k_quants.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282
  1. #include "k_quants.h"
  2. #include "ggml.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #ifdef __ARM_NEON
  7. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  8. //
  9. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  10. //
  11. #include <arm_neon.h>
  12. #else
  13. #ifdef __wasm_simd128__
  14. #include <wasm_simd128.h>
  15. #else
  16. #ifdef __POWER9_VECTOR__
  17. #include <altivec.h>
  18. #undef bool
  19. #define bool _Bool
  20. #else
  21. #if defined(_MSC_VER) || defined(__MINGW32__)
  22. #include <intrin.h>
  23. #else
  24. #if !defined(__riscv)
  25. #include <immintrin.h>
  26. #endif
  27. #endif
  28. #endif
  29. #endif
  30. #endif
  31. #undef MIN
  32. #undef MAX
  33. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  34. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  35. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  36. //
  37. // 2-6 bit quantization in super-blocks
  38. //
  39. //
  40. // ===================== Helper functions
  41. //
  42. static inline int nearest_int(float fval) {
  43. assert(fval <= 4194303.f);
  44. float val = fval + 12582912.f;
  45. int i; memcpy(&i, &val, sizeof(int));
  46. return (i & 0x007fffff) - 0x00400000;
  47. }
  48. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  49. float max = 0;
  50. float amax = 0;
  51. for (int i = 0; i < n; ++i) {
  52. float ax = fabsf(x[i]);
  53. if (ax > amax) { amax = ax; max = x[i]; }
  54. }
  55. if (!amax) { // all zero
  56. for (int i = 0; i < n; ++i) {
  57. L[i] = 0;
  58. }
  59. return 0.f;
  60. }
  61. float iscale = -nmax / max;
  62. if (rmse_type == 0) {
  63. for (int i = 0; i < n; ++i) {
  64. int l = nearest_int(iscale * x[i]);
  65. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  66. }
  67. return 1/iscale;
  68. }
  69. bool return_early = false;
  70. if (rmse_type < 0) {
  71. rmse_type = -rmse_type;
  72. return_early = true;
  73. }
  74. int weight_type = rmse_type%2;
  75. float sumlx = 0;
  76. float suml2 = 0;
  77. for (int i = 0; i < n; ++i) {
  78. int l = nearest_int(iscale * x[i]);
  79. l = MAX(-nmax, MIN(nmax-1, l));
  80. L[i] = l + nmax;
  81. float w = weight_type == 1 ? x[i] * x[i] : 1;
  82. sumlx += w*x[i]*l;
  83. suml2 += w*l*l;
  84. }
  85. float scale = sumlx/suml2;
  86. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  87. float best = scale * sumlx;
  88. for (int is = -9; is <= 9; ++is) {
  89. if (is == 0) {
  90. continue;
  91. }
  92. iscale = -(nmax + 0.1f*is) / max;
  93. sumlx = suml2 = 0;
  94. for (int i = 0; i < n; ++i) {
  95. int l = nearest_int(iscale * x[i]);
  96. l = MAX(-nmax, MIN(nmax-1, l));
  97. float w = weight_type == 1 ? x[i] * x[i] : 1;
  98. sumlx += w*x[i]*l;
  99. suml2 += w*l*l;
  100. }
  101. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  102. for (int i = 0; i < n; ++i) {
  103. int l = nearest_int(iscale * x[i]);
  104. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  105. }
  106. scale = sumlx/suml2; best = scale*sumlx;
  107. }
  108. }
  109. return scale;
  110. }
  111. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  112. float max = 0;
  113. float amax = 0;
  114. for (int i = 0; i < n; ++i) {
  115. float ax = fabsf(x[i]);
  116. if (ax > amax) { amax = ax; max = x[i]; }
  117. }
  118. if (!amax) { // all zero
  119. for (int i = 0; i < n; ++i) { L[i] = 0; }
  120. return 0.f;
  121. }
  122. float iscale = -nmax / max;
  123. if (do_rmse) {
  124. float sumlx = 0;
  125. float suml2 = 0;
  126. for (int i = 0; i < n; ++i) {
  127. int l = nearest_int(iscale * x[i]);
  128. l = MAX(-nmax, MIN(nmax-1, l));
  129. L[i] = l;
  130. float w = x[i]*x[i];
  131. sumlx += w*x[i]*l;
  132. suml2 += w*l*l;
  133. }
  134. for (int itry = 0; itry < 5; ++itry) {
  135. int n_changed = 0;
  136. for (int i = 0; i < n; ++i) {
  137. float w = x[i]*x[i];
  138. float slx = sumlx - w*x[i]*L[i];
  139. if (slx > 0) {
  140. float sl2 = suml2 - w*L[i]*L[i];
  141. int new_l = nearest_int(x[i] * sl2 / slx);
  142. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  143. if (new_l != L[i]) {
  144. slx += w*x[i]*new_l;
  145. sl2 += w*new_l*new_l;
  146. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  147. L[i] = new_l; sumlx = slx; suml2 = sl2;
  148. ++n_changed;
  149. }
  150. }
  151. }
  152. }
  153. if (!n_changed) {
  154. break;
  155. }
  156. }
  157. for (int i = 0; i < n; ++i) {
  158. L[i] += nmax;
  159. }
  160. return sumlx / suml2;
  161. }
  162. for (int i = 0; i < n; ++i) {
  163. int l = nearest_int(iscale * x[i]);
  164. l = MAX(-nmax, MIN(nmax-1, l));
  165. L[i] = l + nmax;
  166. }
  167. return 1/iscale;
  168. }
  169. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  170. int ntry, float alpha) {
  171. float min = x[0];
  172. float max = x[0];
  173. float sum_x = 0;
  174. float sum_x2 = 0;
  175. for (int i = 1; i < n; ++i) {
  176. if (x[i] < min) min = x[i];
  177. if (x[i] > max) max = x[i];
  178. sum_x += x[i];
  179. sum_x2 += x[i]*x[i];
  180. }
  181. if (max == min) {
  182. for (int i = 0; i < n; ++i) L[i] = 0;
  183. *the_min = 0;
  184. return 0.f;
  185. }
  186. if (min > 0) min = 0;
  187. float iscale = nmax/(max - min);
  188. float scale = 1/iscale;
  189. for (int itry = 0; itry < ntry; ++itry) {
  190. float sumlx = 0; int suml2 = 0;
  191. bool did_change = false;
  192. for (int i = 0; i < n; ++i) {
  193. int l = nearest_int(iscale*(x[i] - min));
  194. l = MAX(0, MIN(nmax, l));
  195. if (l != L[i]) {
  196. L[i] = l;
  197. did_change = true;
  198. }
  199. sumlx += (x[i] - min)*l;
  200. suml2 += l*l;
  201. }
  202. scale = sumlx/suml2;
  203. float sum = 0;
  204. for (int i = 0; i < n; ++i) {
  205. sum += x[i] - scale*L[i];
  206. }
  207. min = alpha*min + (1 - alpha)*sum/n;
  208. if (min > 0) min = 0;
  209. iscale = 1/scale;
  210. if (!did_change) break;
  211. }
  212. *the_min = -min;
  213. return scale;
  214. }
  215. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  216. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  217. float rmin, float rdelta, int nstep, bool use_mad) {
  218. float min = x[0];
  219. float max = x[0];
  220. float sum_w = weights[0];
  221. float sum_x = sum_w * x[0];
  222. for (int i = 1; i < n; ++i) {
  223. if (x[i] < min) min = x[i];
  224. if (x[i] > max) max = x[i];
  225. float w = weights[i];
  226. sum_w += w;
  227. sum_x += w * x[i];
  228. }
  229. if (min > 0) min = 0;
  230. if (max == min) {
  231. for (int i = 0; i < n; ++i) L[i] = 0;
  232. *the_min = -min;
  233. return 0.f;
  234. }
  235. float iscale = nmax/(max - min);
  236. float scale = 1/iscale;
  237. float best_mad = 0;
  238. for (int i = 0; i < n; ++i) {
  239. int l = nearest_int(iscale*(x[i] - min));
  240. L[i] = MAX(0, MIN(nmax, l));
  241. float diff = scale * L[i] + min - x[i];
  242. diff = use_mad ? fabsf(diff) : diff * diff;
  243. float w = weights[i];
  244. best_mad += w * diff;
  245. }
  246. if (nstep < 1) {
  247. *the_min = -min;
  248. return scale;
  249. }
  250. for (int is = 0; is <= nstep; ++is) {
  251. iscale = (rmin + rdelta*is + nmax)/(max - min);
  252. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  253. for (int i = 0; i < n; ++i) {
  254. int l = nearest_int(iscale*(x[i] - min));
  255. l = MAX(0, MIN(nmax, l));
  256. Laux[i] = l;
  257. float w = weights[i];
  258. sum_l += w*l;
  259. sum_l2 += w*l*l;
  260. sum_xl += w*l*x[i];
  261. }
  262. float D = sum_w * sum_l2 - sum_l * sum_l;
  263. if (D > 0) {
  264. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  265. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  266. if (this_min > 0) {
  267. this_min = 0;
  268. this_scale = sum_xl / sum_l2;
  269. }
  270. float mad = 0;
  271. for (int i = 0; i < n; ++i) {
  272. float diff = this_scale * Laux[i] + this_min - x[i];
  273. diff = use_mad ? fabsf(diff) : diff * diff;
  274. float w = weights[i];
  275. mad += w * diff;
  276. }
  277. if (mad < best_mad) {
  278. for (int i = 0; i < n; ++i) {
  279. L[i] = Laux[i];
  280. }
  281. best_mad = mad;
  282. scale = this_scale;
  283. min = this_min;
  284. }
  285. }
  286. }
  287. *the_min = -min;
  288. return scale;
  289. }
  290. #if QK_K == 256
  291. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  292. if (j < 4) {
  293. *d = q[j] & 63; *m = q[j + 4] & 63;
  294. } else {
  295. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  296. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  297. }
  298. }
  299. #endif
  300. //========================- 2-bit (de)-quantization
  301. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  302. assert(k % QK_K == 0);
  303. const int nb = k / QK_K;
  304. uint8_t L[QK_K];
  305. uint8_t Laux[16];
  306. float weights[16];
  307. float mins[QK_K/16];
  308. float scales[QK_K/16];
  309. const float q4scale = 15.f;
  310. for (int i = 0; i < nb; i++) {
  311. float max_scale = 0; // as we are deducting the min, scales are always positive
  312. float max_min = 0;
  313. for (int j = 0; j < QK_K/16; ++j) {
  314. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  315. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  316. float scale = scales[j];
  317. if (scale > max_scale) {
  318. max_scale = scale;
  319. }
  320. float min = mins[j];
  321. if (min > max_min) {
  322. max_min = min;
  323. }
  324. }
  325. if (max_scale > 0) {
  326. float iscale = q4scale/max_scale;
  327. for (int j = 0; j < QK_K/16; ++j) {
  328. int l = nearest_int(iscale*scales[j]);
  329. y[i].scales[j] = l;
  330. }
  331. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  332. } else {
  333. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  334. y[i].d = ggml_fp32_to_fp16(0.f);
  335. }
  336. if (max_min > 0) {
  337. float iscale = q4scale/max_min;
  338. for (int j = 0; j < QK_K/16; ++j) {
  339. int l = nearest_int(iscale*mins[j]);
  340. y[i].scales[j] |= (l << 4);
  341. }
  342. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  343. } else {
  344. y[i].dmin = ggml_fp32_to_fp16(0.f);
  345. }
  346. for (int j = 0; j < QK_K/16; ++j) {
  347. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  348. if (!d) continue;
  349. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  350. for (int ii = 0; ii < 16; ++ii) {
  351. int l = nearest_int((x[16*j + ii] + dm)/d);
  352. l = MAX(0, MIN(3, l));
  353. L[16*j + ii] = l;
  354. }
  355. }
  356. #if QK_K == 256
  357. for (int j = 0; j < QK_K; j += 128) {
  358. for (int l = 0; l < 32; ++l) {
  359. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  360. }
  361. }
  362. #else
  363. for (int l = 0; l < 16; ++l) {
  364. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  365. }
  366. #endif
  367. x += QK_K;
  368. }
  369. }
  370. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  371. assert(k % QK_K == 0);
  372. const int nb = k / QK_K;
  373. for (int i = 0; i < nb; i++) {
  374. const float d = ggml_fp16_to_fp32(x[i].d);
  375. const float min = ggml_fp16_to_fp32(x[i].dmin);
  376. const uint8_t * q = x[i].qs;
  377. #if QK_K == 256
  378. int is = 0;
  379. float dl, ml;
  380. for (int n = 0; n < QK_K; n += 128) {
  381. int shift = 0;
  382. for (int j = 0; j < 4; ++j) {
  383. uint8_t sc = x[i].scales[is++];
  384. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  385. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  386. sc = x[i].scales[is++];
  387. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  388. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  389. shift += 2;
  390. }
  391. q += 32;
  392. }
  393. #else
  394. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  395. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  396. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  397. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  398. for (int l = 0; l < 16; ++l) {
  399. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  400. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  401. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  402. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  403. }
  404. y += QK_K;
  405. #endif
  406. }
  407. }
  408. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  409. quantize_row_q2_K_reference(x, vy, k);
  410. }
  411. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  412. const int nb = k / QK_K;
  413. // TODO - collect histograms - although, at a second thought, I don't really care about them
  414. (void)hist;
  415. for (int j = 0; j < nb; j += k) {
  416. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  417. quantize_row_q2_K_reference(src + j, y, k);
  418. }
  419. return (n/QK_K*sizeof(block_q2_K));
  420. }
  421. //========================= 3-bit (de)-quantization
  422. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  423. assert(k % QK_K == 0);
  424. const int nb = k / QK_K;
  425. int8_t L[QK_K];
  426. float scales[QK_K / 16];
  427. for (int i = 0; i < nb; i++) {
  428. float max_scale = 0;
  429. float amax = 0;
  430. for (int j = 0; j < QK_K/16; ++j) {
  431. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  432. float scale = fabsf(scales[j]);
  433. if (scale > amax) {
  434. amax = scale; max_scale = scales[j];
  435. }
  436. }
  437. #if QK_K == 256
  438. memset(y[i].scales, 0, 12);
  439. if (max_scale) {
  440. float iscale = -32.f/max_scale;
  441. for (int j = 0; j < QK_K/16; ++j) {
  442. int8_t l = nearest_int(iscale*scales[j]);
  443. l = MAX(-32, MIN(31, l)) + 32;
  444. if (j < 8) {
  445. y[i].scales[j] = l & 0xF;
  446. } else {
  447. y[i].scales[j-8] |= ((l & 0xF) << 4);
  448. }
  449. l >>= 4;
  450. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  451. }
  452. y[i].d = ggml_fp32_to_fp16(1/iscale);
  453. } else {
  454. y[i].d = ggml_fp32_to_fp16(0.f);
  455. }
  456. int8_t sc;
  457. for (int j = 0; j < QK_K/16; ++j) {
  458. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  459. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  460. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  461. if (!d) {
  462. continue;
  463. }
  464. for (int ii = 0; ii < 16; ++ii) {
  465. int l = nearest_int(x[16*j + ii]/d);
  466. l = MAX(-4, MIN(3, l));
  467. L[16*j + ii] = l + 4;
  468. }
  469. }
  470. #else
  471. if (max_scale) {
  472. float iscale = -8.f/max_scale;
  473. for (int j = 0; j < QK_K/16; j+=2) {
  474. int l1 = nearest_int(iscale*scales[j]);
  475. l1 = 8 + MAX(-8, MIN(7, l1));
  476. int l2 = nearest_int(iscale*scales[j+1]);
  477. l2 = 8 + MAX(-8, MIN(7, l2));
  478. y[i].scales[j/2] = l1 | (l2 << 4);
  479. }
  480. y[i].d = ggml_fp32_to_fp16(1/iscale);
  481. } else {
  482. for (int j = 0; j < QK_K/16; j+=2) {
  483. y[i].scales[j/2] = 0;
  484. }
  485. y[i].d = ggml_fp32_to_fp16(0.f);
  486. }
  487. for (int j = 0; j < QK_K/16; ++j) {
  488. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  489. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  490. if (!d) {
  491. continue;
  492. }
  493. for (int ii = 0; ii < 16; ++ii) {
  494. int l = nearest_int(x[16*j + ii]/d);
  495. l = MAX(-4, MIN(3, l));
  496. L[16*j + ii] = l + 4;
  497. }
  498. }
  499. #endif
  500. memset(y[i].hmask, 0, QK_K/8);
  501. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  502. int m = 0;
  503. uint8_t hm = 1;
  504. for (int j = 0; j < QK_K; ++j) {
  505. if (L[j] > 3) {
  506. y[i].hmask[m] |= hm;
  507. L[j] -= 4;
  508. }
  509. if (++m == QK_K/8) {
  510. m = 0; hm <<= 1;
  511. }
  512. }
  513. #if QK_K == 256
  514. for (int j = 0; j < QK_K; j += 128) {
  515. for (int l = 0; l < 32; ++l) {
  516. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  517. }
  518. }
  519. #else
  520. for (int l = 0; l < 16; ++l) {
  521. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  522. }
  523. #endif
  524. x += QK_K;
  525. }
  526. }
  527. #if QK_K == 256
  528. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  529. assert(k % QK_K == 0);
  530. const int nb = k / QK_K;
  531. const uint32_t kmask1 = 0x03030303;
  532. const uint32_t kmask2 = 0x0f0f0f0f;
  533. uint32_t aux[4];
  534. const int8_t * scales = (const int8_t*)aux;
  535. for (int i = 0; i < nb; i++) {
  536. const float d_all = ggml_fp16_to_fp32(x[i].d);
  537. const uint8_t * restrict q = x[i].qs;
  538. const uint8_t * restrict hm = x[i].hmask;
  539. uint8_t m = 1;
  540. memcpy(aux, x[i].scales, 12);
  541. uint32_t tmp = aux[2];
  542. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  543. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  544. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  545. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  546. int is = 0;
  547. float dl;
  548. for (int n = 0; n < QK_K; n += 128) {
  549. int shift = 0;
  550. for (int j = 0; j < 4; ++j) {
  551. dl = d_all * (scales[is++] - 32);
  552. for (int l = 0; l < 16; ++l) {
  553. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  554. }
  555. dl = d_all * (scales[is++] - 32);
  556. for (int l = 0; l < 16; ++l) {
  557. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  558. }
  559. shift += 2;
  560. m <<= 1;
  561. }
  562. q += 32;
  563. }
  564. }
  565. }
  566. #else
  567. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  568. assert(k % QK_K == 0);
  569. assert(QK_K == 64);
  570. const int nb = k / QK_K;
  571. for (int i = 0; i < nb; i++) {
  572. const float d_all = ggml_fp16_to_fp32(x[i].d);
  573. const uint8_t * restrict q = x[i].qs;
  574. const uint8_t * restrict hm = x[i].hmask;
  575. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  576. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  577. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  578. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  579. for (int l=0; l<8; ++l) {
  580. uint8_t h = hm[l];
