + remap] = y + dy;
  3503. positions[3 * num_patches + remap] = x + dx;
  3504. ptr++;
  3505. }
  3506. }
  3507. }
  3508. }
  3509. set_input_i32("positions", positions);
  3510. } break;
  3511. case PROJECTOR_TYPE_PIXTRAL:
  3512. {
  3513. // set the 2D positions
  3514. int n_patches_per_col = image_size_width / patch_size;
  3515. std::vector<int> pos_data(n_pos);
  3516. // dimension H
  3517. for (int i = 0; i < n_pos; i++) {
  3518. pos_data[i] = i / n_patches_per_col;
  3519. }
  3520. set_input_i32("pos_h", pos_data);
  3521. // dimension W
  3522. for (int i = 0; i < n_pos; i++) {
  3523. pos_data[i] = i % n_patches_per_col;
  3524. }
  3525. set_input_i32("pos_w", pos_data);
  3526. } break;
  3527. case PROJECTOR_TYPE_GLM_EDGE:
  3528. {
  3529. // llava and other models
  3530. std::vector<int32_t> positions(n_pos);
  3531. for (int i = 0; i < n_pos; i++) {
  3532. positions[i] = i;
  3533. }
  3534. set_input_i32("positions", positions);
  3535. } break;
  3536. case PROJECTOR_TYPE_MLP:
  3537. case PROJECTOR_TYPE_MLP_NORM:
  3538. case PROJECTOR_TYPE_LDP:
  3539. case PROJECTOR_TYPE_LDPV2:
  3540. {
  3541. // llava and other models
  3542. std::vector<int32_t> positions(n_pos);
  3543. for (int i = 0; i < n_pos; i++) {
  3544. positions[i] = i;
  3545. }
  3546. set_input_i32("positions", positions);
  3547. // The patches vector is used to get rows to index into the embeds with;
  3548. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3549. // when retrieving the rows.
  3550. int patch_offset = model.class_embedding ? 1 : 0;
  3551. std::vector<int32_t> patches(num_patches);
  3552. for (int i = 0; i < num_patches; i++) {
  3553. patches[i] = i + patch_offset;
  3554. }
  3555. set_input_i32("patches", patches);
  3556. } break;
  3557. case PROJECTOR_TYPE_GEMMA3:
  3558. case PROJECTOR_TYPE_IDEFICS3:
  3559. case PROJECTOR_TYPE_INTERNVL:
  3560. case PROJECTOR_TYPE_QWEN2A:
  3561. case PROJECTOR_TYPE_ULTRAVOX:
  3562. case PROJECTOR_TYPE_LFM2:
  3563. case PROJECTOR_TYPE_VOXTRAL:
  3564. {
  3565. // do nothing
  3566. } break;
  3567. case PROJECTOR_TYPE_LLAMA4:
  3568. {
  3569. // set the 2D positions
  3570. int n_patches_per_col = image_size_width / patch_size;
  3571. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  3572. // last pos is always kept 0, it's for CLS
  3573. // dimension H
  3574. for (int i = 0; i < num_patches; i++) {
  3575. pos_data[i] = (i / n_patches_per_col) + 1;
  3576. }
  3577. set_input_i32("pos_h", pos_data);
  3578. // dimension W
  3579. for (int i = 0; i < num_patches; i++) {
  3580. pos_data[i] = (i % n_patches_per_col) + 1;
  3581. }
  3582. set_input_i32("pos_w", pos_data);
  3583. } break;
  3584. default:
  3585. GGML_ABORT("Unknown projector type");
  3586. }
  3587. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3588. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3589. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3590. if (reg) {
  3591. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3592. if (ggml_backend_set_n_threads_fn) {
  3593. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3594. }
  3595. }
  3596. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3597. if (status != GGML_STATUS_SUCCESS) {
  3598. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3599. return false;
  3600. }
  3601. // print debug nodes
  3602. if (ctx->debug_graph) {
  3603. LOG_INF("\n\n---\n\n");
  3604. LOG_INF("\n\nDebug graph:\n\n");
  3605. for (ggml_tensor * t : ctx->debug_print_tensors) {
  3606. std::vector<uint8_t> data(ggml_nbytes(t));
  3607. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  3608. print_tensor_shape(t);
  3609. print_tensor_data(t, data.data(), 3);
  3610. }
  3611. }
  3612. // the last node is the embedding tensor
  3613. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3614. // sanity check (only support batch size of 1 for now)
  3615. const int n_tokens_out = embeddings->ne[1];
