| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254 |
- // Defines fileno on msys:
- #ifndef _GNU_SOURCE
- #define _GNU_SOURCE
- #include <cstddef>
- #include <cstdint>
- #include <cstdio>
- #endif
- #include "llama.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #ifdef GGML_USE_CUBLAS
- # include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- # include "ggml-opencl.h"
- #endif
- #ifdef GGML_USE_METAL
- # include "ggml-metal.h"
- #endif
- #ifdef GGML_USE_MPI
- # include "ggml-mpi.h"
- #endif
- #ifdef GGML_USE_K_QUANTS
- # ifndef QK_K
- # ifdef GGML_QKK_64
- # define QK_K 64
- # else
- # define QK_K 256
- # endif
- # endif
- #endif
- #ifdef __has_include
- #if __has_include(<unistd.h>)
- #include <unistd.h>
- #if defined(_POSIX_MAPPED_FILES)
- #include <sys/mman.h>
- #endif
- #if defined(_POSIX_MEMLOCK_RANGE)
- #include <sys/resource.h>
- #endif
- #endif
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #include <io.h>
- #include <stdio.h> // for _fseeki64
- #endif
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cinttypes>
- #include <climits>
- #include <cstdarg>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <initializer_list>
- #include <map>
- #include <memory>
- #include <mutex>
- #include <numeric>
- #include <queue>
- #include <random>
- #include <regex>
- #include <sstream>
- #include <thread>
- #include <unordered_map>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...)
- #endif
- //
- // logging
- //
- LLAMA_ATTRIBUTE_FORMAT(2, 3)
- static void llama_log_internal (llama_log_level level, const char* format, ...);
- static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
- #define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
- #define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
- #define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
- //
- // helpers
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- void replace_all(std::string & s, const std::string & search, const std::string & replace) {
- for (size_t pos = 0; ; pos += replace.length()) {
- pos = s.find(search, pos);
- if (pos == std::string::npos) break;
- s.erase(pos, search.length());
- s.insert(pos, replace);
- }
- }
- static void zeros(std::ofstream & file, size_t n) {
- char zero = 0;
- for (size_t i = 0; i < n; ++i) {
- file.write(&zero, 1);
- }
- }
- LLAMA_ATTRIBUTE_FORMAT(1, 2)
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- //
- // gguf constants (sync with gguf.py)
- //
- enum llm_arch {
- LLM_ARCH_LLAMA,
- LLM_ARCH_FALCON,
- LLM_ARCH_GPT2,
- LLM_ARCH_GPTJ,
- LLM_ARCH_GPTNEOX,
- LLM_ARCH_MPT,
- LLM_ARCH_UNKNOWN,
- };
- static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
- { LLM_ARCH_LLAMA, "llama" },
- { LLM_ARCH_FALCON, "falcon" },
- { LLM_ARCH_GPT2, "gpt2" },
- { LLM_ARCH_GPTJ, "gptj" },
- { LLM_ARCH_GPTNEOX, "gptneox" },
- { LLM_ARCH_MPT, "mpt" },
- };
- enum llm_kv {
- LLM_KV_GENERAL_ARCHITECTURE,
- LLM_KV_GENERAL_QUANTIZATION_VERSION,
- LLM_KV_GENERAL_ALIGNMENT,
- LLM_KV_GENERAL_NAME,
- LLM_KV_GENERAL_AUTHOR,
- LLM_KV_GENERAL_URL,
- LLM_KV_GENERAL_DESCRIPTION,
- LLM_KV_GENERAL_LICENSE,
- LLM_KV_GENERAL_SOURCE_URL,
- LLM_KV_GENERAL_SOURCE_HF_REPO,
- LLM_KV_CONTEXT_LENGTH,
- LLM_KV_EMBEDDING_LENGTH,
- LLM_KV_BLOCK_COUNT,
- LLM_KV_FEED_FORWARD_LENGTH,
- LLM_KV_USE_PARALLEL_RESIDUAL,
- LLM_KV_TENSOR_DATA_LAYOUT,
- LLM_KV_ATTENTION_HEAD_COUNT,
- LLM_KV_ATTENTION_HEAD_COUNT_KV,
- LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
- LLM_KV_ATTENTION_CLAMP_KQV,
- LLM_KV_ATTENTION_LAYERNORM_EPS,
- LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
- LLM_KV_ROPE_DIMENSION_COUNT,
- LLM_KV_ROPE_FREQ_BASE,
- LLM_KV_ROPE_SCALE_LINEAR,
- LLM_KV_TOKENIZER_MODEL,
- LLM_KV_TOKENIZER_LIST,
- LLM_KV_TOKENIZER_TOKEN_TYPE,
- LLM_KV_TOKENIZER_SCORES,
- LLM_KV_TOKENIZER_MERGES,
- LLM_KV_TOKENIZER_BOS_ID,
- LLM_KV_TOKENIZER_EOS_ID,
- LLM_KV_TOKENIZER_UNK_ID,
- LLM_KV_TOKENIZER_SEP_ID,
- LLM_KV_TOKENIZER_PAD_ID,
- LLM_KV_TOKENIZER_HF_JSON,
- LLM_KV_TOKENIZER_RWKV,
- };
- static std::map<llm_kv, std::string> LLM_KV_NAMES = {
- { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
- { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
- { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
- { LLM_KV_GENERAL_NAME, "general.name" },
- { LLM_KV_GENERAL_AUTHOR, "general.author" },
- { LLM_KV_GENERAL_URL, "general.url" },
- { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
- { LLM_KV_GENERAL_LICENSE, "general.license" },
- { LLM_KV_GENERAL_SOURCE_URL, "general.source_url" },
- { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source_hf_repo" },
- { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
- { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
- { LLM_KV_BLOCK_COUNT, "%s.block_count" },
- { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
- { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
- { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
- { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
- { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
- { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
- { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
- { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
- { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
- { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
- { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
- { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
- { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
- { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
- { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
- { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
- { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
- };
- struct LLM_KV {
- LLM_KV(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_kv kv) const {
- return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
- }
- };
- enum llm_tensor {
- LLM_TENSOR_TOKEN_EMBD,
- LLM_TENSOR_POS_EMBD,
- LLM_TENSOR_OUTPUT,
- LLM_TENSOR_OUTPUT_NORM,
- LLM_TENSOR_ROPE_FREQS,
- LLM_TENSOR_ATTN_Q,
- LLM_TENSOR_ATTN_K,
- LLM_TENSOR_ATTN_V,
- LLM_TENSOR_ATTN_QKV,
- LLM_TENSOR_ATTN_OUT,
- LLM_TENSOR_ATTN_NORM,
- LLM_TENSOR_ATTN_NORM_2,
- LLM_TENSOR_ATTN_ROT_EMBD,
- LLM_TENSOR_FFN_GATE,
- LLM_TENSOR_FFN_DOWN,
- LLM_TENSOR_FFN_UP,
- LLM_TENSOR_FFN_NORM,
- };
- static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
- {
- LLM_ARCH_LLAMA,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_FALCON,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- };
- static llm_arch llm_arch_from_string(const std::string & name) {
- for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
- if (kv.second == name) {
- return kv.first;
- }
- }
- return LLM_ARCH_UNKNOWN;
- }
- // helper to handle gguf constants
- // usage:
- //
- // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
- //
- // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
- // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
- // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
- //
- struct LLM_TN {
- LLM_TN(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_tensor tensor) const {
- return LLM_TENSOR_NAMES[arch].at(tensor);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix) const {
- return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
- }
- std::string operator()(llm_tensor tensor, int bid) const {
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
- }
- };
- //
- // gguf helpers
- //
- #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
- { \
- const std::string skey(key); \
- const int kid = gguf_find_key(ctx, skey.c_str()); \
- if (kid >= 0) { \
- enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
- if (ktype != (type)) { \
- throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
- } \
- (dst) = func(ctx, kid); \
- } else if (req) { \
- throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
- } \
- }
- //
- // ggml helpers
- //
- static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
- struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
- if (plan.work_size > 0) {
- buf.resize(plan.work_size);
- plan.work_data = buf.data();
- }
- ggml_graph_compute(graph, &plan);
- }
- //
- // llama helpers
- //
- #ifdef GGML_USE_CUBLAS
- # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
- # define llama_host_free(data) ggml_cuda_host_free(data)
- #elif GGML_USE_METAL
- # define llama_host_malloc(n) ggml_metal_host_malloc(n)
- # define llama_host_free(data) ggml_metal_host_free(data)
- #else
- # define llama_host_malloc(n) malloc(n)
- # define llama_host_free(data) free(data)
- #endif
- #if defined(_WIN32)
- static std::string llama_format_win_err(DWORD err) {
- LPSTR buf;
- size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
- NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
- if (!size) {
- return "FormatMessageA failed";
- }
- std::string ret(buf, size);
- LocalFree(buf);
- return ret;
- }
- #endif
- struct llama_buffer {
- void * data = NULL;
- size_t size = 0;
- // fallback to malloc / free
- // useful in cases where CUDA can try to allocate PINNED memory
- bool fallback = false;
- void resize(size_t n) {
- llama_host_free(data);
- data = llama_host_malloc(n);
- if (!data) {
- fallback = true;
- data = malloc(n);
- } else {
- fallback = false;
- }
- GGML_ASSERT(data);
- size = n;
- }
- ~llama_buffer() {
- if (data) {
- if (fallback) { // NOLINT
- free(data);
- } else {
- llama_host_free(data);
- }
- }
- data = NULL;
- }
- };
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
- }
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) const {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, len, 1, fp);
- if (ferror(fp)) {
- throw std::runtime_error(format("read error: %s", strerror(errno)));
- }
- if (ret != 1) {
- throw std::runtime_error(std::string("unexpectedly reached end of file"));
- }
- }
- uint32_t read_u32() const {
- uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- void write_raw(const void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, len, 1, fp);
- if (ret != 1) {
- throw std::runtime_error(format("write error: %s", strerror(errno)));
- }
- }
- void write_u32(std::uint32_t val) const {
- write_raw(&val, sizeof(val));
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- struct llama_mmap {
- void * addr;
- size_t size;
- llama_mmap(const llama_mmap &) = delete;
- #ifdef _POSIX_MAPPED_FILES
- static constexpr bool SUPPORTED = true;
- llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
- size = file->size;
- int fd = fileno(file->fp);
- int flags = MAP_SHARED;
- // prefetch/readahead impairs performance on NUMA systems
- if (numa) { prefetch = 0; }
- #ifdef __linux__
- if (prefetch) { flags |= MAP_POPULATE; }
- #endif
- addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
- if (addr == MAP_FAILED) {
- throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
- }
- if (prefetch > 0) {
- // Advise the kernel to preload the mapped memory
- if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
- fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
- strerror(errno));
- }
- }
- if (numa) {
- // advise the kernel not to use readahead
- // (because the next page might not belong on the same node)
- if (madvise(addr, file->size, MADV_RANDOM)) {
- fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
- strerror(errno));
- }
- }
- }
- ~llama_mmap() {
- munmap(addr, size);
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
- (void) numa;
- size = file->size;
- HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
- HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
- DWORD error = GetLastError();
- if (hMapping == NULL) {
- throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
- }
- addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
- error = GetLastError();
- CloseHandle(hMapping);
- if (addr == NULL) {
- throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
- }
- #if _WIN32_WINNT >= _WIN32_WINNT_WIN8
- if (prefetch) {
- // Advise the kernel to preload the mapped memory
- WIN32_MEMORY_RANGE_ENTRY range;
- range.VirtualAddress = addr;
- range.NumberOfBytes = (SIZE_T)size;
- if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
- fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- #pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
- #endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
- }
- ~llama_mmap() {
- if (!UnmapViewOfFile(addr)) {
- fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
- (void) file;
- (void) prefetch;
- (void) numa;
- throw std::runtime_error(std::string("mmap not supported"));
- }
- #endif
- };
- // Represents some region of memory being locked using mlock or VirtualLock;
- // will automatically unlock on destruction.
- struct llama_mlock {
- void * addr = NULL;
- size_t size = 0;
- bool failed_already = false;
- llama_mlock() {}
- llama_mlock(const llama_mlock &) = delete;
- ~llama_mlock() {
- if (size) {
- raw_unlock(addr, size);
- }
- }
- void init(void * ptr) {
- GGML_ASSERT(addr == NULL && size == 0); // NOLINT
- addr = ptr;
- }
- void grow_to(size_t target_size) {
- GGML_ASSERT(addr);
- if (failed_already) {
- return;
- }
- size_t granularity = lock_granularity();
- target_size = (target_size + granularity - 1) & ~(granularity - 1);
- if (target_size > size) {
- if (raw_lock((uint8_t *) addr + size, target_size - size)) {
- size = target_size;
- } else {
- failed_already = true;
- }
- }
- }
- #ifdef _POSIX_MEMLOCK_RANGE
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- return (size_t) sysconf(_SC_PAGESIZE);
- }
- #ifdef __APPLE__
- #define MLOCK_SUGGESTION \
- "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
- "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
- #else
- #define MLOCK_SUGGESTION \
- "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
- #endif
- bool raw_lock(const void * addr, size_t size) const {
- if (!mlock(addr, size)) {
- return true;
- }
- char* errmsg = std::strerror(errno);
- bool suggest = (errno == ENOMEM);
- // Check if the resource limit is fine after all
- struct rlimit lock_limit;
- if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
- suggest = false;
- }
- if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
- suggest = false;
- }
- fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
- size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
- return false;
- }
- #undef MLOCK_SUGGESTION
- static void raw_unlock(void * addr, size_t size) {
- if (munlock(addr, size)) {
- fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
- }
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- SYSTEM_INFO si;
- GetSystemInfo(&si);
- return (size_t) si.dwPageSize;
- }
- bool raw_lock(void * ptr, size_t len) const {
- for (int tries = 1; ; tries++) {
- if (VirtualLock(ptr, len)) {
- return true;
- }
- if (tries == 2) {
- fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
- len, size, llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // It failed but this was only the first try; increase the working
- // set size and try again.
- SIZE_T min_ws_size, max_ws_size;
- if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
- fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // Per MSDN: "The maximum number of pages that a process can lock
- // is equal to the number of pages in its minimum working set minus
- // a small overhead."
