convert_hf_to_gguf.py 243 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  274. gguf.MODEL_TENSOR.POSNET_NORM1,
  275. gguf.MODEL_TENSOR.POSNET_NORM2,
  276. )
  277. )
  278. or not new_name.endswith(".weight")
  279. ):
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. if data_qtype is False and any(
  282. self.match_model_tensor_name(new_name, key, bid)
  283. for key in (
  284. gguf.MODEL_TENSOR.TOKEN_EMBD,
  285. gguf.MODEL_TENSOR.OUTPUT,
  286. )
  287. ):
  288. if self.ftype in (
  289. gguf.LlamaFileType.MOSTLY_TQ1_0,
  290. gguf.LlamaFileType.MOSTLY_TQ2_0,
  291. ):
  292. # TODO: use Q4_K and Q6_K
  293. data_qtype = gguf.GGMLQuantizationType.F16
  294. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  295. if isinstance(data_qtype, bool):
  296. if self.ftype == gguf.LlamaFileType.ALL_F32:
  297. data_qtype = gguf.GGMLQuantizationType.F32
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  301. data_qtype = gguf.GGMLQuantizationType.BF16
  302. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  303. data_qtype = gguf.GGMLQuantizationType.Q8_0
  304. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  305. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  306. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  307. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  308. else:
  309. raise ValueError(f"Unknown file type: {self.ftype.name}")
  310. try:
  311. data = gguf.quants.quantize(data, data_qtype)
  312. except gguf.QuantError as e:
  313. logger.warning("%s, %s", e, "falling back to F16")
  314. data_qtype = gguf.GGMLQuantizationType.F16
  315. data = gguf.quants.quantize(data, data_qtype)
  316. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  317. # reverse shape to make it similar to the internal ggml dimension order
  318. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  319. # n_dims is implicit in the shape
  320. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  321. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  322. def set_type(self):
  323. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  324. def prepare_metadata(self, vocab_only: bool):
  325. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  326. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  327. # Fallback to model directory name if metadata name is still missing
  328. if self.metadata.name is None:
  329. self.metadata.name = self.dir_model.name
  330. # Generate parameter weight class (useful for leader boards) if not yet determined
  331. if self.metadata.size_label is None and total_params > 0:
  332. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  333. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  334. output_type: str = self.ftype.name.partition("_")[2]
  335. # Filename Output
  336. if self.fname_out.is_dir():
  337. # Generate default filename based on model specification and available metadata
  338. if not vocab_only:
  339. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  340. else:
  341. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  342. # Use the default filename
  343. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  344. else:
  345. # Output path is a custom defined templated filename
  346. # Note: `not is_dir()` is used because `.is_file()` will not detect
  347. # file template strings as it doesn't actually exist as a file
  348. # Process templated file name with the output ftype, useful with the "auto" ftype
  349. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  350. self.set_type()
  351. logger.info("Set meta model")
  352. self.metadata.set_gguf_meta_model(self.gguf_writer)
  353. logger.info("Set model parameters")
  354. self.set_gguf_parameters()
  355. logger.info("Set model tokenizer")
  356. self.set_vocab()
  357. logger.info("Set model quantization version")
  358. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  359. def write(self):
  360. self.prepare_tensors()
  361. self.prepare_metadata(vocab_only=False)
  362. self.gguf_writer.write_header_to_file(path=self.fname_out)
  363. self.gguf_writer.write_kv_data_to_file()
  364. self.gguf_writer.write_tensors_to_file(progress=True)
  365. self.gguf_writer.close()
  366. def write_vocab(self):
  367. if len(self.gguf_writer.tensors) != 1:
  368. raise ValueError('Splitting the vocabulary is not supported')
  369. self.prepare_metadata(vocab_only=True)
  370. self.gguf_writer.write_header_to_file(path=self.fname_out)
  371. self.gguf_writer.write_kv_data_to_file()
  372. self.gguf_writer.close()
  373. @staticmethod
  374. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  375. part_names: list[str] = []
  376. for filename in os.listdir(dir_model):
  377. if filename.startswith(prefix) and filename.endswith(suffix):
  378. part_names.append(filename)
  379. part_names.sort()
  380. return part_names
  381. @staticmethod
  382. def load_hparams(dir_model: Path):
  383. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  384. return json.load(f)
  385. @classmethod
  386. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  387. assert names
  388. def func(modelcls: AnyModel) -> AnyModel:
  389. for name in names:
  390. cls._model_classes[name] = modelcls
  391. return modelcls
  392. return func
  393. @classmethod
  394. def print_registered_models(cls):
  395. for name in sorted(cls._model_classes.keys()):
  396. logger.error(f"- {name}")
  397. @classmethod
  398. def from_model_architecture(cls, arch: str) -> type[Model]:
  399. try:
  400. return cls._model_classes[arch]
  401. except KeyError:
  402. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  403. def does_token_look_special(self, token: str | bytes) -> bool:
  404. if isinstance(token, (bytes, bytearray)):
  405. token_text = token.decode(encoding="utf-8")
  406. elif isinstance(token, memoryview):
  407. token_text = token.tobytes().decode(encoding="utf-8")
  408. else:
  409. token_text = token
  410. # Some models mark some added tokens which ought to be control tokens as not special.
  411. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  412. seems_special = token_text in (
  413. "<pad>", # deepseek-coder
  414. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  415. )
  416. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  418. # TODO: should these be marked as UNUSED instead? (maybe not)
  419. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  420. return seems_special
  421. # used for GPT-2 BPE and WordPiece vocabs
  422. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  423. tokens: list[str] = []
  424. toktypes: list[int] = []
  425. from transformers import AutoTokenizer
  426. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  427. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  428. assert max(tokenizer.vocab.values()) < vocab_size
  429. tokpre = self.get_vocab_base_pre(tokenizer)
  430. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  431. added_vocab = tokenizer.get_added_vocab()
  432. for i in range(vocab_size):
  433. if i not in reverse_vocab:
  434. tokens.append(f"[PAD{i}]")
  435. toktypes.append(gguf.TokenType.UNUSED)
  436. else:
  437. token: str = reverse_vocab[i]
  438. if token in added_vocab:
  439. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  440. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  441. if not tokenizer.added_tokens_decoder[i].normalized:
  442. previous_token = token
  443. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  444. if previous_token != token:
  445. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  446. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  447. toktypes.append(gguf.TokenType.CONTROL)
  448. else:
  449. # NOTE: this was added for Gemma.
  450. # Encoding and decoding the tokens above isn't sufficient for this case.
  451. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  452. toktypes.append(gguf.TokenType.USER_DEFINED)
  453. else:
  454. toktypes.append(gguf.TokenType.NORMAL)
  455. tokens.append(token)
  456. return tokens, toktypes, tokpre
  457. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  458. # do not modify it manually!
  459. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  460. # Marker: Start get_vocab_base_pre
  461. def get_vocab_base_pre(self, tokenizer) -> str:
  462. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  463. # is specific for the BPE pre-tokenizer used by the model
  464. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  465. # use in llama.cpp to implement the same pre-tokenizer
  466. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  467. chktok = tokenizer.encode(chktxt)
  468. chkhsh = sha256(str(chktok).encode()).hexdigest()
  469. logger.debug(f"chktok: {chktok}")
  470. logger.debug(f"chkhsh: {chkhsh}")
  471. res = None
  472. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  473. # or pull the latest version of the model from Huggingface
  474. # don't edit the hashes manually!
  475. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  476. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  477. res = "llama-bpe"
  478. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  479. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  480. res = "deepseek-llm"
  481. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  482. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  483. res = "deepseek-coder"
  484. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  485. # ref: https://huggingface.co/tiiuae/falcon-7b
  486. res = "falcon"
  487. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  488. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  489. res = "falcon3"
  490. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  491. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  492. res = "bert-bge"
  493. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  494. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  495. res = "bert-bge-large"
  496. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  497. # ref: https://huggingface.co/mosaicml/mpt-7b
  498. res = "mpt"
  499. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  500. # ref: https://huggingface.co/bigcode/starcoder2-3b
  501. res = "starcoder"
  502. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  503. # ref: https://huggingface.co/openai-community/gpt2
  504. res = "gpt-2"
  505. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  506. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  507. res = "stablelm2"
  508. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  509. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  510. res = "refact"
  511. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  512. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  513. res = "command-r"
  514. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  515. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  516. res = "qwen2"
  517. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  518. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  519. res = "olmo"
  520. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  521. # ref: https://huggingface.co/databricks/dbrx-base
  522. res = "dbrx"
  523. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  524. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  525. res = "jina-v1-en"
  526. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  527. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  528. res = "jina-v2-en"
  529. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  530. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  531. res = "jina-v2-es"
  532. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  533. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  534. res = "jina-v2-de"
  535. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  536. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  537. res = "smaug-bpe"
  538. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  539. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  540. res = "poro-chat"
  541. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  542. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  543. res = "jina-v2-code"
  544. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  545. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  546. res = "chatglm-bpe"
  547. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  548. # ref: https://huggingface.co/LumiOpen/Viking-7B
  549. res = "viking"
  550. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  551. # ref: https://huggingface.co/core42/jais-13b
  552. res = "jais"
  553. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  554. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  555. res = "codeshell"
  556. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  557. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  558. res = "tekken"
  559. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  560. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  561. res = "smollm"
  562. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  563. # ref: https://huggingface.co/bigscience/bloom
  564. res = "bloom"
  565. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  566. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  567. res = "gpt3-finnish"
  568. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  569. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  570. res = "exaone"
  571. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  572. # ref: https://huggingface.co/microsoft/phi-2
  573. res = "phi-2"
  574. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  575. # ref: https://huggingface.co/facebook/chameleon-7b
  576. res = "chameleon"
  577. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  578. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  579. res = "minerva-7b"
  580. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  581. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  582. res = "roberta-bpe"
  583. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  584. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  585. res = "gigachat"
  586. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  587. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  588. res = "megrez"
  589. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  590. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  591. res = "deepseek-v3"
  592. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  593. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  594. res = "deepseek-r1-qwen"
  595. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  596. # ref: https://huggingface.co/Xenova/gpt-4o
  597. res = "gpt-4o"
  598. if res is None:
  599. logger.warning("\n")
  600. logger.warning("**************************************************************************************")
  601. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  602. logger.warning("** There are 2 possible reasons for this:")
  603. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  604. logger.warning("** - the pre-tokenization config has changed upstream")
  605. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  606. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  607. logger.warning("**")
  608. logger.warning(f"** chkhsh: {chkhsh}")
  609. logger.warning("**************************************************************************************")
  610. logger.warning("\n")
  611. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  612. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  613. logger.debug(f"chkhsh: {chkhsh}")
  614. return res
  615. # Marker: End get_vocab_base_pre
  616. def _set_vocab_none(self) -> None:
  617. self.gguf_writer.add_tokenizer_model("none")
  618. def _set_vocab_gpt2(self) -> None:
  619. tokens, toktypes, tokpre = self.get_vocab_base()
  620. self.gguf_writer.add_tokenizer_model("gpt2")
  621. self.gguf_writer.add_tokenizer_pre(tokpre)
  622. self.gguf_writer.add_token_list(tokens)
  623. self.gguf_writer.add_token_types(toktypes)
  624. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  625. special_vocab.add_to_gguf(self.gguf_writer)
  626. def _set_vocab_qwen(self):
  627. dir_model = self.dir_model
  628. hparams = self.hparams
  629. tokens: list[str] = []
  630. toktypes: list[int] = []
  631. from transformers import AutoTokenizer
  632. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  633. vocab_size = hparams["vocab_size"]
  634. assert max(tokenizer.get_vocab().values()) < vocab_size
  635. tokpre = self.get_vocab_base_pre(tokenizer)
  636. merges = []
  637. vocab = {}
  638. mergeable_ranks = tokenizer.mergeable_ranks
  639. for token, rank in mergeable_ranks.items():
  640. vocab[QwenModel.token_bytes_to_string(token)] = rank
  641. if len(token) == 1:
  642. continue
  643. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  644. assert len(merged) == 2
  645. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  646. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  647. added_vocab = tokenizer.special_tokens
  648. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  649. for i in range(vocab_size):
  650. if i not in reverse_vocab:
  651. tokens.append(f"[PAD{i}]")
  652. toktypes.append(gguf.TokenType.UNUSED)
  653. elif reverse_vocab[i] in added_vocab:
  654. tokens.append(reverse_vocab[i])
  655. toktypes.append(gguf.TokenType.CONTROL)
  656. else:
  657. tokens.append(reverse_vocab[i])
  658. toktypes.append(gguf.TokenType.NORMAL)
  659. self.gguf_writer.add_tokenizer_model("gpt2")
  660. self.gguf_writer.add_tokenizer_pre(tokpre)
  661. self.gguf_writer.add_token_list(tokens)
  662. self.gguf_writer.add_token_types(toktypes)
  663. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  664. special_vocab.merges = merges
  665. # only add special tokens when they were not already loaded from config.json
  666. if len(special_vocab.special_token_ids) == 0:
  667. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  668. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  669. # this one is usually not in config.json anyway
  670. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  671. special_vocab.add_to_gguf(self.gguf_writer)
  672. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  673. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  674. self.gguf_writer.add_tokenizer_model("llama")
  675. self.gguf_writer.add_tokenizer_pre("default")
  676. self.gguf_writer.add_token_list(tokens)
  677. self.gguf_writer.add_token_scores(scores)
  678. self.gguf_writer.add_token_types(toktypes)
  679. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  680. special_vocab.add_to_gguf(self.gguf_writer)
  681. def _create_vocab_sentencepiece(self):
  682. from sentencepiece import SentencePieceProcessor
  683. tokenizer_path = self.dir_model / 'tokenizer.model'
  684. if not tokenizer_path.is_file():
  685. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  686. tokenizer = SentencePieceProcessor()
  687. tokenizer.LoadFromFile(str(tokenizer_path))
  688. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  689. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  690. scores: list[float] = [-10000.0] * vocab_size
  691. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  692. for token_id in range(tokenizer.vocab_size()):
  693. piece = tokenizer.IdToPiece(token_id)
  694. text = piece.encode("utf-8")
  695. score = tokenizer.GetScore(token_id)
  696. toktype = SentencePieceTokenTypes.NORMAL
  697. if tokenizer.IsUnknown(token_id):
  698. toktype = SentencePieceTokenTypes.UNKNOWN
  699. elif tokenizer.IsControl(token_id):
  700. toktype = SentencePieceTokenTypes.CONTROL
  701. elif tokenizer.IsUnused(token_id):
  702. toktype = SentencePieceTokenTypes.UNUSED
  703. elif tokenizer.IsByte(token_id):
  704. toktype = SentencePieceTokenTypes.BYTE
  705. tokens[token_id] = text
  706. scores[token_id] = score
  707. toktypes[token_id] = toktype
  708. added_tokens_file = self.dir_model / 'added_tokens.json'
  709. if added_tokens_file.is_file():
  710. with open(added_tokens_file, "r", encoding="utf-8") as f:
  711. added_tokens_json = json.load(f)
  712. for key in added_tokens_json:
  713. token_id = added_tokens_json[key]
  714. if token_id >= vocab_size:
  715. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  716. continue
  717. tokens[token_id] = key.encode("utf-8")
  718. scores[token_id] = -1000.0
  719. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  720. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  721. if tokenizer_config_file.is_file():
  722. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  723. tokenizer_config_json = json.load(f)
  724. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  725. for token_id, token_data in added_tokens_decoder.items():
  726. token_id = int(token_id)
  727. token: str = token_data["content"]
  728. if token_id >= vocab_size:
  729. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  730. continue
  731. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  732. if tokens[token_id] != token.encode("utf-8"):
  733. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  734. if token_data.get("special") or self.does_token_look_special(token):
  735. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  736. else:
  737. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  738. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  739. scores[token_id] = -1000.0
  740. tokens[token_id] = token.encode("utf-8")
  741. if vocab_size > len(tokens):
  742. pad_count = vocab_size - len(tokens)
  743. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  744. for i in range(1, pad_count + 1):
  745. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  746. scores.append(-1000.0)
  747. toktypes.append(SentencePieceTokenTypes.UNUSED)
  748. return tokens, scores, toktypes
  749. def _set_vocab_llama_hf(self):
  750. vocab = gguf.LlamaHfVocab(self.dir_model)
  751. tokens = []
  752. scores = []
  753. toktypes = []
  754. for text, score, toktype in vocab.all_tokens():
  755. tokens.append(text)
  756. scores.append(score)
  757. toktypes.append(toktype)
  758. assert len(tokens) == vocab.vocab_size
  759. self.gguf_writer.add_tokenizer_model("llama")
  760. self.gguf_writer.add_tokenizer_pre("default")
  761. self.gguf_writer.add_token_list(tokens)
  762. self.gguf_writer.add_token_scores(scores)
  763. self.gguf_writer.add_token_types(toktypes)
  764. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  765. special_vocab.add_to_gguf(self.gguf_writer)
  766. def _set_vocab_rwkv_world(self):
  767. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  768. vocab_size = self.hparams.get("vocab_size", 65536)
  769. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  770. toktypes: list[int] = [gguf.TokenType.CONTROL]
  771. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  772. lines = f.readlines()
  773. for line in lines:
  774. parts = line.split(' ')
  775. assert len(parts) >= 3
  776. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  777. token = token.encode("utf-8") if isinstance(token, str) else token
  778. assert isinstance(token, bytes)
  779. assert len(token) == token_len
  780. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  781. tokens.append(token_text.encode("utf-8"))
  782. toktypes.append(gguf.TokenType.NORMAL)
  783. remainder = vocab_size - len(tokens)
  784. assert remainder >= 0
  785. for i in range(len(tokens), vocab_size):
  786. tokens.append(f"[PAD{i}]".encode("utf-8"))
  787. toktypes.append(gguf.TokenType.UNUSED)
  788. self.gguf_writer.add_tokenizer_model("rwkv")
  789. self.gguf_writer.add_token_list(tokens)
  790. self.gguf_writer.add_token_types(toktypes)
  791. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  792. special_vocab.chat_template = "rwkv-world"
  793. # hack: Add '\n\n' as the EOT token to make it chat normally
  794. special_vocab._set_special_token("eot", 261)
  795. special_vocab.add_to_gguf(self.gguf_writer)
  796. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  797. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  798. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  799. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  800. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  801. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  802. assert field # tokenizer model
  803. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  804. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  805. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  806. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  807. assert field # token list
  808. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  809. if model_name == "llama-spm":
  810. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  811. assert field # token scores
  812. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  813. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  814. assert field # token types
  815. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  816. if model_name != "llama-spm":
  817. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  818. assert field # token merges
  819. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  820. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  821. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  822. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  823. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  824. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  825. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  826. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  827. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  828. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  829. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  830. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  831. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  832. @Model.register("GPTNeoXForCausalLM")
  833. class GPTNeoXModel(Model):
  834. model_arch = gguf.MODEL_ARCH.GPTNEOX
  835. def set_gguf_parameters(self):
  836. block_count = self.hparams["num_hidden_layers"]
  837. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  838. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  839. self.gguf_writer.add_block_count(block_count)
  840. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  841. self.gguf_writer.add_rope_dimension_count(
  842. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  843. )
  844. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  845. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  846. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  847. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  848. del bid # unused
  849. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  850. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  851. tensors: list[tuple[str, Tensor]] = []
  852. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  853. # Map bloom-style qkv_linear to gpt-style qkv_linear
  854. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  855. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  856. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  857. data_torch = torch.cat(
  858. (
  859. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  860. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  861. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  862. ),
  863. dim=0,
  864. )
  865. logger.info("re-format attention.linear_qkv.weight")
  866. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  867. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  868. data_torch = torch.cat(
  869. (
  870. qkv_bias[:, 0, :].reshape((n_embed,)),
  871. qkv_bias[:, 1, :].reshape((n_embed,)),
  872. qkv_bias[:, 2, :].reshape((n_embed,)),
  873. ),
  874. dim=0,
  875. )
  876. logger.info("re-format attention.linear_qkv.bias")
  877. tensors.append((self.map_tensor_name(name), data_torch))
  878. return tensors
  879. @Model.register("BloomForCausalLM", "BloomModel")
  880. class BloomModel(Model):
  881. model_arch = gguf.MODEL_ARCH.BLOOM
  882. def set_gguf_parameters(self):
  883. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  884. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  885. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  886. self.gguf_writer.add_embedding_length(n_embed)
  887. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  888. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  889. self.gguf_writer.add_head_count(n_head)
  890. self.gguf_writer.add_head_count_kv(n_head)
  891. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  892. self.gguf_writer.add_file_type(self.ftype)
  893. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  894. del bid # unused
  895. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  896. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  897. name = re.sub(r'transformer\.', '', name)
  898. tensors: list[tuple[str, Tensor]] = []
  899. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  900. # Map bloom-style qkv_linear to gpt-style qkv_linear
  901. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  902. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  903. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  904. data_torch = torch.cat(
  905. (
  906. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  907. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  908. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  909. ),
  910. dim=0,
  911. )
  912. logger.info("re-format attention.linear_qkv.weight")
  913. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  914. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  915. data_torch = torch.cat(
  916. (
  917. qkv_bias[:, 0, :].reshape((n_embed,)),
  918. qkv_bias[:, 1, :].reshape((n_embed,)),
  919. qkv_bias[:, 2, :].reshape((n_embed,)),
  920. ),
  921. dim=0,
  922. )
  923. logger.info("re-format attention.linear_qkv.bias")
  924. tensors.append((self.map_tensor_name(name), data_torch))
  925. if name == "word_embeddings.weight":
  926. assert self.tensor_names is not None
  927. # TODO: tie them at runtime, don't duplicate in the model file
  928. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  929. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  930. return tensors
  931. @Model.register("MPTForCausalLM")
  932. class MPTModel(Model):
  933. model_arch = gguf.MODEL_ARCH.MPT
  934. def set_vocab(self):
  935. try:
  936. self._set_vocab_gpt2()
  937. except Exception:
  938. # Fallback for SEA-LION model
  939. self._set_vocab_sentencepiece()
  940. self.gguf_writer.add_add_bos_token(False)
  941. self.gguf_writer.add_pad_token_id(3)
  942. self.gguf_writer.add_eos_token_id(1)
  943. self.gguf_writer.add_unk_token_id(0)
  944. def set_gguf_parameters(self):
  945. block_count = self.hparams["n_layers"]
  946. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  947. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  948. self.gguf_writer.add_block_count(block_count)
  949. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  950. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  951. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  952. self.gguf_writer.add_head_count_kv(kv_n_heads)
  953. self.gguf_writer.add_layer_norm_eps(1e-5)
  954. if self.hparams["attn_config"]["clip_qkv"] is not None:
  955. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  956. if self.hparams["attn_config"]["alibi"]:
  957. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  958. else:
  959. self.gguf_writer.add_max_alibi_bias(0.0)
  960. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  961. del bid # unused
  962. if "scales" in name:
  963. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  964. new_name = new_name.replace("scales", "act.scales")
  965. else:
  966. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  967. return [(new_name, data_torch)]
  968. @Model.register("OrionForCausalLM")
  969. class OrionModel(Model):
  970. model_arch = gguf.MODEL_ARCH.ORION
  971. def set_vocab(self):
  972. self._set_vocab_sentencepiece()
  973. def set_gguf_parameters(self):
  974. block_count = self.hparams["num_hidden_layers"]
  975. head_count = self.hparams["num_attention_heads"]
  976. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  977. ctx_length = 0
  978. if "max_sequence_length" in self.hparams:
  979. ctx_length = self.hparams["max_sequence_length"]
  980. elif "max_position_embeddings" in self.hparams:
  981. ctx_length = self.hparams["max_position_embeddings"]
  982. elif "model_max_length" in self.hparams:
  983. ctx_length = self.hparams["model_max_length"]
  984. else:
  985. raise ValueError("gguf: can not find ctx length parameter.")
