ggml-opencl.cpp 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028
  1. #include "ggml-opencl.h"
  2. #include <array>
  3. #include <atomic>
  4. #include <sstream>
  5. #define CL_TARGET_OPENCL_VERSION 110
  6. #include <clblast.h>
  7. #include <stdlib.h>
  8. #include <stdio.h>
  9. #include <string.h>
  10. #include "ggml.h"
  11. #define CL_DMMV_BLOCK_SIZE 32;
  12. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  13. static std::string program_source = MULTILINE_QUOTE(
  14. typedef char int8_t;
  15. typedef uchar uint8_t;
  16. typedef int int32_t;
  17. typedef uint uint32_t;
  18. struct __attribute__ ((packed)) block_q4_0
  19. {
  20. half d;
  21. uint8_t qs[QK4_0 / 2];
  22. };
  23. struct __attribute__ ((packed)) block_q4_1
  24. {
  25. half d;
  26. half m;
  27. uint8_t qs[QK4_1 / 2];
  28. };
  29. struct __attribute__ ((packed)) block_q5_0
  30. {
  31. half d;
  32. uint32_t qh;
  33. uint8_t qs[QK5_0 / 2];
  34. };
  35. struct __attribute__ ((packed)) block_q5_1
  36. {
  37. half d;
  38. half m;
  39. uint32_t qh;
  40. uint8_t qs[QK5_1 / 2];
  41. };
  42. struct __attribute__ ((packed)) block_q8_0
  43. {
  44. half d;
  45. int8_t qs[QK8_0];
  46. };
  47. __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
  48. const uint i = get_global_id(0);
  49. y[i] = vload_half(0, &x[i]);
  50. }
  51. void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
  52. const float d = vload_half(0, &x[ib].d);
  53. const uint8_t vui = x[ib].qs[iqs];
  54. const int8_t vi0 = vui & 0xF;
  55. const int8_t vi1 = vui >> 4;
  56. *v0 = (vi0 - 8)*d;
  57. *v1 = (vi1 - 8)*d;
  58. }
  59. void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
  60. const float d = vload_half(0, &x[ib].d);
  61. const float m = vload_half(0, &x[ib].m);
  62. const uint8_t vui = x[ib].qs[iqs];
  63. const int8_t vi0 = vui & 0xF;
  64. const int8_t vi1 = vui >> 4;
  65. *v0 = vi0*d + m;
  66. *v1 = vi1*d + m;
  67. }
  68. void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
  69. const float d = vload_half(0, &x[ib].d);
  70. uint32_t qh = x[ib].qh;
  71. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  72. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  73. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
  74. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
  75. *v0 = x0*d;
  76. *v1 = x1*d;
  77. }
  78. void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
  79. const float d = vload_half(0, &x[ib].d);
  80. const float m = vload_half(0, &x[ib].m);
  81. uint32_t qh = x[ib].qh;
  82. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  83. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  84. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
  85. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
  86. *v0 = x0*d + m;
  87. *v1 = x1*d + m;
  88. }
  89. void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
  90. const float d = vload_half(0, &x[ib].d);
  91. const int8_t vi0 = x[ib].qs[iqs + 0];
  92. const int8_t vi1 = x[ib].qs[iqs + 1];
  93. *v0 = vi0*d;
  94. *v1 = vi1*d;
  95. }
  96. void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
  97. *v0 = vload_half(0, &x[ib + 0]);
  98. *v1 = vload_half(0, &x[ib + 1]);
  99. }
  100. );
  101. std::string dequant_template = MULTILINE_QUOTE(
  102. __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
  103. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
  104. if (i >= get_global_size(0)) {
  105. return;
  106. }
  107. const uint qk = QUANT_K;
  108. const uint qr = QUANT_R;
  109. const int ib = i/qk; // block index
  110. const int iqs = (i%qk)/qr; // quant index
  111. const int iybs = i - i%qk; // y block start index
  112. const int y_offset = qr == 1 ? 1 : qk/2;
  113. // dequantize
  114. float v0, v1;
  115. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  116. y[iybs + iqs + 0] = v0;
  117. y[iybs + iqs + y_offset] = v1;
  118. }
  119. );
  120. std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
  121. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  122. const int block_size = get_local_size(0);
  123. const int row = get_global_id(0) / block_size;
  124. const int tid = get_local_id(0);
  125. const uint qk = QUANT_K;
  126. const uint qr = QUANT_R;
  127. const int y_offset = qr == 1 ? 1 : qk/2;
  128. tmp[tid] = 0;
  129. for (int i = 0; i < ncols/block_size; i += 2) {
  130. const int col = i*block_size + 2*tid;
  131. const int ib = (row*ncols + col)/qk; // block index
  132. const int iqs = (col%qk)/qr; // quant index
