ggml-alloc.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. #include "ggml-alloc.h"
  2. #include "ggml.h"
  3. #include <assert.h>
  4. #include <stdarg.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <string.h>
  8. #define UNUSED(x) (void)(x)
  9. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  10. #define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
  11. //#define GGML_ALLOCATOR_DEBUG
  12. //#define AT_PRINTF printf
  13. #define AT_PRINTF(...) ((void)0)
  14. struct hash_node {
  15. struct ggml_tensor * t;
  16. int n_children;
  17. int n_views;
  18. };
  19. static size_t hash(void * p) {
  20. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  21. }
  22. static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
  23. size_t h = hash(t);
  24. // linear probing
  25. size_t i = h;
  26. while (hash_table[i].t != NULL) {
  27. if (hash_table[i].t == t) {
  28. return &hash_table[i];
  29. }
  30. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  31. if (i == h) {
  32. // hash table is full
  33. GGML_ASSERT(false);
  34. }
  35. }
  36. hash_table[i].t = t;
  37. return &hash_table[i];
  38. }
  39. // TODO: GGML_PAD ?
  40. static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
  41. assert(alignment && !(alignment & (alignment - 1))); // power of 2
  42. size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
  43. return offset + align;
  44. }
  45. struct free_block {
  46. void * addr;
  47. size_t size;
  48. };
  49. #define MAX_FREE_BLOCKS 128
  50. struct ggml_allocr {
  51. void * data;
  52. size_t size;
  53. size_t alignment;
  54. int n_free_blocks;
  55. struct free_block free_blocks[MAX_FREE_BLOCKS];
  56. struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
  57. size_t max_size;
  58. bool measure;
  59. int parse_seq[GGML_MAX_CONCUR];
  60. int parse_seq_len;
  61. #ifdef GGML_ALLOCATOR_DEBUG
  62. struct ggml_tensor * allocated_tensors[1024];
  63. #endif
  64. };
  65. #ifdef GGML_ALLOCATOR_DEBUG
  66. static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  67. for (int i = 0; i < 1024; i++) {
  68. if (alloc->allocated_tensors[i] == NULL) {
  69. alloc->allocated_tensors[i] = tensor;
  70. return;
  71. }
  72. }
  73. GGML_ASSERT(!"out of allocated_tensors");
  74. }
  75. static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  76. for (int i = 0; i < 1024; i++) {
  77. if (alloc->allocated_tensors[i] == tensor ||
  78. (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
  79. alloc->allocated_tensors[i] = NULL;
  80. return;
  81. }
  82. }
  83. printf("tried to free tensor %s not found\n", tensor->name);
  84. GGML_ASSERT(!"tensor not found");
  85. }
  86. #endif
  87. static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  88. return ggml_nbytes(tensor);
  89. UNUSED(alloc);
  90. }
  91. void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  92. size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
  93. size = aligned_offset(NULL, size, alloc->alignment);
  94. AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
  95. size_t max_avail = 0;
  96. // find the best fitting free block besides the last block
  97. int best_fit_block = -1;
  98. size_t best_fit_size = SIZE_MAX;
  99. for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
  100. struct free_block * block = &alloc->free_blocks[i];
  101. max_avail = MAX(max_avail, block->size);
  102. if (block->size >= size && block->size <= best_fit_size) {
  103. best_fit_block = i;
  104. best_fit_size = block->size;
  105. }
  106. }
  107. AT_PRINTF("block %d\n", best_fit_block);
  108. if (best_fit_block == -1) {
  109. // the last block is our last resort
  110. struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
  111. if (block->size >= size) {
  112. best_fit_block = alloc->n_free_blocks - 1;
  113. max_avail = MAX(max_avail, block->size);
  114. } else {
  115. fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
  116. __func__, size, max_avail);
  117. GGML_ASSERT(!"not enough space in the buffer");
  118. return;
  119. }
  120. }
  121. struct free_block * block = &alloc->free_blocks[best_fit_block];
  122. void * addr = block->addr;
  123. block->addr = (char*)block->addr + size;
  124. block->size -= size;
  125. if (block->size == 0) {
  126. // remove block if empty
  127. alloc->n_free_blocks--;
  128. for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
  129. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  130. }
  131. }
  132. tensor->data = addr;