  581. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  582. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  583. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  584. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  585. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  586. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  587. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  588. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  589. }
  590. y += QK_K;
  591. }
  592. }
  593. #endif
  594. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  595. quantize_row_q3_K_reference(x, vy, k);
  596. }
  597. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  598. const int nb = k / QK_K;
  599. // TODO - collect histograms - although, at a second thought, I don't really care about them
  600. (void)hist;
  601. for (int j = 0; j < nb; j += k) {
  602. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  603. quantize_row_q3_K_reference(src + j, y, k);
  604. }
  605. return (n/QK_K*sizeof(block_q3_K));
  606. }
  607. // ====================== 4-bit (de)-quantization
  608. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  609. assert(k % QK_K == 0);
  610. const int nb = k / QK_K;
  611. uint8_t L[QK_K];
  612. uint8_t Laux[32];
  613. float weights[32];
  614. float mins[QK_K/32];
  615. float scales[QK_K/32];
  616. for (int i = 0; i < nb; i++) {
  617. float max_scale = 0; // as we are deducting the min, scales are always positive
  618. float max_min = 0;
  619. for (int j = 0; j < QK_K/32; ++j) {
  620. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  621. float sum_x2 = 0;
  622. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  623. float av_x = sqrtf(sum_x2/32);
  624. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  625. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  626. float scale = scales[j];
  627. if (scale > max_scale) {
  628. max_scale = scale;
  629. }
  630. float min = mins[j];
  631. if (min > max_min) {
  632. max_min = min;
  633. }
  634. }
  635. #if QK_K == 256
  636. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  637. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  638. for (int j = 0; j < QK_K/32; ++j) {
  639. uint8_t ls = nearest_int(inv_scale*scales[j]);
  640. uint8_t lm = nearest_int(inv_min*mins[j]);
  641. ls = MIN(63, ls);
  642. lm = MIN(63, lm);
  643. if (j < 4) {
  644. y[i].scales[j] = ls;
  645. y[i].scales[j+4] = lm;
  646. } else {
  647. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  648. y[i].scales[j-4] |= ((ls >> 4) << 6);
  649. y[i].scales[j-0] |= ((lm >> 4) << 6);
  650. }
  651. }
  652. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  653. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  654. uint8_t sc, m;
  655. for (int j = 0; j < QK_K/32; ++j) {
  656. get_scale_min_k4(j, y[i].scales, &sc, &m);
  657. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  658. if (!d) continue;
  659. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  660. for (int ii = 0; ii < 32; ++ii) {
  661. int l = nearest_int((x[32*j + ii] + dm)/d);
  662. l = MAX(0, MIN(15, l));
  663. L[32*j + ii] = l;
  664. }
  665. }
  666. #else
  667. const float s_factor = 15.f;
  668. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  669. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  670. int d1 = nearest_int(inv_scale*scales[0]);
  671. int m1 = nearest_int(inv_min*mins[0]);
  672. int d2 = nearest_int(inv_scale*scales[1]);
  673. int m2 = nearest_int(inv_min*mins[1]);
  674. y[i].scales[0] = d1 | (m1 << 4);
  675. y[i].scales[1] = d2 | (m2 << 4);
  676. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  677. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  678. float sumlx = 0;
  679. int suml2 = 0;
  680. for (int j = 0; j < QK_K/32; ++j) {
  681. const uint8_t sd = y[i].scales[j] & 0xF;
  682. const uint8_t sm = y[i].scales[j] >> 4;
  683. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  684. if (!d) continue;
  685. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  686. for (int ii = 0; ii < 32; ++ii) {
  687. int l = nearest_int((x[32*j + ii] + m)/d);
  688. l = MAX(0, MIN(15, l));
  689. L[32*j + ii] = l;
  690. sumlx += (x[32*j + ii] + m)*l*sd;
  691. suml2 += l*l*sd*sd;
  692. }
  693. }
  694. if (suml2) {
  695. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  696. }
  697. #endif
  698. uint8_t * q = y[i].qs;
  699. for (int j = 0; j < QK_K; j += 64) {
  700. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  701. q += 32;
  702. }
  703. x += QK_K;
  704. }
  705. }
  706. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  707. assert(k % QK_K == 0);
  708. const int nb = k / QK_K;
  709. for (int i = 0; i < nb; i++) {
  710. const uint8_t * q = x[i].qs;
  711. #if QK_K == 256
  712. const float d = ggml_fp16_to_fp32(x[i].d);
  713. const float min = ggml_fp16_to_fp32(x[i].dmin);
  714. int is = 0;
  715. uint8_t sc, m;
  716. for (int j = 0; j < QK_K; j += 64) {
  717. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  718. const float d1 = d * sc; const float m1 = min * m;
  719. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  720. const float d2 = d * sc; const float m2 = min * m;
  721. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  722. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  723. q += 32; is += 2;
  724. }
  725. #else
  726. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  727. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  728. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  729. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  730. for (int l = 0; l < 32; ++l) {
  731. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  732. y[l+32] = d2 * (q[l] >> 4) - m2;
  733. }
  734. y += QK_K;
  735. #endif
  736. }
  737. }
  738. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  739. assert(k % QK_K == 0);
  740. block_q4_K * restrict y = vy;
  741. quantize_row_q4_K_reference(x, y, k);
  742. }
  743. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  744. assert(k % QK_K == 0);
  745. const int nb = k / QK_K;
  746. (void)hist; // TODO: collect histograms
  747. for (int j = 0; j < nb; j += k) {
  748. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  749. quantize_row_q4_K_reference(src + j, y, k);
  750. }
  751. return (n/QK_K*sizeof(block_q4_K));
  752. }
  753. // ====================== 5-bit (de)-quantization
  754. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  755. assert(k % QK_K == 0);
  756. const int nb = k / QK_K;
  757. #if QK_K == 256
  758. uint8_t L[QK_K];
  759. float mins[QK_K/32];
  760. float scales[QK_K/32];
  761. float weights[32];
  762. uint8_t Laux[32];
  763. #else
  764. int8_t L[QK_K];
  765. float scales[QK_K/16];
  766. #endif
  767. for (int i = 0; i < nb; i++) {
  768. #if QK_K == 256
  769. float max_scale = 0; // as we are deducting the min, scales are always positive
  770. float max_min = 0;
  771. for (int j = 0; j < QK_K/32; ++j) {
  772. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  773. float sum_x2 = 0;
  774. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  775. float av_x = sqrtf(sum_x2/32);
  776. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  777. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  778. float scale = scales[j];
  779. if (scale > max_scale) {
  780. max_scale = scale;
  781. }
  782. float min = mins[j];
  783. if (min > max_min) {
  784. max_min = min;
  785. }
  786. }
  787. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  788. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  789. for (int j = 0; j < QK_K/32; ++j) {
  790. uint8_t ls = nearest_int(inv_scale*scales[j]);
  791. uint8_t lm = nearest_int(inv_min*mins[j]);
  792. ls = MIN(63, ls);
  793. lm = MIN(63, lm);
  794. if (j < 4) {
  795. y[i].scales[j] = ls;
  796. y[i].scales[j+4] = lm;
  797. } else {
  798. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  799. y[i].scales[j-4] |= ((ls >> 4) << 6);
  800. y[i].scales[j-0] |= ((lm >> 4) << 6);
  801. }
  802. }
  803. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  804. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  805. uint8_t sc, m;
  806. for (int j = 0; j < QK_K/32; ++j) {
  807. get_scale_min_k4(j, y[i].scales, &sc, &m);
  808. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  809. if (!d) continue;
  810. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  811. for (int ii = 0; ii < 32; ++ii) {
  812. int l = nearest_int((x[32*j + ii] + dm)/d);
  813. l = MAX(0, MIN(31, l));
  814. L[32*j + ii] = l;
  815. }
  816. }
  817. uint8_t * restrict qh = y[i].qh;
  818. uint8_t * restrict ql = y[i].qs;
  819. memset(qh, 0, QK_K/8);
  820. uint8_t m1 = 1, m2 = 2;
  821. for (int n = 0; n < QK_K; n += 64) {
  822. for (int j = 0; j < 32; ++j) {
  823. int l1 = L[n + j];
  824. if (l1 > 15) {
  825. l1 -= 16; qh[j] |= m1;
  826. }
  827. int l2 = L[n + j + 32];
  828. if (l2 > 15) {
  829. l2 -= 16; qh[j] |= m2;
  830. }
  831. ql[j] = l1 | (l2 << 4);
  832. }
  833. m1 <<= 2; m2 <<= 2;
  834. ql += 32;
  835. }
  836. #else
  837. float max_scale = 0, amax = 0;
  838. for (int j = 0; j < QK_K/16; ++j) {
  839. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  840. float abs_scale = fabsf(scales[j]);
  841. if (abs_scale > amax) {
  842. amax = abs_scale;
  843. max_scale = scales[j];
  844. }
  845. }
  846. float iscale = -128.f/max_scale;
  847. for (int j = 0; j < QK_K/16; ++j) {
  848. int l = nearest_int(iscale*scales[j]);
  849. y[i].scales[j] = MAX(-128, MIN(127, l));
  850. }
  851. y[i].d = ggml_fp32_to_fp16(1/iscale);
  852. for (int j = 0; j < QK_K/16; ++j) {
  853. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  854. if (!d) continue;
  855. for (int ii = 0; ii < 16; ++ii) {
  856. int l = nearest_int(x[16*j + ii]/d);
  857. l = MAX(-16, MIN(15, l));
  858. L[16*j + ii] = l + 16;
  859. }
  860. }
  861. uint8_t * restrict qh = y[i].qh;
  862. uint8_t * restrict ql = y[i].qs;
  863. memset(qh, 0, QK_K/8);
  864. for (int j = 0; j < 32; ++j) {
  865. int jm = j%8;
  866. int is = j/8;
  867. int l1 = L[j];
  868. if (l1 > 15) {
  869. l1 -= 16; qh[jm] |= (1 << is);
  870. }
  871. int l2 = L[j + 32];
  872. if (l2 > 15) {
  873. l2 -= 16; qh[jm] |= (1 << (4 + is));
  874. }
  875. ql[j] = l1 | (l2 << 4);
  876. }
  877. #endif
  878. x += QK_K;
  879. }
  880. }
  881. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  882. assert(k % QK_K == 0);
  883. const int nb = k / QK_K;
  884. for (int i = 0; i < nb; i++) {
  885. const uint8_t * ql = x[i].qs;
  886. const uint8_t * qh = x[i].qh;
  887. #if QK_K == 256
  888. const float d = ggml_fp16_to_fp32(x[i].d);
  889. const float min = ggml_fp16_to_fp32(x[i].dmin);
  890. int is = 0;
  891. uint8_t sc, m;
  892. uint8_t u1 = 1, u2 = 2;
  893. for (int j = 0; j < QK_K; j += 64) {
  894. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  895. const float d1 = d * sc; const float m1 = min * m;
  896. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  897. const float d2 = d * sc; const float m2 = min * m;
  898. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  899. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  900. ql += 32; is += 2;
  901. u1 <<= 2; u2 <<= 2;
  902. }
  903. #else
  904. float d = ggml_fp16_to_fp32(x[i].d);
  905. const int8_t * restrict s = x[i].scales;
  906. for (int l = 0; l < 8; ++l) {
  907. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  908. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  909. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  910. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  911. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  912. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  913. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  914. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  915. }
  916. y += QK_K;
  917. #endif
  918. }
  919. }
  920. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  921. assert(k % QK_K == 0);
  922. block_q5_K * restrict y = vy;
  923. quantize_row_q5_K_reference(x, y, k);
  924. }
  925. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  926. assert(k % QK_K == 0);
  927. const int nb = k / QK_K;
  928. (void)hist;
  929. for (int j = 0; j < nb; j += k) {
  930. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  931. quantize_row_q5_K_reference(src + j, y, k);
  932. }
  933. return (n/QK_K*sizeof(block_q5_K));
  934. }
  935. // ====================== 6-bit (de)-quantization
  936. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  937. assert(k % QK_K == 0);
  938. const int nb = k / QK_K;
  939. int8_t L[QK_K];
  940. float scales[QK_K/16];
  941. for (int i = 0; i < nb; i++) {
  942. float max_scale = 0;
  943. float max_abs_scale = 0;
  944. for (int ib = 0; ib < QK_K/16; ++ib) {
  945. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  946. scales[ib] = scale;
  947. const float abs_scale = fabsf(scale);
  948. if (abs_scale > max_abs_scale) {
  949. max_abs_scale = abs_scale;
  950. max_scale = scale;
  951. }
  952. }
  953. float iscale = -128.f/max_scale;
  954. y[i].d = ggml_fp32_to_fp16(1/iscale);
  955. for (int ib = 0; ib < QK_K/16; ++ib) {
  956. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  957. }
  958. for (int j = 0; j < QK_K/16; ++j) {
  959. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  960. if (!d) {
  961. continue;
  962. }
  963. for (int ii = 0; ii < 16; ++ii) {
  964. int l = nearest_int(x[16*j + ii]/d);
  965. l = MAX(-32, MIN(31, l));
  966. L[16*j + ii] = l + 32;
  967. }
  968. }
  969. uint8_t * restrict ql = y[i].ql;
  970. uint8_t * restrict qh = y[i].qh;
  971. #if QK_K == 256
  972. for (int j = 0; j < QK_K; j += 128) {
  973. for (int l = 0; l < 32; ++l) {
  974. const uint8_t q1 = L[j + l + 0] & 0xF;
  975. const uint8_t q2 = L[j + l + 32] & 0xF;
  976. const uint8_t q3 = L[j + l + 64] & 0xF;
  977. const uint8_t q4 = L[j + l + 96] & 0xF;
  978. ql[l+ 0] = q1 | (q3 << 4);
  979. ql[l+32] = q2 | (q4 << 4);
  980. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  981. }
  982. ql += 64;
  983. qh += 32;
  984. }
  985. #else
  986. for (int l = 0; l < 32; ++l) {
  987. const uint8_t q1 = L[l + 0] & 0xF;
  988. const uint8_t q2 = L[l + 32] & 0xF;
  989. ql[l] = q1 | (q2 << 4);
  990. }
  991. for (int l = 0; l < 16; ++l) {
  992. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  993. }
  994. #endif
  995. x += QK_K;
  996. }
  997. }
  998. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  999. assert(k % QK_K == 0);
  1000. const int nb = k / QK_K;
  1001. for (int i = 0; i < nb; i++) {
  1002. const float d = ggml_fp16_to_fp32(x[i].d);
  1003. const uint8_t * restrict ql = x[i].ql;
  1004. const uint8_t * restrict qh = x[i].qh;
  1005. const int8_t * restrict sc = x[i].scales;
  1006. #if QK_K == 256
  1007. for (int n = 0; n < QK_K; n += 128) {
  1008. for (int l = 0; l < 32; ++l) {
  1009. int is = l/16;
  1010. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1011. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1012. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1013. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1014. y[l + 0] = d * sc[is + 0] * q1;
  1015. y[l + 32] = d * sc[is + 2] * q2;
  1016. y[l + 64] = d * sc[is + 4] * q3;
  1017. y[l + 96] = d * sc[is + 6] * q4;
  1018. }
  1019. y += 128;
  1020. ql += 64;
  1021. qh += 32;
  1022. sc += 8;
  1023. }
  1024. #else
  1025. for (int l = 0; l < 16; ++l) {
  1026. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1027. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1028. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1029. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1030. y[l+ 0] = d * sc[0] * q1;
  1031. y[l+16] = d * sc[1] * q2;
  1032. y[l+32] = d * sc[2] * q3;
  1033. y[l+48] = d * sc[3] * q4;
  1034. }
  1035. y += 64;
  1036. #endif
  1037. }
  1038. }
  1039. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  1040. assert(k % QK_K == 0);
  1041. block_q6_K * restrict y = vy;
  1042. quantize_row_q6_K_reference(x, y, k);
  1043. }
  1044. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  1045. assert(k % QK_K == 0);
  1046. const int nb = k / QK_K;
  1047. (void)hist; // TODO
  1048. for (int j = 0; j < nb; j += k) {
  1049. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  1050. quantize_row_q6_K_reference(src + j, y, k);
  1051. }
  1052. return (n/QK_K*sizeof(block_q6_K));
  1053. }
  1054. //===================================== Q8_K ==============================================
  1055. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1056. assert(k % QK_K == 0);
  1057. const int nb = k / QK_K;
  1058. for (int i = 0; i < nb; i++) {
  1059. float max = 0;
  1060. float amax = 0;
  1061. for (int j = 0; j < QK_K; ++j) {
  1062. float ax = fabsf(x[j]);
  1063. if (ax > amax) {
  1064. amax = ax; max = x[j];
  1065. }
  1066. }
  1067. if (!amax) {
  1068. y[i].d = 0;
  1069. memset(y[i].qs, 0, QK_K);
  1070. x += QK_K;
  1071. continue;
  1072. }
  1073. const float iscale = -128.f/max;
  1074. for (int j = 0; j < QK_K; ++j) {
  1075. int v = nearest_int(iscale*x[j]);
  1076. y[i].qs[j] = MIN(127, v);
  1077. }
  1078. for (int j = 0; j < QK_K/16; ++j) {
  1079. int sum = 0;
  1080. for (int ii = 0; ii < 16; ++ii) {
  1081. sum += y[i].qs[j*16 + ii];
  1082. }
  1083. y[i].bsums[j] = sum;
  1084. }
  1085. y[i].d = 1/iscale;
  1086. x += QK_K;
  1087. }
  1088. }
  1089. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1090. assert(k % QK_K == 0);
  1091. const int nb = k / QK_K;
  1092. for (int i = 0; i < nb; i++) {
  1093. for (int j = 0; j < QK_K; ++j) {
  1094. *y++ = x[i].d * x[i].qs[j];
  1095. }
  1096. }
  1097. }
  1098. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1099. quantize_row_q8_K_reference(x, y, k);
  1100. }
