llama-bench.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <cstring>
  7. #include <ctime>
  8. #include <iterator>
  9. #include <map>
  10. #include <numeric>
  11. #include <regex>
  12. #include <sstream>
  13. #include <stdio.h>
  14. #include <string>
  15. #include <vector>
  16. #include "ggml.h"
  17. #include "llama.h"
  18. #include "common.h"
  19. #include "build-info.h"
  20. #include "ggml-cuda.h"
  21. // utils
  22. static uint64_t get_time_ns() {
  23. using clock = std::chrono::high_resolution_clock;
  24. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  25. }
  26. template<class T>
  27. static std::string join(const std::vector<T> & values, const std::string & delim) {
  28. std::ostringstream str;
  29. for (size_t i = 0; i < values.size(); i++) {
  30. str << values[i];
  31. if (i < values.size() - 1) {
  32. str << delim;
  33. }
  34. }
  35. return str.str();
  36. }
  37. template<class T>
  38. static std::vector<T> split(const std::string & str, char delim) {
  39. std::vector<T> values;
  40. std::istringstream str_stream(str);
  41. std::string token;
  42. while (std::getline(str_stream, token, delim)) {
  43. T value;
  44. std::istringstream token_stream(token);
  45. token_stream >> value;
  46. values.push_back(value);
  47. }
  48. return values;
  49. }
  50. template<typename T>
  51. static T avg(const std::vector<T> & v) {
  52. if (v.empty()) {
  53. return 0;
  54. }
  55. T sum = std::accumulate(v.begin(), v.end(), T(0));
  56. return sum / (T)v.size();
  57. }
  58. template<typename T>
  59. static T stdev(const std::vector<T> & v) {
  60. if (v.size() <= 1) {
  61. return 0;
  62. }
  63. T mean = avg(v);
  64. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  65. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  66. return stdev;
  67. }
  68. static bool ggml_cpu_has_metal() {
  69. #if defined(GGML_USE_METAL)
  70. return true;
  71. #else
  72. return false;
  73. #endif
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. }
  98. #endif
  99. // TODO: other platforms
  100. return id;
  101. }
  102. static std::string get_gpu_info() {
  103. std::string id;
  104. #ifdef GGML_USE_CUBLAS
  105. int count = ggml_cuda_get_device_count();
  106. for (int i = 0; i < count; i++) {
  107. char buf[128];
  108. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  109. id += buf;
  110. if (i < count - 1) {
  111. id += "/";
  112. }
  113. }
  114. #endif
  115. // TODO: other backends
  116. return id;
  117. }
  118. // command line params
  119. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  120. struct cmd_params {
  121. std::vector<std::string> model;
  122. std::vector<int> n_prompt;
  123. std::vector<int> n_gen;
  124. std::vector<int> n_batch;
  125. std::vector<bool> f32_kv;
  126. std::vector<int> n_threads;
  127. std::vector<int> n_gpu_layers;
  128. std::vector<int> main_gpu;
  129. std::vector<bool> mul_mat_q;
  130. std::vector<bool> low_vram;
  131. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  132. int reps;
  133. bool verbose;
  134. output_formats output_format;
  135. };
  136. static const cmd_params cmd_params_defaults = {
  137. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  138. /* n_prompt */ {512},
  139. /* n_gen */ {128},
  140. /* n_batch */ {512},
  141. /* f32_kv */ {false},
  142. /* n_threads */ {get_num_physical_cores()},
  143. /* n_gpu_layers */ {99},
  144. /* main_gpu */ {0},
  145. /* mul_mat_q */ {true},
  146. /* low_vram */ {false},
  147. /* tensor_split */ {{}},
  148. /* reps */ 5,
  149. /* verbose */ false,
  150. /* output_format */ MARKDOWN
  151. };
  152. static void print_usage(int /* argc */, char ** argv) {
  153. fprintf(stdout, "usage: %s [options]\n", argv[0]);
  154. fprintf(stdout, "\n");
  155. fprintf(stdout, "options:\n");
  156. fprintf(stdout, " -h, --help\n");
  157. fprintf(stdout, " -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  158. fprintf(stdout, " -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  159. fprintf(stdout, " -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  160. fprintf(stdout, " -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  161. fprintf(stdout, " --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