  986. self.gguf_writer.add_file_type(self.ftype)
  987. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  988. self.gguf_writer.add_context_length(ctx_length)
  989. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  990. self.gguf_writer.add_block_count(block_count)
  991. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  992. self.gguf_writer.add_head_count(head_count)
  993. self.gguf_writer.add_head_count_kv(head_count_kv)
  994. # note: config provides rms norm but it is actually layer norm
  995. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  996. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  997. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  998. class BaichuanModel(Model):
  999. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1000. def set_vocab(self):
  1001. self._set_vocab_sentencepiece()
  1002. def set_gguf_parameters(self):
  1003. block_count = self.hparams["num_hidden_layers"]
  1004. head_count = self.hparams["num_attention_heads"]
  1005. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1006. ctx_length = 0
  1007. if "max_sequence_length" in self.hparams:
  1008. ctx_length = self.hparams["max_sequence_length"]
  1009. elif "max_position_embeddings" in self.hparams:
  1010. ctx_length = self.hparams["max_position_embeddings"]
  1011. elif "model_max_length" in self.hparams:
  1012. ctx_length = self.hparams["model_max_length"]
  1013. else:
  1014. raise ValueError("gguf: can not find ctx length parameter.")
  1015. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1016. self.gguf_writer.add_context_length(ctx_length)
  1017. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1018. self.gguf_writer.add_block_count(block_count)
  1019. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1020. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1021. self.gguf_writer.add_head_count(head_count)
  1022. self.gguf_writer.add_head_count_kv(head_count_kv)
  1023. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1024. self.gguf_writer.add_file_type(self.ftype)
  1025. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1026. if self.hparams["rope_scaling"].get("type") == "linear":
  1027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1028. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1030. head_count = self.hparams["num_attention_heads"]
  1031. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1032. tensors: list[tuple[str, Tensor]] = []
  1033. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1034. logger.info(f"Unpacking and permuting layer {bid}")
  1035. tensors = [
  1036. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1037. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1038. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1039. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1040. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1041. self._reverse_hf_part(data_torch, 2)),
  1042. ]
  1043. else:
  1044. tensors = [(self.map_tensor_name(name), data_torch)]
  1045. return tensors
  1046. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1047. if n_kv_head is not None and n_head != n_kv_head:
  1048. n_head //= n_kv_head
  1049. return (
  1050. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1051. .swapaxes(1, 2)
  1052. .reshape(weights.shape)
  1053. )
  1054. def _reverse_hf_permute_part(
  1055. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1056. ) -> Tensor:
  1057. r = weights.shape[0] // 3
  1058. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1059. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1060. r = weights.shape[0] // 3
  1061. return weights[r * n_part:r * n_part + r, ...]
  1062. @Model.register("XverseForCausalLM")
  1063. class XverseModel(Model):
  1064. model_arch = gguf.MODEL_ARCH.XVERSE
  1065. def set_vocab(self):
  1066. assert (self.dir_model / "tokenizer.json").is_file()
  1067. dir_model = self.dir_model
  1068. hparams = self.hparams
  1069. tokens: list[bytes] = []
  1070. toktypes: list[int] = []
  1071. from transformers import AutoTokenizer
  1072. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1073. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1074. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1075. # because vocab_size is the count of items, and indexes start at 0.
  1076. max_vocab_index = max(tokenizer.get_vocab().values())
  1077. if max_vocab_index >= vocab_size:
  1078. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1079. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1080. added_vocab = tokenizer.get_added_vocab()
  1081. for token_id in range(vocab_size):
  1082. token_text = reverse_vocab[token_id].encode('utf-8')
  1083. # replace "\x00" to string with length > 0
  1084. if token_text == b"\x00":
  1085. toktype = gguf.TokenType.BYTE # special
  1086. token_text = f"<{token_text}>".encode('utf-8')
  1087. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1088. toktype = gguf.TokenType.BYTE # special
  1089. elif reverse_vocab[token_id] in added_vocab:
  1090. if tokenizer.added_tokens_decoder[token_id].special:
  1091. toktype = gguf.TokenType.CONTROL
  1092. else:
  1093. toktype = gguf.TokenType.USER_DEFINED
  1094. else:
  1095. toktype = gguf.TokenType.NORMAL
  1096. tokens.append(token_text)
  1097. toktypes.append(toktype)
  1098. self.gguf_writer.add_tokenizer_model("llama")
  1099. self.gguf_writer.add_tokenizer_pre("default")
  1100. self.gguf_writer.add_token_list(tokens)
  1101. self.gguf_writer.add_token_types(toktypes)
  1102. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1103. special_vocab.add_to_gguf(self.gguf_writer)
  1104. def set_gguf_parameters(self):
  1105. block_count = self.hparams["num_hidden_layers"]
  1106. head_count = self.hparams["num_attention_heads"]
  1107. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1108. ctx_length = 0
  1109. if "max_sequence_length" in self.hparams:
  1110. ctx_length = self.hparams["max_sequence_length"]
  1111. elif "max_position_embeddings" in self.hparams:
  1112. ctx_length = self.hparams["max_position_embeddings"]
  1113. elif "model_max_length" in self.hparams:
  1114. ctx_length = self.hparams["model_max_length"]
  1115. else:
  1116. raise ValueError("gguf: can not find ctx length parameter.")
  1117. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1118. self.gguf_writer.add_context_length(ctx_length)
  1119. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1120. self.gguf_writer.add_block_count(block_count)
  1121. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1122. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1123. self.gguf_writer.add_head_count(head_count)
  1124. self.gguf_writer.add_head_count_kv(head_count_kv)
  1125. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1126. self.gguf_writer.add_file_type(self.ftype)
  1127. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1128. if self.hparams["rope_scaling"].get("type") == "linear":
  1129. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1130. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1132. del bid # unused
  1133. head_count = self.hparams["num_attention_heads"]
  1134. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1135. # HF models permute some of the tensors, so we need to undo that
  1136. if name.endswith("q_proj.weight"):
  1137. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1138. if name.endswith("k_proj.weight"):
  1139. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1140. return [(self.map_tensor_name(name), data_torch)]
  1141. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1142. if n_kv_head is not None and n_head != n_kv_head:
  1143. n_head //= n_kv_head
  1144. return (
  1145. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1146. .swapaxes(1, 2)
  1147. .reshape(weights.shape)
  1148. )
  1149. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1150. class FalconModel(Model):
  1151. model_arch = gguf.MODEL_ARCH.FALCON
  1152. def set_gguf_parameters(self):
  1153. block_count = self.hparams.get("num_hidden_layers")
  1154. if block_count is None:
  1155. block_count = self.hparams["n_layer"] # old name
  1156. n_head = self.hparams.get("num_attention_heads")
  1157. if n_head is None:
  1158. n_head = self.hparams["n_head"] # old name
  1159. n_head_kv = self.hparams.get("num_kv_heads")
  1160. if n_head_kv is None:
  1161. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1162. self.gguf_writer.add_context_length(2048) # not in config.json
  1163. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1164. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1165. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1166. self.gguf_writer.add_block_count(block_count)
  1167. self.gguf_writer.add_head_count(n_head)
  1168. self.gguf_writer.add_head_count_kv(n_head_kv)
  1169. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1170. self.gguf_writer.add_file_type(self.ftype)
  1171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1172. del bid # unused
  1173. # QKV tensor transform
  1174. # The original query_key_value tensor contains n_head_kv "kv groups",
  1175. # each consisting of n_head/n_head_kv query weights followed by one key
  1176. # and one value weight (shared by all query heads in the kv group).
  1177. # This layout makes it a big pain to work with in GGML.
  1178. # So we rearrange them here,, so that we have n_head query weights
  1179. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1180. # in contiguous fashion.
  1181. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1182. if "query_key_value" in name:
  1183. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1184. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1185. head_dim = self.hparams["hidden_size"] // n_head
  1186. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1187. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1188. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1189. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1190. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1191. return [(self.map_tensor_name(name), data_torch)]
  1192. @Model.register("GPTBigCodeForCausalLM")
  1193. class StarCoderModel(Model):
  1194. model_arch = gguf.MODEL_ARCH.STARCODER
  1195. def set_gguf_parameters(self):
  1196. block_count = self.hparams["n_layer"]
  1197. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1198. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1199. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1200. self.gguf_writer.add_block_count(block_count)
  1201. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1202. self.gguf_writer.add_head_count_kv(1)
  1203. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1204. self.gguf_writer.add_file_type(self.ftype)
  1205. @Model.register("GPTRefactForCausalLM")
  1206. class RefactModel(Model):
  1207. model_arch = gguf.MODEL_ARCH.REFACT
  1208. def set_vocab(self):
  1209. super().set_vocab()
  1210. # TODO: how to determine special FIM tokens automatically?
  1211. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1212. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1213. special_vocab._set_special_token("prefix", 1)
  1214. special_vocab._set_special_token("suffix", 3)
  1215. special_vocab._set_special_token("middle", 2)
  1216. special_vocab.chat_template = None # do not add it twice
  1217. special_vocab.add_to_gguf(self.gguf_writer)
  1218. def set_gguf_parameters(self):
  1219. hidden_dim = self.hparams["n_embd"]
  1220. inner_dim = 4 * hidden_dim
  1221. hidden_dim = int(2 * inner_dim / 3)
  1222. multiple_of = 256
  1223. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1224. block_count = self.hparams["n_layer"]
  1225. # refact uses Alibi. So this is from config.json which might be used by training.