  1101. //===================================== Dot ptoducts =================================
  1102. //
  1103. // Helper functions
  1104. //
  1105. #if __AVX__ || __AVX2__ || __AVX512F__
  1106. // horizontally add 8 floats
  1107. static inline float hsum_float_8(const __m256 x) {
  1108. __m128 res = _mm256_extractf128_ps(x, 1);
  1109. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1110. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1111. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1112. return _mm_cvtss_f32(res);
  1113. }
  1114. // shuffles to pick the required scales in dot products
  1115. static inline __m256i get_scale_shuffle_q3k(int i) {
  1116. static const uint8_t k_shuffle[128] = {
  1117. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1118. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1119. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1120. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1121. };
  1122. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1123. }
  1124. static inline __m256i get_scale_shuffle_k4(int i) {
  1125. static const uint8_t k_shuffle[256] = {
  1126. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1127. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1128. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1129. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1130. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1131. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1132. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1133. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1134. };
  1135. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1136. }
  1137. static inline __m128i get_scale_shuffle(int i) {
  1138. static const uint8_t k_shuffle[128] = {
  1139. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1140. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1141. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1142. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1143. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1144. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1145. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1146. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1147. };
  1148. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1149. }
  1150. #endif
  1151. #if QK_K == 256
  1152. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1153. const block_q2_K * restrict x = vx;
  1154. const block_q8_K * restrict y = vy;
  1155. const int nb = n / QK_K;
  1156. #ifdef __ARM_NEON
  1157. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1158. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1159. const int32x4_t vzero = vdupq_n_s32(0);
  1160. int8x16x2_t q2bytes;
  1161. uint8_t aux[16];
  1162. float sum = 0;
  1163. for (int i = 0; i < nb; ++i) {
  1164. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1165. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1166. const uint8_t * restrict q2 = x[i].qs;
  1167. const int8_t * restrict q8 = y[i].qs;
  1168. const uint8_t * restrict sc = x[i].scales;
  1169. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1170. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1171. vst1q_u8(aux, scales);
  1172. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1173. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1174. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1175. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1176. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1177. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1178. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1179. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1180. int isum = 0;
  1181. int is = 0;
  1182. // We use this macro instead of a function call because for some reason
  1183. // the code runs 2-3% slower, even if the function is declared inline
  1184. #if defined(__ARM_FEATURE_DOTPROD)
  1185. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1186. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1187. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1188. #else
  1189. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1190. {\
  1191. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1192. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1193. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1194. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1195. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1196. }
  1197. #endif
  1198. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1199. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1200. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1201. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1202. MULTIPLY_ACCUM_WITH_SCALE((index));
  1203. for (int j = 0; j < QK_K/128; ++j) {
  1204. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1205. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1206. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1207. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1208. MULTIPLY_ACCUM_WITH_SCALE(0);
  1209. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1210. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1211. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1212. is += 8;
  1213. }
  1214. sum += d * isum;
  1215. }
  1216. *s = sum;
  1217. #elif defined __AVX2__
  1218. const __m256i m3 = _mm256_set1_epi8(3);
  1219. const __m128i m4 = _mm_set1_epi8(0xF);
  1220. __m256 acc = _mm256_setzero_ps();
  1221. for (int i = 0; i < nb; ++i) {
  1222. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1223. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1224. const uint8_t * restrict q2 = x[i].qs;
  1225. const int8_t * restrict q8 = y[i].qs;
  1226. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1227. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1228. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1229. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1230. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1231. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1232. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1233. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1234. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1235. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1236. __m256i sumi = _mm256_setzero_si256();
  1237. for (int j = 0; j < QK_K/128; ++j) {
  1238. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1239. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1240. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1241. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1242. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1243. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1244. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1245. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1246. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1247. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1248. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1249. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1250. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1251. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1252. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1253. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1254. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1255. p0 = _mm256_add_epi32(p0, p1);
  1256. p2 = _mm256_add_epi32(p2, p3);
  1257. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1258. }
  1259. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1260. }
  1261. *s = hsum_float_8(acc);
  1262. #elif defined __AVX__
  1263. const __m128i m3 = _mm_set1_epi8(0x3);
  1264. const __m128i m4 = _mm_set1_epi8(0xF);
  1265. const __m128i m2 = _mm_set1_epi8(0x2);
  1266. __m256 acc = _mm256_setzero_ps();
  1267. for (int i = 0; i < nb; ++i) {
  1268. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1269. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1270. const uint8_t * restrict q2 = x[i].qs;
  1271. const int8_t * restrict q8 = y[i].qs;
  1272. // load mins and scales from block_q2_K.scales[QK_K/16]
  1273. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1274. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1275. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1276. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1277. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1278. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1279. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1280. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1281. // sumf += -dmin * summs in 32bits*8
  1282. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  1283. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1284. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1285. const __m128i scales[2] = { scales_0, scales_1 };
  1286. __m128i sumi_0 = _mm_setzero_si128();
  1287. __m128i sumi_1 = _mm_setzero_si128();
  1288. for (int j = 0; j < QK_K/128; ++j) {
  1289. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1290. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1291. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1292. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1293. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1294. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1295. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1296. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1297. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1298. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1299. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1300. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1301. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1302. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1303. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1304. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1305. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1306. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1307. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1308. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1309. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1310. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1311. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1312. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1313. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1314. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1315. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1316. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1317. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1318. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1319. __m128i shuffle = _mm_set1_epi16(0x0100);
  1320. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1321. shuffle = _mm_add_epi16(shuffle, m2);
  1322. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1323. shuffle = _mm_add_epi16(shuffle, m2);
  1324. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1325. shuffle = _mm_add_epi16(shuffle, m2);
  1326. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1327. shuffle = _mm_add_epi16(shuffle, m2);
  1328. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1329. shuffle = _mm_add_epi16(shuffle, m2);
  1330. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1331. shuffle = _mm_add_epi16(shuffle, m2);
  1332. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1333. shuffle = _mm_add_epi16(shuffle, m2);
  1334. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1335. p0 = _mm_add_epi32(p0, p1);
  1336. p2 = _mm_add_epi32(p2, p3);
  1337. p4 = _mm_add_epi32(p4, p5);
  1338. p6 = _mm_add_epi32(p6, p7);
  1339. // isum in 32bits*4*2
  1340. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1341. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1342. }
  1343. // sumf += dall * isum - dmin * summs in 32bits
  1344. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1345. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1346. }
  1347. *s = hsum_float_8(acc);
  1348. #else
  1349. float sumf = 0;
  1350. for (int i = 0; i < nb; ++i) {
  1351. const uint8_t * q2 = x[i].qs;
  1352. const int8_t * q8 = y[i].qs;
  1353. const uint8_t * sc = x[i].scales;
  1354. int summs = 0;
  1355. for (int j = 0; j < 16; ++j) {
  1356. summs += y[i].bsums[j] * (sc[j] >> 4);
  1357. }
  1358. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1359. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1360. int isum = 0;
  1361. int is = 0;
  1362. int d;
  1363. for (int k = 0; k < QK_K/128; ++k) {
  1364. int shift = 0;
  1365. for (int j = 0; j < 4; ++j) {
  1366. d = sc[is++] & 0xF;
  1367. int isuml = 0;
  1368. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1369. isum += d * isuml;
  1370. d = sc[is++] & 0xF;
  1371. isuml = 0;
  1372. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1373. isum += d * isuml;
  1374. shift += 2;
  1375. q8 += 32;
  1376. }
  1377. q2 += 32;
  1378. }
  1379. sumf += dall * isum - dmin * summs;
  1380. }
  1381. *s = sumf;
  1382. #endif
  1383. }
  1384. #else
  1385. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1386. const block_q2_K * restrict x = vx;
  1387. const block_q8_K * restrict y = vy;
  1388. const int nb = n / QK_K;
  1389. #ifdef __ARM_NEON
  1390. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1391. const int32x4_t vzero = vdupq_n_s32(0);
  1392. int8x16x4_t q2bytes;
  1393. uint32_t aux32[2];
  1394. const uint8_t * scales = (const uint8_t *)aux32;
  1395. float sum = 0;
  1396. for (int i = 0; i < nb; ++i) {
  1397. const float d = y[i].d * (float)x[i].d;
  1398. const float dmin = -y[i].d * (float)x[i].dmin;
  1399. const uint8_t * restrict q2 = x[i].qs;
  1400. const int8_t * restrict q8 = y[i].qs;
  1401. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1402. aux32[0] = sc[0] & 0x0f0f0f0f;
  1403. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1404. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1405. int isum1 = 0, isum2 = 0;
  1406. const uint8x16_t q2bits = vld1q_u8(q2);
  1407. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1408. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1409. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1410. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1411. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1412. #if defined(__ARM_FEATURE_DOTPROD)
  1413. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1414. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1415. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1416. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1417. #else
  1418. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1419. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1420. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1421. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1422. isum1 += vaddvq_s16(p1) * scales[0];
  1423. isum2 += vaddvq_s16(p2) * scales[1];
  1424. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1425. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1426. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1427. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1428. isum1 += vaddvq_s16(p3) * scales[2];
  1429. isum2 += vaddvq_s16(p4) * scales[3];
  1430. #endif
  1431. sum += d * (isum1 + isum2);
  1432. }
  1433. *s = sum;
  1434. #elif defined __AVX2__
  1435. const __m256i m3 = _mm256_set1_epi8(3);
  1436. __m256 acc = _mm256_setzero_ps();
  1437. uint32_t ud, um;
  1438. const uint8_t * restrict db = (const uint8_t *)&ud;
  1439. const uint8_t * restrict mb = (const uint8_t *)&um;
  1440. float summs = 0;
  1441. // TODO: optimize this
  1442. for (int i = 0; i < nb; ++i) {
  1443. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1444. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1445. const uint8_t * restrict q2 = x[i].qs;
  1446. const int8_t * restrict q8 = y[i].qs;
  1447. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1448. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1449. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1450. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1451. summs += dmin * smin;
  1452. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1453. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1454. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1455. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1456. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1457. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1458. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1459. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1460. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1461. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1462. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1463. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1464. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1465. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1466. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1467. }
  1468. *s = hsum_float_8(acc) + summs;
  1469. #elif defined __AVX__
  1470. const __m128i m3 = _mm_set1_epi8(3);
  1471. __m256 acc = _mm256_setzero_ps();
  1472. uint32_t ud, um;
  1473. const uint8_t * restrict db = (const uint8_t *)&ud;
  1474. const uint8_t * restrict mb = (const uint8_t *)&um;
  1475. float summs = 0;
  1476. // TODO: optimize this
  1477. for (int i = 0; i < nb; ++i) {
  1478. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1479. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1480. const uint8_t * restrict q2 = x[i].qs;
  1481. const int8_t * restrict q8 = y[i].qs;
  1482. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1483. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1484. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1485. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1486. summs += dmin * smin;
