1
0

convert_hf_to_gguf.py 507 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  448. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  449. # we don't need these
  450. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  451. continue
  452. old_dtype = data_torch.dtype
  453. # convert any unsupported data types to float32
  454. if data_torch.dtype not in (torch.float16, torch.float32):
  455. data_torch = data_torch.to(torch.float32)
  456. # use the first number-like part of the tensor name as the block id
  457. bid = None
  458. for part in name.split("."):
  459. if part.isdecimal():
  460. bid = int(part)
  461. break
  462. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  463. # TODO: why do we squeeze here?
  464. # data = data_torch.squeeze().numpy()
  465. data = data_torch.numpy()
  466. n_dims = len(data.shape)
  467. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  468. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  469. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  470. data_qtype = gguf.GGMLQuantizationType.F32
  471. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  472. # Some tensor types are always in float32
  473. if data_qtype is False and (
  474. any(
  475. self.match_model_tensor_name(new_name, key, bid)
  476. for key in (
  477. gguf.MODEL_TENSOR.FFN_GATE_INP,
  478. gguf.MODEL_TENSOR.POS_EMBD,
  479. gguf.MODEL_TENSOR.TOKEN_TYPES,
  480. gguf.MODEL_TENSOR.SSM_CONV1D,
  481. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  482. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  483. gguf.MODEL_TENSOR.TIME_MIX_W1,
  484. gguf.MODEL_TENSOR.TIME_MIX_W2,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  486. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  487. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  488. gguf.MODEL_TENSOR.POSNET_NORM1,
  489. gguf.MODEL_TENSOR.POSNET_NORM2,
  490. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  492. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  493. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  494. )
  495. )
  496. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  497. ):
  498. data_qtype = gguf.GGMLQuantizationType.F32
  499. if data_qtype is False and any(
  500. self.match_model_tensor_name(new_name, key, bid)
  501. for key in (
  502. gguf.MODEL_TENSOR.TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  504. gguf.MODEL_TENSOR.OUTPUT,
  505. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  506. gguf.MODEL_TENSOR.LAUREL_L,
  507. gguf.MODEL_TENSOR.LAUREL_R,
  508. )
  509. ):
  510. if self.ftype in (
  511. gguf.LlamaFileType.MOSTLY_TQ1_0,
  512. gguf.LlamaFileType.MOSTLY_TQ2_0,
  513. ):
  514. # TODO: use Q4_K and Q6_K
  515. data_qtype = gguf.GGMLQuantizationType.F16
  516. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  517. if isinstance(data_qtype, bool):
  518. if self.ftype == gguf.LlamaFileType.ALL_F32:
  519. data_qtype = gguf.GGMLQuantizationType.F32
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  521. data_qtype = gguf.GGMLQuantizationType.F16
  522. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  523. data_qtype = gguf.GGMLQuantizationType.BF16
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  525. data_qtype = gguf.GGMLQuantizationType.Q8_0
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  527. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  529. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  530. else:
  531. raise ValueError(f"Unknown file type: {self.ftype.name}")
  532. try:
  533. data = gguf.quants.quantize(data, data_qtype)
  534. except gguf.QuantError as e:
  535. logger.warning("%s, %s", e, "falling back to F16")
  536. data_qtype = gguf.GGMLQuantizationType.F16
  537. data = gguf.quants.quantize(data, data_qtype)
  538. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  539. # reverse shape to make it similar to the internal ggml dimension order
  540. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  541. # n_dims is implicit in the shape
  542. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  543. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  544. def set_type(self):
  545. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  546. def prepare_metadata(self, vocab_only: bool):
  547. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  548. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  549. # If we are using HF model id, set the metadata name to the model id
  550. if self.remote_hf_model_id:
  551. self.metadata.name = self.remote_hf_model_id
  552. # Fallback to model directory name if metadata name is still missing
  553. if self.metadata.name is None:
  554. self.metadata.name = self.dir_model.name
  555. # Generate parameter weight class (useful for leader boards) if not yet determined
  556. if self.metadata.size_label is None and total_params > 0:
  557. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  558. self.set_type()
  559. logger.info("Set meta model")
  560. self.metadata.set_gguf_meta_model(self.gguf_writer)
  561. logger.info("Set model parameters")
  562. self.set_gguf_parameters()
  563. logger.info("Set model quantization version")
  564. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  565. def write_vocab(self):
  566. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  567. def write(self):
  568. self.prepare_tensors()
  569. self.prepare_metadata(vocab_only=False)
  570. self.gguf_writer.write_header_to_file(path=self.fname_out)
  571. self.gguf_writer.write_kv_data_to_file()
  572. self.gguf_writer.write_tensors_to_file(progress=True)