  133. const int iybs = col - col%qk; // y block start index
  134. // dequantize
  135. float v0, v1;
  136. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  137. // matrix multiplication
  138. tmp[tid] += v0 * y[iybs + iqs + 0];
  139. tmp[tid] += v1 * y[iybs + iqs + y_offset];
  140. }
  141. // sum up partial sums and write back result
  142. barrier(CLK_LOCAL_MEM_FENCE);
  143. for (int s=block_size/2; s>0; s>>=1) {
  144. if (tid < s) {
  145. tmp[tid] += tmp[tid + s];
  146. }
  147. barrier(CLK_LOCAL_MEM_FENCE);
  148. }
  149. if (tid == 0) {
  150. dst[row] = tmp[0];
  151. }
  152. }
  153. );
  154. #define CL_CHECK(err) \
  155. do { \
  156. cl_int err_ = (err); \
  157. if (err_ != CL_SUCCESS) { \
  158. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  159. #err, err_, __FILE__, __LINE__); \
  160. exit(1); \
  161. } \
  162. } while (0)
  163. #define CLBLAST_CHECK(err) \
  164. do { \
  165. CLBlastStatusCode err_ = (err); \
  166. if (err_ != CLBlastSuccess) { \
  167. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  168. #err, err_, __FILE__, __LINE__); \
  169. exit(1); \
  170. } \
  171. } while (0)
  172. std::array<std::string, 5> dequant_str_keys = {
  173. "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
  174. };
  175. std::array<std::string, 30> dequant_str_values = {
  176. "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  177. "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  178. "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  179. "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  180. "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  181. "convert_row_f16", "half", "1", "1", "convert_f16"
  182. };
  183. std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
  184. "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  185. "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  186. "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  187. "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  188. "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  189. "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
  190. };
  191. std::string& replace(std::string& s, const std::string& from, const std::string& to) {
  192. size_t pos = 0;
  193. while ((pos = s.find(from, pos)) != std::string::npos) {
  194. s.replace(pos, from.length(), to);
  195. pos += to.length();
  196. }
  197. return s;
  198. }
  199. std::string generate_kernels() {
  200. std::stringstream src;
  201. src << program_source << '\n';
  202. for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
  203. std::string dequant_kernel = dequant_template;
  204. std::string dmmv_kernel = dequant_mul_mat_vec_template;
  205. for (size_t j = 0; j < dequant_str_keys.size(); j++) {
  206. replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
  207. replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
  208. }
  209. src << dequant_kernel << '\n';
  210. src << dmmv_kernel << '\n';
  211. }
  212. return src.str();
  213. }
  214. static cl_platform_id platform;
  215. static cl_device_id device;
  216. static cl_context context;
  217. static cl_command_queue queue;
  218. static cl_program program;
  219. static cl_kernel convert_row_f16_cl;
  220. static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
  221. static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
  222. static bool fp16_support;
  223. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  224. cl_program p;
  225. char *program_log;
  226. size_t program_size;
  227. size_t log_size;
  228. int err;
  229. program_size = strlen(program_buffer);
  230. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  231. if(err < 0) {
  232. fprintf(stderr, "OpenCL error creating program");
  233. exit(1);
  234. }
  235. const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
  236. "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1";
  237. err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL);
  238. if(err < 0) {
  239. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  240. program_log = (char*) malloc(log_size + 1);
  241. program_log[log_size] = '\0';
  242. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  243. fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  244. free(program_log);
  245. exit(1);
  246. }
  247. return p;
  248. }
  249. void ggml_cl_init(void) {
  250. cl_int err;
  251. struct cl_device;
  252. struct cl_platform {
  253. cl_platform_id id;