- // Hopefully a megabyte is enough overhead:
- size_t increment = len + 1048576;
- // The minimum must be <= the maximum, so we need to increase both:
- min_ws_size += increment;
- max_ws_size += increment;
- if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
- fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- }
- }
- static void raw_unlock(void * ptr, size_t len) {
- if (!VirtualUnlock(ptr, len)) {
- fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- static size_t lock_granularity() {
- return (size_t) 65536;
- }
- bool raw_lock(const void * addr, size_t len) const {
- fprintf(stderr, "warning: mlock not supported on this system\n");
- return false;
- }
- static void raw_unlock(const void * addr, size_t len) {}
- #endif
- };
- typedef void (*offload_func_t)(struct ggml_tensor * tensor);
- static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
- (void) tensor;
- }
- static std::string llama_token_to_text(const struct llama_context * ctx, llama_token token) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_str(ctx, token, result.data(), result.size());
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_str(ctx, token, result.data(), result.size());
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
- return std::string(result.data(), result.size());
- }
- //
- // globals
- //
- struct llama_state {
- // We save the log callback globally
- llama_log_callback log_callback = llama_log_callback_default;
- void * log_callback_user_data = nullptr;
- };
- static llama_state g_state;
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_3B,
- MODEL_7B,
- MODEL_13B,
- MODEL_30B,
- MODEL_34B,
- MODEL_40B,
- MODEL_65B,
- MODEL_70B,
- };
- static const size_t kB = 1024;
- static const size_t MB = kB*kB;
- // default hparams (LLaMA 7B)
- struct llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx_train = 2048; // the context size used during training
- uint32_t n_ctx = 512; // the context size used during inference
- uint32_t n_embd = 4096;
- uint32_t n_head = 32;
- uint32_t n_head_kv = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- uint32_t n_ff = 11008;
- float f_norm_eps = 1e-5;
- float f_norm_rms_eps = 1e-5;
- float rope_freq_base = 10000.0f;
- float rope_freq_scale = 1.0f;
- bool operator!=(const llama_hparams & other) const {
- return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
- }
- uint32_t n_gqa() const {
- return n_head/n_head_kv;
- }
- uint32_t n_embd_head() const {
- return n_embd/n_head;
- }
- uint32_t n_embd_gqa() const {
- return n_embd/n_gqa();
- }
- size_t kv_size() const {
- size_t result = 2ull;
- result *= (size_t) n_embd_gqa();
- result *= (size_t) n_ctx;
- result *= (size_t) n_layer;
- result *= sizeof(ggml_fp16_t);
- return result;
- }
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attn_norm;
- struct ggml_tensor * attn_norm_b;
- struct ggml_tensor * attn_norm_2;
- struct ggml_tensor * attn_norm_2_b;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- struct ggml_tensor * wqkv;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1; // ffn_gate
- struct ggml_tensor * w2; // ffn_down
- struct ggml_tensor * w3; // ffn_up
- };
- struct llama_kv_cache {
- struct ggml_tensor * k = NULL;
- struct ggml_tensor * v = NULL;
- struct ggml_context * ctx = NULL;
- llama_buffer buf;
- int n; // number of tokens currently in the cache
- ~llama_kv_cache() {
- if (ctx) {
- ggml_free(ctx);
- }
- #ifdef GGML_USE_CUBLAS
- ggml_cuda_free_data(k);
- ggml_cuda_free_data(v);
- #endif // GGML_USE_CUBLAS
- }
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- using ttype = llama_token_type;
- struct token_data {
- token text;
- float score;
- ttype type;
- };
- enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
- std::unordered_map<token, id> token_to_id;
- std::vector<token_data> id_to_token;
- std::map<std::pair<std::string, std::string>, int> bpe_ranks;
- // default LLaMA special tokens
- id special_bos_id = 1;
- id special_eos_id = 2;
- id special_unk_id = 0;
- id special_sep_id = -1;
- id special_pad_id = -1;
- id linefeed_id = 13;
- int find_bpe_rank(std::string token_left, std::string token_right) const {
- replace_all(token_left, " ", "Ġ");
- replace_all(token_left, "\n", "Ċ");
- replace_all(token_right, " ", "Ġ");
- replace_all(token_right, "\n", "Ċ");
- auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
- if (it == bpe_ranks.end()) {
- return -1;
- }
- return it->second;
- }
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llm_arch arch = LLM_ARCH_UNKNOWN;
- llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
- std::string name = "n/a";
- llama_hparams hparams;
- llama_vocab vocab;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * output_norm;
- struct ggml_tensor * output_norm_b;
- struct ggml_tensor * output;
- std::vector<llama_layer> layers;
- int n_gpu_layers;
- // context
- struct ggml_context * ctx = NULL;
- // the model memory buffer
- llama_buffer buf;
- // model memory mapped file
- std::unique_ptr<llama_mmap> mapping;
- // objects representing data potentially being locked in memory
- llama_mlock mlock_buf;
- llama_mlock mlock_mmap;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- ~llama_model() {
- if (ctx) {
- ggml_free(ctx);
- }
- #ifdef GGML_USE_CUBLAS
- for (size_t i = 0; i < tensors_by_name.size(); ++i) {
- ggml_cuda_free_data(tensors_by_name[i].second);
- }
- ggml_cuda_free_scratch();
- #elif defined(GGML_USE_CLBLAST)
- for (size_t i = 0; i < tensors_by_name.size(); ++i) {
- ggml_cl_free_data(tensors_by_name[i].second);
- }
- #endif
- }
- };
- struct llama_context {
- llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
- ~llama_context() {
- if (model_owner) {
- delete &model;
- }
- #ifdef GGML_USE_METAL
- if (ctx_metal) {
- ggml_metal_free(ctx_metal);
- }
- #endif
- if (alloc) {
- ggml_allocr_free(alloc);
- }
- }
- std::mt19937 rng;
- bool has_evaluated_once = false;
- int64_t t_sample_us = 0;
- int64_t t_eval_us = 0;
- int64_t t_p_eval_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_eval = 0; // number of eval calls
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- const llama_model & model;
- bool model_owner = false;
- int64_t t_load_us;
- int64_t t_start_us;
- // key + value cache for the self attention
- struct llama_kv_cache kv_self;
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- bool logits_all = false;
- // input embedding (1-dimensional array: [n_embd])
- std::vector<float> embedding;
- // reusable buffer for `struct ggml_graph_plan.work_data`
- std::vector<uint8_t> work_buffer;
- // memory buffers used to evaluate the model
- llama_buffer buf_compute;
- llama_buffer buf_alloc;
- ggml_allocr * alloc = NULL;
- #ifdef GGML_USE_METAL
- ggml_metal_context * ctx_metal = NULL;
- #endif
- #ifdef GGML_USE_MPI
- ggml_mpi_context * ctx_mpi = NULL;
- #endif
- };
- //
- // kv cache helpers
- //
- static bool llama_kv_cache_init(
- const struct llama_hparams & hparams,
- struct llama_kv_cache & cache,
- ggml_type wtype,
- int n_ctx,
- int n_gpu_layers) {
- const int n_embd = hparams.n_embd_gqa();
- const int n_layer = hparams.n_layer;
- const int64_t n_mem = n_layer*n_ctx;
- const int64_t n_elements = n_embd*n_mem;
- cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
- cache.n = 0;
- struct ggml_init_params params;
- params.mem_size = cache.buf.size;
- params.mem_buffer = cache.buf.data;
- params.no_alloc = false;
- cache.ctx = ggml_init(params);
- if (!cache.ctx) {
- LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- ggml_set_name(cache.k, "cache_k");
- ggml_set_name(cache.v, "cache_v");
- (void) n_gpu_layers;
- #ifdef GGML_USE_CUBLAS
- if (n_gpu_layers > n_layer + 1) {
- ggml_cuda_assign_buffers_no_scratch(cache.v);
- }
- if (n_gpu_layers > n_layer + 2) {
- ggml_cuda_assign_buffers_no_scratch(cache.k);
- }
- #endif // GGML_USE_CUBLAS
- return true;
- }
- //
- // model loading and saving
- //
- enum llama_fver {
- GGUF_FILE_VERSION_V1 = 1,
- };
- static const char * llama_file_version_name(llama_fver version) {
- switch (version) {
- case GGUF_FILE_VERSION_V1: return "GGUF V1 (latest)";
- }
- return "unknown";
- }
- static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
- for (size_t i = 1; i < ne.size(); i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
- }
- return buf;
- }
- static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
- }
- return buf;
- }
- struct llama_model_loader {
- int n_kv = 0;
- int n_tensors = 0;
- int n_created = 0;
- int64_t n_elements = 0;
- bool use_mmap = false;
- llama_file file;
- llama_ftype ftype;
- llama_fver fver;
- std::unique_ptr<llama_mmap> mapping;
- struct gguf_context * ctx_gguf = NULL;
- struct ggml_context * ctx_meta = NULL;
- llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &ctx_meta,
- };
- ctx_gguf = gguf_init_from_file(fname.c_str(), params);
- if (!ctx_gguf) {
- throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
- }
- n_kv = gguf_get_n_kv(ctx_gguf);
- n_tensors = gguf_get_n_tensors(ctx_gguf);
- fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
- for (int i = 0; i < n_tensors; i++) {
- const char * name = gguf_get_tensor_name(ctx_gguf, i);
- struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
- n_elements += ggml_nelements(t);
- }
- LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
- __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
- // determine file type based on the number of tensors for each quantization and print meta data
- // TODO: make optional
- {
- std::map<enum ggml_type, uint32_t> n_type;
- uint32_t n_type_max = 0;
- enum ggml_type type_max = GGML_TYPE_F32;
- for (int i = 0; i < n_tensors; i++) {
- const char * name = gguf_get_tensor_name(ctx_gguf, i);
- struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
- n_type[meta->type]++;
- if (n_type_max < n_type[meta->type]) {
- n_type_max = n_type[meta->type];
- type_max = meta->type;
- }
- LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
- }
- switch (type_max) {
- case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
- case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
- case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
- case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
- case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
- case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
- case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
- case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
- case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
- case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
- case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
- case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
- default:
- {
- LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
- ftype = LLAMA_FTYPE_ALL_F32;
- } break;
- }
- // this is a way to mark that we have "guessed" the file type
- ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
- {
- const int kid = gguf_find_key(ctx_gguf, "general.file_type");
- if (kid >= 0) {
- ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
- }
- }
- for (int i = 0; i < n_kv; i++) {
- const char * name = gguf_get_key(ctx_gguf, i);
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
- }
- // print type counts
- for (auto & kv : n_type) {
- if (kv.second == 0) {
- continue;
- }
- LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
- }
- }
- if (!llama_mmap::SUPPORTED) {
- LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
- use_mmap = false;
- }
- this->use_mmap = use_mmap;
- }
- ~llama_model_loader() {
- if (ctx_gguf) {
- gguf_free(ctx_gguf);
- }
- if (ctx_meta) {
- ggml_free(ctx_meta);
- }
- }
- std::string get_arch_name() const {
- const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
- std::string arch_name;
- GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
- return arch_name;
- }
- enum llm_arch get_arch() const {
- const std::string arch_name = get_arch_name();
- return llm_arch_from_string(arch_name);
- }
- const char * get_tensor_name(int i) const {
- return gguf_get_tensor_name(ctx_gguf, i);
- }
- struct ggml_tensor * get_tensor_meta(int i) const {
- return ggml_get_tensor(ctx_meta, get_tensor_name(i));
- }
- void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
- ctx_size_p = 0;
- mmapped_size_p = 0;
- for (int i = 0; i < n_tensors; i++) {
- struct ggml_tensor * meta = get_tensor_meta(i);
- ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
- (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
- }
- }
- struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend backend) {
- if (backend != GGML_BACKEND_CPU) {
- ggml_set_no_alloc(ctx, true);
- }
- struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
- tensor->backend = backend; // TODO: ggml_set_backend
- ggml_set_name(tensor, ggml_get_name(meta));
- if (backend != GGML_BACKEND_CPU) {
- ggml_set_no_alloc(ctx, use_mmap);
- }
- n_created++;
- return tensor;
- }
- struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend backend) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
- if (cur == NULL) {
- throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
- }
- {
- bool is_ok = true;
- for (size_t i = 0; i < ne.size(); ++i) {
- if (ne[i] != cur->ne[i]) {
- is_ok = false;
- break;
- }
- }
- if (!is_ok) {
- throw std::runtime_error(
- format("%s: tensor '%s' has wrong shape; expected %s, got %s",
- __func__, name.c_str(),
- llama_format_tensor_shape(ne).c_str(),
- llama_format_tensor_shape(cur).c_str()));
- }
- }
- return create_tensor_for(ctx, cur, backend);
- }
- void done_getting_tensors() const {
- if (n_created != n_tensors) {
- throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
- }
- }
- size_t file_offset(const char * name) const {
- const int idx = gguf_find_tensor(ctx_gguf, name);
- if (idx < 0) {
- throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
- }
- return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
- }
- void load_data_for(struct ggml_tensor * cur) const {
- const size_t offs = file_offset(ggml_get_name(cur));
- if (use_mmap) {
- cur->data = (uint8_t *) mapping->addr + offs;
- } else {
- file.seek(offs, SEEK_SET);
- file.read_raw(cur->data, ggml_nbytes(cur));
- }
- }
- void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
- size_t size_data = 0;
- size_t size_lock = 0;
- size_t size_pref = 0; // prefetch
- for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
- size_data += ggml_nbytes(cur);
- if (cur->backend == GGML_BACKEND_CPU) {
- size_pref += ggml_nbytes(cur);
- }
- }
- if (use_mmap) {
- mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
- if (lmlock) {
- lmlock->init(mapping->addr);
- }
- }
- size_t done_size = 0;
- for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
- GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
- if (progress_callback) {
- progress_callback((float) done_size / size_data, progress_callback_user_data);
- }
- // allocate temp buffer if not using mmap
- if (!use_mmap && cur->data == NULL) {
- GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
- cur->data = malloc(ggml_nbytes(cur));
- }
- load_data_for(cur);
- switch (cur->backend) {
- case GGML_BACKEND_CPU:
- if (use_mmap && lmlock) {
- size_lock += ggml_nbytes(cur);
- lmlock->grow_to(size_lock);
- }
- break;
- #if defined(GGML_USE_CUBLAS)
- case GGML_BACKEND_GPU:
- case GGML_BACKEND_GPU_SPLIT:
- // old code:
- //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
- // TODO: test if this works !!