  162. fprintf(stdout, " -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  163. fprintf(stdout, " -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  164. fprintf(stdout, " -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  165. fprintf(stdout, " -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
  166. fprintf(stdout, " -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  167. fprintf(stdout, " -ts, --tensor_split <ts0/ts1/..> \n");
  168. fprintf(stdout, " -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  169. fprintf(stdout, " -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
  170. fprintf(stdout, " -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  171. fprintf(stdout, "\n");
  172. fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  173. }
  174. static cmd_params parse_cmd_params(int argc, char ** argv) {
  175. cmd_params params;
  176. std::string arg;
  177. bool invalid_param = false;
  178. const std::string arg_prefix = "--";
  179. const char split_delim = ',';
  180. params.verbose = cmd_params_defaults.verbose;
  181. params.output_format = cmd_params_defaults.output_format;
  182. params.reps = cmd_params_defaults.reps;
  183. for (int i = 1; i < argc; i++) {
  184. arg = argv[i];
  185. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  186. std::replace(arg.begin(), arg.end(), '_', '-');
  187. }
  188. if (arg == "-h" || arg == "--help") {
  189. print_usage(argc, argv);
  190. exit(0);
  191. } else if (arg == "-m" || arg == "--model") {
  192. if (++i >= argc) {
  193. invalid_param = true;
  194. break;
  195. }
  196. auto p = split<std::string>(argv[i], split_delim);
  197. params.model.insert(params.model.end(), p.begin(), p.end());
  198. } else if (arg == "-p" || arg == "--n-prompt") {
  199. if (++i >= argc) {
  200. invalid_param = true;
  201. break;
  202. }
  203. auto p = split<int>(argv[i], split_delim);
  204. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  205. } else if (arg == "-n" || arg == "--n-gen") {
  206. if (++i >= argc) {
  207. invalid_param = true;
  208. break;
  209. }
  210. auto p = split<int>(argv[i], split_delim);
  211. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  212. } else if (arg == "-b" || arg == "--batch-size") {
  213. if (++i >= argc) {
  214. invalid_param = true;
  215. break;
  216. }
  217. auto p = split<int>(argv[i], split_delim);
  218. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  219. } else if (arg == "--memory-f32") {
  220. if (++i >= argc) {
  221. invalid_param = true;
  222. break;
  223. }
  224. auto p = split<int>(argv[i], split_delim);
  225. params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
  226. } else if (arg == "-t" || arg == "--threads") {
  227. if (++i >= argc) {
  228. invalid_param = true;
  229. break;
  230. }
  231. auto p = split<int>(argv[i], split_delim);
  232. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  233. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  234. if (++i >= argc) {
  235. invalid_param = true;
  236. break;
  237. }
  238. auto p = split<int>(argv[i], split_delim);
  239. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  240. } else if (arg == "-mg" || arg == "--main-gpu") {
  241. if (++i >= argc) {
  242. invalid_param = true;
  243. break;
  244. }
  245. params.main_gpu = split<int>(argv[i], split_delim);
  246. } else if (arg == "-lv" || arg == "--low-vram") {
  247. if (++i >= argc) {
  248. invalid_param = true;
  249. break;
  250. }
  251. auto p = split<bool>(argv[i], split_delim);
  252. params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
  253. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  254. if (++i >= argc) {
  255. invalid_param = true;
  256. break;
  257. }
  258. auto p = split<bool>(argv[i], split_delim);
  259. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  260. } else if (arg == "-ts" || arg == "--tensor-split") {
  261. if (++i >= argc) {
  262. invalid_param = true;
  263. break;
  264. }
  265. for (auto ts : split<std::string>(argv[i], split_delim)) {
  266. // split string by ; and /
  267. const std::regex regex{R"([;/]+)"};
  268. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  269. std::vector<std::string> split_arg{it, {}};