  254. unsigned number;
  255. char name[128];
  256. char vendor[128];
  257. struct cl_device * devices;
  258. unsigned n_devices;
  259. struct cl_device * default_device;
  260. };
  261. struct cl_device {
  262. struct cl_platform * platform;
  263. cl_device_id id;
  264. unsigned number;
  265. cl_device_type type;
  266. char name[128];
  267. };
  268. enum { NPLAT = 16, NDEV = 16 };
  269. struct cl_platform platforms[NPLAT];
  270. unsigned n_platforms = 0;
  271. struct cl_device devices[NDEV];
  272. unsigned n_devices = 0;
  273. struct cl_device * default_device = NULL;
  274. platform = NULL;
  275. device = NULL;
  276. cl_platform_id platform_ids[NPLAT];
  277. CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
  278. for (unsigned i = 0; i < n_platforms; i++) {
  279. struct cl_platform * p = &platforms[i];
  280. p->number = i;
  281. p->id = platform_ids[i];
  282. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  283. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  284. cl_device_id device_ids[NDEV];
  285. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  286. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  287. p->n_devices = 0;
  288. } else {
  289. CL_CHECK(clGetDeviceIDsError);
  290. }
  291. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  292. p->default_device = NULL;
  293. for (unsigned j = 0; j < p->n_devices; j++) {
  294. struct cl_device * d = &devices[n_devices];
  295. d->number = n_devices++;
  296. d->id = device_ids[j];
  297. d->platform = p;
  298. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  299. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  300. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  301. p->default_device = d;
  302. }
  303. }
  304. if (default_device == NULL && p->default_device != NULL) {
  305. default_device = p->default_device;
  306. }
  307. }
  308. if (n_devices == 0) {
  309. fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
  310. exit(1);
  311. }
  312. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  313. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  314. int user_platform_number = -1;
  315. int user_device_number = -1;
  316. unsigned n;
  317. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  318. user_platform_number = (int)n;
  319. }
  320. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  321. user_device_number = (int)n;
  322. }
  323. if (user_platform_number != -1 && user_device_number != -1) {
  324. cl_platform* platform = &platforms[user_platform_number];
  325. if ((unsigned)user_device_number >= platform->n_devices) {
  326. fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
  327. exit(1);
  328. }
  329. default_device = &platform->devices[user_device_number];
  330. } else {
  331. struct cl_device * selected_devices = devices;
  332. unsigned n_selected_devices = n_devices;
  333. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  334. for (unsigned i = 0; i < n_platforms; i++) {
  335. struct cl_platform * p = &platforms[i];
  336. if (strstr(p->name, user_platform_string) != NULL ||
  337. strstr(p->vendor, user_platform_string) != NULL) {
  338. user_platform_number = (int)i;
  339. break;
  340. }
  341. }
  342. if (user_platform_number == -1) {
  343. fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  344. exit(1);
  345. }
  346. }
  347. if (user_platform_number != -1) {
  348. struct cl_platform * p = &platforms[user_platform_number];
  349. selected_devices = p->devices;
  350. n_selected_devices = p->n_devices;
  351. default_device = p->default_device;
  352. if (n_selected_devices == 0) {
  353. fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  354. exit(1);
  355. }
  356. }
  357. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  358. for (unsigned i = 0; i < n_selected_devices; i++) {
  359. struct cl_device * d = &selected_devices[i];
  360. if (strstr(d->name, user_device_string) != NULL) {
  361. user_device_number = d->number;
  362. break;
  363. }
  364. }
  365. if (user_device_number == -1) {
  366. fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  367. exit(1);
  368. }
  369. }
  370. if (user_device_number != -1) {
  371. selected_devices = &devices[user_device_number];
  372. n_selected_devices = 1;
  373. default_device = &selected_devices[0];
  374. }
  375. GGML_ASSERT(n_selected_devices > 0);
  376. if (default_device == NULL) {
  377. default_device = &selected_devices[0];
  378. }
  379. }