  1226. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1227. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1228. self.gguf_writer.add_feed_forward_length(ff_dim)
  1229. self.gguf_writer.add_block_count(block_count)
  1230. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1231. self.gguf_writer.add_head_count_kv(1)
  1232. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1233. self.gguf_writer.add_file_type(self.ftype)
  1234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1235. hidden_dim = self.hparams["n_embd"]
  1236. inner_dim = 4 * hidden_dim
  1237. hidden_dim = int(2 * inner_dim / 3)
  1238. multiple_of = 256
  1239. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1240. n_head = self.hparams["n_head"]
  1241. n_head_kv = 1
  1242. head_dim = self.hparams["n_embd"] // n_head
  1243. tensors: list[tuple[str, Tensor]] = []
  1244. if bid is not None:
  1245. if name == f"transformer.h.{bid}.attn.kv.weight":
  1246. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1247. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1248. elif name == f"transformer.h.{bid}.attn.q.weight":
  1249. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1250. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1251. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1252. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1253. if len(tensors) == 0:
  1254. tensors.append((self.map_tensor_name(name), data_torch))
  1255. return tensors
  1256. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1257. class StableLMModel(Model):
  1258. model_arch = gguf.MODEL_ARCH.STABLELM
  1259. def set_vocab(self):
  1260. if (self.dir_model / "tokenizer.json").is_file():
  1261. self._set_vocab_gpt2()
  1262. else:
  1263. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1264. self._set_vocab_qwen()
  1265. def set_gguf_parameters(self):
  1266. hparams = self.hparams
  1267. block_count = hparams["num_hidden_layers"]
  1268. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1269. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1270. self.gguf_writer.add_block_count(block_count)
  1271. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1272. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1273. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1274. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1275. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1276. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1277. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1278. self.gguf_writer.add_file_type(self.ftype)
  1279. _q_norms: list[dict[str, Tensor]] | None = None
  1280. _k_norms: list[dict[str, Tensor]] | None = None
  1281. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1282. n_head = self.hparams["num_attention_heads"]
  1283. n_kv_head = self.hparams["num_key_value_heads"]
  1284. if name.find("q_layernorm.norms") != -1:
  1285. assert bid is not None
  1286. if self._q_norms is None:
  1287. self._q_norms = [{} for _ in range(self.block_count)]
  1288. self._q_norms[bid][name] = data_torch
  1289. if len(self._q_norms[bid]) >= n_head:
  1290. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1291. else:
  1292. return []
  1293. if name.find("k_layernorm.norms") != -1:
  1294. assert bid is not None
  1295. if self._k_norms is None:
  1296. self._k_norms = [{} for _ in range(self.block_count)]
  1297. self._k_norms[bid][name] = data_torch
  1298. if len(self._k_norms[bid]) >= n_kv_head:
  1299. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1300. else:
  1301. return []
  1302. return [(self.map_tensor_name(name), data_torch)]
  1303. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1304. datas: list[Tensor] = []
  1305. # extract the norms in order
  1306. for xid in range(n_head):
  1307. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1308. datas.append(norms[ename])
  1309. del norms[ename]
  1310. data_torch = torch.stack(datas, dim=0)
  1311. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1312. new_name = self.map_tensor_name(merged_name)
  1313. return [(new_name, data_torch)]
  1314. def prepare_tensors(self):
  1315. super().prepare_tensors()
  1316. if self._q_norms is not None or self._k_norms is not None:
  1317. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1318. norms = (
  1319. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1320. ) + (
  1321. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1322. )
  1323. if len(norms) > 0:
  1324. raise ValueError(f"Unprocessed norms: {norms}")
  1325. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1326. class LlamaModel(Model):
  1327. model_arch = gguf.MODEL_ARCH.LLAMA
  1328. def set_vocab(self):
  1329. try:
  1330. self._set_vocab_sentencepiece()
  1331. except FileNotFoundError:
  1332. try:
  1333. self._set_vocab_llama_hf()
  1334. except (FileNotFoundError, TypeError):
  1335. # Llama 3
  1336. self._set_vocab_gpt2()
  1337. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1338. if self.hparams.get("vocab_size", 32000) == 32016:
  1339. special_vocab = gguf.SpecialVocab(
  1340. self.dir_model, load_merges=False,
  1341. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1342. )
  1343. special_vocab._set_special_token("prefix", 32007)
  1344. special_vocab._set_special_token("suffix", 32008)
  1345. special_vocab._set_special_token("middle", 32009)
  1346. special_vocab._set_special_token("eot", 32010)
  1347. special_vocab.add_to_gguf(self.gguf_writer)
  1348. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1349. if tokenizer_config_file.is_file():
  1350. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1351. tokenizer_config_json = json.load(f)
  1352. if "add_prefix_space" in tokenizer_config_json:
  1353. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1354. # Apply to granite small models only
  1355. if self.hparams.get("vocab_size", 32000) == 49152:
  1356. self.gguf_writer.add_add_bos_token(False)
  1357. def set_gguf_parameters(self):
  1358. super().set_gguf_parameters()
  1359. hparams = self.hparams
  1360. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1361. if "head_dim" in hparams:
  1362. rope_dim = hparams["head_dim"]
  1363. else:
  1364. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1365. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1366. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1367. if self.hparams["rope_scaling"].get("type") == "linear":
  1368. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1369. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1370. @staticmethod
  1371. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1372. if n_head_kv is not None and n_head != n_head_kv:
  1373. n_head = n_head_kv
  1374. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1375. .swapaxes(1, 2)
  1376. .reshape(weights.shape))
  1377. _experts: list[dict[str, Tensor]] | None = None
  1378. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1379. n_head = self.hparams["num_attention_heads"]
  1380. n_kv_head = self.hparams.get("num_key_value_heads")
  1381. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1382. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1383. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1384. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1385. # process the experts separately
  1386. if name.find("block_sparse_moe.experts") != -1:
  1387. n_experts = self.hparams["num_local_experts"]
  1388. assert bid is not None
  1389. if self._experts is None:
  1390. self._experts = [{} for _ in range(self.block_count)]
  1391. self._experts[bid][name] = data_torch
  1392. if len(self._experts[bid]) >= n_experts * 3:
  1393. tensors: list[tuple[str, Tensor]] = []
  1394. # merge the experts into a single 3d tensor
  1395. for wid in ["w1", "w2", "w3"]:
  1396. datas: list[Tensor] = []
  1397. for xid in range(n_experts):
  1398. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1399. datas.append(self._experts[bid][ename])
  1400. del self._experts[bid][ename]
  1401. data_torch = torch.stack(datas, dim=0)
  1402. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1403. new_name = self.map_tensor_name(merged_name)
  1404. tensors.append((new_name, data_torch))
  1405. return tensors
  1406. else:
  1407. return []
  1408. return [(self.map_tensor_name(name), data_torch)]
  1409. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1410. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1411. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1412. base = self.hparams.get("rope_theta", 10000.0)
  1413. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1414. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1415. factor = rope_scaling.get("factor", 8.0)
  1416. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1417. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1418. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1419. low_freq_wavelen = old_context_len / low_freq_factor
  1420. high_freq_wavelen = old_context_len / high_freq_factor
  1421. assert low_freq_wavelen != high_freq_wavelen
  1422. rope_factors = []
  1423. for freq in freqs:
  1424. wavelen = 2 * math.pi / freq
  1425. if wavelen < high_freq_wavelen:
  1426. rope_factors.append(1)
  1427. elif wavelen > low_freq_wavelen:
  1428. rope_factors.append(factor)
  1429. else:
  1430. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1431. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1432. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1433. def prepare_tensors(self):
  1434. super().prepare_tensors()
  1435. if self._experts is not None:
  1436. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1437. experts = [k for d in self._experts for k in d.keys()]
  1438. if len(experts) > 0:
  1439. raise ValueError(f"Unprocessed experts: {experts}")
  1440. @Model.register("Mistral3ForConditionalGeneration")
  1441. class Mistral3Model(LlamaModel):
  1442. model_arch = gguf.MODEL_ARCH.LLAMA
  1443. # we need to merge the text_config into the root level of hparams
  1444. def __init__(self, *args, **kwargs):
  1445. hparams = Model.load_hparams(kwargs["dir_model"])
  1446. if "text_config" in hparams:
  1447. hparams = {**hparams, **hparams["text_config"]}
  1448. kwargs["hparams"] = hparams
  1449. super().__init__(*args, **kwargs)
  1450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1451. name = name.replace("language_model.", "")
  1452. if "multi_modal_projector" in name or "vision_tower" in name:
  1453. return []
  1454. return super().modify_tensors(data_torch, name, bid)
  1455. @Model.register("DeciLMForCausalLM")
  1456. class DeciModel(Model):
  1457. model_arch = gguf.MODEL_ARCH.DECI
  1458. @staticmethod
  1459. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1460. # DeciLM-specific code
  1461. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1462. return DeciModel._find_multiple(intermediate_size, 256)
  1463. @staticmethod
  1464. def _find_multiple(n: int, k: int) -> int:
  1465. # DeciLM-specific code
  1466. if n % k == 0:
  1467. return n
  1468. return n + k - (n % k)
  1469. def __init__(self, *args, **kwargs):
  1470. super().__init__(*args, **kwargs)
  1471. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1472. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1473. assert self.block_count == len(_block_configs)
  1474. self._num_kv_heads = list()
  1475. self._num_heads = list()
  1476. _ffn_multipliers = list()
  1477. # ***linear attention layer***
  1478. # if n_heads_in_group is None and replace_with_linear is True
  1479. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1480. # ***attention-free layer***
  1481. # if n_heads_in_group is None and replace_with_linear is False
  1482. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1483. # ***normal attention-layer***
  1484. # if n_heads_in_group is not None, then
  1485. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1486. # _num_heads[il] is num_attention_head
  1487. for il in range(len(_block_configs)):
  1488. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1489. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1490. self._num_kv_heads.append(0)
  1491. self._num_heads.append(self.hparams["num_attention_heads"])
  1492. else:
  1493. self._num_kv_heads.append(0)
  1494. self._num_heads.append(0)
  1495. else:
  1496. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1497. self._num_heads.append(self.hparams["num_attention_heads"])
  1498. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1499. assert self.block_count == len(self._num_kv_heads)
  1500. assert self.block_count == len(self._num_heads)
  1501. assert self.block_count == len(_ffn_multipliers)
  1502. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1503. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1504. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1505. self._ffn_dims: list[int] = [
  1506. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1507. for multiplier in _ffn_multipliers
  1508. ]
  1509. def set_vocab(self):
  1510. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1511. # eos_token from '|eot_id|' to '|end_of_text|'
  1512. if self.hparams.get("vocab_size", 128256) == 128256:
  1513. tokens, toktypes, tokpre = self.get_vocab_base()
  1514. self.gguf_writer.add_tokenizer_model("gpt2")
  1515. self.gguf_writer.add_tokenizer_pre(tokpre)
  1516. self.gguf_writer.add_token_list(tokens)
  1517. self.gguf_writer.add_token_types(toktypes)
  1518. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1519. special_vocab.add_to_gguf(self.gguf_writer)
  1520. else:
  1521. # DeciLM-7B
  1522. self._set_vocab_llama_hf()
  1523. def set_gguf_parameters(self):
  1524. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1525. assert self.block_count == len(self._num_kv_heads)
  1526. assert self.block_count == len(self._num_heads)
  1527. assert self.block_count == len(self._ffn_dims)
  1528. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1529. self.gguf_writer.add_rope_freq_base(rope_theta)
  1530. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1531. self.gguf_writer.add_head_count(self._num_heads)
  1532. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1533. self.gguf_writer.add_block_count(self.block_count)
  1534. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1535. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1536. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1537. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1538. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1539. self.gguf_writer.add_file_type(self.ftype)
  1540. else: # DeciLM-7B
  1541. super().set_gguf_parameters()
  1542. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1543. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1544. assert self.block_count == len(self._num_kv_heads)
  1545. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1546. hparams = self.hparams
  1547. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1548. if "head_dim" in hparams:
  1549. rope_dim = hparams["head_dim"]
  1550. else:
  1551. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1552. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1553. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1554. if self.hparams["rope_scaling"].get("type") == "linear":
  1555. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1556. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1557. @staticmethod
  1558. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1559. if n_head_kv is not None and n_head != n_head_kv:
  1560. n_head = n_head_kv
  1561. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1562. .swapaxes(1, 2)
  1563. .reshape(weights.shape))
  1564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1565. n_head = self.hparams["num_attention_heads"]
  1566. if bid is not None:
  1567. if "num_key_value_heads_per_layer" in self.hparams:
  1568. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1569. elif "block_configs" in self.hparams:
  1570. n_kv_head = self._num_kv_heads[bid]
  1571. n_head = self._num_heads[bid]
  1572. else:
  1573. n_kv_head = self.hparams.get("num_key_value_heads")
  1574. else:
  1575. n_kv_head = self.hparams.get("num_key_value_heads")
  1576. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1577. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1578. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1579. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1580. return [(self.map_tensor_name(name), data_torch)]
  1581. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1582. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1583. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1584. base = self.hparams.get("rope_theta", 10000.0)
  1585. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1586. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1587. factor = rope_scaling.get("factor", 8.0)
  1588. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1589. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1590. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1591. low_freq_wavelen = old_context_len / low_freq_factor
  1592. high_freq_wavelen = old_context_len / high_freq_factor
  1593. assert low_freq_wavelen != high_freq_wavelen
  1594. rope_factors = []
  1595. for freq in freqs:
  1596. wavelen = 2 * math.pi / freq
  1597. if wavelen < high_freq_wavelen:
  1598. rope_factors.append(1)
  1599. elif wavelen > low_freq_wavelen:
  1600. rope_factors.append(factor)
  1601. else:
  1602. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1603. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1604. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1605. def prepare_tensors(self):
  1606. super().prepare_tensors()
  1607. @Model.register("BitnetForCausalLM")
  1608. class BitnetModel(Model):
  1609. model_arch = gguf.MODEL_ARCH.BITNET
  1610. def set_vocab(self):
  1611. self._set_vocab_sentencepiece()
  1612. def set_gguf_parameters(self):
  1613. super().set_gguf_parameters()
  1614. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1615. self.gguf_writer.add_rope_scaling_factor(1.0)
  1616. def weight_quant(self, weight: Tensor) -> Tensor:
  1617. dtype = weight.dtype
  1618. weight = weight.float()
  1619. scale = weight.abs().mean().clamp(min=1e-5)
  1620. iscale = 1 / scale
  1621. # TODO: multiply by the scale directly instead of inverting it twice
  1622. # (this is also unnecessarily doubly inverted upstream)
  1623. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1624. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1625. return result.type(dtype)
  1626. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1627. new_name = self.map_tensor_name(name)
  1628. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1629. gguf.MODEL_TENSOR.ATTN_Q,
  1630. gguf.MODEL_TENSOR.ATTN_K,
  1631. gguf.MODEL_TENSOR.ATTN_V,
  1632. gguf.MODEL_TENSOR.ATTN_OUT,
  1633. gguf.MODEL_TENSOR.FFN_UP,
  1634. gguf.MODEL_TENSOR.FFN_DOWN,
  1635. gguf.MODEL_TENSOR.FFN_GATE,
  1636. ]):
  1637. # transform weight into 1/0/-1 (in fp32)
  1638. data_torch = self.weight_quant(data_torch)
  1639. yield (new_name, data_torch)
  1640. @Model.register("GrokForCausalLM")
  1641. class GrokModel(Model):
  1642. model_arch = gguf.MODEL_ARCH.GROK
  1643. def set_vocab(self):
  1644. self._set_vocab_sentencepiece()
  1645. def __init__(self, *args, **kwargs):
  1646. super().__init__(*args, **kwargs)
  1647. def set_gguf_parameters(self):
  1648. super().set_gguf_parameters()
  1649. _experts: list[dict[str, Tensor]] | None = None
  1650. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1651. # process the experts separately
  1652. if name.find(".moe.") != -1:
  1653. n_experts = self.hparams["num_local_experts"]
  1654. assert bid is not None
  1655. if self._experts is None:
  1656. self._experts = [{} for _ in range(self.block_count)]
  1657. self._experts[bid][name] = data_torch
  1658. if len(self._experts[bid]) >= n_experts * 3:
  1659. tensors: list[tuple[str, Tensor]] = []
  1660. # merge the experts into a single 3d tensor
  1661. for wid in ["linear", "linear_1", "linear_v"]:
  1662. datas: list[Tensor] = []
  1663. for xid in range(n_experts):
  1664. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1665. datas.append(self._experts[bid][ename])
  1666. del self._experts[bid][ename]
  1667. data_torch = torch.stack(datas, dim=0)
  1668. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1669. new_name = self.map_tensor_name(merged_name)
  1670. tensors.append((new_name, data_torch))
  1671. return tensors
  1672. else:
  1673. return []
  1674. return [(self.map_tensor_name(name), data_torch)]
  1675. @Model.register("DbrxForCausalLM")
  1676. class DbrxModel(Model):
  1677. model_arch = gguf.MODEL_ARCH.DBRX
  1678. def set_gguf_parameters(self):
  1679. ffn_config = self.hparams["ffn_config"]
  1680. attn_config = self.hparams["attn_config"]
  1681. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1682. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1683. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1684. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1685. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1686. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1687. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1688. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1689. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1690. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1691. self.gguf_writer.add_layer_norm_eps(1e-5)
  1692. self.gguf_writer.add_file_type(self.ftype)
  1693. logger.info(f"gguf: file type = {self.ftype}")
  1694. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1695. del bid # unused
  1696. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1697. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1698. n_embd = self.hparams["d_model"]
  1699. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1700. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1701. # But llama.cpp moe graph works differently
  1702. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1703. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1704. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1705. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1706. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1707. experts = False
  1708. for exp_tensor_name in exp_tensor_names.keys():
  1709. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1710. experts = True
  1711. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1712. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1713. data_torch = data_torch.permute(*permute_tensor)
  1714. break
  1715. # map tensor names
  1716. # In MoE models the ffn tensors are typically most of the model weights,
  1717. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1718. # Every other model has the weight names ending in .weight,
  1719. # let's assume that is the convention which is not the case for dbrx:
  1720. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1721. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1722. return [(new_name, data_torch)]
  1723. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1724. del name, new_name, bid # unused
  1725. return n_dims > 1
  1726. @Model.register("MiniCPMForCausalLM")
  1727. class MiniCPMModel(Model):
  1728. model_arch = gguf.MODEL_ARCH.MINICPM
  1729. def set_gguf_parameters(self):
  1730. super().set_gguf_parameters()
  1731. embedding_scale = float(self.hparams["scale_emb"])
  1732. self.gguf_writer.add_embedding_scale(embedding_scale)
  1733. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1734. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1735. self.gguf_writer.add_residual_scale(residual_scale)
  1736. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1737. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1738. self.gguf_writer.add_logit_scale(logit_scale)
  1739. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1740. if self.hparams.get("rope_scaling") is not None:
  1741. if self.hparams["rope_scaling"].get("type") == "longrope":
  1742. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1743. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1744. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1745. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1746. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1747. if rope_scaling is not None:
  1748. long_factors = rope_scaling.get('long_factor', None)
  1749. short_factors = rope_scaling.get('short_factor', None)
  1750. if long_factors is None or short_factors is None:
  1751. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1752. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1753. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1754. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1755. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1756. def set_vocab(self):
  1757. self._set_vocab_sentencepiece()
  1758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1759. del bid # unused
  1760. n_head = self.hparams["num_attention_heads"]
  1761. n_kv_head = self.hparams.get("num_key_value_heads")
  1762. # HF models permute some of the tensors, so we need to undo that
  1763. if name.endswith(("q_proj.weight")):
  1764. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1765. if name.endswith(("k_proj.weight")):
  1766. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1767. return [(self.map_tensor_name(name), data_torch)]
  1768. @Model.register("MiniCPM3ForCausalLM")
  1769. class MiniCPM3Model(Model):
  1770. model_arch = gguf.MODEL_ARCH.MINICPM3
  1771. def set_gguf_parameters(self):
  1772. hparams = self.hparams
  1773. self.gguf_writer.add_file_type(self.ftype)
  1774. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1775. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1776. self.gguf_writer.add_block_count(self.block_count)
  1777. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1778. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1779. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1780. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1781. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1782. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1783. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1784. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1785. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1786. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1787. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1788. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1789. if rope_scaling is not None:
  1790. rope_dims = self.hparams["qk_rope_head_dim"]
  1791. long_factors = rope_scaling.get('long_factor', None)
  1792. short_factors = rope_scaling.get('short_factor', None)
  1793. if long_factors is None or short_factors is None:
  1794. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1795. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1796. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1797. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1798. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1799. def set_vocab(self):
  1800. self._set_vocab_sentencepiece()
  1801. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1802. if n_kv_head is not None and n_head != n_kv_head:
  1803. n_head //= n_kv_head
  1804. return (
  1805. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1806. .swapaxes(1, 2)
  1807. .reshape(weights.shape)
  1808. )
  1809. @Model.register("QWenLMHeadModel")
  1810. class QwenModel(Model):
  1811. model_arch = gguf.MODEL_ARCH.QWEN
  1812. @staticmethod
  1813. def token_bytes_to_string(b):
  1814. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1815. byte_encoder = bytes_to_unicode()
  1816. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1817. @staticmethod
  1818. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1819. parts = [bytes([b]) for b in token]
  1820. while True:
  1821. min_idx = None
  1822. min_rank = None
  1823. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1824. rank = mergeable_ranks.get(pair[0] + pair[1])
  1825. if rank is not None and (min_rank is None or rank < min_rank):
  1826. min_idx = i
  1827. min_rank = rank
  1828. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1829. break
  1830. assert min_idx is not None
  1831. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1832. return parts
  1833. def set_vocab(self):
  1834. self._set_vocab_qwen()
  1835. def set_gguf_parameters(self):
  1836. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1837. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1838. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1839. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1840. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1841. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1842. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1843. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1844. self.gguf_writer.add_file_type(self.ftype)
  1845. @Model.register("Qwen2ForCausalLM")
  1846. class Qwen2Model(Model):
  1847. model_arch = gguf.MODEL_ARCH.QWEN2
  1848. def set_vocab(self):
  1849. try:
  1850. self._set_vocab_sentencepiece()
  1851. except FileNotFoundError:
  1852. self._set_vocab_gpt2()
  1853. def set_gguf_parameters(self):
  1854. super().set_gguf_parameters()
  1855. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1856. if self.hparams["rope_scaling"].get("type") == "yarn":
  1857. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1858. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1859. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1860. @Model.register("Qwen2VLForConditionalGeneration")
  1861. class Qwen2VLModel(Model):
  1862. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1863. def set_gguf_parameters(self):
  1864. super().set_gguf_parameters()
  1865. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1866. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1867. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1868. def set_vocab(self):
  1869. try:
  1870. self._set_vocab_sentencepiece()
  1871. except FileNotFoundError:
  1872. self._set_vocab_gpt2()
  1873. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1874. for name, data in super().get_tensors():
  1875. if name.startswith("visual."):
  1876. continue
  1877. yield name, data
  1878. @Model.register("WavTokenizerDec")
  1879. class WavTokenizerDecModel(Model):
  1880. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1881. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1882. del bid # unused
  1883. if \
  1884. name.endswith("codebook.cluster_size") or \
  1885. name.endswith("codebook.embed_avg") or \
  1886. name.endswith("codebook.inited"):
  1887. logger.debug(f"Skipping {name!r}")
  1888. return []
  1889. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1890. return [(self.map_tensor_name(name), data_torch)]
  1891. def set_vocab(self):
  1892. self._set_vocab_none()
  1893. def set_gguf_parameters(self):
  1894. super().set_gguf_parameters()
  1895. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1896. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1897. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1898. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1899. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1900. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1901. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1902. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1903. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1904. self.gguf_writer.add_causal_attention(False)
  1905. @Model.register("Qwen2MoeForCausalLM")
  1906. class Qwen2MoeModel(Model):
  1907. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1908. def set_gguf_parameters(self):
  1909. super().set_gguf_parameters()
  1910. if (n_experts := self.hparams.get("num_experts")) is not None:
  1911. self.gguf_writer.add_expert_count(n_experts)
  1912. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1913. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1914. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1915. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1916. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1917. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1918. _experts: list[dict[str, Tensor]] | None = None
  1919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1920. # process the experts separately
  1921. if name.find("experts") != -1:
  1922. n_experts = self.hparams["num_experts"]
  1923. assert bid is not None
  1924. if self._experts is None:
  1925. self._experts = [{} for _ in range(self.block_count)]
  1926. self._experts[bid][name] = data_torch
  1927. if len(self._experts[bid]) >= n_experts * 3:
  1928. tensors: list[tuple[str, Tensor]] = []
  1929. # merge the experts into a single 3d tensor
  1930. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1931. datas: list[Tensor] = []
  1932. for xid in range(n_experts):
  1933. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1934. datas.append(self._experts[bid][ename])
  1935. del self._experts[bid][ename]
  1936. data_torch = torch.stack(datas, dim=0)
  1937. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1938. new_name = self.map_tensor_name(merged_name)
  1939. tensors.append((new_name, data_torch))
  1940. return tensors
  1941. else:
  1942. return []
  1943. return [(self.map_tensor_name(name), data_torch)]
  1944. def prepare_tensors(self):
  1945. super().prepare_tensors()
  1946. if self._experts is not None:
  1947. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1948. experts = [k for d in self._experts for k in d.keys()]
  1949. if len(experts) > 0:
  1950. raise ValueError(f"Unprocessed experts: {experts}")
  1951. @Model.register("GPT2LMHeadModel")
  1952. class GPT2Model(Model):
  1953. model_arch = gguf.MODEL_ARCH.GPT2
  1954. def set_gguf_parameters(self):
  1955. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1956. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1957. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1958. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1959. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1960. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1961. self.gguf_writer.add_file_type(self.ftype)
  1962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1963. del bid # unused
  1964. tensors: list[tuple[str, Tensor]] = []
  1965. # we don't need these
  1966. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1967. return tensors
  1968. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1969. data_torch = data_torch.transpose(1, 0)
  1970. new_name = self.map_tensor_name(name)
  1971. tensors.append((new_name, data_torch))
  1972. # note: GPT2 output is tied to (same as) wte in original model
  1973. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1974. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1975. return tensors
  1976. @Model.register("PhiForCausalLM")
  1977. class Phi2Model(Model):
  1978. model_arch = gguf.MODEL_ARCH.PHI2
  1979. def set_gguf_parameters(self):
  1980. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1981. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1982. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1983. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1984. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1985. self.gguf_writer.add_embedding_length(n_embd)
  1986. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1987. self.gguf_writer.add_block_count(block_count)
  1988. self.gguf_writer.add_head_count(n_head)
  1989. self.gguf_writer.add_head_count_kv(n_head)
  1990. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1991. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1992. self.gguf_writer.add_file_type(self.ftype)
  1993. self.gguf_writer.add_add_bos_token(False)
  1994. @Model.register("Phi3ForCausalLM")
  1995. class Phi3MiniModel(Model):
  1996. model_arch = gguf.MODEL_ARCH.PHI3
  1997. def set_vocab(self):
  1998. # Phi-4 model uses GPT2Tokenizer
  1999. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2000. if tokenizer_config_file.is_file():
  2001. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2002. tokenizer_config_json = json.load(f)
  2003. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2004. if tokenizer_class == 'GPT2Tokenizer':
  2005. return self._set_vocab_gpt2()
  2006. from sentencepiece import SentencePieceProcessor
  2007. tokenizer_path = self.dir_model / 'tokenizer.model'
  2008. if not tokenizer_path.is_file():
  2009. raise ValueError(f'Error: Missing {tokenizer_path}')
  2010. tokenizer = SentencePieceProcessor()
  2011. tokenizer.LoadFromFile(str(tokenizer_path))
  2012. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2013. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2014. scores: list[float] = [-10000.0] * vocab_size
  2015. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2016. for token_id in range(tokenizer.vocab_size()):
  2017. piece = tokenizer.IdToPiece(token_id)
  2018. text = piece.encode("utf-8")
  2019. score = tokenizer.GetScore(token_id)
  2020. toktype = SentencePieceTokenTypes.NORMAL
  2021. if tokenizer.IsUnknown(token_id):
  2022. toktype = SentencePieceTokenTypes.UNKNOWN
  2023. elif tokenizer.IsControl(token_id):
  2024. toktype = SentencePieceTokenTypes.CONTROL
  2025. elif tokenizer.IsUnused(token_id):
  2026. toktype = SentencePieceTokenTypes.UNUSED
  2027. elif tokenizer.IsByte(token_id):
  2028. toktype = SentencePieceTokenTypes.BYTE
  2029. tokens[token_id] = text
  2030. scores[token_id] = score
  2031. toktypes[token_id] = toktype
  2032. added_tokens_file = self.dir_model / 'added_tokens.json'
  2033. if added_tokens_file.is_file():
  2034. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2035. added_tokens_json = json.load(f)
  2036. for key in added_tokens_json:
  2037. token_id = added_tokens_json[key]
  2038. if token_id >= vocab_size:
  2039. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2040. continue
  2041. tokens[token_id] = key.encode("utf-8")
  2042. scores[token_id] = -1000.0
  2043. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2044. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2045. if tokenizer_config_file.is_file():
  2046. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2047. tokenizer_config_json = json.load(f)
  2048. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2049. for token_id, foken_data in added_tokens_decoder.items():
  2050. token_id = int(token_id)
  2051. token = foken_data["content"].encode("utf-8")
  2052. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2053. if tokens[token_id] != token:
  2054. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2055. tokens[token_id] = token
  2056. scores[token_id] = -1000.0
  2057. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2058. if foken_data.get("special"):
  2059. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2060. tokenizer_file = self.dir_model / 'tokenizer.json'
  2061. if tokenizer_file.is_file():
  2062. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2063. tokenizer_json = json.load(f)
  2064. added_tokens = tokenizer_json.get("added_tokens", [])
  2065. for foken_data in added_tokens:
  2066. token_id = int(foken_data["id"])
  2067. token = foken_data["content"].encode("utf-8")
  2068. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2069. if tokens[token_id] != token:
  2070. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2071. tokens[token_id] = token
  2072. scores[token_id] = -1000.0
  2073. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2074. if foken_data.get("special"):
  2075. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2076. self.gguf_writer.add_tokenizer_model("llama")
  2077. self.gguf_writer.add_tokenizer_pre("default")
  2078. self.gguf_writer.add_token_list(tokens)
  2079. self.gguf_writer.add_token_scores(scores)
  2080. self.gguf_writer.add_token_types(toktypes)
  2081. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2082. special_vocab.add_to_gguf(self.gguf_writer)
  2083. def set_gguf_parameters(self):
  2084. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2085. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2086. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2087. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2088. rms_eps = self.find_hparam(["rms_norm_eps"])
  2089. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2090. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2091. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2092. rope_dims = int(rot_pct * n_embd) // n_head
  2093. self.gguf_writer.add_context_length(max_pos_embds)
  2094. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2095. self.gguf_writer.add_embedding_length(n_embd)
  2096. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2097. self.gguf_writer.add_block_count(block_count)
  2098. self.gguf_writer.add_head_count(n_head)
  2099. self.gguf_writer.add_head_count_kv(n_head_kv)
  2100. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2101. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2102. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2103. self.gguf_writer.add_file_type(self.ftype)
  2104. sliding_window = self.hparams.get("sliding_window")
  2105. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2106. if sliding_window is None:
  2107. sliding_window = 0
  2108. self.gguf_writer.add_sliding_window(sliding_window)
  2109. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2110. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2111. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2112. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2113. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2114. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2115. rope_dims = int(rot_pct * n_embd) // n_head
  2116. # write rope scaling for long context (128k) model
  2117. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2118. if rope_scaling is None:
  2119. return
  2120. scale = max_pos_embds / orig_max_pos_embds
  2121. rope_scaling_type = rope_scaling.get('type', '').lower()
  2122. if len(rope_scaling_type) == 0:
  2123. raise KeyError('Missing the required key rope_scaling.type')
  2124. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2125. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2126. elif rope_scaling_type == 'yarn':
  2127. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2128. else:
  2129. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2130. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2131. long_factors = rope_scaling.get('long_factor', None)
  2132. short_factors = rope_scaling.get('short_factor', None)
  2133. if long_factors is None or short_factors is None:
  2134. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2135. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2136. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2137. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2138. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2139. @Model.register("PhiMoEForCausalLM")
  2140. class PhiMoeModel(Phi3MiniModel):
  2141. model_arch = gguf.MODEL_ARCH.PHIMOE
  2142. _experts: list[dict[str, Tensor]] | None = None
  2143. def set_gguf_parameters(self):
  2144. super().set_gguf_parameters()
  2145. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2146. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2148. # process the experts separately
  2149. if name.find("block_sparse_moe.experts") != -1:
  2150. n_experts = self.hparams["num_local_experts"]
  2151. assert bid is not None
  2152. if self._experts is None:
  2153. self._experts = [{} for _ in range(self.block_count)]
  2154. self._experts[bid][name] = data_torch
  2155. if len(self._experts[bid]) >= n_experts * 3:
  2156. tensors: list[tuple[str, Tensor]] = []
  2157. # merge the experts into a single 3d tensor
  2158. for w_name in ["w1", "w2", "w3"]:
  2159. datas: list[Tensor] = []
  2160. for xid in range(n_experts):
  2161. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2162. datas.append(self._experts[bid][ename])
  2163. del self._experts[bid][ename]
  2164. data_torch = torch.stack(datas, dim=0)
  2165. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2166. new_name = self.map_tensor_name(merged_name)
  2167. tensors.append((new_name, data_torch))
  2168. return tensors
  2169. else:
  2170. return []
  2171. return [(self.map_tensor_name(name), data_torch)]
  2172. def prepare_tensors(self):
  2173. super().prepare_tensors()
  2174. if self._experts is not None:
  2175. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2176. experts = [k for d in self._experts for k in d.keys()]
  2177. if len(experts) > 0:
  2178. raise ValueError(f"Unprocessed experts: {experts}")
  2179. @Model.register("PlamoForCausalLM")
  2180. class PlamoModel(Model):
  2181. model_arch = gguf.MODEL_ARCH.PLAMO
  2182. def set_vocab(self):
  2183. self._set_vocab_sentencepiece()
  2184. def set_gguf_parameters(self):
  2185. hparams = self.hparams
  2186. block_count = hparams["num_hidden_layers"]
  2187. self.gguf_writer.add_context_length(4096) # not in config.json
  2188. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2189. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2190. self.gguf_writer.add_block_count(block_count)
  2191. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2192. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2193. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2194. self.gguf_writer.add_file_type(self.ftype)
  2195. def shuffle_attn_q_weight(self, data_torch):
  2196. assert data_torch.size() == (5120, 5120)
  2197. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2198. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2199. data_torch = torch.reshape(data_torch, (5120, 5120))
  2200. return data_torch
  2201. def shuffle_attn_output_weight(self, data_torch):
  2202. assert data_torch.size() == (5120, 5120)
  2203. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2204. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2205. data_torch = torch.reshape(data_torch, (5120, 5120))
  2206. return data_torch
  2207. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2208. del bid # unused
  2209. new_name = self.map_tensor_name(name)
  2210. # shuffle for broadcasting of gqa in ggml_mul_mat
  2211. if new_name.endswith("attn_q.weight"):
  2212. data_torch = self.shuffle_attn_q_weight(data_torch)
  2213. elif new_name.endswith("attn_output.weight"):
  2214. data_torch = self.shuffle_attn_output_weight(data_torch)
  2215. return [(new_name, data_torch)]
  2216. @Model.register("CodeShellForCausalLM")
  2217. class CodeShellModel(Model):
  2218. model_arch = gguf.MODEL_ARCH.CODESHELL
  2219. def set_gguf_parameters(self):
  2220. block_count = self.hparams["n_layer"]
  2221. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2222. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2223. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2224. self.gguf_writer.add_block_count(block_count)
  2225. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2226. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2227. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2228. self.gguf_writer.add_file_type(self.ftype)
  2229. self.gguf_writer.add_rope_freq_base(10000.0)
  2230. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2231. self.gguf_writer.add_rope_scaling_factor(1.0)
  2232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2233. del bid # unused
  2234. new_name = self.map_tensor_name(name)
  2235. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  2236. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2237. assert self.tensor_names is not None
  2238. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  2239. # copy tok_embd.weight to output.weight
  2240. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  2241. return tensors
  2242. @Model.register("InternLM2ForCausalLM")
  2243. class InternLM2Model(Model):
  2244. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2245. def set_vocab(self):
  2246. # (TODO): Is there a better way?
  2247. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2248. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2249. # recognized as an empty string in C++.
  2250. from sentencepiece import SentencePieceProcessor
  2251. from sentencepiece import sentencepiece_model_pb2 as model
  2252. tokenizer_path = self.dir_model / 'tokenizer.model'
  2253. tokens: list[bytes] = []
  2254. scores: list[float] = []
  2255. toktypes: list[int] = []
  2256. if not tokenizer_path.is_file():
  2257. logger.error(f'Error: Missing {tokenizer_path}')
  2258. sys.exit(1)
  2259. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2260. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2261. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2262. tokenizer = SentencePieceProcessor()
  2263. tokenizer.LoadFromFile(str(tokenizer_path))
  2264. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2265. for token_id in range(vocab_size):
  2266. piece = tokenizer.IdToPiece(token_id)
  2267. text = piece.encode("utf-8")
  2268. score = tokenizer.GetScore(token_id)
  2269. if text == b"\x00":
  2270. # (TODO): fixme
  2271. # Hack here and replace the \x00 characters.
  2272. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2273. text = "🐉".encode("utf-8")
  2274. toktype = SentencePieceTokenTypes.NORMAL
  2275. if tokenizer.IsUnknown(token_id):
  2276. toktype = SentencePieceTokenTypes.UNKNOWN
  2277. elif tokenizer.IsControl(token_id):
  2278. toktype = SentencePieceTokenTypes.CONTROL
  2279. elif tokenizer.IsUnused(token_id):
  2280. toktype = SentencePieceTokenTypes.UNUSED
  2281. elif tokenizer.IsByte(token_id):
  2282. toktype = SentencePieceTokenTypes.BYTE
  2283. # take care of ununsed raw token
  2284. if piece.startswith('[UNUSED'):
  2285. toktype = SentencePieceTokenTypes.UNUSED
  2286. tokens.append(text)
  2287. scores.append(score)
  2288. toktypes.append(toktype)
  2289. added_tokens_file = self.dir_model / 'added_tokens.json'
  2290. if added_tokens_file.is_file():
  2291. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2292. added_tokens_json = json.load(f)
  2293. for key in added_tokens_json:
  2294. tokens.append(key.encode("utf-8"))
  2295. scores.append(-1000.0)
  2296. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2297. chat_eos_token = '<|im_end|>'
  2298. chat_eos_token_id = None
  2299. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2300. if tokenizer_config_file.is_file():
  2301. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2302. tokenizer_config_json = json.load(f)
  2303. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2304. for token_id, foken_data in added_tokens_decoder.items():
  2305. token_id = int(token_id)
  2306. token = foken_data["content"]
  2307. if token == chat_eos_token:
  2308. chat_eos_token_id = token_id
  2309. token = token.encode("utf-8")
  2310. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2311. if tokens[token_id] != token:
  2312. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2313. tokens[token_id] = token
  2314. scores[token_id] = -1000.0
  2315. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2316. if foken_data.get("special"):
  2317. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2318. tokenizer_file = self.dir_model / 'tokenizer.json'
  2319. if tokenizer_file.is_file():
  2320. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2321. tokenizer_json = json.load(f)
  2322. added_tokens = tokenizer_json.get("added_tokens", [])
  2323. for foken_data in added_tokens:
  2324. token_id = int(foken_data["id"])
  2325. token = foken_data["content"]
  2326. if token == chat_eos_token:
  2327. chat_eos_token_id = token_id
  2328. token = token.encode("utf-8")
  2329. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2330. if tokens[token_id] != token:
  2331. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2332. tokens[token_id] = token
  2333. scores[token_id] = -1000.0
  2334. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2335. if foken_data.get("special"):
  2336. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2337. self.gguf_writer.add_tokenizer_model("llama")
  2338. self.gguf_writer.add_tokenizer_pre("default")
  2339. self.gguf_writer.add_token_list(tokens)
  2340. self.gguf_writer.add_token_scores(scores)
  2341. self.gguf_writer.add_token_types(toktypes)
  2342. self.gguf_writer.add_add_space_prefix(add_prefix)
  2343. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2344. old_eos = special_vocab.special_token_ids["eos"]
  2345. if chat_eos_token_id is not None:
  2346. # For the chat model, we replace the eos with '<|im_end|>'.
  2347. # TODO: this is a hack, should be fixed
  2348. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2349. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2350. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2351. " in chat mode so that the conversation can end normally.")