  270. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  271. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  272. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  273. if (i < split_arg.size()) {
  274. tensor_split[i] = std::stof(split_arg[i]);
  275. } else {
  276. tensor_split[i] = 0.0f;
  277. }
  278. }
  279. params.tensor_split.push_back(tensor_split);
  280. }
  281. } else if (arg == "-r" || arg == "--repetitions") {
  282. if (++i >= argc) {
  283. invalid_param = true;
  284. break;
  285. }
  286. params.reps = std::stoi(argv[i]);
  287. } else if (arg == "-o" || arg == "--output") {
  288. if (++i >= argc) {
  289. invalid_param = true;
  290. break;
  291. }
  292. if (argv[i] == std::string("csv")) {
  293. params.output_format = CSV;
  294. } else if (argv[i] == std::string("json")) {
  295. params.output_format = JSON;
  296. } else if (argv[i] == std::string("md")) {
  297. params.output_format = MARKDOWN;
  298. } else if (argv[i] == std::string("sql")) {
  299. params.output_format = SQL;
  300. } else {
  301. invalid_param = true;
  302. break;
  303. }
  304. } else if (arg == "-v" || arg == "--verbose") {
  305. params.verbose = true;
  306. } else {
  307. invalid_param = true;
  308. break;
  309. }
  310. }
  311. if (invalid_param) {
  312. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  313. print_usage(argc, argv);
  314. exit(1);
  315. }
  316. // set defaults
  317. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  318. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  319. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  320. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  321. if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
  322. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  323. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  324. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  325. if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
  326. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  327. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  328. return params;
  329. }
  330. struct cmd_params_instance {
  331. std::string model;
  332. int n_prompt;
  333. int n_gen;
  334. int n_batch;
  335. bool f32_kv;
  336. int n_threads;
  337. int n_gpu_layers;
  338. int main_gpu;
  339. bool mul_mat_q;
  340. bool low_vram;
  341. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  342. llama_context_params to_llama_params() const {
  343. llama_context_params lparams = llama_context_default_params();
  344. lparams.n_ctx = n_prompt + n_gen;
  345. lparams.n_batch = n_batch;
  346. lparams.f16_kv = !f32_kv;
  347. lparams.n_gpu_layers = n_gpu_layers;
  348. lparams.main_gpu = main_gpu;
  349. lparams.mul_mat_q = mul_mat_q;
  350. lparams.low_vram = low_vram;
  351. lparams.tensor_split = tensor_split.data();
  352. return lparams;
  353. }
  354. };
  355. static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
  356. std::vector<cmd_params_instance> instances;
  357. for (const auto & m : params.model)
  358. for (const auto & nb : params.n_batch)
  359. for (const auto & fk : params.f32_kv)
  360. for (const auto & nl : params.n_gpu_layers)
  361. for (const auto & mg : params.main_gpu)
  362. for (const auto & mmq : params.mul_mat_q)
  363. for (const auto & lv : params.low_vram)
  364. for (const auto & ts : params.tensor_split)
  365. for (const auto & nt : params.n_threads) {
  366. cmd_params_instance instance = {
  367. /* .model = */ m,
  368. /* .n_prompt = */ n_prompt,
  369. /* .n_gen = */ n_gen,
  370. /* .n_batch = */ nb,
  371. /* .f32_kv = */ fk,
  372. /* .n_threads = */ nt,
  373. /* .n_gpu_layers = */ nl,
  374. /* .main_gpu = */ mg,
  375. /* .mul_mat_q = */ mmq,
  376. /* .low_vram = */ lv,
  377. /* .tensor_split = */ ts,
  378. };
  379. instances.push_back(instance);
  380. }
  381. return instances;
  382. }
  383. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  384. std::vector<cmd_params_instance> instances;
  385. for (const auto & n_prompt : params.n_prompt) {
  386. if (n_prompt == 0) {
  387. continue;
  388. }
  389. auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
  390. instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
  391. }
  392. for (const auto & n_gen : params.n_gen) {
  393. if (n_gen == 0) {
  394. continue;
  395. }
