convert-hf-to-gguf.py 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.is_safetensors = self._is_model_safetensors()
  39. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  40. self.part_names = self._get_part_names()
  41. self.hparams = Model.load_hparams(self.dir_model)
  42. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
  43. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  44. @property
  45. @abstractmethod
  46. def model_arch(self) -> gguf.MODEL_ARCH:
  47. pass
  48. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  49. key = next((k for k in keys if k in self.hparams), None)
  50. if key is not None:
  51. return self.hparams[key]
  52. if optional:
  53. return None
  54. raise KeyError(f"could not find any of: {keys}")
  55. def set_vocab(self):
  56. self._set_vocab_gpt2()
  57. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  58. for part_name in self.part_names:
  59. print(f"gguf: loading model part '{part_name}'")
  60. ctx: ContextManager[Any]
  61. if self.is_safetensors:
  62. from safetensors import safe_open
  63. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  64. else:
  65. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  66. with ctx as model_part:
  67. for name in model_part.keys():
  68. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  69. yield name, data
  70. def set_gguf_parameters(self):
  71. self.gguf_writer.add_name(self.dir_model.name)
  72. self.gguf_writer.add_block_count(self.block_count)
  73. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  74. self.gguf_writer.add_context_length(n_ctx)
  75. print(f"gguf: context length = {n_ctx}")
  76. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  77. self.gguf_writer.add_embedding_length(n_embd)
  78. print(f"gguf: embedding length = {n_embd}")
  79. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  80. self.gguf_writer.add_feed_forward_length(n_ff)
  81. print(f"gguf: feed forward length = {n_ff}")
  82. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  83. self.gguf_writer.add_head_count(n_head)
  84. print(f"gguf: head count = {n_head}")
  85. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  86. self.gguf_writer.add_head_count_kv(n_head_kv)
  87. print(f"gguf: key-value head count = {n_head_kv}")
  88. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  89. self.gguf_writer.add_rope_freq_base(rope_theta)
  90. print(f"gguf: rope theta = {rope_theta}")
  91. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  92. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  93. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  94. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  95. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  96. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  97. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  98. self.gguf_writer.add_expert_count(n_experts)
  99. print(f"gguf: expert count = {n_experts}")
  100. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  101. self.gguf_writer.add_expert_used_count(n_experts_used)
  102. print(f"gguf: experts used count = {n_experts_used}")
  103. self.gguf_writer.add_file_type(self.ftype)
  104. print(f"gguf: file type = {self.ftype}")
  105. def write_tensors(self):
  106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  108. for name, data_torch in self.get_tensors():
  109. # we don't need these
  110. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  111. continue
  112. old_dtype = data_torch.dtype
  113. # convert any unsupported data types to float32
  114. if data_torch.dtype not in (torch.float16, torch.float32):
  115. data_torch = data_torch.to(torch.float32)
  116. data = data_torch.squeeze().numpy()
  117. # map tensor names
  118. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  119. if new_name is None:
  120. print(f"Can not map tensor {name!r}")
  121. sys.exit()
  122. n_dims = len(data.shape)
  123. data_dtype = data.dtype
  124. # if f32 desired, convert any float16 to float32
  125. if self.ftype == 0 and data_dtype == np.float16:
  126. data = data.astype(np.float32)
  127. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  128. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  129. data = data.astype(np.float32)
  130. # if f16 desired, convert any float32 2-dim weight tensors to float16
  131. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  132. data = data.astype(np.float16)
  133. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  134. self.gguf_writer.add_tensor(new_name, data)
  135. def write(self):
  136. self.write_tensors()
  137. self.gguf_writer.write_header_to_file()
  138. self.gguf_writer.write_kv_data_to_file()
  139. self.gguf_writer.write_tensors_to_file()
  140. self.gguf_writer.close()
  141. def write_vocab(self):
  142. self.gguf_writer.write_header_to_file()
  143. self.gguf_writer.write_kv_data_to_file()
  144. self.gguf_writer.close()
  145. @staticmethod
  146. def count_model_parts(dir_model: Path, prefix: str) -> int:
  147. num_parts = 0
  148. for filename in os.listdir(dir_model):
  149. if filename.endswith(prefix):
  150. num_parts += 1
  151. return num_parts
  152. @staticmethod
  153. def load_hparams(dir_model):
  154. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  155. return json.load(f)
  156. @classmethod
  157. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  158. assert names
  159. def func(modelcls: type[Model]):
  160. for name in names:
  161. cls._model_classes[name] = modelcls
  162. return modelcls
  163. return func
  164. @classmethod
  165. def from_model_architecture(cls, arch):
  166. try:
  167. return cls._model_classes[arch]
  168. except KeyError:
  169. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  170. def _is_model_safetensors(self) -> bool:
  171. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  172. def _get_part_names(self):
  173. if self.is_safetensors:
  174. if self.num_parts == 1: # there's only one .safetensors file
  175. return ("model.safetensors",)
  176. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  177. if self.num_parts == 1: # there's only one .bin file
  178. return ("pytorch_model.bin",)
  179. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  180. def _set_vocab_gpt2(self):
  181. dir_model = self.dir_model
  182. hparams = self.hparams
  183. tokens: list[str] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  187. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. tokens.append(f"[PAD{i}]")
  194. toktypes.append(gguf.TokenType.USER_DEFINED)
  195. elif reverse_vocab[i] in added_vocab:
  196. tokens.append(reverse_vocab[i])
  197. if tokenizer.added_tokens_decoder[i].special:
  198. toktypes.append(gguf.TokenType.CONTROL)
  199. else:
  200. toktypes.append(gguf.TokenType.USER_DEFINED)
  201. else:
  202. tokens.append(reverse_vocab[i])
  203. toktypes.append(gguf.TokenType.NORMAL)
  204. self.gguf_writer.add_tokenizer_model("gpt2")
  205. self.gguf_writer.add_token_list(tokens)
  206. self.gguf_writer.add_token_types(toktypes)
  207. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  208. special_vocab.add_to_gguf(self.gguf_writer)
  209. def _set_vocab_qwen(self):
  210. dir_model = self.dir_model
  211. hparams = self.hparams
  212. tokens: list[str] = []
  213. toktypes: list[int] = []
  214. from transformers import AutoTokenizer
  215. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  216. vocab_size = hparams["vocab_size"]
  217. assert max(tokenizer.get_vocab().values()) < vocab_size
  218. merges = []
  219. vocab = {}
  220. mergeable_ranks = tokenizer.mergeable_ranks
  221. for token, rank in mergeable_ranks.items():
  222. vocab[QwenModel.token_bytes_to_string(token)] = rank
  223. if len(token) == 1:
  224. continue
  225. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  226. assert len(merged) == 2
  227. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  228. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  229. added_vocab = tokenizer.special_tokens
  230. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  231. for i in range(vocab_size):
  232. if i not in reverse_vocab:
  233. tokens.append(f"[PAD{i}]")
  234. toktypes.append(gguf.TokenType.USER_DEFINED)
  235. elif reverse_vocab[i] in added_vocab:
  236. tokens.append(reverse_vocab[i])
  237. toktypes.append(gguf.TokenType.CONTROL)
  238. else:
  239. tokens.append(reverse_vocab[i])
  240. toktypes.append(gguf.TokenType.NORMAL)
  241. self.gguf_writer.add_tokenizer_model("gpt2")
  242. self.gguf_writer.add_token_list(tokens)
  243. self.gguf_writer.add_token_types(toktypes)
  244. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  245. special_vocab.merges = merges
  246. # only add special tokens when they were not already loaded from config.json
  247. if len(special_vocab.special_token_ids) == 0:
  248. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  249. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  250. # this one is usually not in config.json anyway
  251. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  252. special_vocab.add_to_gguf(self.gguf_writer)
  253. def _set_vocab_sentencepiece(self):
  254. from sentencepiece import SentencePieceProcessor
  255. tokenizer_path = self.dir_model / 'tokenizer.model'
  256. tokens: list[bytes] = []
  257. scores: list[float] = []
  258. toktypes: list[int] = []
  259. if not tokenizer_path.is_file():
  260. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  261. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  262. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  263. for token_id in range(tokenizer.vocab_size()):
  264. piece = tokenizer.id_to_piece(token_id)
  265. text = piece.encode("utf-8")
  266. score = tokenizer.get_score(token_id)
  267. toktype = SentencePieceTokenTypes.NORMAL