- ggml_cuda_transform_tensor(cur->data, cur);
- if (!use_mmap) {
- free(cur->data);
- }
- break;
- #elif defined(GGML_USE_CLBLAST)
- case GGML_BACKEND_GPU:
- ggml_cl_transform_tensor(cur->data, cur);
- if (!use_mmap) {
- free(cur->data);
- }
- break;
- #endif
- default:
- continue;
- }
- done_size += ggml_nbytes(cur);
- }
- }
- };
- //
- // load LLaMA models
- //
- std::string llama_model_ftype_name(enum llama_ftype ftype) {
- if (ftype & LLAMA_FTYPE_GUESSED) {
- return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
- }
- switch (ftype) {
- case LLAMA_FTYPE_ALL_F32: return "all F32";
- case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
- case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
- case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
- case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
- return "mostly Q4_1, some F16";
- case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
- case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
- case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
- case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
- case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
- default: return "unknown, may not work";
- }
- }
- static const char * llama_model_type_name(e_model type) {
- switch (type) {
- case MODEL_3B: return "3B";
- case MODEL_7B: return "7B";
- case MODEL_13B: return "13B";
- case MODEL_30B: return "30B";
- case MODEL_34B: return "34B";
- case MODEL_40B: return "40B";
- case MODEL_65B: return "65B";
- case MODEL_70B: return "70B";
- default: return "?B";
- }
- }
- static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
- model.arch = ml.get_arch();
- if (model.arch == LLM_ARCH_UNKNOWN) {
- throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
- }
- }
- static void llm_load_hparams(
- llama_model_loader & ml,
- llama_model & model,
- int n_ctx,
- float rope_freq_base,
- float rope_freq_scale) {
- struct gguf_context * ctx = ml.ctx_gguf;
- const auto kv = LLM_KV(model.arch);
- auto & hparams = model.hparams;
- // get general kv
- GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
- // get hparams kv
- GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
- GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
- GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
- GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
- GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
- GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
- // n_head_kv is optional, default to n_head
- hparams.n_head_kv = hparams.n_head;
- GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
- // TODO: manually setting rope freq base and scale should override this
- // FIXME: partial fix when the param specified is not the default value, but
- // will not work for overriding the model value to the params default
- llama_context_params defaults = llama_context_default_params();
- // rope_freq_base
- {
- float ropebase = 10000.0f;
- GGUF_GET_KEY(ctx, ropebase, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
- if (ropebase != 10000.0f && rope_freq_base == defaults.rope_freq_base) {
- rope_freq_base = ropebase;
- }
- }
- // rope_freq_scale (inverse of the kv) is optional
- {
- float ropescale = 1.0f;
- GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
- if (ropescale != 1.0f && rope_freq_scale == defaults.rope_freq_scale) {
- rope_freq_scale = 1.0f/ropescale;
- }
- }
- // sanity check for n_rot (optional)
- {
- hparams.n_rot = hparams.n_embd / hparams.n_head;
- GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
- if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
- throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
- }
- }
- // arch-specific KVs
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
- switch (hparams.n_layer) {
- case 26: model.type = e_model::MODEL_3B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 48: model.type = e_model::MODEL_34B; break;
- case 60: model.type = e_model::MODEL_30B; break;
- case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 60: model.type = e_model::MODEL_40B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- default: (void)0;
- };
- model.ftype = ml.ftype;
- hparams.n_ctx = n_ctx;
- hparams.rope_freq_base = rope_freq_base;
- hparams.rope_freq_scale = rope_freq_scale;
- }
- // TODO: This should probably be in llama.h
- static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos, bool escape);
- static void llm_load_vocab(
- llama_model_loader & ml,
- llama_model & model) {
- auto & vocab = model.vocab;
- struct gguf_context * ctx = ml.ctx_gguf;
- const auto kv = LLM_KV(model.arch);
- const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
- if (token_idx == -1) {
- throw std::runtime_error("cannot find tokenizer vocab in model file\n");
- }
- const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
- if (score_idx == -1) {
- throw std::runtime_error("cannot find tokenizer scores in model file\n");
- }
- const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
- const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
- if (toktype_idx == -1) {
- throw std::runtime_error("cannot find token type list in GGUF file\n");
- }
- const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
- // determine vocab type
- {
- std::string tokenizer_name;
- GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
- if (tokenizer_name == "llama") {
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- // default special tokens
- vocab.special_bos_id = 1;
- vocab.special_eos_id = 2;
- vocab.special_unk_id = 0;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- } else if (tokenizer_name == "gpt2") {
- vocab.type = LLAMA_VOCAB_TYPE_BPE;
- // read bpe merges and populate bpe ranks
- const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
- if (merges_keyidx == -1) {
- throw std::runtime_error("cannot find tokenizer merges in model file\n");
- }
- const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
- for (int i = 0; i < n_merges; i++) {
- const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
- std::string first;
- std::string second;
- const size_t pos = word.find(' ', 1);
- if (pos != std::string::npos) {
- first = word.substr(0, pos);
- second = word.substr(pos + 1);
- }
- vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
- }
- // default special tokens
- vocab.special_bos_id = 11;
- vocab.special_eos_id = 11;
- vocab.special_unk_id = -1;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- } else {
- LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
- LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- }
- }
- const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
- vocab.id_to_token.resize(n_vocab);
- for (uint32_t i = 0; i < n_vocab; i++) {
- std::string word = gguf_get_arr_str(ctx, token_idx, i);
- vocab.token_to_id[word] = i;
- auto & token_data = vocab.id_to_token[i];
- token_data.text = std::move(word);
- token_data.score = scores[i];
- token_data.type = (llama_token_type) toktypes[i];
- }
- // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
- vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false, false)[0];
- // special tokens
- GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
- GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
- GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
- GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
- GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
- }
- static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
- const auto & hparams = model.hparams;
- const auto & vocab = model.vocab;
- // hparams
- LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
- LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
- LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
- LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
- LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
- LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
- LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx);
- LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
- LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
- LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
- LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
- LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
- LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
- LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
- LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
- LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
- LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
- LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
- LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
- LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
- LLAMA_LOG_INFO("%s: model size = %.2f B\n", __func__, ml.n_elements*1e-9);
- // general kv
- LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
- // special tokens
- if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
- if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
- if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
- if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
- if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
- if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
- }
- static void llm_load_tensors(
- llama_model_loader & ml,
- llama_model & model,
- int n_batch,
- int n_gpu_layers,
- int main_gpu,
- const float * tensor_split,
- const bool mul_mat_q,
- bool low_vram,
- ggml_type memory_type,
- bool use_mlock,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- model.t_start_us = ggml_time_us();
- auto & ctx = model.ctx;
- auto & hparams = model.hparams;
- model.n_gpu_layers = n_gpu_layers;
- size_t ctx_size;
- size_t mmapped_size;
- ml.calc_sizes(ctx_size, mmapped_size);
- LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
- // create the ggml context
- {
- model.buf.resize(ctx_size);
- if (use_mlock) {
- model.mlock_buf.init (model.buf.data);
- model.mlock_buf.grow_to(model.buf.size);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ model.buf.size,
- /*.mem_buffer =*/ model.buf.data,
- /*.no_alloc =*/ ml.use_mmap,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- throw std::runtime_error(format("ggml_init() failed"));
- }
- }
- (void) main_gpu;
- (void) mul_mat_q;
- #if defined(GGML_USE_CUBLAS)
- LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
- ggml_cuda_set_main_device(main_gpu);
- ggml_cuda_set_mul_mat_q(mul_mat_q);
- #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
- #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
- #elif defined(GGML_USE_CLBLAST)
- LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
- #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
- #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
- #else
- #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
- #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
- #endif
- // prepare memory for the weights
- size_t vram_weights = 0;
- {
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_embd_gqa = hparams.n_embd_gqa();
- const int64_t n_layer = hparams.n_layer;
- const int64_t n_vocab = hparams.n_vocab;
- const auto tn = LLM_TN(model.arch);
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
- // output
- {
- ggml_backend backend_norm;
- ggml_backend backend_output;
- if (n_gpu_layers > int(n_layer)) {
- // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
- // on Windows however this is detrimental unless everything is on the GPU
- #ifndef _WIN32
- backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
- #else
- backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
- #endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
- } else {
- backend_norm = GGML_BACKEND_CPU;
- backend_output = GGML_BACKEND_CPU;
- }
- model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
- model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
- if (backend_norm == GGML_BACKEND_GPU) {
- vram_weights += ggml_nbytes(model.output_norm);
- }
- if (backend_output == GGML_BACKEND_GPU_SPLIT) {
- vram_weights += ggml_nbytes(model.output);
- }
- }
- const uint32_t n_ff = hparams.n_ff;
- const int i_gpu_start = n_layer - n_gpu_layers;
- model.layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
- layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
- layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
- layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
- layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
- layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
- layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
- layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
- layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
- if (backend == GGML_BACKEND_GPU) {
- vram_weights +=
- ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
- ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
- ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
- }
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- // TODO: CPU-only for now
- model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
- // output
- {
- ggml_backend backend_norm;
- ggml_backend backend_output;
- if (n_gpu_layers > int(n_layer)) {
- // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
- // on Windows however this is detrimental unless everything is on the GPU
- #ifndef _WIN32
- backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
- #else
- backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
- #endif // _WIN32
- backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
- } else {
- backend_norm = GGML_BACKEND_CPU;
- backend_output = GGML_BACKEND_CPU;
- }
- model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
- model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
- model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
- if (backend_norm == GGML_BACKEND_GPU) {
- vram_weights += ggml_nbytes(model.output_norm);
- vram_weights += ggml_nbytes(model.output_norm_b);
- }
- if (backend_output == GGML_BACKEND_GPU_SPLIT) {
- vram_weights += ggml_nbytes(model.output);
- }
- }
- const uint32_t n_ff = hparams.n_ff;
- const int i_gpu_start = n_layer - n_gpu_layers;
- model.layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
- const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
- layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
- if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
- layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
- layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
- if (backend == GGML_BACKEND_GPU) {
- vram_weights += ggml_nbytes(layer.attn_norm_2);
- vram_weights += ggml_nbytes(layer.attn_norm_2_b);
- }
- }
- layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
- layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
- layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
- layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
- if (backend == GGML_BACKEND_GPU) {
- vram_weights +=
- ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
- ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
- ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
- }
- }
- } break;
- default:
- throw std::runtime_error("unknown architecture");
- };
- }
- ml.done_getting_tensors();
- // print memory requirements
- {
- const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
- // this is the total memory required to run the inference
- size_t mem_required =
- ctx_size +
- mmapped_size - vram_weights; // weights in VRAM not in memory
- // this is the memory required by one llama_state
- const size_t mem_required_state = scale*hparams.kv_size();
- LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
- mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
- (void) n_batch;
- #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
- }
- size_t vram_kv_cache = 0;
- #ifdef GGML_USE_CUBLAS
- const int max_backend_supported_layers = hparams.n_layer + 3;
- const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
- if (n_gpu_layers > (int) hparams.n_layer + 1) {
- if (low_vram) {
- LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
- } else {
- LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
- vram_kv_cache += hparams.kv_size() / 2;
- }
- }
- if (n_gpu_layers > (int) hparams.n_layer + 2) {
- if (low_vram) {
- LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
- } else {
- LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
- vram_kv_cache += hparams.kv_size() / 2;
- }
- }
- #elif defined(GGML_USE_CLBLAST)
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- #endif // GGML_USE_CUBLAS
- LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
- __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- LLAMA_LOG_INFO("%s: VRAM used: %zu MB\n",
- __func__, (vram_weights + vram_kv_cache + MB - 1) / MB); // round up
- #else
- (void) n_gpu_layers;
- #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
- }
- // populate `tensors_by_name`
- for (int i = 0; i < ml.n_tensors; ++i) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
- model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
- }
- (void) tensor_split;
- #if defined(GGML_USE_CUBLAS)
- {
- ggml_cuda_set_tensor_split(tensor_split);
- }
- #endif
- ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
- if (progress_callback) {
- progress_callback(1.0f, progress_callback_user_data);
- }
- model.mapping = std::move(ml.mapping);
- // loading time will be recalculate after the first eval, so
- // we take page faults deferred by mmap() into consideration
- model.t_load_us = ggml_time_us() - model.t_start_us;
- }
- static bool llama_model_load(
- const std::string & fname,
- llama_model & model,
- int n_ctx,
- int n_batch,
- int n_gpu_layers,
- int main_gpu,
- const float * tensor_split,
- const bool mul_mat_q,
- float rope_freq_base,
- float rope_freq_scale,
- bool low_vram,
- ggml_type memory_type,
- bool use_mmap,
- bool use_mlock,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void *progress_callback_user_data) {
- try {
- std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
- llm_load_arch (*ml, model);
- llm_load_hparams(*ml, model, n_ctx, rope_freq_base, rope_freq_scale);
- llm_load_vocab (*ml, model);
- llm_load_print_meta(*ml, model);
- if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
- throw std::runtime_error("vocab size mismatch");
- }
- if (vocab_only) {
- LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
- return true;
- }
- llm_load_tensors(
- *ml, model, n_batch, n_gpu_layers,
- main_gpu, tensor_split, mul_mat_q, low_vram, memory_type,
- use_mlock, progress_callback, progress_callback_user_data);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
- return false;
- }
- return true;
- }
- static struct ggml_cgraph * llm_build_llama(
- llama_context & lctx,
- const llama_token * tokens,
- const float * embd,
- int n_tokens,
- int n_past) {
- GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
- const int N = n_tokens;
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- const auto & kv_self = lctx.kv_self;
- GGML_ASSERT(!!kv_self.ctx);
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_layer = hparams.n_layer;
- const int64_t n_ctx = hparams.n_ctx;
- const int64_t n_head = hparams.n_head;
- const int64_t n_head_kv = hparams.n_head_kv;
- const int64_t n_embd_head = hparams.n_embd_head();
- const int64_t n_embd_gqa = hparams.n_embd_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- const float freq_base = hparams.rope_freq_base;
- const float freq_scale = hparams.rope_freq_scale;
- const float norm_rms_eps = hparams.f_norm_rms_eps;
- const int n_gpu_layers = model.n_gpu_layers;
- auto & buf_compute = lctx.buf_compute;
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size,
- /*.mem_buffer =*/ buf_compute.data,
- /*.no_alloc =*/ false,
- };
- params.no_alloc = true;
- struct ggml_context * ctx0 = ggml_init(params);
- ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- if (tokens) {
- struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- ggml_allocr_alloc(lctx.alloc, inp_tokens);
- if (!ggml_allocr_is_measure(lctx.alloc)) {
- memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
- }
- ggml_set_name(inp_tokens, "inp_tokens");
- inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
- } else {
- #ifdef GGML_USE_MPI
- GGML_ASSERT(false && "not implemented");
- #endif
- inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
- ggml_allocr_alloc(lctx.alloc, inpL);
- if (!ggml_allocr_is_measure(lctx.alloc)) {
- memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
- }
- }
- const int i_gpu_start = n_layer - n_gpu_layers;
- (void) i_gpu_start;
- // offload functions set the tensor output backend to GPU
- // tensors are GPU-accelerated if any input or the output has been offloaded
- //
- // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
- // in that case ggml_cuda_assign_buffers has no effect
- offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
- offload_func_t offload_func_kq = llama_nop;
- offload_func_t offload_func_v = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (n_gpu_layers > n_layer) {
- offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
- }
- if (n_gpu_layers > n_layer + 1) {
- offload_func_v = ggml_cuda_assign_buffers_no_alloc;
- }
- if (n_gpu_layers > n_layer + 2) {
- offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
- }
- #endif // GGML_USE_CUBLAS
- struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
- ggml_allocr_alloc(lctx.alloc, KQ_scale);
- if (!ggml_allocr_is_measure(lctx.alloc)) {
- ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
- }
- ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
- for (int il = 0; il < n_layer; ++il) {
- ggml_format_name(inpL, "layer_inp_%d", il);
- offload_func_t offload_func = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (il >= i_gpu_start) {
- offload_func = ggml_cuda_assign_buffers_no_alloc;
- }
- #endif // GGML_USE_CUBLAS
- struct ggml_tensor * inpSA = inpL;
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
- offload_func(cur);
- ggml_set_name(cur, "rms_norm_0");
- // cur = cur*attn_norm(broadcasted)
- cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
- offload_func(cur);
- ggml_set_name(cur, "attention_norm_0");
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- offload_func_kq(tmpk);
- ggml_set_name(tmpk, "tmpk");
- struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- offload_func_kq(tmpq);
- ggml_set_name(tmpq, "tmpq");
- struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
- offload_func_kq(Kcur);
- ggml_set_name(Kcur, "Kcur");
- struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
- offload_func_kq(Qcur);
- ggml_set_name(Qcur, "Qcur");
- // store key and value to memory
- {
- // compute the transposed [N, n_embd] V matrix
- struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- offload_func_v(tmpv);
- ggml_set_name(tmpv, "tmpv");
- struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
- offload_func_v(Vcur);
- ggml_set_name(Vcur, "Vcur");
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
- offload_func_kq(k);
- ggml_set_name(k, "k");
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
- offload_func_v(v);
- ggml_set_name(v, "v");
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
- }
- struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
- offload_func_kq(Q);
- ggml_set_name(Q, "Q");
- struct ggml_tensor * K =
- ggml_view_3d(ctx0, kv_self.k,
- n_embd_head, n_past + N, n_head_kv,
- ggml_element_size(kv_self.k)*n_embd_gqa,
- ggml_element_size(kv_self.k)*n_embd_head,
- ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
- offload_func_kq(K);
- ggml_set_name(K, "K");
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- offload_func_kq(KQ);
- ggml_set_name(KQ, "KQ");
- // KQ_scaled = KQ / sqrt(n_embd_head)
- // KQ_scaled shape [n_past + N, N, n_head, 1]
- struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
- offload_func_kq(KQ_scaled);
- ggml_set_name(KQ_scaled, "KQ_scaled");
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
- offload_func_kq(KQ_masked);
- ggml_set_name(KQ_masked, "KQ_masked");
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
- offload_func_v(KQ_soft_max);
- ggml_set_name(KQ_soft_max, "KQ_soft_max");
- // split cached V into n_head heads
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, kv_self.v,
- n_past + N, n_embd_head, n_head_kv,
- ggml_element_size(kv_self.v)*n_ctx,
- ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
- ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
- offload_func_v(V);
- ggml_set_name(V, "V");
- #if 1
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- offload_func_v(KQV);
- ggml_set_name(KQV, "KQV");
- #else
- // make V contiguous in memory to speed up the matmul, however we waste time on the copy
- // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
- // is there a better way?
- struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
- #endif
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- offload_func_v(KQV_merged);
- ggml_set_name(KQV_merged, "KQV_merged");
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- offload_func_v(cur);
- ggml_set_name(cur, "KQV_merged_contiguous");
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model.layers[il].wo,
- cur);
- offload_func(cur);
- ggml_set_name(cur, "result_wo");
- }
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
- offload_func(inpFF);
- ggml_set_name(inpFF, "inpFF");
- // feed-forward network
- {
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
- offload_func(cur);
- ggml_set_name(cur, "rms_norm_1");
- // cur = cur*ffn_norm(broadcasted)
- cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
- offload_func(cur);
- ggml_set_name(cur, "ffn_norm");
- }
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model.layers[il].w3,
- cur);
- offload_func(tmp);
- ggml_set_name(tmp, "result_w3");
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w1,
- cur);
- offload_func(cur);
- ggml_set_name(cur, "result_w1");
- // SILU activation
- cur = ggml_silu(ctx0, cur);
- offload_func(cur);
- ggml_set_name(cur, "silu");
- cur = ggml_mul(ctx0, cur, tmp);
- offload_func(cur);
- ggml_set_name(cur, "silu_x_result_w3");
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w2,
- cur);
- offload_func(cur);
- ggml_set_name(cur, "result_w2");
- }
- cur = ggml_add(ctx0, cur, inpFF);
- offload_func(cur);
- ggml_set_name(cur, "inpFF_+_result_w2");
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- // norm
- {
- cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
- offload_func_nr(cur);
- ggml_set_name(cur, "rms_norm_2");
- // cur = cur*norm(broadcasted)
- cur = ggml_mul(ctx0, cur, model.output_norm);
- // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
- ggml_set_name(cur, "result_norm");
- }
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- ggml_set_name(cur, "result_output");
- ggml_build_forward_expand(gf, cur);
- ggml_free(ctx0);
- return gf;
- }
- static struct ggml_cgraph * llm_build_falcon(
- llama_context & lctx,
- const llama_token * tokens,
- const float * embd,
- int n_tokens,
- int n_past) {
- GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
- const int N = n_tokens;
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- const auto & kv_self = lctx.kv_self;
- GGML_ASSERT(!!kv_self.ctx);
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_layer = hparams.n_layer;
- const int64_t n_ctx = hparams.n_ctx;
- const int64_t n_head = hparams.n_head;
- const int64_t n_head_kv = hparams.n_head_kv;
- const int64_t n_embd_head = hparams.n_embd_head();
- const int64_t n_embd_gqa = hparams.n_embd_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- const float freq_base = hparams.rope_freq_base;
- const float freq_scale = hparams.rope_freq_scale;
- const float norm_eps = hparams.f_norm_eps;
- const int n_gpu_layers = model.n_gpu_layers;
- auto & buf_compute = lctx.buf_compute;
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size,
- /*.mem_buffer =*/ buf_compute.data,
- /*.no_alloc =*/ false,
- };
- params.no_alloc = true;
- struct ggml_context * ctx0 = ggml_init(params);
- ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- if (tokens) {
- struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- ggml_allocr_alloc(lctx.alloc, inp_tokens);
- if (!ggml_allocr_is_measure(lctx.alloc)) {
- memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
- }
- ggml_set_name(inp_tokens, "inp_tokens");
- inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
- } else {
- #ifdef GGML_USE_MPI
- GGML_ASSERT(false && "not implemented");
- #endif
- inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
- ggml_allocr_alloc(lctx.alloc, inpL);
- if (!ggml_allocr_is_measure(lctx.alloc)) {
- memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
- }
- }
- const int i_gpu_start = n_layer - n_gpu_layers;
- (void) i_gpu_start;
- // offload functions set the tensor output backend to GPU
- // tensors are GPU-accelerated if any input or the output has been offloaded
- //
- // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
- // in that case ggml_cuda_assign_buffers has no effect
- offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
- offload_func_t offload_func_kq = llama_nop;
- offload_func_t offload_func_v = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (n_gpu_layers > n_layer) {
- offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
- }
- if (n_gpu_layers > n_layer + 1) {
- offload_func_v = ggml_cuda_assign_buffers_no_alloc;
- }
- if (n_gpu_layers > n_layer + 2) {
- offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
- }
- #endif // GGML_USE_CUBLAS
- struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
- ggml_allocr_alloc(lctx.alloc, KQ_scale);
- if (!ggml_allocr_is_measure(lctx.alloc)) {
- ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
- }
- ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * attn_norm;
- offload_func_t offload_func = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (il >= i_gpu_start) {
- offload_func = ggml_cuda_assign_buffers_no_alloc;
- }
- #endif // GGML_USE_CUBLAS
- // self-attention
- // TODO: refactor into common function (shared with LLaMA)
- {
- attn_norm = ggml_norm(ctx0, inpL, norm_eps);
- offload_func(attn_norm);
- attn_norm = ggml_add(ctx0,
- ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
- model.layers[il].attn_norm_b);
- offload_func(attn_norm->src[0]);
- offload_func(attn_norm);
- if (model.layers[il].attn_norm_2) { // Falcon-40B
- cur = ggml_norm(ctx0, inpL, norm_eps);
- offload_func(cur);
- cur = ggml_add(ctx0,
- ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
- model.layers[il].attn_norm_2_b);
- offload_func(cur->src[0]);
- offload_func(cur);
- } else { // Falcon 7B
- cur = attn_norm;
- }
- // compute QKV
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- offload_func_kq(cur);
- // Note that the strides for Kcur, Vcur are set up so that the
- // resulting views are misaligned with the tensor's storage
- // (by applying the K/V offset we shift the tensor's original
- // view to stick out behind the viewed QKV tensor's allocated
- // memory, so to say). This is ok because no actual accesses
- // happen to that out-of-range memory, but it can require some
- // trickery when trying to accurately dump these views for
- // debugging.
- const size_t wsize = ggml_type_size(cur->type);
- struct ggml_tensor * tmpq = ggml_view_3d(
- ctx0, cur, n_embd_head, n_head, N,
- wsize * n_embd_head,
- wsize * n_embd_head * (n_head + 2 * n_head_kv),
- 0);
- offload_func_kq(tmpq);
- struct ggml_tensor * tmpk = ggml_view_3d(
- ctx0, cur, n_embd_head, n_head_kv, N,
- wsize * n_embd_head,
- wsize * n_embd_head * (n_head + 2 * n_head_kv),
- wsize * n_embd_head * n_head);
- offload_func_kq(tmpk);
- struct ggml_tensor * tmpv = ggml_view_3d(
- ctx0, cur, n_embd_head, n_head_kv, N,
- wsize * n_embd_head,
- wsize * n_embd_head * (n_head + 2 * n_head_kv),
- wsize * n_embd_head * (n_head + n_head_kv));
- offload_func_v(tmpv);
- // using mode = 2 for neox mode
- struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, tmpq, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
- offload_func_kq(Qcur);
- struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, tmpk, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
- offload_func_kq(Kcur);
- {
- struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
- offload_func_v(Vcur);
- offload_func_v(Vcur->src[0]->src[0]);
- ggml_set_name(Vcur, "Vcur");
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
- offload_func_kq(k);
- ggml_set_name(k, "k");
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
- offload_func_v(v);
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
- }
- struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
- offload_func_kq(Q);
- ggml_set_name(Q, "Q");
- struct ggml_tensor * K =
- ggml_view_3d(ctx0, kv_self.k,
- n_embd_head, n_past + N, n_head_kv,
- ggml_element_size(kv_self.k)*n_embd_gqa,
- ggml_element_size(kv_self.k)*n_embd_head,
- ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
- offload_func_kq(K);
- ggml_set_name(K, "K");
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- offload_func_kq(KQ);
- ggml_set_name(KQ, "KQ");
- struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
- offload_func_kq(KQ_scaled);
- ggml_set_name(KQ_scaled, "KQ_scaled");
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
- offload_func_kq(KQ_masked);
- ggml_set_name(KQ_masked, "KQ_masked");
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
- offload_func_v(KQ_soft_max);
- ggml_set_name(KQ_soft_max, "KQ_soft_max");
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, kv_self.v,
- n_past + N, n_embd_head, n_head_kv,
- ggml_element_size(kv_self.v)*n_ctx,
- ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
- ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
- offload_func_v(V);
- ggml_set_name(V, "V");
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- offload_func_v(KQV);
- ggml_set_name(KQV, "KQV");
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- offload_func_v(KQV_merged);
- ggml_set_name(KQV_merged, "KQV_merged");
- cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- offload_func_v(cur);
- ggml_set_name(cur, "KQV_merged_contiguous");
- cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
- offload_func(cur);
- ggml_set_name(cur, "result_wo");
- }
- struct ggml_tensor * attn_out = cur;
- // feed forward
- {
- struct ggml_tensor * inpFF = attn_norm;
- cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
- offload_func(cur);
- cur = ggml_gelu(ctx0, cur);
- offload_func(cur);
- cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
- offload_func(cur);
- }
- cur = ggml_add(ctx0, cur, attn_out);
- offload_func(cur);
- cur = ggml_add(ctx0, cur, inpL);
- offload_func(cur);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- // norm
- {
- cur = ggml_norm(ctx0, cur, norm_eps);
- offload_func_nr(cur);
- cur = ggml_add(ctx0,
- ggml_mul(ctx0, cur, model.output_norm),
- model.output_norm_b);
- ggml_set_name(cur, "result_norm");
- }
- cur = ggml_mul_mat(ctx0, model.output, cur);
- ggml_set_name(cur, "result_output");
- ggml_build_forward_expand(gf, cur);
- ggml_free(ctx0);
- return gf;
- }
- static struct ggml_cgraph * llama_build_graph(
- llama_context & lctx,
- const llama_token * tokens,
- const float * embd,
- int n_tokens,
- int n_past) {
- const auto & model = lctx.model;
- struct ggml_cgraph * result = NULL;
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- result = llm_build_llama(lctx, tokens, embd, n_tokens, n_past);
- } break;
- case LLM_ARCH_FALCON:
- {
- result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
- } break;
- default:
- GGML_ASSERT(false);
- };
- return result;
- }
- // evaluate the transformer
- //
- // - lctx: llama context
- // - tokens: new batch of tokens to process
- // - embd embeddings input
- // - n_tokens number of tokens
- // - n_past: the context size so far
- // - n_threads: number of threads to use
- //
- static bool llama_eval_internal(
- llama_context & lctx,
- const llama_token * tokens,
- const float * embd,
- int n_tokens,
- int n_past,
- int n_threads,
- const char * cgraph_fname) {
- GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
- GGML_ASSERT(n_tokens > 0);
- GGML_ASSERT(n_past >= 0);
- GGML_ASSERT(n_threads > 0);
- // TODO: keep the values of n_batch and n_ctx
- // GGML_ASSERT(n_tokens <= n_batch);
- // GGML_ASSERT(n_past + n_tokens <= n_ctx);
- const int64_t t_start_us = ggml_time_us();
- #ifdef GGML_USE_MPI
- ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
- #endif
- const int N = n_tokens;
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- const auto & kv_self = lctx.kv_self;
- GGML_ASSERT(!!kv_self.ctx);
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_vocab = hparams.n_vocab;
- ggml_allocr_reset(lctx.alloc);
- ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
- ggml_allocr_alloc_graph(lctx.alloc, gf);
- #ifdef GGML_USE_CUBLAS
- for (int i = 0; i < gf->n_leafs; i++) {
- ggml_tensor * node = gf->leafs[i];
- if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
- ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
- }
- }
- for (int i = 0; i < gf->n_nodes; i++) {
- ggml_tensor * node = gf->nodes[i];
- if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
- ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
- }
- }
- #endif
- // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
- struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
- struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
- GGML_ASSERT(strcmp(res->name, "result_output") == 0);
- GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
- #if GGML_USE_MPI
- const int64_t n_layer = hparams.n_layer;
- ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
- #endif
- #ifdef GGML_USE_METAL
- if (lctx.ctx_metal) {
- ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
- ggml_metal_graph_compute(lctx.ctx_metal, gf);
- ggml_metal_get_tensor (lctx.ctx_metal, res);
- if (!lctx.embedding.empty()) {
- ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
- }
- } else {
- ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
- }
- #else
- ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
- #endif
- #if GGML_USE_MPI
- ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
- #endif
- // update kv token count
- lctx.kv_self.n = n_past + N;
- if (cgraph_fname) {
- ggml_graph_export(gf, cgraph_fname);
- }
- #ifdef GGML_PERF
- // print timing information per ggml operation (for debugging purposes)
- // requires GGML_PERF to be defined
- ggml_graph_print(gf);
- #endif
- // plot the computation graph in dot format (for debugging purposes)
- //if (n_past%100 == 0) {
- // ggml_graph_dump_dot(gf, NULL, "llama.dot");
- //}
- // extract logits
- {
- auto & logits_out = lctx.logits;
- if (lctx.logits_all) {
- logits_out.resize(n_vocab * N);
- memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
- } else {
- // return result for just the last token
- logits_out.resize(n_vocab);
- memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- }
- }
- // extract embeddings
- if (!lctx.embedding.empty()) {
- auto & embedding_out = lctx.embedding;
- embedding_out.resize(n_embd);
- memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
- }
- // measure the performance only for the single-token evals
- if (N == 1) {
- lctx.t_eval_us += ggml_time_us() - t_start_us;
- lctx.n_eval++;
- }
- else if (N > 1) {
- lctx.t_p_eval_us += ggml_time_us() - t_start_us;
- lctx.n_p_eval += N;
- }
- return true;
- }
- //
- // tokenizer
- //
- static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
- return vocab.type;
- }
- static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
- }
- static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
- }
- static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
- }
- static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
- }
- static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNUSED;
- }
- static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
- }
- static bool llama_is_bos_token(const llama_vocab & vocab, llama_token id) {
- GGML_ASSERT(llama_is_control_token(vocab, id));
- return id == vocab.special_bos_id;
- }
- static bool llama_is_eos_token(const llama_vocab & vocab, llama_token id ) {
- GGML_ASSERT(llama_is_control_token(vocab, id));
- return id == vocab.special_eos_id;
- }
- static bool llama_is_pad_token(const llama_vocab & vocab, llama_token id ) {
- GGML_ASSERT(id < 0 || llama_is_control_token(vocab, id));
- return id == vocab.special_pad_id;
- }
- static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
- GGML_ASSERT(llama_is_byte_token(vocab, id));
- const auto& token_data = vocab.id_to_token.at(id);
- auto buf = token_data.text.substr(3, 2);
- return strtol(buf.c_str(), NULL, 16);
- }
- static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
- char buf[7];
- int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
- GGML_ASSERT(0 <= result && result < 7);
- return vocab.token_to_id.at(buf);
- }
- static std::string llama_escape_whitespace(const std::string& text) {
- std::string result = "\xe2\x96\x81";
- for (size_t offs = 0; offs < text.length(); ++offs) {
- if (text[offs] == ' ') {
- result += "\xe2\x96\x81";
- } else {
- result += text[offs];
- }
- }
- return result;
- }
- static void llama_unescape_whitespace(std::string & word) {
- replace_all(word, "\xe2\x96\x81", " ");
- }
- struct llm_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
- // SPM tokenizer
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llm_bigram_spm {
- struct comparator {
- bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_spm>;
- using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- float score;
- size_t size;
- };
- struct llm_tokenizer_spm {
- llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llm_symbol sym;
- size_t len = utf8_len(text[offs]);
- GGML_ASSERT(offs + len <= text.size());
- sym.text = text.c_str() + offs;
- sym.n = len;
- offs += len;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_sym = symbols[bigram.left];
- auto & right_sym = symbols[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- resegment(symbol, output);
- }
- }
- private:
- void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
- auto text = std::string(symbol.text, symbol.n);
- auto token = vocab.token_to_id.find(text);
- // Do we need to support is_unused?