  573. self.gguf_writer.close()
  574. @staticmethod
  575. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  576. part_names: list[str] = []
  577. for filename in os.listdir(dir_model):
  578. if filename.startswith(prefix) and filename.endswith(suffix):
  579. part_names.append(filename)
  580. part_names.sort()
  581. return part_names
  582. @staticmethod
  583. def load_hparams(dir_model: Path, is_mistral_format: bool):
  584. if is_mistral_format:
  585. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  586. config = json.load(f)
  587. return config
  588. try:
  589. # for security reason, we don't allow loading remote code by default
  590. # if a model need remote code, we will fallback to config.json
  591. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  592. except Exception as e:
  593. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  594. logger.warning("Trying to load config.json instead")
  595. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  596. config = json.load(f)
  597. if "llm_config" in config:
  598. # rename for InternVL
  599. config["text_config"] = config["llm_config"]
  600. if "lm_config" in config:
  601. # rename for GlmASR
  602. config["text_config"] = config["lm_config"]
  603. if "thinker_config" in config:
  604. # rename for Qwen2.5-Omni
  605. config["text_config"] = config["thinker_config"]["text_config"]
  606. if "lfm" in config:
  607. # rename for LFM2-Audio
  608. config["text_config"] = config["lfm"]
  609. return config
  610. @classmethod
  611. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  612. assert names
  613. def func(modelcls: AnyModel) -> AnyModel:
  614. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  615. for name in names:
  616. cls._model_classes[model_type][name] = modelcls
  617. return modelcls
  618. return func
  619. @classmethod
  620. def print_registered_models(cls):
  621. for model_type, model_classes in cls._model_classes.items():
  622. logger.error(f"{model_type.name} models:")
  623. for name in sorted(model_classes.keys()):
  624. logger.error(f" - {name}")
  625. @classmethod
  626. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  627. try:
  628. return cls._model_classes[model_type][arch]
  629. except KeyError:
  630. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  631. class TextModel(ModelBase):
  632. model_type = ModelType.TEXT
  633. hf_arch: str
  634. def __init__(self, *args, **kwargs):
  635. super().__init__(*args, **kwargs)
  636. if not self.is_mistral_format:
  637. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  638. else:
  639. self.hf_arch = ""
  640. if "text_config" in self.hparams:
  641. # move the text_config to the root level
  642. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  643. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  644. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  645. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  646. rope_theta = self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)
  647. local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "swa_rope_theta", "rope_local_base_freq"], optional=True)
  648. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  649. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  650. if local_rope_theta is not None:
  651. self.rope_parameters["sliding_attention"] = {"rope_theta": local_rope_theta}
  652. if "rope_theta" not in self.rope_parameters and rope_theta is not None:
  653. self.rope_parameters["rope_theta"] = rope_theta
  654. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  655. self.rope_parameters["rope_type"] = rope_type
  656. @classmethod
  657. def __init_subclass__(cls):
  658. # can't use an abstract property, because overriding it without type errors
  659. # would require using decorated functions instead of simply defining the property
  660. if "model_arch" not in cls.__dict__:
  661. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  662. def set_vocab(self):
  663. self._set_vocab_gpt2()
  664. def prepare_metadata(self, vocab_only: bool):
  665. super().prepare_metadata(vocab_only=vocab_only)
  666. total_params = self.gguf_writer.get_total_parameter_count()[0]
  667. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  668. output_type: str = self.ftype.name.partition("_")[2]
  669. # Filename Output
  670. if self.fname_out.is_dir():
  671. # Generate default filename based on model specification and available metadata
  672. if not vocab_only:
  673. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  674. else:
  675. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  676. # Use the default filename
  677. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  678. else:
  679. # Output path is a custom defined templated filename
  680. # Note: `not is_dir()` is used because `.is_file()` will not detect
  681. # file template strings as it doesn't actually exist as a file
  682. # Process templated file name with the output ftype, useful with the "auto" ftype
  683. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  684. logger.info("Set model tokenizer")
  685. self.set_vocab()
  686. def set_gguf_parameters(self):
  687. self.gguf_writer.add_block_count(self.block_count)
  688. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  689. self.gguf_writer.add_context_length(n_ctx)
  690. logger.info(f"gguf: context length = {n_ctx}")
  691. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  692. self.gguf_writer.add_embedding_length(n_embd)
  693. logger.info(f"gguf: embedding length = {n_embd}")