  396. auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
  397. instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
  398. }
  399. return instances;
  400. }
  401. struct test {
  402. static const std::string build_commit;
  403. static const int build_number;
  404. static const bool cuda;
  405. static const bool opencl;
  406. static const bool metal;
  407. static const bool gpu_blas;
  408. static const bool blas;
  409. static const std::string cpu_info;
  410. static const std::string gpu_info;
  411. std::string model_filename;
  412. std::string model_type;
  413. uint64_t model_size;
  414. uint64_t model_n_params;
  415. int n_batch;
  416. int n_threads;
  417. bool f32_kv;
  418. int n_gpu_layers;
  419. int main_gpu;
  420. bool mul_mat_q;
  421. bool low_vram;
  422. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  423. int n_prompt;
  424. int n_gen;
  425. std::string test_time;
  426. std::vector<uint64_t> samples_ns;
  427. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  428. model_filename = inst.model;
  429. char buf[128];
  430. llama_model_desc(lmodel, buf, sizeof(buf));
  431. model_type = buf;
  432. model_size = llama_model_size(lmodel);
  433. model_n_params = llama_model_n_params(lmodel);
  434. n_batch = inst.n_batch;
  435. n_threads = inst.n_threads;
  436. f32_kv = inst.f32_kv;
  437. n_gpu_layers = inst.n_gpu_layers;
  438. main_gpu = inst.main_gpu;
  439. mul_mat_q = inst.mul_mat_q;
  440. low_vram = inst.low_vram;
  441. tensor_split = inst.tensor_split;
  442. n_prompt = inst.n_prompt;
  443. n_gen = inst.n_gen;
  444. // RFC 3339 date-time format
  445. time_t t = time(NULL);
  446. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  447. test_time = buf;
  448. (void) ctx;
  449. }
  450. uint64_t avg_ns() const {
  451. return ::avg(samples_ns);
  452. }
  453. uint64_t stdev_ns() const {
  454. return ::stdev(samples_ns);
  455. }
  456. std::vector<double> get_ts() const {
  457. int n_tokens = n_prompt + n_gen;
  458. std::vector<double> ts;
  459. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  460. return ts;
  461. }
  462. double avg_ts() const {
  463. return ::avg(get_ts());
  464. }
  465. double stdev_ts() const {
  466. return ::stdev(get_ts());
  467. }
  468. static std::string get_backend() {
  469. if (cuda) {
  470. return GGML_CUDA_NAME;
  471. }
  472. if (opencl) {
  473. return "OpenCL";
  474. }
  475. if (metal) {
  476. return "Metal";
  477. }
  478. if (gpu_blas) {
  479. return "GPU BLAS";
  480. }
  481. if (blas) {
  482. return "BLAS";
  483. }
  484. return "CPU";
  485. }
  486. static const std::vector<std::string> & get_fields() {
  487. static const std::vector<std::string> fields = {
  488. "build_commit", "build_number",
  489. "cuda", "opencl", "metal", "gpu_blas", "blas",
  490. "cpu_info", "gpu_info",
  491. "model_filename", "model_type", "model_size", "model_n_params",
  492. "n_batch", "n_threads", "f16_kv",
  493. "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
  494. "n_prompt", "n_gen", "test_time",
  495. "avg_ns", "stddev_ns",
  496. "avg_ts", "stddev_ts"
  497. };
  498. return fields;
  499. }
  500. enum field_type {STRING, BOOL, INT, FLOAT};
  501. static field_type get_field_type(const std::string & field) {
  502. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  503. field == "model_size" || field == "model_n_params" ||
  504. field == "n_gpu_layers" || field == "main_gpu" ||
  505. field == "n_prompt" || field == "n_gen" ||
  506. field == "avg_ns" || field == "stddev_ns") {
  507. return INT;
  508. }
  509. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  510. field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
  511. return BOOL;
  512. }
  513. if (field == "avg_ts" || field == "stddev_ts") {
  514. return FLOAT;
  515. }
  516. return STRING;
  517. }
  518. std::vector<std::string> get_values() const {
  519. std::string tensor_split_str;
  520. int max_nonzero = 0;
  521. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  522. if (tensor_split[i] > 0) {
  523. max_nonzero = i;
  524. }
  525. }
  526. for (int i = 0; i <= max_nonzero; i++) {
  527. char buf[32];
  528. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  529. tensor_split_str += buf;
  530. if (i < max_nonzero) {