- if (token != vocab.token_to_id.end()) {
- output.push_back((*token).second);
- return;
- }
- const auto p = rev_merge.find(text);
- if (p == rev_merge.end()) {
- // output any symbols that did not form tokens as bytes.
- for (int j = 0; j < (int)symbol.n; ++j) {
- llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
- output.push_back(token_id);
- }
- return;
- }
- resegment(symbols[p->second.first], output);
- resegment(symbols[p->second.second], output);
- }
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
- auto token = vocab.token_to_id.find(text);
- if (token == vocab.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
- return;
- }
- const auto & tok_data = vocab.id_to_token[(*token).second];
- llm_bigram_spm bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_data.score;
- bigram.size = text.size();
- work_queue.push(bigram);
- // Do we need to support is_unused?
- rev_merge[text] = std::make_pair(left, right);
- }
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- llm_bigram_spm::queue work_queue;
- std::map<std::string, std::pair<int, int>> rev_merge;
- };
- // BPE tokenizer
- // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
- // tried to simplify unicode stuff, so most likely does not work 100% correctly!
- // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
- struct llm_bigram_bpe {
- struct comparator {
- bool operator()(llm_bigram_bpe & l, llm_bigram_bpe & r) {
- return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_bpe>;
- using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- std::string text;
- int rank;
- size_t size;
- };
- struct llm_tokenizer_bpe {
- llm_tokenizer_bpe(const llama_vocab & vocab, bool g2ws): vocab(vocab) { flag_g2ws = g2ws; }
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- int final_prev_index = -1;
- auto word_collection = bpe_gpt2_preprocess(text);
- symbols_final.clear();
- for (auto & word : word_collection) {
- work_queue = llm_bigram_bpe::queue();
- symbols.clear();
- int index = 0;
- size_t offset = 0;
- while (offset < word.size()) {
- llm_symbol sym;
- size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
- sym.text = word.c_str() + offset;
- sym.n = 1;
- sym.n = char_len;
- offset += sym.n;
- sym.prev = index - 1;
- sym.next = offset == word.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- for (size_t i = 1; i < symbols.size(); ++i) {
- add_new_bigram(i - 1, i);
- }
- // build token(s)
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_symbol = symbols[bigram.left];
- auto & right_symbol = symbols[bigram.right];
- if (left_symbol.n == 0 || right_symbol.n == 0) {
- continue;
- }
- std::string left_token = std::string(left_symbol.text, left_symbol.n);
- std::string right_token = std::string(right_symbol.text, right_symbol.n);
- if (left_token + right_token != bigram.text) {
- continue; // Skip this bigram if it's outdated
- }
- // merge the right sym into the left one
- left_symbol.n += right_symbol.n;
- right_symbol.n = 0;
- // remove the right sym from the chain
- left_symbol.next = right_symbol.next;
- if (right_symbol.next >= 0) {
- symbols[right_symbol.next].prev = bigram.left;
- }
- add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
- add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
- }
- // add the fnished tokens to the final list keeping correct order for next and prev
- for (auto & sym : symbols) {
- if (sym.n > 0) {
- sym.prev = final_prev_index;
- sym.next = -1;
- if (final_prev_index != -1) {
- symbols_final[final_prev_index].next = symbols_final.size();
- }
- symbols_final.emplace_back(sym);
- final_prev_index = symbols_final.size() - 1;
- }
- }
- }
- symbols = symbols_final;
- if (!symbols.empty()) {
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- if (symbol.n == 0) {
- continue;
- }
- const std::string str = std::string(symbol.text, symbol.n);
- const auto token = vocab.token_to_id.find(str);
- if (token == vocab.token_to_id.end()) {
- for (auto j = str.begin(); j != str.end(); ++j) {
- std::string byte_str(1, *j);
- auto token_multibyte = vocab.token_to_id.find(byte_str);
- if (token_multibyte == vocab.token_to_id.end()) {
- fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
- }
- output.push_back((*token_multibyte).second);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- }
- private:
- void add_new_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- std::string left_token = std::string(symbols[left].text, symbols[left].n);
- std::string right_token = std::string(symbols[right].text, symbols[right].n);
- int rank_found = -1;
- rank_found = vocab.find_bpe_rank(left_token, right_token);
- if (rank_found < 0) {
- return;
- }
- llm_bigram_bpe bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.text = left_token + right_token;
- bigram.size = left_token.size() + right_token.size();
- bigram.rank = rank_found;
- work_queue.push(bigram);
- }
- // probably not 100% correct
- // TODO: this is quite slow - how to make it more efficient?
- static std::vector<std::string> bpe_gpt2_preprocess(std::string text) {
- std::vector<std::string> words;
- // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
- const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
- const std::regex re(pattern);
- std::smatch m;
- while (std::regex_search(text, m, re)) {
- for (auto x : m) {
- words.push_back(x);
- }
- text = m.suffix();
- }
- return words;
- }
- bool flag_g2ws = false;
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- std::vector<llm_symbol> symbols_final;
- llm_bigram_bpe::queue work_queue;
- };
- static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, const std::string & raw_text, bool bos, bool escape) {
- std::vector<llama_vocab::id> output;
- if (raw_text.empty()) {
- return output;
- }
- switch (vocab.type) {
- case LLAMA_VOCAB_TYPE_SPM:
- {
- llm_tokenizer_spm tokenizer(vocab);
- if (bos) {
- output.push_back(vocab.special_bos_id);
- }
- std::string text;
- if (escape) {
- text = llama_escape_whitespace(raw_text);
- } else {
- text = raw_text;
- }
- tokenizer.tokenize(text, output);
- } break;
- case LLAMA_VOCAB_TYPE_BPE:
- {
- llm_tokenizer_bpe tokenizer(vocab, escape);
- if (bos && vocab.special_bos_id != -1) {
- output.push_back(vocab.special_bos_id);
- }
- tokenizer.tokenize(raw_text, output);
- } break;
- };
- return output;
- }
- //
- // grammar - internal
- //
- struct llama_partial_utf8 {
- uint32_t value; // bit value so far (unshifted)
- int n_remain; // num bytes remaining; -1 indicates invalid sequence
- };
- struct llama_grammar {
- const std::vector<std::vector<llama_grammar_element>> rules;
- std::vector<std::vector<const llama_grammar_element *>> stacks;
- // buffer for partially generated UTF-8 sequence from accepted tokens
- llama_partial_utf8 partial_utf8;
- };
- struct llama_grammar_candidate {
- size_t index;
- const uint32_t * code_points;
- llama_partial_utf8 partial_utf8;
- };
- // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
- // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
- std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
- const char * src,
- llama_partial_utf8 partial_start) {
- static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
- const char * pos = src;
- std::vector<uint32_t> code_points;
- uint32_t value = partial_start.value;
- int n_remain = partial_start.n_remain;
- // continue previous decode, if applicable
- while (*pos != 0 && n_remain > 0) {
- uint8_t next_byte = static_cast<uint8_t>(*pos);
- if ((next_byte >> 6) != 2) {
- // invalid sequence, abort
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
- }
- value = (value << 6) + (next_byte & 0x3F);
- ++pos;
- --n_remain;
- }
- if (partial_start.n_remain > 0 && n_remain == 0) {
- code_points.push_back(value);
- }
- // decode any subsequent utf-8 sequences, which may end in an incomplete one
- while (*pos != 0) {
- uint8_t first_byte = static_cast<uint8_t>(*pos);
- uint8_t highbits = first_byte >> 4;
- n_remain = lookup[highbits] - 1;
- if (n_remain < 0) {
- // invalid sequence, abort
- code_points.clear();
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
- }
- uint8_t mask = (1 << (7 - n_remain)) - 1;
- value = first_byte & mask;
- ++pos;
- while (*pos != 0 && n_remain > 0) {
- value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
- ++pos;
- --n_remain;
- }
- if (n_remain == 0) {
- code_points.push_back(value);
- }
- }
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
- }
- // returns true iff pos points to the end of one of the definitions of a rule
- static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
- switch (pos->type) {
- case LLAMA_GRETYPE_END: return true; // NOLINT
- case LLAMA_GRETYPE_ALT: return true; // NOLINT
- default: return false;
- }
- }
- // returns true iff chr satisfies the char range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
- const llama_grammar_element * pos,
- const uint32_t chr) {
- bool found = false;
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- found = found || (pos->value <= chr && chr <= pos[1].value);
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- found = found || pos->value == chr;
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return std::make_pair(found == is_positive_char, pos);
- }
- // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
- // range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static bool llama_grammar_match_partial_char(
- const llama_grammar_element * pos,
- const llama_partial_utf8 partial_utf8) {
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
- uint32_t partial_value = partial_utf8.value;
- int n_remain = partial_utf8.n_remain;
- // invalid sequence or 7-bit char split across 2 bytes (overlong)
- if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
- return false;
- }
- // range of possible code points this partial UTF-8 sequence could complete to
- uint32_t low = partial_value << (n_remain * 6);
- uint32_t high = low | ((1 << (n_remain * 6)) - 1);
- if (low == 0) {
- if (n_remain == 2) {
- low = 1 << 11;
- } else if (n_remain == 3) {
- low = 1 << 16;
- }
- }
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- if (pos->value <= high && low <= pos[1].value) {
- return is_positive_char;
- }
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- if (low <= pos->value && pos->value <= high) {
- return is_positive_char;
- }
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return !is_positive_char;
- }
- // transforms a grammar pushdown stack into N possible stacks, all ending
- // at a character range (terminal element)
- static void llama_grammar_advance_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
- if (stack.empty()) {
- new_stacks.push_back(stack);
- return;
- }
- const llama_grammar_element * pos = stack.back();
- switch (pos->type) {
- case LLAMA_GRETYPE_RULE_REF: {
- const size_t rule_id = static_cast<size_t>(pos->value);
- const llama_grammar_element * subpos = rules[rule_id].data();
- do {
- // init new stack without the top (pos)
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos + 1)) {
- // if this rule ref is followed by another element, add that to stack
- new_stack.push_back(pos + 1);
- }
- if (!llama_grammar_is_end_of_sequence(subpos)) {
- // if alternate is nonempty, add to stack
- new_stack.push_back(subpos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- while (!llama_grammar_is_end_of_sequence(subpos)) {
- // scan to end of alternate def
- subpos++;
- }
- if (subpos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- subpos++;
- } else {
- break;
- }
- } while (true);
- break;
- }
- case LLAMA_GRETYPE_CHAR:
- case LLAMA_GRETYPE_CHAR_NOT:
- new_stacks.push_back(stack);
- break;
- default:
- // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
- // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
- // those
- GGML_ASSERT(false);
- }
- }
- // takes a set of possible pushdown stacks on a grammar, which are required to
- // be positioned at a character range (see `llama_grammar_advance_stack`), and
- // produces the N possible stacks if the given char is accepted at those
- // positions
- static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const uint32_t chr) {
- std::vector<std::vector<const llama_grammar_element *>> new_stacks;
- for (const auto & stack : stacks) {
- if (stack.empty()) {
- continue;
- }
- auto match = llama_grammar_match_char(stack.back(), chr);
- if (match.first) {
- const llama_grammar_element * pos = match.second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos)) {
- new_stack.push_back(pos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- }
- }
- return new_stacks;
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates);
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- const std::vector<llama_grammar_candidate> & candidates) {
- std::vector<llama_grammar_candidate> rejects;
- if (stack.empty()) {
- for (auto tok : candidates) {
- if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
- rejects.push_back(tok);
- }
- }
- return rejects;
- }
- const llama_grammar_element * stack_pos = stack.back();
- std::vector<llama_grammar_candidate> next_candidates;
- for (auto tok : candidates) {
- if (*tok.code_points == 0) {
- // reached end of full codepoints in token, reject iff it ended in a partial sequence
- // that cannot satisfy this position in grammar
- if (tok.partial_utf8.n_remain != 0 &&
- !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
- rejects.push_back(tok);
- }
- } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
- next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
- } else {
- rejects.push_back(tok);
- }
- }
- const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
- stack_after.push_back(stack_pos_after);
- }
- std::vector<std::vector<const llama_grammar_element *>> next_stacks;
- llama_grammar_advance_stack(rules, stack_after, next_stacks);
- auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
- for (auto tok : next_rejects) {
- rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
- }
- return rejects;
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates) {
- GGML_ASSERT(!stacks.empty()); // REVIEW
- if (candidates.empty()) {
- return std::vector<llama_grammar_candidate>();
- }
- auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
- for (size_t i = 1, size = stacks.size(); i < size; ++i) {
- rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
- }
- return rejects;
- }
- //
- // grammar - external
- //
- struct llama_grammar * llama_grammar_init(
- const llama_grammar_element ** rules,
- size_t n_rules,
- size_t start_rule_index) {
- const llama_grammar_element * pos;
- // copy rule definitions into vectors
- std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
- for (size_t i = 0; i < n_rules; i++) {
- for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
- vec_rules[i].push_back(*pos);
- }
- vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
- }
- // loop over alternates of start rule to build initial stacks
- std::vector<std::vector<const llama_grammar_element *>> stacks;
- pos = rules[start_rule_index];
- do {
- std::vector<const llama_grammar_element *> stack;
- if (!llama_grammar_is_end_of_sequence(pos)) {
- // if alternate is nonempty, add to stack
- stack.push_back(pos);
- }
- llama_grammar_advance_stack(vec_rules, stack, stacks);
- while (!llama_grammar_is_end_of_sequence(pos)) {
- // scan to end of alternate def
- pos++;
- }
- if (pos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- pos++;
- } else {
- break;
- }
- } while (true);
- return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
- }
- void llama_grammar_free(struct llama_grammar * grammar) {
- delete grammar;
- }
- //
- // sampling
- //
- void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
- GGML_ASSERT(candidates->size > 0);
- const int64_t t_start_sample_us = ggml_time_us();
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- float max_l = candidates->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float p = expf(candidates->data[i].logit - max_l);
- candidates->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
- const int64_t t_start_sample_us = ggml_time_us();
- k = std::max(k, (int) min_keep);
- k = std::min(k, (int) candidates->size);
- // Sort scores in descending order
- if (!candidates->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k == (int) candidates->size) {
- std::sort(candidates->data, candidates->data + candidates->size, comp);
- } else {
- std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
- }
- candidates->sorted = true;
- }
- candidates->size = k;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p >= 1.0f) {
- return;
- }
- llama_sample_softmax(ctx, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < candidates->size; ++i) {
- cum_sum += candidates->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= p && i + 1 >= min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
- if (z >= 1.0f || candidates->size <= 2) {
- return;
- }
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(candidates->size - 1);
- std::vector<float> second_derivatives(candidates->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- {
- const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- if (second_derivatives_sum > 1e-6f) {
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- } else {
- for (float & value : second_derivatives) {
- value = 1.0f / second_derivatives.size();
- }
- }
- }
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > z && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- entropy += -candidates->data[i].p * logf(candidates->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < candidates->size; ++i) {
- float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(candidates->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += candidates->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> new_candidates;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- new_candidates.push_back(candidates->data[idx]);
- }
- // Replace the data in candidates with the new_candidates data
- std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
- candidates->size = new_candidates.size();
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= temp;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
- if (last_tokens_size == 0 || penalty == 1.0f) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates->size; ++i) {