  694. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  695. self.gguf_writer.add_feed_forward_length(n_ff)
  696. logger.info(f"gguf: feed forward length = {n_ff}")
  697. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  698. self.gguf_writer.add_head_count(n_head)
  699. logger.info(f"gguf: head count = {n_head}")
  700. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  701. self.gguf_writer.add_head_count_kv(n_head_kv)
  702. logger.info(f"gguf: key-value head count = {n_head_kv}")
  703. # TODO: Handle "sliding_attention" similarly when models start implementing it
  704. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  705. if (rope_type := rope_params.get("rope_type")) is not None:
  706. rope_factor = rope_params.get("factor")
  707. rope_gguf_type = gguf.RopeScalingType.NONE
  708. if rope_type == "linear" and rope_factor is not None:
  709. rope_gguf_type = gguf.RopeScalingType.LINEAR
  710. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  711. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  712. elif rope_type == "yarn" and rope_factor is not None:
  713. rope_gguf_type = gguf.RopeScalingType.YARN
  714. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  715. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  716. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  717. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  718. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  719. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  720. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  721. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  722. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  723. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  724. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  725. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  726. elif rope_type == "su" or rope_type == "longrope":
  727. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  728. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  729. elif rope_type == "dynamic":
  730. # HunYuan, handled in model class
  731. pass
  732. elif rope_type.lower() == "llama3":
  733. # Handled in generate_extra_tensors
  734. pass
  735. else:
  736. logger.warning(f"Unknown RoPE type: {rope_type}")
  737. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  738. if "mrope_section" in self.rope_parameters:
  739. mrope_section = self.rope_parameters["mrope_section"]
  740. # Pad to 4 dimensions [time, height, width, extra]
  741. while len(mrope_section) < 4:
  742. mrope_section.append(0)
  743. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  744. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  745. if (rope_theta := rope_params.get("rope_theta")) is not None:
  746. self.gguf_writer.add_rope_freq_base(rope_theta)
  747. logger.info(f"gguf: rope theta = {rope_theta}")
  748. if (local_rope_theta := self.rope_parameters.get("sliding_attention", {}).get("rope_theta")) is not None:
  749. self.gguf_writer.add_rope_freq_base_swa(local_rope_theta)
  750. logger.info(f"gguf: rope theta swa = {local_rope_theta}")
  751. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  752. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  753. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  754. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  755. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  756. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  757. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  758. self.gguf_writer.add_expert_count(n_experts)
  759. logger.info(f"gguf: expert count = {n_experts}")
  760. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  761. self.gguf_writer.add_expert_used_count(n_experts_used)
  762. logger.info(f"gguf: experts used count = {n_experts_used}")
  763. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  764. self.gguf_writer.add_expert_group_count(n_expert_groups)
  765. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  766. if (n_group_used := self.hparams.get("topk_group")) is not None:
  767. self.gguf_writer.add_expert_group_used_count(n_group_used)
  768. logger.info(f"gguf: expert groups used count = {n_group_used}")
  769. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  770. if score_func == "sigmoid":
  771. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  772. elif score_func == "softmax":
  773. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  774. else:
  775. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  776. logger.info(f"gguf: expert score gating function = {score_func}")
  777. if (head_dim := self.hparams.get("head_dim")) is not None:
  778. self.gguf_writer.add_key_length(head_dim)
  779. self.gguf_writer.add_value_length(head_dim)
  780. self.gguf_writer.add_file_type(self.ftype)
  781. logger.info(f"gguf: file type = {self.ftype}")
  782. def write_vocab(self):
  783. if len(self.gguf_writer.tensors) != 1:
  784. raise ValueError('Splitting the vocabulary is not supported')
  785. self.prepare_metadata(vocab_only=True)
  786. self.gguf_writer.write_header_to_file(path=self.fname_out)
  787. self.gguf_writer.write_kv_data_to_file()
  788. self.gguf_writer.close()
  789. def does_token_look_special(self, token: str | bytes) -> bool:
  790. if isinstance(token, (bytes, bytearray)):
  791. token_text = token.decode(encoding="utf-8")
  792. elif isinstance(token, memoryview):
  793. token_text = token.tobytes().decode(encoding="utf-8")
  794. else:
  795. token_text = token
  796. # Some models mark some added tokens which ought to be control tokens as not special.