  268. if tokenizer.is_unknown(token_id):
  269. toktype = SentencePieceTokenTypes.UNKNOWN
  270. elif tokenizer.is_control(token_id):
  271. toktype = SentencePieceTokenTypes.CONTROL
  272. elif tokenizer.is_unused(token_id):
  273. toktype = SentencePieceTokenTypes.UNUSED
  274. elif tokenizer.is_byte(token_id):
  275. toktype = SentencePieceTokenTypes.BYTE
  276. tokens.append(text)
  277. scores.append(score)
  278. toktypes.append(toktype)
  279. added_tokens_file = self.dir_model / 'added_tokens.json'
  280. if added_tokens_file.is_file():
  281. with open(added_tokens_file, "r", encoding="utf-8") as f:
  282. added_tokens_json = json.load(f)
  283. for key in added_tokens_json:
  284. key = key.encode("utf-8")
  285. if key not in tokens:
  286. tokens.append(key)
  287. scores.append(-1000.0)
  288. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  289. assert len(tokens) == vocab_size
  290. self.gguf_writer.add_tokenizer_model("llama")
  291. self.gguf_writer.add_token_list(tokens)
  292. self.gguf_writer.add_token_scores(scores)
  293. self.gguf_writer.add_token_types(toktypes)
  294. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  295. special_vocab.add_to_gguf(self.gguf_writer)
  296. def _set_vocab_llama_hf(self):
  297. vocab = LlamaHfVocab(self.dir_model)
  298. tokens = []
  299. scores = []
  300. toktypes = []
  301. for text, score, toktype in vocab.all_tokens():
  302. tokens.append(text)
  303. scores.append(score)
  304. toktypes.append(toktype)
  305. assert len(tokens) == vocab.vocab_size
  306. self.gguf_writer.add_tokenizer_model("llama")
  307. self.gguf_writer.add_token_list(tokens)
  308. self.gguf_writer.add_token_scores(scores)
  309. self.gguf_writer.add_token_types(toktypes)
  310. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  311. special_vocab.add_to_gguf(self.gguf_writer)
  312. @Model.register("GPTNeoXForCausalLM")
  313. class GPTNeoXModel(Model):
  314. model_arch = gguf.MODEL_ARCH.GPTNEOX
  315. def set_gguf_parameters(self):
  316. block_count = self.hparams["num_hidden_layers"]
  317. self.gguf_writer.add_name(self.dir_model.name)
  318. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  319. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  320. self.gguf_writer.add_block_count(block_count)
  321. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  322. self.gguf_writer.add_rope_dimension_count(
  323. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  324. )
  325. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  326. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  327. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  328. @Model.register("BloomForCausalLM")
  329. class BloomModel(Model):
  330. model_arch = gguf.MODEL_ARCH.BLOOM
  331. def set_gguf_parameters(self):
  332. self.gguf_writer.add_name("Bloom")
  333. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  334. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  335. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  336. self.gguf_writer.add_embedding_length(n_embed)
  337. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  338. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  339. self.gguf_writer.add_head_count(n_head)
  340. self.gguf_writer.add_head_count_kv(n_head)
  341. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  342. self.gguf_writer.add_file_type(self.ftype)
  343. def write_tensors(self):
  344. block_count = self.hparams["n_layer"]
  345. tensors = dict(self.get_tensors())
  346. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  347. has_lm_head = True
  348. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  349. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  350. for name, data_torch in tensors.items():
  351. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  352. has_lm_head = False
  353. name = re.sub(r'transformer\.', '', name)
  354. old_dtype = data_torch.dtype
  355. # convert any unsupported data types to float32
  356. if data_torch.dtype not in (torch.float16, torch.float32):
  357. data_torch = data_torch.to(torch.float32)
  358. data = data_torch.squeeze().numpy()
  359. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  360. # Map bloom-style qkv_linear to gpt-style qkv_linear
  361. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  362. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  363. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  364. data = np.concatenate(
  365. (
  366. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  367. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  368. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  369. ),
  370. axis=0,
  371. )
  372. print("re-format attention.linear_qkv.weight")
  373. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  374. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  375. data = np.concatenate(
  376. (
  377. qkv_bias[:, 0, :].reshape((n_embed,)),
  378. qkv_bias[:, 1, :].reshape((n_embed,)),
  379. qkv_bias[:, 2, :].reshape((n_embed,)),
  380. ),
  381. axis=0,
  382. )
  383. print("re-format attention.linear_qkv.bias")
  384. # map tensor names
  385. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  386. if new_name is None:
  387. print(f"Can not map tensor {name!r}")
  388. sys.exit()
  389. n_dims = len(data.shape)
  390. data_dtype = data.dtype
  391. # if f32 desired, convert any float16 to float32
  392. if self.ftype == 0 and data_dtype == np.float16:
  393. data = data.astype(np.float32)
  394. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  395. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  396. data = data.astype(np.float32)
  397. # if f16 desired, convert any float32 2-dim weight tensors to float16
  398. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  399. data = data.astype(np.float16)
  400. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  401. self.gguf_writer.add_tensor(new_name, data)
  402. if not has_lm_head and name == "word_embeddings.weight":
  403. self.gguf_writer.add_tensor("output.weight", data)
  404. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  405. @Model.register("MPTForCausalLM")
  406. class MPTModel(Model):
  407. model_arch = gguf.MODEL_ARCH.MPT
  408. def set_vocab(self):
  409. try:
  410. self._set_vocab_gpt2()
  411. except:
  412. self._set_vocab_sentencepiece()
  413. self.gguf_writer.add_add_bos_token(False)
  414. self.gguf_writer.add_pad_token_id(3)
  415. self.gguf_writer.add_eos_token_id(1)
  416. self.gguf_writer.add_unk_token_id(0)
  417. def set_gguf_parameters(self):
  418. block_count = self.hparams["n_layers"]
  419. self.gguf_writer.add_name(self.dir_model.name)
  420. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  421. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  422. self.gguf_writer.add_block_count(block_count)
  423. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  424. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  425. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  426. self.gguf_writer.add_head_count_kv(kv_n_heads)
  427. self.gguf_writer.add_layer_norm_eps(1e-5)
  428. if self.hparams["attn_config"]["clip_qkv"] is not None:
  429. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  430. if self.hparams["attn_config"]["alibi"]:
  431. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  432. else:
  433. self.gguf_writer.add_max_alibi_bias(0.0)
  434. def write_tensors(self):
  435. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  436. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  437. for name, data_torch in self.get_tensors():
  438. # we don't need these
  439. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  440. continue
  441. old_dtype = data_torch.dtype
  442. # convert any unsupported data types to float32
  443. if data_torch.dtype not in (torch.float16, torch.float32):
  444. data_torch = data_torch.to(torch.float32)
  445. data = data_torch.squeeze().numpy()
  446. # map tensor names
  447. if "scales" in name:
  448. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  449. if new_name is not None:
  450. new_name = new_name.replace("scales", "act.scales")
  451. else:
  452. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  453. if new_name is None:
  454. print(f"Can not map tensor {name!r}")
  455. sys.exit()
  456. n_dims = len(data.shape)
  457. data_dtype = data.dtype
  458. # if f32 desired, convert any float16 to float32
  459. if self.ftype == 0 and data_dtype == np.float16:
  460. data = data.astype(np.float32)
  461. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  462. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  463. data = data.astype(np.float32)
  464. # if f16 desired, convert any float32 2-dim weight tensors to float16
  465. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  466. data = data.astype(np.float16)
  467. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  468. self.gguf_writer.add_tensor(new_name, data)
  469. @Model.register("OrionForCausalLM")
  470. class OrionModel(Model):
  471. model_arch = gguf.MODEL_ARCH.ORION
  472. def set_vocab(self):
  473. self._set_vocab_sentencepiece()
  474. def set_gguf_parameters(self):
  475. block_count = self.hparams["num_hidden_layers"]
  476. head_count = self.hparams["num_attention_heads"]
  477. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  478. hf_repo = self.hparams.get("_name_or_path", "")
  479. ctx_length = 0
  480. if "max_sequence_length" in self.hparams:
  481. ctx_length = self.hparams["max_sequence_length"]
  482. elif "max_position_embeddings" in self.hparams:
  483. ctx_length = self.hparams["max_position_embeddings"]
  484. elif "model_max_length" in self.hparams:
  485. ctx_length = self.hparams["model_max_length"]
  486. else:
  487. print("gguf: can not find ctx length parameter.")
