test-backend-ops.cpp 211 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <string>
  33. #include <thread>
  34. #include <vector>
  35. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  36. size_t nels = ggml_nelements(tensor);
  37. std::vector<float> data(nels);
  38. {
  39. // parallel initialization
  40. static const size_t n_threads = std::thread::hardware_concurrency();
  41. // static RNG initialization (revisit if n_threads stops being constant)
  42. static std::vector<std::default_random_engine> generators = []() {
  43. std::random_device rd;
  44. std::vector<std::default_random_engine> vec;
  45. vec.reserve(n_threads);
  46. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  47. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  48. return vec;
  49. }();
  50. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  51. std::uniform_real_distribution<float> distribution(min, max);
  52. auto & gen = generators[ith];
  53. for (size_t i = start; i < end; i++) {
  54. data[i] = distribution(gen);
  55. }
  56. };
  57. std::vector<std::future<void>> tasks;
  58. tasks.reserve(n_threads);
  59. for (size_t i = 0; i < n_threads; i++) {
  60. size_t start = i*nels/n_threads;
  61. size_t end = (i+1)*nels/n_threads;
  62. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  63. }
  64. for (auto & t : tasks) {
  65. t.get();
  66. }
  67. }
  68. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  69. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  70. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  71. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  72. // dummy importance matrix
  73. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  74. const float * im = imatrix.data();
  75. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  76. // when the imatrix is optional, we want to test both quantization with and without imatrix
  77. // use one of the random numbers to decide
  78. if (data[0] > 0.5f*(min + max)) {
  79. im = nullptr;
  80. }
  81. }
  82. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  83. {
  84. // parallel quantization by block
  85. size_t blck_size = ggml_blck_size(tensor->type);
  86. size_t n_blocks = nels / blck_size;
  87. auto quantize_thread = [&](size_t start, size_t end) {
  88. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  89. start * blck_size, end - start, blck_size, im);
  90. };
  91. const size_t min_blocks_per_thread = 1;
  92. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  93. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  94. std::vector<std::future<void>> tasks;
  95. tasks.reserve(n_threads);
  96. for (size_t i = 0; i < n_threads; i++) {
  97. size_t start = i*n_blocks/n_threads;
  98. size_t end = (i+1)*n_blocks/n_threads;
  99. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  100. }
  101. for (auto & t : tasks) {
  102. t.get();
  103. }
  104. }
  105. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  106. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  107. // This is going to create some weird integers though.
  108. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  109. } else if (tensor->type == GGML_TYPE_I64) {
  110. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  111. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  112. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  113. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  114. } else {
  115. GGML_ABORT("fatal error");
  116. }
  117. }
  118. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  119. std::vector<float> tv;
  120. tv.reserve(ggml_nelements(t));
  121. std::vector<uint8_t> buf(ggml_nbytes(t));
  122. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  123. const auto * tt = ggml_get_type_traits(t->type);
  124. size_t bs = ggml_blck_size(t->type);
  125. std::vector<float> vq(ggml_blck_size(t->type));
  126. bool quantized = ggml_is_quantized(t->type);
  127. // access elements by index to avoid gaps in views
  128. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  129. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  130. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  131. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  132. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  133. if (t->type == GGML_TYPE_F16) {
  134. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_BF16) {
  136. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  137. } else if (t->type == GGML_TYPE_F32) {
  138. tv.push_back(*(float *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I64) {
  140. tv.push_back((float)*(int64_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I32) {
  142. tv.push_back((float)*(int32_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I16) {
  144. tv.push_back((float)*(int16_t *) &buf[i]);
  145. } else if (t->type == GGML_TYPE_I8) {
  146. tv.push_back((float)*(int8_t *) &buf[i]);
  147. } else if (quantized) {
  148. tt->to_float(&buf[i], vq.data(), bs);
  149. tv.insert(tv.end(), vq.begin(), vq.end());
  150. } else {
  151. GGML_ABORT("fatal error");
  152. }
  153. }
  154. }
  155. }
  156. }
  157. return tv;
  158. }
  159. // normalized mean squared error = mse(a, b) / mse(a, 0)
  160. static double nmse(const float * a, const float * b, size_t n) {
  161. double mse_a_b = 0.0;
  162. double mse_a_0 = 0.0;
  163. for (size_t i = 0; i < n; i++) {
  164. float a_i = a[i];
  165. float b_i = b[i];
  166. mse_a_b += (a_i - b_i) * (a_i - b_i);
  167. mse_a_0 += a_i * a_i;
  168. }
  169. return mse_a_b / mse_a_0;
  170. }
  171. // maximum absolute asymmetry between a and b
  172. // asymmetry: (a - b) / (a + b)
  173. // This is more stable than relative error if one of the values fluctuates towards zero.
  174. // n: number of values to compare.
  175. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  176. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  177. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  178. double sum = 0.0f;
  179. size_t nvalid = 0;
  180. for (size_t i = 0; i < n; i++) {
  181. if (!expected_vals.empty()) {
  182. bool matches_any = false;
  183. for (const float & ev : expected_vals) {
  184. if (fabsf(a[i] - ev) < 1e-3f) {
  185. matches_any = true;
  186. break;
  187. }
  188. }
  189. if (!matches_any) {
  190. continue;
  191. }
  192. }
  193. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  194. sum += fabsf(asymm);
  195. nvalid++;
  196. }
  197. return sum/nvalid;
  198. }
  199. // utils for printing the variables of the test cases
  200. template<typename T>
  201. static std::string var_to_str(const T & x) {
  202. return std::to_string(x);
  203. }
  204. template<typename T, size_t N>
  205. static std::string var_to_str(const T (&x)[N]) {
  206. std::string s = "[";
  207. for (size_t i = 0; i < N; i++) {
  208. if (i > 0) {
  209. s += ",";
  210. }
  211. s += var_to_str(x[i]);
  212. }
  213. s += "]";
  214. return s;
  215. }
  216. template<typename T, size_t N>
  217. static std::string var_to_str(const std::array<T, N> & x) {
  218. std::string s = "[";
  219. for (size_t i = 0; i < N; i++) {
  220. if (i > 0) {
  221. s += ",";
  222. }
  223. s += var_to_str(x[i]);
  224. }
  225. s += "]";
  226. return s;
  227. }
  228. static std::string var_to_str(ggml_type type) {
  229. return ggml_type_name(type);
  230. }
  231. static std::string var_to_str(ggml_prec prec) {
  232. return prec == GGML_PREC_F32 ? "f32" : "def";
  233. }
  234. static std::string var_to_str(ggml_op_pool pool) {
  235. switch (pool) {
  236. case GGML_OP_POOL_AVG: return "avg";
  237. case GGML_OP_POOL_MAX: return "max";
  238. default: return std::to_string(pool);
  239. }
  240. }
  241. static std::string var_to_str(ggml_scale_mode mode) {
  242. switch (mode) {
  243. case GGML_SCALE_MODE_NEAREST: return "nearest";
  244. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  245. default: return std::to_string(mode);
  246. }
  247. }
  248. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  249. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  250. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  251. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  252. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  253. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  254. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  255. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  256. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  257. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  258. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  259. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  260. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  261. #ifdef GGML_USE_SYCL
  262. static bool inline _isinf(float f) {
  263. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  264. }
  265. #else
  266. static bool inline _isinf(float f) { return std::isinf(f); }
  267. #endif
  268. // accept FLT_MAX as infinity
  269. static bool isinf_or_max(float f) {
  270. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  271. }
  272. static bool ggml_is_view_op(enum ggml_op op) {
  273. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  274. }
  275. enum test_mode {
  276. MODE_TEST,
  277. MODE_PERF,
  278. MODE_GRAD,
  279. };
  280. // Output format support similar to llama-bench
  281. enum output_formats { CONSOLE, SQL };
  282. static const char * output_format_str(output_formats format) {
  283. switch (format) {
  284. case CONSOLE:
  285. return "console";
  286. case SQL:
  287. return "sql";
  288. default:
  289. GGML_ABORT("invalid output format");
  290. }
  291. }
  292. static bool output_format_from_str(const std::string & s, output_formats & format) {
  293. if (s == "console") {
  294. format = CONSOLE;
  295. } else if (s == "sql") {
  296. format = SQL;
  297. } else {
  298. return false;
  299. }
  300. return true;
  301. }
  302. // Test result structure for SQL output
  303. struct test_result {
  304. std::string test_time;
  305. std::string build_commit;
  306. std::string backend_name;
  307. std::string op_name;
  308. std::string op_params;
  309. std::string test_mode;
  310. bool supported;
  311. bool passed;
  312. std::string error_message;
  313. double time_us;
  314. double flops;
  315. double bandwidth_gb_s;
  316. size_t memory_kb;
  317. int n_runs;
  318. test_result() {
  319. // Initialize with default values
  320. time_us = 0.0;
  321. flops = 0.0;
  322. bandwidth_gb_s = 0.0;
  323. memory_kb = 0;
  324. n_runs = 0;
  325. supported = false;
  326. passed = false;
  327. // Set test time
  328. time_t t = time(NULL);
  329. char buf[32];
  330. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  331. test_time = buf;
  332. // Set build info
  333. build_commit = ggml_commit();
  334. }
  335. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  336. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  337. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  338. int n_runs = 0) :
  339. backend_name(backend_name),
  340. op_name(op_name),
  341. op_params(op_params),
  342. test_mode(test_mode),
  343. supported(supported),
  344. passed(passed),
  345. error_message(error_message),
  346. time_us(time_us),
  347. flops(flops),
  348. bandwidth_gb_s(bandwidth_gb_s),
  349. memory_kb(memory_kb),
  350. n_runs(n_runs) {
  351. // Set test time
  352. time_t t = time(NULL);
  353. char buf[32];
  354. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  355. test_time = buf;
  356. // Set build info
  357. build_commit = ggml_commit();
  358. }
  359. static const std::vector<std::string> & get_fields() {
  360. static const std::vector<std::string> fields = {
  361. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  362. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs"
  363. };
  364. return fields;
  365. }
  366. enum field_type { STRING, BOOL, INT, FLOAT };
  367. static field_type get_field_type(const std::string & field) {
  368. if (field == "supported" || field == "passed") {
  369. return BOOL;
  370. }
  371. if (field == "memory_kb" || field == "n_runs") {
  372. return INT;
  373. }
  374. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  375. return FLOAT;
  376. }
  377. return STRING;
  378. }
  379. std::vector<std::string> get_values() const {
  380. return { test_time,
  381. build_commit,
  382. backend_name,
  383. op_name,
  384. op_params,
  385. test_mode,
  386. std::to_string(supported),
  387. std::to_string(passed),
  388. error_message,
  389. std::to_string(time_us),
  390. std::to_string(flops),
  391. std::to_string(bandwidth_gb_s),
  392. std::to_string(memory_kb),
  393. std::to_string(n_runs) };
  394. }
  395. };
  396. // Printer classes for different output formats
  397. enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
  398. struct test_operation_info {
  399. std::string op_name;
  400. std::string op_params;
  401. std::string backend_name;
  402. test_status_t status = test_status_t::OK;
  403. std::string failure_reason;
  404. // Additional information fields that were previously in separate structs
  405. std::string error_component;
  406. std::string error_details;
  407. // Gradient info
  408. int64_t gradient_index = -1;
  409. std::string gradient_param_name;
  410. float gradient_value = 0.0f;
  411. // MAA error info
  412. double maa_error = 0.0;
  413. double maa_threshold = 0.0;
  414. // Flags for different types of information
  415. bool has_error = false;
  416. bool has_gradient_info = false;
  417. bool has_maa_error = false;
  418. bool is_compare_failure = false;
  419. bool is_large_tensor_skip = false;
  420. test_operation_info() = default;
  421. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  422. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  423. op_name(op_name),
  424. op_params(op_params),
  425. backend_name(backend_name),
  426. status(status),
  427. failure_reason(failure_reason) {}
  428. // Set error information
  429. void set_error(const std::string & component, const std::string & details) {
  430. has_error = true;
  431. error_component = component;
  432. error_details = details;
  433. if (status == test_status_t::OK) {
  434. status = test_status_t::FAIL;
  435. }
  436. }
  437. // Set gradient information
  438. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  439. has_gradient_info = true;
  440. gradient_index = index;
  441. gradient_param_name = param_name;
  442. gradient_value = value;
  443. if (status == test_status_t::OK) {
  444. status = test_status_t::FAIL;
  445. }
  446. }
  447. // Set MAA error information
  448. void set_maa_error(double error, double threshold) {
  449. has_maa_error = true;
  450. maa_error = error;
  451. maa_threshold = threshold;
  452. if (status == test_status_t::OK) {
  453. status = test_status_t::FAIL;
  454. }
  455. }
  456. // Set compare failure
  457. void set_compare_failure() {
  458. is_compare_failure = true;
  459. if (status == test_status_t::OK) {
  460. status = test_status_t::FAIL;
  461. }
  462. }
  463. // Set large tensor skip
  464. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  465. };
  466. struct test_summary_info {
  467. size_t tests_passed;
  468. size_t tests_total;
  469. bool is_backend_summary = false; // true for backend summary, false for test summary
  470. test_summary_info() = default;
  471. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  472. tests_passed(tests_passed),
  473. tests_total(tests_total),
  474. is_backend_summary(is_backend_summary) {}
  475. };
  476. struct testing_start_info {
  477. size_t device_count;
  478. testing_start_info() = default;
  479. testing_start_info(size_t device_count) : device_count(device_count) {}
  480. };
  481. struct backend_init_info {
  482. size_t device_index;
  483. size_t total_devices;
  484. std::string device_name;
  485. bool skipped = false;
  486. std::string skip_reason;
  487. std::string description;
  488. size_t memory_total_mb = 0;
  489. size_t memory_free_mb = 0;
  490. bool has_memory_info = false;
  491. backend_init_info() = default;
  492. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  493. const std::string & skip_reason = "", const std::string & description = "",
  494. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  495. device_index(device_index),
  496. total_devices(total_devices),
  497. device_name(device_name),
  498. skipped(skipped),
  499. skip_reason(skip_reason),
  500. description(description),
  501. memory_total_mb(memory_total_mb),
  502. memory_free_mb(memory_free_mb),
  503. has_memory_info(has_memory_info) {}
  504. };
  505. struct backend_status_info {
  506. std::string backend_name;
  507. test_status_t status;
  508. backend_status_info() = default;
  509. backend_status_info(const std::string & backend_name, test_status_t status) :
  510. backend_name(backend_name),
  511. status(status) {}
  512. };
  513. struct overall_summary_info {
  514. size_t backends_passed;
  515. size_t backends_total;
  516. bool all_passed;
  517. overall_summary_info() = default;
  518. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  519. backends_passed(backends_passed),
  520. backends_total(backends_total),
  521. all_passed(all_passed) {}
  522. };
  523. struct printer {
  524. virtual ~printer() {}
  525. FILE * fout = stdout;
  526. virtual void print_header() {}
  527. virtual void print_test_result(const test_result & result) = 0;
  528. virtual void print_footer() {}
  529. virtual void print_operation(const test_operation_info & info) { (void) info; }
  530. virtual void print_summary(const test_summary_info & info) { (void) info; }
  531. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  532. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  533. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  534. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  535. };
  536. struct console_printer : public printer {
  537. void print_test_result(const test_result & result) override {
  538. if (result.test_mode == "test") {
  539. print_test_console(result);
  540. } else if (result.test_mode == "perf") {
  541. print_perf_console(result);
  542. }
  543. }
  544. void print_operation(const test_operation_info & info) override {
  545. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  546. fflush(stdout);
  547. // Handle large tensor skip first
  548. if (info.is_large_tensor_skip) {
  549. printf("skipping large tensors for speed \n");
  550. return;
  551. }
  552. // Handle not supported status
  553. if (info.status == test_status_t::NOT_SUPPORTED) {
  554. if (!info.failure_reason.empty()) {
  555. printf("not supported [%s]\n", info.failure_reason.c_str());
  556. } else {
  557. printf("not supported [%s]\n", info.backend_name.c_str());
  558. }
  559. return;
  560. }
  561. // Handle errors and additional information
  562. if (info.has_error) {
  563. if (info.error_component == "allocation") {
  564. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  565. } else if (info.error_component == "backend") {
  566. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  567. } else {
  568. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  569. }
  570. }
  571. // Handle gradient info
  572. if (info.has_gradient_info) {
  573. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  574. info.gradient_param_name.c_str(), info.gradient_value);
  575. }
  576. // Handle MAA error
  577. if (info.has_maa_error) {
  578. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  579. }
  580. // Handle compare failure
  581. if (info.is_compare_failure) {
  582. printf("compare failed ");
  583. }
  584. // Print final status
  585. if (info.status == test_status_t::OK) {
  586. printf("\033[1;32mOK\033[0m\n");
  587. } else {
  588. printf("\033[1;31mFAIL\033[0m\n");
  589. }
  590. }
  591. void print_summary(const test_summary_info & info) override {
  592. if (info.is_backend_summary) {
  593. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  594. } else {
  595. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  596. }
  597. }
  598. void print_backend_status(const backend_status_info & info) override {
  599. printf(" Backend %s: ", info.backend_name.c_str());
  600. if (info.status == test_status_t::OK) {
  601. printf("\033[1;32mOK\033[0m\n");
  602. } else {
  603. printf("\033[1;31mFAIL\033[0m\n");
  604. }
  605. }
  606. void print_testing_start(const testing_start_info & info) override {
  607. printf("Testing %zu devices\n\n", info.device_count);
  608. }
  609. void print_backend_init(const backend_init_info & info) override {
  610. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  611. if (info.skipped) {
  612. printf(" %s\n", info.skip_reason.c_str());
  613. return;
  614. }
  615. if (!info.description.empty()) {
  616. printf(" Device description: %s\n", info.description.c_str());
  617. }
  618. if (info.has_memory_info) {
  619. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  620. }
  621. printf("\n");
  622. }
  623. void print_overall_summary(const overall_summary_info & info) override {
  624. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  625. if (info.all_passed) {
  626. printf("\033[1;32mOK\033[0m\n");
  627. } else {
  628. printf("\033[1;31mFAIL\033[0m\n");
  629. }
  630. }
  631. private:
  632. void print_test_console(const test_result & result) {
  633. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  634. fflush(stdout);
  635. if (!result.supported) {
  636. printf("not supported [%s] ", result.backend_name.c_str());
  637. printf("\n");
  638. return;
  639. }
  640. if (result.passed) {
  641. printf("\033[1;32mOK\033[0m\n");
  642. } else {
  643. printf("\033[1;31mFAIL\033[0m\n");
  644. }
  645. }
  646. void print_perf_console(const test_result & result) {
  647. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  648. fflush(stdout);
  649. if (!result.supported) {
  650. printf("not supported\n");
  651. return;
  652. }
  653. // align while also leaving some margin for variations in parameters
  654. int align = 8;
  655. int last = (len + align - 1) / align * align;
  656. if (last - len < 5) {
  657. last += align;
  658. }
  659. printf("%*s", last - len, "");
  660. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  661. if (result.flops > 0) {
  662. auto format_flops = [](double flops) -> std::string {
  663. char buf[256];
  664. if (flops >= 1e12) {
  665. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  666. } else if (flops >= 1e9) {
  667. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  668. } else if (flops >= 1e6) {
  669. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  670. } else {
  671. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  672. }
  673. return buf;
  674. };
  675. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  676. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  677. format_flops(result.flops).c_str());
  678. } else {
  679. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  680. }
  681. printf("\n");
  682. }
  683. };
  684. struct sql_printer : public printer {
  685. static std::string get_sql_field_type(const std::string & field) {
  686. switch (test_result::get_field_type(field)) {
  687. case test_result::STRING:
  688. return "TEXT";
  689. case test_result::BOOL:
  690. case test_result::INT:
  691. return "INTEGER";
  692. case test_result::FLOAT:
  693. return "REAL";
  694. default:
  695. GGML_ABORT("invalid field type");
  696. }
  697. }
  698. void print_header() override {
  699. std::vector<std::string> fields = test_result::get_fields();
  700. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  701. for (size_t i = 0; i < fields.size(); i++) {
  702. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  703. i < fields.size() - 1 ? "," : "");
  704. }
  705. fprintf(fout, ");\n\n");
  706. }
  707. void print_test_result(const test_result & result) override {
  708. fprintf(fout, "INSERT INTO test_backend_ops (");
  709. std::vector<std::string> fields = test_result::get_fields();
  710. for (size_t i = 0; i < fields.size(); i++) {
  711. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  712. }
  713. fprintf(fout, ") VALUES (");
  714. std::vector<std::string> values = result.get_values();
  715. for (size_t i = 0; i < values.size(); i++) {
  716. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  717. }
  718. fprintf(fout, ");\n");
  719. }
  720. };
  721. static std::unique_ptr<printer> create_printer(output_formats format) {
  722. switch (format) {
  723. case CONSOLE:
  724. return std::make_unique<console_printer>();
  725. case SQL:
  726. return std::make_unique<sql_printer>();
  727. }
  728. GGML_ABORT("invalid output format");
  729. }
  730. struct test_case {
  731. virtual ~test_case() {}
  732. virtual std::string op_desc(ggml_tensor * t) {
  733. return ggml_op_desc(t);
  734. }
  735. virtual std::string vars() {
  736. return "";
  737. }
  738. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  739. virtual double max_nmse_err() {
  740. return 1e-7;
  741. }
  742. virtual double max_maa_err() {
  743. return 1e-4;
  744. }
  745. virtual float grad_eps() {
  746. return 1e-1f;
  747. }
  748. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  749. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  750. virtual bool grad_precise() {
  751. return false;
  752. }
  753. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  754. virtual int64_t grad_nmax() {
  755. return 10000;
  756. }
  757. // No effect if empty.