  797. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  798. seems_special = token_text in (
  799. "<pad>", # deepseek-coder
  800. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  801. )
  802. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  803. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  804. # TODO: should these be marked as UNUSED instead? (maybe not)
  805. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  806. return seems_special
  807. # used for GPT-2 BPE and WordPiece vocabs
  808. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  809. tokens: list[str] = []
  810. toktypes: list[int] = []
  811. from transformers import AutoTokenizer
  812. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  813. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  814. assert max(tokenizer.vocab.values()) < vocab_size
  815. tokpre = self.get_vocab_base_pre(tokenizer)
  816. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  817. added_vocab = tokenizer.get_added_vocab()
  818. added_tokens_decoder = tokenizer.added_tokens_decoder
  819. for i in range(vocab_size):
  820. if i not in reverse_vocab:
  821. tokens.append(f"[PAD{i}]")
  822. toktypes.append(gguf.TokenType.UNUSED)
  823. else:
  824. token: str = reverse_vocab[i]
  825. if token in added_vocab:
  826. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  827. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  828. if not added_tokens_decoder[i].normalized:
  829. previous_token = token
  830. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  831. if previous_token != token:
  832. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  833. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  834. toktypes.append(gguf.TokenType.CONTROL)
  835. else:
  836. # NOTE: this was added for Gemma.
  837. # Encoding and decoding the tokens above isn't sufficient for this case.
  838. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  839. toktypes.append(gguf.TokenType.USER_DEFINED)
  840. else:
  841. toktypes.append(gguf.TokenType.NORMAL)
  842. tokens.append(token)
  843. return tokens, toktypes, tokpre
  844. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  845. # do not modify it manually!
  846. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  847. # Marker: Start get_vocab_base_pre
  848. def get_vocab_base_pre(self, tokenizer) -> str:
  849. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  850. # is specific for the BPE pre-tokenizer used by the model
  851. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  852. # use in llama.cpp to implement the same pre-tokenizer
  853. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  854. chktok = tokenizer.encode(chktxt)
  855. chkhsh = sha256(str(chktok).encode()).hexdigest()
  856. logger.debug(f"chktok: {chktok}")
  857. logger.debug(f"chkhsh: {chkhsh}")
  858. res = None
  859. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  860. # or pull the latest version of the model from Huggingface
  861. # don't edit the hashes manually!