  488. sys.exit()
  489. self.gguf_writer.add_file_type(self.ftype)
  490. self.gguf_writer.add_name(self.dir_model.name)
  491. self.gguf_writer.add_source_hf_repo(hf_repo)
  492. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  493. self.gguf_writer.add_context_length(ctx_length)
  494. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  495. self.gguf_writer.add_block_count(block_count)
  496. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  497. self.gguf_writer.add_head_count(head_count)
  498. self.gguf_writer.add_head_count_kv(head_count_kv)
  499. # note: config provides rms norm but it is actually layer norm
  500. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  501. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  502. def write_tensors(self):
  503. # Collect tensors from generator object
  504. model_kv = dict(self.get_tensors())
  505. block_count = self.hparams["num_hidden_layers"]
  506. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  507. for name, data_torch in model_kv.items():
  508. # we don't need these
  509. if name.endswith(".rotary_emb.inv_freq"):
  510. continue
  511. old_dtype = data_torch.dtype
  512. # convert any unsupported data types to float32
  513. if data_torch.dtype not in (torch.float16, torch.float32):
  514. data_torch = data_torch.to(torch.float32)
  515. data = data_torch.squeeze().numpy()
  516. # map tensor names
  517. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  518. if new_name is None:
  519. print(f"Can not map tensor {name!r}")
  520. sys.exit()
  521. n_dims = len(data.shape)
  522. data_dtype = data.dtype
  523. # if f32 desired, convert any float16 to float32
  524. if self.ftype == 0 and data_dtype == np.float16:
  525. data = data.astype(np.float32)
  526. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  527. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  528. data = data.astype(np.float32)
  529. # if f16 desired, convert any float32 2-dim weight tensors to float16
  530. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  531. data = data.astype(np.float16)
  532. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  533. self.gguf_writer.add_tensor(new_name, data)
  534. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  535. class BaichuanModel(Model):
  536. model_arch = gguf.MODEL_ARCH.BAICHUAN
  537. def set_vocab(self):
  538. self._set_vocab_sentencepiece()
  539. def set_gguf_parameters(self):
  540. block_count = self.hparams["num_hidden_layers"]
  541. head_count = self.hparams["num_attention_heads"]
  542. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  543. hf_repo = self.hparams.get("_name_or_path", "")
  544. ctx_length = 0
  545. if "max_sequence_length" in self.hparams:
  546. ctx_length = self.hparams["max_sequence_length"]
  547. elif "max_position_embeddings" in self.hparams:
  548. ctx_length = self.hparams["max_position_embeddings"]
  549. elif "model_max_length" in self.hparams:
  550. ctx_length = self.hparams["model_max_length"]
  551. else:
  552. print("gguf: can not find ctx length parameter.")
  553. sys.exit()
  554. self.gguf_writer.add_name(self.dir_model.name)
  555. self.gguf_writer.add_source_hf_repo(hf_repo)
  556. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  557. self.gguf_writer.add_context_length(ctx_length)
  558. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  559. self.gguf_writer.add_block_count(block_count)
  560. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  561. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  562. self.gguf_writer.add_head_count(head_count)
  563. self.gguf_writer.add_head_count_kv(head_count_kv)
  564. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  565. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  566. if self.hparams["rope_scaling"].get("type") == "linear":
  567. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  568. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  569. def write_tensors(self):
  570. # Collect tensors from generator object
  571. model_kv = dict(self.get_tensors())
  572. block_count = self.hparams["num_hidden_layers"]
  573. head_count = self.hparams["num_attention_heads"]
  574. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  575. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  576. for i in range(block_count):
  577. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  578. print(f"Unpacking and permuting layer {i}")
  579. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  580. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  581. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  582. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  583. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  584. self._reverse_hf_part(w, 2)
  585. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  586. for name, data_torch in model_kv.items():
  587. # we don't need these
  588. if name.endswith(".rotary_emb.inv_freq"):
  589. continue
  590. old_dtype = data_torch.dtype
  591. # convert any unsupported data types to float32
  592. if data_torch.dtype not in (torch.float16, torch.float32):
  593. data_torch = data_torch.to(torch.float32)
  594. data = data_torch.squeeze().numpy()
  595. # map tensor names
  596. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  597. if new_name is None:
  598. print(f"Can not map tensor {name!r}")
  599. sys.exit()
  600. n_dims = len(data.shape)
  601. data_dtype = data.dtype
  602. # if f32 desired, convert any float16 to float32
  603. if self.ftype == 0 and data_dtype == np.float16:
  604. data = data.astype(np.float32)
  605. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  606. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  607. data = data.astype(np.float32)
  608. # if f16 desired, convert any float32 2-dim weight tensors to float16
  609. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  610. data = data.astype(np.float16)
  611. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  612. self.gguf_writer.add_tensor(new_name, data)
  613. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  614. if n_kv_head is not None and n_head != n_kv_head:
  615. n_head //= n_kv_head
  616. return (
  617. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  618. .swapaxes(1, 2)
  619. .reshape(weights.shape)
  620. )
  621. def _reverse_hf_permute_part(
  622. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  623. ) -> Tensor:
  624. r = weights.shape[0] // 3
  625. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  626. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  627. r = weights.shape[0] // 3
  628. return weights[r * n_part:r * n_part + r, ...]
  629. @Model.register("XverseForCausalLM")
  630. class XverseModel(Model):
  631. model_arch = gguf.MODEL_ARCH.XVERSE
  632. def set_vocab(self):
  633. assert (self.dir_model / "tokenizer.json").is_file()
  634. dir_model = self.dir_model
  635. hparams = self.hparams
  636. tokens: list[bytearray] = []
  637. toktypes: list[int] = []
  638. from transformers import AutoTokenizer
  639. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  640. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  641. assert max(tokenizer.vocab.values()) < vocab_size
  642. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  643. added_vocab = tokenizer.get_added_vocab()
  644. for token_id in range(vocab_size):
  645. token_text = reverse_vocab[token_id].encode('utf-8')
  646. # replace "\x00" to string with length > 0
  647. if token_text == b"\x00":
  648. toktype = gguf.TokenType.BYTE # special
  649. token_text = f"<{token_text}>".encode('utf-8')
  650. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  651. toktype = gguf.TokenType.BYTE # special
  652. elif reverse_vocab[token_id] in added_vocab:
  653. if tokenizer.added_tokens_decoder[token_id].special:
  654. toktype = gguf.TokenType.CONTROL
  655. else:
  656. toktype = gguf.TokenType.USER_DEFINED
  657. else:
  658. toktype = gguf.TokenType.NORMAL
  659. tokens.append(token_text)
  660. toktypes.append(toktype)
  661. self.gguf_writer.add_tokenizer_model("llama")
  662. self.gguf_writer.add_token_list(tokens)
  663. self.gguf_writer.add_token_types(toktypes)
  664. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  665. special_vocab.add_to_gguf(self.gguf_writer)
  666. def set_gguf_parameters(self):
  667. block_count = self.hparams["num_hidden_layers"]
  668. head_count = self.hparams["num_attention_heads"]
  669. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  670. hf_repo = self.hparams.get("_name_or_path", "")
  671. ctx_length = 0
  672. if "max_sequence_length" in self.hparams:
  673. ctx_length = self.hparams["max_sequence_length"]
  674. elif "max_position_embeddings" in self.hparams:
  675. ctx_length = self.hparams["max_position_embeddings"]
  676. elif "model_max_length" in self.hparams:
  677. ctx_length = self.hparams["model_max_length"]
  678. else:
  679. print("gguf: can not find ctx length parameter.")
  680. sys.exit()
  681. self.gguf_writer.add_name(self.dir_model.name)
  682. self.gguf_writer.add_source_hf_repo(hf_repo)
  683. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  684. self.gguf_writer.add_context_length(ctx_length)
  685. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  686. self.gguf_writer.add_block_count(block_count)
  687. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  688. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  689. self.gguf_writer.add_head_count(head_count)
  690. self.gguf_writer.add_head_count_kv(head_count_kv)
  691. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  692. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  693. if self.hparams["rope_scaling"].get("type") == "linear":
  694. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  695. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  696. def write_tensors(self):
  697. # Collect tensors from generator object
  698. model_kv = dict(self.get_tensors())
  699. block_count = self.hparams["num_hidden_layers"]
  700. head_count = self.hparams["num_attention_heads"]
  701. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  702. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  703. for name, data_torch in model_kv.items():
  704. # we don't need these
  705. if name.endswith(".rotary_emb.inv_freq"):
  706. continue
  707. old_dtype = data_torch.dtype
  708. # convert any unsupported data types to float32
  709. if data_torch.dtype not in (torch.float16, torch.float32):
  710. data_torch = data_torch.to(torch.float32)
  711. # HF models permute some of the tensors, so we need to undo that
  712. if name.endswith(("q_proj.weight")):
  713. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  714. if name.endswith(("k_proj.weight")):
  715. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  716. data = data_torch.squeeze().numpy()
  717. # map tensor names
  718. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  719. if new_name is None:
  720. print(f"Can not map tensor {name!r}")
  721. sys.exit()
  722. n_dims = len(data.shape)
  723. data_dtype = data.dtype
  724. # if f32 desired, convert any float16 to float32
  725. if self.ftype == 0 and data_dtype == np.float16:
  726. data = data.astype(np.float32)
  727. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  728. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  729. data = data.astype(np.float32)
  730. # if f16 desired, convert any float32 2-dim weight tensors to float16
  731. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  732. data = data.astype(np.float16)
  733. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  734. self.gguf_writer.add_tensor(new_name, data)
  735. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  736. if n_kv_head is not None and n_head != n_kv_head:
  737. n_head //= n_kv_head
  738. return (
  739. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  740. .swapaxes(1, 2)
  741. .reshape(weights.shape)
  742. )
  743. @Model.register("FalconForCausalLM", "RWForCausalLM")
  744. class FalconModel(Model):
  745. model_arch = gguf.MODEL_ARCH.FALCON
  746. def set_gguf_parameters(self):
  747. block_count = self.hparams.get("num_hidden_layers")
  748. if block_count is None:
  749. block_count = self.hparams["n_layer"] # old name
  750. n_head = self.hparams.get("num_attention_heads")
  751. if n_head is None:
  752. n_head = self.hparams["n_head"] # old name
  753. n_head_kv = self.hparams.get("num_kv_heads")
  754. if n_head_kv is None:
  755. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  756. self.gguf_writer.add_name("Falcon")
  757. self.gguf_writer.add_context_length(2048) # not in config.json
  758. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  759. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  760. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  761. self.gguf_writer.add_block_count(block_count)
  762. self.gguf_writer.add_head_count(n_head)
  763. self.gguf_writer.add_head_count_kv(n_head_kv)
  764. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  765. self.gguf_writer.add_file_type(self.ftype)
  766. def write_tensors(self):
  767. block_count = self.hparams.get("num_hidden_layers")
  768. if block_count is None:
  769. block_count = self.hparams["n_layer"] # old name
  770. n_head = self.hparams.get("num_attention_heads")
  771. if n_head is None:
  772. n_head = self.hparams["n_head"] # old name
  773. n_head_kv = self.hparams.get("num_kv_heads")
  774. if n_head_kv is None:
  775. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  776. head_dim = self.hparams["hidden_size"] // n_head
  777. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  778. for name, data_torch in self.get_tensors():
  779. old_dtype = data_torch.dtype
  780. # convert any unsupported data types to float32
  781. if data_torch.dtype not in (torch.float16, torch.float32):
  782. data_torch = data_torch.to(torch.float32)
  783. # QKV tensor transform
  784. # The original query_key_value tensor contains n_head_kv "kv groups",
  785. # each consisting of n_head/n_head_kv query weights followed by one key
  786. # and one value weight (shared by all query heads in the kv group).