  758. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  759. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  760. virtual std::vector<float> grad_expect() {
  761. return {};
  762. }
  763. virtual void initialize_tensors(ggml_context * ctx) {
  764. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  765. init_tensor_uniform(t);
  766. }
  767. }
  768. virtual size_t op_size(ggml_tensor * t) {
  769. size_t size = ggml_nbytes(t);
  770. // add source tensors
  771. for (int i = 0; i < GGML_MAX_SRC; i++) {
  772. if (t->src[i] != NULL) {
  773. size += ggml_nbytes(t->src[i]);
  774. }
  775. }
  776. return size;
  777. }
  778. virtual uint64_t op_flops(ggml_tensor * t) {
  779. GGML_UNUSED(t);
  780. return 0;
  781. }
  782. virtual bool run_whole_graph() { return false; }
  783. ggml_cgraph * gf = nullptr;
  784. ggml_cgraph * gb = nullptr;
  785. static const int sentinel_size = 1024;
  786. test_mode mode;
  787. std::vector<ggml_tensor *> sentinels;
  788. void add_sentinel(ggml_context * ctx) {
  789. if (mode == MODE_PERF || mode == MODE_GRAD) {
  790. return;
  791. }
  792. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  793. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  794. sentinels.push_back(sentinel);
  795. }
  796. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  797. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  798. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  799. add_sentinel(ctx);
  800. return t;
  801. }
  802. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  803. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  804. add_sentinel(ctx);
  805. return t;
  806. }
  807. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  808. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  809. add_sentinel(ctx);
  810. return t;
  811. }
  812. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  813. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  814. add_sentinel(ctx);
  815. return t;
  816. }
  817. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  818. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  819. add_sentinel(ctx);
  820. return t;
  821. }
  822. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name, printer * output_printer) {
  823. mode = MODE_TEST;
  824. ggml_init_params params = {
  825. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  826. /* .mem_base = */ NULL,
  827. /* .no_alloc = */ true,
  828. };
  829. ggml_context * ctx = ggml_init(params);
  830. GGML_ASSERT(ctx);
  831. gf = ggml_new_graph(ctx);
  832. // pre-graph sentinel
  833. add_sentinel(ctx);
  834. ggml_tensor * out = build_graph(ctx);
  835. std::string current_op_name = op_desc(out);
  836. if (op_name != nullptr && current_op_name != op_name) {
  837. //printf(" %s: skipping\n", op_desc(out).c_str());
  838. ggml_free(ctx);
  839. return true;
  840. }
  841. // check if the backends support the ops
  842. bool supported = true;
  843. for (ggml_backend_t backend : {backend1, backend2}) {
  844. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  845. if (!ggml_backend_supports_op(backend, t)) {
  846. supported = false;
  847. break;
  848. }
  849. }
  850. }
  851. if (!supported) {
  852. // Create test result for unsupported operation
  853. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  854. false, false, "not supported");
  855. if (output_printer) {
  856. output_printer->print_test_result(result);
  857. }
  858. ggml_free(ctx);
  859. return true;
  860. }
  861. // post-graph sentinel
  862. add_sentinel(ctx);
  863. // allocate
  864. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  865. if (buf == NULL) {
  866. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  867. ggml_free(ctx);
  868. return false;
  869. }
  870. // build graph
  871. ggml_build_forward_expand(gf, out);
  872. // add sentinels as graph nodes so that they are checked in the callback
  873. for (ggml_tensor * sentinel : sentinels) {
  874. ggml_graph_add_node(gf, sentinel);
  875. }
  876. // randomize tensors
  877. initialize_tensors(ctx);
  878. // compare
  879. struct callback_userdata {
  880. bool ok;
  881. double max_err;
  882. ggml_backend_t backend1;
  883. ggml_backend_t backend2;
  884. };
  885. callback_userdata ud {
  886. true,
  887. max_nmse_err(),
  888. backend1,
  889. backend2
  890. };
  891. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  892. callback_userdata * ud = (callback_userdata *) user_data;
  893. const char * bn1 = ggml_backend_name(ud->backend1);
  894. const char * bn2 = ggml_backend_name(ud->backend2);
  895. if (t1->op == GGML_OP_NONE) {
  896. // sentinels must be unchanged
  897. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  898. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  899. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  900. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  901. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  902. printf("sentinel mismatch: %s ", t1->name);
  903. ud->ok = false;
  904. return true;
  905. }
  906. }
  907. std::vector<float> f1 = tensor_to_float(t1);
  908. std::vector<float> f2 = tensor_to_float(t2);
  909. for (size_t i = 0; i < f1.size(); i++) {
  910. // check for nans
  911. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  912. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  913. ud->ok = false;
  914. return true;
  915. }
  916. // check for infs: both must be inf of the same sign, or both must be finite
  917. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  918. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  919. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  920. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  921. ud->ok = false;
  922. return true;
  923. }
  924. } else {
  925. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  926. ud->ok = false;
  927. return true;
  928. }
  929. }
  930. }
  931. double err = nmse(f1.data(), f2.data(), f1.size());
  932. if (err > ud->max_err) {
  933. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  934. //for (int i = 0; i < (int) f1.size(); i++) {
  935. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  936. //}
  937. //printf("\n");
  938. //exit(1);
  939. ud->ok = false;
  940. }
  941. return true;
  942. GGML_UNUSED(index);
  943. };
  944. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  945. ggml_backend_buffer_free(buf);
  946. ggml_free(ctx);
  947. // Create test result
  948. bool test_passed = ud.ok && cmp_ok;
  949. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  950. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  951. error_msg);
  952. if (output_printer) {
  953. output_printer->print_test_result(result);
  954. }
  955. return test_passed;
  956. }
  957. bool eval_perf(ggml_backend_t backend, const char * op_name, printer * output_printer) {
  958. mode = MODE_PERF;
  959. static const size_t graph_nodes = 8192;
  960. ggml_init_params params = {
  961. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  962. /* .mem_base = */ NULL,
  963. /* .no_alloc = */ true,
  964. };
  965. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  966. GGML_ASSERT(ctx);
  967. ggml_tensor * out = build_graph(ctx.get());
  968. std::string current_op_name = op_desc(out);
  969. if (op_name != nullptr && current_op_name != op_name) {
  970. //printf(" %s: skipping\n", op_desc(out).c_str());
  971. return true;
  972. }
  973. // check if backends support op
  974. if (!ggml_backend_supports_op(backend, out)) {
  975. // Create test result for unsupported performance test
  976. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  977. "not supported");
  978. if (output_printer) {
  979. output_printer->print_test_result(result);
  980. }
  981. return true;
  982. }
  983. // allocate
  984. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  985. if (buf == NULL) {
  986. printf("failed to allocate tensors\n");
  987. return false;
  988. }
  989. // randomize tensors
  990. initialize_tensors(ctx.get());
  991. // build graph
  992. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  993. ggml_build_forward_expand(gf, out);
  994. // warmup run
  995. ggml_status status = ggml_backend_graph_compute(backend, gf);
  996. if (status != GGML_STATUS_SUCCESS) {
  997. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  998. return false;
  999. }
  1000. // determine number of runs
  1001. int n_runs;
  1002. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1003. if (op_flops(out) > 0) {
  1004. // based on flops
  1005. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1006. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1007. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1008. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1009. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1010. } else {
  1011. // based on memory size
  1012. const size_t GB = 1ULL << 30;
  1013. const size_t target_size_cpu = 8 * GB;
  1014. const size_t target_size_gpu = 32 * GB;
  1015. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1016. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1017. }
  1018. // duplicate the op
  1019. for (int i = 1; i < n_runs; i++) {
  1020. ggml_graph_add_node(gf, out);
  1021. }
  1022. // calculate memory
  1023. size_t mem = n_runs * op_size(out);
  1024. auto tensor_op_size = [](ggml_tensor * t) {
  1025. size_t size = ggml_nbytes(t);
  1026. // add source tensors
  1027. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1028. if (t->src[i] != NULL) {
  1029. size += ggml_nbytes(t->src[i]);
  1030. }
  1031. }
  1032. return size;
  1033. };
  1034. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1035. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1036. continue;
  1037. }
  1038. mem += tensor_op_size(ggml_graph_node(gf, i));
  1039. }
  1040. // run
  1041. int64_t total_time_us = 0;
  1042. int64_t total_mem = 0;
  1043. int total_runs = 0;
  1044. do {
  1045. int64_t start_time = ggml_time_us();
  1046. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1047. if (status != GGML_STATUS_SUCCESS) {
  1048. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1049. return false;
  1050. }
  1051. int64_t end_time = ggml_time_us();
  1052. total_time_us += end_time - start_time;
  1053. total_mem += mem;
  1054. total_runs += n_runs;
  1055. } while (total_time_us < 1000*1000); // run for at least 1 second
  1056. // Create test result
  1057. double avg_time_us = (double) total_time_us / total_runs;
  1058. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1059. double calculated_bandwidth =
  1060. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1061. size_t calculated_memory_kb = op_size(out) / 1024;
  1062. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1063. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1064. if (output_printer) {
  1065. output_printer->print_test_result(result);
  1066. }
  1067. return true;
  1068. }
  1069. bool eval_grad(ggml_backend_t backend, const char * op_name, printer * output_printer) {
  1070. mode = MODE_GRAD;
  1071. const std::vector<float> expect = grad_expect();
  1072. ggml_init_params params = {
  1073. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1074. /* .mem_base = */ NULL,
  1075. /* .no_alloc = */ true,
  1076. };
  1077. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1078. GGML_ASSERT(ctx);
  1079. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1080. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1081. ggml_tensor * out = build_graph(ctx.get());
  1082. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1083. return true;
  1084. }
  1085. if (out->type != GGML_TYPE_F32) {
  1086. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1087. test_status_t::NOT_SUPPORTED,
  1088. out->name + std::string("->type != FP32")));
  1089. return true;
  1090. }
  1091. // Print operation info first
  1092. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1093. // check if the backend supports the ops
  1094. bool supported = true;
  1095. bool any_params = false;
  1096. std::string failure_reason;
  1097. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1098. if (!ggml_backend_supports_op(backend, t)) {
  1099. supported = false;
  1100. failure_reason = ggml_backend_name(backend);
  1101. break;
  1102. }
  1103. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1104. any_params = true;
  1105. if (t->type != GGML_TYPE_F32) {
  1106. supported = false;
  1107. failure_reason = std::string(t->name) + "->type != FP32";
  1108. break;
  1109. }
  1110. }
  1111. }
  1112. if (!any_params) {
  1113. supported = false;
  1114. failure_reason = op_desc(out);
  1115. }
  1116. if (!supported) {
  1117. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1118. test_status_t::NOT_SUPPORTED, failure_reason));
  1119. return true;
  1120. }
  1121. int64_t ngrads = 0;
  1122. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1123. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1124. ngrads += ggml_nelements(t);
  1125. }
  1126. }
  1127. if (ngrads > grad_nmax()) {
  1128. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1129. info.set_large_tensor_skip();
  1130. output_printer->print_operation(info);
  1131. return true;
  1132. }
  1133. if (!ggml_is_scalar(out)) {
  1134. out = ggml_sum(ctx.get(), out);
  1135. ggml_set_name(out, "sum_of_out");
  1136. }
  1137. ggml_set_loss(out);
  1138. ggml_build_forward_expand(gf, out);
  1139. ggml_graph_cpy(gf, gb);
  1140. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1141. if (expect.size() != 1 || expect[0] != 0.0f) {
  1142. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1143. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1144. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1145. }
  1146. }
  1147. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1148. if (!ggml_backend_supports_op(backend, t)) {
  1149. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1150. test_status_t::NOT_SUPPORTED,
  1151. ggml_backend_name(backend)));
  1152. supported = false;
  1153. break;
  1154. }
  1155. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1156. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1157. test_status_t::NOT_SUPPORTED,
  1158. std::string(t->name) + "->type != FP32"));
  1159. supported = false;
  1160. break;
  1161. }
  1162. }
  1163. if (!supported) {
  1164. return true;
  1165. }
  1166. // allocate
  1167. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1168. if (buf == NULL) {
  1169. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1170. info.set_error("allocation", "");
  1171. output_printer->print_operation(info);
  1172. return false;
  1173. }
  1174. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1175. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1176. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1177. if (status != GGML_STATUS_SUCCESS) {
  1178. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1179. return false;
  1180. }
  1181. status = ggml_backend_graph_compute(backend, gb);
  1182. if (status != GGML_STATUS_SUCCESS) {
  1183. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1184. return false;
  1185. }
  1186. bool ok = true;
  1187. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1188. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1189. continue;
  1190. }
  1191. const char * bn = ggml_backend_name(backend);
  1192. const int64_t ne = ggml_nelements(t);
  1193. std::vector<float> ga;
  1194. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1195. if (grad) {
  1196. ga = tensor_to_float(grad);
  1197. } else {
  1198. ga.resize(ne); // default value is 0.0f
  1199. }
  1200. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1201. // check for nans
  1202. if (!std::isfinite(ga[i])) {
  1203. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1204. info.set_gradient_info(i, bn, ga[i]);
  1205. output_printer->print_operation(info);
  1206. ok = false;
  1207. break;
  1208. }
  1209. }
  1210. if (!ok) {
  1211. break;
  1212. }
  1213. std::vector<float> gn(ne); // gradient numeric
  1214. GGML_ASSERT(ga.size() == gn.size());
  1215. std::vector<float> x0 = tensor_to_float(t); // original t data
  1216. GGML_ASSERT(ggml_is_scalar(out));
  1217. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1218. const float eps = grad_eps();
  1219. for (int64_t i = 0; i < ne; ++i) {
  1220. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1221. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1222. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1223. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1224. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1225. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1226. status = ggml_backend_graph_compute(backend, gf);
  1227. if (status != GGML_STATUS_SUCCESS) {
  1228. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1229. return false;
  1230. }
  1231. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1232. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1233. status = ggml_backend_graph_compute(backend, gf);
  1234. if (status != GGML_STATUS_SUCCESS) {
  1235. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1236. return false;
  1237. }
  1238. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1239. if (grad_precise()) {
  1240. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1241. status = ggml_backend_graph_compute(backend, gf);
  1242. if (status != GGML_STATUS_SUCCESS) {
  1243. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1244. return false;
  1245. }
  1246. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1247. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1248. status = ggml_backend_graph_compute(backend, gf);
  1249. if (status != GGML_STATUS_SUCCESS) {
  1250. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1251. return false;
  1252. }
  1253. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1254. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1255. } else {
  1256. gn[i] = (fu - fd) / (2.0f*eps);
  1257. }
  1258. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1259. }
  1260. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1261. if (err > max_maa_err()) {
  1262. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1263. info.set_maa_error(err, max_maa_err());
  1264. output_printer->print_operation(info);
  1265. ok = false;
  1266. break;
  1267. }
  1268. if (!ok) {
  1269. break;
  1270. }
  1271. }
  1272. // Create final test result
  1273. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1274. if (!ok) {
  1275. final_info.set_compare_failure();
  1276. }
  1277. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1278. output_printer->print_operation(final_info);
  1279. if (ok) {
  1280. return true;
  1281. }
  1282. return false;
  1283. }
  1284. };
  1285. // ###################################
  1286. // ## Section 2: GGML Op Defintions ##
  1287. // ###################################
  1288. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1289. // GGML_OP_EXAMPLE
  1290. struct test_example : public test_case {
  1291. // Always define these 2 or variants thereof:
  1292. const ggml_type type; // The type of the input tensors.