  1487. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1488. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1489. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1490. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1491. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1492. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1493. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1494. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  1495. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  1496. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  1497. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  1498. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  1499. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  1500. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  1501. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  1502. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  1503. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  1504. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  1505. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  1506. }
  1507. *s = hsum_float_8(acc) + summs;
  1508. #else
  1509. float sumf = 0;
  1510. int isum[4];
  1511. for (int i = 0; i < nb; ++i) {
  1512. const uint8_t * q2 = x[i].qs;
  1513. const int8_t * q8 = y[i].qs;
  1514. const uint8_t * sc = x[i].scales;
  1515. int summs = 0;
  1516. for (int j = 0; j < QK_K/16; ++j) {
  1517. summs += y[i].bsums[j] * (sc[j] >> 4);
  1518. }
  1519. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1520. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1521. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1522. for (int l = 0; l < 16; ++l) {
  1523. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1524. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1525. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1526. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1527. }
  1528. for (int l = 0; l < 4; ++l) {
  1529. isum[l] *= (sc[l] & 0xF);
  1530. }
  1531. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1532. }
  1533. *s = sumf;
  1534. #endif
  1535. }
  1536. #endif
  1537. #if QK_K == 256
  1538. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1539. assert(n % QK_K == 0);
  1540. const uint32_t kmask1 = 0x03030303;
  1541. const uint32_t kmask2 = 0x0f0f0f0f;
  1542. const block_q3_K * restrict x = vx;
  1543. const block_q8_K * restrict y = vy;
  1544. const int nb = n / QK_K;
  1545. #ifdef __ARM_NEON
  1546. uint32_t aux[3];
  1547. uint32_t utmp[4];
  1548. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1549. #ifdef __ARM_FEATURE_DOTPROD
  1550. const int32x4_t vzero = vdupq_n_s32(0);
  1551. #endif
  1552. const uint8x16_t m0 = vdupq_n_u8(1);
  1553. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1554. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1555. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1556. const int8_t m32 = 32;
  1557. int8x16x4_t q3bytes;
  1558. float sum = 0;
  1559. for (int i = 0; i < nb; ++i) {
  1560. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1561. const uint8_t * restrict q3 = x[i].qs;
  1562. const uint8_t * restrict qh = x[i].hmask;
  1563. const int8_t * restrict q8 = y[i].qs;
  1564. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1565. uint8x16x4_t q3h;
  1566. int32_t isum = 0;
  1567. // Set up scales
  1568. memcpy(aux, x[i].scales, 12);
  1569. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1570. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1571. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1572. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1573. int8_t * scale = (int8_t *)utmp;
  1574. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1575. for (int j = 0; j < QK_K/128; ++j) {
  1576. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1577. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1578. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1579. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1580. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1581. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1582. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1583. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1584. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1585. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1586. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1587. #if defined(__ARM_FEATURE_DOTPROD)
  1588. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1589. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1590. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1591. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1592. #else
  1593. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1594. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1595. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1596. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1597. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1598. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1599. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1600. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1601. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1602. #endif
  1603. scale += 4;
  1604. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1605. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1606. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1607. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1608. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1609. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1610. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1611. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1612. #if defined(__ARM_FEATURE_DOTPROD)
  1613. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1614. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1615. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1616. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1617. #else
  1618. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1619. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1620. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1621. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1622. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1623. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1624. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1625. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1626. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1627. #endif
  1628. scale += 4;
  1629. if (j == 0) {
  1630. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1631. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1632. }
  1633. }
  1634. sum += d * isum;
  1635. }
  1636. *s = sum;
  1637. #elif defined __AVX2__
  1638. const __m256i m3 = _mm256_set1_epi8(3);
  1639. const __m256i mone = _mm256_set1_epi8(1);
  1640. const __m128i m32 = _mm_set1_epi8(32);
  1641. __m256 acc = _mm256_setzero_ps();
  1642. uint32_t aux[3];
  1643. for (int i = 0; i < nb; ++i) {
  1644. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1645. const uint8_t * restrict q3 = x[i].qs;
  1646. const int8_t * restrict q8 = y[i].qs;
  1647. // Set up scales
  1648. memcpy(aux, x[i].scales, 12);
  1649. __m128i scales128 = _mm_set_epi32(
  1650. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1651. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1652. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1653. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1654. scales128 = _mm_sub_epi8(scales128, m32);
  1655. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1656. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1657. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1658. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1659. // high bit
  1660. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1661. // integer accumulator
  1662. __m256i sumi = _mm256_setzero_si256();
  1663. int bit = 0;
  1664. int is = 0;
  1665. for (int j = 0; j < QK_K/128; ++j) {
  1666. // load low 2 bits
  1667. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1668. // prepare low and high bits
  1669. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1670. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1671. ++bit;
  1672. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1673. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1674. ++bit;
  1675. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1676. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1677. ++bit;
  1678. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1679. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1680. ++bit;
  1681. // load Q8 quants
  1682. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1683. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1684. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1685. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1686. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1687. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1688. // and 2 if the high bit was set)
  1689. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1690. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1691. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1692. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1693. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1694. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1695. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1696. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1697. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1698. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1699. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1700. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1701. // multiply with scales
  1702. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1703. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1704. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1705. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1706. // accumulate
  1707. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1708. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1709. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1710. }
  1711. // multiply with block scale and accumulate
  1712. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1713. }
  1714. *s = hsum_float_8(acc);
  1715. #elif defined __AVX__
  1716. const __m128i m3 = _mm_set1_epi8(3);
  1717. const __m128i mone = _mm_set1_epi8(1);
  1718. const __m128i m32 = _mm_set1_epi8(32);
  1719. const __m128i m2 = _mm_set1_epi8(2);
  1720. __m256 acc = _mm256_setzero_ps();
  1721. uint32_t *aux;
  1722. for (int i = 0; i < nb; ++i) {
  1723. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1724. const uint8_t * restrict q3 = x[i].qs;
  1725. const int8_t * restrict q8 = y[i].qs;
  1726. // Set up scales
  1727. aux = (uint32_t *)x[i].scales;
  1728. __m128i scales128 = _mm_set_epi32(
  1729. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1730. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1731. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1732. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1733. scales128 = _mm_sub_epi8(scales128, m32);
  1734. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1735. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1736. const __m128i scales[2] = { scales_0, scales_1 };
  1737. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1738. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1739. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1740. // integer accumulator
  1741. __m128i sumi_0 = _mm_setzero_si128();
  1742. __m128i sumi_1 = _mm_setzero_si128();
  1743. for (int j = 0; j < QK_K/128; ++j) {
  1744. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1745. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1746. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1747. // prepare low and high bits
  1748. const int bit = j << 2;
  1749. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1750. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1751. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1752. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1753. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1754. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1755. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1756. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1757. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1758. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1759. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1760. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1761. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1762. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1763. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1764. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1765. // load Q8 quants from block_q8_K.qs[QK_K]
  1766. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1767. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1768. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1769. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1770. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1771. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1772. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1773. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1774. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1775. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1776. // and 2 if the high bit was set)
  1777. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1778. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1779. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1780. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1781. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1782. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1783. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1784. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1785. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1786. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1787. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1788. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1789. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1790. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1791. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1792. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1793. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1794. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1795. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1796. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1797. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1798. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1799. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1800. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1801. // multiply with scales
  1802. __m128i shuffle = _mm_set1_epi16(0x0100);
  1803. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1804. shuffle = _mm_add_epi16(shuffle, m2);
  1805. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1806. shuffle = _mm_add_epi16(shuffle, m2);
  1807. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1808. shuffle = _mm_add_epi16(shuffle, m2);
  1809. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1810. shuffle = _mm_add_epi16(shuffle, m2);
  1811. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1812. shuffle = _mm_add_epi16(shuffle, m2);
  1813. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1814. shuffle = _mm_add_epi16(shuffle, m2);
  1815. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1816. shuffle = _mm_add_epi16(shuffle, m2);
  1817. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1818. // accumulate
  1819. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1820. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1821. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1822. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1823. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1824. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1825. }
  1826. // multiply with block scale and accumulate
  1827. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1828. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1829. }
  1830. *s = hsum_float_8(acc);
  1831. #else
  1832. // scalar version
  1833. // This function is written like this so the compiler can manage to vectorize most of it
  1834. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1835. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1836. // The ideal situation would be if we could just write the code once, and the compiler would
  1837. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1838. // write vectorized versions for AVX, ARM_NEON, etc.
  1839. int8_t aux8[QK_K];
  1840. int16_t aux16[8];
  1841. float sums [8];
  1842. int32_t aux32[8];
  1843. memset(sums, 0, 8*sizeof(float));
  1844. uint32_t auxs[4];
  1845. const int8_t * scales = (const int8_t*)auxs;
  1846. float sumf = 0;
  1847. for (int i = 0; i < nb; ++i) {
  1848. const uint8_t * restrict q3 = x[i].qs;
  1849. const uint8_t * restrict hm = x[i].hmask;
  1850. const int8_t * restrict q8 = y[i].qs;
  1851. memset(aux32, 0, 8*sizeof(int32_t));
  1852. int8_t * restrict a = aux8;
  1853. uint8_t m = 1;
  1854. for (int j = 0; j < QK_K; j += 128) {
  1855. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1856. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1857. a += 32; m <<= 1;
  1858. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1859. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1860. a += 32; m <<= 1;