  787. # This layout makes it a big pain to work with in GGML.
  788. # So we rearrange them here,, so that we have n_head query weights
  789. # followed by n_head_kv key weights followed by n_head_kv value weights,
  790. # in contiguous fashion.
  791. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  792. if "query_key_value" in name:
  793. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  794. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  795. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  796. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  797. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  798. data = data_torch.squeeze().numpy()
  799. # map tensor names
  800. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  801. if new_name is None:
  802. print(f"Can not map tensor {name!r}")
  803. sys.exit()
  804. n_dims = len(data.shape)
  805. data_dtype = data.dtype
  806. # if f32 desired, convert any float16 to float32
  807. if self.ftype == 0 and data_dtype == np.float16:
  808. data = data.astype(np.float32)
  809. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  810. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  811. data = data.astype(np.float32)
  812. # if f16 desired, convert any float32 2-dim weight tensors to float16
  813. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  814. data = data.astype(np.float16)
  815. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  816. self.gguf_writer.add_tensor(new_name, data)
  817. @Model.register("GPTBigCodeForCausalLM")
  818. class StarCoderModel(Model):
  819. model_arch = gguf.MODEL_ARCH.STARCODER
  820. def set_gguf_parameters(self):
  821. block_count = self.hparams["n_layer"]
  822. self.gguf_writer.add_name("StarCoder")
  823. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  824. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  825. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  826. self.gguf_writer.add_block_count(block_count)
  827. self.gguf_writer.add_head_count(self.hparams["n_head"])
  828. self.gguf_writer.add_head_count_kv(1)
  829. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  830. self.gguf_writer.add_file_type(self.ftype)
  831. @Model.register("GPTRefactForCausalLM")
  832. class RefactModel(Model):
  833. model_arch = gguf.MODEL_ARCH.REFACT
  834. def set_gguf_parameters(self):
  835. hidden_dim = self.hparams["n_embd"]
  836. inner_dim = 4 * hidden_dim
  837. hidden_dim = int(2 * inner_dim / 3)
  838. multiple_of = 256
  839. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  840. block_count = self.hparams["n_layer"]
  841. self.gguf_writer.add_name("Refact")
  842. # refact uses Alibi. So this is from config.json which might be used by training.
  843. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  844. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  845. self.gguf_writer.add_feed_forward_length(ff_dim)
  846. self.gguf_writer.add_block_count(block_count)
  847. self.gguf_writer.add_head_count(self.hparams["n_head"])
  848. self.gguf_writer.add_head_count_kv(1)
  849. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  850. self.gguf_writer.add_file_type(self.ftype)
  851. def write_tensors(self):
  852. hidden_dim = self.hparams["n_embd"]
  853. inner_dim = 4 * hidden_dim
  854. hidden_dim = int(2 * inner_dim / 3)
  855. multiple_of = 256
  856. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  857. n_head = self.hparams["n_head"]
  858. n_head_kv = 1
  859. head_dim = self.hparams["n_embd"] // n_head
  860. block_count = self.hparams["n_layer"]
  861. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  862. tensors = dict(self.get_tensors())
  863. for i in range(block_count):
  864. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  865. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  866. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  867. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  868. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  869. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  870. del tensors[f"transformer.h.{i}.attn.q.weight"]
  871. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  872. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  873. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  874. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  875. for name, data_torch in tensors.items():
  876. old_dtype = data_torch.dtype
  877. # convert any unsupported data types to float32
  878. if data_torch.dtype not in (torch.float16, torch.float32):
  879. data_torch = data_torch.to(torch.float32)
  880. data = data_torch.squeeze().numpy()
  881. # map tensor names
  882. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  883. if new_name is None:
  884. print(f"Can not map tensor {name!r}")
  885. sys.exit()
  886. n_dims = len(data.shape)
  887. data_dtype = data.dtype
  888. # if f32 desired, convert any float16 to float32
  889. if self.ftype == 0 and data_dtype == np.float16:
  890. data = data.astype(np.float32)
  891. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  892. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  893. data = data.astype(np.float32)
  894. # if f16 desired, convert any float32 2-dim weight tensors to float16
  895. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  896. data = data.astype(np.float16)
  897. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  898. self.gguf_writer.add_tensor(new_name, data)
  899. @Model.register("PersimmonForCausalLM")
  900. class PersimmonModel(Model):
  901. model_arch = gguf.MODEL_ARCH.PERSIMMON
  902. def set_gguf_parameters(self):
  903. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  904. head_count = self.hparams["num_attention_heads"]
  905. head_count_kv = head_count
  906. hidden_size = self.hparams["hidden_size"]
  907. self.gguf_writer.add_name('persimmon-8b-chat')
  908. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  909. self.gguf_writer.add_embedding_length(hidden_size)
  910. self.gguf_writer.add_block_count(block_count)
  911. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  912. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  913. # than the head size?