  862. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  863. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  864. res = "chatglm-bpe"
  865. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  866. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  867. res = "chatglm-bpe"
  868. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  869. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  870. res = "glm4"
  871. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  872. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  873. res = "glm4"
  874. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  875. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  876. res = "minerva-7b"
  877. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  878. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  879. res = "hunyuan"
  880. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  881. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  882. res = "hunyuan-dense"
  883. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  884. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  885. res = "falcon-h1"
  886. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  887. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  888. res = "falcon-h1"
  889. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  890. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  891. res = "falcon-h1"
  892. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  893. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  894. res = "falcon-h1"
  895. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  896. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  897. res = "kimi-k2"
  898. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  899. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  900. res = "qwen2"
  901. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  902. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  903. res = "grok-2"
  904. if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
  905. # ref: https://huggingface.co/aari1995/German_Semantic_V3
  906. res = "jina-v2-de"
  907. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  908. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  909. res = "llama-bpe"
  910. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  911. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  912. res = "deepseek-llm"
  913. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  914. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  915. res = "deepseek-coder"
  916. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  917. # ref: https://huggingface.co/tiiuae/falcon-7b
  918. res = "falcon"
  919. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  920. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  921. res = "bert-bge"
  922. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  923. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  924. res = "falcon3"
  925. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  926. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  927. res = "bert-bge-large"
  928. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  929. # ref: https://huggingface.co/mosaicml/mpt-7b
  930. res = "mpt"
  931. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  932. # ref: https://huggingface.co/bigcode/starcoder2-3b
  933. res = "starcoder"
  934. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  935. # ref: https://huggingface.co/openai-community/gpt2
  936. res = "gpt-2"
  937. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  938. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  939. res = "stablelm2"
  940. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  941. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  942. res = "refact"
  943. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  944. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  945. res = "command-r"
  946. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  947. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  948. res = "qwen2"
  949. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  950. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  951. res = "olmo"
  952. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  953. # ref: https://huggingface.co/databricks/dbrx-base
  954. res = "dbrx"
  955. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  956. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  957. res = "jina-v1-en"
  958. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  959. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  960. res = "jina-v2-en"
  961. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  962. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  963. res = "jina-v2-es"
  964. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  965. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  966. res = "jina-v2-de"
  967. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  968. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  969. res = "smaug-bpe"
  970. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  971. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  972. res = "poro-chat"
  973. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  974. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  975. res = "jina-v2-code"
  976. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  977. # ref: https://huggingface.co/LumiOpen/Viking-7B
  978. res = "viking"
  979. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  980. # ref: https://huggingface.co/core42/jais-13b
  981. res = "jais"
  982. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  983. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  984. res = "codeshell"
  985. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  986. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  987. res = "tekken"
  988. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  989. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  990. res = "smollm"
  991. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  992. # ref: https://huggingface.co/bigscience/bloom
  993. res = "bloom"
  994. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  995. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  996. res = "gpt3-finnish"
  997. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  998. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  999. res = "exaone"
  1000. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  1001. # ref: https://huggingface.co/microsoft/phi-2
  1002. res = "phi-2"
  1003. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  1004. # ref: https://huggingface.co/facebook/chameleon-7b
  1005. res = "chameleon"
  1006. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  1007. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  1008. res = "roberta-bpe"
  1009. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  1010. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1011. res = "gigachat"
  1012. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1013. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1014. res = "megrez"
  1015. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1016. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1017. res = "deepseek-v3"
  1018. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1019. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1020. res = "deepseek-r1-qwen"
  1021. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1022. # ref: https://huggingface.co/Xenova/gpt-4o
  1023. res = "gpt-4o"
  1024. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1025. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1026. res = "superbpe"