  531. tensor_split_str += "/";
  532. }
  533. }
  534. std::vector<std::string> values = {
  535. build_commit, std::to_string(build_number),
  536. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  537. cpu_info, gpu_info,
  538. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  539. std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
  540. std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
  541. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  542. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  543. std::to_string(avg_ts()), std::to_string(stdev_ts())
  544. };
  545. return values;
  546. }
  547. std::map<std::string, std::string> get_map() const {
  548. std::map<std::string, std::string> map;
  549. auto fields = get_fields();
  550. auto values = get_values();
  551. std::transform(fields.begin(), fields.end(), values.begin(),
  552. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  553. return map;
  554. }
  555. };
  556. const std::string test::build_commit = BUILD_COMMIT;
  557. const int test::build_number = BUILD_NUMBER;
  558. const bool test::cuda = !!ggml_cpu_has_cublas();
  559. const bool test::opencl = !!ggml_cpu_has_clblast();
  560. const bool test::metal = !!ggml_cpu_has_metal();
  561. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  562. const bool test::blas = !!ggml_cpu_has_blas();
  563. const std::string test::cpu_info = get_cpu_info();
  564. const std::string test::gpu_info = get_gpu_info();
  565. struct printer {
  566. virtual ~printer() {}
  567. FILE * fout;
  568. virtual void print_header(const cmd_params & params) { (void) params; };
  569. virtual void print_test(const test & t) = 0;
  570. virtual void print_footer() { };
  571. };
  572. struct csv_printer : public printer {
  573. static std::string escape_csv(const std::string & field) {
  574. std::string escaped = "\"";
  575. for (auto c : field) {
  576. if (c == '"') {
  577. escaped += "\"";
  578. }
  579. escaped += c;
  580. }
  581. escaped += "\"";
  582. return escaped;
  583. }
  584. void print_header(const cmd_params & params) override {
  585. std::vector<std::string> fields = test::get_fields();
  586. fprintf(fout, "%s\n", join(fields, ",").c_str());
  587. (void) params;
  588. }
  589. void print_test(const test & t) override {
  590. std::vector<std::string> values = t.get_values();
  591. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  592. fprintf(fout, "%s\n", join(values, ",").c_str());
  593. }
  594. };
  595. struct json_printer : public printer {
  596. bool first = true;
  597. static std::string escape_json(const std::string & value) {
  598. std::string escaped;
  599. for (auto c : value) {
  600. if (c == '"') {
  601. escaped += "\\\"";
  602. } else if (c == '\\') {
  603. escaped += "\\\\";
  604. } else if (c <= 0x1f) {
  605. char buf[8];
  606. snprintf(buf, sizeof(buf), "\\u%04x", c);
  607. escaped += buf;
  608. } else {
  609. escaped += c;
  610. }
  611. }
  612. return escaped;
  613. }
  614. static std::string format_value(const std::string & field, const std::string & value) {
  615. switch (test::get_field_type(field)) {
  616. case test::STRING:
  617. return "\"" + escape_json(value) + "\"";
  618. case test::BOOL:
  619. return value == "0" ? "false" : "true";
  620. default:
  621. return value;
  622. }
  623. }
  624. void print_header(const cmd_params & params) override {
  625. fprintf(fout, "[\n");
  626. (void) params;
  627. }
  628. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  629. assert(fields.size() == values.size());
  630. for (size_t i = 0; i < fields.size(); i++) {
  631. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  632. }
  633. }
  634. void print_test(const test & t) override {
  635. if (first) {
  636. first = false;
  637. } else {
  638. fprintf(fout, ",\n");
  639. }
  640. fprintf(fout, " {\n");
  641. print_fields(test::get_fields(), t.get_values());
  642. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  643. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  644. fprintf(fout, " }");
  645. fflush(fout);
  646. }
  647. void print_footer() override {
  648. fprintf(fout, "\n]\n");
  649. }
  650. };
  651. struct markdown_printer : public printer {
  652. std::vector<std::string> fields;