  380. fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  381. fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
  382. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  383. fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  384. }
  385. platform = default_device->platform->id;
  386. device = default_device->id;
  387. size_t ext_str_size;
  388. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  389. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  390. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  391. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  392. // Check if ext_buffer contains cl_khr_fp16
  393. fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  394. fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
  395. cl_context_properties properties[] = {
  396. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
  397. };
  398. CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  399. CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  400. (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  401. (queue = clCreateCommandQueue(context, device, 0, &err), err)
  402. )));
  403. const std::string kernel_src = generate_kernels();
  404. program = build_program_from_source(context, device, kernel_src.c_str());
  405. // FP16 to FP32 kernel
  406. CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
  407. // Dequantize kernels
  408. CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
  409. CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
  410. CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
  411. CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
  412. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  413. // dequant mul mat kernel
  414. CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
  415. CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
  416. CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
  417. CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
  418. CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
  419. CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
  420. }
  421. static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
  422. switch (type) {
  423. case GGML_TYPE_Q4_0:
  424. return &dequantize_row_q4_0_cl;
  425. case GGML_TYPE_Q4_1:
  426. return &dequantize_row_q4_1_cl;
  427. case GGML_TYPE_Q5_0:
  428. return &dequantize_row_q5_0_cl;
  429. case GGML_TYPE_Q5_1:
  430. return &dequantize_row_q5_1_cl;
  431. case GGML_TYPE_Q8_0:
  432. return &dequantize_row_q8_0_cl;
  433. case GGML_TYPE_F16:
  434. return &convert_row_f16_cl;
  435. default:
  436. return nullptr;
  437. }
  438. }
  439. static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
  440. switch (type) {
  441. case GGML_TYPE_Q4_0:
  442. return &dequantize_mul_mat_vec_q4_0_cl;
  443. case GGML_TYPE_Q4_1:
  444. return &dequantize_mul_mat_vec_q4_1_cl;
  445. case GGML_TYPE_Q5_0:
  446. return &dequantize_mul_mat_vec_q5_0_cl;
  447. case GGML_TYPE_Q5_1:
  448. return &dequantize_mul_mat_vec_q5_1_cl;
  449. case GGML_TYPE_Q8_0:
  450. return &dequantize_mul_mat_vec_q8_0_cl;
  451. case GGML_TYPE_F16:
  452. return &convert_mul_mat_vec_f16_cl;
  453. default:
  454. return nullptr;
  455. }
  456. }
  457. // buffer pool for cl
  458. #define MAX_CL_BUFFERS 256
  459. struct scoped_spin_lock {
  460. std::atomic_flag& lock;
  461. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  462. while (lock.test_and_set(std::memory_order_acquire)) {
  463. ; // spin
  464. }
  465. }
  466. ~scoped_spin_lock() {
  467. lock.clear(std::memory_order_release);
  468. }
  469. scoped_spin_lock(const scoped_spin_lock&) = delete;
  470. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  471. };
  472. struct cl_buffer {
  473. cl_mem mem;
  474. size_t size = 0;
  475. };
  476. static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
  477. static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
  478. static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) {
  479. scoped_spin_lock lock(g_cl_pool_lock);
  480. cl_int err;
  481. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  482. cl_buffer& b = g_cl_buffer_pool[i];
  483. if (b.size > 0 && b.size >= size) {
  484. cl_mem mem = b.mem;
  485. *actual_size = b.size;
  486. b.size = 0;
  487. return mem;
  488. }
  489. }
  490. cl_mem mem;
  491. CL_CHECK((mem = clCreateBuffer(context, flags, size, NULL, &err), err));
  492. *actual_size = size;
  493. return mem;
  494. }
  495. static void ggml_cl_pool_free(cl_mem mem, size_t size) {