- const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
- if (token_iter == last_tokens + last_tokens_size) {
- continue;
- }
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (candidates->data[i].logit <= 0) {
- candidates->data[i].logit *= penalty;
- } else {
- candidates->data[i].logit /= penalty;
- }
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
- if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Create a frequency map to count occurrences of each token in last_tokens
- std::unordered_map<llama_token, int> token_count;
- for (size_t i = 0; i < last_tokens_size; ++i) {
- token_count[last_tokens_p[i]]++;
- }
- // Apply frequency and presence penalties to the candidates
- for (size_t i = 0; i < candidates->size; ++i) {
- auto token_iter = token_count.find(candidates->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- int count = token_iter->second;
- candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- bool allow_eos = false;
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- allow_eos = true;
- break;
- }
- }
- const llama_token eos = llama_token_eos(ctx);
- std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
- std::vector<llama_grammar_candidate> candidates_grammar;
- for (size_t i = 0; i < candidates->size; ++i) {
- const llama_token id = candidates->data[i].id;
- const std::string text = llama_token_to_text(ctx, id);
- if (id == eos) {
- if (!allow_eos) {
- candidates->data[i].logit = -INFINITY;
- }
- } else if (text.empty() || text[0] == 0) {
- candidates->data[i].logit = -INFINITY;
- } else {
- candidates_decoded.push_back(decode_utf8(text.c_str(), grammar->partial_utf8));
- candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
- }
- }
- const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
- for (const auto & reject : rejects) {
- candidates->data[reject.index].logit = -INFINITY;
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- void llama_sample_classifier_free_guidance(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- struct llama_context * guidance_ctx,
- float scale) {
- int64_t t_start_sample_us = ggml_time_us();
- GGML_ASSERT(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- GGML_ASSERT(n_vocab == (int)candidates->size);
- GGML_ASSERT(!candidates->sorted);
- std::vector<float> logits_base;
- logits_base.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- logits_base.push_back(candidates->data[i].logit);
- }
- llama_log_softmax(logits_base.data(), candidates->size);
- float* logits_guidance = llama_get_logits(guidance_ctx);
- llama_log_softmax(logits_guidance, n_vocab);
- for (int i = 0; i < n_vocab; ++i) {
- float logit_guidance = logits_guidance[i];
- float logit_base = logits_base[i];
- candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
- GGML_ASSERT(ctx);
- auto N = float(llama_n_vocab(ctx));
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
- // Sample the next word X using top-k sampling
- llama_sample_top_k(nullptr, candidates, int(k), 1);
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(ctx, candidates);
- // Truncate the words with surprise values greater than mu
- candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > *mu;
- }));
- if (candidates->size == 0) {
- candidates->size = 1;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // Normalize the probabilities of the remaining words
- llama_sample_softmax(ctx, candidates);
- // Sample the next word X from the remaining words
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
- const int64_t t_start_sample_us = ggml_time_us();
- // Find max element
- auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit < b.logit;
- });
- llama_token result = max_iter->id;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- return result;
- }
- llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- std::vector<float> probs;
- probs.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- probs.push_back(candidates->data[i].p);
- }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- auto & rng = ctx->rng;
- int idx = dist(rng);
- llama_token result = candidates->data[idx].id;
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
- const int64_t t_start_sample_us = ggml_time_us();
- if (token == llama_token_eos(ctx)) {
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- return;
- }
- }
- GGML_ASSERT(false);
- }
- const std::string text = llama_token_to_text(ctx, token);
- // Note terminating 0 in decoded string
- const auto decoded = decode_utf8(text.c_str(), grammar->partial_utf8);
- const auto & code_points = decoded.first;
- for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
- grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
- }
- grammar->partial_utf8 = decoded.second;
- GGML_ASSERT(!grammar->stacks.empty());
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- //
- // Beam search
- //
- struct llama_beam {
- std::vector<llama_token> tokens;
- float p; // Cumulative beam probability (renormalized relative to all beams)
- bool eob; // Initialize end-of-beam to false. Callback sets this to true.
- // Sort beams by probability. In case of ties, prefer beams at eob.
- bool operator<(const llama_beam & rhs) const {
- return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
- }
- // Shift off first n tokens and discard them.
- void shift_tokens(const size_t n) {
- if (n) {
- std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
- tokens.resize(tokens.size() - n);
- }
- }
- llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
- };
- // A struct for calculating logit-related info.
- struct llama_logit_info {
- const float * const logits;
- const int n_vocab;
- const float max_l;
- const float normalizer;
- struct sum_exp {
- float max_l;
- float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
- };
- llama_logit_info(llama_context * ctx)
- : logits(llama_get_logits(ctx))
- , n_vocab(llama_n_vocab(ctx))
- , max_l(*std::max_element(logits, logits + n_vocab))
- , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
- { }
- llama_token_data get_token_data(const llama_token token_id) const {
- constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
- return {token_id, logits[token_id], p};
- }
- // Return top k token_data by logit.
- std::vector<llama_token_data> top_k(size_t k) {
- std::vector<llama_token_data> min_heap; // min-heap by logit
- const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
- min_heap.reserve(k_min);
- for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
- min_heap.push_back(get_token_data(token_id));
- }
- auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
- std::make_heap(min_heap.begin(), min_heap.end(), comp);
- for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
- if (min_heap.front().logit < logits[token_id]) {
- std::pop_heap(min_heap.begin(), min_heap.end(), comp);
- min_heap.back().id = token_id;
- min_heap.back().logit = logits[token_id];
- std::push_heap(min_heap.begin(), min_heap.end(), comp);
- }
- }
- return min_heap;
- }
- float probability_from_logit(float logit) {
- return normalizer * std::exp(logit - max_l);
- }
- };
- struct llama_beam_search_data {
- llama_context * ctx;
- size_t n_beams;
- int n_past;
- int n_predict;
- int n_threads;
- std::vector<llama_beam> beams;
- std::vector<llama_beam> next_beams;
- // Re-calculated on each loop iteration
- size_t common_prefix_length;
- // Used to communicate to/from callback on beams state.
- std::vector<llama_beam_view> beam_views;
- llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads)
- : ctx(ctx)
- , n_beams(n_beams)
- , n_past(n_past)
- , n_predict(n_predict)
- , n_threads(n_threads)
- , beam_views(n_beams) {
- beams.reserve(n_beams);
- next_beams.reserve(n_beams);
- }
- // Collapse beams to a single beam given by index.
- void collapse_beams(const size_t beam_idx) {
- if (0u < beam_idx) {
- std::swap(beams[0], beams[beam_idx]);
- }
- beams.resize(1);
- }
- // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
- // The repetative patterns below reflect the 2 stages of heaps:
- // * Gather elements until the vector is full, then call std::make_heap() on it.
- // * If the heap is full and a new element is found that should be included, pop the
- // least element to the back(), replace it with the new, then push it into the heap.
- void fill_next_beams_by_top_probabilities(llama_beam & beam) {
- // Min-heaps use a greater-than comparator.
- const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
- if (beam.eob) {
- // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
- if (next_beams.size() < n_beams) {
- next_beams.push_back(std::move(beam));
- if (next_beams.size() == n_beams) {
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else if (next_beams.front().p < beam.p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = std::move(beam);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else {
- // beam is not at end-of-sentence, so branch with next top_k tokens.
- if (!beam.tokens.empty()) {
- llama_eval(ctx, beam.tokens.data(), beam.tokens.size(), n_past, n_threads);
- }
- llama_logit_info logit_info(ctx);
- std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
- size_t i=0;
- if (next_beams.size() < n_beams) {
- for (; next_beams.size() < n_beams ; ++i) {
- llama_beam next_beam = beam;
- next_beam.tokens.push_back(next_tokens[i].id);
- next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
- next_beams.push_back(std::move(next_beam));
- }
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- } else {
- for (; next_beams.front().p == 0.0f ; ++i) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- for (; i < n_beams ; ++i) {
- const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
- if (next_beams.front().p < next_p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p = next_p;
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- }
- }
- // Find common_prefix_length based on beams.
- // Requires beams is not empty.
- size_t find_common_prefix_length() {
- size_t common_prefix_length = beams[0].tokens.size();
- for (size_t i = 1 ; i < beams.size() ; ++i) {
- common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
- for (size_t j = 0 ; j < common_prefix_length ; ++j) {
- if (beams[0].tokens[j] != beams[i].tokens[j]) {
- common_prefix_length = j;
- break;
- }
- }
- }
- return common_prefix_length;
- }
- // Construct beams_state to send back to caller via the callback function.
- // Side effect: set common_prefix_length = find_common_prefix_length();
- llama_beams_state get_beams_state(const bool last_call) {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beam_views[i] = beams[i].view();
- }
- common_prefix_length = find_common_prefix_length();
- return {beam_views.data(), beams.size(), common_prefix_length, last_call};
- }
- // Loop:
- // * while i < n_predict, AND
- // * any of the beams have not yet reached end-of-beam (eob), AND
- // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
- // (since all other beam probabilities can only decrease)
- void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
- beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
- const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
- for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
- !beams[top_beam_index()].eob ; ++i) {
- callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
- update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
- if (common_prefix_length) {
- llama_eval(ctx, beams[0].tokens.data(), common_prefix_length, n_past, n_threads);
- n_past += common_prefix_length;
- }
- // Zero-out next_beam probabilities to place them last in following min-heap.
- std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
- for (llama_beam & beam : beams) {
- beam.shift_tokens(common_prefix_length);
- fill_next_beams_by_top_probabilities(beam);
- }
- // next_beams become the beams of next/final iteration. Swap them to re-use memory.
- beams.swap(next_beams);
- renormalize_beam_probabilities(beams);
- }
- collapse_beams(top_beam_index());
- callback(callback_data, get_beams_state(true));
- }
- // As beams grow, the cumulative probabilities decrease.
- // Renormalize them to avoid floating point underflow.
- static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
- const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
- const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
- std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
- }
- // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
- size_t top_beam_index() {
- return std::max_element(beams.begin(), beams.end()) - beams.begin();
- }
- // Copy (p,eob) for each beam which may have been changed by the callback.
- void update_beams_from_beam_views() {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beams[i].p = beam_views[i].p;
- beams[i].eob = beam_views[i].eob;
- }
- }
- };
- void llama_beam_search(llama_context * ctx,
- llama_beam_search_callback_fn_t callback, void * callback_data,
- size_t n_beams, int n_past, int n_predict, int n_threads) {
- assert(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads);
- beam_search_data.loop(callback, callback_data);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- //
- // quantization
- //
- static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vector<float> & output, const size_t nelements, const int nthread) {
- if (output.size() < nelements) {
- output.resize(nelements);
- }
- float * f32_output = (float *) output.data();
- ggml_type_traits_t qtype;
- if (ggml_is_quantized(tensor->type)) {
- qtype = ggml_internal_get_type_traits(tensor->type);
- if (qtype.to_float == NULL) {
- throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
- }
- } else if (tensor->type != GGML_TYPE_F16) {
- throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
- }
- if (nthread < 2) {
- if (tensor->type == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
- } else if (ggml_is_quantized(tensor->type)) {
- qtype.to_float(tensor->data, f32_output, nelements);
- } else {
- GGML_ASSERT(false); // unreachable
- }
- return;
- }
- auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
- auto block_size_bytes = ggml_type_size(tensor->type);
- GGML_ASSERT(nelements % block_size == 0);
- auto nblocks = nelements / block_size;
- auto blocks_per_thread = nblocks / nthread;
- auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
- std::vector<std::thread> workers;
- for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
- auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
- auto thr_elems = thr_blocks * block_size; // number of elements for this thread
- auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
- auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
- if (typ == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
- } else {
- qtype.to_float(inbuf, outbuf, nels);
- }
- };
- workers.push_back(std::thread(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
- in_buff_offs += thr_block_bytes;
- out_buff_offs += thr_elems;
- }
- for (auto & worker : workers) {
- worker.join();
- }
- }
- static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
- ggml_type quantized_type;
- llama_ftype ftype = params->ftype;
- switch (params->ftype) {
- case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
- case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
- case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
- case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
- case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
- case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
- case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
- #ifdef GGML_USE_K_QUANTS
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
- case LLAMA_FTYPE_MOSTLY_Q3_K_S:
- case LLAMA_FTYPE_MOSTLY_Q3_K_M:
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
- case LLAMA_FTYPE_MOSTLY_Q4_K_S:
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
- case LLAMA_FTYPE_MOSTLY_Q5_K_S:
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
- case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
- #endif
- default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
- }
- int nthread = params->nthread;
- if (nthread <= 0) {
- nthread = std::thread::hardware_concurrency();
- }
- std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname_inp, /*use_mmap*/ false));
- const size_t align = GGUF_DEFAULT_ALIGNMENT;
- struct gguf_context * ctx_out = gguf_init_empty();
- // copy the KV pairs from the input file
- gguf_set_kv (ctx_out, ml->ctx_gguf);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", ftype);
- #ifdef GGML_USE_K_QUANTS
- int n_attention_wv = 0;
- int n_feed_forward_w2 = 0;
- for (int i = 0; i < ml->n_tensors; ++i) {
- struct ggml_tensor * meta = ml->get_tensor_meta(i);
- const std::string name = ggml_get_name(meta);
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- if (name.find("attn_v.weight") != std::string::npos) {
- ++n_attention_wv;
- }
- else if (name.find("ffn_down.weight") != std::string::npos) {
- ++n_feed_forward_w2;
- }
- }
- int i_attention_wv = 0;
- int i_feed_forward_w2 = 0;
- #endif
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<int64_t> hist_all(1 << 4, 0);
- std::vector<std::thread> workers;
- std::mutex mutex;
- auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
- return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
- };
- int idx = 0;
- std::vector<uint8_t> read_data;
- std::vector<uint8_t> work;
- // populate the original tensors so we get an initial meta data
- for (int i = 0; i < ml->n_tensors; ++i) {
- struct ggml_tensor * meta = ml->get_tensor_meta(i);
- gguf_add_tensor(ctx_out, meta);
- }
- std::ofstream fout(fname_out, std::ios::binary);
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
- // placeholder for the meta data
- ::zeros(fout, meta_size);
- for (int i = 0; i < ml->n_tensors; ++i) {
- struct ggml_tensor * tensor = ml->get_tensor_meta(i);
- const std::string name = ggml_get_name(tensor);
- read_data.resize(ggml_nbytes(tensor));
- tensor->data = read_data.data();
- ml->load_data_for(tensor);
- LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
- ++idx, ml->n_tensors,
- ggml_get_name(tensor),
- llama_format_tensor_shape(tensor).c_str(),
- ggml_type_name(tensor->type));
- // This used to be a regex, but <regex> has an extreme cost to compile times.
- bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
- // quantize only 2D tensors
- quantize &= (tensor->n_dims == 2);
- quantize &= params->quantize_output_tensor || name != "output.weight";
- quantize &= quantized_type != tensor->type;
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- if (!quantize) {
- new_type = tensor->type;
- new_data = tensor->data;
- new_size = ggml_nbytes(tensor);
- LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
- } else {
- new_type = quantized_type;
- #ifdef GGML_USE_K_QUANTS
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- const auto tn = LLM_TN(ml->get_arch());
- if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
- int nx = tensor->ne[0];
- int ny = tensor->ne[1];
- if (nx % QK_K == 0 && ny % QK_K == 0) {
- new_type = GGML_TYPE_Q6_K;
- }
- } else if (name.find("attn_v.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
- else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
- (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
- ++i_attention_wv;
- } else if (name.find("ffn_down.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < 4) new_type = GGML_TYPE_Q5_K;
- ++i_feed_forward_w2;
- } else if (name.find("attn_output.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- }
- else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- }
- // This can be used to reduce the size of the Q5_K_S model.
- // The associated PPL increase is fully in line with the size reduction
- //else {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
- //}
- bool convert_incompatible_tensor = false;
- if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
- new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
- int nx = tensor->ne[0];
- int ny = tensor->ne[1];
- if (nx % QK_K != 0 || ny % QK_K != 0) {
- LLAMA_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
- convert_incompatible_tensor = true;
- }
- }
- if (convert_incompatible_tensor) {
- if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
- new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
- LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
- } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
- new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
- LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
- } else {
- throw std::runtime_error("Unsupported tensor size encountered\n");
- }
- }
- #endif
- const size_t nelements = ggml_nelements(tensor);
- float * f32_data;
- std::vector<float> f32_conv_buf;
- if (tensor->type == GGML_TYPE_F32) {
- f32_data = (float *) tensor->data;
- } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
- throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
- } else {
- llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
- f32_data = (float *) f32_conv_buf.data();
- }
- LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
- fflush(stdout);
- work.resize(nelements * 4); // upper bound on size
- new_data = work.data();
- std::vector<int64_t> hist_cur(1 << 4, 0);
- static const int chunk_size = 32 * 512;
- const int nchunk = (nelements + chunk_size - 1)/chunk_size;
- const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
- if (nthread_use < 2) {
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
- } else {
- size_t counter = 0;
- new_size = 0;
- auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
- std::vector<int64_t> local_hist;
- size_t local_size = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- size_t first = counter; counter += chunk_size;
- if (first >= nelements) {
- if (!local_hist.empty()) {
- for (int j=0; j<int(local_hist.size()); ++j) {
- hist_cur[j] += local_hist[j];
- }
- new_size += local_size;
- }
- break;
- }
- lock.unlock();
- size_t last = std::min(nelements, first + chunk_size);
- if (local_hist.empty()) {
- local_hist.resize(hist_cur.size(), 0);
- }
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
- }
- };
- if ((int) workers.size() < nthread_use - 1) {
- workers.resize(nthread_use - 1);
- }
- for (int it = 0; it < nthread_use - 1; ++it) {
- workers[it] = std::thread(compute);
- }
- compute();
- for (int it = 0; it < nthread_use - 1; ++it) {
- workers[it].join();
- }
- }
- LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
- int64_t tot_count = 0;
- for (size_t i = 0; i < hist_cur.size(); i++) {
- hist_all[i] += hist_cur[i];
- tot_count += hist_cur[i];
- }
- if (tot_count > 0) {
- for (size_t i = 0; i < hist_cur.size(); i++) {
- LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
- }
- }
- LLAMA_LOG_INFO("\n");
- }
- total_size_org += ggml_nbytes(tensor);
- total_size_new += new_size;
- // update the gguf meta data as we go
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
- // write tensor data + padding
- fout.write((const char *) new_data, new_size);
- zeros(fout, GGML_PAD(new_size, align) - new_size);
- }
- // go back to beginning of file and write the updated meta data
- {
- fout.seekp(0);
- std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
- gguf_get_meta_data(ctx_out, data.data());
- fout.write((const char *) data.data(), data.size());
- }
- fout.close();
- gguf_free(ctx_out);
- LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- // print histogram for all tensors
- {
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); i++) {
- sum_all += hist_all[i];
- }
- if (sum_all > 0) {
- LLAMA_LOG_INFO("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); i++) {
- LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
- }
- LLAMA_LOG_INFO("\n");
- }
- }
- }
- // TODO: after the GGUF PR, this likely won't work and needs to be updated
- int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
- LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
- const int64_t t_start_lora_us = ggml_time_us();
- auto fin = std::ifstream(path_lora, std::ios::binary);
- if (!fin) {
- LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
- return 1;
- }
- // verify magic and version
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- uint32_t format_version;
- fin.read((char *) &format_version, sizeof(format_version));
- if (format_version != 1) {
- LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
- return 1;
- }
- }
- int32_t lora_r;
- int32_t lora_alpha;
- fin.read((char *) &lora_r, sizeof(lora_r));
- fin.read((char *) &lora_alpha, sizeof(lora_alpha));
- float scaling = (float)lora_alpha / (float)lora_r;
- LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
- // create a temporary ggml context to store the lora tensors
- // todo: calculate size from biggest possible tensor
- std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
- struct ggml_init_params params;
- params.mem_size = lora_buf.size();
- params.mem_buffer = lora_buf.data();
- params.no_alloc = false;
- ggml_context * lora_ctx = ggml_init(params);
- std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
- // create a name -> tensor map of the model to accelerate lookups
- std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
- for (const auto & kv : model.tensors_by_name) {
- model_tensors.insert(kv);
- }
- // load base model
- std::unique_ptr<llama_model_loader> ml;
- ggml_context * base_ctx = NULL;
- std::vector<uint8_t> base_buf;
- if (path_base_model) {
- LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
- ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
- size_t ctx_size;
- size_t mmapped_size;
- ml->calc_sizes(ctx_size, mmapped_size);
- base_buf.resize(ctx_size);
- ggml_init_params base_params;
- base_params.mem_size = base_buf.size();
- base_params.mem_buffer = base_buf.data();
- base_params.no_alloc = ml->use_mmap;
- base_ctx = ggml_init(base_params);
- // maybe this should in llama_model_loader
- if (ml->use_mmap) {
- ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
- }
- }
- // read tensors and apply
- bool warned = false;
- int n_tensors = 0;
- std::vector<uint8_t> work_buffer;
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- if (fin.eof()) {
- break;
- }
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- }
- std::string name;
- {
- char buf[1024];
- fin.read(buf, length);
- name = std::string(buf, length);
- }
- // check for lora suffix and get the type of tensor
- const std::string lora_suffix = ".lora";
- size_t pos = name.rfind(lora_suffix);
- if (pos == std::string::npos) {
- LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
- return 1;
- }
- std::string lora_type = name.substr(pos + lora_suffix.length());
- std::string base_name = name;
- base_name.erase(pos);
- // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
- if (model_tensors.find(base_name) == model_tensors.end()) {
- LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
- return 1;
- }
- // create ggml tensor
- ggml_type wtype;
- switch (ftype) {
- case 0: wtype = GGML_TYPE_F32; break;
- case 1: wtype = GGML_TYPE_F16; break;
- default:
- {
- LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
- __func__, ftype);
- return false;
- }
- }
- ggml_tensor * lora_tensor;
- if (n_dims == 2) {
- lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
- }
- else {
- LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
- return 1;
- }
- ggml_set_name(lora_tensor, "lora_tensor");
- // load tensor data
- size_t offset = fin.tellg();
- size_t tensor_data_size = ggml_nbytes(lora_tensor);
- offset = (offset + 31) & -32;
- fin.seekg(offset);
- fin.read((char*)lora_tensor->data, tensor_data_size);
- lora_tensors[name] = lora_tensor;
- // check if we have both A and B tensors and apply
- if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
- lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
- ggml_tensor * dest_t = model_tensors[base_name];
- offload_func_t offload_func = llama_nop;
- offload_func_t offload_func_force_inplace = llama_nop;
- #ifdef GGML_USE_CUBLAS
- if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
- if (dest_t->type != GGML_TYPE_F16) {
- throw std::runtime_error(format(
- "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
- }
- offload_func = ggml_cuda_assign_buffers;
- offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
- }
- #endif // GGML_USE_CUBLAS
- ggml_tensor * base_t;
- if (ml) {
- struct gguf_context * ctx_gguf = ml->ctx_gguf;
- // load from base model
- if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
- // TODO: throw
- LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
- return 1;
- }
- // TODO: not tested!! maybe not working!
- base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
- ml->load_data_for(base_t);
- } else {
- base_t = dest_t;
- }
- if (ggml_is_quantized(base_t->type)) {
- if (!warned) {
- LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
- "use a f16 or f32 base model with --lora-base\n", __func__);
- warned = true;
- }
- }
- ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
- GGML_ASSERT(loraA->type == GGML_TYPE_F32);
- ggml_set_name(loraA, "loraA");
- ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
- GGML_ASSERT(loraB->type == GGML_TYPE_F32);
- ggml_set_name(loraB, "loraB");
- if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
- return 1;
- }
- // w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
- offload_func(BA);
- ggml_set_name(BA, "BA");
- if (scaling != 1.0f) {
- ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
- ggml_set_name(scale_tensor, "scale_tensor");
- BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
- offload_func(BA);
- ggml_set_name(BA, "BA_scaled");
- }
- ggml_tensor * r;
- if (base_t == dest_t) {
- r = ggml_add_inplace(lora_ctx, dest_t, BA);
- offload_func_force_inplace(r);
- ggml_set_name(r, "r_add_inplace");
- }
- else {
- r = ggml_add(lora_ctx, base_t, BA);
- offload_func(r);
- ggml_set_name(r, "r_add");
- r = ggml_cpy(lora_ctx, r, dest_t);
- offload_func(r);
- ggml_set_name(r, "r_cpy");
- }
- struct ggml_cgraph gf = ggml_build_forward(r);
- ggml_graph_compute_helper(work_buffer, &gf, n_threads);
- // we won't need these tensors again, reset the context to save memory
- ggml_free(lora_ctx);
- lora_ctx = ggml_init(params);
- lora_tensors.clear();
- n_tensors++;
- if (n_tensors % 4 == 0) {
- LLAMA_LOG_INFO(".");
- }
- }
- }
- // TODO: this should be in a destructor, it will leak on failure
- ggml_free(lora_ctx);
- if (base_ctx) {
- ggml_free(base_ctx);
- }
- const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
- LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
- return 0;
- }
- //
- // interface implementation
- //
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.seed =*/ LLAMA_DEFAULT_SEED,
- /*.n_ctx =*/ 512,
- /*.n_batch =*/ 512,
- /*.gpu_layers =*/ 0,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ nullptr,
- /*.rope_freq_base =*/ 10000.0f,
- /*.rope_freq_scale =*/ 1.0f,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.low_vram =*/ false,
- /*.mul_mat_q =*/ false,
- /*.f16_kv =*/ true,
- /*.logits_all =*/ false,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.embedding =*/ false,
- };
- return result;
- }
- struct llama_model_quantize_params llama_model_quantize_default_params() {
- struct llama_model_quantize_params result = {
- /*.nthread =*/ 0,
- /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
- /*.allow_requantize =*/ false,
- /*.quantize_output_tensor =*/ true,
- };
- return result;
- }
- int llama_max_devices(void) {
- return LLAMA_MAX_DEVICES;
- }
- bool llama_mmap_supported(void) {
- return llama_mmap::SUPPORTED;
- }
- bool llama_mlock_supported(void) {
- return llama_mlock::SUPPORTED;
- }
- void llama_backend_init(bool numa) {
- ggml_time_init();
- // needed to initialize f16 tables
- {
- struct ggml_init_params params = { 0, NULL, false };
- struct ggml_context * ctx = ggml_init(params);
- ggml_free(ctx);
- }
- if (numa) {
- ggml_numa_init();
- }
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_init();
- #endif
- }
- void llama_backend_free(void) {
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_free();
- #endif
- }
- int64_t llama_time_us(void) {
- return ggml_time_us();
- }
- struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_context_params params) {
- ggml_time_init();
- llama_model * model = new llama_model;
- ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- unsigned cur_percentage = 0;
- if (params.progress_callback == NULL) {
- params.progress_callback_user_data = &cur_percentage;
- params.progress_callback = [](float progress, void * ctx) {
- unsigned * cur_percentage_p = (unsigned *) ctx;
- unsigned percentage = (unsigned) (100 * progress);
- while (percentage > *cur_percentage_p) {
- *cur_percentage_p = percentage;
- LLAMA_LOG_INFO(".");
- if (percentage >= 100) {
- LLAMA_LOG_INFO("\n");
- }
- }
- };
- }
- if (!llama_model_load(path_model, *model, params.n_ctx, params.n_batch, params.n_gpu_layers,
- params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,
- params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only,
- params.progress_callback, params.progress_callback_user_data)) {
- LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
- delete model;
- return nullptr;
- }
- return model;
- }
- void llama_free_model(struct llama_model * model) {
- delete model;
- }
- struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params) {
- if (!model) {
- return nullptr;
- }
- llama_context * ctx = new llama_context(*model);
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- // reserve memory for context buffers
- if (!params.vocab_only) {
- if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
- LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
- LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
- }
- const auto & hparams = ctx->model.hparams;
- // resized during inference
- if (params.logits_all) {
- ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
- } else {
- ctx->logits.reserve(hparams.n_vocab);
- }
- if (params.embedding){
- ctx->embedding.resize(hparams.n_embd);
- }
- {
- static const size_t tensor_alignment = 32;
- // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
- ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
- // create measure allocator
- ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
- // build worst-case graph
- int n_tokens = std::min((int)hparams.n_ctx, params.n_batch);
- int n_past = hparams.n_ctx - n_tokens;
- llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
- ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
- #ifdef GGML_USE_METAL
- if (params.n_gpu_layers > 0) {
- ctx->ctx_metal = ggml_metal_init(1);
- if (!ctx->ctx_metal) {
- LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
- llama_free(ctx);
- return NULL;
- }
- ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
- ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
- }
- #endif
- // measure memory requirements for the graph
- size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
- LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
- // recreate allocator with exact memory requirements
- ggml_allocr_free(ctx->alloc);
- ctx->buf_alloc.resize(alloc_size);
- ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
- #ifdef GGML_USE_METAL
- if (ctx->ctx_metal) {
- ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
- }
- #endif
- #ifdef GGML_USE_CUBLAS
- if (params.low_vram) {
- LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
- ggml_cuda_set_scratch_size(0); // disable scratch
- } else {
- ggml_cuda_set_scratch_size(alloc_size);
- LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
- }
- #endif
- }
- }
- #ifdef GGML_USE_METAL
- if (params.n_gpu_layers > 0) {
- // this allocates all Metal resources and memory buffers
- void * data_ptr = NULL;
- size_t data_size = 0;
- if (params.use_mmap) {
- data_ptr = ctx->model.mapping->addr;
- data_size = ctx->model.mapping->size;
- } else {
- data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
- data_size = ggml_get_mem_size (ctx->model.ctx);
- }
- const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
- LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
- #define LLAMA_METAL_CHECK_BUF(result) \
- if (!(result)) { \
- LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
- llama_free(ctx); \
- return NULL; \
- }
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
- LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
- #undef LLAMA_METAL_CHECK_BUF
- }
- #endif
- #ifdef GGML_USE_MPI
- ctx->ctx_mpi = ggml_mpi_init();
- if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
- // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
- const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
- while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
- llama_backend_free();
- exit(1);
- }
- #endif
- return ctx;
- }
- struct llama_context * llama_init_from_file(
- const char * path_model,
- struct llama_context_params params) {
- struct llama_model * model = llama_load_model_from_file(path_model, params);
- if (!model) {
- return nullptr;
- }
- struct llama_context * ctx = llama_new_context_with_model(model, params);
- ctx->model_owner = true;
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- delete ctx;
- }
- int llama_n_vocab(const struct llama_context * ctx) {
- return ctx->model.vocab.id_to_token.size();
- }
- int llama_n_ctx(const struct llama_context * ctx) {
- return ctx->model.hparams.n_ctx;
- }
- int llama_n_embd(const struct llama_context * ctx) {
- return ctx->model.hparams.n_embd;
- }
- enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) {
- return ctx->model.vocab.type;
- }
- int llama_model_n_vocab(const struct llama_model * model) {
- return model->vocab.id_to_token.size();
- }
- int llama_model_n_ctx(const struct llama_model * model) {
- return model->hparams.n_ctx;
- }
- int llama_model_n_embd(const struct llama_model * model) {
- return model->hparams.n_embd;
- }
- int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
- return snprintf(buf, buf_size, "%s %s %s",
- model->name.c_str(),
- llama_model_type_name(model->type),
- llama_model_ftype_name(model->ftype).c_str());
- }
- uint64_t llama_model_size(const struct llama_model * model) {
- uint64_t size = 0;
- for (const auto & it : model->tensors_by_name) {
- size += ggml_nbytes(it.second);
- }
- return size;
- }
- uint64_t llama_model_n_params(const struct llama_model * model) {
- uint64_t nparams = 0;
- for (const auto & it : model->tensors_by_name) {
- nparams += ggml_nelements(it.second);
- }
- return nparams;
- }
- int llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- const llama_model_quantize_params * params) {
- try {
- llama_model_quantize_internal(fname_inp, fname_out, params);
- return 0;
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
- return 1;
- }
- }
- int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
- try {
- return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
- try {
- return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
- return ctx->kv_self.n;
- }
- #define LLAMA_MAX_RNG_STATE (64*1024)
- void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- seed = time(NULL);
- }
- ctx->rng.seed(seed);
- }
- // Returns the *maximum* size of the state
- size_t llama_get_state_size(const struct llama_context * ctx) {
- // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
- // for reference, std::mt19937(1337) serializes to 6701 bytes.