  3616. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3617. if (n_tokens_out != expected_n_tokens_out) {
  3618. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3619. GGML_ABORT("Invalid number of output tokens");
  3620. }
  3621. // copy the embeddings to the location passed by the user
  3622. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3623. return true;
  3624. }
  3625. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3626. switch (ctx->model.proj_type) {
  3627. case PROJECTOR_TYPE_LDP:
  3628. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  3629. case PROJECTOR_TYPE_LDPV2:
  3630. return ctx->model.mm_model_peg_0_b->ne[0];
  3631. case PROJECTOR_TYPE_MLP:
  3632. case PROJECTOR_TYPE_PIXTRAL:
  3633. return ctx->model.mm_2_w->ne[1];
  3634. case PROJECTOR_TYPE_MLP_NORM:
  3635. return ctx->model.mm_3_b->ne[0];
  3636. case PROJECTOR_TYPE_MINICPMV:
  3637. return ctx->model.mm_model_proj->ne[0];
  3638. case PROJECTOR_TYPE_GLM_EDGE:
  3639. return ctx->model.mm_model_mlp_3_w->ne[1];
  3640. case PROJECTOR_TYPE_QWEN2VL:
  3641. case PROJECTOR_TYPE_QWEN25VL:
  3642. return ctx->model.mm_1_b->ne[0];
  3643. case PROJECTOR_TYPE_GEMMA3:
  3644. return ctx->model.mm_input_proj_w->ne[0];
  3645. case PROJECTOR_TYPE_IDEFICS3:
  3646. return ctx->model.projection->ne[1];
  3647. case PROJECTOR_TYPE_ULTRAVOX:
  3648. case PROJECTOR_TYPE_VOXTRAL:
  3649. return ctx->model.mm_2_w->ne[1];
  3650. case PROJECTOR_TYPE_INTERNVL:
  3651. return ctx->model.mm_3_w->ne[1];
  3652. case PROJECTOR_TYPE_LLAMA4:
  3653. return ctx->model.mm_model_proj->ne[1];
  3654. case PROJECTOR_TYPE_QWEN2A:
  3655. return ctx->model.mm_fc_w->ne[1];
  3656. case PROJECTOR_TYPE_LFM2:
  3657. return ctx->model.mm_2_w->ne[1];
  3658. default:
  3659. GGML_ABORT("Unknown projector type");
  3660. }
  3661. }
  3662. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3663. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  3664. return ctx->model.hparams.minicpmv_version;
  3665. }
  3666. return 0;
  3667. }
  3668. bool clip_is_glm(const struct clip_ctx * ctx) {
  3669. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  3670. }
  3671. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3672. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  3673. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
  3674. }
  3675. bool clip_is_llava(const struct clip_ctx * ctx) {
  3676. return ctx->model.hparams.has_llava_projector;
  3677. }
  3678. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3679. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  3680. }
  3681. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3682. return ctx->model.modality == CLIP_MODALITY_VISION;
  3683. }
  3684. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3685. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  3686. }
  3687. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3688. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  3689. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  3690. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  3691. }
  3692. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3693. clip_image_f32 clip_img;
  3694. clip_img.buf.resize(h * w * 3);
  3695. for (int i = 0; i < h*w*3; i++)
  3696. {
  3697. clip_img.buf[i] = img[i];
  3698. }
  3699. clip_img.nx = w;
  3700. clip_img.ny = h;
  3701. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3702. return true;
  3703. }
  3704. //
  3705. // API used internally with mtmd
  3706. //
  3707. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3708. return ctx->proj_type();
  3709. }
  3710. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3711. clip_image_f32 * audio = new clip_image_f32;
  3712. audio->nx = n_frames;
  3713. audio->ny = n_mel;
  3714. audio->buf.resize(n_frames * n_mel);
  3715. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3716. batch->entries.push_back(clip_image_f32_ptr(audio));
  3717. batch->is_audio = true;
  3718. }