  2352. special_vocab.add_to_gguf(self.gguf_writer)
  2353. def set_gguf_parameters(self):
  2354. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2355. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2356. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2357. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2358. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2359. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2360. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2361. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2362. self.gguf_writer.add_file_type(self.ftype)
  2363. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2364. if self.hparams["rope_scaling"].get("type") == "linear":
  2365. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2366. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2367. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2368. num_heads = self.hparams["num_attention_heads"]
  2369. num_kv_heads = self.hparams["num_key_value_heads"]
  2370. n_embd = self.hparams["hidden_size"]
  2371. q_per_kv = num_heads // num_kv_heads
  2372. head_dim = n_embd // num_heads
  2373. num_groups = num_heads // q_per_kv
  2374. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2375. qkv = data_torch
  2376. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2377. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2378. # The model weights of q and k equire additional reshape.
  2379. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2380. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2381. v = v.reshape((-1, v.shape[-1]))
  2382. return [
  2383. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2384. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2385. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2386. ]
  2387. else:
  2388. return [(self.map_tensor_name(name), data_torch)]
  2389. @Model.register("InternLM3ForCausalLM")
  2390. class InternLM3Model(Model):
  2391. model_arch = gguf.MODEL_ARCH.LLAMA
  2392. def set_vocab(self):
  2393. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2394. self.gguf_writer.add_tokenizer_model("llama")
  2395. self.gguf_writer.add_tokenizer_pre("default")
  2396. self.gguf_writer.add_token_list(tokens)
  2397. self.gguf_writer.add_token_scores(scores)
  2398. self.gguf_writer.add_token_types(toktypes)
  2399. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2400. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2401. if tokenizer_config_file.is_file():
  2402. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2403. tokenizer_config_json = json.load(f)
  2404. if "add_prefix_space" in tokenizer_config_json:
  2405. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2406. if "added_tokens_decoder" in tokenizer_config_json:
  2407. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2408. if token_data.get("special"):
  2409. token_id = int(token_id)
  2410. token = token_data["content"]
  2411. special_vocab._set_special_token(token, token_id)
  2412. # update eos token
  2413. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2414. special_vocab.special_token_ids["eos"] = token_id
  2415. special_vocab.add_to_gguf(self.gguf_writer)
  2416. def set_gguf_parameters(self):
  2417. super().set_gguf_parameters()
  2418. hparams = self.hparams
  2419. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2420. if "head_dim" in hparams:
  2421. rope_dim = hparams["head_dim"]
  2422. else:
  2423. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2424. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2425. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2426. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2427. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2428. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2429. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2430. n_head = self.hparams["num_attention_heads"]
  2431. n_kv_head = self.hparams.get("num_key_value_heads")
  2432. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2433. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2434. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2435. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2436. return [(self.map_tensor_name(name), data_torch)]
  2437. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2438. class BertModel(Model):
  2439. model_arch = gguf.MODEL_ARCH.BERT
  2440. def __init__(self, *args, **kwargs):
  2441. super().__init__(*args, **kwargs)
  2442. self.vocab_size = None
  2443. def set_gguf_parameters(self):
  2444. super().set_gguf_parameters()
  2445. self.gguf_writer.add_causal_attention(False)
  2446. # get pooling path
  2447. pooling_path = None
  2448. module_path = self.dir_model / "modules.json"
  2449. if module_path.is_file():
  2450. with open(module_path, encoding="utf-8") as f:
  2451. modules = json.load(f)
  2452. for mod in modules:
  2453. if mod["type"] == "sentence_transformers.models.Pooling":
  2454. pooling_path = mod["path"]
  2455. break
  2456. # get pooling type
  2457. if pooling_path is not None:
  2458. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2459. pooling = json.load(f)
  2460. if pooling["pooling_mode_mean_tokens"]:
  2461. pooling_type = gguf.PoolingType.MEAN
  2462. elif pooling["pooling_mode_cls_token"]:
  2463. pooling_type = gguf.PoolingType.CLS
  2464. else:
  2465. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2466. self.gguf_writer.add_pooling_type(pooling_type)
  2467. def set_vocab(self):
  2468. tokens, toktypes, tokpre = self.get_vocab_base()
  2469. self.vocab_size = len(tokens)
  2470. # we need this to validate the size of the token_type embeddings
  2471. # though currently we are passing all zeros to the token_type embeddings
  2472. # "Sequence A" or "Sequence B"
  2473. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2474. # convert to phantom space vocab
  2475. def phantom(tok):
  2476. if tok.startswith("[") and tok.endswith("]"):
  2477. return tok
  2478. if tok.startswith("##"):
  2479. return tok[2:]
  2480. return "\u2581" + tok
  2481. tokens = list(map(phantom, tokens))
  2482. # add vocab to gguf
  2483. self.gguf_writer.add_tokenizer_model("bert")
  2484. self.gguf_writer.add_tokenizer_pre(tokpre)
  2485. self.gguf_writer.add_token_list(tokens)
  2486. self.gguf_writer.add_token_types(toktypes)
  2487. # handle special tokens
  2488. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2489. special_vocab.add_to_gguf(self.gguf_writer)
  2490. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2491. del bid # unused
  2492. if name.startswith("bert."):
  2493. name = name[5:]
  2494. if name.endswith(".gamma"):
  2495. name = name[:-6] + ".weight"
  2496. if name.endswith(".beta"):
  2497. name = name[:-5] + ".bias"
  2498. # we are only using BERT for embeddings so we don't need the pooling layer
  2499. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2500. return [] # we don't need these
  2501. if name.startswith("cls.predictions"):
  2502. return []
  2503. if name.startswith("cls.seq_relationship"):
  2504. return []
  2505. return [(self.map_tensor_name(name), data_torch)]
  2506. @Model.register("RobertaModel")
  2507. class RobertaModel(BertModel):
  2508. model_arch = gguf.MODEL_ARCH.BERT
  2509. def __init__(self, *args, **kwargs):
  2510. super().__init__(*args, **kwargs)
  2511. # we need the pad_token_id to know how to chop down position_embd matrix
  2512. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2513. self._position_offset = 1 + pad_token_id
  2514. if "max_position_embeddings" in self.hparams:
  2515. self.hparams["max_position_embeddings"] -= self._position_offset
  2516. else:
  2517. self._position_offset = None
  2518. def set_vocab(self):
  2519. """Support BPE tokenizers for roberta models"""
  2520. bpe_tok_path = self.dir_model / "tokenizer.json"
  2521. if bpe_tok_path.exists():
  2522. self._set_vocab_gpt2()
  2523. self.gguf_writer.add_add_bos_token(True)
  2524. self.gguf_writer.add_add_eos_token(True)
  2525. # we need this to validate the size of the token_type embeddings
  2526. # though currently we are passing all zeros to the token_type embeddings
  2527. # "Sequence A" or "Sequence B"
  2528. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2529. else:
  2530. return super().set_vocab()
  2531. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2532. # if name starts with "roberta.", remove the prefix
  2533. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2534. if name.startswith("roberta."):
  2535. name = name[8:]
  2536. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2537. if name == "embeddings.position_embeddings.weight":
  2538. if self._position_offset is not None:
  2539. data_torch = data_torch[self._position_offset:,:]
  2540. return super().modify_tensors(data_torch, name, bid)
  2541. @Model.register("NomicBertModel")
  2542. class NomicBertModel(BertModel):
  2543. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2544. def __init__(self, *args, **kwargs):
  2545. super().__init__(*args, **kwargs)
  2546. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2547. self.hparams["n_ctx"] = 2048
  2548. # SwigLU activation
  2549. assert self.hparams["activation_function"] == "swiglu"
  2550. # this doesn't do anything in the HF version
  2551. assert self.hparams["causal"] is False
  2552. # no bias tensors
  2553. assert self.hparams["qkv_proj_bias"] is False
  2554. assert self.hparams["mlp_fc1_bias"] is False
  2555. assert self.hparams["mlp_fc2_bias"] is False
  2556. # norm at end of layer
  2557. assert self.hparams["prenorm"] is False
  2558. # standard RoPE
  2559. assert self.hparams["rotary_emb_fraction"] == 1.0
  2560. assert self.hparams["rotary_emb_interleaved"] is False
  2561. assert self.hparams["rotary_emb_scale_base"] is None
  2562. def set_gguf_parameters(self):
  2563. super().set_gguf_parameters()
  2564. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2565. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2566. class XLMRobertaModel(BertModel):
  2567. model_arch = gguf.MODEL_ARCH.BERT
  2568. def __init__(self, *args, **kwargs):
  2569. super().__init__(*args, **kwargs)
  2570. # we need the pad_token_id to know how to chop down position_embd matrix
  2571. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2572. self._position_offset = 1 + pad_token_id
  2573. if "max_position_embeddings" in self.hparams:
  2574. self.hparams["max_position_embeddings"] -= self._position_offset
  2575. else:
  2576. self._position_offset = None
  2577. def set_vocab(self):
  2578. # to avoid TypeError: Descriptors cannot be created directly
  2579. # exception when importing sentencepiece_model_pb2
  2580. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2581. from sentencepiece import SentencePieceProcessor
  2582. from sentencepiece import sentencepiece_model_pb2 as model
  2583. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2584. if not tokenizer_path.is_file():
  2585. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2586. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2587. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2588. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2589. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2590. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2591. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2592. tokenizer = SentencePieceProcessor()
  2593. tokenizer.LoadFromFile(str(tokenizer_path))
  2594. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2595. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2596. scores: list[float] = [-10000.0] * vocab_size
  2597. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2598. for token_id in range(tokenizer.vocab_size()):
  2599. piece = tokenizer.IdToPiece(token_id)
  2600. text = piece.encode("utf-8")
  2601. score = tokenizer.GetScore(token_id)
  2602. toktype = SentencePieceTokenTypes.NORMAL
  2603. if tokenizer.IsUnknown(token_id):
  2604. toktype = SentencePieceTokenTypes.UNKNOWN
  2605. elif tokenizer.IsControl(token_id):
  2606. toktype = SentencePieceTokenTypes.CONTROL
  2607. elif tokenizer.IsUnused(token_id):
  2608. toktype = SentencePieceTokenTypes.UNUSED
  2609. elif tokenizer.IsByte(token_id):
  2610. toktype = SentencePieceTokenTypes.BYTE
  2611. tokens[token_id] = text
  2612. scores[token_id] = score
  2613. toktypes[token_id] = toktype
  2614. if vocab_size > len(tokens):
  2615. pad_count = vocab_size - len(tokens)
  2616. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2617. for i in range(1, pad_count + 1):
  2618. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2619. scores.append(-1000.0)
  2620. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2621. # realign tokens (see HF tokenizer code)
  2622. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2623. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2624. toktypes = [
  2625. SentencePieceTokenTypes.CONTROL,
  2626. SentencePieceTokenTypes.CONTROL,
  2627. SentencePieceTokenTypes.CONTROL,
  2628. SentencePieceTokenTypes.UNKNOWN,
  2629. ] + toktypes[3:-1]
  2630. self.gguf_writer.add_tokenizer_model("t5")
  2631. self.gguf_writer.add_tokenizer_pre("default")
  2632. self.gguf_writer.add_token_list(tokens)
  2633. self.gguf_writer.add_token_scores(scores)
  2634. self.gguf_writer.add_token_types(toktypes)
  2635. self.gguf_writer.add_add_space_prefix(add_prefix)
  2636. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2637. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2638. if precompiled_charsmap:
  2639. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2640. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2641. special_vocab.add_to_gguf(self.gguf_writer)
  2642. self.gguf_writer.add_add_bos_token(True)
  2643. self.gguf_writer.add_add_eos_token(True)
  2644. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2645. # if name starts with "roberta.", remove the prefix
  2646. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2647. if name.startswith("roberta."):
  2648. name = name[8:]
  2649. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2650. if name == "embeddings.position_embeddings.weight":
  2651. if self._position_offset is not None:
  2652. data_torch = data_torch[self._position_offset:,:]
  2653. return super().modify_tensors(data_torch, name, bid)
  2654. @Model.register("GemmaForCausalLM")
  2655. class GemmaModel(Model):
  2656. model_arch = gguf.MODEL_ARCH.GEMMA
  2657. def set_vocab(self):
  2658. self._set_vocab_sentencepiece()
  2659. # TODO: these special tokens should be exported only for the CodeGemma family
  2660. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2661. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2662. special_vocab._set_special_token("prefix", 67)
  2663. special_vocab._set_special_token("suffix", 69)
  2664. special_vocab._set_special_token("middle", 68)
  2665. special_vocab._set_special_token("fsep", 70)
  2666. special_vocab._set_special_token("eot", 107)
  2667. special_vocab.chat_template = None # do not add it twice
  2668. special_vocab.add_to_gguf(self.gguf_writer)
  2669. self.gguf_writer.add_add_space_prefix(False)
  2670. def set_gguf_parameters(self):
  2671. hparams = self.hparams
  2672. block_count = hparams["num_hidden_layers"]
  2673. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2674. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2675. self.gguf_writer.add_block_count(block_count)
  2676. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2677. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2678. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2679. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2680. self.gguf_writer.add_key_length(hparams["head_dim"])
  2681. self.gguf_writer.add_value_length(hparams["head_dim"])
  2682. self.gguf_writer.add_file_type(self.ftype)
  2683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2684. del bid # unused
  2685. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2686. # To prevent errors, skip loading lm_head.weight.
  2687. if name == "lm_head.weight":
  2688. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2689. return []
  2690. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2691. if name.endswith("norm.weight"):
  2692. data_torch = data_torch + 1
  2693. return [(self.map_tensor_name(name), data_torch)]
  2694. @Model.register("Gemma2ForCausalLM")
  2695. class Gemma2Model(Model):
  2696. model_arch = gguf.MODEL_ARCH.GEMMA2
  2697. def set_vocab(self):
  2698. self._set_vocab_sentencepiece()
  2699. self.gguf_writer.add_add_space_prefix(False)
  2700. def set_gguf_parameters(self):
  2701. hparams = self.hparams
  2702. block_count = hparams["num_hidden_layers"]
  2703. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2704. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2705. self.gguf_writer.add_block_count(block_count)
  2706. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2707. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2708. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2709. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2710. self.gguf_writer.add_key_length(hparams["head_dim"])
  2711. self.gguf_writer.add_value_length(hparams["head_dim"])
  2712. self.gguf_writer.add_file_type(self.ftype)
  2713. self.gguf_writer.add_attn_logit_softcapping(
  2714. self.hparams["attn_logit_softcapping"]
  2715. )
  2716. self.gguf_writer.add_final_logit_softcapping(
  2717. self.hparams["final_logit_softcapping"]
  2718. )
  2719. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2720. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2721. del bid # unused
  2722. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2723. # To prevent errors, skip loading lm_head.weight.