  914. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  915. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  916. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  917. self.gguf_writer.add_head_count(head_count)
  918. self.gguf_writer.add_head_count_kv(head_count_kv)
  919. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  920. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  921. def set_vocab(self):
  922. self._set_vocab_sentencepiece()
  923. # self.gguf_writer.add_bos_token_id(71013)
  924. # self.gguf_writer.add_eos_token_id(71013)
  925. def write_tensors(self):
  926. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  927. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  928. for name, data_torch in self.get_tensors():
  929. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  930. continue
  931. old_dtype = data_torch.dtype
  932. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  933. data = data_torch.to(torch.float32).squeeze().numpy()
  934. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  935. if new_name is None:
  936. print(f"Can not map tensor {name!r}")
  937. sys.exit()
  938. n_dims = len(data.shape)
  939. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  940. self.gguf_writer.add_tensor(new_name, data)
  941. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  942. class StableLMModel(Model):
  943. model_arch = gguf.MODEL_ARCH.STABLELM
  944. def set_vocab(self):
  945. if (self.dir_model / "tokenizer.json").is_file():
  946. self._set_vocab_gpt2()
  947. else:
  948. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  949. self._set_vocab_qwen()
  950. def set_gguf_parameters(self):
  951. hparams = self.hparams
  952. block_count = hparams["num_hidden_layers"]
  953. self.gguf_writer.add_name(self.dir_model.name)
  954. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  955. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  956. self.gguf_writer.add_block_count(block_count)
  957. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  958. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  959. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  960. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  961. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  962. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  963. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  964. class LlamaModel(Model):
  965. model_arch = gguf.MODEL_ARCH.LLAMA
  966. def set_vocab(self):
  967. try:
  968. self. _set_vocab_sentencepiece()
  969. except FileNotFoundError:
  970. self._set_vocab_llama_hf()
  971. def set_gguf_parameters(self):
  972. super().set_gguf_parameters()
  973. hparams = self.hparams
  974. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  975. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  976. # Same as super class, but permuting q_proj, k_proj
  977. def write_tensors(self):
  978. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  979. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  980. n_head = self.hparams.get("num_attention_heads")
  981. n_kv_head = self.hparams.get("num_key_value_heads")
  982. n_experts = self.hparams.get("num_local_experts")
  983. experts = dict()
  984. for name, data_torch in self.get_tensors():
  985. # we don't need these
  986. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  987. continue
  988. old_dtype = data_torch.dtype
  989. # convert any unsupported data types to float32
  990. if data_torch.dtype not in (torch.float16, torch.float32):
  991. data_torch = data_torch.to(torch.float32)
  992. data = data_torch.numpy()
  993. if name.endswith("q_proj.weight"):
  994. data = permute(data, n_head, n_head)
  995. if name.endswith("k_proj.weight"):
  996. data = permute(data, n_head, n_kv_head)
  997. data = data.squeeze()
  998. # process the experts separately
  999. if name.find("block_sparse_moe.experts") != -1:
  1000. experts[name] = data
  1001. if len(experts) >= n_experts:
  1002. # merge the experts into a single 3d tensor
  1003. for bid in range(block_count):
  1004. for wid in range(1, 4):
  1005. full = True
  1006. for xid in range(n_experts):
  1007. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1008. if ename not in experts:
  1009. full = False
  1010. break
  1011. if not full:
  1012. continue
  1013. datas = []
  1014. for xid in range(n_experts):
  1015. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1016. datas.append(experts[ename])
  1017. del experts[ename]
  1018. data = np.stack(datas, axis=0)
  1019. data_dtype = data.dtype
  1020. if self.ftype == 0 and data_dtype == np.float16:
  1021. data = data.astype(np.float32)
  1022. if self.ftype == 1 and data_dtype == np.float32:
  1023. data = data.astype(np.float16)
  1024. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1025. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1026. if new_name is None:
  1027. print(f"Can not map tensor {name!r}")
  1028. sys.exit()
  1029. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1030. self.gguf_writer.add_tensor(new_name, data)
  1031. continue
  1032. # map tensor names
  1033. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1034. if new_name is None:
  1035. print(f"Can not map tensor {name!r}")
  1036. sys.exit()
  1037. n_dims = len(data.shape)
  1038. data_dtype = data.dtype
  1039. # if f32 desired, convert any float16 to float32
  1040. if self.ftype == 0 and data_dtype == np.float16:
  1041. data = data.astype(np.float32)
  1042. # 1d tensors need to be converted to float32
  1043. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1044. data = data.astype(np.float32)
  1045. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1046. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1047. data = data.astype(np.float16)
  1048. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1049. self.gguf_writer.add_tensor(new_name, data)
  1050. if len(experts) > 0:
  1051. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1052. @Model.register("GrokForCausalLM")
  1053. class GrokModel(Model):
  1054. model_arch = gguf.MODEL_ARCH.GROK
  1055. def set_vocab(self):
  1056. self._set_vocab_sentencepiece()
  1057. def __init__(self, *args, **kwargs):
  1058. super().__init__(*args, **kwargs)
  1059. def set_gguf_parameters(self):
  1060. super().set_gguf_parameters()
  1061. self.gguf_writer.add_name("Grok")
  1062. def write_tensors(self):
  1063. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1064. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1065. n_experts = self.hparams.get("num_local_experts")
  1066. experts = dict()
  1067. for name, data_torch in self.get_tensors():
  1068. # we don't need these
  1069. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1070. continue
  1071. old_dtype = data_torch.dtype
  1072. # convert any unsupported data types to float32
  1073. if data_torch.dtype not in (torch.float16, torch.float32):
  1074. data_torch = data_torch.to(torch.float32)
  1075. data = data_torch.squeeze().numpy()
  1076. # process the experts separately
  1077. if name.find(".moe.") != -1:
  1078. experts[name] = data
  1079. if len(experts) >= n_experts:
  1080. # merge the experts into a single 3d tensor
  1081. for bid in range(block_count):
  1082. for wid in ["linear", "linear_1", "linear_v"]:
  1083. full = True
  1084. for xid in range(n_experts):
  1085. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1086. if ename not in experts:
  1087. full = False
  1088. break
  1089. if not full:
  1090. continue
  1091. datas = []
  1092. for xid in range(n_experts):
  1093. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1094. datas.append(experts[ename])
  1095. del experts[ename]
  1096. data = np.stack(datas, axis=0)
  1097. data_dtype = data.dtype
  1098. if self.ftype == 0 and data_dtype == np.float16:
  1099. data = data.astype(np.float32)
  1100. if self.ftype == 1 and data_dtype == np.float32:
  1101. data = data.astype(np.float16)
  1102. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1103. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1104. if new_name is None:
  1105. print(f"Can not map tensor {name!r}")
  1106. sys.exit()
  1107. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1108. self.gguf_writer.add_tensor(new_name, data)
  1109. continue
  1110. # map tensor names
  1111. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1112. if new_name is None:
  1113. print(f"Can not map tensor {name!r}")
  1114. sys.exit()
  1115. n_dims = len(data.shape)
  1116. data_dtype = data.dtype
  1117. # if f32 desired, convert any float16 to float32
  1118. if self.ftype == 0 and data_dtype == np.float16:
  1119. data = data.astype(np.float32)
  1120. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1121. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1122. data = data.astype(np.float32)
  1123. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1124. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1125. data = data.astype(np.float16)
  1126. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1127. self.gguf_writer.add_tensor(new_name, data)
  1128. @Model.register("MiniCPMForCausalLM")
  1129. class MiniCPMModel(Model):
  1130. model_arch = gguf.MODEL_ARCH.MINICPM
  1131. def set_gguf_parameters(self):
  1132. block_count = self.hparams["num_hidden_layers"]
  1133. self.gguf_writer.add_name("MiniCPM")
  1134. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1135. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1136. self.gguf_writer.add_block_count(block_count)
  1137. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1138. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1139. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1140. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1141. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1142. self.gguf_writer.add_file_type(self.ftype)
  1143. def set_vocab(self):
  1144. self._set_vocab_llama_hf()
  1145. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1146. if n_kv_head is not None and n_head != n_kv_head:
  1147. n_head //= n_kv_head
  1148. return (
  1149. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1150. .swapaxes(1, 2)
  1151. .reshape(weights.shape)
  1152. )
  1153. def write_tensors(self):
  1154. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1155. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1156. n_head = self.hparams.get("num_attention_heads")
  1157. n_kv_head = self.hparams.get("num_key_value_heads")
  1158. for name, data_torch in self.get_tensors():
  1159. # we don't need these
  1160. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1161. continue
  1162. old_dtype = data_torch.dtype
  1163. # convert any unsupported data types to float32
  1164. if data_torch.dtype not in (torch.float16, torch.float32):
  1165. data_torch = data_torch.to(torch.float32)
  1166. # HF models permute some of the tensors, so we need to undo that
  1167. if name.endswith(("q_proj.weight")):
  1168. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1169. if name.endswith(("k_proj.weight")):
  1170. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1171. data = data_torch.squeeze().numpy()
  1172. # map tensor names
  1173. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1174. if new_name is None:
  1175. print(f"Can not map tensor {name!r}")
  1176. sys.exit()
  1177. n_dims = len(data.shape)
  1178. data_dtype = data.dtype
  1179. # if f32 desired, convert any float16 to float32
  1180. if self.ftype == 0 and data_dtype == np.float16:
  1181. data = data.astype(np.float32)
  1182. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1183. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1184. data = data.astype(np.float32)
  1185. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1186. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1187. data = data.astype(np.float16)
  1188. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1189. self.gguf_writer.add_tensor(new_name, data)
  1190. @Model.register("QWenLMHeadModel")
  1191. class QwenModel(Model):
  1192. model_arch = gguf.MODEL_ARCH.QWEN
  1193. @staticmethod
  1194. def token_bytes_to_string(b):
  1195. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1196. byte_encoder = bytes_to_unicode()
  1197. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1198. @staticmethod
  1199. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1200. parts = [bytes([b]) for b in token]
  1201. while True:
  1202. min_idx = None
  1203. min_rank = None
  1204. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1205. rank = mergeable_ranks.get(pair[0] + pair[1])