  1861. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1862. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1863. a += 32; m <<= 1;
  1864. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1865. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1866. a += 32; m <<= 1;
  1867. q3 += 32;
  1868. }
  1869. a = aux8;
  1870. memcpy(auxs, x[i].scales, 12);
  1871. uint32_t tmp = auxs[2];
  1872. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1873. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1874. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1875. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1876. for (int j = 0; j < QK_K/16; ++j) {
  1877. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1878. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1879. q8 += 8; a += 8;
  1880. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1881. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1882. q8 += 8; a += 8;
  1883. }
  1884. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1885. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1886. }
  1887. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1888. *s = sumf;
  1889. #endif
  1890. }
  1891. #else
  1892. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1893. assert(n % QK_K == 0);
  1894. const block_q3_K * restrict x = vx;
  1895. const block_q8_K * restrict y = vy;
  1896. const int nb = n / QK_K;
  1897. #ifdef __ARM_NEON
  1898. #ifdef __ARM_FEATURE_DOTPROD
  1899. const int32x4_t vzero = vdupq_n_s32(0);
  1900. #endif
  1901. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1902. const uint8x16_t mh = vdupq_n_u8(4);
  1903. int8x16x4_t q3bytes;
  1904. uint16_t aux16[2];
  1905. int8_t * scales = (int8_t *)aux16;
  1906. float sum = 0;
  1907. for (int i = 0; i < nb; ++i) {
  1908. uint8x16x4_t q3h;
  1909. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1910. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1911. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1912. const uint16_t a = *(const uint16_t *)x[i].scales;
  1913. aux16[0] = a & 0x0f0f;
  1914. aux16[1] = (a >> 4) & 0x0f0f;
  1915. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1916. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1917. const float d = y[i].d * (float)x[i].d;
  1918. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1919. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1920. q3h.val[1] = vandq_u8(mh, htmp);
  1921. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1922. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1923. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1924. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1925. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1926. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1927. #if defined(__ARM_FEATURE_DOTPROD)
  1928. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1929. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1930. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1931. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1932. #else
  1933. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1934. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1935. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1936. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1937. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1938. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1939. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1940. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1941. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1942. #endif
  1943. sum += d * isum;
  1944. }
  1945. *s = sum;
  1946. #elif defined __AVX2__
  1947. const __m256i m3 = _mm256_set1_epi8(3);
  1948. const __m256i m1 = _mm256_set1_epi8(1);
  1949. __m256 acc = _mm256_setzero_ps();
  1950. uint64_t aux64;
  1951. uint16_t aux16[2];
  1952. const int8_t * aux8 = (const int8_t *)aux16;
  1953. for (int i = 0; i < nb; ++i) {
  1954. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1955. const uint8_t * restrict q3 = x[i].qs;
  1956. const int8_t * restrict q8 = y[i].qs;
  1957. const uint16_t a = *(const uint16_t *)x[i].scales;
  1958. aux16[0] = a & 0x0f0f;
  1959. aux16[1] = (a >> 4) & 0x0f0f;
  1960. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1961. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1962. memcpy(&aux64, x[i].hmask, 8);
  1963. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1964. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  1965. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1966. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1967. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1968. // load low 2 bits
  1969. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1970. // prepare low and high bits
  1971. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  1972. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1973. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1974. // load Q8 quants
  1975. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1976. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1977. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1978. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1979. // and 2 if the high bit was set)
  1980. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1981. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1982. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1983. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1984. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1985. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1986. // multiply with scales
  1987. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  1988. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  1989. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1990. // multiply with block scale and accumulate
  1991. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  1992. }
  1993. *s = hsum_float_8(acc);
  1994. #elif defined __AVX__
  1995. const __m128i m3 = _mm_set1_epi8(3);
  1996. const __m128i m1 = _mm_set1_epi8(1);
  1997. __m256 acc = _mm256_setzero_ps();
  1998. uint64_t aux64;
  1999. uint16_t aux16[2];
  2000. const int8_t * aux8 = (const int8_t *)aux16;
  2001. for (int i = 0; i < nb; ++i) {
  2002. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2003. const uint8_t * restrict q3 = x[i].qs;
  2004. const int8_t * restrict q8 = y[i].qs;
  2005. const uint16_t a = *(const uint16_t *)x[i].scales;
  2006. aux16[0] = a & 0x0f0f;
  2007. aux16[1] = (a >> 4) & 0x0f0f;
  2008. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  2009. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  2010. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  2011. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  2012. memcpy(&aux64, x[i].hmask, 8);
  2013. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  2014. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  2015. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  2016. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  2017. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  2018. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  2019. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  2020. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  2021. // load low 2 bits
  2022. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  2023. // prepare low and high bits
  2024. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  2025. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  2026. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  2027. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  2028. // load Q8 quants
  2029. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2030. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2031. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  2032. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  2033. // and 2 if the high bit was set)
  2034. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  2035. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  2036. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  2037. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  2038. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  2039. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  2040. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  2041. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  2042. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  2043. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  2044. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  2045. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  2046. // multiply with scales
  2047. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2048. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  2049. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  2050. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  2051. p16_0 = _mm_add_epi32(p16_0, p16_2);
  2052. p16_1 = _mm_add_epi32(p16_1, p16_3);
  2053. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  2054. // multiply with block scale and accumulate
  2055. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  2056. }
  2057. *s = hsum_float_8(acc);
  2058. #else
  2059. int8_t aux8[QK_K];
  2060. int16_t aux16[8];
  2061. float sums [8];
  2062. int32_t aux32[8];
  2063. int32_t scales[4];
  2064. memset(sums, 0, 8*sizeof(float));
  2065. float sumf = 0;
  2066. for (int i = 0; i < nb; ++i) {
  2067. const uint8_t * restrict q3 = x[i].qs;
  2068. const uint8_t * restrict hm = x[i].hmask;
  2069. const int8_t * restrict q8 = y[i].qs;
  2070. int8_t * restrict a = aux8;
  2071. for (int l = 0; l < 8; ++l) {
  2072. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  2073. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  2074. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  2075. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  2076. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  2077. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  2078. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  2079. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  2080. }
  2081. scales[0] = (x[i].scales[0] & 0xF) - 8;
  2082. scales[1] = (x[i].scales[0] >> 4) - 8;
  2083. scales[2] = (x[i].scales[1] & 0xF) - 8;
  2084. scales[3] = (x[i].scales[1] >> 4) - 8;
  2085. memset(aux32, 0, 8*sizeof(int32_t));
  2086. for (int j = 0; j < QK_K/16; ++j) {
  2087. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2088. q8 += 8; a += 8;
  2089. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  2090. q8 += 8; a += 8;
  2091. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  2092. }
  2093. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2094. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2095. }
  2096. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2097. *s = sumf;
  2098. #endif
  2099. }
  2100. #endif
  2101. #if QK_K == 256
  2102. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2103. assert(n % QK_K == 0);
  2104. const block_q4_K * restrict x = vx;
  2105. const block_q8_K * restrict y = vy;
  2106. const int nb = n / QK_K;
  2107. static const uint32_t kmask1 = 0x3f3f3f3f;
  2108. static const uint32_t kmask2 = 0x0f0f0f0f;
  2109. static const uint32_t kmask3 = 0x03030303;
  2110. uint32_t utmp[4];
  2111. #ifdef __ARM_NEON
  2112. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2113. #ifdef __ARM_FEATURE_DOTPROD
  2114. const int32x4_t mzero = vdupq_n_s32(0);
  2115. #endif
  2116. int8x16x2_t q4bytes;
  2117. int8x16x2_t q8bytes;
  2118. float sumf = 0;
  2119. for (int i = 0; i < nb; ++i) {
  2120. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2121. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2122. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2123. memcpy(utmp, x[i].scales, 12);
  2124. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  2125. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2126. utmp[0] &= kmask1;
  2127. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  2128. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2129. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2130. sumf -= dmin * vaddvq_s32(prod);
  2131. const uint8_t * scales = (const uint8_t *)utmp;
  2132. const uint8_t * restrict q4 = x[i].qs;
  2133. const int8_t * restrict q8 = y[i].qs;
  2134. //int32x4_t isum = mzero;
  2135. int32_t sumi1 = 0;
  2136. int32_t sumi2 = 0;
  2137. for (int j = 0; j < QK_K/64; ++j) {
  2138. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  2139. #ifdef __ARM_FEATURE_DOTPROD
  2140. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2141. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2142. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2143. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2144. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  2145. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2146. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2147. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2148. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2149. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  2150. #else
  2151. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2152. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2153. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2154. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2155. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2156. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2157. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2158. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2159. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2160. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2161. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2162. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2163. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2164. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2165. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2166. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2167. #endif
  2168. }
  2169. sumf += d * (sumi1 + sumi2);
  2170. }
  2171. *s = sumf;
  2172. #elif defined __AVX2__
  2173. const __m256i m4 = _mm256_set1_epi8(0xF);
  2174. __m256 acc = _mm256_setzero_ps();
  2175. __m128 acc_m = _mm_setzero_ps();
  2176. for (int i = 0; i < nb; ++i) {
  2177. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2178. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2179. memcpy(utmp, x[i].scales, 12);
  2180. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2181. const uint32_t uaux = utmp[1] & kmask1;
  2182. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2183. utmp[2] = uaux;
  2184. utmp[0] &= kmask1;
  2185. const uint8_t * restrict q4 = x[i].qs;
  2186. const int8_t * restrict q8 = y[i].qs;
  2187. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2188. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2189. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2190. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2191. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2192. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2193. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2194. __m256i sumi = _mm256_setzero_si256();
  2195. for (int j = 0; j < QK_K/64; ++j) {
  2196. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2197. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2198. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2199. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2200. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2201. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2202. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2203. p16l = _mm256_madd_epi16(scale_l, p16l);
  2204. sumi = _mm256_add_epi32(sumi, p16l);
  2205. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2206. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2207. p16h = _mm256_madd_epi16(scale_h, p16h);
  2208. sumi = _mm256_add_epi32(sumi, p16h);
  2209. }
  2210. __m256 vd = _mm256_set1_ps(d);
  2211. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2212. }
  2213. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2214. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2215. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2216. #elif defined __AVX__
  2217. const __m128i m4 = _mm_set1_epi8(0xF);
  2218. const __m128i m2 = _mm_set1_epi8(0x2);
  2219. __m256 acc = _mm256_setzero_ps();
  2220. __m128 acc_m = _mm_setzero_ps();
  2221. for (int i = 0; i < nb; ++i) {
  2222. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2223. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2224. const uint8_t * restrict q4 = x[i].qs;
  2225. const int8_t * restrict q8 = y[i].qs;
  2226. memcpy(utmp, x[i].scales, 12);
  2227. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2228. const uint32_t uaux = utmp[1] & kmask1;
  2229. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2230. utmp[2] = uaux;
  2231. utmp[0] &= kmask1;
  2232. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2233. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2234. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2235. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2236. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2237. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2238. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2239. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2240. __m128i sumi_0 = _mm_setzero_si128();
  2241. __m128i sumi_1 = _mm_setzero_si128();
  2242. __m128i shuffle = _mm_set1_epi16(0x0100);
  2243. for (int j = 0; j < QK_K/64; ++j) {
  2244. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2245. shuffle = _mm_add_epi16(shuffle, m2);