  496. scoped_spin_lock lock(g_cl_pool_lock);
  497. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  498. cl_buffer& b = g_cl_buffer_pool[i];
  499. if (b.size == 0) {
  500. b.mem = mem;
  501. b.size = size;
  502. return;
  503. }
  504. }
  505. fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
  506. clReleaseMemObject(mem);
  507. }
  508. static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
  509. cl_int err;
  510. const uint64_t ne0 = src->ne[0];
  511. const uint64_t ne1 = src->ne[1];
  512. const uint64_t nb0 = src->nb[0];
  513. const uint64_t nb1 = src->nb[1];
  514. const uint64_t nb2 = src->nb[2];
  515. const uint64_t nb3 = src->nb[3];
  516. const enum ggml_type type = src->type;
  517. const size_t ts = ggml_type_size(type);
  518. const size_t bs = ggml_blck_size(type);
  519. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  520. if (nb0 == ts && nb1 == ts*ne0/bs) {
  521. err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
  522. return err;
  523. }
  524. if (nb0 == ts) {
  525. const size_t buffer_origin[3] = { offset, 0, 0 };
  526. const size_t host_origin[3] = { 0, 0, 0 };
  527. const size_t region[3] = { ts*ne0/bs, ne1, 1 };
  528. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
  529. return err;
  530. }
  531. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  532. // pretend the row is a matrix with cols=1
  533. const size_t buffer_origin[3] = { offset, i1, 0 };
  534. const size_t host_origin[3] = { 0, 0, 0 };
  535. const size_t region[3] = { ts/bs, ne0, 1 };
  536. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
  537. if (err != CL_SUCCESS) {
  538. break;
  539. }
  540. }
  541. return err;
  542. }
  543. static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  544. const int64_t ne00 = src0->ne[0];
  545. const int64_t ne01 = src0->ne[1];
  546. const int64_t ne02 = src0->ne[2];
  547. const int64_t ne03 = src0->ne[3];
  548. const int64_t ne10 = src1->ne[0];
  549. const int64_t ne11 = src1->ne[1];
  550. const int nb2 = dst->nb[2];
  551. const int nb3 = dst->nb[3];
  552. const float alpha = 1.0f;
  553. const float beta = 0.0f;
  554. const int x_ne = ne01 * ne00;
  555. const int y_ne = ne11 * ne10;
  556. const int d_ne = ne11 * ne01;
  557. size_t x_size;
  558. size_t y_size;
  559. size_t d_size;
  560. cl_mem d_X;
  561. if (src0->backend == GGML_BACKEND_CL) {
  562. d_X = (cl_mem) src0->data;
  563. } else {
  564. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
  565. }
  566. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
  567. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
  568. for (int64_t i03 = 0; i03 < ne03; i03++) {
  569. for (int64_t i02 = 0; i02 < ne02; i02++) {
  570. // copy data to device
  571. if (src0->backend != GGML_BACKEND_CL) {
  572. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  573. }
  574. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  575. CL_CHECK(clFinish(queue));
  576. // compute
  577. cl_event ev_sgemm;
  578. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  579. clblast::Transpose::kYes, clblast::Transpose::kNo,
  580. ne01, ne11, ne10,
  581. alpha,
  582. d_X, 0, ne00,
  583. d_Y, 0, ne10,
  584. beta,
  585. d_D, 0, ne01,
  586. &queue, &ev_sgemm);
  587. if (status != clblast::StatusCode::kSuccess) {
  588. GGML_ASSERT(false);
  589. }
  590. // copy dst to host
  591. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  592. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  593. }
  594. }
  595. if (src0->backend != GGML_BACKEND_CL) {
  596. ggml_cl_pool_free(d_X, x_size);
  597. }
  598. ggml_cl_pool_free(d_Y, y_size);
  599. ggml_cl_pool_free(d_D, d_size);
  600. }
  601. static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
  602. GGML_ASSERT(fp16_support);
  603. const int64_t ne00 = src0->ne[0];
  604. const int64_t ne01 = src0->ne[1];
  605. const int64_t ne02 = src0->ne[2];
  606. const int64_t ne03 = src0->ne[3];
  607. const int64_t ne10 = src1->ne[0];
  608. const int64_t ne11 = src1->ne[1];
  609. const int nb10 = src1->nb[0];
  610. const int nb11 = src1->nb[1];
  611. const int nb12 = src1->nb[2];
  612. const int nb13 = src1->nb[3];
  613. const int nb2 = dst->nb[2];
  614. const int nb3 = dst->nb[3];
  615. const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
  616. const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
  617. const int x_ne = ne01 * ne00;
  618. const int y_ne = ne11 * ne10;
  619. const int d_ne = ne11 * ne01;