  1206. if rank is not None and (min_rank is None or rank < min_rank):
  1207. min_idx = i
  1208. min_rank = rank
  1209. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1210. break
  1211. assert min_idx is not None
  1212. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1213. return parts
  1214. def set_vocab(self):
  1215. self._set_vocab_qwen()
  1216. def set_gguf_parameters(self):
  1217. self.gguf_writer.add_name("Qwen")
  1218. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1219. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1220. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1221. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1222. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1223. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1224. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1225. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1226. def write_tensors(self):
  1227. block_count = self.hparams["num_hidden_layers"]
  1228. model_kv = dict(self.get_tensors())
  1229. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1230. for name, data_torch in model_kv.items():
  1231. # we don't need these
  1232. if name.endswith(".rotary_emb.inv_freq"):
  1233. continue
  1234. old_dtype = data_torch.dtype
  1235. # convert any unsupported data types to float32
  1236. if data_torch.dtype not in (torch.float16, torch.float32):
  1237. data_torch = data_torch.to(torch.float32)
  1238. data = data_torch.squeeze().numpy()
  1239. # map tensor names
  1240. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1241. if new_name is None:
  1242. print(f"Can not map tensor {name!r}")
  1243. sys.exit()
  1244. n_dims = len(data.shape)
  1245. data_dtype = data.dtype
  1246. # if f32 desired, convert any float16 to float32
  1247. if self.ftype == 0 and data_dtype == np.float16:
  1248. data = data.astype(np.float32)
  1249. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1250. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1251. data = data.astype(np.float32)
  1252. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1253. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1254. data = data.astype(np.float16)
  1255. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1256. self.gguf_writer.add_tensor(new_name, data)
  1257. @Model.register("Qwen2ForCausalLM")
  1258. class Qwen2Model(Model):
  1259. model_arch = gguf.MODEL_ARCH.QWEN2
  1260. @Model.register("GPT2LMHeadModel")
  1261. class GPT2Model(Model):
  1262. model_arch = gguf.MODEL_ARCH.GPT2
  1263. def set_gguf_parameters(self):
  1264. self.gguf_writer.add_name(self.dir_model.name)
  1265. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1266. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1267. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1268. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1269. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1270. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1271. self.gguf_writer.add_file_type(self.ftype)
  1272. def write_tensors(self):
  1273. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1274. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1275. for name, data_torch in self.get_tensors():
  1276. # we don't need these
  1277. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1278. continue
  1279. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1280. data_torch = data_torch.transpose(1, 0)
  1281. old_dtype = data_torch.dtype
  1282. # convert any unsupported data types to float32
  1283. if data_torch.dtype not in (torch.float16, torch.float32):
  1284. data_torch = data_torch.to(torch.float32)
  1285. data = data_torch.squeeze().numpy()
  1286. # map tensor names
  1287. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1288. if new_name is None:
  1289. print(f"Can not map tensor {name!r}")
  1290. sys.exit()
  1291. n_dims = len(data.shape)
  1292. data_dtype = data.dtype
  1293. # if f32 desired, convert any float16 to float32
  1294. if self.ftype == 0 and data_dtype == np.float16:
  1295. data = data.astype(np.float32)
  1296. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1297. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1298. data = data.astype(np.float32)
  1299. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1300. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1301. data = data.astype(np.float16)
  1302. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1303. self.gguf_writer.add_tensor(new_name, data)
  1304. # note: GPT2 output is tied to (same as) wte in original model
  1305. if new_name == "token_embd.weight":
  1306. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1307. self.gguf_writer.add_tensor("output.weight", data)
  1308. @Model.register("PhiForCausalLM")
  1309. class Phi2Model(Model):
  1310. model_arch = gguf.MODEL_ARCH.PHI2
  1311. def set_gguf_parameters(self):
  1312. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1313. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1314. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1315. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1316. self.gguf_writer.add_name("Phi2")
  1317. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1318. self.gguf_writer.add_embedding_length(n_embd)
  1319. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1320. self.gguf_writer.add_block_count(block_count)
  1321. self.gguf_writer.add_head_count(n_head)
  1322. self.gguf_writer.add_head_count_kv(n_head)
  1323. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1324. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1325. self.gguf_writer.add_file_type(self.ftype)
  1326. self.gguf_writer.add_add_bos_token(False)
  1327. @Model.register("PlamoForCausalLM")
  1328. class PlamoModel(Model):
  1329. model_arch = gguf.MODEL_ARCH.PLAMO
  1330. def set_vocab(self):
  1331. self._set_vocab_sentencepiece()
  1332. def set_gguf_parameters(self):
  1333. hparams = self.hparams
  1334. block_count = hparams["num_hidden_layers"]
  1335. self.gguf_writer.add_name("PLaMo")
  1336. self.gguf_writer.add_context_length(4096) # not in config.json
  1337. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1338. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1339. self.gguf_writer.add_block_count(block_count)
  1340. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1341. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1342. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1343. def shuffle_attn_q_weight(self, data_torch):
  1344. assert data_torch.size() == (5120, 5120)
  1345. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1346. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1347. data_torch = torch.reshape(data_torch, (5120, 5120))
  1348. return data_torch
  1349. def shuffle_attn_output_weight(self, data_torch):
  1350. assert data_torch.size() == (5120, 5120)
  1351. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1352. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1353. data_torch = torch.reshape(data_torch, (5120, 5120))
  1354. return data_torch
  1355. def write_tensors(self):
  1356. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1357. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1358. for name, data_torch in self.get_tensors():
  1359. if "self_attn.rotary_emb.inv_freq" in name:
  1360. continue
  1361. # map tensor names
  1362. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1363. if new_name is None:
  1364. print(f"Can not map tensor {name!r}")
  1365. sys.exit()
  1366. # shuffle for broadcasting of gqa in ggml_mul_mat
  1367. if new_name.endswith("attn_q.weight"):
  1368. data_torch = self.shuffle_attn_q_weight(data_torch)
  1369. elif new_name.endswith("attn_output.weight"):
  1370. data_torch = self.shuffle_attn_output_weight(data_torch)
  1371. old_dtype = data_torch.dtype
  1372. # convert any unsupported data types to float32
  1373. if data_torch.dtype not in (torch.float16, torch.float32):
  1374. data_torch = data_torch.to(torch.float32)
  1375. data = data_torch.squeeze().numpy()
  1376. n_dims = len(data.shape)
  1377. data_dtype = data.dtype
  1378. # if f32 desired, convert any float16 to float32
  1379. if self.ftype == 0 and data_dtype == np.float16:
  1380. data = data.astype(np.float32)
  1381. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1382. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1383. data = data.astype(np.float32)
  1384. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1385. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1386. data = data.astype(np.float16)
  1387. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1388. self.gguf_writer.add_tensor(new_name, data)
  1389. @Model.register("CodeShellForCausalLM")
  1390. class CodeShellModel(Model):
  1391. model_arch = gguf.MODEL_ARCH.CODESHELL
  1392. def set_gguf_parameters(self):
  1393. block_count = self.hparams["n_layer"]
  1394. self.gguf_writer.add_name("CodeShell")
  1395. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1396. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1397. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1398. self.gguf_writer.add_block_count(block_count)
  1399. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1400. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1401. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1402. self.gguf_writer.add_file_type(self.ftype)
  1403. self.gguf_writer.add_rope_freq_base(10000.0)
  1404. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1405. self.gguf_writer.add_rope_scaling_factor(1.0)
  1406. def write_tensors(self):
  1407. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1408. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1409. tensors = dict(self.get_tensors())
  1410. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1411. for name, data_torch in tensors.items():
  1412. # we don't need these
  1413. if name.endswith((".attn.rotary_emb.inv_freq")):
  1414. continue
  1415. old_dtype = data_torch.dtype
  1416. # convert any unsupported data types to float32
  1417. if data_torch.dtype not in (torch.float16, torch.float32):
  1418. data_torch = data_torch.to(torch.float32)
  1419. data = data_torch.squeeze().numpy()
  1420. # map tensor names
  1421. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1422. if new_name is None:
  1423. print(f"Can not map tensor {name!r}")
  1424. sys.exit()
  1425. n_dims = len(data.shape)
  1426. data_dtype = data.dtype
  1427. # if f32 desired, convert any float16 to float32
  1428. if self.ftype == 0 and data_dtype == np.float16:
  1429. data = data.astype(np.float32)
  1430. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1431. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1432. data = data.astype(np.float32)
  1433. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1434. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1435. data = data.astype(np.float16)
  1436. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1437. self.gguf_writer.add_tensor(new_name, data)
  1438. if not has_lm_head and name == "transformer.wte.weight":
  1439. self.gguf_writer.add_tensor("output.weight", data)
  1440. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1441. @Model.register("InternLM2ForCausalLM")
  1442. class InternLM2Model(Model):
  1443. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1444. def set_vocab(self):
  1445. # (TODO): Is there a better way?
  1446. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1447. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1448. # recognized as an empty string in C++.
  1449. from sentencepiece import SentencePieceProcessor
  1450. from sentencepiece import sentencepiece_model_pb2 as model
  1451. tokenizer_path = self.dir_model / 'tokenizer.model'
  1452. tokens: list[bytes] = []
  1453. scores: list[float] = []
  1454. toktypes: list[int] = []
  1455. if not tokenizer_path.is_file():
  1456. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1457. sys.exit(1)
  1458. sentencepiece_model = model.ModelProto()
  1459. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1460. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1461. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1462. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1463. for token_id in range(vocab_size):
  1464. piece = tokenizer.id_to_piece(token_id)
  1465. text = piece.encode("utf-8")
  1466. score = tokenizer.get_score(token_id)
  1467. if text == b"\x00":
  1468. # (TODO): fixme
  1469. # Hack here and replace the \x00 characters.