  2246. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2247. shuffle = _mm_add_epi16(shuffle, m2);
  2248. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2249. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2250. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2251. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2252. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2253. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2254. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2255. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2256. p16l = _mm_madd_epi16(scale_l, p16l);
  2257. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2258. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2259. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2260. p16l = _mm_madd_epi16(scale_l, p16l);
  2261. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2262. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2263. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2264. p16h = _mm_madd_epi16(scale_h, p16h);
  2265. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2266. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2267. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2268. p16h = _mm_madd_epi16(scale_h, p16h);
  2269. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2270. }
  2271. __m256 vd = _mm256_set1_ps(d);
  2272. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2273. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2274. }
  2275. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2276. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2277. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2278. #else
  2279. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2280. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2281. int8_t aux8[QK_K];
  2282. int16_t aux16[8];
  2283. float sums [8];
  2284. int32_t aux32[8];
  2285. memset(sums, 0, 8*sizeof(float));
  2286. float sumf = 0;
  2287. for (int i = 0; i < nb; ++i) {
  2288. const uint8_t * restrict q4 = x[i].qs;
  2289. const int8_t * restrict q8 = y[i].qs;
  2290. memset(aux32, 0, 8*sizeof(int32_t));
  2291. int8_t * restrict a = aux8;
  2292. for (int j = 0; j < QK_K/64; ++j) {
  2293. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2294. a += 32;
  2295. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2296. a += 32; q4 += 32;
  2297. }
  2298. memcpy(utmp, x[i].scales, 12);
  2299. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2300. const uint32_t uaux = utmp[1] & kmask1;
  2301. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2302. utmp[2] = uaux;
  2303. utmp[0] &= kmask1;
  2304. int sumi = 0;
  2305. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2306. a = aux8;
  2307. int is = 0;
  2308. for (int j = 0; j < QK_K/32; ++j) {
  2309. int32_t scale = scales[is++];
  2310. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2311. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2312. q8 += 8; a += 8;
  2313. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2314. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2315. q8 += 8; a += 8;
  2316. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2317. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2318. q8 += 8; a += 8;
  2319. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2320. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2321. q8 += 8; a += 8;
  2322. }
  2323. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2324. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2325. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2326. sumf -= dmin * sumi;
  2327. }
  2328. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2329. *s = sumf;
  2330. #endif
  2331. }
  2332. #else
  2333. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2334. assert(n % QK_K == 0);
  2335. const block_q4_K * restrict x = vx;
  2336. const block_q8_K * restrict y = vy;
  2337. const int nb = n / QK_K;
  2338. #ifdef __ARM_NEON
  2339. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2340. #ifdef __ARM_FEATURE_DOTPROD
  2341. const int32x4_t mzero = vdupq_n_s32(0);
  2342. #endif
  2343. float sumf = 0;
  2344. int8x16x2_t q4bytes;
  2345. int8x16x4_t q8bytes;
  2346. float sum_mins = 0.f;
  2347. uint16_t aux16[2];
  2348. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2349. for (int i = 0; i < nb; ++i) {
  2350. const uint8_t * restrict q4 = x[i].qs;
  2351. const int8_t * restrict q8 = y[i].qs;
  2352. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2353. aux16[0] = a[0] & 0x0f0f;
  2354. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2355. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2356. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2357. const float d = y[i].d * (float)x[i].d[0];
  2358. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2359. #ifdef __ARM_FEATURE_DOTPROD
  2360. q8bytes = vld1q_s8_x4(q8);
  2361. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2362. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2363. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2364. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2365. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2366. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2367. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2368. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2369. #else
  2370. q8bytes = vld1q_s8_x4(q8);
  2371. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2372. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2373. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2374. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2375. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2376. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2377. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2378. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2379. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2380. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2381. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2382. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2383. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2384. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2385. #endif
  2386. sumf += d * (sumi1 + sumi2);
  2387. }
  2388. *s = sumf - sum_mins;
  2389. #elif defined __AVX2__
  2390. const __m256i m4 = _mm256_set1_epi8(0xF);
  2391. __m256 acc = _mm256_setzero_ps();
  2392. float summs = 0;
  2393. uint16_t aux16[2];
  2394. const uint8_t * scales = (const uint8_t *)aux16;
  2395. for (int i = 0; i < nb; ++i) {
  2396. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2397. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2398. const __m256 vd = _mm256_set1_ps(d);
  2399. const uint16_t * a = (const uint16_t *)x[i].scales;
  2400. aux16[0] = a[0] & 0x0f0f;
  2401. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2402. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2403. const uint8_t * restrict q4 = x[i].qs;
  2404. const int8_t * restrict q8 = y[i].qs;
  2405. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2406. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2407. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2408. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2409. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2410. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2411. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2412. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2413. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2414. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2415. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2416. }
  2417. *s = hsum_float_8(acc) - summs;
  2418. #elif defined __AVX__
  2419. const __m128i m4 = _mm_set1_epi8(0xF);
  2420. __m256 acc = _mm256_setzero_ps();
  2421. float summs = 0;
  2422. uint16_t aux16[2];
  2423. const uint8_t * scales = (const uint8_t *)aux16;
  2424. for (int i = 0; i < nb; ++i) {
  2425. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2426. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2427. const __m256 vd = _mm256_set1_ps(d);
  2428. const uint16_t * a = (const uint16_t *)x[i].scales;
  2429. aux16[0] = a[0] & 0x0f0f;
  2430. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2431. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2432. const uint8_t * restrict q4 = x[i].qs;
  2433. const int8_t * restrict q8 = y[i].qs;
  2434. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2435. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  2436. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  2437. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  2438. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  2439. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  2440. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  2441. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2442. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2443. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  2444. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  2445. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  2446. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  2447. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  2448. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  2449. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  2450. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  2451. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  2452. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  2453. }
  2454. *s = hsum_float_8(acc) - summs;
  2455. #else
  2456. uint8_t aux8[QK_K];
  2457. int16_t aux16[16];
  2458. float sums [8];
  2459. memset(sums, 0, 8*sizeof(float));
  2460. uint16_t s16[2];
  2461. const uint8_t * restrict scales = (const uint8_t *)s16;
  2462. float sumf = 0;
  2463. for (int i = 0; i < nb; ++i) {
  2464. const uint8_t * restrict q4 = x[i].qs;
  2465. const int8_t * restrict q8 = y[i].qs;
  2466. uint8_t * restrict a = aux8;
  2467. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2468. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2469. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2470. s16[0] = b[0] & 0x0f0f;
  2471. s16[1] = (b[0] >> 4) & 0x0f0f;
  2472. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2473. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2474. for (int j = 0; j < QK_K/32; ++j) {
  2475. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2476. q8 += 16; a += 16;
  2477. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2478. q8 += 16; a += 16;
  2479. const float dl = d * scales[j];
  2480. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2481. }
  2482. }
  2483. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2484. *s = sumf;
  2485. #endif
  2486. }
  2487. #endif
  2488. #if QK_K == 256
  2489. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2490. assert(n % QK_K == 0);
  2491. const block_q5_K * restrict x = vx;
  2492. const block_q8_K * restrict y = vy;
  2493. const int nb = n / QK_K;
  2494. static const uint32_t kmask1 = 0x3f3f3f3f;
  2495. static const uint32_t kmask2 = 0x0f0f0f0f;
  2496. static const uint32_t kmask3 = 0x03030303;
  2497. uint32_t utmp[4];
  2498. #ifdef __ARM_NEON
  2499. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2500. const int32x4_t mzero = vdupq_n_s32(0);
  2501. const uint8x16_t mone = vdupq_n_u8(1);
  2502. const uint8x16_t mtwo = vdupq_n_u8(2);
  2503. int8x16x4_t q5bytes;
  2504. float sumf = 0;
  2505. for (int i = 0; i < nb; ++i) {
  2506. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2507. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2508. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2509. memcpy(utmp, x[i].scales, 12);
  2510. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2511. const uint32_t uaux = utmp[1] & kmask1;
  2512. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2513. utmp[2] = uaux;
  2514. utmp[0] &= kmask1;
  2515. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2516. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2517. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2518. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2519. int32_t sumi_mins = vaddvq_s32(prod);
  2520. const uint8_t * scales = (const uint8_t *)utmp;
  2521. const uint8_t * restrict q5 = x[i].qs;
  2522. const uint8_t * restrict qh = x[i].qh;
  2523. const int8_t * restrict q8 = y[i].qs;
  2524. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2525. uint8x16x4_t q5h;
  2526. int32_t sumi = 0;
  2527. for (int j = 0; j < QK_K/64; ++j) {
  2528. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2529. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2530. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2531. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2532. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2533. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2534. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2535. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2536. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2537. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2538. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2539. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2540. #if defined(__ARM_FEATURE_DOTPROD)
  2541. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2542. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2543. #else
  2544. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2545. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2546. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2547. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2548. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2549. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2550. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2551. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2552. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2553. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2554. #endif
  2555. }
  2556. sumf += d * sumi - dmin * sumi_mins;
  2557. }
  2558. *s = sumf;
  2559. #elif defined __AVX2__
  2560. const __m256i m4 = _mm256_set1_epi8(0xF);
  2561. const __m128i mzero = _mm_setzero_si128();
  2562. const __m256i mone = _mm256_set1_epi8(1);
  2563. __m256 acc = _mm256_setzero_ps();
  2564. float summs = 0.f;
  2565. for (int i = 0; i < nb; ++i) {
  2566. const uint8_t * restrict q5 = x[i].qs;
  2567. const int8_t * restrict q8 = y[i].qs;
  2568. #if QK_K == 256
  2569. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2570. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2571. memcpy(utmp, x[i].scales, 12);
  2572. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2573. const uint32_t uaux = utmp[1] & kmask1;
  2574. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2575. utmp[2] = uaux;
  2576. utmp[0] &= kmask1;
  2577. #else
  2578. // TODO
  2579. const float d = 0, dmin = 0;
  2580. #endif
  2581. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2582. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2583. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2584. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2585. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2586. summs += dmin * _mm_extract_epi32(hsum, 0);
  2587. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2588. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2589. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2590. __m256i hmask = mone;
  2591. __m256i sumi = _mm256_setzero_si256();
  2592. int bit = 0;
  2593. for (int j = 0; j < QK_K/64; ++j) {
  2594. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2595. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2596. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2597. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2598. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2599. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2600. hmask = _mm256_slli_epi16(hmask, 1);
  2601. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2602. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2603. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2604. hmask = _mm256_slli_epi16(hmask, 1);
  2605. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2606. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2607. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2608. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2609. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2610. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2611. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2612. }
  2613. __m256 vd = _mm256_set1_ps(d);
  2614. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2615. }
  2616. *s = hsum_float_8(acc) + summs;
  2617. #elif defined __AVX__
  2618. const __m128i m4 = _mm_set1_epi8(0xF);
  2619. const __m128i mzero = _mm_setzero_si128();
  2620. const __m128i mone = _mm_set1_epi8(1);
  2621. const __m128i m2 = _mm_set1_epi8(2);
  2622. __m256 acc = _mm256_setzero_ps();
  2623. float summs = 0.f;
  2624. for (int i = 0; i < nb; ++i) {
  2625. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2626. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2627. const uint8_t * restrict q5 = x[i].qs;
  2628. const int8_t * restrict q8 = y[i].qs;
  2629. memcpy(utmp, x[i].scales, 12);
  2630. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2631. const uint32_t uaux = utmp[1] & kmask1;
  2632. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2633. utmp[2] = uaux;
  2634. utmp[0] &= kmask1;