  133. #ifdef GGML_ALLOCATOR_DEBUG
  134. add_allocated_tensor(alloc, tensor);
  135. size_t cur_max = (char*)addr - (char*)alloc->data + size;
  136. if (cur_max > alloc->max_size) {
  137. printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
  138. for (int i = 0; i < 1024; i++) {
  139. if (alloc->allocated_tensors[i]) {
  140. printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
  141. }
  142. }
  143. printf("\n");
  144. }
  145. #endif
  146. alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
  147. }
  148. // this is a very naive implementation, but for our case the number of free blocks should be very small
  149. static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
  150. void * ptr = tensor->data;
  151. if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
  152. // the tensor was not allocated in this buffer
  153. // this can happen because the graph allocator will try to free weights and other tensors from different buffers
  154. // the easiest way to deal with this is just to ignore it
  155. return;
  156. }
  157. size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
  158. size = aligned_offset(NULL, size, alloc->alignment);
  159. AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
  160. #ifdef GGML_ALLOCATOR_DEBUG
  161. remove_allocated_tensor(alloc, tensor);
  162. #endif
  163. // see if we can merge with an existing block
  164. for (int i = 0; i < alloc->n_free_blocks; i++) {
  165. struct free_block * block = &alloc->free_blocks[i];
  166. // check if ptr is at the end of the block
  167. if ((char*)block->addr + block->size == ptr) {
  168. block->size += size;
  169. // check if we can merge with the next block
  170. if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
  171. block->size += alloc->free_blocks[i+1].size;
  172. alloc->n_free_blocks--;
  173. for (int j = i+1; j < alloc->n_free_blocks; j++) {
  174. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  175. }
  176. }
  177. return;
  178. }
  179. // check if ptr is at the beginning of the block
  180. if ((char*)ptr + size == block->addr) {
  181. block->addr = ptr;
  182. block->size += size;
  183. // check if we can merge with the previous block
  184. if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
  185. alloc->free_blocks[i-1].size += block->size;
  186. alloc->n_free_blocks--;
  187. for (int j = i; j < alloc->n_free_blocks; j++) {
  188. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  189. }
  190. }
  191. return;
  192. }
  193. }
  194. // otherwise, add a new block
  195. GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
  196. // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
  197. int insert_pos = 0;
  198. while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
  199. insert_pos++;
  200. }
  201. // shift all blocks from insert_pos onward to make room for the new block
  202. for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
  203. alloc->free_blocks[i] = alloc->free_blocks[i-1];
  204. }
  205. // insert the new block
  206. alloc->free_blocks[insert_pos].addr = ptr;
  207. alloc->free_blocks[insert_pos].size = size;
  208. alloc->n_free_blocks++;
  209. }
  210. void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
  211. for (int i = 0; i < n; i++) {
  212. alloc->parse_seq[i] = list[i];
  213. }
  214. alloc->parse_seq_len = n;
  215. }
  216. void ggml_allocr_reset(struct ggml_allocr * alloc) {
  217. alloc->n_free_blocks = 1;
  218. size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
  219. alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
  220. alloc->free_blocks[0].size = alloc->size - align_offset;
  221. }
  222. struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
  223. struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
  224. *alloc = (struct ggml_allocr){
  225. /*.data = */ data,
  226. /*.size = */ size,
  227. /*.alignment = */ alignment,
  228. /*.n_free_blocks = */ 0,
  229. /*.free_blocks = */ {{0}},
  230. /*.hash_table = */ {{0}},
  231. /*.max_size = */ 0,
  232. /*.measure = */ false,
  233. /*.parse_seq = */ {0},
  234. /*.parse_seq_len = */ 0,
  235. #ifdef GGML_ALLOCATOR_DEBUG
  236. /*.allocated_tensors = */ = {0},
  237. #endif
  238. };
  239. ggml_allocr_reset(alloc);
  240. return alloc;
  241. }
  242. // address and size of the buffer when measuring
  243. // it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
  244. static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