  1293. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1294. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1295. // Or they may need additional parameters.
  1296. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1297. // In most cases these are just the properties of the struct that you defined above.
  1298. // This is needed for info prints.
  1299. std::string vars() override {
  1300. return VARS_TO_STR2(type, ne);
  1301. }
  1302. // Define a constructor for the struct.
  1303. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1304. // and just use initializer lists.
  1305. test_example(ggml_type type = GGML_TYPE_F32,
  1306. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1307. : type(type), ne(ne) {}
  1308. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1309. ggml_tensor * build_graph(ggml_context * ctx) override {
  1310. // Step 1: create input tensors that don't depend on any other tensors:
  1311. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1312. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1313. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1314. ggml_set_name(b, "b");
  1315. // Step 2: use the op that you want to test in the GGML compute graph.
  1316. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1317. ggml_set_name(out, "out");
  1318. // Step 3: return the output tensor.
  1319. return out;
  1320. }
  1321. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1322. // immediately after you create the tensors.
  1323. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1324. };
  1325. // GGML_OP_UNARY
  1326. struct test_unary : public test_case {
  1327. const ggml_unary_op op;
  1328. const ggml_type type;
  1329. const std::array<int64_t, 4> ne_a;
  1330. int v; // view (1 : non-contiguous a)
  1331. std::string vars() override {
  1332. return VARS_TO_STR3(type, ne_a, v);
  1333. }
  1334. test_unary(ggml_unary_op op,
  1335. ggml_type type = GGML_TYPE_F32,
  1336. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1337. int v = 0)
  1338. : op(op), type(type), ne_a(ne_a), v(v) {}
  1339. ggml_tensor * build_graph(ggml_context * ctx) override {
  1340. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1341. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1342. ggml_tensor * a;
  1343. if (v & 1) {
  1344. auto ne = ne_a; ne[0] *= 3;
  1345. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1346. if (grad_supported) {
  1347. ggml_set_param(a);
  1348. }
  1349. ggml_set_name(a, "a");
  1350. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1351. ggml_set_name(a, "view_of_a");
  1352. } else {
  1353. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1354. if (grad_supported) {
  1355. ggml_set_param(a);
  1356. }
  1357. ggml_set_name(a, "a");
  1358. }
  1359. ggml_tensor * out = ggml_unary(ctx, a, op);
  1360. ggml_set_name(out, "out");
  1361. return out;
  1362. }
  1363. void initialize_tensors(ggml_context * ctx) override {
  1364. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1365. // test extended range of values to check for NaNs in GELU
  1366. init_tensor_uniform(t, -150.f, 150.f);
  1367. }
  1368. }
  1369. float grad_eps() override {
  1370. return 15.0f;
  1371. }
  1372. std::vector<float> grad_expect() override {
  1373. if (op == GGML_UNARY_OP_ABS) {
  1374. return {-1.0f, 1.0f};
  1375. }
  1376. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1377. return {0.0f};
  1378. }
  1379. if (op == GGML_UNARY_OP_RELU) {
  1380. return {0.0f, 1.0f};
  1381. }
  1382. return {};
  1383. }
  1384. };
  1385. // GGML_OP_GLU
  1386. struct test_glu : public test_case {
  1387. const ggml_glu_op op;
  1388. const ggml_type type;
  1389. const std::array<int64_t, 4> ne_a;
  1390. int v; // view (1 : non-contiguous a)
  1391. bool swapped;
  1392. std::string vars() override {
  1393. return VARS_TO_STR4(type, ne_a, v, swapped);
  1394. }
  1395. test_glu(ggml_glu_op op,
  1396. ggml_type type = GGML_TYPE_F32,
  1397. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1398. int v = 0,
  1399. bool swapped = false)
  1400. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1401. ggml_tensor * build_graph(ggml_context * ctx) override {
  1402. ggml_tensor * a;
  1403. if (v & 1) {
  1404. auto ne = ne_a; ne[0] *= 3;
  1405. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1406. ggml_set_name(a, "a");
  1407. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1408. ggml_set_name(a, "view_of_a");
  1409. } else {
  1410. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1411. ggml_set_name(a, "a");
  1412. }
  1413. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1414. ggml_set_name(out, "out");
  1415. return out;
  1416. }
  1417. void initialize_tensors(ggml_context * ctx) override {
  1418. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1419. // test extended range of values to check for NaNs in GELU
  1420. init_tensor_uniform(t, -150.f, 150.f);
  1421. }
  1422. }
  1423. };
  1424. struct test_glu_split : public test_case {
  1425. const ggml_glu_op op;
  1426. const ggml_type type;
  1427. const std::array<int64_t, 4> ne_a;
  1428. int v; // view (1 : non-contiguous a)
  1429. std::string vars() override {
  1430. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1431. }
  1432. test_glu_split(ggml_glu_op op,
  1433. ggml_type type = GGML_TYPE_F32,
  1434. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1435. int v = 0)
  1436. : op(op), type(type), ne_a(ne_a), v(v) {}
  1437. ggml_tensor * build_graph(ggml_context * ctx) override {
  1438. ggml_tensor * a;
  1439. ggml_tensor * b;
  1440. if (v & 1) {
  1441. auto ne = ne_a; ne[0] *= 3;
  1442. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1443. ggml_set_param(a);
  1444. ggml_set_name(a, "a");
  1445. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1446. ggml_set_name(a, "view_of_a");
  1447. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1448. ggml_set_param(b);
  1449. ggml_set_name(b, "b");
  1450. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1451. ggml_set_name(a, "view_of_b");
  1452. } else {
  1453. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1454. ggml_set_param(a);
  1455. ggml_set_name(a, "a");
  1456. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1457. ggml_set_param(b);
  1458. ggml_set_name(b, "b");
  1459. }
  1460. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1461. ggml_set_name(out, "out");
  1462. return out;
  1463. }
  1464. void initialize_tensors(ggml_context * ctx) override {
  1465. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1466. // test extended range of values to check for NaNs in GELU
  1467. init_tensor_uniform(t, -150.f, 150.f);
  1468. }
  1469. }
  1470. };
  1471. // GGML_OP_GET_ROWS
  1472. struct test_get_rows : public test_case {
  1473. const ggml_type type;
  1474. const int n; // cols
  1475. const int m; // rows
  1476. const int r; // rows to get
  1477. const int b; // batch size
  1478. const bool v; // view (non-contiguous src1)
  1479. std::string vars() override {
  1480. return VARS_TO_STR6(type, n, m, r, b, v);
  1481. }
  1482. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1483. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1484. ggml_tensor * build_graph(ggml_context * ctx) override {
  1485. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  1486. ggml_set_name(in, "in");
  1487. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1488. ggml_set_name(rows, "rows");
  1489. if (v) {
  1490. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1491. ggml_set_name(rows, "view_of_rows");
  1492. }
  1493. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1494. if (grad_supported) {
  1495. ggml_set_param(in);
  1496. // rows is a constant input -> no gradients
  1497. }
  1498. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1499. ggml_set_name(out, "out");
  1500. return out;
  1501. }
  1502. void initialize_tensors(ggml_context * ctx) override {
  1503. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1504. if (t->type == GGML_TYPE_I32) {
  1505. if (ggml_is_view_op(t->op)) { continue; }
  1506. // rows
  1507. std::vector<int> data(r*b);
  1508. for (int i = 0; i < r*b; i++) {
  1509. data[i] = rand() % m;
  1510. }
  1511. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1512. } else {
  1513. init_tensor_uniform(t);
  1514. }
  1515. }
  1516. }
  1517. };
  1518. // GGML_OP_GET_ROWS_BACK
  1519. struct test_get_rows_back : public test_case {
  1520. const ggml_type type;
  1521. const int n; // cols
  1522. const int m; // rows
  1523. const int r; // rows to get
  1524. const int b; // batch size
  1525. const bool v; // view (non-contiguous src1)
  1526. std::string vars() override {
  1527. return VARS_TO_STR6(type, n, m, r, b, v);
  1528. }
  1529. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1530. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1531. ggml_tensor * build_graph(ggml_context * ctx) override {
  1532. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1533. ggml_set_name(in_forward, "in_forward");
  1534. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1535. ggml_set_name(rows, "rows");
  1536. if (v) {
  1537. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1538. ggml_set_name(rows, "view_of_rows");
  1539. }
  1540. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1541. ggml_set_name(grad, "grad");
  1542. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1543. ggml_set_name(out, "out");
  1544. return out;
  1545. }
  1546. void initialize_tensors(ggml_context * ctx) override {
  1547. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1548. if (t->type == GGML_TYPE_I32) {
  1549. if (ggml_is_view_op(t->op)) { continue; }
  1550. // rows
  1551. std::vector<int> data(r*b);
  1552. for (int i = 0; i < r*b; i++) {
  1553. data[i] = rand() % m;
  1554. }
  1555. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1556. } else {
  1557. init_tensor_uniform(t);
  1558. }
  1559. }
  1560. }
  1561. };
  1562. // GGML_OP_SET_ROWS
  1563. struct test_set_rows : public test_case {
  1564. const ggml_type type;
  1565. const std::array<int64_t, 4> ne;
  1566. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1567. const int r; // rows to set
  1568. const bool v; // view (non-contiguous src1)
  1569. std::string vars() override {
  1570. return VARS_TO_STR5(type, ne, nr23, r, v);
  1571. }
  1572. test_set_rows(ggml_type type,
  1573. std::array<int64_t, 4> ne,
  1574. std::array<int, 2> nr23,
  1575. int r, bool v = false)
  1576. : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
  1577. ggml_tensor * build_graph(ggml_context * ctx) override {
  1578. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1579. ggml_set_name(dst, "dst");
  1580. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1581. ggml_set_name(src, "src");
  1582. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
  1583. ggml_set_name(row_idxs, "row_idxs");
  1584. if (v) {
  1585. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1586. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1587. ggml_set_name(row_idxs, "view_of_rows");
  1588. }
  1589. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1590. ggml_set_name(out, "out");
  1591. return out;
  1592. }
  1593. void initialize_tensors(ggml_context * ctx) override {
  1594. std::random_device rd;
  1595. std::default_random_engine rng(rd());
  1596. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1597. if (t->type == GGML_TYPE_I64) {
  1598. if (ggml_is_view_op(t->op)) {
  1599. continue;
  1600. }
  1601. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1602. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1603. // generate a shuffled subset of row indices
  1604. std::vector<int64_t> data(ne[1]);
  1605. for (int i = 0; i < ne[1]; i++) {
  1606. data[i] = i;
  1607. }
  1608. std::shuffle(data.begin(), data.end(), rng);
  1609. data.resize(t->ne[0]);
  1610. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1611. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1612. }
  1613. }
  1614. } else {
  1615. init_tensor_uniform(t);
  1616. }
  1617. }
  1618. }
  1619. };
  1620. // GGML_OP_ARGMAX
  1621. struct test_argmax : public test_case {
  1622. const ggml_type type;
  1623. const std::array<int64_t, 4> ne;
  1624. std::string vars() override {
  1625. return VARS_TO_STR2(type, ne);
  1626. }
  1627. test_argmax(ggml_type type = GGML_TYPE_F32,
  1628. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1629. : type(type), ne(ne) {}
  1630. ggml_tensor * build_graph(ggml_context * ctx) override {
  1631. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1632. ggml_set_name(a, "a");
  1633. ggml_tensor * out = ggml_argmax(ctx, a);
  1634. ggml_set_name(out, "out");
  1635. return out;
  1636. }
  1637. void initialize_tensors(ggml_context * ctx) override {
  1638. std::random_device rd;
  1639. std::default_random_engine rng(rd());
  1640. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1641. if (t->type == GGML_TYPE_F32) {
  1642. // initialize with unique values to avoid ties
  1643. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1644. std::vector<float> data(t->ne[0]);
  1645. for (int i = 0; i < t->ne[0]; i++) {
  1646. data[i] = i;
  1647. }
  1648. std::shuffle(data.begin(), data.end(), rng);
  1649. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1650. }
  1651. } else {
  1652. init_tensor_uniform(t);
  1653. }
  1654. }
  1655. }
  1656. double max_nmse_err() override {
  1657. return 0.0;
  1658. }
  1659. };
  1660. // GGML_OP_COUNT_EQUAL
  1661. struct test_count_equal : public test_case {
  1662. const ggml_type type;
  1663. const std::array<int64_t, 4> ne;
  1664. std::string vars() override {
  1665. return VARS_TO_STR2(type, ne);
  1666. }
  1667. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1668. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1669. : type(type), ne(ne) {}
  1670. ggml_tensor * build_graph(ggml_context * ctx) override {
  1671. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1672. ggml_set_name(a, "a");
  1673. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1674. ggml_set_name(a_argmax, "a_argmax");
  1675. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1676. ggml_set_name(b, "b");
  1677. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1678. ggml_set_name(b_argmax, "b_argmax");
  1679. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1680. ggml_set_name(out, "out");
  1681. return out;
  1682. }
  1683. double max_nmse_err() override {
  1684. return 0.0;
  1685. }
  1686. };
  1687. // GGML_OP_REPEAT
  1688. struct test_repeat : public test_case {
  1689. const ggml_type type;
  1690. const std::array<int64_t, 4> ne;
  1691. const std::array<int, 4> nr;
  1692. std::string vars() override {
  1693. return VARS_TO_STR3(type, ne, nr);
  1694. }
  1695. size_t op_size(ggml_tensor * t) override {
  1696. return ggml_nbytes(t) * 2;
  1697. }
  1698. test_repeat(ggml_type type = GGML_TYPE_F32,
  1699. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1700. std::array<int, 4> nr = {2, 2, 2, 2})
  1701. : type(type), ne(ne), nr(nr) {}
  1702. ggml_tensor * build_graph(ggml_context * ctx) override {
  1703. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1704. ggml_set_name(target, "target");
  1705. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1706. ggml_set_param(src);
  1707. ggml_set_name(src, "src");
  1708. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1709. ggml_set_name(out, "out");
  1710. return out;
  1711. }
  1712. };
  1713. // GGML_OP_REPEAT_BACK
  1714. struct test_repeat_back : public test_case {
  1715. const ggml_type type;
  1716. const std::array<int64_t, 4> ne;
  1717. const std::array<int, 4> nr;
  1718. const bool v; // whether src is a noncontiguous view
  1719. std::string vars() override {
  1720. return VARS_TO_STR4(type, ne, nr, v);
  1721. }
  1722. size_t op_size(ggml_tensor * t) override {
  1723. return ggml_nbytes(t) * 2;
  1724. }
  1725. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1726. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1727. std::array<int, 4> nr = {2, 2, 2, 2},
  1728. bool v = false)
  1729. : type(type), ne(ne), nr(nr), v(v) {}
  1730. ggml_tensor * build_graph(ggml_context * ctx) override {
  1731. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1732. ggml_set_name(src, "src");
  1733. if (v) {
  1734. GGML_ASSERT(ne[0] % 2 == 0);
  1735. GGML_ASSERT(ne[1] % 2 == 0);
  1736. GGML_ASSERT(ne[2] % 2 == 0);
  1737. GGML_ASSERT(ne[3] % 2 == 0);
  1738. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1739. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1740. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1741. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1742. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1743. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1744. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1745. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1746. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1747. }
  1748. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1749. ggml_set_name(target, "target");
  1750. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1751. ggml_set_name(out, "out");
  1752. return out;
  1753. }
  1754. };
  1755. // GGML_OP_DUP
  1756. struct test_dup : public test_case {
  1757. const ggml_type type;
  1758. const std::array<int64_t, 4> ne;
  1759. const std::array<int64_t, 4> permute;
  1760. bool _use_permute;
  1761. std::string vars() override {
  1762. std::string v = VARS_TO_STR2(type, ne);
  1763. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1764. return v;
  1765. }
  1766. test_dup(ggml_type type = GGML_TYPE_F32,
  1767. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1768. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1769. : type(type), ne(ne), permute(permute),
  1770. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1771. ggml_tensor * build_graph(ggml_context * ctx) override {
  1772. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1773. ggml_set_param(src);
  1774. ggml_set_name(src, "src");
  1775. if (_use_permute) {
  1776. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1777. ggml_set_name(src, "src_permuted");
  1778. }
  1779. ggml_tensor * out = ggml_dup(ctx, src);
  1780. ggml_set_name(out, "out");
  1781. return out;
  1782. }
  1783. };
  1784. // GGML_OP_SET
  1785. struct test_set : public test_case {
  1786. const ggml_type type_src;
  1787. const ggml_type type_dst;
  1788. const std::array<int64_t, 4> ne;
  1789. const int dim;
  1790. std::string vars() override {
  1791. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1792. }
  1793. size_t op_size(ggml_tensor * t) override {
  1794. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1795. }
  1796. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1797. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1798. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1799. ggml_tensor * build_graph(ggml_context * ctx) override {
  1800. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1801. ggml_set_param(src);
  1802. ggml_set_name(src, "src");
  1803. auto ne_dst = ne;
  1804. for (int i = 0; i < dim; ++i) {
  1805. ne_dst[i] *= 2;
  1806. }
  1807. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1808. ggml_set_param(dst);
  1809. ggml_set_name(dst, "dst");
  1810. size_t offset = 0;
  1811. for (int i = 0; i < dim; ++i) {
  1812. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1813. }
  1814. ggml_tensor * out = ggml_set(ctx, dst, src,
  1815. // The backward pass requires setting a contiguous region:
  1816. src->nb[1], src->nb[2], src->nb[3], offset);
  1817. ggml_set_name(out, "out");
  1818. return out;
  1819. }
  1820. };
  1821. // GGML_OP_CPY
  1822. struct test_cpy : public test_case {
  1823. const ggml_type type_src;
  1824. const ggml_type type_dst;
  1825. const std::array<int64_t, 4> ne;
  1826. const std::array<int64_t, 4> permute_src;
  1827. const std::array<int64_t, 4> permute_dst;
  1828. bool _src_use_permute;
  1829. bool _dst_use_permute;
  1830. std::string vars() override {
  1831. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  1832. }