  2635. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2636. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2637. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2638. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2639. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2640. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2641. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2642. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2643. summs += dmin * _mm_extract_epi32(hsum, 0);
  2644. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2645. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2646. __m128i hmask = mone;
  2647. __m128i sumi_0 = _mm_setzero_si128();
  2648. __m128i sumi_1 = _mm_setzero_si128();
  2649. int bit = 0;
  2650. __m128i shuffle = _mm_set1_epi16(0x0100);
  2651. for (int j = 0; j < QK_K/64; ++j) {
  2652. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2653. shuffle = _mm_add_epi16(shuffle, m2);
  2654. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2655. shuffle = _mm_add_epi16(shuffle, m2);
  2656. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2657. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2658. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2659. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2660. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2661. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2662. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2663. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2664. hmask = _mm_slli_epi16(hmask, 1);
  2665. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2666. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2667. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2668. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2669. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2670. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2671. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2672. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2673. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2674. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2675. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2676. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2677. hmask = _mm_slli_epi16(hmask, 1);
  2678. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2679. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2680. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2681. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2682. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2683. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2684. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2685. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2686. }
  2687. __m256 vd = _mm256_set1_ps(d);
  2688. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2689. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2690. }
  2691. *s = hsum_float_8(acc) + summs;
  2692. #else
  2693. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2694. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2695. int8_t aux8[QK_K];
  2696. int16_t aux16[8];
  2697. float sums [8];
  2698. int32_t aux32[8];
  2699. memset(sums, 0, 8*sizeof(float));
  2700. float sumf = 0;
  2701. for (int i = 0; i < nb; ++i) {
  2702. const uint8_t * restrict q4 = x[i].qs;
  2703. const uint8_t * restrict hm = x[i].qh;
  2704. const int8_t * restrict q8 = y[i].qs;
  2705. memset(aux32, 0, 8*sizeof(int32_t));
  2706. int8_t * restrict a = aux8;
  2707. uint8_t m = 1;
  2708. for (int j = 0; j < QK_K/64; ++j) {
  2709. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2710. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2711. a += 32; m <<= 1;
  2712. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2713. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2714. a += 32; m <<= 1;
  2715. q4 += 32;
  2716. }
  2717. memcpy(utmp, x[i].scales, 12);
  2718. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2719. const uint32_t uaux = utmp[1] & kmask1;
  2720. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2721. utmp[2] = uaux;
  2722. utmp[0] &= kmask1;
  2723. int sumi = 0;
  2724. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2725. a = aux8;
  2726. int is = 0;
  2727. for (int j = 0; j < QK_K/32; ++j) {
  2728. int32_t scale = scales[is++];
  2729. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2730. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2731. q8 += 8; a += 8;
  2732. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2733. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2734. q8 += 8; a += 8;
  2735. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2736. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2737. q8 += 8; a += 8;
  2738. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2739. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2740. q8 += 8; a += 8;
  2741. }
  2742. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2743. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2744. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2745. sumf -= dmin * sumi;
  2746. }
  2747. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2748. *s = sumf;
  2749. #endif
  2750. }
  2751. #else
  2752. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2753. assert(n % QK_K == 0);
  2754. const block_q5_K * restrict x = vx;
  2755. const block_q8_K * restrict y = vy;
  2756. const int nb = n / QK_K;
  2757. #ifdef __ARM_NEON
  2758. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2759. const int32x4_t mzero = vdupq_n_s32(0);
  2760. const uint8x16_t mh = vdupq_n_u8(16);
  2761. int8x16x4_t q5bytes;
  2762. uint8x16x4_t q5h;
  2763. float sumf = 0;
  2764. for (int i = 0; i < nb; ++i) {
  2765. const float d = y[i].d * (float)x[i].d;
  2766. const int8_t * sc = x[i].scales;
  2767. const uint8_t * restrict q5 = x[i].qs;
  2768. const uint8_t * restrict qh = x[i].qh;
  2769. const int8_t * restrict q8 = y[i].qs;
  2770. const uint8x8_t qhbits = vld1_u8(qh);
  2771. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2772. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2773. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2774. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2775. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2776. q5h.val[2] = vbicq_u8(mh, htmp);
  2777. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2778. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2779. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2780. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2781. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2782. #if defined(__ARM_FEATURE_DOTPROD)
  2783. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2784. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2785. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2786. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2787. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2788. #else
  2789. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2790. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2791. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2792. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2793. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2794. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2795. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2796. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2797. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2798. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2799. sumf += d*sumi;
  2800. #endif
  2801. }
  2802. *s = sumf;
  2803. #elif defined __AVX2__
  2804. const __m256i m4 = _mm256_set1_epi8(0xF);
  2805. const __m256i mone = _mm256_set1_epi8(1);
  2806. __m256 acc = _mm256_setzero_ps();
  2807. for (int i = 0; i < nb; ++i) {
  2808. const uint8_t * restrict q5 = x[i].qs;
  2809. const int8_t * restrict q8 = y[i].qs;
  2810. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2811. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2812. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2813. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2814. int64_t aux64;
  2815. memcpy(&aux64, x[i].qh, 8);
  2816. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2817. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  2818. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2819. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2820. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2821. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2822. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2823. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2824. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2825. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2826. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2827. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2828. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2829. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2830. }
  2831. *s = hsum_float_8(acc);
  2832. #elif defined __AVX__
  2833. const __m128i m4 = _mm_set1_epi8(0xF);
  2834. const __m128i mone = _mm_set1_epi8(1);
  2835. __m256 acc = _mm256_setzero_ps();
  2836. for (int i = 0; i < nb; ++i) {
  2837. const uint8_t * restrict q5 = x[i].qs;
  2838. const int8_t * restrict q8 = y[i].qs;
  2839. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2840. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2841. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  2842. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  2843. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  2844. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  2845. int64_t aux64;
  2846. memcpy(&aux64, x[i].qh, 8);
  2847. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  2848. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  2849. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  2850. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  2851. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  2852. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  2853. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  2854. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  2855. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  2856. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  2857. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2858. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2859. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  2860. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  2861. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  2862. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  2863. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  2864. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  2865. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  2866. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  2867. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  2868. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  2869. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  2870. }
  2871. *s = hsum_float_8(acc);
  2872. #else
  2873. int8_t aux8[QK_K];
  2874. int16_t aux16[16];
  2875. float sums [8];
  2876. memset(sums, 0, 8*sizeof(float));
  2877. float sumf = 0;
  2878. for (int i = 0; i < nb; ++i) {
  2879. const uint8_t * restrict q4 = x[i].qs;
  2880. const uint8_t * restrict hm = x[i].qh;
  2881. const int8_t * restrict q8 = y[i].qs;
  2882. int8_t * restrict a = aux8;
  2883. for (int l = 0; l < 32; ++l) {
  2884. a[l+ 0] = q4[l] & 0xF;
  2885. a[l+32] = q4[l] >> 4;
  2886. }
  2887. for (int is = 0; is < 8; ++is) {
  2888. uint8_t m = 1 << is;
  2889. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2890. }
  2891. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2892. const int8_t * restrict sc = x[i].scales;
  2893. for (int j = 0; j < QK_K/16; ++j) {
  2894. const float dl = d * sc[j];
  2895. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2896. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2897. q8 += 16; a += 16;
  2898. }
  2899. }
  2900. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2901. *s = sumf;
  2902. #endif
  2903. }
  2904. #endif
  2905. #if QK_K == 256
  2906. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2907. assert(n % QK_K == 0);
  2908. const block_q6_K * restrict x = vx;
  2909. const block_q8_K * restrict y = vy;
  2910. const int nb = n / QK_K;
  2911. #ifdef __ARM_NEON
  2912. float sum = 0;
  2913. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2914. const int32x4_t vzero = vdupq_n_s32(0);
  2915. //const int8x16_t m32s = vdupq_n_s8(32);
  2916. const uint8x16_t mone = vdupq_n_u8(3);
  2917. int8x16x4_t q6bytes;
  2918. uint8x16x4_t q6h;
  2919. for (int i = 0; i < nb; ++i) {
  2920. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2921. const uint8_t * restrict q6 = x[i].ql;
  2922. const uint8_t * restrict qh = x[i].qh;
  2923. const int8_t * restrict q8 = y[i].qs;
  2924. const int8_t * restrict scale = x[i].scales;
  2925. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2926. const int8x16_t scales = vld1q_s8(scale);
  2927. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2928. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2929. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2930. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2931. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2932. int32_t isum_mins = vaddvq_s32(prod);
  2933. int32_t isum = 0;
  2934. for (int j = 0; j < QK_K/128; ++j) {
  2935. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2936. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2937. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2938. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2939. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2940. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2941. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2942. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2943. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2944. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2945. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2946. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2947. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2948. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2949. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2950. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2951. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2952. #if defined(__ARM_FEATURE_DOTPROD)
  2953. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2954. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2955. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2956. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2957. scale += 4;
  2958. #else
  2959. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2960. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2961. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2962. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2963. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2964. scale += 2;
  2965. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2966. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2967. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2968. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2969. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2970. scale += 2;
  2971. #endif
  2972. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2973. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2974. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2975. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2976. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2977. shifted = vshrq_n_u8(qhbits.val[0], 6);
  2978. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2979. shifted = vshrq_n_u8(qhbits.val[1], 6);
  2980. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2981. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  2982. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  2983. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  2984. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  2985. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  2986. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  2987. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  2988. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  2989. #if defined(__ARM_FEATURE_DOTPROD)
  2990. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2991. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2992. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2993. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2994. scale += 4;
  2995. //for (int l = 0; l < 4; ++l) {
  2996. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  2997. // isum += vaddvq_s32(p) * *scale++;
  2998. //}
  2999. #else
  3000. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3001. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3002. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3003. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3004. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3005. scale += 2;
  3006. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3007. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3008. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3009. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3010. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  3011. scale += 2;
  3012. #endif
  3013. }
  3014. //sum += isum * d_all * y[i].d;
  3015. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  3016. }
  3017. *s = sum;
  3018. #elif defined __AVX2__
  3019. const __m256i m4 = _mm256_set1_epi8(0xF);
  3020. const __m256i m2 = _mm256_set1_epi8(3);
  3021. const __m256i m32s = _mm256_set1_epi8(32);
  3022. __m256 acc = _mm256_setzero_ps();
  3023. for (int i = 0; i < nb; ++i) {