  245. static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
  246. struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
  247. struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
  248. *alloc = (struct ggml_allocr){
  249. /*.data = */ MEASURE_BASE_ADDR,
  250. /*.size = */ MEASURE_MAX_SIZE,
  251. /*.alignment = */ alignment,
  252. /*.n_free_blocks = */ 0,
  253. /*.free_blocks = */ {{0}},
  254. /*.hash_table = */ {{0}},
  255. /*.max_size = */ 0,
  256. /*.measure = */ true,
  257. /*.parse_seq = */ {0},
  258. /*.parse_seq_len = */ 0,
  259. #ifdef GGML_ALLOCATOR_DEBUG
  260. /*.allocated_tensors = */ = {0},
  261. #endif
  262. };
  263. ggml_allocr_reset(alloc);
  264. return alloc;
  265. }
  266. void ggml_allocr_free(struct ggml_allocr * alloc) {
  267. free(alloc);
  268. }
  269. bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
  270. return alloc->measure;
  271. }
  272. //////////// compute graph allocator
  273. static bool ggml_is_view(struct ggml_tensor * t) {
  274. return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
  275. t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
  276. }
  277. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  278. if (a->type != b->type) {
  279. return false;
  280. }
  281. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  282. if (a->ne[i] != b->ne[i]) {
  283. return false;
  284. }
  285. if (a->nb[i] != b->nb[i]) {
  286. return false;
  287. }
  288. }
  289. return true;
  290. }
  291. static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
  292. switch (t->op) {
  293. case GGML_OP_PERMUTE:
  294. case GGML_OP_RESHAPE:
  295. case GGML_OP_TRANSPOSE:
  296. case GGML_OP_VIEW:
  297. return t->src[0];
  298. case GGML_OP_CPY:
  299. return t->src[1];
  300. default:
  301. return NULL;
  302. }
  303. }
  304. static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
  305. struct ggml_tensor * parent = t;
  306. do {
  307. parent = get_view_parent(parent);
  308. } while (ggml_is_view(parent));
  309. return parent;
  310. }
  311. static bool ggml_op_can_inplace(enum ggml_op op) {
  312. switch (op) {
  313. case GGML_OP_SCALE:
  314. case GGML_OP_DIAG_MASK_ZERO:
  315. case GGML_OP_DIAG_MASK_INF:
  316. case GGML_OP_ADD:
  317. case GGML_OP_ADD1:
  318. case GGML_OP_ACC:
  319. case GGML_OP_SUB:
  320. case GGML_OP_MUL:
  321. case GGML_OP_DIV:
  322. case GGML_OP_SQR:
  323. case GGML_OP_SQRT:
  324. case GGML_OP_LOG:
  325. case GGML_OP_UNARY:
  326. case GGML_OP_ROPE:
  327. case GGML_OP_RMS_NORM:
  328. case GGML_OP_SET:
  329. case GGML_OP_SOFT_MAX:
  330. case GGML_OP_CONT:
  331. return true;
  332. default:
  333. return false;
  334. }
  335. }
  336. static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
  337. struct hash_node * ht = alloc->hash_table;
  338. if (node->data == NULL) {
  339. if (ggml_is_view(node)) {
  340. size_t offset;
  341. switch(node->op) {
  342. case GGML_OP_VIEW:
  343. memcpy(&offset, node->op_params, sizeof(size_t));
  344. node->data = (char *) node->src[0]->data + offset;
  345. break;
  346. case GGML_OP_PERMUTE:
  347. case GGML_OP_RESHAPE:
  348. case GGML_OP_TRANSPOSE:
  349. node->data = node->src[0]->data;
  350. break;
  351. case GGML_OP_CPY:
  352. node->data = node->src[1]->data;
  353. break;
  354. default:
  355. GGML_ASSERT(!"unknown view op");
  356. break;
  357. }
  358. } else {
  359. // see if we can reuse a parent's buffer (inplace)
  360. if (ggml_op_can_inplace(node->op)) {
  361. for (int i = 0; i < GGML_MAX_SRC; i++) {
  362. struct ggml_tensor * parent = node->src[i];
  363. if (parent == NULL) {
  364. break;
  365. }
  366. // if the node's data is external, then we cannot re-use it
  367. if ((char *) parent->data < (char *) alloc->data ||
  368. (char *) parent->data >= ((char *) alloc->data + alloc->size)) {
  369. AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
  370. continue;
  371. }
  372. struct hash_node * p_hn = hash_get(ht, parent);
  373. if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
  374. if (ggml_is_view(parent)) {
  375. struct ggml_tensor * view_src = get_view_source(parent);
  376. struct hash_node * view_src_hn = hash_get(ht, view_src);
  377. if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
  378. // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
  379. // the parent's data that it will need later (same layout requirement). the problem is that then
  380. // we cannot free the tensor because the original address of the allocation is lost.