  2724. if name == "lm_head.weight":
  2725. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2726. return []
  2727. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2728. if name.endswith("norm.weight"):
  2729. data_torch = data_torch + 1
  2730. return [(self.map_tensor_name(name), data_torch)]
  2731. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2732. class Gemma3Model(Model):
  2733. model_arch = gguf.MODEL_ARCH.GEMMA3
  2734. has_vision: bool = False
  2735. # we need to merge the text_config into the root level of hparams
  2736. def __init__(self, *args, **kwargs):
  2737. hparams = Model.load_hparams(kwargs["dir_model"])
  2738. if "text_config" in hparams:
  2739. hparams = {**hparams, **hparams["text_config"]}
  2740. kwargs["hparams"] = hparams
  2741. super().__init__(*args, **kwargs)
  2742. if "vision_config" in hparams:
  2743. logger.info("Has vision encoder, but it will be ignored")
  2744. self.has_vision = True
  2745. def write(self):
  2746. super().write()
  2747. if self.has_vision:
  2748. logger.info("NOTE: this script only convert the language model to GGUF")
  2749. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2750. def set_vocab(self):
  2751. self._set_vocab_sentencepiece()
  2752. self.gguf_writer.add_add_space_prefix(False)
  2753. def set_gguf_parameters(self):
  2754. hparams = self.hparams
  2755. block_count = hparams["num_hidden_layers"]
  2756. # some default values are not specified in the hparams
  2757. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2758. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2759. self.gguf_writer.add_block_count(block_count)
  2760. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2761. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2762. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2763. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2764. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2765. self.gguf_writer.add_file_type(self.ftype)
  2766. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2767. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2768. assert hparams.get("attn_logit_softcapping") is None
  2769. assert hparams.get("final_logit_softcapping") is None
  2770. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2771. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2772. if hparams.get("rope_scaling") is not None:
  2773. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2774. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2775. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2776. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2777. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2778. del bid # unused
  2779. if name.startswith("language_model."):
  2780. name = name.replace("language_model.", "")
  2781. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2782. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2783. # ignore vision tensors
  2784. return []
  2785. # remove OOV (out-of-vocabulary) rows in token_embd
  2786. if "embed_tokens.weight" in name:
  2787. vocab = self._create_vocab_sentencepiece()
  2788. tokens = vocab[0]
  2789. data_torch = data_torch[:len(tokens)]
  2790. # ref code in Gemma3RMSNorm
  2791. # output = output * (1.0 + self.weight.float())
  2792. if name.endswith("norm.weight"):
  2793. data_torch = data_torch + 1
  2794. return [(self.map_tensor_name(name), data_torch)]
  2795. @Model.register("Starcoder2ForCausalLM")
  2796. class StarCoder2Model(Model):
  2797. model_arch = gguf.MODEL_ARCH.STARCODER2
  2798. @Model.register("Rwkv6ForCausalLM")
  2799. class Rwkv6Model(Model):
  2800. model_arch = gguf.MODEL_ARCH.RWKV6
  2801. def set_vocab(self):
  2802. self._set_vocab_rwkv_world()
  2803. def set_gguf_parameters(self):
  2804. block_count = self.hparams["num_hidden_layers"]
  2805. head_size = self.hparams["head_size"]
  2806. hidden_size = self.hparams["hidden_size"]
  2807. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2808. rescale_every_n_layers = self.hparams["rescale_every"]
  2809. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2810. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2811. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2812. # RWKV isn't context limited
  2813. self.gguf_writer.add_context_length(1048576)
  2814. self.gguf_writer.add_embedding_length(hidden_size)
  2815. self.gguf_writer.add_block_count(block_count)
  2816. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2817. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2818. self.gguf_writer.add_wkv_head_size(head_size)
  2819. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2820. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2821. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2822. self.gguf_writer.add_file_type(self.ftype)
  2823. # required by llama.cpp, unused
  2824. self.gguf_writer.add_head_count(0)
  2825. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2826. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2827. new_name = self.map_tensor_name(name)
  2828. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2829. new_name += ".weight"
  2830. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2831. data_torch = data_torch.transpose(0, 1)
  2832. if new_name.endswith("time_mix_w2.weight"):
  2833. data_torch = data_torch.permute(0, 2, 1)
  2834. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2835. data_torch = data_torch.squeeze()
  2836. try:
  2837. rescale_every_n_layers = self.hparams["rescale_every"]
  2838. if rescale_every_n_layers > 0:
  2839. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2840. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2841. except KeyError:
  2842. pass
  2843. # concat time_mix_lerp weights to reduce some cpu overhead
  2844. # also reduces the number of tensors in the model
  2845. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2846. try:
  2847. self.lerp_weights[bid][new_name] = data_torch
  2848. except KeyError:
  2849. self.lerp_weights[bid] = {new_name: data_torch}
  2850. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2851. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2852. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2853. yield (new_name, data)
  2854. return
  2855. yield (new_name, data_torch)
  2856. @Model.register("RWKV6Qwen2ForCausalLM")
  2857. class RWKV6Qwen2Model(Rwkv6Model):
  2858. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2859. def set_vocab(self):
  2860. try:
  2861. self._set_vocab_sentencepiece()
  2862. except FileNotFoundError:
  2863. self._set_vocab_gpt2()
  2864. def set_gguf_parameters(self):
  2865. block_count = self.hparams["num_hidden_layers"]
  2866. num_attention_heads = self.hparams["num_attention_heads"]
  2867. num_key_value_heads = self.hparams["num_key_value_heads"]
  2868. hidden_size = self.hparams["hidden_size"]
  2869. head_size = hidden_size // num_attention_heads
  2870. rms_norm_eps = self.hparams["rms_norm_eps"]
  2871. intermediate_size = self.hparams["intermediate_size"]
  2872. time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
  2873. time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
  2874. # RWKV isn't context limited
  2875. self.gguf_writer.add_context_length(1048576)
  2876. self.gguf_writer.add_embedding_length(hidden_size)
  2877. self.gguf_writer.add_block_count(block_count)
  2878. self.gguf_writer.add_wkv_head_size(head_size)
  2879. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2880. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2881. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2882. self.gguf_writer.add_file_type(self.ftype)
  2883. # special parameters for time_mixing in RWKV6QWEN2
  2884. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2885. self.gguf_writer.add_token_shift_count(1)
  2886. # RWKV6QWEN2 use grouped key/value like GQA
  2887. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2888. # required by llama.cpp, unused
  2889. self.gguf_writer.add_head_count(0)
  2890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2891. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2892. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2893. data = data.view(5, -1, data.shape[-1])
  2894. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2895. # permute them here to avoid code changes
  2896. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2897. if "w2" in new_name:
  2898. data = data.view(5, -1, data.shape[-1])
  2899. yield (new_name, data)
  2900. continue
  2901. yield (new_name, data)
  2902. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2903. class Rwkv7Model(Model):
  2904. model_arch = gguf.MODEL_ARCH.RWKV7
  2905. def set_vocab(self):
  2906. self._set_vocab_rwkv_world()
  2907. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2908. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2909. def set_gguf_parameters(self):
  2910. block_count = self.hparams["num_hidden_layers"]
  2911. try:
  2912. head_size = self.hparams["head_size"]
  2913. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2914. except KeyError:
  2915. head_size = self.hparams["head_dim"]
  2916. layer_norm_eps = self.hparams["norm_eps"]
  2917. hidden_size = self.hparams["hidden_size"]
  2918. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2919. # ICLR: In-Context-Learning-Rate
  2920. try:
  2921. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2922. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2923. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2924. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2925. except KeyError:
  2926. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2927. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2928. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2929. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2930. # RWKV isn't context limited
  2931. self.gguf_writer.add_context_length(1048576)
  2932. self.gguf_writer.add_embedding_length(hidden_size)
  2933. self.gguf_writer.add_block_count(block_count)
  2934. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2935. self.gguf_writer.add_wkv_head_size(head_size)
  2936. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  2937. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  2938. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  2939. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  2940. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2941. self.gguf_writer.add_file_type(self.ftype)
  2942. # required by llama.cpp, unused
  2943. self.gguf_writer.add_head_count(0)
  2944. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2945. lora_needs_transpose: bool = True
  2946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2947. # unify tensor names here to make life easier
  2948. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  2949. name = name.replace("self_attn", "attention").replace("attn", "attention")
  2950. name = name.replace("time_mixer.", "")
  2951. # lora layer names in fla-hub's impl
  2952. if "_lora.lora" in name:
  2953. self.lora_needs_transpose = False
  2954. name = name.replace("_lora.lora.0.weight", "1.weight")
  2955. name = name.replace("_lora.lora.2.weight", "2.weight")
  2956. name = name.replace("_lora.lora.2.bias", "0.weight")
  2957. name = name.replace("feed_forward_norm", "ln2")
  2958. name = name.replace("g_norm", "ln_x")
  2959. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  2960. # some models have dummy v0/v1/v2 on first layer while others don't
  2961. # ignore them all since they are not used
  2962. return
  2963. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  2964. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  2965. if bid is not None and "attention.x_" in name:
  2966. if "attention.x_x" in name:
  2967. # already concatenated
  2968. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2969. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  2970. yield (new_name, data)
  2971. else:
  2972. try:
  2973. self.lerp_weights[bid][name] = data_torch
  2974. except KeyError:
  2975. self.lerp_weights[bid] = {name: data_torch}
  2976. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  2977. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2978. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  2979. yield (new_name, data)
  2980. return
  2981. else:
  2982. data_torch = data_torch.squeeze()
  2983. new_name = self.map_tensor_name(name)
  2984. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2985. new_name += ".weight"
  2986. if self.lora_needs_transpose and any(
  2987. new_name.endswith(t) for t in [
  2988. "time_mix_w1.weight", "time_mix_w2.weight",
  2989. "time_mix_a1.weight", "time_mix_a2.weight",
  2990. "time_mix_v1.weight", "time_mix_v2.weight",
  2991. "time_mix_g1.weight", "time_mix_g2.weight",
  2992. ]
  2993. ):
  2994. data_torch = data_torch.transpose(0, 1)
  2995. if 'r_k' in new_name:
  2996. data_torch = data_torch.flatten()
  2997. if bid == 0 and "time_mix_a" in new_name:
  2998. # dummy v0/v1/v2 on first layer
  2999. # easist way to make llama happy
  3000. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3001. yield (new_name, data_torch)
  3002. @Model.register("RwkvHybridForCausalLM")
  3003. class ARwkv7Model(Rwkv7Model):
  3004. model_arch = gguf.MODEL_ARCH.ARWKV7
  3005. def set_vocab(self):
  3006. try:
  3007. self._set_vocab_sentencepiece()
  3008. except FileNotFoundError:
  3009. self._set_vocab_gpt2()
  3010. def set_gguf_parameters(self):
  3011. block_count = self.hparams["num_hidden_layers"]
  3012. hidden_size = self.hparams["hidden_size"]
  3013. head_size = self.hparams["head_size"]
  3014. rms_norm_eps = self.hparams["rms_norm_eps"]
  3015. intermediate_size = self.hparams["intermediate_size"]
  3016. wkv_has_gate = self.hparams["wkv_has_gate"]
  3017. assert self.hparams["wkv_version"] == 7
  3018. # ICLR: In-Context-Learning-Rate
  3019. lora_rank_decay = 64
  3020. lora_rank_iclr = 64
  3021. lora_rank_value_residual_mix = 32
  3022. lora_rank_gate = 128 if wkv_has_gate else 0
  3023. # RWKV isn't context limited
  3024. self.gguf_writer.add_context_length(1048576)
  3025. self.gguf_writer.add_embedding_length(hidden_size)
  3026. self.gguf_writer.add_block_count(block_count)
  3027. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3028. self.gguf_writer.add_wkv_head_size(head_size)
  3029. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3030. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3031. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3032. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3033. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3034. self.gguf_writer.add_file_type(self.ftype)
  3035. self.gguf_writer.add_token_shift_count(1)
  3036. # required by llama.cpp, unused
  3037. self.gguf_writer.add_head_count(0)
  3038. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3039. class MambaModel(Model):
  3040. model_arch = gguf.MODEL_ARCH.MAMBA
  3041. def set_vocab(self):
  3042. vocab_size = self.hparams["vocab_size"]
  3043. # Round vocab size to next multiple of 8
  3044. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3045. # pad using ceiling division
  3046. # ref: https://stackoverflow.com/a/17511341/22827863
  3047. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3048. self.hparams["vocab_size"] = vocab_size
  3049. if (self.dir_model / "tokenizer.json").is_file():
  3050. self._set_vocab_gpt2()
  3051. elif (self.dir_model / "tokenizer.model").is_file():
  3052. self._set_vocab_sentencepiece()
  3053. else:
  3054. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3055. self._set_vocab_builtin("gpt-neox", vocab_size)
  3056. def set_gguf_parameters(self):
  3057. d_model = self.find_hparam(["hidden_size", "d_model"])
  3058. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3059. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3060. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3061. # ceiling division
  3062. # ref: https://stackoverflow.com/a/17511341/22827863
  3063. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3064. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3065. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3066. use_dt_b_c_norm = False
  3067. # For falconmamba we do apply RMS norm on B / DT and C layers
  3068. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3069. use_dt_b_c_norm = True
  3070. # Fail early for models which don't have a block expansion factor of 2
  3071. assert d_inner == 2 * d_model
  3072. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3073. self.gguf_writer.add_embedding_length(d_model)
  3074. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3075. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3076. self.gguf_writer.add_block_count(self.block_count)
  3077. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3078. self.gguf_writer.add_ssm_inner_size(d_inner)
  3079. self.gguf_writer.add_ssm_state_size(d_state)
  3080. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3081. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3082. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3083. self.gguf_writer.add_file_type(self.ftype)
  3084. _tok_embd = None
  3085. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3086. del bid # unused
  3087. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3088. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3089. new_name = self.map_tensor_name(name)
  3090. if name.endswith(".A_log"):
  3091. logger.debug("A_log --> A ==> " + new_name)
  3092. data_torch = -torch.exp(data_torch)
  3093. # assuming token_embd.weight is seen before output.weight
  3094. if self._tok_embd is not None and new_name == output_name:
  3095. if torch.equal(self._tok_embd, data_torch):
  3096. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3097. return []
  3098. elif new_name == tok_embd_name:
  3099. self._tok_embd = data_torch
  3100. return [(new_name, data_torch)]
  3101. @Model.register("CohereForCausalLM")
  3102. class CommandR2Model(Model):
  3103. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3104. def __init__(self, *args, **kwargs):
  3105. super().__init__(*args, **kwargs)
  3106. # max_position_embeddings = 8192 in config.json but model was actually
  3107. # trained on 128k context length
  3108. # aya-23 models don't have model_max_length specified
  3109. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3110. def set_gguf_parameters(self):
  3111. super().set_gguf_parameters()
  3112. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3113. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3114. @Model.register("Cohere2ForCausalLM")
  3115. class Cohere2Model(Model):
  3116. model_arch = gguf.MODEL_ARCH.COHERE2
  3117. def set_gguf_parameters(self):
  3118. super().set_gguf_parameters()
  3119. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3120. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3121. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3122. rotary_pct = self.hparams["rotary_pct"]
  3123. hidden_size = self.hparams["hidden_size"]
  3124. num_attention_heads = self.hparams["num_attention_heads"]
  3125. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3126. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3127. @Model.register("OlmoForCausalLM")
  3128. @Model.register("OLMoForCausalLM")
  3129. class OlmoModel(Model):
  3130. model_arch = gguf.MODEL_ARCH.OLMO
  3131. def set_gguf_parameters(self):
  3132. super().set_gguf_parameters()
  3133. self.gguf_writer.add_layer_norm_eps(1e-5)
  3134. clip_qkv = self.hparams.get("clip_qkv")
  3135. if clip_qkv is not None:
  3136. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3137. # Same as super class, but permuting q_proj, k_proj
  3138. # Copied from: LlamaModel
  3139. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3140. del bid # unused
  3141. n_head = self.hparams["num_attention_heads"]
  3142. n_kv_head = self.hparams.get("num_key_value_heads")
  3143. if name.endswith("q_proj.weight"):
  3144. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3145. if name.endswith("k_proj.weight"):
  3146. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3147. return [(self.map_tensor_name(name), data_torch)]
  3148. @Model.register("Olmo2ForCausalLM")
  3149. class Olmo2Model(Model):
  3150. model_arch = gguf.MODEL_ARCH.OLMO2
  3151. @Model.register("OlmoeForCausalLM")
  3152. class OlmoeModel(Model):
  3153. model_arch = gguf.MODEL_ARCH.OLMOE
  3154. def set_gguf_parameters(self):
  3155. super().set_gguf_parameters()
  3156. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3157. if (n_experts := self.hparams.get("num_experts")) is not None:
  3158. self.gguf_writer.add_expert_count(n_experts)
  3159. _experts: list[dict[str, Tensor]] | None = None
  3160. # Copied from: Qwen2MoeModel
  3161. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3162. # process the experts separately
  3163. if name.find("experts") != -1:
  3164. n_experts = self.hparams["num_experts"]
  3165. assert bid is not None
  3166. if self._experts is None:
  3167. self._experts = [{} for _ in range(self.block_count)]
  3168. self._experts[bid][name] = data_torch
  3169. if len(self._experts[bid]) >= n_experts * 3:
  3170. tensors: list[tuple[str, Tensor]] = []
  3171. # merge the experts into a single 3d tensor
  3172. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3173. datas: list[Tensor] = []
  3174. for xid in range(n_experts):
  3175. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3176. datas.append(self._experts[bid][ename])
  3177. del self._experts[bid][ename]
  3178. data_torch = torch.stack(datas, dim=0)
  3179. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3180. new_name = self.map_tensor_name(merged_name)
  3181. tensors.append((new_name, data_torch))
  3182. return tensors
  3183. else:
  3184. return []
  3185. return [(self.map_tensor_name(name), data_torch)]
  3186. # Copied from: Qwen2MoeModel
  3187. def prepare_tensors(self):
  3188. super().prepare_tensors()
  3189. if self._experts is not None:
  3190. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3191. experts = [k for d in self._experts for k in d.keys()]
  3192. if len(experts) > 0:
  3193. raise ValueError(f"Unprocessed experts: {experts}")
  3194. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3195. class JinaBertV2Model(BertModel):
  3196. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3197. def __init__(self, *args, **kwargs):
  3198. super().__init__(*args, **kwargs)
  3199. self.intermediate_size = self.hparams["intermediate_size"]
  3200. def get_tensors(self):
  3201. for name, data in super().get_tensors():
  3202. if 'gated_layer' in name:
  3203. d1 = data[:self.intermediate_size, :]
  3204. name1 = name.replace('gated_layers', 'gated_layers_w')
  3205. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3206. d2 = data[self.intermediate_size:, :]
  3207. name2 = name.replace('gated_layers', 'gated_layers_v')
  3208. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3209. yield name1, d1
  3210. yield name2, d2
  3211. continue
  3212. yield name, data
  3213. def set_vocab(self):
  3214. tokenizer_class = 'BertTokenizer'
  3215. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3216. tokenizer_class = json.load(f)['tokenizer_class']
  3217. if tokenizer_class == 'BertTokenizer':
  3218. super().set_vocab()
  3219. elif tokenizer_class == 'RobertaTokenizer':
  3220. self._set_vocab_gpt2()
  3221. self.gguf_writer.add_token_type_count(2)
  3222. else:
  3223. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3224. self.gguf_writer.add_add_bos_token(True)
  3225. self.gguf_writer.add_add_eos_token(True)
  3226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3227. # if name starts with "bert.", remove the prefix
  3228. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3229. if name.startswith("bert."):
  3230. name = name[5:]
  3231. return super().modify_tensors(data_torch, name, bid)
  3232. @Model.register("OpenELMForCausalLM")
  3233. class OpenELMModel(Model):
  3234. model_arch = gguf.MODEL_ARCH.OPENELM
  3235. @staticmethod
  3236. def _make_divisible(v: float | int, divisor: int) -> int:
  3237. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3238. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3239. # Make sure that round down does not go down by more than 10%.
  3240. if new_v < 0.9 * v:
  3241. new_v += divisor
  3242. return new_v
  3243. def __init__(self, *args, **kwargs):
  3244. super().__init__(*args, **kwargs)
  3245. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3246. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3247. self._n_embd: int = self.hparams["model_dim"]
  3248. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3249. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3250. self._ffn_dims: list[int] = [
  3251. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3252. for multiplier in ffn_multipliers
  3253. ]
  3254. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3255. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3256. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3257. def set_vocab(self):
  3258. try:
  3259. self._set_vocab_sentencepiece()
  3260. except FileNotFoundError:
  3261. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3262. def set_gguf_parameters(self):
  3263. n_embd = self._n_embd
  3264. head_dim = self.hparams["head_dim"]
  3265. rot_pct = 1.0
  3266. assert self.block_count == len(self._num_kv_heads)
  3267. assert self.block_count == len(self._num_query_heads)
  3268. assert self.block_count == len(self._ffn_dims)
  3269. self.gguf_writer.add_block_count(self.block_count)
  3270. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3271. self.gguf_writer.add_embedding_length(n_embd)
  3272. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3273. self.gguf_writer.add_head_count(self._num_query_heads)
  3274. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3275. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3276. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3277. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3278. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3279. self.gguf_writer.add_key_length(head_dim)
  3280. self.gguf_writer.add_value_length(head_dim)
  3281. self.gguf_writer.add_file_type(self.ftype)
  3282. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3283. if "n_layers" in keys:
  3284. return self.hparams["num_transformer_layers"]
  3285. return super().find_hparam(keys, optional)
  3286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3287. # split ff
  3288. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3289. ff_dim = self._ffn_dims[bid]
  3290. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3291. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3292. return
  3293. yield (self.map_tensor_name(name), data_torch)
  3294. @Model.register("ArcticForCausalLM")
  3295. class ArcticModel(Model):
  3296. model_arch = gguf.MODEL_ARCH.ARCTIC
  3297. def set_vocab(self):
  3298. # The reason for using a custom implementation here is that the
  3299. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3300. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3301. from sentencepiece import SentencePieceProcessor
  3302. tokenizer_path = self.dir_model / 'tokenizer.model'
  3303. if not tokenizer_path.is_file():
  3304. logger.error(f'Error: Missing {tokenizer_path}')
  3305. sys.exit(1)
  3306. # Read the whole vocabulary from the tokenizer.model file
  3307. tokenizer = SentencePieceProcessor()
  3308. tokenizer.LoadFromFile(str(tokenizer_path))
  3309. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3310. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3311. scores: list[float] = [-10000.0] * vocab_size
  3312. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3313. for token_id in range(tokenizer.vocab_size()):
  3314. piece = tokenizer.IdToPiece(token_id)
  3315. text = piece.encode("utf-8")
  3316. score = tokenizer.GetScore(token_id)
  3317. toktype = SentencePieceTokenTypes.NORMAL
  3318. if tokenizer.IsUnknown(token_id):
  3319. toktype = SentencePieceTokenTypes.UNKNOWN
  3320. elif tokenizer.IsControl(token_id):
  3321. toktype = SentencePieceTokenTypes.CONTROL
  3322. elif tokenizer.IsUnused(token_id):
  3323. toktype = SentencePieceTokenTypes.UNUSED
  3324. elif tokenizer.IsByte(token_id):
  3325. toktype = SentencePieceTokenTypes.BYTE
  3326. tokens[token_id] = text
  3327. scores[token_id] = score
  3328. toktypes[token_id] = toktype
  3329. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3330. # of information about added/redefined tokens and modify them accordingly.