  3024. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3025. const uint8_t * restrict q4 = x[i].ql;
  3026. const uint8_t * restrict qh = x[i].qh;
  3027. const int8_t * restrict q8 = y[i].qs;
  3028. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3029. __m256i sumi = _mm256_setzero_si256();
  3030. int is = 0;
  3031. for (int j = 0; j < QK_K/128; ++j) {
  3032. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  3033. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  3034. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  3035. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  3036. is += 4;
  3037. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3038. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3039. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  3040. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  3041. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  3042. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  3043. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  3044. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3045. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  3046. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  3047. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  3048. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3049. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3050. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3051. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3052. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3053. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3054. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  3055. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  3056. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3057. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3058. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  3059. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  3060. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3061. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3062. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  3063. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  3064. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3065. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3066. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  3067. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  3068. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3069. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  3070. }
  3071. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3072. }
  3073. *s = hsum_float_8(acc);
  3074. #elif defined __AVX__
  3075. const __m128i m4 = _mm_set1_epi8(0xF);
  3076. const __m128i m3 = _mm_set1_epi8(3);
  3077. const __m128i m32s = _mm_set1_epi8(32);
  3078. const __m128i m2 = _mm_set1_epi8(2);
  3079. __m256 acc = _mm256_setzero_ps();
  3080. for (int i = 0; i < nb; ++i) {
  3081. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3082. const uint8_t * restrict q4 = x[i].ql;
  3083. const uint8_t * restrict qh = x[i].qh;
  3084. const int8_t * restrict q8 = y[i].qs;
  3085. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3086. __m128i sumi_0 = _mm_setzero_si128();
  3087. __m128i sumi_1 = _mm_setzero_si128();
  3088. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  3089. for (int j = 0; j < QK_K/128; ++j) {
  3090. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3091. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3092. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  3093. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  3094. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  3095. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  3096. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  3097. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  3098. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  3099. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  3100. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3101. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3102. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3103. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3104. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  3105. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  3106. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  3107. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  3108. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  3109. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  3110. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  3111. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  3112. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3113. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3114. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3115. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3116. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3117. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3118. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3119. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3120. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  3121. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  3122. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  3123. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  3124. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  3125. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  3126. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  3127. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  3128. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  3129. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  3130. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  3131. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  3132. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  3133. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  3134. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  3135. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  3136. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3137. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3138. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3139. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3140. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  3141. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  3142. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  3143. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  3144. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  3145. shuffle = _mm_add_epi8(shuffle, m2);
  3146. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  3147. shuffle = _mm_add_epi8(shuffle, m2);
  3148. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  3149. shuffle = _mm_add_epi8(shuffle, m2);
  3150. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  3151. shuffle = _mm_add_epi8(shuffle, m2);
  3152. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3153. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3154. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3155. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3156. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  3157. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  3158. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  3159. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  3160. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3161. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3162. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  3163. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  3164. }
  3165. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3166. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  3167. }
  3168. *s = hsum_float_8(acc);
  3169. #else
  3170. int8_t aux8[QK_K];
  3171. int16_t aux16[8];
  3172. float sums [8];
  3173. int32_t aux32[8];
  3174. memset(sums, 0, 8*sizeof(float));
  3175. float sumf = 0;
  3176. for (int i = 0; i < nb; ++i) {
  3177. const uint8_t * restrict q4 = x[i].ql;
  3178. const uint8_t * restrict qh = x[i].qh;
  3179. const int8_t * restrict q8 = y[i].qs;
  3180. memset(aux32, 0, 8*sizeof(int32_t));
  3181. int8_t * restrict a = aux8;
  3182. for (int j = 0; j < QK_K; j += 128) {
  3183. for (int l = 0; l < 32; ++l) {
  3184. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3185. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3186. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3187. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3188. }
  3189. a += 128;
  3190. q4 += 64;
  3191. qh += 32;
  3192. }
  3193. a = aux8;
  3194. int is = 0;
  3195. for (int j = 0; j < QK_K/16; ++j) {
  3196. int scale = x[i].scales[is++];
  3197. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3198. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3199. q8 += 8; a += 8;
  3200. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3201. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3202. q8 += 8; a += 8;
  3203. }
  3204. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3205. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3206. }
  3207. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3208. *s = sumf;
  3209. #endif
  3210. }
  3211. #else
  3212. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  3213. assert(n % QK_K == 0);
  3214. const block_q6_K * restrict x = vx;
  3215. const block_q8_K * restrict y = vy;
  3216. const int nb = n / QK_K;
  3217. #ifdef __ARM_NEON
  3218. float sum = 0;
  3219. const uint8x16_t m4b = vdupq_n_u8(0xF);
  3220. const int32x4_t vzero = vdupq_n_s32(0);
  3221. const int8x16_t m32s = vdupq_n_s8(32);
  3222. const uint8x16_t mone = vdupq_n_u8(3);
  3223. int8x16x4_t q6bytes;
  3224. uint8x16x4_t q6h;
  3225. for (int i = 0; i < nb; ++i) {
  3226. const float d_all = (float)x[i].d;
  3227. const uint8_t * restrict q6 = x[i].ql;
  3228. const uint8_t * restrict qh = x[i].qh;
  3229. const int8_t * restrict q8 = y[i].qs;
  3230. const int8_t * restrict scale = x[i].scales;
  3231. int32_t isum = 0;
  3232. uint8x16_t qhbits = vld1q_u8(qh);
  3233. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  3234. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  3235. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3236. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3237. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3238. shifted = vshrq_n_u8(qhbits, 4);
  3239. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3240. shifted = vshrq_n_u8(qhbits, 6);
  3241. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3242. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3243. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3244. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3245. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3246. #if defined(__ARM_FEATURE_DOTPROD)
  3247. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3248. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3249. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3250. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3251. #else
  3252. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3253. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3254. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3255. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3256. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3257. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3258. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3259. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3260. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3261. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3262. #endif
  3263. sum += isum * d_all * y[i].d;
  3264. }
  3265. *s = sum;
  3266. #elif defined __AVX2__
  3267. const __m256i m4 = _mm256_set1_epi8(0xF);
  3268. const __m256i m2 = _mm256_set1_epi8(3);
  3269. const __m256i m32s = _mm256_set1_epi8(32);
  3270. __m256 acc = _mm256_setzero_ps();
  3271. for (int i = 0; i < nb; ++i) {
  3272. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3273. const uint8_t * restrict q4 = x[i].ql;
  3274. const uint8_t * restrict qh = x[i].qh;
  3275. const int8_t * restrict q8 = y[i].qs;
  3276. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3277. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3278. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3279. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3280. __m256i sumi = _mm256_setzero_si256();
  3281. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3282. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3283. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3284. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3285. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3286. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3287. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3288. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3289. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3290. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3291. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3292. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3293. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3294. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3295. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3296. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3297. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3298. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3299. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3300. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3301. }
  3302. *s = hsum_float_8(acc);
  3303. #elif defined __AVX__
  3304. const __m128i m4 = _mm_set1_epi8(0xF);
  3305. const __m128i m2 = _mm_set1_epi8(3);
  3306. const __m128i m32s = _mm_set1_epi8(32);
  3307. __m256 acc = _mm256_setzero_ps();
  3308. for (int i = 0; i < nb; ++i) {
  3309. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3310. const uint8_t * restrict q4 = x[i].ql;
  3311. const uint8_t * restrict qh = x[i].qh;
  3312. const int8_t * restrict q8 = y[i].qs;
  3313. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3314. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3315. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3316. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3317. __m128i sumi_0 = _mm_setzero_si128();
  3318. __m128i sumi_1 = _mm_setzero_si128();
  3319. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3320. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3321. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3322. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3323. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  3324. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  3325. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  3326. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  3327. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  3328. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  3329. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  3330. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  3331. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3332. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3333. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  3334. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  3335. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  3336. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  3337. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  3338. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  3339. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  3340. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  3341. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3342. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3343. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3344. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3345. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3346. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3347. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3348. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3349. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3350. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3351. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  3352. }
  3353. *s = hsum_float_8(acc);
  3354. #else
  3355. int8_t aux8[QK_K];
  3356. int16_t aux16[8];
  3357. float sums [8];
  3358. int32_t aux32[8];
  3359. memset(sums, 0, 8*sizeof(float));
  3360. float sumf = 0;
  3361. for (int i = 0; i < nb; ++i) {
  3362. const uint8_t * restrict q4 = x[i].ql;
  3363. const uint8_t * restrict qh = x[i].qh;
  3364. const int8_t * restrict q8 = y[i].qs;
  3365. memset(aux32, 0, 8*sizeof(int32_t));
  3366. int8_t * restrict a = aux8;
  3367. for (int l = 0; l < 16; ++l) {
  3368. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3369. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3370. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3371. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3372. }
  3373. int is = 0;
  3374. for (int j = 0; j < QK_K/16; ++j) {
  3375. int scale = x[i].scales[is++];
  3376. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3377. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3378. q8 += 8; a += 8;
  3379. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3380. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3381. q8 += 8; a += 8;
  3382. }
  3383. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3384. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3385. }
  3386. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3387. *s = sumf;
  3388. #endif
  3389. }
  3390. #endif