  620. size_t x_size;
  621. size_t y_size;
  622. size_t d_size;
  623. cl_mem d_X;
  624. if (src0->backend == GGML_BACKEND_CL) {
  625. d_X = (cl_mem) src0->data;
  626. } else {
  627. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
  628. }
  629. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY);
  630. cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
  631. bool src1_cont_rows = nb10 == sizeof(float);
  632. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  633. for (int64_t i03 = 0; i03 < ne03; i03++) {
  634. for (int64_t i02 = 0; i02 < ne02; i02++) {
  635. // copy src0 to device
  636. if (src0->backend != GGML_BACKEND_CL) {
  637. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  638. }
  639. // convert src1 to fp16
  640. // TODO: use multiple threads
  641. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  642. char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
  643. if (src1_cont_rows) {
  644. if (src1_cont_cols) {
  645. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  646. }
  647. else {
  648. for (int64_t i01 = 0; i01 < ne11; i01++) {
  649. ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
  650. }
  651. }
  652. }
  653. else {
  654. for (int64_t i01 = 0; i01 < ne11; i01++) {
  655. for (int64_t i00 = 0; i00 < ne10; i00++) {
  656. // very slow due to no inlining
  657. tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
  658. }
  659. }
  660. }
  661. // copy src1 to device
  662. CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
  663. CL_CHECK(clFinish(queue));
  664. // compute
  665. cl_event ev_sgemm;
  666. clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
  667. clblast::Transpose::kYes, clblast::Transpose::kNo,
  668. ne01, ne11, ne10,
  669. alpha,
  670. d_X, 0, ne00,
  671. d_Y, 0, ne10,
  672. beta,
  673. d_D, 0, ne01,
  674. &queue, &ev_sgemm);
  675. if (status != clblast::StatusCode::kSuccess) {
  676. GGML_ASSERT(false);
  677. }
  678. // copy dst to host, then convert to float
  679. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
  680. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  681. ggml_fp16_to_fp32_row(tmp, d, d_ne);
  682. }
  683. }
  684. if (src0->backend != GGML_BACKEND_CL) {
  685. ggml_cl_pool_free(d_X, x_size);
  686. }
  687. ggml_cl_pool_free(d_Y, y_size);
  688. ggml_cl_pool_free(d_D, d_size);
  689. }
  690. static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  691. const int64_t ne00 = src0->ne[0];
  692. const int64_t ne01 = src0->ne[1];
  693. const int64_t ne02 = src0->ne[2];
  694. const int64_t ne03 = src0->ne[3];
  695. const int64_t ne10 = src1->ne[0];
  696. const int64_t ne11 = src1->ne[1];
  697. const int nb2 = dst->nb[2];
  698. const int nb3 = dst->nb[3];
  699. const ggml_type type = src0->type;
  700. const bool mul_mat_vec = ne11 == 1;
  701. const float alpha = 1.0f;
  702. const float beta = 0.0f;
  703. const int x_ne = ne01 * ne00;
  704. const int y_ne = ne11 * ne10;
  705. const int d_ne = ne11 * ne01;
  706. const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
  707. size_t x_size;
  708. size_t y_size;
  709. size_t d_size;
  710. size_t q_size;
  711. cl_mem d_X;
  712. if (!mul_mat_vec) {
  713. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE);
  714. }
  715. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
  716. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
  717. cl_mem d_Q;
  718. if (src0->backend == GGML_BACKEND_CPU) {
  719. d_Q = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
  720. }
  721. cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
  722. cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
  723. GGML_ASSERT(to_fp32_cl != nullptr);
  724. for (int64_t i03 = 0; i03 < ne03; i03++) {
  725. for (int64_t i02 = 0; i02 < ne02; i02++) {
  726. cl_event ev_sgemm;
  727. // copy src0 to device if necessary
  728. if (src0->backend == GGML_BACKEND_CPU) {
  729. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL));
  730. } else if (src0->backend == GGML_BACKEND_CL) {
  731. d_Q = (cl_mem) src0->data;
  732. } else {
  733. GGML_ASSERT(false);
  734. }
  735. if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
  736. // copy src1 to device
  737. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  738. // compute
  739. const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
  740. const size_t local = CL_DMMV_BLOCK_SIZE;
  741. const cl_int ncols = ne00;
  742. CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