  3331. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3332. if tokenizer_config_file.is_file():
  3333. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3334. tokenizer_config_json = json.load(f)
  3335. if "added_tokens_decoder" in tokenizer_config_json:
  3336. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3337. for token_id, token_json in added_tokens_decoder.items():
  3338. token_id = int(token_id)
  3339. if token_id >= vocab_size:
  3340. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3341. continue
  3342. token_content = token_json["content"]
  3343. token_type = SentencePieceTokenTypes.USER_DEFINED
  3344. token_score = -10000.0
  3345. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3346. # Set the score to 0.0 as in the original tokenizer.model
  3347. if ("special" in token_json) and token_json["special"]:
  3348. if token_content == tokenizer_config_json["unk_token"]:
  3349. token_type = SentencePieceTokenTypes.UNKNOWN
  3350. else:
  3351. token_type = SentencePieceTokenTypes.CONTROL
  3352. token_score = 0.0
  3353. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3354. tokens[token_id] = token_content.encode("utf-8")
  3355. toktypes[token_id] = token_type
  3356. scores[token_id] = token_score
  3357. self.gguf_writer.add_tokenizer_model("llama")
  3358. self.gguf_writer.add_tokenizer_pre("default")
  3359. self.gguf_writer.add_token_list(tokens)
  3360. self.gguf_writer.add_token_scores(scores)
  3361. self.gguf_writer.add_token_types(toktypes)
  3362. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3363. special_vocab.add_to_gguf(self.gguf_writer)
  3364. def set_gguf_parameters(self):
  3365. super().set_gguf_parameters()
  3366. hparams = self.hparams
  3367. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3368. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3369. _experts: list[dict[str, Tensor]] | None = None
  3370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3371. n_head = self.hparams["num_attention_heads"]
  3372. n_kv_head = self.hparams.get("num_key_value_heads")
  3373. if name.endswith("q_proj.weight"):
  3374. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3375. if name.endswith("k_proj.weight"):
  3376. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3377. # process the experts separately
  3378. if name.find("block_sparse_moe.experts") != -1:
  3379. n_experts = self.hparams["num_local_experts"]
  3380. assert bid is not None
  3381. if self._experts is None:
  3382. self._experts = [{} for _ in range(self.block_count)]
  3383. self._experts[bid][name] = data_torch
  3384. if len(self._experts[bid]) >= n_experts * 3:
  3385. tensors: list[tuple[str, Tensor]] = []
  3386. # merge the experts into a single 3d tensor
  3387. for wid in ["w1", "w2", "w3"]:
  3388. datas: list[Tensor] = []
  3389. for xid in range(n_experts):
  3390. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3391. datas.append(self._experts[bid][ename])
  3392. del self._experts[bid][ename]
  3393. data_torch = torch.stack(datas, dim=0)
  3394. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3395. new_name = self.map_tensor_name(merged_name)
  3396. tensors.append((new_name, data_torch))
  3397. return tensors
  3398. else:
  3399. return []
  3400. return [(self.map_tensor_name(name), data_torch)]
  3401. def prepare_tensors(self):
  3402. super().prepare_tensors()
  3403. if self._experts is not None:
  3404. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3405. experts = [k for d in self._experts for k in d.keys()]
  3406. if len(experts) > 0:
  3407. raise ValueError(f"Unprocessed experts: {experts}")
  3408. @Model.register("DeepseekForCausalLM")
  3409. class DeepseekModel(Model):
  3410. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3411. def set_vocab(self):
  3412. try:
  3413. self._set_vocab_sentencepiece()
  3414. except FileNotFoundError:
  3415. self._set_vocab_gpt2()
  3416. def set_gguf_parameters(self):
  3417. super().set_gguf_parameters()
  3418. hparams = self.hparams
  3419. if "head_dim" in hparams:
  3420. rope_dim = hparams["head_dim"]
  3421. else:
  3422. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3423. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3424. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3425. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3426. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3427. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3428. self.gguf_writer.add_expert_weights_scale(1.0)
  3429. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3430. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3431. _experts: list[dict[str, Tensor]] | None = None
  3432. @staticmethod
  3433. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3434. if n_head_kv is not None and n_head != n_head_kv:
  3435. n_head = n_head_kv
  3436. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3437. .swapaxes(1, 2)
  3438. .reshape(weights.shape))
  3439. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3440. n_head = self.hparams["num_attention_heads"]
  3441. n_kv_head = self.hparams.get("num_key_value_heads")
  3442. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3443. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3444. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3445. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3446. # process the experts separately
  3447. if name.find("mlp.experts") != -1:
  3448. n_experts = self.hparams["n_routed_experts"]
  3449. assert bid is not None
  3450. if self._experts is None:
  3451. self._experts = [{} for _ in range(self.block_count)]
  3452. self._experts[bid][name] = data_torch
  3453. if len(self._experts[bid]) >= n_experts * 3:
  3454. tensors: list[tuple[str, Tensor]] = []
  3455. # merge the experts into a single 3d tensor
  3456. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3457. datas: list[Tensor] = []
  3458. for xid in range(n_experts):
  3459. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3460. datas.append(self._experts[bid][ename])
  3461. del self._experts[bid][ename]
  3462. data_torch = torch.stack(datas, dim=0)
  3463. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3464. new_name = self.map_tensor_name(merged_name)
  3465. tensors.append((new_name, data_torch))
  3466. return tensors
  3467. else:
  3468. return []
  3469. return [(self.map_tensor_name(name), data_torch)]
  3470. def prepare_tensors(self):
  3471. super().prepare_tensors()
  3472. if self._experts is not None:
  3473. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3474. experts = [k for d in self._experts for k in d.keys()]
  3475. if len(experts) > 0:
  3476. raise ValueError(f"Unprocessed experts: {experts}")
  3477. @Model.register("DeepseekV2ForCausalLM")
  3478. @Model.register("DeepseekV3ForCausalLM")
  3479. class DeepseekV2Model(Model):
  3480. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3481. def set_vocab(self):
  3482. self._set_vocab_gpt2()
  3483. def set_gguf_parameters(self):
  3484. super().set_gguf_parameters()
  3485. hparams = self.hparams
  3486. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3487. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3488. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3489. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3490. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3491. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3492. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3493. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3494. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3495. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3496. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3497. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3498. if hparams["scoring_func"] == "sigmoid":
  3499. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3500. elif hparams["scoring_func"] == "softmax":
  3501. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3502. else:
  3503. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3504. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3505. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3506. if self.hparams["rope_scaling"].get("type") == "yarn":
  3507. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3508. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3509. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3510. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3511. _experts: list[dict[str, Tensor]] | None = None
  3512. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3513. # rename e_score_correction_bias tensors
  3514. if name.endswith("e_score_correction_bias"):
  3515. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3516. # skip Multi-Token Prediction (MTP) layers
  3517. block_count = self.hparams["num_hidden_layers"]
  3518. match = re.match(r"model.layers.(\d+)", name)
  3519. if match and int(match.group(1)) >= block_count:
  3520. return []
  3521. # process the experts separately
  3522. if name.find("mlp.experts") != -1:
  3523. n_experts = self.hparams["n_routed_experts"]
  3524. assert bid is not None
  3525. if self._experts is None:
  3526. self._experts = [{} for _ in range(self.block_count)]
  3527. self._experts[bid][name] = data_torch
  3528. if len(self._experts[bid]) >= n_experts * 3:
  3529. tensors: list[tuple[str, Tensor]] = []
  3530. # merge the experts into a single 3d tensor
  3531. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3532. datas: list[Tensor] = []
  3533. for xid in range(n_experts):
  3534. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3535. datas.append(self._experts[bid][ename])
  3536. del self._experts[bid][ename]
  3537. data_torch = torch.stack(datas, dim=0)
  3538. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3539. new_name = self.map_tensor_name(merged_name)
  3540. tensors.append((new_name, data_torch))
  3541. return tensors
  3542. else:
  3543. return []
  3544. return [(self.map_tensor_name(name), data_torch)]
  3545. def prepare_tensors(self):
  3546. super().prepare_tensors()
  3547. if self._experts is not None:
  3548. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3549. experts = [k for d in self._experts for k in d.keys()]
  3550. if len(experts) > 0:
  3551. raise ValueError(f"Unprocessed experts: {experts}")
  3552. @Model.register("T5WithLMHeadModel")
  3553. @Model.register("T5ForConditionalGeneration")
  3554. @Model.register("MT5ForConditionalGeneration")
  3555. @Model.register("UMT5ForConditionalGeneration")
  3556. class T5Model(Model):
  3557. model_arch = gguf.MODEL_ARCH.T5
  3558. def __init__(self, *args, **kwargs):
  3559. super().__init__(*args, **kwargs)
  3560. self.shared_token_embeddings_found = False
  3561. def set_vocab(self):
  3562. # to avoid TypeError: Descriptors cannot be created directly
  3563. # exception when importing sentencepiece_model_pb2
  3564. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3565. from sentencepiece import SentencePieceProcessor
  3566. from sentencepiece import sentencepiece_model_pb2 as model
  3567. tokenizer_path = self.dir_model / 'tokenizer.model'
  3568. # many older models use spiece.model tokenizer model filename
  3569. if not tokenizer_path.is_file():
  3570. tokenizer_path = self.dir_model / 'spiece.model'
  3571. if not tokenizer_path.is_file():
  3572. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3573. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3574. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3575. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3576. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3577. # assure the tokenizer model file name is correct
  3578. assert tokenizer_path.name == 'tokenizer.model'
  3579. return self._set_vocab_sentencepiece()
  3580. else:
  3581. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3582. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3583. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3584. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3585. tokenizer = SentencePieceProcessor()
  3586. tokenizer.LoadFromFile(str(tokenizer_path))
  3587. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3588. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3589. scores: list[float] = [-10000.0] * vocab_size
  3590. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3591. for token_id in range(tokenizer.vocab_size()):
  3592. piece = tokenizer.IdToPiece(token_id)
  3593. text = piece.encode("utf-8")
  3594. score = tokenizer.GetScore(token_id)
  3595. toktype = SentencePieceTokenTypes.NORMAL
  3596. if tokenizer.IsUnknown(token_id):
  3597. toktype = SentencePieceTokenTypes.UNKNOWN
  3598. elif tokenizer.IsControl(token_id):
  3599. toktype = SentencePieceTokenTypes.CONTROL
  3600. elif tokenizer.IsUnused(token_id):
  3601. toktype = SentencePieceTokenTypes.UNUSED
  3602. elif tokenizer.IsByte(token_id):
  3603. toktype = SentencePieceTokenTypes.BYTE
  3604. tokens[token_id] = text
  3605. scores[token_id] = score
  3606. toktypes[token_id] = toktype
  3607. added_tokens_file = self.dir_model / 'added_tokens.json'
  3608. if added_tokens_file.is_file():
  3609. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3610. added_tokens_json = json.load(f)
  3611. for key in added_tokens_json:
  3612. token_id = added_tokens_json[key]
  3613. if token_id >= vocab_size:
  3614. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3615. continue
  3616. tokens[token_id] = key.encode("utf-8")
  3617. scores[token_id] = -1000.0
  3618. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3619. if vocab_size > len(tokens):
  3620. pad_count = vocab_size - len(tokens)
  3621. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3622. for i in range(1, pad_count + 1):
  3623. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3624. scores.append(-1000.0)
  3625. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3626. self.gguf_writer.add_tokenizer_model("t5")
  3627. self.gguf_writer.add_tokenizer_pre("default")
  3628. self.gguf_writer.add_token_list(tokens)
  3629. self.gguf_writer.add_token_scores(scores)
  3630. self.gguf_writer.add_token_types(toktypes)
  3631. self.gguf_writer.add_add_space_prefix(add_prefix)
  3632. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3633. if precompiled_charsmap:
  3634. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3635. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3636. special_vocab.add_to_gguf(self.gguf_writer)
  3637. self.gguf_writer.add_add_bos_token(False)
  3638. self.gguf_writer.add_add_eos_token(True)
  3639. def set_gguf_parameters(self):
  3640. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3641. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3642. n_ctx = 512
  3643. self.gguf_writer.add_context_length(n_ctx)
  3644. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3645. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3646. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3647. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3648. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3649. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3650. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3651. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3652. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3653. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3654. self.gguf_writer.add_file_type(self.ftype)
  3655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3656. del bid # unused
  3657. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3658. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3659. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3660. # and decoder and ignore the remaining ones.
  3661. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3662. if not self.shared_token_embeddings_found:
  3663. name = "shared.weight"
  3664. self.shared_token_embeddings_found = True
  3665. else:
  3666. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3667. return []
  3668. return [(self.map_tensor_name(name), data_torch)]
  3669. @Model.register("T5EncoderModel")
  3670. class T5EncoderModel(Model):
  3671. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3672. def __init__(self, *args, **kwargs):
  3673. super().__init__(*args, **kwargs)
  3674. self.shared_token_embeddings_found = False
  3675. def set_vocab(self):
  3676. # to avoid TypeError: Descriptors cannot be created directly
  3677. # exception when importing sentencepiece_model_pb2
  3678. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3679. from sentencepiece import SentencePieceProcessor
  3680. from sentencepiece import sentencepiece_model_pb2 as model
  3681. tokenizer_path = self.dir_model / 'tokenizer.model'
  3682. # many older models use spiece.model tokenizer model filename
  3683. if not tokenizer_path.is_file():
  3684. tokenizer_path = self.dir_model / 'spiece.model'
  3685. if not tokenizer_path.is_file():
  3686. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3687. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3688. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3689. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3690. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3691. # assure the tokenizer model file name is correct
  3692. assert tokenizer_path.name == 'tokenizer.model'
  3693. return self._set_vocab_sentencepiece()
  3694. else:
  3695. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3696. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3697. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3698. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3699. tokenizer = SentencePieceProcessor()
  3700. tokenizer.LoadFromFile(str(tokenizer_path))
  3701. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3702. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3703. scores: list[float] = [-10000.0] * vocab_size
  3704. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3705. for token_id in range(tokenizer.vocab_size()):
  3706. piece = tokenizer.IdToPiece(token_id)
  3707. text = piece.encode("utf-8")
  3708. score = tokenizer.GetScore(token_id)
  3709. toktype = SentencePieceTokenTypes.NORMAL
  3710. if tokenizer.IsUnknown(token_id):
  3711. toktype = SentencePieceTokenTypes.UNKNOWN
  3712. elif tokenizer.IsControl(token_id):
  3713. toktype = SentencePieceTokenTypes.CONTROL
  3714. elif tokenizer.IsUnused(token_id):
  3715. toktype = SentencePieceTokenTypes.UNUSED
  3716. elif tokenizer.IsByte(token_id):
  3717. toktype = SentencePieceTokenTypes.BYTE
  3718. tokens[token_id] = text
  3719. scores[token_id] = score
  3720. toktypes[token_id] = toktype
  3721. added_tokens_file = self.dir_model / 'added_tokens.json'
  3722. if added_tokens_file.is_file():
  3723. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3724. added_tokens_json = json.load(f)
  3725. for key in added_tokens_json:
  3726. token_id = added_tokens_json[key]
  3727. if token_id >= vocab_size:
  3728. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3729. continue
  3730. tokens[token_id] = key.encode("utf-8")
  3731. scores[token_id] = -1000.0
  3732. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3733. if vocab_size > len(tokens):
  3734. pad_count = vocab_size - len(tokens)
  3735. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3736. for i in range(1, pad_count + 1):
  3737. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3738. scores.append(-1000.0)
  3739. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3740. self.gguf_writer.add_tokenizer_model("t5")
  3741. self.gguf_writer.add_tokenizer_pre("default")
  3742. self.gguf_writer.add_token_list(tokens)
  3743. self.gguf_writer.add_token_scores(scores)
  3744. self.gguf_writer.add_token_types(toktypes)
  3745. self.gguf_writer.add_add_space_prefix(add_prefix)
  3746. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3747. if precompiled_charsmap:
  3748. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3749. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3750. special_vocab.add_to_gguf(self.gguf_writer)
  3751. self.gguf_writer.add_add_bos_token(False)
  3752. self.gguf_writer.add_add_eos_token(True)
  3753. def set_gguf_parameters(self):
  3754. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3755. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3756. n_ctx = 512
  3757. self.gguf_writer.add_context_length(n_ctx)
  3758. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3759. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3760. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3761. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3762. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3763. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3764. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3765. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3766. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3767. self.gguf_writer.add_file_type(self.ftype)
  3768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3769. del bid # unused
  3770. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3771. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3772. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3773. # and decoder and ignore the remaining ones.