  1833. double max_nmse_err() override {
  1834. return 1e-6;
  1835. }
  1836. size_t op_size(ggml_tensor * t) override {
  1837. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1838. }
  1839. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1840. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1841. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  1842. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  1843. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  1844. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  1845. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  1846. ggml_tensor * build_graph(ggml_context * ctx) override {
  1847. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1848. ggml_set_param(src);
  1849. ggml_set_name(src, "src");
  1850. if (_src_use_permute) {
  1851. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  1852. ggml_set_name(src, "src_permuted");
  1853. }
  1854. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1855. ggml_set_name(dst, "dst");
  1856. if (_dst_use_permute) {
  1857. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  1858. ggml_set_name(dst, "dst_permuted");
  1859. }
  1860. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1861. ggml_set_name(out, "out");
  1862. return out;
  1863. }
  1864. };
  1865. // GGML_OP_CONT
  1866. struct test_cont : public test_case {
  1867. const ggml_type type;
  1868. const std::array<int64_t, 4> ne;
  1869. std::string vars() override {
  1870. return VARS_TO_STR2(type, ne);
  1871. }
  1872. test_cont(ggml_type type = GGML_TYPE_F32,
  1873. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1874. : type(type), ne(ne) {}
  1875. ggml_tensor * build_graph(ggml_context * ctx) override {
  1876. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1877. ggml_set_param(src);
  1878. ggml_set_name(src, "src");
  1879. src = ggml_transpose(ctx, src);
  1880. ggml_set_name(src, "src_transposed");
  1881. ggml_tensor * out = ggml_cont(ctx, src);
  1882. ggml_set_name(out, "out");
  1883. return out;
  1884. }
  1885. };
  1886. // GGML_OP_ADD
  1887. // GGML_OP_SUB
  1888. // GGML_OP_MUL
  1889. // GGML_OP_DIV
  1890. struct test_bin_bcast : public test_case {
  1891. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1892. op_t op;
  1893. const ggml_type type;
  1894. const std::array<int64_t, 4> ne;
  1895. const std::array<int, 4> nr;
  1896. std::string vars() override {
  1897. return VARS_TO_STR3(type, ne, nr);
  1898. }
  1899. size_t op_size(ggml_tensor * t) override {
  1900. return ggml_nbytes(t) * 3;
  1901. }
  1902. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1903. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1904. std::array<int, 4> nr = {1, 2, 1, 1})
  1905. : op(op), type(type), ne(ne), nr(nr) {}
  1906. ggml_tensor * build_graph(ggml_context * ctx) override {
  1907. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1908. ggml_set_name(a, "a");
  1909. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1910. ggml_set_name(b, "b");
  1911. // The backward pass supports broadcasting only for GGML_ADD:
  1912. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1913. if (grad_supported) {
  1914. ggml_set_param(a);
  1915. ggml_set_param(b);
  1916. }
  1917. ggml_tensor * out = op(ctx, a, b);
  1918. ggml_set_name(out, "out");
  1919. return out;
  1920. }
  1921. void initialize_tensors(ggml_context * ctx) override {
  1922. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1923. if (op == ggml_mul || op == ggml_div) {
  1924. // MUL and DIV have numerical issues around zero:
  1925. init_tensor_uniform(t, 0.9f, 1.1f);
  1926. } else {
  1927. init_tensor_uniform(t);
  1928. }
  1929. }
  1930. }
  1931. float grad_eps() override {
  1932. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1933. }
  1934. bool grad_precise() override {
  1935. return op == ggml_div;
  1936. }
  1937. double max_maa_err() override {
  1938. return op == ggml_add ? 1e-4 : 1e-3;
  1939. }
  1940. };
  1941. // GGML_OP_ADD1
  1942. struct test_add1 : public test_case {
  1943. const ggml_type type;
  1944. const std::array<int64_t, 4> ne;
  1945. std::string vars() override {
  1946. return VARS_TO_STR2(type, ne);
  1947. }
  1948. test_add1(ggml_type type = GGML_TYPE_F32,
  1949. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1950. : type(type), ne(ne) {}
  1951. ggml_tensor * build_graph(ggml_context * ctx) override {
  1952. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1953. ggml_set_param(a);
  1954. ggml_set_name(a, "a");
  1955. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1956. // ggml_set_param(b); // TODO: implement
  1957. ggml_set_name(b, "b");
  1958. ggml_tensor * out = ggml_add1(ctx, a, b);
  1959. ggml_set_name(out, "out");
  1960. return out;
  1961. }
  1962. float grad_eps() override {
  1963. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1964. }
  1965. };
  1966. // GGML_OP_SCALE
  1967. struct test_scale : public test_case {
  1968. const ggml_type type;
  1969. const std::array<int64_t, 4> ne;
  1970. float scale;
  1971. std::string vars() override {
  1972. return VARS_TO_STR3(type, ne, scale);
  1973. }
  1974. test_scale(ggml_type type = GGML_TYPE_F32,
  1975. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1976. float scale = 2.0f)
  1977. : type(type), ne(ne), scale(scale) {}
  1978. ggml_tensor * build_graph(ggml_context * ctx) override {
  1979. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1980. ggml_set_param(a);
  1981. ggml_set_name(a, "a");
  1982. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1983. ggml_set_name(out, "out");
  1984. return out;
  1985. }
  1986. };
  1987. // GGML_OP_SILU_BACK
  1988. struct test_silu_back : public test_case {
  1989. const ggml_type type;
  1990. const std::array<int64_t, 4> ne;
  1991. float eps;
  1992. std::string vars() override {
  1993. return VARS_TO_STR3(type, ne, eps);
  1994. }
  1995. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1996. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1997. float eps = 1e-6f)
  1998. : type(type), ne(ne), eps(eps) {}
  1999. ggml_tensor * build_graph(ggml_context * ctx) override {
  2000. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2001. ggml_set_name(a, "a");
  2002. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2003. ggml_set_name(grad, "grad");
  2004. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2005. ggml_set_name(out, "out");
  2006. return out;
  2007. }
  2008. bool grad_precise() override {
  2009. return true;
  2010. }
  2011. };
  2012. // GGML_OP_NORM
  2013. struct test_norm : public test_case {
  2014. const ggml_type type;
  2015. const std::array<int64_t, 4> ne;
  2016. const bool v; // whether a is a non-contiguous view
  2017. const float eps;
  2018. std::string vars() override {
  2019. return VARS_TO_STR4(type, ne, v, eps);
  2020. }
  2021. test_norm(ggml_type type = GGML_TYPE_F32,
  2022. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2023. bool v = false,
  2024. float eps = 1e-6f)
  2025. : type(type), ne(ne), v(v), eps(eps) {}
  2026. ggml_tensor * build_graph(ggml_context * ctx) override {
  2027. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2028. ggml_set_name(a, "a");
  2029. if (v) {
  2030. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2031. ggml_set_name(a, "view of a");
  2032. }
  2033. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2034. ggml_set_name(out, "out");
  2035. return out;
  2036. }
  2037. };
  2038. // GGML_OP_RMS_NORM
  2039. struct test_rms_norm : public test_case {
  2040. const ggml_type type;
  2041. const std::array<int64_t, 4> ne;
  2042. const bool v; // whether a is a non-contiguous view
  2043. const float eps;
  2044. std::string vars() override {
  2045. return VARS_TO_STR4(type, ne, v, eps);
  2046. }
  2047. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2048. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2049. bool v = false,
  2050. float eps = 1e-6f)
  2051. : type(type), ne(ne), v(v), eps(eps) {}
  2052. ggml_tensor * build_graph(ggml_context * ctx) override {
  2053. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2054. ggml_set_param(a);
  2055. ggml_set_name(a, "a");
  2056. if (v) {
  2057. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2058. ggml_set_name(a, "view of a");
  2059. }
  2060. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  2061. ggml_set_name(out, "out");
  2062. return out;
  2063. }
  2064. void initialize_tensors(ggml_context * ctx) override {
  2065. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2066. init_tensor_uniform(t, -10.f, 10.f);
  2067. }
  2068. }
  2069. float grad_eps() override {
  2070. return 1.0f;
  2071. }
  2072. bool grad_precise() override {
  2073. return true;
  2074. }
  2075. };
  2076. // GGML_OP_RMS_NORM_BACK
  2077. struct test_rms_norm_back : public test_case {
  2078. const ggml_type type;
  2079. const std::array<int64_t, 4> ne;
  2080. const float eps;
  2081. std::string vars() override {
  2082. return VARS_TO_STR3(type, ne, eps);
  2083. }
  2084. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2085. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2086. float eps = 1e-6f)
  2087. : type(type), ne(ne), eps(eps) {}
  2088. ggml_tensor * build_graph(ggml_context * ctx) override {
  2089. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2090. ggml_set_name(a, "a");
  2091. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2092. ggml_set_name(b, "b");
  2093. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2094. ggml_set_name(out, "out");
  2095. return out;
  2096. }
  2097. void initialize_tensors(ggml_context * ctx) override {
  2098. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2099. init_tensor_uniform(t, -10.f, 10.f);
  2100. }
  2101. }
  2102. };
  2103. // GGML_OP_RMS_NORM + GGML_OP_MUL
  2104. struct test_rms_norm_mul : public test_case {
  2105. const ggml_type type;
  2106. const std::array<int64_t, 4> ne;
  2107. const float eps;
  2108. std::string op_desc(ggml_tensor * t) override {
  2109. GGML_UNUSED(t);
  2110. return "RMS_NORM_MUL";
  2111. }
  2112. bool run_whole_graph() override { return true; }
  2113. std::string vars() override {
  2114. return VARS_TO_STR3(type, ne, eps);
  2115. }
  2116. test_rms_norm_mul(ggml_type type = GGML_TYPE_F32,
  2117. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2118. float eps = 1e-6f)
  2119. : type(type), ne(ne), eps(eps) {}
  2120. ggml_tensor * build_graph(ggml_context * ctx) override {
  2121. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2122. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2123. ggml_set_param(a);
  2124. ggml_set_name(a, "a");
  2125. ggml_set_param(b);
  2126. ggml_set_name(b, "b");
  2127. // Use a and b early, so we don't end up with an OP_NONE between rms_norm and mul
  2128. a = ggml_add(ctx, a, b);
  2129. ggml_tensor * out = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  2130. ggml_set_name(out, "out");
  2131. return out;
  2132. }
  2133. void initialize_tensors(ggml_context * ctx) override {
  2134. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2135. init_tensor_uniform(t, -10.f, 10.f);
  2136. }
  2137. }
  2138. double max_nmse_err() override {
  2139. return 1e-6;
  2140. }
  2141. float grad_eps() override {
  2142. return 1.0f;
  2143. }
  2144. bool grad_precise() override {
  2145. return true;
  2146. }
  2147. };
  2148. // GGML_OP_SSM_CONV
  2149. struct test_ssm_conv : public test_case {
  2150. const ggml_type type;
  2151. const std::array<int64_t, 4> ne_a;
  2152. const std::array<int64_t, 4> ne_b;
  2153. std::string vars() override {
  2154. return VARS_TO_STR3(type, ne_a, ne_b);
  2155. }
  2156. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2157. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2158. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2159. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2160. ggml_tensor * build_graph(ggml_context * ctx) override {
  2161. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2162. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2163. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2164. return out;
  2165. }
  2166. };
  2167. // GGML_OP_SSM_SCAN
  2168. struct test_ssm_scan : public test_case {
  2169. const ggml_type type;
  2170. const int64_t d_state;
  2171. const int64_t head_dim;
  2172. const int64_t n_head;
  2173. const int64_t n_group;
  2174. const int64_t n_seq_tokens;
  2175. const int64_t n_seqs;
  2176. std::string vars() override {
  2177. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2178. }
  2179. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2180. int64_t d_state = 32,
  2181. int64_t head_dim = 1, // non-zero for Mamba-2
  2182. int64_t n_head = 32,
  2183. int64_t n_group = 1,
  2184. int64_t n_seq_tokens = 32,
  2185. int64_t n_seqs = 32)
  2186. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2187. ggml_tensor * build_graph(ggml_context * ctx) override {
  2188. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2189. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2190. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2191. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2192. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2193. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2194. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2195. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2196. return out;
  2197. }
  2198. // similar to test_mul_mat_id
  2199. void initialize_tensors(ggml_context * ctx) override {
  2200. std::random_device rd;
  2201. std::default_random_engine rng(rd());
  2202. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2203. if (t->type == GGML_TYPE_I32) {
  2204. if (ggml_is_view_op(t->op)) { continue; }
  2205. // ids
  2206. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2207. std::vector<int32_t> data(t->ne[0]);
  2208. for (int i = 0; i < t->ne[0]; i++) {
  2209. data[i] = i;
  2210. }
  2211. std::shuffle(data.begin(), data.end(), rng);
  2212. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2213. }
  2214. } else {
  2215. init_tensor_uniform(t);
  2216. }
  2217. }
  2218. }
  2219. };
  2220. // GGML_OP_RWKV_WKV6
  2221. struct test_rwkv_wkv6 : public test_case {
  2222. const ggml_type type;
  2223. const int64_t head_count;
  2224. const int64_t head_size;
  2225. const int64_t n_seq_tokens;
  2226. const int64_t n_seqs;
  2227. std::string vars() override {
  2228. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2229. }
  2230. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2231. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2232. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2233. ggml_tensor * build_graph(ggml_context * ctx) override {
  2234. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2235. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2236. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2237. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2238. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2239. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2240. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2241. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2242. return out;
  2243. }
  2244. };
  2245. // GGML_OP_GATED_LINEAR_ATTN
  2246. struct test_gla : public test_case {
  2247. const ggml_type type;
  2248. const int64_t head_count;
  2249. const int64_t head_size;
  2250. const int64_t n_seq_tokens;
  2251. const int64_t n_seqs;
  2252. std::string vars() override {
  2253. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2254. }
  2255. test_gla(ggml_type type = GGML_TYPE_F32,
  2256. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2257. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2258. ggml_tensor * build_graph(ggml_context * ctx) override {
  2259. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2260. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2261. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2262. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2263. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2264. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2265. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2266. return out;
  2267. }
  2268. };
  2269. // GGML_OP_RWKV_WKV7
  2270. struct test_rwkv_wkv7 : public test_case {
  2271. const ggml_type type;
  2272. const int64_t head_count;
  2273. const int64_t head_size;
  2274. const int64_t n_seq_tokens;
  2275. const int64_t n_seqs;
  2276. std::string vars() override {
  2277. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2278. }
  2279. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2280. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2281. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2282. ggml_tensor * build_graph(ggml_context * ctx) override {
  2283. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2284. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2285. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2286. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2287. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2288. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2289. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2290. // Outputs may become NaN with long seqlen without these normalization
  2291. a = ggml_l2_norm(ctx, a, 1e-7F);
  2292. b = ggml_l2_norm(ctx, b, 1e-7F);
  2293. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2294. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2295. return out;
  2296. }
  2297. };
  2298. // GGML_OP_MUL_MAT
  2299. struct test_mul_mat : public test_case {
  2300. const ggml_type type_a;
  2301. const ggml_type type_b;
  2302. const int64_t m;
  2303. const int64_t n;
  2304. const int64_t k;
  2305. const std::array<int64_t, 2> bs; // dims 3 and 4
  2306. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2307. const std::array<int64_t, 4> per; // permutation of dimensions
  2308. const bool v; // whether a and b are non-contiguous views
  2309. std::string vars() override {
  2310. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  2311. }
  2312. double max_nmse_err() override {
  2313. return 5e-4;
  2314. }
  2315. int64_t grad_nmax() override {
  2316. return 20000;
  2317. }
  2318. uint64_t op_flops(ggml_tensor * t) override {
  2319. GGML_UNUSED(t);
  2320. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2321. }
  2322. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2323. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2324. std::array<int64_t, 2> bs = {10, 10},
  2325. std::array<int64_t, 2> nr = {2, 2},
  2326. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2327. bool v = false)
  2328. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  2329. ggml_tensor * build_graph(ggml_context * ctx) override {
  2330. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2331. ggml_tensor * a;
  2332. ggml_tensor * b;
  2333. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2334. if (npermuted > 0) {
  2335. GGML_ASSERT(npermuted == 2);
  2336. GGML_ASSERT(!v); // not handled
  2337. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2338. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2339. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2340. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2341. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2342. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2343. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2344. if (!ggml_is_quantized(type_a)) {
  2345. if (bs[1] == 1 && nr[1] == 1) {
  2346. ggml_set_param(a);
  2347. }
  2348. ggml_set_param(b);
  2349. }
  2350. ggml_set_name(a, "a");
  2351. ggml_set_name(b, "b");
  2352. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2353. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2354. ggml_set_name(a, "a_permuted");
  2355. ggml_set_name(b, "b_permuted");
  2356. } else {
  2357. if (v) {
  2358. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2359. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2360. if (!ggml_is_quantized(type_a)) {
  2361. if (bs[1] == 1 && nr[1] == 1) {
  2362. ggml_set_param(a);
  2363. }