  653. static int get_field_width(const std::string & field) {
  654. if (field == "model") {
  655. return -30;
  656. }
  657. if (field == "t/s") {
  658. return 16;
  659. }
  660. if (field == "size" || field == "params") {
  661. return 10;
  662. }
  663. if (field == "n_gpu_layers") {
  664. return 3;
  665. }
  666. int width = std::max((int)field.length(), 10);
  667. if (test::get_field_type(field) == test::STRING) {
  668. return -width;
  669. }
  670. return width;
  671. }
  672. static std::string get_field_display_name(const std::string & field) {
  673. if (field == "n_gpu_layers") {
  674. return "ngl";
  675. }
  676. if (field == "n_threads") {
  677. return "threads";
  678. }
  679. if (field == "mul_mat_q") {
  680. return "mmq";
  681. }
  682. if (field == "tensor_split") {
  683. return "ts";
  684. }
  685. return field;
  686. }
  687. void print_header(const cmd_params & params) override {
  688. // select fields to print
  689. fields.push_back("model");
  690. fields.push_back("size");
  691. fields.push_back("params");
  692. fields.push_back("backend");
  693. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  694. if (!is_cpu_backend) {
  695. fields.push_back("n_gpu_layers");
  696. }
  697. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  698. fields.push_back("n_threads");
  699. }
  700. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  701. fields.push_back("n_batch");
  702. }
  703. if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
  704. fields.push_back("f16_kv");
  705. }
  706. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  707. fields.push_back("main_gpu");
  708. }
  709. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  710. fields.push_back("mul_mat_q");
  711. }
  712. if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
  713. fields.push_back("low_vram");
  714. }
  715. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  716. fields.push_back("tensor_split");
  717. }
  718. fields.push_back("test");
  719. fields.push_back("t/s");
  720. fprintf(fout, "|");
  721. for (const auto & field : fields) {
  722. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  723. }
  724. fprintf(fout, "\n");
  725. fprintf(fout, "|");
  726. for (const auto & field : fields) {
  727. int width = get_field_width(field);
  728. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  729. }
  730. fprintf(fout, "\n");
  731. }
  732. void print_test(const test & t) override {
  733. std::map<std::string, std::string> vmap = t.get_map();
  734. fprintf(fout, "|");
  735. for (const auto & field : fields) {
  736. std::string value;
  737. char buf[128];
  738. if (field == "model") {
  739. value = t.model_type;
  740. } else if (field == "size") {
  741. if (t.model_size < 1024*1024*1024) {
  742. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  743. } else {
  744. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  745. }
  746. value = buf;
  747. } else if (field == "params") {
  748. if (t.model_n_params < 1000*1000*1000) {
  749. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  750. } else {
  751. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  752. }
  753. value = buf;
  754. } else if (field == "backend") {
  755. value = test::get_backend();
  756. } else if (field == "test") {
  757. if (t.n_prompt > 0 && t.n_gen == 0) {
  758. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  759. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  760. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  761. } else {
  762. assert(false);
  763. exit(1);
  764. }
  765. value = buf;
  766. } else if (field == "t/s") {
  767. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  768. value = buf;
  769. } else if (vmap.find(field) != vmap.end()) {
  770. value = vmap.at(field);
  771. } else {
  772. assert(false);
  773. exit(1);
  774. }
  775. int width = get_field_width(field);
  776. if (field == "t/s") {
  777. // HACK: the utf-8 character is 2 bytes
  778. width += 1;
  779. }
  780. fprintf(fout, " %*s |", width, value.c_str());
  781. }
  782. fprintf(fout, "\n");
  783. }
  784. void print_footer() override {
  785. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  786. }
  787. };
  788. struct sql_printer : public printer {