  3774. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3775. if not self.shared_token_embeddings_found:
  3776. name = "shared.weight"
  3777. self.shared_token_embeddings_found = True
  3778. else:
  3779. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3780. return []
  3781. return [(self.map_tensor_name(name), data_torch)]
  3782. @Model.register("JAISLMHeadModel")
  3783. class JaisModel(Model):
  3784. model_arch = gguf.MODEL_ARCH.JAIS
  3785. def __init__(self, *args, **kwargs):
  3786. super().__init__(*args, **kwargs)
  3787. # SwigLU activation
  3788. assert self.hparams["activation_function"] == "swiglu"
  3789. # ALiBi position embedding
  3790. assert self.hparams["position_embedding_type"] == "alibi"
  3791. # Embeddings scale
  3792. self.embeddings_scale = 1.0
  3793. if 'mup_embeddings_scale' in self.hparams:
  3794. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3795. elif 'embeddings_scale' in self.hparams:
  3796. self.embeddings_scale = self.hparams['embeddings_scale']
  3797. else:
  3798. assert False
  3799. self.width_scale = 1.0
  3800. if 'mup_output_alpha' in self.hparams:
  3801. assert 'mup_width_scale' in self.hparams
  3802. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3803. elif 'width_scale' in self.hparams:
  3804. self.width_scale = self.hparams['width_scale']
  3805. else:
  3806. assert False
  3807. self.max_alibi_bias = 8.0
  3808. def set_vocab(self):
  3809. self._set_vocab_gpt2()
  3810. def set_gguf_parameters(self):
  3811. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3812. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3813. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3814. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3815. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3816. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3817. self.gguf_writer.add_file_type(self.ftype)
  3818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3819. del bid # unused
  3820. tensors: list[tuple[str, Tensor]] = []
  3821. # we don't need these
  3822. if name.endswith((".attn.bias")):
  3823. return tensors
  3824. if name.endswith(("relative_pe.slopes")):
  3825. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3826. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3827. # but Jais's PyTorch model simply precalculates the slope values and places them
  3828. # in relative_pes.slopes
  3829. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3830. first_val = float(data_torch[0].item())
  3831. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3832. return tensors
  3833. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3834. data_torch = data_torch.transpose(1, 0)
  3835. new_name = self.map_tensor_name(name)
  3836. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3837. tensors.append((new_name, data_torch * self.embeddings_scale))
  3838. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3839. tensors.append((new_name, data_torch * self.width_scale))
  3840. else:
  3841. tensors.append((new_name, data_torch))
  3842. return tensors
  3843. def prepare_tensors(self):
  3844. super().prepare_tensors()
  3845. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3846. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3847. class ChatGLMModel(Model):
  3848. model_arch = gguf.MODEL_ARCH.CHATGLM
  3849. def set_vocab_chatglm3(self):
  3850. dir_model = self.dir_model
  3851. hparams = self.hparams
  3852. tokens: list[bytes] = []
  3853. toktypes: list[int] = []
  3854. scores: list[float] = []
  3855. from transformers import AutoTokenizer
  3856. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3857. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3858. assert max(tokenizer.get_vocab().values()) < vocab_size
  3859. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3860. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3861. for token_id in range(vocab_size):
  3862. piece = tokenizer._convert_id_to_token(token_id)
  3863. if token_id == 0:
  3864. piece = "<unk>"
  3865. elif token_id == 1:
  3866. piece = "<bos>"
  3867. elif token_id == 2:
  3868. piece = "<eos>"
  3869. text = piece.encode("utf-8")
  3870. score = 0.0
  3871. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3872. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3873. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3874. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3875. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3876. if piece in special_tokens:
  3877. toktype = SentencePieceTokenTypes.CONTROL
  3878. elif len(piece) == 0:
  3879. text = f"[PAD{token_id}]".encode("utf-8")
  3880. toktype = SentencePieceTokenTypes.UNUSED
  3881. else:
  3882. toktype = SentencePieceTokenTypes.USER_DEFINED
  3883. tokens.append(text)
  3884. scores.append(score)
  3885. toktypes.append(toktype)
  3886. continue
  3887. toktype = SentencePieceTokenTypes.NORMAL
  3888. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3889. toktype = SentencePieceTokenTypes.UNKNOWN
  3890. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3891. toktype = SentencePieceTokenTypes.CONTROL
  3892. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3893. toktype = SentencePieceTokenTypes.UNUSED
  3894. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3895. toktype = SentencePieceTokenTypes.BYTE
  3896. tokens.append(text)
  3897. scores.append(score)
  3898. toktypes.append(toktype)
  3899. self.gguf_writer.add_tokenizer_model("llama")
  3900. # glm3 needs prefix and suffix formatted as:
  3901. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3902. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3903. self.gguf_writer.add_token_list(tokens)
  3904. self.gguf_writer.add_token_scores(scores)
  3905. self.gguf_writer.add_token_types(toktypes)
  3906. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3907. special_vocab.add_to_gguf(self.gguf_writer)
  3908. @staticmethod
  3909. def token_bytes_to_string(b):
  3910. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3911. byte_encoder = bytes_to_unicode()
  3912. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3913. @staticmethod
  3914. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3915. parts = [bytes([b]) for b in token]
  3916. while True:
  3917. min_idx = None
  3918. min_rank = None
  3919. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3920. rank = mergeable_ranks.get(pair[0] + pair[1])
  3921. if rank is not None and (min_rank is None or rank < min_rank):
  3922. min_idx = i
  3923. min_rank = rank
  3924. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3925. break
  3926. assert min_idx is not None
  3927. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3928. return parts
  3929. def set_vocab(self):
  3930. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3931. self.set_vocab_chatglm3()
  3932. return
  3933. dir_model = self.dir_model
  3934. hparams = self.hparams
  3935. tokens: list[str] = []
  3936. toktypes: list[int] = []
  3937. from transformers import AutoTokenizer
  3938. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3939. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3940. assert max(tokenizer.get_vocab().values()) < vocab_size
  3941. tokens, toktypes, tokpre = self.get_vocab_base()
  3942. self.gguf_writer.add_tokenizer_model("gpt2")
  3943. self.gguf_writer.add_tokenizer_pre(tokpre)
  3944. self.gguf_writer.add_token_list(tokens)
  3945. self.gguf_writer.add_token_types(toktypes)
  3946. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3947. # only add special tokens when they were not already loaded from config.json
  3948. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3949. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3950. # this one is usually not in config.json anyway
  3951. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3952. special_vocab.add_to_gguf(self.gguf_writer)
  3953. def set_gguf_parameters(self):
  3954. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3955. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3956. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3957. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3958. self.gguf_writer.add_embedding_length(n_embed)
  3959. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3960. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3961. self.gguf_writer.add_head_count(n_head)
  3962. self.gguf_writer.add_head_count_kv(n_head_kv)
  3963. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3964. self.gguf_writer.add_file_type(self.ftype)
  3965. if "attention_dim" in self.hparams:
  3966. rope_dim = self.hparams["attention_dim"]
  3967. else:
  3968. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3969. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3970. self.gguf_writer.add_add_bos_token(False)
  3971. rope_freq = 10000
  3972. if "rope_ratio" in self.hparams:
  3973. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3974. self.gguf_writer.add_rope_freq_base(rope_freq)
  3975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3976. del bid # unused
  3977. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  3978. return []
  3979. name = name.removeprefix("transformer.")
  3980. return [(self.map_tensor_name(name), data_torch)]
  3981. @Model.register("NemotronForCausalLM")
  3982. class NemotronModel(Model):
  3983. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3984. def set_vocab(self):
  3985. self._set_vocab_sentencepiece()
  3986. self.gguf_writer.add_pad_token_id(0)
  3987. self.gguf_writer.add_unk_token_id(1)
  3988. def set_gguf_parameters(self):
  3989. super().set_gguf_parameters()
  3990. hparams = self.hparams
  3991. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3992. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3993. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3994. # * Partial RoPE
  3995. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3996. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3997. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3998. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3999. # * RopeScaling for Nemotron
  4000. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4001. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4002. else:
  4003. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4004. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4006. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4007. # model.layers.{l}.input_layernorm.weight
  4008. # model.layers.{l}.post_attention_layernorm.weight
  4009. # model.norm.weight
  4010. if name.endswith("norm.weight"):
  4011. data_torch = data_torch + 1
  4012. return [(self.map_tensor_name(name), data_torch)]
  4013. @Model.register("ExaoneForCausalLM")
  4014. class ExaoneModel(Model):
  4015. model_arch = gguf.MODEL_ARCH.EXAONE
  4016. def set_gguf_parameters(self):
  4017. hparams = self.hparams
  4018. assert (hparams["activation_function"] == "silu")
  4019. max_position_embeddings = hparams["max_position_embeddings"]
  4020. embed_dim = hparams["hidden_size"]
  4021. num_heads = hparams["num_attention_heads"]
  4022. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4023. layer_norm_eps = hparams["layer_norm_epsilon"]
  4024. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4025. num_layers = hparams["num_layers"]
  4026. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4027. # attention_dropout_rate = hparams["attention_dropout"]
  4028. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4029. # embed_dropout_rate = hparams["embed_dropout"]
  4030. self.gguf_writer.add_embedding_length(embed_dim)
  4031. self.gguf_writer.add_head_count(num_heads)
  4032. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4033. self.gguf_writer.add_context_length(max_position_embeddings)
  4034. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4035. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4036. self.gguf_writer.add_block_count(num_layers)
  4037. self.gguf_writer.add_file_type(self.ftype)
  4038. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4039. self.gguf_writer.add_rope_freq_base(rope_theta)
  4040. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4041. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4042. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4043. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4044. if hparams["rope_scaling"].get("type") == "linear":
  4045. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4046. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4047. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4048. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4049. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4050. base = self.hparams.get("rope_theta", 10000.0)
  4051. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4052. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4053. factor = rope_scaling.get("factor", 8.0)
  4054. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4055. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4056. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4057. low_freq_wavelen = old_context_len / low_freq_factor
  4058. high_freq_wavelen = old_context_len / high_freq_factor
  4059. assert low_freq_wavelen != high_freq_wavelen
  4060. rope_factors = []
  4061. for freq in freqs:
  4062. wavelen = 2 * math.pi / freq
  4063. if wavelen < high_freq_wavelen:
  4064. rope_factors.append(1)
  4065. elif wavelen > low_freq_wavelen:
  4066. rope_factors.append(factor)
  4067. else:
  4068. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4069. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4070. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4071. @Model.register("GraniteForCausalLM")
  4072. class GraniteModel(LlamaModel):
  4073. """Conversion for IBM's GraniteForCausalLM"""
  4074. model_arch = gguf.MODEL_ARCH.GRANITE
  4075. def set_gguf_parameters(self):
  4076. """Granite uses standard llama parameters with the following differences:
  4077. - No head_dim support
  4078. - New multiplier params:
  4079. - attention_scale
  4080. - embedding_scale
  4081. - residual_scale
  4082. - logits_scaling
  4083. """
  4084. if head_dim := self.hparams.pop("head_dim", None):
  4085. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4086. super().set_gguf_parameters()
  4087. # NOTE: Convert _multiplier params to _scale params for naming
  4088. # consistency
  4089. if attention_scale := self.hparams.get("attention_multiplier"):
  4090. self.gguf_writer.add_attention_scale(attention_scale)
  4091. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4092. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4093. self.gguf_writer.add_embedding_scale(embedding_scale)
  4094. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4095. if residual_scale := self.hparams.get("residual_multiplier"):
  4096. self.gguf_writer.add_residual_scale(residual_scale)
  4097. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4098. if logits_scale := self.hparams.get("logits_scaling"):
  4099. self.gguf_writer.add_logit_scale(logits_scale)
  4100. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4101. @Model.register("GraniteMoeForCausalLM")
  4102. class GraniteMoeModel(GraniteModel):
  4103. """Conversion for IBM's GraniteMoeForCausalLM"""
  4104. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4106. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4107. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4108. the hidden size that is then split during forward. To keep compatibility
  4109. with existing mixtral support, we pull them apart here.
  4110. """
  4111. if name.endswith("block_sparse_moe.input_linear.weight"):
  4112. ffn_dim = self.hparams["intermediate_size"]
  4113. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4114. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4115. return [
  4116. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4117. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4118. ]
  4119. return super().modify_tensors(data_torch, name, bid)
  4120. @Model.register("ChameleonForConditionalGeneration")
  4121. @Model.register("ChameleonForCausalLM") # obsolete
  4122. class ChameleonModel(Model):
  4123. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4124. def set_gguf_parameters(self):
  4125. super().set_gguf_parameters()
  4126. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4127. def set_vocab(self):
  4128. self._set_vocab_gpt2()
  4129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4130. # ignore image tokenizer for now
  4131. # TODO: remove this once image support is implemented for Chameleon
  4132. if name.startswith("model.vqmodel"):
  4133. return []
  4134. n_head = self.hparams["num_attention_heads"]
  4135. n_kv_head = self.hparams.get("num_key_value_heads")
  4136. hidden_dim = self.hparams.get("hidden_size")
  4137. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4138. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4139. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4140. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4141. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4142. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4143. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4144. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4145. return [(self.map_tensor_name(name), data_torch)]
  4146. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4147. @staticmethod
  4148. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4149. head_dim = hidden_dim // n_heads
  4150. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4151. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4152. return data_torch
  4153. ###### CONVERSION LOGIC ######
  4154. # tree of lazy tensors
  4155. class LazyTorchTensor(gguf.LazyBase):
  4156. _tensor_type = torch.Tensor
  4157. # to keep the type-checker happy
  4158. dtype: torch.dtype
  4159. shape: torch.Size
  4160. # only used when converting a torch.Tensor to a np.ndarray
  4161. _dtype_map: dict[torch.dtype, type] = {
  4162. torch.float16: np.float16,
  4163. torch.float32: np.float32,
  4164. }
  4165. # used for safetensors slices
  4166. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4167. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4168. _dtype_str_map: dict[str, torch.dtype] = {
  4169. "F64": torch.float64,
  4170. "F32": torch.float32,
  4171. "BF16": torch.bfloat16,
  4172. "F16": torch.float16,
  4173. # "U64": torch.uint64,
  4174. "I64": torch.int64,
  4175. # "U32": torch.uint32,
  4176. "I32": torch.int32,
  4177. # "U16": torch.uint16,
  4178. "I16": torch.int16,
  4179. "U8": torch.uint8,
  4180. "I8": torch.int8,
  4181. "BOOL": torch.bool,
  4182. "F8_E4M3": torch.float8_e4m3fn,
  4183. "F8_E5M2": torch.float8_e5m2,
  4184. }
  4185. def numpy(self) -> gguf.LazyNumpyTensor:
  4186. dtype = self._dtype_map[self.dtype]
  4187. return gguf.LazyNumpyTensor(
  4188. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4189. args=(self,),
  4190. func=(lambda s: s.numpy())
  4191. )
  4192. @classmethod
  4193. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4194. return torch.empty(size=shape, dtype=dtype, device="meta")
  4195. @classmethod
  4196. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4197. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4198. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4199. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4200. return cast(torch.Tensor, lazy)
  4201. @classmethod
  4202. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4203. del types # unused
  4204. if kwargs is None:
  4205. kwargs = {}
  4206. if func is torch.Tensor.numpy:
  4207. return args[0].numpy()
  4208. return cls._wrap_fn(func)(*args, **kwargs)
  4209. def parse_args() -> argparse.Namespace:
  4210. parser = argparse.ArgumentParser(
  4211. description="Convert a huggingface model to a GGML compatible file")
  4212. parser.add_argument(
  4213. "--vocab-only", action="store_true",
  4214. help="extract only the vocab",
  4215. )
  4216. parser.add_argument(
  4217. "--outfile", type=Path,
  4218. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4219. )
  4220. parser.add_argument(
  4221. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4222. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4223. )
  4224. parser.add_argument(
  4225. "--bigendian", action="store_true",
  4226. help="model is executed on big endian machine",
  4227. )
  4228. parser.add_argument(
  4229. "model", type=Path,
  4230. help="directory containing model file",
  4231. nargs="?",
  4232. )
  4233. parser.add_argument(
  4234. "--use-temp-file", action="store_true",
  4235. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4236. )
  4237. parser.add_argument(
  4238. "--no-lazy", action="store_true",
  4239. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4240. )
  4241. parser.add_argument(
  4242. "--model-name", type=str, default=None,
  4243. help="name of the model",
  4244. )
  4245. parser.add_argument(
  4246. "--verbose", action="store_true",
  4247. help="increase output verbosity",
  4248. )
  4249. parser.add_argument(
  4250. "--split-max-tensors", type=int, default=0,
  4251. help="max tensors in each split",
  4252. )
  4253. parser.add_argument(
  4254. "--split-max-size", type=str, default="0",
  4255. help="max size per split N(M|G)",
  4256. )
  4257. parser.add_argument(
  4258. "--dry-run", action="store_true",
  4259. help="only print out a split plan and exit, without writing any new files",
  4260. )
  4261. parser.add_argument(
  4262. "--no-tensor-first-split", action="store_true",
  4263. help="do not add tensors to the first split (disabled by default)"
  4264. )
  4265. parser.add_argument(
  4266. "--metadata", type=Path,
  4267. help="Specify the path for an authorship metadata override file"
  4268. )
  4269. parser.add_argument(
  4270. "--print-supported-models", action="store_true",
  4271. help="Print the supported models"
  4272. )
  4273. args = parser.parse_args()
  4274. if not args.print_supported_models and args.model is None:
  4275. parser.error("the following arguments are required: model")
  4276. return args
  4277. def split_str_to_n_bytes(split_str: str) -> int:
  4278. if split_str.endswith("K"):
  4279. n = int(split_str[:-1]) * 1000
  4280. elif split_str.endswith("M"):
  4281. n = int(split_str[:-1]) * 1000 * 1000
  4282. elif split_str.endswith("G"):
  4283. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4284. elif split_str.isnumeric():
  4285. n = int(split_str)
  4286. else:
  4287. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4288. if n < 0:
  4289. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4290. return n
  4291. def main() -> None:
  4292. args = parse_args()
  4293. if args.print_supported_models:
  4294. logger.error("Supported models:")
  4295. Model.print_registered_models()
  4296. sys.exit(0)
  4297. if args.verbose:
  4298. logging.basicConfig(level=logging.DEBUG)
  4299. else:
  4300. logging.basicConfig(level=logging.INFO)
  4301. dir_model = args.model
  4302. if not dir_model.is_dir():
  4303. logger.error(f'Error: {args.model} is not a directory')
  4304. sys.exit(1)
  4305. ftype_map: dict[str, gguf.LlamaFileType] = {
  4306. "f32": gguf.LlamaFileType.ALL_F32,
  4307. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4308. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4309. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4310. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4311. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4312. "auto": gguf.LlamaFileType.GUESSED,
  4313. }
  4314. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4315. if args.use_temp_file and is_split:
  4316. logger.error("Error: Cannot use temp file when splitting")
  4317. sys.exit(1)
  4318. if args.outfile is not None:
  4319. fname_out = args.outfile
  4320. else:
  4321. fname_out = dir_model
  4322. logger.info(f"Loading model: {dir_model.name}")
  4323. hparams = Model.load_hparams(dir_model)
  4324. with torch.inference_mode():
  4325. output_type = ftype_map[args.outtype]
  4326. model_architecture = hparams["architectures"][0]
  4327. try:
  4328. model_class = Model.from_model_architecture(model_architecture)
  4329. except NotImplementedError:
  4330. logger.error(f"Model {model_architecture} is not supported")
  4331. sys.exit(1)
  4332. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  4333. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4334. eager=args.no_lazy,
  4335. metadata_override=args.metadata, model_name=args.model_name,
  4336. split_max_tensors=args.split_max_tensors,
  4337. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4338. small_first_shard=args.no_tensor_first_split)
  4339. if args.vocab_only:
  4340. logger.info("Exporting model vocab...")
  4341. model_instance.write_vocab()
  4342. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4343. else:
  4344. logger.info("Exporting model...")
  4345. model_instance.write()
  4346. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4347. logger.info(f"Model successfully exported to {out_path}")
  4348. if __name__ == '__main__':
  4349. main()