  2364. ggml_set_param(b);
  2365. }
  2366. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2367. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2368. } else {
  2369. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2370. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2371. if (!ggml_is_quantized(type_a)) {
  2372. if (bs[1] == 1 && nr[1] == 1) {
  2373. ggml_set_param(a);
  2374. }
  2375. ggml_set_param(b);
  2376. }
  2377. }
  2378. ggml_set_name(a, "a");
  2379. ggml_set_name(b, "b");
  2380. }
  2381. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2382. ggml_set_name(out, "out");
  2383. return out;
  2384. }
  2385. };
  2386. // GGML_OP_MUL_MAT_ID
  2387. struct test_mul_mat_id : public test_case {
  2388. const ggml_type type_a;
  2389. const ggml_type type_b;
  2390. const int n_mats;
  2391. const int n_used;
  2392. const bool b; // broadcast b matrix
  2393. const int64_t m;
  2394. const int64_t n;
  2395. const int64_t k;
  2396. std::string vars() override {
  2397. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  2398. }
  2399. double max_nmse_err() override {
  2400. return 5e-4;
  2401. }
  2402. uint64_t op_flops(ggml_tensor * t) override {
  2403. GGML_UNUSED(t);
  2404. return 2 * m * k * n * n_used;
  2405. }
  2406. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2407. int n_mats = 8, int n_used = 2, bool b = false,
  2408. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  2409. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2410. m(m), n(n), k(k) {
  2411. GGML_ASSERT(n_used <= n_mats);
  2412. }
  2413. ggml_tensor * build_graph(ggml_context * ctx) override {
  2414. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2415. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2416. ggml_set_name(as, "as");
  2417. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2418. ggml_set_name(ids, "ids");
  2419. if (n_used != n_mats) {
  2420. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2421. ggml_set_name(ids, "view_of_ids");
  2422. }
  2423. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2424. ggml_set_name(b, "b");
  2425. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2426. ggml_set_name(out, "out");
  2427. return out;
  2428. }
  2429. void initialize_tensors(ggml_context * ctx) override {
  2430. std::random_device rd;
  2431. std::default_random_engine rng(rd());
  2432. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2433. if (t->type == GGML_TYPE_I32) {
  2434. if (ggml_is_view_op(t->op)) { continue; }
  2435. // ids
  2436. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2437. std::vector<int32_t> data(t->ne[0]);
  2438. for (int i = 0; i < t->ne[0]; i++) {
  2439. data[i] = i % n_mats;
  2440. }
  2441. std::shuffle(data.begin(), data.end(), rng);
  2442. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2443. }
  2444. } else {
  2445. init_tensor_uniform(t);
  2446. }
  2447. }
  2448. }
  2449. };
  2450. // GGML_OP_OUT_PROD
  2451. struct test_out_prod : public test_case {
  2452. const ggml_type type_a;
  2453. const ggml_type type_b;
  2454. const int64_t m;
  2455. const int64_t n;
  2456. const int64_t k;
  2457. const std::array<int64_t, 2> bs; // dims 3 and 4
  2458. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2459. const bool trans_b;
  2460. std::string vars() override {
  2461. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2462. }
  2463. double max_nmse_err() override {
  2464. return 5e-4;
  2465. }
  2466. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2467. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2468. std::array<int64_t, 2> bs = {10, 10},
  2469. std::array<int64_t, 2> nr = {2, 2},
  2470. bool trans_b = false)
  2471. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2472. ggml_tensor * build_graph(ggml_context * ctx) override {
  2473. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2474. ggml_set_name(a, "a");
  2475. ggml_tensor * b;
  2476. if (trans_b) {
  2477. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2478. b = ggml_transpose(ctx, b);
  2479. } else {
  2480. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2481. }
  2482. ggml_set_name(b, "b");
  2483. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2484. ggml_set_name(out, "out");
  2485. return out;
  2486. }
  2487. };
  2488. // GGML_OP_SQR
  2489. struct test_sqr : public test_case {
  2490. const ggml_type type;
  2491. const std::array<int64_t, 4> ne;
  2492. std::string vars() override {
  2493. return VARS_TO_STR2(type, ne);
  2494. }
  2495. test_sqr(ggml_type type = GGML_TYPE_F32,
  2496. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2497. : type(type), ne(ne) {}
  2498. ggml_tensor * build_graph(ggml_context * ctx) override {
  2499. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2500. ggml_set_param(a);
  2501. ggml_set_name(a, "a");
  2502. ggml_tensor * out = ggml_sqr(ctx, a);
  2503. ggml_set_name(out, "out");
  2504. return out;
  2505. }
  2506. float grad_eps() override {
  2507. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2508. }
  2509. };
  2510. // GGML_OP_SQRT
  2511. struct test_sqrt : public test_case {
  2512. const ggml_type type;
  2513. const std::array<int64_t, 4> ne;
  2514. std::string vars() override {
  2515. return VARS_TO_STR2(type, ne);
  2516. }
  2517. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2518. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2519. : type(type), ne(ne) {}
  2520. ggml_tensor * build_graph(ggml_context * ctx) override {
  2521. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2522. ggml_set_param(a);
  2523. ggml_set_name(a, "a");
  2524. ggml_tensor * out = ggml_sqrt(ctx, a);
  2525. ggml_set_name(out, "out");
  2526. return out;
  2527. }
  2528. void initialize_tensors(ggml_context * ctx) override {
  2529. // fill with positive values
  2530. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2531. init_tensor_uniform(t, 50.0f, 100.0f);
  2532. }
  2533. }
  2534. float grad_eps() override {
  2535. return 20.0f;
  2536. }
  2537. bool grad_precise() override {
  2538. return true;
  2539. }
  2540. };
  2541. // GGML_OP_LOG
  2542. struct test_log : public test_case {
  2543. const ggml_type type;
  2544. const std::array<int64_t, 4> ne;
  2545. std::string vars() override {
  2546. return VARS_TO_STR2(type, ne);
  2547. }
  2548. test_log(ggml_type type = GGML_TYPE_F32,
  2549. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2550. : type(type), ne(ne) {}
  2551. ggml_tensor * build_graph(ggml_context * ctx) override {
  2552. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2553. ggml_set_param(a);
  2554. ggml_set_name(a, "a");
  2555. ggml_tensor * out = ggml_log(ctx, a);
  2556. ggml_set_name(out, "out");
  2557. return out;
  2558. }
  2559. void initialize_tensors(ggml_context * ctx) override {
  2560. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2561. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  2562. init_tensor_uniform(t, 0.9f, 1.1f);
  2563. }
  2564. }
  2565. bool grad_precise() override {
  2566. return true;
  2567. }
  2568. };
  2569. // GGML_OP_SIN
  2570. struct test_sin : public test_case {
  2571. const ggml_type type;
  2572. const std::array<int64_t, 4> ne;
  2573. std::string vars() override {
  2574. return VARS_TO_STR2(type, ne);
  2575. }
  2576. test_sin(ggml_type type = GGML_TYPE_F32,
  2577. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2578. : type(type), ne(ne) {}
  2579. ggml_tensor * build_graph(ggml_context * ctx) override {
  2580. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2581. ggml_set_param(a);
  2582. ggml_set_name(a, "a");
  2583. ggml_tensor * out = ggml_sin(ctx, a);
  2584. ggml_set_name(out, "out");
  2585. return out;
  2586. }
  2587. void initialize_tensors(ggml_context * ctx) override {
  2588. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2589. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2590. }
  2591. }
  2592. double max_maa_err() override {
  2593. return 1e-3;
  2594. }
  2595. float grad_eps() override {
  2596. return 0.2f;
  2597. }
  2598. bool grad_precise() override {
  2599. return true;
  2600. }
  2601. };
  2602. // GGML_OP_COS
  2603. struct test_cos : public test_case {
  2604. const ggml_type type;
  2605. const std::array<int64_t, 4> ne;
  2606. std::string vars() override {
  2607. return VARS_TO_STR2(type, ne);
  2608. }
  2609. test_cos(ggml_type type = GGML_TYPE_F32,
  2610. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2611. : type(type), ne(ne) {}
  2612. ggml_tensor * build_graph(ggml_context * ctx) override {
  2613. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2614. ggml_set_param(a);
  2615. ggml_set_name(a, "a");
  2616. ggml_tensor * out = ggml_cos(ctx, a);
  2617. ggml_set_name(out, "out");
  2618. return out;
  2619. }
  2620. void initialize_tensors(ggml_context * ctx) override {
  2621. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2622. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2623. }
  2624. }
  2625. double max_maa_err() override {
  2626. return 1e-3;
  2627. }
  2628. float grad_eps() override {
  2629. return 0.2f;
  2630. }
  2631. bool grad_precise() override {
  2632. return true;
  2633. }
  2634. };
  2635. // GGML_OP_CLAMP
  2636. struct test_clamp : public test_case {
  2637. const ggml_type type;
  2638. const std::array<int64_t, 4> ne;
  2639. float min;
  2640. float max;
  2641. std::string vars() override {
  2642. return VARS_TO_STR4(type, ne, min, max);
  2643. }
  2644. test_clamp(ggml_type type = GGML_TYPE_F32,
  2645. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2646. float min = -0.5f, float max = 0.5f)
  2647. : type(type), ne(ne), min(min), max(max) {}
  2648. ggml_tensor * build_graph(ggml_context * ctx) override {
  2649. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2650. ggml_set_name(a, "a");
  2651. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  2652. ggml_set_name(out, "out");
  2653. return out;
  2654. }
  2655. float grad_eps() override {
  2656. return 1e-2f;
  2657. }
  2658. std::vector<float> grad_expect() override {
  2659. return {0.0f, 1.0f};
  2660. }
  2661. };
  2662. // GGML_OP_DIAG_MASK_INF
  2663. struct test_diag_mask_inf : public test_case {
  2664. const ggml_type type;
  2665. const std::array<int64_t, 4> ne;
  2666. const int n_past;
  2667. std::string vars() override {
  2668. return VARS_TO_STR3(type, ne, n_past);
  2669. }
  2670. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  2671. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  2672. int n_past = 5)
  2673. : type(type), ne(ne), n_past(n_past) {}
  2674. ggml_tensor * build_graph(ggml_context * ctx) override {
  2675. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2676. ggml_set_param(a);
  2677. ggml_set_name(a, "a");
  2678. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  2679. ggml_set_name(out, "out");
  2680. return out;
  2681. }
  2682. };
  2683. // GGML_OP_SOFT_MAX
  2684. struct test_soft_max : public test_case {
  2685. const ggml_type type;
  2686. const std::array<int64_t, 4> ne;
  2687. const bool mask;
  2688. const ggml_type m_prec;
  2689. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  2690. const float scale;
  2691. const float max_bias;
  2692. std::string vars() override {
  2693. return VARS_TO_STR7(type, ne, mask, m_prec, nr23, scale, max_bias);
  2694. }
  2695. // the 1024 test with bias occasionally fails:
  2696. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2697. virtual double max_nmse_err() override {
  2698. return 1e-6;
  2699. }
  2700. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2701. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2702. bool mask = false,
  2703. ggml_type m_prec = GGML_TYPE_F32,
  2704. std::array<int64_t, 2> nr23 = {1, 1},
  2705. float scale = 1.0f,
  2706. float max_bias = 0.0f)
  2707. : type(type), ne(ne), mask(mask), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
  2708. ggml_tensor * build_graph(ggml_context * ctx) override {
  2709. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  2710. ggml_set_param(a);
  2711. ggml_set_name(a, "a");
  2712. ggml_tensor * mask = nullptr;
  2713. if (this->mask) {
  2714. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  2715. ggml_set_name(mask, "mask");
  2716. }
  2717. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2718. ggml_set_name(out, "out");
  2719. return out;
  2720. }
  2721. bool grad_precise() override {
  2722. return true;
  2723. }
  2724. };
  2725. // GGML_OP_SOFT_MAX_BACK
  2726. struct test_soft_max_back : public test_case {
  2727. const ggml_type type;
  2728. const std::array<int64_t, 4> ne;
  2729. const float scale;
  2730. const float max_bias;
  2731. std::string vars() override {
  2732. return VARS_TO_STR4(type, ne, scale, max_bias);
  2733. }
  2734. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2735. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2736. float scale = 1.0f,
  2737. float max_bias = 0.0f)
  2738. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2739. ggml_tensor * build_graph(ggml_context * ctx) override {
  2740. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2741. ggml_set_name(a, "a");
  2742. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2743. ggml_set_name(a, "a");
  2744. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2745. ggml_set_name(out, "out");
  2746. return out;
  2747. }
  2748. };
  2749. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2750. struct test_rope : public test_case {
  2751. const ggml_type type;
  2752. const std::array<int64_t, 4> ne_a;
  2753. int n_dims;
  2754. int mode;
  2755. int n_ctx; // used to generate positions
  2756. float fs; // freq_scale
  2757. float ef; // ext_factor
  2758. float af; // attn_factor
  2759. bool ff;
  2760. int v; // view (1 : non-contiguous a)
  2761. bool forward;
  2762. std::string vars() override {
  2763. // forward can be inferred from the op, does not need to be printed
  2764. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2765. }
  2766. test_rope(ggml_type type = GGML_TYPE_F32,
  2767. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2768. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2769. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2770. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2771. ggml_tensor * build_graph(ggml_context * ctx) override {
  2772. ggml_tensor * a;
  2773. if (v & 1) {
  2774. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2775. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2776. if (forward) {
  2777. ggml_set_param(a);
  2778. }
  2779. ggml_set_name(a, "a");
  2780. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2781. ggml_set_name(a, "view_of_a");
  2782. } else {
  2783. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2784. if (forward) {
  2785. ggml_set_param(a);
  2786. }
  2787. ggml_set_name(a, "a");
  2788. }
  2789. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2790. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2791. ggml_tensor * pos;
  2792. if (is_mrope || is_vision) {
  2793. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2794. } else {
  2795. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2796. }
  2797. ggml_set_name(pos, "pos");
  2798. ggml_tensor * freq = nullptr;
  2799. if (ff) {
  2800. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2801. ggml_set_name(freq, "freq");
  2802. }
  2803. ggml_tensor * out;
  2804. if (is_mrope) {
  2805. if (is_vision) {
  2806. GGML_ASSERT(n_dims/4 > 0);
  2807. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2808. if (forward) {
  2809. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2810. } else {
  2811. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2812. }
  2813. } else {
  2814. GGML_ASSERT(n_dims/3 > 0);
  2815. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2816. if (forward) {
  2817. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2818. } else {
  2819. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2820. }
  2821. }
  2822. } else {
  2823. if (forward) {
  2824. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2825. } else {
  2826. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2827. }
  2828. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  2829. }
  2830. ggml_set_name(out, "out");
  2831. return out;
  2832. }
  2833. void initialize_tensors(ggml_context * ctx) override {
  2834. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2835. if (t->type == GGML_TYPE_I32) {
  2836. // pos
  2837. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2838. std::vector<int> data(num_pos_ids);
  2839. for (int i = 0; i < num_pos_ids; i++) {
  2840. data[i] = rand() % n_ctx;
  2841. }
  2842. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2843. } else {
  2844. if (t->ne[0] == n_dims/2) {
  2845. // frequency factors in the range [0.9f, 1.1f]
  2846. init_tensor_uniform(t, 0.9f, 1.1f);
  2847. } else {
  2848. init_tensor_uniform(t);
  2849. }
  2850. }
  2851. }
  2852. }
  2853. double max_maa_err() override {
  2854. return 1e-3;
  2855. }
  2856. bool grad_precise() override {
  2857. return true;
  2858. }
  2859. };
  2860. // GGML_OP_POOL2D
  2861. struct test_pool2d : public test_case {
  2862. enum ggml_op_pool pool_type;
  2863. const ggml_type type_input;
  2864. const std::array<int64_t, 4> ne_input;
  2865. // kernel size
  2866. const int k0;
  2867. const int k1;
  2868. // stride
  2869. const int s0;
  2870. const int s1;
  2871. // padding
  2872. const int p0;
  2873. const int p1;
  2874. std::string vars() override {
  2875. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2876. }
  2877. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2878. ggml_type type_input = GGML_TYPE_F32,
  2879. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2880. int k0 = 3, int k1 = 3,
  2881. int s0 = 1, int s1 = 1,
  2882. int p0 = 1, int p1 = 1)
  2883. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2884. ggml_tensor * build_graph(ggml_context * ctx) override {
  2885. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2886. ggml_set_param(input);
  2887. ggml_set_name(input, "input");
  2888. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2889. ggml_set_name(out, "out");
  2890. return out;
  2891. }
  2892. };
  2893. // GGML_OP_CONV_TRANSPOSE_1D
  2894. struct test_conv_transpose_1d : public test_case {
  2895. const std::array<int64_t, 4> ne_input;
  2896. const std::array<int64_t, 4> ne_kernel;
  2897. const int s0; // stride
  2898. const int p0; // padding
  2899. const int d0; // dilation
  2900. std::string vars() override {
  2901. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2902. }
  2903. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  2904. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  2905. int s0 = 1, int p0 = 0, int d0 = 1)
  2906. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2907. ggml_tensor * build_graph(ggml_context * ctx) override {
  2908. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2909. ggml_set_name(input, "input");
  2910. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2911. ggml_set_name(kernel, "kernel");
  2912. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2913. ggml_set_name(out, "out");
  2914. return out;
  2915. }
  2916. };
  2917. // GGML_OP_CONV_TRANSPOSE_2D
  2918. struct test_conv_transpose_2d : public test_case {
  2919. const std::array<int64_t, 4> ne_input;
  2920. const std::array<int64_t, 4> ne_kernel;
  2921. const int stride;
  2922. std::string vars() override {
  2923. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  2924. }
  2925. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2926. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2927. int stride = 1)
  2928. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  2929. ggml_tensor * build_graph(ggml_context * ctx) override {
  2930. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2931. ggml_set_name(input, "input");
  2932. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  2933. ggml_set_name(kernel, "kernel");
  2934. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  2935. ggml_set_name(out, "out");
  2936. return out;
  2937. }
  2938. };