  789. static std::string get_sql_field_type(const std::string & field) {
  790. switch (test::get_field_type(field)) {
  791. case test::STRING:
  792. return "TEXT";
  793. case test::BOOL:
  794. case test::INT:
  795. return "INTEGER";
  796. case test::FLOAT:
  797. return "REAL";
  798. default:
  799. assert(false);
  800. exit(1);
  801. }
  802. }
  803. void print_header(const cmd_params & params) override {
  804. std::vector<std::string> fields = test::get_fields();
  805. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  806. for (size_t i = 0; i < fields.size(); i++) {
  807. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  808. }
  809. fprintf(fout, ");\n");
  810. fprintf(fout, "\n");
  811. (void) params;
  812. }
  813. void print_test(const test & t) override {
  814. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  815. fprintf(fout, "VALUES (");
  816. std::vector<std::string> values = t.get_values();
  817. for (size_t i = 0; i < values.size(); i++) {
  818. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  819. }
  820. fprintf(fout, ");\n");
  821. }
  822. };
  823. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  824. std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
  825. int n_processed = 0;
  826. while (n_processed < n_prompt) {
  827. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  828. llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
  829. n_processed += n_tokens;
  830. }
  831. }
  832. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  833. llama_token token = llama_token_bos(ctx);
  834. for (int i = 0; i < n_gen; i++) {
  835. llama_eval(ctx, &token, 1, n_past + i, n_threads);
  836. }
  837. }
  838. static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
  839. (void) level;
  840. (void) text;
  841. (void) user_data;
  842. }
  843. int main(int argc, char ** argv) {
  844. #if !defined(NDEBUG)
  845. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  846. #endif
  847. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  848. fprintf(stderr, "warning: debug build, performance may be affected\n");
  849. #endif
  850. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  851. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  852. #endif
  853. cmd_params params = parse_cmd_params(argc, argv);
  854. // initialize llama.cpp
  855. if (!params.verbose) {
  856. llama_log_set(llama_null_log_callback, NULL);
  857. }
  858. bool numa = false;
  859. llama_backend_init(numa);
  860. // initialize printer
  861. std::unique_ptr<printer> p;
  862. switch (params.output_format) {
  863. case CSV:
  864. p.reset(new csv_printer());
  865. break;
  866. case JSON:
  867. p.reset(new json_printer());
  868. break;
  869. case MARKDOWN:
  870. p.reset(new markdown_printer());
  871. break;
  872. case SQL:
  873. p.reset(new sql_printer());
  874. break;
  875. default:
  876. assert(false);
  877. exit(1);
  878. }
  879. p->fout = stdout;
  880. p->print_header(params);
  881. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  882. for (const auto & inst : params_instances) {
  883. // TODO: keep the model between tests when possible
  884. llama_context_params lparams = inst.to_llama_params();
  885. llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
  886. if (lmodel == NULL) {
  887. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  888. return 1;
  889. }
  890. llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
  891. if (ctx == NULL) {
  892. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  893. llama_free_model(lmodel);
  894. return 1;
  895. }
  896. test t(inst, lmodel, ctx);
  897. // warmup run
  898. test_gen(ctx, 1, 0, t.n_threads);
  899. for (int i = 0; i < params.reps; i++) {
  900. uint64_t t_start = get_time_ns();
  901. if (t.n_prompt > 0) {
  902. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  903. }
  904. if (t.n_gen > 0) {
  905. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  906. }
  907. uint64_t t_ns = get_time_ns() - t_start;
  908. t.samples_ns.push_back(t_ns);
  909. }
  910. p->print_test(t);
  911. llama_print_timings(ctx);
  912. llama_free(ctx);
  913. llama_free_model(lmodel);
  914. }
  915. p->print_footer();
  916. llama_backend_free();
  917. return 0;
  918. }