  743. CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
  744. CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
  745. CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
  746. CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
  747. CL_CHECK(clFinish(queue));
  748. CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm));
  749. } else { // general dequantization kernel + CLBlast matrix matrix multiplication
  750. // convert src0 to fp32 on device
  751. const size_t global = x_ne;
  752. CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
  753. CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
  754. CL_CHECK(clFinish(queue));
  755. CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL));
  756. // copy src1 to device
  757. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  758. // wait for conversion
  759. CL_CHECK(clFinish(queue));
  760. // compute
  761. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  762. clblast::Transpose::kYes, clblast::Transpose::kNo,
  763. ne01, ne11, ne10,
  764. alpha,
  765. d_X, 0, ne00,
  766. d_Y, 0, ne10,
  767. beta,
  768. d_D, 0, ne01,
  769. &queue, &ev_sgemm);
  770. if (status != clblast::StatusCode::kSuccess) {
  771. GGML_ASSERT(false);
  772. }
  773. }
  774. // copy dst to host
  775. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  776. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  777. clReleaseEvent(ev_sgemm);
  778. }
  779. }
  780. if (!mul_mat_vec) {
  781. ggml_cl_pool_free(d_X, x_size);
  782. }
  783. ggml_cl_pool_free(d_Y, y_size);
  784. ggml_cl_pool_free(d_D, d_size);
  785. if (src0->backend == GGML_BACKEND_CPU) {
  786. ggml_cl_pool_free(d_Q, q_size);
  787. }
  788. }
  789. bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  790. const int64_t ne10 = src1->ne[0];
  791. const int64_t ne0 = dst->ne[0];
  792. const int64_t ne1 = dst->ne[1];
  793. // TODO: find the optimal values for these
  794. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  795. src1->type == GGML_TYPE_F32 &&
  796. dst->type == GGML_TYPE_F32 &&
  797. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) {
  798. return true;
  799. }
  800. return false;
  801. }
  802. bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  803. // If device doesn't support FP16
  804. if (!fp16_support) {
  805. return false;
  806. }
  807. size_t src0_sz = ggml_nbytes(src0);
  808. size_t src1_sz = ggml_nbytes(src1);
  809. // mul_mat_q: src0 is converted to fp32 on device
  810. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  811. // mul_mat_f16: src1 is converted to fp16 on cpu
  812. size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
  813. // choose the smaller one to transfer to the device
  814. // TODO: this is not always the best choice due to the overhead of converting to fp16
  815. return mul_mat_f16_transfer < mul_mat_q_transfer;
  816. }
  817. void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
  818. GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
  819. if (src0->type == GGML_TYPE_F32) {
  820. ggml_cl_mul_mat_f32(src0, src1, dst);
  821. }
  822. else if (src0->type == GGML_TYPE_F16) {
  823. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  824. ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
  825. }
  826. else {
  827. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  828. }
  829. }
  830. else if (ggml_is_quantized(src0->type)) {
  831. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  832. }
  833. else {
  834. GGML_ASSERT(false);
  835. }
  836. }
  837. size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  838. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  839. return ggml_nelements(src1) * sizeof(ggml_fp16_t);
  840. }
  841. return 0;
  842. }
  843. void ggml_cl_transform_tensor(ggml_tensor * tensor) {
  844. const int64_t ne0 = tensor->ne[0];
  845. const int64_t ne1 = tensor->ne[1];
  846. const int64_t ne2 = tensor->ne[2];
  847. const int64_t ne3 = tensor->ne[3];
  848. const ggml_type type = tensor->type;
  849. const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
  850. size_t q_size;
  851. cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
  852. // copy tensor to device
  853. for (int64_t i3 = 0; i3 < ne3; i3++) {
  854. for (int64_t i2 = 0; i2 < ne2; i2++) {
  855. int i = i3*ne2 + i2;
  856. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
  857. }
  858. }
  859. CL_CHECK(clFinish(queue));
  860. tensor->data = dst;
  861. tensor->backend = GGML_BACKEND_CL;
  862. }