  2939. // GGML_OP_IM2COL
  2940. struct test_im2col : public test_case {
  2941. const ggml_type type_input;
  2942. const ggml_type type_kernel;
  2943. const ggml_type dst_type;
  2944. const std::array<int64_t, 4> ne_input;
  2945. const std::array<int64_t, 4> ne_kernel;
  2946. // stride
  2947. const int s0;
  2948. const int s1;
  2949. // padding
  2950. const int p0;
  2951. const int p1;
  2952. // dilation
  2953. const int d0;
  2954. const int d1;
  2955. // mode
  2956. const bool is_2D;
  2957. std::string vars() override {
  2958. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2959. }
  2960. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2961. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2962. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2963. int s0 = 1, int s1 = 1,
  2964. int p0 = 1, int p1 = 1,
  2965. int d0 = 1, int d1 = 1,
  2966. bool is_2D = true)
  2967. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2968. ggml_tensor * build_graph(ggml_context * ctx) override {
  2969. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2970. ggml_set_param(input);
  2971. ggml_set_name(input, "input");
  2972. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2973. ggml_set_name(kernel, "kernel");
  2974. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2975. ggml_set_name(out, "out");
  2976. return out;
  2977. }
  2978. };
  2979. // GGML_OP_CONV_2D_DW
  2980. struct test_conv_2d_dw : public test_case {
  2981. const std::array<int64_t, 4> ne_input;
  2982. const std::array<int64_t, 4> ne_kernel;
  2983. const int stride;
  2984. const int padding;
  2985. const int dilation;
  2986. const bool cwhn;
  2987. std::string vars() override {
  2988. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  2989. }
  2990. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  2991. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  2992. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  2993. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  2994. ggml_tensor * build_graph(ggml_context * ctx) override {
  2995. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2996. ggml_set_name(input, "input");
  2997. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2998. ggml_set_name(kernel, "kernel");
  2999. if (cwhn) {
  3000. // change memory layout to channel-most-contiguous (CWHN),
  3001. // then permute it back so NE matches the original input
  3002. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3003. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3004. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3005. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3006. }
  3007. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3008. ctx, kernel, input,
  3009. stride, stride, padding, padding, dilation, dilation);
  3010. ggml_set_name(out, "out");
  3011. return out;
  3012. }
  3013. };
  3014. // GGML_OP_CONCAT
  3015. struct test_concat : public test_case {
  3016. const ggml_type type;
  3017. const std::array<int64_t, 4> ne_a;
  3018. const int64_t ne_b_d;
  3019. const int dim;
  3020. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3021. std::string vars() override {
  3022. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3023. }
  3024. test_concat(ggml_type type = GGML_TYPE_F32,
  3025. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3026. int64_t ne_b_d = 5,
  3027. int dim = 2, int v = 0)
  3028. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3029. ggml_tensor * build_graph(ggml_context * ctx) override {
  3030. auto ne_b = ne_a;
  3031. ne_b[dim] = ne_b_d;
  3032. ggml_tensor * a;
  3033. if (v & 1) {
  3034. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3035. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3036. ggml_set_name(a, "a");
  3037. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3038. ggml_set_name(a, "view_of_a");
  3039. } else {
  3040. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3041. ggml_set_name(a, "a");
  3042. }
  3043. ggml_tensor * b;
  3044. if (v & 2) {
  3045. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3046. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3047. ggml_set_name(b, "b");
  3048. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3049. ggml_set_name(b, "view_of_b");
  3050. } else {
  3051. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3052. ggml_set_name(b, "b");
  3053. }
  3054. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3055. ggml_set_name(out, "out");
  3056. return out;
  3057. }
  3058. };
  3059. // GGML_OP_ARGSORT
  3060. struct test_argsort : public test_case {
  3061. const ggml_type type;
  3062. const std::array<int64_t, 4> ne;
  3063. ggml_sort_order order;
  3064. std::string vars() override {
  3065. return VARS_TO_STR3(type, ne, order);
  3066. }
  3067. test_argsort(ggml_type type = GGML_TYPE_F32,
  3068. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3069. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3070. : type(type), ne(ne), order(order) {}
  3071. ggml_tensor * build_graph(ggml_context * ctx) override {
  3072. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3073. ggml_set_name(a, "a");
  3074. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3075. ggml_set_name(out, "out");
  3076. return out;
  3077. }
  3078. void initialize_tensors(ggml_context * ctx) override {
  3079. std::random_device rd;
  3080. std::default_random_engine rng(rd());
  3081. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3082. if (t->type == GGML_TYPE_I32) {
  3083. // indices
  3084. std::vector<int> data(ggml_nelements(t));
  3085. for (int i = 0; i < ggml_nelements(t); i++) {
  3086. data[i] = rand();
  3087. }
  3088. std::shuffle(data.begin(), data.end(), rng);
  3089. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3090. } else if (t->type == GGML_TYPE_F32) {
  3091. // initialize with unique values to avoid ties
  3092. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3093. std::vector<float> data(t->ne[0]);
  3094. for (int i = 0; i < t->ne[0]; i++) {
  3095. data[i] = i;
  3096. }
  3097. std::shuffle(data.begin(), data.end(), rng);
  3098. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3099. }
  3100. } else {
  3101. GGML_ABORT("fatal error");
  3102. }
  3103. }
  3104. }
  3105. };
  3106. // GGML_OP_SUM
  3107. struct test_sum : public test_case {
  3108. const ggml_type type;
  3109. const std::array<int64_t, 4> ne;
  3110. std::string vars() override {
  3111. return VARS_TO_STR2(type, ne);
  3112. }
  3113. test_sum(ggml_type type = GGML_TYPE_F32,
  3114. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3115. : type(type), ne(ne) {}
  3116. ggml_tensor * build_graph(ggml_context * ctx) override {
  3117. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3118. ggml_set_param(a);
  3119. ggml_set_name(a, "a");
  3120. ggml_tensor * out = ggml_sum(ctx, a);
  3121. ggml_set_name(out, "out");
  3122. return out;
  3123. }
  3124. float grad_eps() override {
  3125. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  3126. }
  3127. };
  3128. // GGML_OP_SUM_ROWS
  3129. struct test_sum_rows : public test_case {
  3130. const ggml_type type;
  3131. const std::array<int64_t, 4> ne;
  3132. std::string vars() override {
  3133. return VARS_TO_STR2(type, ne);
  3134. }
  3135. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  3136. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3137. : type(type), ne(ne) {}
  3138. ggml_tensor * build_graph(ggml_context * ctx) override {
  3139. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3140. ggml_set_param(a);
  3141. ggml_set_name(a, "a");
  3142. ggml_tensor * out = ggml_sum_rows(ctx, a);
  3143. ggml_set_name(out, "out");
  3144. return out;
  3145. }
  3146. };
  3147. // GGML_OP_MEAN
  3148. struct test_mean : public test_case {
  3149. const ggml_type type;
  3150. const std::array<int64_t, 4> ne;
  3151. std::string vars() override {
  3152. return VARS_TO_STR2(type, ne);
  3153. }
  3154. test_mean(ggml_type type = GGML_TYPE_F32,
  3155. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3156. : type(type), ne(ne) {}
  3157. ggml_tensor * build_graph(ggml_context * ctx) override {
  3158. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3159. ggml_set_param(a);
  3160. ggml_set_name(a, "a");
  3161. ggml_tensor * out = ggml_mean(ctx, a);
  3162. ggml_set_name(out, "out");
  3163. return out;
  3164. }
  3165. float grad_eps() override {
  3166. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  3167. }
  3168. };
  3169. // GGML_OP_UPSCALE
  3170. struct test_upscale : public test_case {
  3171. const ggml_type type;
  3172. const std::array<int64_t, 4> ne;
  3173. const int32_t scale_factor;
  3174. const bool transpose;
  3175. const ggml_scale_mode mode;
  3176. std::string vars() override {
  3177. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  3178. }
  3179. test_upscale(ggml_type type = GGML_TYPE_F32,
  3180. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  3181. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  3182. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  3183. ggml_tensor * build_graph(ggml_context * ctx) override {
  3184. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3185. ggml_set_name(a, "a");
  3186. if (transpose) {
  3187. a = ggml_transpose(ctx, a);
  3188. ggml_set_name(a, "a_transposed");
  3189. }
  3190. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  3191. ggml_set_name(out, "out");
  3192. return out;
  3193. }
  3194. };
  3195. // GGML_OP_UPSCALE (via ggml_interpolate)
  3196. struct test_interpolate : public test_case {
  3197. const ggml_type type;
  3198. const std::array<int64_t, 4> ne;
  3199. const std::array<int64_t, 4> ne_tgt;
  3200. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  3201. std::string vars() override {
  3202. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  3203. }
  3204. test_interpolate(ggml_type type = GGML_TYPE_F32,
  3205. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  3206. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  3207. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  3208. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  3209. ggml_tensor * build_graph(ggml_context * ctx) override {
  3210. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3211. ggml_set_name(a, "a");
  3212. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  3213. ggml_set_name(out, "out");
  3214. return out;
  3215. }
  3216. };
  3217. // GGML_OP_GROUP_NORM
  3218. struct test_group_norm : public test_case {
  3219. const ggml_type type;
  3220. const std::array<int64_t, 4> ne;
  3221. const int32_t num_groups;
  3222. const float eps;
  3223. std::string vars() override {
  3224. return VARS_TO_STR4(type, ne, num_groups, eps);
  3225. }
  3226. test_group_norm(ggml_type type = GGML_TYPE_F32,
  3227. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3228. int32_t num_groups = 32,
  3229. float eps = 1e-6f)
  3230. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3231. ggml_tensor * build_graph(ggml_context * ctx) override {
  3232. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3233. ggml_set_name(a, "a");
  3234. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  3235. ggml_set_name(out, "out");
  3236. return out;
  3237. }
  3238. };
  3239. // GGML_OP_L2_NORM
  3240. struct test_l2_norm : public test_case {
  3241. const ggml_type type;
  3242. const std::array<int64_t, 4> ne;
  3243. const float eps;
  3244. std::string vars() override {
  3245. return VARS_TO_STR2(type, ne);
  3246. }
  3247. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  3248. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3249. float eps = 1e-12f)
  3250. : type(type), ne(ne), eps(eps) {}
  3251. ggml_tensor * build_graph(ggml_context * ctx) override {
  3252. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3253. ggml_set_name(a, "a");
  3254. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  3255. ggml_set_name(out, "out");
  3256. return out;
  3257. }
  3258. };
  3259. // GGML_OP_ACC
  3260. struct test_acc : public test_case {
  3261. const ggml_type type;
  3262. const std::array<int64_t, 4> ne_a;
  3263. const std::array<int64_t, 4> ne_b;
  3264. std::string vars() override {
  3265. return VARS_TO_STR3(type, ne_a, ne_b);
  3266. }
  3267. test_acc(ggml_type type = GGML_TYPE_F32,
  3268. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  3269. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  3270. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  3271. ggml_tensor * build_graph(ggml_context * ctx) override {
  3272. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3273. ggml_set_param(a);
  3274. ggml_set_name(a, "a");
  3275. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3276. ggml_set_param(b);
  3277. ggml_set_name(b, "b");
  3278. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  3279. ggml_set_name(out, "out");
  3280. return out;
  3281. }
  3282. };
  3283. // GGML_OP_PAD
  3284. struct test_pad : public test_case {
  3285. const ggml_type type;
  3286. const std::array<int64_t, 4> ne_a;
  3287. const int pad_0;
  3288. const int pad_1;
  3289. std::string vars() override {
  3290. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3291. }
  3292. test_pad(ggml_type type = GGML_TYPE_F32,
  3293. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  3294. int pad_0 = 1, int pad_1 = 1)
  3295. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3296. ggml_tensor * build_graph(ggml_context * ctx) override {
  3297. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3298. ggml_set_name(a, "a");
  3299. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  3300. ggml_set_name(out, "out");
  3301. return out;
  3302. }
  3303. };
  3304. // GGML_OP_PAD_REFLECT_1D
  3305. struct test_pad_reflect_1d : public test_case {
  3306. const ggml_type type;
  3307. const std::array<int64_t, 4> ne_a;
  3308. const int pad_0;
  3309. const int pad_1;
  3310. std::string vars() override {
  3311. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3312. }
  3313. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  3314. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  3315. int pad_0 = 10, int pad_1 = 9)
  3316. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3317. ggml_tensor * build_graph(ggml_context * ctx) override {
  3318. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  3319. ggml_set_name(a, "a");
  3320. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  3321. ggml_set_name(out, "out");
  3322. return out;
  3323. }
  3324. };
  3325. // GGML_OP_ARANGE
  3326. struct test_arange : public test_case {
  3327. const ggml_type type;
  3328. const float start;
  3329. const float stop;
  3330. const float step;
  3331. std::string vars() override {
  3332. return VARS_TO_STR4(type, start, stop, step);
  3333. }
  3334. test_arange(ggml_type type = GGML_TYPE_F32,
  3335. float start = 0.f, float stop = 10.f, float step = 1.f)
  3336. : type(type), start(start), stop(stop), step(step) {}
  3337. ggml_tensor * build_graph(ggml_context * ctx) override {
  3338. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  3339. ggml_set_name(out, "out");
  3340. return out;
  3341. }
  3342. };
  3343. // GGML_OP_TIMESTEP_EMBEDDING
  3344. struct test_timestep_embedding : public test_case {
  3345. const ggml_type type;
  3346. const std::array<int64_t, 4> ne_a;
  3347. const int dim;
  3348. const int max_period;
  3349. std::string vars() override {
  3350. return VARS_TO_STR4(type, ne_a, dim, max_period);
  3351. }
  3352. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  3353. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  3354. int dim = 320, int max_period=10000)
  3355. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  3356. ggml_tensor * build_graph(ggml_context * ctx) override {
  3357. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3358. ggml_set_name(a, "a");
  3359. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  3360. ggml_set_name(out, "out");
  3361. return out;
  3362. }
  3363. };
  3364. // GGML_OP_LEAKY_RELU
  3365. struct test_leaky_relu : public test_case {
  3366. const ggml_type type;
  3367. const std::array<int64_t, 4> ne_a;
  3368. const float negative_slope;
  3369. std::string vars() override {
  3370. return VARS_TO_STR3(type, ne_a, negative_slope);
  3371. }
  3372. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  3373. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  3374. float negative_slope = 0.1f)
  3375. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  3376. ggml_tensor * build_graph(ggml_context * ctx) override {
  3377. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3378. ggml_set_name(a, "a");
  3379. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  3380. ggml_set_name(out, "out");
  3381. return out;
  3382. }
  3383. };
  3384. // GGML_OP_FLASH_ATTN_EXT
  3385. struct test_flash_attn_ext : public test_case {
  3386. const int64_t hsk; // K head size
  3387. const int64_t hsv; // V head size
  3388. const int64_t nh; // num heads
  3389. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  3390. const int64_t kv; // kv size
  3391. const int64_t nb; // batch size
  3392. const bool mask; // use mask
  3393. const float max_bias; // ALiBi
  3394. const float logit_softcap; // Gemma 2
  3395. const ggml_prec prec;
  3396. const ggml_type type_KV;
  3397. std::array<int32_t, 4> permute;
  3398. std::string vars() override {
  3399. return VARS_TO_STR12(hsk, hsv, nh, nr23, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  3400. }
  3401. double max_nmse_err() override {
  3402. return 5e-4;
  3403. }
  3404. uint64_t op_flops(ggml_tensor * t) override {
  3405. GGML_UNUSED(t);
  3406. // Just counting matmul costs:
  3407. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  3408. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  3409. }
  3410. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  3411. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  3412. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  3413. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  3414. ggml_tensor * build_graph(ggml_context * ctx) override {
  3415. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  3416. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  3417. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  3418. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  3419. int64_t ne_perm[4];
  3420. for (int i = 0; i < 4; ++i) {
  3421. ne_perm[permute[i]] = ne[i];
  3422. }
  3423. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  3424. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  3425. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  3426. }
  3427. return t;
  3428. };
  3429. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1]);
  3430. ggml_set_name(q, "q");
  3431. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1]);
  3432. ggml_set_name(k, "k");
  3433. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1]);
  3434. ggml_set_name(v, "v");
  3435. ggml_tensor * m = nullptr;
  3436. if (mask) {
  3437. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), nr23[0], nr23[1]);
  3438. ggml_set_name(m, "m");
  3439. }
  3440. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  3441. ggml_flash_attn_ext_set_prec(out, prec);
  3442. ggml_set_name(out, "out");
  3443. return out;
  3444. }
  3445. bool grad_precise() override {
  3446. return true;
  3447. }
  3448. };
  3449. // GGML_OP_CROSS_ENTROPY_LOSS
  3450. struct test_cross_entropy_loss : public test_case {
  3451. const ggml_type type;
  3452. const std::array<int64_t, 4> ne;
  3453. std::string vars() override {
  3454. return VARS_TO_STR2(type, ne);
  3455. }
  3456. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  3457. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3458. : type(type), ne(ne) {}
  3459. ggml_tensor * build_graph(ggml_context * ctx) override {
  3460. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3461. ggml_set_param(logits);
  3462. ggml_set_name(logits, "logits");
  3463. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3464. // The labels are assumed to be constant -> no gradients.