  1470. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1471. text = "🐉"
  1472. toktype = SentencePieceTokenTypes.NORMAL
  1473. if tokenizer.is_unknown(token_id):
  1474. toktype = SentencePieceTokenTypes.UNKNOWN
  1475. elif tokenizer.is_control(token_id):
  1476. toktype = SentencePieceTokenTypes.CONTROL
  1477. elif tokenizer.is_unused(token_id):
  1478. toktype = SentencePieceTokenTypes.UNUSED
  1479. elif tokenizer.is_byte(token_id):
  1480. toktype = SentencePieceTokenTypes.BYTE
  1481. tokens.append(text)
  1482. scores.append(score)
  1483. toktypes.append(toktype)
  1484. added_tokens_file = self.dir_model / 'added_tokens.json'
  1485. if added_tokens_file.is_file():
  1486. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1487. added_tokens_json = json.load(f)
  1488. for key in added_tokens_json:
  1489. tokens.append(key.encode("utf-8"))
  1490. scores.append(-1000.0)
  1491. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1492. self.gguf_writer.add_tokenizer_model("llama")
  1493. self.gguf_writer.add_token_list(tokens)
  1494. self.gguf_writer.add_token_scores(scores)
  1495. self.gguf_writer.add_token_types(toktypes)
  1496. self.gguf_writer.add_add_space_prefix(add_prefix)
  1497. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1498. old_eos = special_vocab.special_token_ids["eos"]
  1499. if "chat" in os.path.basename(self.dir_model.absolute()):
  1500. # For the chat model, we replace the eos with '<|im_end|>'.
  1501. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1502. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1503. in chat mode so that the conversation can end normally.")
  1504. special_vocab.add_to_gguf(self.gguf_writer)
  1505. def _try_get_sft_eos(self, tokenizer):
  1506. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1507. im_end_list = tokenizer.encode('<|im_end|>')
  1508. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1509. if len(unused_145_list) == 1:
  1510. eos_token = unused_145_list[0]
  1511. if len(im_end_list) == 1:
  1512. eos_token = im_end_list[0]
  1513. return eos_token
  1514. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1515. if n_head_kv is not None and n_head != n_head_kv:
  1516. n_head = n_head_kv
  1517. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1518. .swapaxes(1, 2)
  1519. .reshape(weights.shape))
  1520. def set_gguf_parameters(self):
  1521. self.gguf_writer.add_name("InternLM2")
  1522. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1523. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1524. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1525. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1526. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1527. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1528. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1529. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1530. def post_write_tensors(self, tensor_map, name, data_torch):
  1531. old_dtype = data_torch.dtype
  1532. # convert any unsupported data types to float32
  1533. if data_torch.dtype not in (torch.float16, torch.float32):
  1534. data_torch = data_torch.to(torch.float32)
  1535. data = data_torch.squeeze().numpy()
  1536. # map tensor names
  1537. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1538. if new_name is None:
  1539. print(f"Can not map tensor {name!r}")
  1540. sys.exit()
  1541. n_dims = len(data.shape)
  1542. data_dtype = data.dtype
  1543. # if f32 desired, convert any float16 to float32
  1544. if self.ftype == 0 and data_dtype == np.float16:
  1545. data = data.astype(np.float32)
  1546. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1547. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1548. data = data.astype(np.float32)
  1549. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1550. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1551. data = data.astype(np.float16)
  1552. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1553. self.gguf_writer.add_tensor(new_name, data)
  1554. def write_tensors(self):
  1555. from einops import rearrange
  1556. num_heads = self.hparams.get("num_attention_heads")
  1557. num_kv_heads = self.hparams.get("num_key_value_heads")
  1558. hidden_size = self.hparams.get("hidden_size")
  1559. q_per_kv = num_heads // num_kv_heads
  1560. head_dim = hidden_size // num_heads
  1561. num_groups = num_heads // q_per_kv
  1562. block_count = self.hparams["num_hidden_layers"]
  1563. model_kv = dict(self.get_tensors())
  1564. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1565. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1566. for name, data_torch in model_kv.items():
  1567. # we don't need these
  1568. if name.endswith(".rotary_emb.inv_freq"):
  1569. continue
  1570. if re.match(qkv_pattern, name):
  1571. bid = re.findall(qkv_pattern, name)[0]
  1572. qkv = data_torch
  1573. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1574. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1575. # The model weights of q and k equire additional reshape.
  1576. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1577. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1578. v = rearrange(v, " o g n i -> o (g n i)").T
  1579. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1580. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1581. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1582. else:
  1583. self.post_write_tensors(tensor_map, name, data_torch)
  1584. @Model.register("BertModel", "CamembertModel")
  1585. class BertModel(Model):
  1586. model_arch = gguf.MODEL_ARCH.BERT
  1587. def __init__(self, *args, **kwargs):
  1588. super().__init__(*args, **kwargs)
  1589. self.vocab_size = None
  1590. def set_gguf_parameters(self):
  1591. super().set_gguf_parameters()
  1592. self.gguf_writer.add_causal_attention(False)
  1593. # get pooling path
  1594. pooling_path = None
  1595. module_path = self.dir_model / "modules.json"
  1596. if module_path.is_file():
  1597. with open(module_path, encoding="utf-8") as f:
  1598. modules = json.load(f)
  1599. for mod in modules:
  1600. if mod["type"] == "sentence_transformers.models.Pooling":
  1601. pooling_path = mod["path"]
  1602. break
  1603. # get pooling type
  1604. if pooling_path is not None:
  1605. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1606. pooling = json.load(f)
  1607. if pooling["pooling_mode_mean_tokens"]:
  1608. pooling_type = gguf.PoolingType.MEAN
  1609. elif pooling["pooling_mode_cls_token"]:
  1610. pooling_type = gguf.PoolingType.CLS
  1611. else:
  1612. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1613. self.gguf_writer.add_pooling_type(pooling_type)
  1614. def set_vocab(self):
  1615. # use huggingface vocab to get all tokens
  1616. vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
  1617. tokens, scores, toktypes = zip(*vocab.all_tokens())
  1618. assert len(tokens) == vocab.vocab_size
  1619. self.vocab_size = vocab.vocab_size
  1620. # we need this to validate the size of the token_type embeddings
  1621. # though currently we are passing all zeros to the token_type embeddings
  1622. n_token_types = len(set(toktypes))
  1623. self.gguf_writer.add_token_type_count(n_token_types)
  1624. # convert to phantom space vocab
  1625. def phantom(tok, typ):
  1626. if tok.startswith(b"[") and tok.endswith(b"]"):
  1627. return tok
  1628. if tok.startswith(b"##"):
  1629. return tok[2:]
  1630. return b"\xe2\x96\x81" + tok
  1631. tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
  1632. # set up bos and eos tokens (cls and sep)
  1633. self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
  1634. self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
  1635. # add vocab to gguf
  1636. self.gguf_writer.add_tokenizer_model("bert")
  1637. self.gguf_writer.add_token_list(tokens)
  1638. self.gguf_writer.add_token_scores(scores)
  1639. self.gguf_writer.add_token_types(toktypes)
  1640. # handle special tokens
  1641. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1642. special_vocab.add_to_gguf(self.gguf_writer)
  1643. def write_tensors(self):
  1644. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1645. tensors = dict(self.get_tensors())
  1646. for name, data_torch in tensors.items():
  1647. # we are only using BERT for embeddings so we don't need the pooling layer
  1648. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1649. continue # we don't need these
  1650. # map tensor names
  1651. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1652. if new_name is None:
  1653. print(f"Can not map tensor {name!r}")
  1654. sys.exit()
  1655. data = data_torch.squeeze().numpy()
  1656. n_dims = len(data.shape)
  1657. new_dtype: type[np.floating[Any]]
  1658. if (
  1659. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1660. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1661. ):
  1662. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1663. new_dtype = np.float16
  1664. else:
  1665. # if f32 desired, convert any float16 to float32
  1666. new_dtype = np.float32
  1667. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1668. if data.dtype != new_dtype:
  1669. data = data.astype(new_dtype)
  1670. self.gguf_writer.add_tensor(new_name, data)
  1671. @Model.register("NomicBertModel")
  1672. class NomicBertModel(BertModel):
  1673. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1674. def __init__(self, *args, **kwargs):
  1675. super().__init__(*args, **kwargs)
  1676. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1677. self.hparams["n_ctx"] = 2048
  1678. # SwigLU activation
  1679. assert self.hparams["activation_function"] == "swiglu"
  1680. # this doesn't do anything in the HF version
  1681. assert self.hparams["causal"] is False
  1682. # no bias tensors
  1683. assert self.hparams["qkv_proj_bias"] is False
  1684. assert self.hparams["mlp_fc1_bias"] is False
  1685. assert self.hparams["mlp_fc2_bias"] is False
  1686. # norm at end of layer
  1687. assert self.hparams["prenorm"] is False
  1688. # standard RoPE
  1689. assert self.hparams["rotary_emb_fraction"] == 1.0
  1690. assert self.hparams["rotary_emb_interleaved"] is False
  1691. assert self.hparams["rotary_emb_scale_base"] is None
  1692. def set_gguf_parameters(self):
  1693. super().set_gguf_parameters()
  1694. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1695. def get_tensors(self):
  1696. assert self.vocab_size is not None
  1697. for name, data in super().get_tensors():
  1698. # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
  1699. if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