  381. // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
  382. // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
  383. AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
  384. node->data = parent->data;
  385. return;
  386. }
  387. }
  388. else {
  389. AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
  390. node->data = parent->data;
  391. return;
  392. }
  393. }
  394. }
  395. }
  396. ggml_allocr_alloc(alloc, node);
  397. }
  398. }
  399. }
  400. static size_t ggml_allocator_alloc_graph_tensors_n(
  401. struct ggml_allocr * alloc,
  402. struct ggml_cgraph ** graphs, int n_graphs,
  403. struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
  404. // reset hash table
  405. struct hash_node * ht = alloc->hash_table;
  406. memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
  407. // count number of children and views
  408. for (int g = 0; g < n_graphs; g++) {
  409. struct ggml_cgraph * gf = graphs[g];
  410. for (int i = 0; i < gf->n_nodes; i++) {
  411. struct ggml_tensor * node = gf->nodes[i];
  412. if (ggml_is_view(node)) {
  413. struct ggml_tensor * view_src = get_view_source(node);
  414. hash_get(ht, view_src)->n_views += 1;
  415. }
  416. for (int j = 0; j < GGML_MAX_SRC; j++) {
  417. struct ggml_tensor * parent = node->src[j];
  418. if (parent == NULL) {
  419. break;
  420. }
  421. hash_get(ht, parent)->n_children += 1;
  422. }
  423. }
  424. }
  425. // allocate tensors
  426. for (int g = 0; g < n_graphs; g++) {
  427. struct ggml_cgraph * gf = graphs[g];
  428. AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
  429. // graph inputs are allocated first to ensure that they are not overwritten by each other
  430. if (inputs != NULL && inputs[g] != NULL) {
  431. for (int i = 0; inputs[g][i] != NULL; i++) {
  432. struct ggml_tensor * input = inputs[g][i];
  433. AT_PRINTF("input: %s\n", input->name);
  434. allocate_node(alloc, input);
  435. }
  436. }
  437. // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
  438. int last_barrier_pos = 0;
  439. int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
  440. for (int ind = 0; ind < n_nodes; ind++) {
  441. // allocate a node if there is no parse_seq or this is not a barrier
  442. if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
  443. int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
  444. struct ggml_tensor * node = gf->nodes[i];
  445. // allocate parents (leafs)
  446. for (int j = 0; j < GGML_MAX_SRC; j++) {
  447. struct ggml_tensor * parent = node->src[j];
  448. if (parent == NULL) {
  449. break;
  450. }
  451. allocate_node(alloc, parent);
  452. }
  453. // allocate node
  454. allocate_node(alloc, node);
  455. AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
  456. for (int j = 0; j < GGML_MAX_SRC; j++) {
  457. struct ggml_tensor * parent = node->src[j];
  458. if (parent == NULL) {
  459. break;
  460. }
  461. AT_PRINTF("%s", parent->name);
  462. if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
  463. AT_PRINTF(", ");
  464. }
  465. }
  466. AT_PRINTF("\n");
  467. }
  468. // update parents
  469. // update immediately if there is no parse_seq
  470. // update only at barriers if there is parse_seq
  471. if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
  472. int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
  473. int update_end = alloc->parse_seq_len ? ind : ind + 1;
  474. for (int i = update_start; i < update_end; i++) {
  475. int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
  476. struct ggml_tensor * node = gf->nodes[node_i];
  477. for (int j = 0; j < GGML_MAX_SRC; j++) {
  478. struct ggml_tensor * parent = node->src[j];
  479. if (parent == NULL) {
  480. break;
  481. }
  482. struct hash_node * p_hn = hash_get(ht, parent);
  483. p_hn->n_children -= 1;
  484. //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
  485. if (p_hn->n_children == 0 && p_hn->n_views == 0) {
  486. if (ggml_is_view(parent)) {
  487. struct ggml_tensor * view_src = get_view_source(parent);
  488. struct hash_node * view_src_hn = hash_get(ht, view_src);
  489. view_src_hn->n_views -= 1;
  490. AT_PRINTF("view_src %s\n", view_src->name);
  491. if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
  492. ggml_allocator_free_tensor(alloc, view_src);
  493. }
  494. }
  495. else {
  496. if (parent->data != node->data) {
  497. ggml_allocator_free_tensor(alloc, parent);
  498. }
  499. }
  500. }
  501. }
  502. }
  503. AT_PRINTF("\n");
  504. if (alloc->parse_seq_len) {
  505. last_barrier_pos = ind + 1;
  506. }
  507. }
  508. }
  509. // free graph outputs here that wouldn't be freed otherwise because they have no children
  510. if (outputs != NULL && outputs[g] != NULL) {
  511. for (int i = 0; outputs[g][i] != NULL; i++) {
  512. struct ggml_tensor * output = outputs[g][i];
  513. AT_PRINTF("output: %s\n", output->name);
  514. ggml_allocator_free_tensor(alloc, output);
  515. }
  516. }
  517. }
  518. return alloc->max_size;
  519. }
  520. size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
  521. return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
  522. }