  3465. ggml_set_name(labels, "labels");
  3466. // Ensure labels add up to 1:
  3467. labels = ggml_soft_max(ctx, labels);
  3468. ggml_set_name(labels, "labels_normalized");
  3469. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  3470. ggml_set_name(out, "out");
  3471. return out;
  3472. }
  3473. void initialize_tensors(ggml_context * ctx) override {
  3474. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  3475. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3476. init_tensor_uniform(t, -100.0f, 100.0f);
  3477. }
  3478. }
  3479. float grad_eps() override {
  3480. return 1.0f;
  3481. }
  3482. bool grad_precise() override {
  3483. return true;
  3484. }
  3485. };
  3486. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  3487. struct test_cross_entropy_loss_back : public test_case {
  3488. const ggml_type type;
  3489. const std::array<int64_t, 4> ne;
  3490. std::string vars() override {
  3491. return VARS_TO_STR2(type, ne);
  3492. }
  3493. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  3494. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3495. : type(type), ne(ne) {}
  3496. ggml_tensor * build_graph(ggml_context * ctx) override {
  3497. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3498. ggml_set_name(grad, "grad");
  3499. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3500. ggml_set_name(logits, "logits");
  3501. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3502. ggml_set_name(labels, "labels");
  3503. // Ensure labels add up to 1:
  3504. labels = ggml_soft_max(ctx, labels);
  3505. ggml_set_name(labels, "labels_normalized");
  3506. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  3507. ggml_set_name(out, "out");
  3508. return out;
  3509. }
  3510. };
  3511. // GGML_OP_OPT_STEP_ADAMW
  3512. struct test_opt_step_adamw : public test_case {
  3513. const ggml_type type;
  3514. const std::array<int64_t, 4> ne;
  3515. std::string vars() override {
  3516. return VARS_TO_STR2(type, ne);
  3517. }
  3518. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  3519. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3520. : type(type), ne(ne) {}
  3521. ggml_tensor * build_graph(ggml_context * ctx) override {
  3522. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3523. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  3524. ggml_set_name(a, "a");
  3525. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3526. ggml_set_name(grad, "grad");
  3527. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3528. ggml_set_name(grad_m, "grad_m");
  3529. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3530. ggml_set_name(grad_v, "grad_v");
  3531. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  3532. ggml_set_name(adamw_params, "adamw_params");
  3533. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  3534. ggml_set_name(out, "out");
  3535. return out;
  3536. }
  3537. void initialize_tensors(ggml_context * ctx) override {
  3538. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3539. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  3540. }
  3541. }
  3542. bool grad_precise() override {
  3543. return true;
  3544. }
  3545. };
  3546. enum llm_norm_type {
  3547. LLM_NORM,
  3548. LLM_NORM_RMS,
  3549. };
  3550. struct llama_hparams {
  3551. uint32_t n_vocab;
  3552. uint32_t n_embd;
  3553. uint32_t n_head;
  3554. uint32_t n_head_kv;
  3555. static constexpr uint32_t n_layer = 1;
  3556. uint32_t n_rot;
  3557. uint32_t n_embd_head; // dimension of values (d_v)
  3558. uint32_t n_ff;
  3559. float f_norm_eps;
  3560. float f_norm_rms_eps;
  3561. // cparams
  3562. static constexpr uint32_t n_ctx = 512; // user-specified context size
  3563. static constexpr uint32_t n_ctx_orig = n_ctx;
  3564. // batch
  3565. int32_t n_tokens;
  3566. // llm_build_context
  3567. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  3568. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  3569. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  3570. return n_embd_head * n_head_kv;
  3571. }
  3572. };
  3573. // LLM base class
  3574. struct test_llm : public test_case {
  3575. llama_hparams hp;
  3576. protected:
  3577. test_llm(llama_hparams hp)
  3578. : hp(std::move(hp)) {
  3579. }
  3580. public:
  3581. struct ggml_tensor * llm_build_norm(
  3582. struct ggml_context * ctx,
  3583. struct ggml_tensor * cur,
  3584. struct ggml_tensor * mw,
  3585. struct ggml_tensor * mb,
  3586. llm_norm_type type) {
  3587. switch (type) {
  3588. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  3589. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  3590. }
  3591. cur = ggml_mul(ctx, cur, mw);
  3592. if (mb) {
  3593. cur = ggml_add(ctx, cur, mb);
  3594. }
  3595. return cur;
  3596. }
  3597. void llm_build_kv_store(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * k_l,
  3600. struct ggml_tensor * v_l,
  3601. struct ggml_tensor * k_cur,
  3602. struct ggml_tensor * v_cur) {
  3603. // compute the transposed [n_tokens, n_embd] V matrix
  3604. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  3605. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  3606. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  3607. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  3608. ( hp.n_ctx)*ggml_element_size(v_l),
  3609. (hp.kv_head)*ggml_element_size(v_l));
  3610. // important: storing RoPE-ed version of K in the KV cache!
  3611. ggml_cpy(ctx, k_cur, k_cache_view);
  3612. ggml_cpy(ctx, v_cur_t, v_cache_view);
  3613. }
  3614. struct ggml_tensor * llm_build_kqv(
  3615. struct ggml_context * ctx,
  3616. struct ggml_tensor * k_l,
  3617. struct ggml_tensor * v_l,
  3618. struct ggml_tensor * q_cur,
  3619. struct ggml_tensor * kq_mask,
  3620. float kq_scale) {
  3621. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  3622. struct ggml_tensor * k =
  3623. ggml_view_3d(ctx, k_l,
  3624. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  3625. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  3626. ggml_row_size(k_l->type, hp.n_embd_head),
  3627. 0);
  3628. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  3629. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  3630. // split cached v into n_head heads
  3631. struct ggml_tensor * v =
  3632. ggml_view_3d(ctx, v_l,
  3633. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  3634. ggml_element_size(v_l)*hp.n_ctx,
  3635. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  3636. 0);
  3637. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  3638. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  3639. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  3640. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3641. cur = ggml_mul_mat(ctx, wo, cur);
  3642. return cur;
  3643. }
  3644. void initialize_tensors(ggml_context * ctx) override {
  3645. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3646. if (t->type == GGML_TYPE_I32) {
  3647. // pos
  3648. std::vector<int> data(hp.n_tokens);
  3649. for (int i = 0; i < hp.n_tokens; i++) {
  3650. data[i] = rand() % hp.n_ctx;
  3651. }
  3652. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  3653. } else {
  3654. init_tensor_uniform(t);
  3655. }
  3656. }
  3657. }
  3658. };
  3659. // Llama
  3660. struct test_llama : public test_llm {
  3661. static constexpr float freq_base = 10000.0f;
  3662. static constexpr float freq_scale = 1.0f;
  3663. static constexpr float ext_factor = 0.0f;
  3664. static constexpr float attn_factor = 1.0f;
  3665. static constexpr float beta_fast = 32.0f;
  3666. static constexpr float beta_slow = 1.0f;
  3667. bool fused;
  3668. std::string op_desc(ggml_tensor * t) override {
  3669. GGML_UNUSED(t);
  3670. return "LLAMA";
  3671. }
  3672. std::string vars() override {
  3673. auto n_tokens = hp.n_tokens;
  3674. return VARS_TO_STR1(n_tokens);
  3675. }
  3676. double max_nmse_err() override {
  3677. return 2e-3;
  3678. }
  3679. bool run_whole_graph() override { return fused; }
  3680. test_llama(int n_tokens = 1, bool fused = false)
  3681. : test_llm({
  3682. /*n_vocab =*/ 32000,
  3683. /*n_embd =*/ 3200,
  3684. /*n_head =*/ 32,
  3685. /*n_head_kv =*/ 32,
  3686. /*n_rot =*/ 100,
  3687. /*n_embd_head =*/ 100,
  3688. /*n_ff =*/ 8640,
  3689. /*f_norm_eps =*/ 0.f,
  3690. /*f_norm_rms_eps =*/ 1e-5f,
  3691. /*n_tokens =*/ n_tokens,
  3692. })
  3693. , fused(fused)
  3694. {
  3695. }
  3696. ggml_tensor * build_graph(ggml_context * ctx) override {
  3697. struct ggml_tensor * cur;
  3698. struct ggml_tensor * inpL;
  3699. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3700. // inp_pos - contains the positions
  3701. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3702. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3703. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3704. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3705. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3706. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3707. struct ggml_tensor * inpSA = inpL;
  3708. // norm
  3709. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3710. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  3711. // self-attention
  3712. {
  3713. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3714. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3715. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3716. // compute Q and K and RoPE them
  3717. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  3718. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  3719. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  3720. Qcur = ggml_rope_ext(
  3721. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  3722. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3723. ext_factor, attn_factor, beta_fast, beta_slow
  3724. );
  3725. Kcur = ggml_rope_ext(
  3726. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  3727. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3728. ext_factor, attn_factor, beta_fast, beta_slow
  3729. );
  3730. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3731. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3732. }
  3733. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  3734. // feed-forward network
  3735. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3736. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  3737. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3738. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3739. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3740. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  3741. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  3742. cur = ggml_silu(ctx, cur);
  3743. cur = ggml_mul(ctx, cur, tmp);
  3744. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3745. cur = ggml_add(ctx, cur, ffn_inp);
  3746. // input for next layer
  3747. inpL = cur;
  3748. }
  3749. cur = inpL;
  3750. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3751. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  3752. // lm_head
  3753. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  3754. cur = ggml_mul_mat(ctx, output, cur);
  3755. return cur;
  3756. }
  3757. };
  3758. // Falcon
  3759. struct test_falcon : public test_llm {
  3760. static constexpr float freq_base = 10000.0f;
  3761. static constexpr float freq_scale = 1.0f;
  3762. static constexpr float ext_factor = 0.0f;
  3763. static constexpr float attn_factor = 1.0f;
  3764. static constexpr float beta_fast = 32.0f;
  3765. static constexpr float beta_slow = 1.0f;
  3766. std::string op_desc(ggml_tensor * t) override {
  3767. GGML_UNUSED(t);
  3768. return "FALCON";
  3769. }
  3770. std::string vars() override {
  3771. auto n_tokens = hp.n_tokens;
  3772. return VARS_TO_STR1(n_tokens);
  3773. }
  3774. double max_nmse_err() override {
  3775. return 2e-3;
  3776. }
  3777. test_falcon(int n_tokens = 1)
  3778. : test_llm({
  3779. /*n_vocab =*/ 32000,
  3780. /*n_embd =*/ 3200,
  3781. /*n_head =*/ 50,
  3782. /*n_head_kv =*/ 1,
  3783. /*n_rot =*/ 64,
  3784. /*n_embd_head =*/ 64,
  3785. /*n_ff =*/ 8640,
  3786. /*f_norm_eps =*/ 1e-5f,
  3787. /*f_norm_rms_eps =*/ 0.f,
  3788. /*n_tokens =*/ n_tokens,
  3789. }) {
  3790. }
  3791. ggml_tensor * build_graph(ggml_context * ctx) override {
  3792. struct ggml_tensor * cur;
  3793. struct ggml_tensor * inpL;
  3794. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3795. // inp_pos - contains the positions
  3796. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3797. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3798. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3799. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3800. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3801. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3802. // norm
  3803. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3804. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3805. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3806. // self-attention
  3807. {
  3808. cur = attn_norm;
  3809. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3810. cur = ggml_mul_mat(ctx, wqkv, cur);
  3811. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3812. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3813. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3814. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3815. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3816. // using mode = 2 for neox mode
  3817. Qcur = ggml_rope_ext(
  3818. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3819. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3820. );
  3821. Kcur = ggml_rope_ext(
  3822. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3823. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3824. );
  3825. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3826. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3827. }
  3828. struct ggml_tensor * ffn_inp = cur;
  3829. // feed forward
  3830. {
  3831. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3832. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3833. cur = attn_norm;
  3834. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3835. cur = ggml_gelu(ctx, cur);
  3836. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3837. }
  3838. cur = ggml_add(ctx, cur, ffn_inp);
  3839. cur = ggml_add(ctx, cur, inpL);
  3840. // input for next layer
  3841. inpL = cur;
  3842. }
  3843. cur = inpL;
  3844. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3845. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3846. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3847. // lm_head
  3848. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3849. cur = ggml_mul_mat(ctx, output, cur);
  3850. return cur;
  3851. }
  3852. };
  3853. // ###########################################
  3854. // ## Section 3: GGML Op Test Instantiation ##
  3855. // ###########################################
  3856. static const ggml_type all_types[] = {
  3857. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3858. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3859. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3860. GGML_TYPE_Q8_0,
  3861. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3862. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3863. GGML_TYPE_Q6_K,
  3864. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3865. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3866. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3867. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3868. };
  3869. static const ggml_type base_types[] = {
  3870. GGML_TYPE_F32, GGML_TYPE_F16,
  3871. GGML_TYPE_Q8_0, // for I8MM tests
  3872. GGML_TYPE_Q4_0,
  3873. GGML_TYPE_Q4_1, // for I8MM tests
  3874. GGML_TYPE_Q4_K,
  3875. GGML_TYPE_IQ2_XXS
  3876. };
  3877. static const ggml_type other_types[] = {
  3878. GGML_TYPE_Q4_1,
  3879. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3880. GGML_TYPE_Q8_0,
  3881. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3882. GGML_TYPE_Q5_K,
  3883. GGML_TYPE_Q6_K,
  3884. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3885. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3886. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3887. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3888. GGML_TYPE_BF16,
  3889. };
  3890. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3891. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3892. std::vector<std::unique_ptr<test_case>> test_cases;
  3893. std::default_random_engine rng(0);
  3894. // unary ops
  3895. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3896. for (int v : {0, 1}) {
  3897. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3898. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3899. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3900. }
  3901. }
  3902. }
  3903. // glu ops
  3904. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3905. for (int v : {0, 1}) {
  3906. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  3907. for (bool swapped : {false, true}) {
  3908. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  3909. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  3910. }
  3911. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  3912. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  3913. }
  3914. }
  3915. }
  3916. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3917. for (ggml_type type : all_types) {
  3918. for (int b : {1, 7}) {
  3919. for (bool v : {false, true}) {
  3920. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3921. }
  3922. }
  3923. }
  3924. for (int b : {1, 7}) {
  3925. for (bool v : {false, true}) {
  3926. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3927. }
  3928. }
  3929. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3930. for (ggml_type type : all_types) {
  3931. for (bool v : {false, true}) {
  3932. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3933. }
  3934. }
  3935. for (bool v : {false, true}) {
  3936. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3937. }
  3938. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  3939. for (ggml_type type : all_types) {
  3940. for (int b : {1, 7}) {
  3941. for (bool v : {false, true}) {
  3942. test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  3943. test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  3944. test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  3945. if (ggml_blck_size(type) == 1) {
  3946. test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  3947. test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  3948. }
  3949. }
  3950. }
  3951. }
  3952. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3953. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3954. for (int k0 : {1, 3}) {
  3955. for (int k1 : {1, 3}) {
  3956. for (int s0 : {1, 2}) {
  3957. for (int s1 : {1, 2}) {
  3958. for (int p0 : {0, 1}) {
  3959. for (int p1 : {0, 1}) {
  3960. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3961. }
  3962. }
  3963. }
  3964. }
  3965. }
  3966. }
  3967. }
  3968. }
  3969. // im2col 1D
  3970. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3971. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3972. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3973. for (int s0 : {1, 3}) {
  3974. for (int p0 : {0, 3}) {
  3975. for (int d0 : {1, 3}) {
  3976. test_cases.emplace_back(new test_im2col(
  3977. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3978. s0, 0, p0, 0, d0, 0, false));
  3979. }
  3980. }
  3981. }
  3982. // im2col 2D
  3983. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3984. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3985. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3986. for (int s0 : {1, 3}) {
  3987. for (int s1 : {1, 3}) {
  3988. for (int p0 : {0, 3}) {
  3989. for (int p1 : {0, 3}) {
  3990. for (int d0 : {1, 3}) {
  3991. for (int d1 : {1, 3}) {
  3992. test_cases.emplace_back(new test_im2col(
  3993. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3994. s0, s1, p0, p1, d0, d1, true));
  3995. }
  3996. }
  3997. }
  3998. }
  3999. }
  4000. }
  4001. // extra tests for im2col 2D
  4002. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  4003. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  4004. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  4005. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  4006. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  4007. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  4008. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  4009. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  4010. // sycl backend will limit task global_range < MAX_INT
  4011. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  4012. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4013. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4014. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4015. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4016. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  4017. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  4018. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  4019. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  4020. for(uint32_t Cout : {1, 9}){
  4021. for(uint32_t Cin : {1, 7}){
  4022. for(uint32_t K : {1, 3, 1337}){
  4023. for(uint32_t L : {1, 2, 13}){
  4024. for(uint32_t s0: {1, 2, 3}){
  4025. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  4026. }
  4027. }
  4028. }
  4029. }
  4030. }
  4031. test_cases.emplace_back(new test_conv_transpose_1d());
  4032. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  4033. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  4034. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  4035. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  4036. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  4037. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  4038. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  4039. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  4040. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  4041. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  4042. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  4043. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  4044. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  4045. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4046. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  4047. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  4048. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  4049. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  4050. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  4051. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4052. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  4053. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  4054. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4055. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4056. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4057. }
  4058. for (bool view : {false, true}) {
  4059. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  4060. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  4061. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  4062. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  4063. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  4064. }
  4065. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  4066. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  4067. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  4068. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  4069. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  4070. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  4071. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  4072. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  4073. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  4074. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  4075. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4076. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  4077. }
  4078. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4079. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  4080. }
  4081. // same-type copy
  4082. for (ggml_type type : all_types) {
  4083. const auto nk = ggml_blck_size(type);
  4084. for (int k = 1; k < 4; ++k) {
  4085. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  4086. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  4087. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  4088. }
  4089. }
  4090. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4091. for (ggml_type type_dst : all_types) {
  4092. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4093. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4094. }
  4095. }
  4096. for (ggml_type type_src : all_types) {
  4097. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  4098. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4099. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4100. }
  4101. }
  4102. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4103. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4104. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  4105. }
  4106. }
  4107. test_cases.emplace_back(new test_cont());
  4108. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  4109. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  4110. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  4111. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  4112. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  4113. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  4114. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  4115. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  4116. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  4117. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  4118. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  4119. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  4120. }