- const size_t s_rng_size = sizeof(size_t);
- const size_t s_rng = LLAMA_MAX_RNG_STATE;
- const size_t s_logits_capacity = sizeof(size_t);
- const size_t s_logits_size = sizeof(size_t);
- const size_t s_logits = ctx->logits.capacity() * sizeof(float);
- const size_t s_embedding_size = sizeof(size_t);
- const size_t s_embedding = ctx->embedding.size() * sizeof(float);
- const size_t s_kv_size = sizeof(size_t);
- const size_t s_kv_ntok = sizeof(int);
- const size_t s_kv = ctx->kv_self.buf.size;
- const size_t s_total = (
- + s_rng_size
- + s_rng
- + s_logits_capacity
- + s_logits_size
- + s_logits
- + s_embedding_size
- + s_embedding
- + s_kv_size
- + s_kv_ntok
- + s_kv
- );
- return s_total;
- }
- // llama_context_data
- struct llama_data_context {
- virtual void write(const void * src, size_t size) = 0;
- virtual size_t get_size_written() = 0;
- virtual ~llama_data_context() = default;
- };
- struct llama_data_buffer_context : llama_data_context {
- uint8_t * ptr;
- size_t size_written = 0;
- llama_data_buffer_context(uint8_t * p) : ptr(p) {}
- void write(const void * src, size_t size) override {
- memcpy(ptr, src, size);
- ptr += size;
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- struct llama_data_file_context : llama_data_context {
- llama_file * file;
- size_t size_written = 0;
- llama_data_file_context(llama_file * f) : file(f) {}
- void write(const void * src, size_t size) override {
- file->write_raw(src, size);
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- /** copy state data into either a buffer or file depending on the passed in context
- *
- * file context:
- * llama_file file("/path", "wb");
- * llama_data_file_context data_ctx(&file);
- * llama_copy_state_data(ctx, &data_ctx);
- *
- * buffer context:
- * std::vector<uint8_t> buf(max_size, 0);
- * llama_data_buffer_context data_ctx(&buf.data());
- * llama_copy_state_data(ctx, &data_ctx);
- *
- */
- void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
- // copy rng
- {
- std::stringstream rng_ss;
- rng_ss << ctx->rng;
- const size_t rng_size = rng_ss.str().size();
- char rng_buf[LLAMA_MAX_RNG_STATE];
- memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
- memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
- data_ctx->write(&rng_size, sizeof(rng_size));
- data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
- }
- // copy logits
- {
- const size_t logits_cap = ctx->logits.capacity();
- const size_t logits_size = ctx->logits.size();
- data_ctx->write(&logits_cap, sizeof(logits_cap));
- data_ctx->write(&logits_size, sizeof(logits_size));
- if (logits_size) {
- data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
- }
- // If there is a gap between the size and the capacity, write padding
- size_t padding_size = (logits_cap - logits_size) * sizeof(float);
- if (padding_size > 0) {
- std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
- data_ctx->write(padding.data(), padding_size);
- }
- }
- // copy embeddings
- {
- const size_t embedding_size = ctx->embedding.size();
- data_ctx->write(&embedding_size, sizeof(embedding_size));
- if (embedding_size) {
- data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
- }
- }
- // copy kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const int n_layer = hparams.n_layer;
- const int n_embd = hparams.n_embd_gqa();
- const int n_ctx = hparams.n_ctx;
- const size_t kv_size = kv_self.buf.size;
- const int kv_ntok = llama_get_kv_cache_token_count(ctx);
- data_ctx->write(&kv_size, sizeof(kv_size));
- data_ctx->write(&kv_ntok, sizeof(kv_ntok));
- if (kv_size) {
- const size_t elt_size = ggml_element_size(kv_self.k);
- ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
- ggml_cgraph gf{};
- ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
- std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
- kout3d->data = kout3d_data.data();
- ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
- std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
- vout3d->data = vout3d_data.data();
- ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
- n_embd, kv_ntok, n_layer,
- elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
- ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
- kv_ntok, n_embd, n_layer,
- elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
- ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
- ggml_free(cpy_ctx);
- // our data is now in the kout3d_data and vout3d_data buffers
- // write them to file
- data_ctx->write(kout3d_data.data(), kout3d_data.size());
- data_ctx->write(vout3d_data.data(), vout3d_data.size());
- }
- }
- }
- size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
- llama_data_buffer_context data_ctx(dst);
- llama_copy_state_data_internal(ctx, &data_ctx);
- return data_ctx.get_size_written();
- }
- // Sets the state reading from the specified source address
- size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
- uint8_t * inp = src;
- // set rng
- {
- size_t rng_size;
- char rng_buf[LLAMA_MAX_RNG_STATE];
- memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
- memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
- std::stringstream rng_ss;
- rng_ss.str(std::string(&rng_buf[0], rng_size));
- rng_ss >> ctx->rng;
- GGML_ASSERT(rng_ss.fail() == false);
- }
- // set logits
- {
- size_t logits_cap;
- size_t logits_size;
- memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
- memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
- GGML_ASSERT(ctx->logits.capacity() == logits_cap);
- if (logits_size) {
- ctx->logits.resize(logits_size);
- memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
- }
- inp += logits_cap * sizeof(float);
- }
- // set embeddings
- {
- size_t embedding_size;
- memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
- GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
- if (embedding_size) {
- memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
- inp += embedding_size * sizeof(float);
- }
- }
- // set kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const int n_layer = hparams.n_layer;
- const int n_embd = hparams.n_embd_gqa();
- const int n_ctx = hparams.n_ctx;
- size_t kv_size;
- int kv_ntok;
- memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
- memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
- if (kv_size) {
- GGML_ASSERT(kv_self.buf.size == kv_size);
- const size_t elt_size = ggml_element_size(kv_self.k);
- ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
- ggml_cgraph gf{};
- ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
- kin3d->data = (void *) inp;
- inp += ggml_nbytes(kin3d);
- ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
- vin3d->data = (void *) inp;
- inp += ggml_nbytes(vin3d);
- ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
- n_embd, kv_ntok, n_layer,
- elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
- ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
- kv_ntok, n_embd, n_layer,
- elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
- ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
- ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
- ggml_free(cpy_ctx);
- }
- ctx->kv_self.n = kv_ntok;
- }
- const size_t nread = inp - src;
- const size_t max_size = llama_get_state_size(ctx);
- GGML_ASSERT(nread <= max_size);
- return nread;
- }
- static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- llama_file file(path_session, "rb");
- // sanity checks
- {
- const uint32_t magic = file.read_u32();
- const uint32_t version = file.read_u32();
- if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
- LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
- return false;
- }
- llama_hparams session_hparams;
- file.read_raw(&session_hparams, sizeof(llama_hparams));
- if (session_hparams != ctx->model.hparams) {
- LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
- return false;
- }
- }
- // load the prompt
- {
- const uint32_t n_token_count = file.read_u32();
- if (n_token_count > n_token_capacity) {
- LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
- return false;
- }
- file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
- *n_token_count_out = n_token_count;
- }
- // restore the context state
- {
- const size_t n_state_size_cur = file.size - file.tell();
- const size_t n_state_size_max = llama_get_state_size(ctx);
- if (n_state_size_cur > n_state_size_max) {
- LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
- return false;
- }
- std::vector<uint8_t> state_data(n_state_size_max);
- file.read_raw(state_data.data(), n_state_size_cur);
- llama_set_state_data(ctx, state_data.data());
- }
- return true;
- }
- bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- try {
- return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
- return false;
- }
- }
- bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- llama_file file(path_session, "wb");
- file.write_u32(LLAMA_SESSION_MAGIC);
- file.write_u32(LLAMA_SESSION_VERSION);
- file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
- // save the prompt
- file.write_u32((uint32_t) n_token_count);
- file.write_raw(tokens, sizeof(llama_token) * n_token_count);
- // save the context state using stream saving
- llama_data_file_context data_ctx(&file);
- llama_copy_state_data_internal(ctx, &data_ctx);
- return true;
- }
- int llama_eval(
- struct llama_context * ctx,
- const llama_token * tokens,
- int n_tokens,
- int n_past,
- int n_threads) {
- if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
- LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
- return 1;
- }
- // get a more accurate load time, upon first eval
- // TODO: fix this
- if (!ctx->has_evaluated_once) {
- ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
- ctx->has_evaluated_once = true;
- }
- return 0;
- }
- int llama_eval_embd(
- struct llama_context * ctx,
- const float * embd,
- int n_tokens,
- int n_past,
- int n_threads) {
- if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
- LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
- return 1;
- }
- // get a more accurate load time, upon first eval
- // TODO: fix this
- if (!ctx->has_evaluated_once) {
- ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
- ctx->has_evaluated_once = true;
- }
- return 0;
- }
- int llama_eval_export(struct llama_context * ctx, const char * fname) {
- const int n_batch = 1;
- const int n_ctx = 512 - n_batch;
- const std::vector<llama_token> tmp(n_batch, llama_token_bos(ctx));
- if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
- LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
- return 1;
- }
- return 0;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- return ctx->logits.data();
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- return ctx->embedding.data();
- }
- const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) {
- return ctx->model.vocab.id_to_token[token].text.c_str();
- }
- float llama_token_get_score(const struct llama_context * ctx, llama_token token) {
- return ctx->model.vocab.id_to_token[token].score;
- }
- llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) {
- return ctx->model.vocab.id_to_token[token].type;
- }
- llama_token llama_token_bos(const struct llama_context * ctx) {
- return ctx->model.vocab.special_bos_id;
- }
- llama_token llama_token_eos(const struct llama_context * ctx) {
- return ctx->model.vocab.special_eos_id;
- }
- llama_token llama_token_nl(const struct llama_context * ctx) {
- return ctx->model.vocab.linefeed_id;
- }
- int llama_tokenize(
- struct llama_context * ctx,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos) {
- return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos);
- }
- int llama_tokenize_with_model(
- const struct llama_model * model,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos) {
- auto escape = llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM;
- auto res = llama_tokenize_internal(model->vocab, text, add_bos, escape);
- if (n_max_tokens < (int) res.size()) {
- LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- int llama_token_to_str(const struct llama_context * ctx, llama_token token, char * buf, int length) {
- return llama_token_to_str_with_model(&ctx->model, token, buf, length);
- }
- // does not write null-terminator to str
- int llama_token_to_str_with_model(const struct llama_model * model, llama_token token, char * buf, int length) {
- if (0 <= token && token < llama_model_n_vocab(model)) {
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM) {
- llama_unescape_whitespace(result);
- }
- if (length < (int) result.length()) {
- return -result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
- if (length < 3) {
- return -3;
- }
- buf[0] = '\xe2';
- buf[1] = '\x96';
- buf[2] = '\x85';
- return 3;
- } else if (llama_is_control_token(model->vocab, token)) {
- ;
- } else if (llama_is_byte_token(model->vocab, token)) {
- if (length < 1) {
- return -1;
- }
- buf[0] = llama_token_to_byte(model->vocab, token);
- return 1;
- }
- }
- return 0;
- }
- struct llama_timings llama_get_timings(struct llama_context * ctx) {
- struct llama_timings result = {
- /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
- /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
- /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
- /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
- /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
- /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
- /*.n_sample =*/ std::max(1, ctx->n_sample),
- /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
- /*.n_eval =*/ std::max(1, ctx->n_eval),
- };
- return result;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const llama_timings timings = llama_get_timings(ctx);
- LLAMA_LOG_INFO("\n");
- LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
- LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
- LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
- LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
- LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
- s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- return s.c_str();
- }
- // For internal test use
- const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
- return ctx->model.tensors_by_name;
- }
- void llama_log_set(llama_log_callback log_callback, void * user_data) {
- g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
- g_state.log_callback_user_data = user_data;
- }
- #if defined(_MSC_VER) && !defined(vsnprintf)
- #define vsnprintf _vsnprintf
- #endif
- static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) {
- va_list args_copy;
- va_copy(args_copy, args);
- char buffer[128];
- int len = vsnprintf(buffer, 128, format, args);
- if (len < 128) {
- g_state.log_callback(level, buffer, g_state.log_callback_user_data);
- } else {
- char* buffer2 = new char[len+1];
- vsnprintf(buffer2, len+1, format, args_copy);
- buffer2[len] = 0;
- g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
- delete[] buffer2;
- }
- va_end(args_copy);
- }
- static void llama_log_internal(llama_log_level level, const char * format, ...) {
- va_list args;
- va_start(args, format);
- llama_log_internal_v(level, format, args);
- va_end(args);
- }
- static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) user_data;
- fputs(text, stderr);
- fflush(stderr);
- }
|