  1700. rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
  1701. assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
  1702. data = data[:self.vocab_size, :]
  1703. yield name, data
  1704. @Model.register("GemmaForCausalLM")
  1705. class GemmaModel(Model):
  1706. model_arch = gguf.MODEL_ARCH.GEMMA
  1707. def set_vocab(self):
  1708. self._set_vocab_sentencepiece()
  1709. def set_gguf_parameters(self):
  1710. hparams = self.hparams
  1711. block_count = hparams["num_hidden_layers"]
  1712. self.gguf_writer.add_name(self.dir_model.name)
  1713. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1714. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1715. self.gguf_writer.add_block_count(block_count)
  1716. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1717. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1718. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1719. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1720. self.gguf_writer.add_key_length(hparams["head_dim"])
  1721. self.gguf_writer.add_value_length(hparams["head_dim"])
  1722. self.gguf_writer.add_file_type(self.ftype)
  1723. def write_tensors(self):
  1724. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1725. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1726. for name, data_torch in self.get_tensors():
  1727. old_dtype = data_torch.dtype
  1728. # convert any unsupported data types to float32
  1729. if data_torch.dtype not in (torch.float16, torch.float32):
  1730. data_torch = data_torch.to(torch.float32)
  1731. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1732. if name.endswith("norm.weight"):
  1733. data_torch = data_torch + 1
  1734. data = data_torch.squeeze().numpy()
  1735. # map tensor names
  1736. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1737. if new_name is None:
  1738. print(f"Can not map tensor {name!r}")
  1739. sys.exit()
  1740. n_dims = len(data.shape)
  1741. data_dtype = data.dtype
  1742. data = data.astype(np.float32)
  1743. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1744. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1745. data = data.astype(np.float16)
  1746. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1747. self.gguf_writer.add_tensor(new_name, data)
  1748. @Model.register("Starcoder2ForCausalLM")
  1749. class StarCoder2Model(Model):
  1750. model_arch = gguf.MODEL_ARCH.STARCODER2
  1751. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1752. class MambaModel(Model):
  1753. model_arch = gguf.MODEL_ARCH.MAMBA
  1754. def set_vocab(self):
  1755. vocab_size = self.hparams["vocab_size"]
  1756. # Round vocab size to next multiple of 8
  1757. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1758. # pad using ceiling division
  1759. # ref: https://stackoverflow.com/a/17511341/22827863
  1760. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1761. self.hparams["vocab_size"] = vocab_size
  1762. if (self.dir_model / "tokenizer.json").is_file():
  1763. self._set_vocab_gpt2()
  1764. else:
  1765. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1766. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1767. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1768. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1769. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1770. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1771. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1772. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1773. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1774. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1775. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1776. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1777. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1778. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1779. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1780. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1781. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1782. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1783. def set_gguf_parameters(self):
  1784. d_model = self.find_hparam(["hidden_size", "d_model"])
  1785. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1786. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1787. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1788. # ceiling division
  1789. # ref: https://stackoverflow.com/a/17511341/22827863
  1790. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1791. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1792. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1793. # Fail early for models which don't have a block expansion factor of 2
  1794. assert d_inner == 2 * d_model
  1795. self.gguf_writer.add_name(self.dir_model.name)
  1796. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1797. self.gguf_writer.add_embedding_length(d_model)
  1798. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1799. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1800. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1801. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1802. self.gguf_writer.add_ssm_inner_size(d_inner)
  1803. self.gguf_writer.add_ssm_state_size(d_state)
  1804. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1805. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1806. self.gguf_writer.add_file_type(self.ftype)
  1807. def write_tensors(self):
  1808. block_count = self.hparams["n_layer"]
  1809. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1810. tok_embd = None
  1811. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1812. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1813. for name, data_torch in self.get_tensors():
  1814. old_dtype = data_torch.dtype
  1815. # convert any unsupported data types to float32
  1816. if data_torch.dtype not in (torch.float16, torch.float32):
  1817. data_torch = data_torch.to(torch.float32)
  1818. # map tensor names
  1819. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1820. if new_name is None:
  1821. print(f"Can not map tensor {name!r}")
  1822. sys.exit()
  1823. if name.endswith(".A_log"):
  1824. print("A_log --> A ==> " + new_name)
  1825. data_torch = -torch.exp(data_torch)
  1826. # assuming token_embd.weight is seen before output.weight
  1827. if tok_embd is not None and new_name == output_name:
  1828. if torch.equal(tok_embd, data_torch):
  1829. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1830. continue
  1831. if new_name == tok_embd_name:
  1832. tok_embd = data_torch
  1833. data = data_torch.squeeze().numpy()
  1834. n_dims = len(data.shape)
  1835. data_dtype = data.dtype
  1836. # if f32 desired, convert any float16 to float32
  1837. if self.ftype == 0 and data_dtype == np.float16:
  1838. data = data.astype(np.float32)
  1839. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1840. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1841. data = data.astype(np.float32)
  1842. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1843. if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1844. data = data.astype(np.float16)
  1845. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1846. self.gguf_writer.add_tensor(new_name, data)
  1847. @Model.register("CohereForCausalLM")
  1848. class CommandR2Model(Model):
  1849. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1850. def __init__(self, *args, **kwargs):
  1851. super().__init__(*args, **kwargs)
  1852. # max_position_embeddings = 8192 in config.json but model was actually
  1853. # trained on 128k context length
  1854. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1855. def set_gguf_parameters(self):
  1856. super().set_gguf_parameters()
  1857. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1858. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1859. ###### CONVERSION LOGIC ######
  1860. def parse_args() -> argparse.Namespace:
  1861. parser = argparse.ArgumentParser(
  1862. description="Convert a huggingface model to a GGML compatible file")
  1863. parser.add_argument(
  1864. "--vocab-only", action="store_true",
  1865. help="extract only the vocab",
  1866. )
  1867. parser.add_argument(
  1868. "--awq-path", type=Path, default=None,
  1869. help="Path to scale awq cache file")
  1870. parser.add_argument(
  1871. "--outfile", type=Path,
  1872. help="path to write to; default: based on input",
  1873. )
  1874. parser.add_argument(
  1875. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1876. help="output format - use f32 for float32, f16 for float16",
  1877. )
  1878. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1879. parser.add_argument(
  1880. "model", type=Path,
  1881. help="directory containing model file",
  1882. )
  1883. return parser.parse_args()
  1884. def main() -> None:
  1885. args = parse_args()
  1886. dir_model = args.model
  1887. if args.awq_path:
  1888. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1889. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1890. tmp_model_path = args.model / "weighted_model"
  1891. dir_model = tmp_model_path
  1892. if tmp_model_path.is_dir():
  1893. print(f"{tmp_model_path} exists as a weighted model.")
  1894. else:
  1895. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1896. print("Saving new weighted model ...")
  1897. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1898. print(f"Saved weighted model at {tmp_model_path}.")
  1899. if not dir_model.is_dir():
  1900. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1901. sys.exit(1)
  1902. ftype_map = {
  1903. "f32": gguf.GGMLQuantizationType.F32,
  1904. "f16": gguf.GGMLQuantizationType.F16,
  1905. }
  1906. if args.outfile is not None:
  1907. fname_out = args.outfile
  1908. else:
  1909. # output in the same directory as the model by default
  1910. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1911. print(f"Loading model: {dir_model.name}")
  1912. hparams = Model.load_hparams(dir_model)
  1913. with torch.inference_mode():
  1914. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1915. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  1916. print("Set model parameters")
  1917. model_instance.set_gguf_parameters()
  1918. print("Set model tokenizer")
  1919. model_instance.set_vocab()
  1920. if args.vocab_only:
  1921. print(f"Exporting model vocab to '{fname_out}'")
  1922. model_instance.write_vocab()
  1923. else:
  1924. print(f"Exporting model to '{fname_out}'")
  1925. model_instance.write()
  1926. print(f"Model successfully exported to '{fname_out}'")
  1927. if __name__ == '__main__':
  1928. main()