  4121. };
  4122. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4123. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  4124. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  4125. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  4126. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  4127. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  4128. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  4129. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  4130. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  4131. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  4132. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  4133. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  4134. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  4135. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  4136. // stable diffusion
  4137. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  4138. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  4139. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  4140. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  4141. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  4142. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  4143. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  4144. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  4145. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  4146. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  4147. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  4148. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  4149. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  4150. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  4151. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  4152. }
  4153. test_cases.emplace_back(new test_add1());
  4154. test_cases.emplace_back(new test_scale());
  4155. test_cases.emplace_back(new test_silu_back());
  4156. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  4157. for (bool v : {false, true}) {
  4158. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4159. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4160. }
  4161. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4162. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4163. }
  4164. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  4165. test_cases.emplace_back(new test_rms_norm_mul(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4166. }
  4167. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  4168. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  4169. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  4170. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  4171. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  4172. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  4173. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  4174. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  4175. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  4176. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  4177. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  4178. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  4179. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  4180. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  4181. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  4182. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  4183. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  4184. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  4185. for (ggml_type type_a : all_types) {
  4186. for (int i = 1; i < 10; ++i) {
  4187. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  4188. }
  4189. }
  4190. #if 1
  4191. for (ggml_type type_a : base_types) {
  4192. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4193. std::vector<int> ks = { 256 };
  4194. if (ggml_blck_size(type_a) == 1) {
  4195. ks.push_back(4);
  4196. }
  4197. for (auto k : ks) {
  4198. // test cases without permutation
  4199. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  4200. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  4201. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  4202. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  4203. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  4204. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  4205. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  4206. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  4207. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  4208. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  4209. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  4210. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  4211. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  4212. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  4213. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  4214. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  4215. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  4216. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  4217. // test cases with permutation
  4218. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4219. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4220. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4221. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4222. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4223. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4224. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4225. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4226. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4227. }
  4228. // test cases with large ne00/ne10 to cover stream-k fixup
  4229. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  4230. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  4231. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  4232. }
  4233. }
  4234. for (ggml_type type_a : other_types) {
  4235. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4236. if (ggml_blck_size(type_a) != 256) {
  4237. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  4238. }
  4239. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  4240. }
  4241. }
  4242. #else
  4243. // m = a rows
  4244. // n = b rows
  4245. // k = cols
  4246. std::uniform_int_distribution<> dist_m(1, 128);
  4247. std::uniform_int_distribution<> dist_n(16, 128);
  4248. std::uniform_int_distribution<> dist_k(1, 16);
  4249. for (int i = 0; i < 1000; i++) {
  4250. for (ggml_type type_a : all_types) {
  4251. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4252. int m = dist_m(rng);
  4253. int n = dist_n(rng);
  4254. int k = dist_k(rng) * ggml_blck_size(type_a);
  4255. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  4256. }
  4257. }
  4258. }
  4259. #endif
  4260. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  4261. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  4262. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  4263. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  4264. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  4265. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  4266. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4267. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4268. for (auto bs : {1,2,4,8}) {
  4269. for (auto nr : {1,4}) {
  4270. for (uint32_t m = 0; m < 2; ++m) {
  4271. for (uint32_t k = 0; k < 2; ++k) {
  4272. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4273. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
  4274. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
  4275. }
  4276. }
  4277. }
  4278. }
  4279. }
  4280. // sycl backend will limit task global_range < MAX_INT
  4281. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  4282. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4283. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4284. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  4285. // test large experts*tokens
  4286. for (bool b : {false, true}) {
  4287. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  4288. }
  4289. for (ggml_type type_a : base_types) {
  4290. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4291. for (int n_mats : {4, 8}) {
  4292. for (int n_used : {1, 2, 4}) {
  4293. for (bool b : {false, true}) {
  4294. for (int n : {1, 32, 129}) {
  4295. int m = 512;
  4296. int k = 256;
  4297. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4298. }
  4299. }
  4300. }
  4301. }
  4302. }
  4303. }
  4304. for (ggml_type type_a : other_types) {
  4305. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4306. for (int n_mats : {4}) {
  4307. for (int n_used : {2}) {
  4308. for (bool b : {false}) {
  4309. for (int n : {1, 32}) {
  4310. int m = 512;
  4311. int k = 256;
  4312. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4313. }
  4314. }
  4315. }
  4316. }
  4317. }
  4318. }
  4319. for (ggml_type type_a : base_types) {
  4320. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4321. for (int n : {1, 16}) {
  4322. for (int k : {1, 16}) {
  4323. for (int bs2 : {1, 3}) {
  4324. for (int bs3 : {1, 3}) {
  4325. for (int nr2 : {1, 2}) {
  4326. for (int nr3 : {1, 2}) {
  4327. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  4328. }
  4329. }
  4330. }
  4331. }
  4332. }
  4333. }
  4334. }
  4335. }
  4336. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4337. test_cases.emplace_back(new test_sqr(type));
  4338. test_cases.emplace_back(new test_sqrt(type));
  4339. test_cases.emplace_back(new test_log(type));
  4340. test_cases.emplace_back(new test_sin(type));
  4341. test_cases.emplace_back(new test_cos(type));
  4342. test_cases.emplace_back(new test_clamp(type));
  4343. }
  4344. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  4345. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  4346. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  4347. #if 0
  4348. std::uniform_int_distribution<> dist_ne1(1, 50);
  4349. int exponent = 1;
  4350. while (exponent < (1 << 17)) {
  4351. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  4352. for (int n = 0; n < 10; ++n) {
  4353. int64_t ne0 = dist_ne0(rng);
  4354. int64_t ne1 = dist_ne1(rng);
  4355. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  4356. }
  4357. exponent <<= 1;
  4358. }
  4359. #endif
  4360. for (bool mask : {false, true}) {
  4361. for (float max_bias : {0.0f, 8.0f}) {
  4362. if (!mask && max_bias > 0.0f) continue;
  4363. for (float scale : {1.0f, 0.1f}) {
  4364. for (int64_t ne0 : {16, 1024}) {
  4365. for (int64_t ne1 : {16, 1024}) {
  4366. if (mask) {
  4367. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4368. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  4369. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  4370. if (ne0 <= 32 && ne1 <= 32) {
  4371. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, m_prec, {3, 1}, scale, max_bias));
  4372. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {2, 3}, scale, max_bias));
  4373. }
  4374. }
  4375. } else {
  4376. /* The precision of mask here doesn't matter as boolean mask is false */
  4377. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4378. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4379. }
  4380. }
  4381. }
  4382. }
  4383. }
  4384. }
  4385. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4386. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4387. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4388. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4389. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4390. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  4391. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  4392. for (float max_bias : {0.0f, 8.0f}) {
  4393. for (float scale : {1.0f, 0.1f}) {
  4394. for (int64_t ne0 : {16, 1024}) {
  4395. for (int64_t ne1 : {16, 1024}) {
  4396. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  4397. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  4398. }
  4399. }
  4400. }
  4401. }
  4402. for (bool fw : {true, false}) { // fw == forward
  4403. bool all = true;
  4404. for (float v : { 0, 1 }) {
  4405. for (float fs : { 1.0f, 1.4245f }) {
  4406. for (float ef : { 0.0f, 0.7465f }) {
  4407. for (float af : { 1.0f, 1.4245f }) {
  4408. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4409. for (bool ff : {false, true}) { // freq_factors
  4410. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  4411. if (all) {
  4412. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  4413. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  4414. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  4415. }
  4416. if (all) {
  4417. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4418. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4419. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4420. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  4421. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  4422. }
  4423. if (all) {
  4424. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  4425. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  4426. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  4427. }
  4428. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4429. }
  4430. }
  4431. all = false;
  4432. }
  4433. }
  4434. }
  4435. }
  4436. }
  4437. for (int v : { 0, 1, 2, 3 }) {
  4438. for (int dim : { 0, 1, 2, 3, }) {
  4439. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  4440. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  4441. }
  4442. }
  4443. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  4444. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  4445. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  4446. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  4447. }
  4448. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  4449. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  4450. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  4451. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  4452. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  4453. }
  4454. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  4455. test_cases.emplace_back(new test_sum());
  4456. test_cases.emplace_back(new test_sum_rows());
  4457. test_cases.emplace_back(new test_mean());
  4458. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  4459. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  4460. test_cases.emplace_back(new test_acc());
  4461. test_cases.emplace_back(new test_pad());
  4462. test_cases.emplace_back(new test_pad_reflect_1d());
  4463. test_cases.emplace_back(new test_arange());
  4464. test_cases.emplace_back(new test_timestep_embedding());
  4465. test_cases.emplace_back(new test_leaky_relu());
  4466. for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
  4467. for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
  4468. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  4469. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  4470. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  4471. for (bool mask : { true, false } ) {
  4472. for (float max_bias : { 0.0f, 8.0f }) {
  4473. if (!mask && max_bias > 0.0f) continue;
  4474. for (float logit_softcap : {0.0f, 10.0f}) {
  4475. if (hsk != 128 && logit_softcap != 0.0f) continue;
  4476. for (int nh : { 4, }) {
  4477. for (int nr3 : { 1, 3, }) {
  4478. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  4479. for (int nr2 : { 1, 4, 16 }) {
  4480. if (nr2 == 16 && hsk != 128) continue;
  4481. for (int kv : { 512, 1024, }) {
  4482. if (nr2 != 1 && kv != 512) continue;
  4483. for (int nb : { 1, 3, 32, 35, }) {
  4484. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  4485. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  4486. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  4487. test_cases.emplace_back(new test_flash_attn_ext(
  4488. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  4489. // run fewer test cases permuted
  4490. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  4491. test_cases.emplace_back(new test_flash_attn_ext(
  4492. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  4493. }
  4494. }
  4495. }
  4496. }
  4497. }
  4498. }
  4499. }
  4500. }
  4501. }
  4502. }
  4503. }
  4504. }
  4505. }
  4506. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  4507. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  4508. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  4509. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  4510. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  4511. #if 0
  4512. // these tests are disabled to save execution time, sbut they can be handy for debugging
  4513. test_cases.emplace_back(new test_llama(2, true));
  4514. test_cases.emplace_back(new test_llama(1));
  4515. test_cases.emplace_back(new test_llama(2));
  4516. test_cases.emplace_back(new test_falcon(1));
  4517. test_cases.emplace_back(new test_falcon(2));
  4518. #endif
  4519. return test_cases;
  4520. }
  4521. // Test cases for performance evaluation: should be representative of real-world use cases
  4522. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  4523. std::vector<std::unique_ptr<test_case>> test_cases;
  4524. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  4525. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  4526. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  4527. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  4528. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  4529. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4530. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4531. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4532. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4533. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4534. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4535. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4536. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4537. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  4538. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4539. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  4540. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  4541. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  4542. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  4543. for (ggml_type type_a : all_types) {
  4544. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4545. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  4546. }
  4547. }
  4548. }
  4549. for (int K : {3, 5}) {
  4550. for (int IC : {256, 2560}) {
  4551. for (int IW_IH : {32, 64, 256}) {
  4552. if (IC == 2560 && IW_IH == 256) {
  4553. // too big
  4554. continue;
  4555. }
  4556. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  4557. }
  4558. }
  4559. }
  4560. for (int kv : { 4096, 8192, 16384, }) {
  4561. for (int hs : { 64, 128, }) {
  4562. for (int nr : { 1, 4, }) {
  4563. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  4564. }
  4565. }
  4566. }
  4567. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  4568. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  4569. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  4570. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  4571. return test_cases;
  4572. }
  4573. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter,
  4574. printer * output_printer) {
  4575. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  4576. if (params_filter == nullptr) {
  4577. return;
  4578. }
  4579. std::regex params_filter_regex(params_filter);
  4580. for (auto it = test_cases.begin(); it != test_cases.end();) {
  4581. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  4582. it = test_cases.erase(it);
  4583. continue;
  4584. }
  4585. it++;
  4586. }
  4587. };
  4588. if (mode == MODE_TEST) {
  4589. auto test_cases = make_test_cases_eval();
  4590. filter_test_cases(test_cases, params_filter);
  4591. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  4592. if (backend_cpu == NULL) {
  4593. test_operation_info info("", "", "CPU");
  4594. info.set_error("backend", "Failed to initialize CPU backend");
  4595. output_printer->print_operation(info);
  4596. return false;
  4597. }
  4598. size_t n_ok = 0;
  4599. for (auto & test : test_cases) {
  4600. if (test->eval(backend, backend_cpu, op_name, output_printer)) {
  4601. n_ok++;
  4602. }
  4603. }
  4604. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  4605. ggml_backend_free(backend_cpu);
  4606. return n_ok == test_cases.size();
  4607. }
  4608. if (mode == MODE_GRAD) {
  4609. auto test_cases = make_test_cases_eval();
  4610. filter_test_cases(test_cases, params_filter);
  4611. size_t n_ok = 0;
  4612. for (auto & test : test_cases) {
  4613. if (test->eval_grad(backend, op_name, output_printer)) {
  4614. n_ok++;
  4615. }
  4616. }
  4617. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  4618. return n_ok == test_cases.size();
  4619. }
  4620. if (mode == MODE_PERF) {
  4621. auto test_cases = make_test_cases_perf();
  4622. filter_test_cases(test_cases, params_filter);
  4623. for (auto & test : test_cases) {
  4624. test->eval_perf(backend, op_name, output_printer);
  4625. }
  4626. return true;
  4627. }
  4628. GGML_ABORT("fatal error");
  4629. }
  4630. static void usage(char ** argv) {
  4631. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>] [--output <console|sql>]\n", argv[0]);
  4632. printf(" valid modes:\n");
  4633. printf(" - test (default, compare with CPU backend for correctness)\n");
  4634. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  4635. printf(" - perf (performance evaluation)\n");
  4636. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  4637. printf(" --output specifies output format (default: console)\n");
  4638. }
  4639. int main(int argc, char ** argv) {
  4640. test_mode mode = MODE_TEST;
  4641. output_formats output_format = CONSOLE;
  4642. const char * op_name_filter = nullptr;
  4643. const char * backend_filter = nullptr;
  4644. const char * params_filter = nullptr;
  4645. for (int i = 1; i < argc; i++) {
  4646. if (strcmp(argv[i], "test") == 0) {
  4647. mode = MODE_TEST;
  4648. } else if (strcmp(argv[i], "perf") == 0) {
  4649. mode = MODE_PERF;
  4650. } else if (strcmp(argv[i], "grad") == 0) {
  4651. mode = MODE_GRAD;
  4652. } else if (strcmp(argv[i], "-o") == 0) {
  4653. if (i + 1 < argc) {
  4654. op_name_filter = argv[++i];
  4655. } else {
  4656. usage(argv);
  4657. return 1;
  4658. }
  4659. } else if (strcmp(argv[i], "-b") == 0) {
  4660. if (i + 1 < argc) {
  4661. backend_filter = argv[++i];
  4662. } else {
  4663. usage(argv);
  4664. return 1;
  4665. }
  4666. } else if (strcmp(argv[i], "-p") == 0) {
  4667. if (i + 1 < argc) {
  4668. params_filter = argv[++i];
  4669. } else {
  4670. usage(argv);
  4671. return 1;
  4672. }
  4673. } else if (strcmp(argv[i], "--output") == 0) {
  4674. if (i + 1 < argc) {
  4675. if (!output_format_from_str(argv[++i], output_format)) {
  4676. usage(argv);
  4677. return 1;
  4678. }
  4679. } else {
  4680. usage(argv);
  4681. return 1;
  4682. }
  4683. } else {
  4684. usage(argv);
  4685. return 1;
  4686. }
  4687. }
  4688. // load and enumerate backends
  4689. ggml_backend_load_all();
  4690. // Create printer for output format
  4691. std::unique_ptr<printer> output_printer = create_printer(output_format);
  4692. if (output_printer) {
  4693. output_printer->print_header();
  4694. }
  4695. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  4696. size_t n_ok = 0;
  4697. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  4698. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  4699. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  4700. output_printer->print_backend_init(
  4701. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  4702. n_ok++;
  4703. continue;
  4704. }
  4705. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  4706. output_printer->print_backend_init(backend_init_info(
  4707. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  4708. n_ok++;
  4709. continue;
  4710. }
  4711. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  4712. GGML_ASSERT(backend != NULL);
  4713. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  4714. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4715. if (ggml_backend_set_n_threads_fn) {
  4716. // TODO: better value for n_threads
  4717. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  4718. }
  4719. size_t free, total; // NOLINT
  4720. ggml_backend_dev_memory(dev, &free, &total);
  4721. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  4722. false, "", ggml_backend_dev_description(dev),
  4723. total / 1024 / 1024, free / 1024 / 1024, true));
  4724. bool ok = test_backend(backend, mode, op_name_filter, params_filter, output_printer.get());
  4725. if (ok) {
  4726. n_ok++;
  4727. }
  4728. output_printer->print_backend_status(
  4729. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  4730. ggml_backend_free(backend);
  4731. }
  4732. ggml_quantize_free();
  4733. if (output_printer) {
  4734. output_printer->print_footer();
  4735. }
  4736. output_printer->print_overall_summary(
  4737. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  4738. if (n_ok != ggml_backend_dev_count()) {
  4739. return 1;
  4740. }
  4741. return 0;
  4742. }