  1027. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1028. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1029. res = "trillion"
  1030. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1031. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1032. res = "bailingmoe"
  1033. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1034. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1035. res = "llama4"
  1036. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1037. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1038. res = "pixtral"
  1039. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1040. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1041. res = "seed-coder"
  1042. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1043. # ref: https://huggingface.co/skt/A.X-4.0
  1044. res = "a.x-4.0"
  1045. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1046. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1047. res = "midm-2.0"
  1048. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1049. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1050. res = "lfm2"
  1051. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1052. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1053. res = "exaone4"
  1054. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1055. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1056. res = "mellum"
  1057. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1058. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1059. res = "modern-bert"
  1060. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1061. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1062. res = "afmoe"
  1063. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1064. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1065. res = "bailingmoe2"
  1066. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1067. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1068. res = "granite-docling"
  1069. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1070. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1071. res = "minimax-m2"
  1072. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1073. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1074. res = "kormo"
  1075. if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
  1076. # ref: https://huggingface.co/tencent/Youtu-LLM-2B
  1077. res = "youtu"
  1078. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1079. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1080. res = "solar-open"
  1081. if res is None:
  1082. logger.warning("\n")
  1083. logger.warning("**************************************************************************************")
  1084. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1085. logger.warning("** There are 2 possible reasons for this:")
  1086. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1087. logger.warning("** - the pre-tokenization config has changed upstream")
  1088. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1089. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1090. logger.warning("**")
  1091. logger.warning(f"** chkhsh: {chkhsh}")
  1092. logger.warning("**************************************************************************************")
  1093. logger.warning("\n")
  1094. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1095. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1096. logger.debug(f"chkhsh: {chkhsh}")
  1097. return res
  1098. # Marker: End get_vocab_base_pre
  1099. def _set_vocab_none(self) -> None:
  1100. self.gguf_writer.add_tokenizer_model("none")
  1101. def _set_vocab_gpt2(self) -> None:
  1102. tokens, toktypes, tokpre = self.get_vocab_base()
  1103. self.gguf_writer.add_tokenizer_model("gpt2")
  1104. self.gguf_writer.add_tokenizer_pre(tokpre)
  1105. self.gguf_writer.add_token_list(tokens)
  1106. self.gguf_writer.add_token_types(toktypes)
  1107. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1108. special_vocab.add_to_gguf(self.gguf_writer)
  1109. def _set_vocab_qwen(self):
  1110. dir_model = self.dir_model
  1111. hparams = self.hparams
  1112. tokens: list[str] = []
  1113. toktypes: list[int] = []
  1114. from transformers import AutoTokenizer
  1115. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1116. vocab_size = hparams["vocab_size"]
  1117. assert max(tokenizer.get_vocab().values()) < vocab_size
  1118. tokpre = self.get_vocab_base_pre(tokenizer)
  1119. merges = []
  1120. vocab = {}
  1121. mergeable_ranks = tokenizer.mergeable_ranks
  1122. for token, rank in mergeable_ranks.items():
  1123. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1124. if len(token) == 1:
  1125. continue
  1126. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1127. assert len(merged) == 2
  1128. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1129. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1130. added_vocab = tokenizer.special_tokens
  1131. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1132. for i in range(vocab_size):
  1133. if i not in reverse_vocab:
  1134. tokens.append(f"[PAD{i}]")
  1135. toktypes.append(gguf.TokenType.UNUSED)
  1136. elif reverse_vocab[i] in added_vocab:
  1137. tokens.append(reverse_vocab[i])
  1138. toktypes.append(gguf.TokenType.CONTROL)
  1139. else:
  1140. tokens.append(reverse_vocab[i])
  1141. toktypes.append(gguf.TokenType.NORMAL)
  1142. self.gguf_writer.add_tokenizer_model("gpt2")
  1143. self.gguf_writer.add_tokenizer_pre(tokpre)
  1144. self.gguf_writer.add_token_list(tokens)
  1145. self.gguf_writer.add_token_types(toktypes)
  1146. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1147. special_vocab.merges = merges
  1148. # only add special tokens when they were not already loaded from config.json
  1149. if len(special_vocab.special_token_ids) == 0:
  1150. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1151. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1152. # this one is usually not in config.json anyway
  1153. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1154. special_vocab.add_to_gguf(self.gguf_writer)
  1155. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1156. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1157. self.gguf_writer.add_tokenizer_model("llama")
  1158. self.gguf_writer.add_tokenizer_pre("default")
  1159. self.gguf_writer.add_token_list(tokens)
  1160. self.gguf_writer.add_token_scores(scores)
  1161. self.gguf_writer.add_token_types(toktypes)
  1162. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1163. special_vocab.add_to_gguf(self.gguf_writer)
  1164. def _create_vocab_sentencepiece(self):
  1165. from sentencepiece import SentencePieceProcessor
  1166. tokenizer_path = self.dir_model / 'tokenizer.model'
  1167. if not tokenizer_path.is_file():
  1168. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1169. tokenizer = SentencePieceProcessor()
  1170. tokenizer.LoadFromFile(str(tokenizer_path))
  1171. vocab_size = self.find_hparam([
  1172. "vocab_size_per_layer_input", # gemma3n
  1173. "vocab_size",
  1174. ], optional=True) or tokenizer.vocab_size()
  1175. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1176. scores: list[float] = [-10000.0] * vocab_size
  1177. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1178. for token_id in range(tokenizer.vocab_size()):
  1179. if token_id >= vocab_size:
  1180. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1181. break
  1182. piece = tokenizer.IdToPiece(token_id)
  1183. text = piece.encode("utf-8")
  1184. score = tokenizer.GetScore(token_id)
  1185. toktype = SentencePieceTokenTypes.NORMAL
  1186. if tokenizer.IsUnknown(token_id):
  1187. toktype = SentencePieceTokenTypes.UNKNOWN
  1188. elif tokenizer.IsControl(token_id):
  1189. toktype = SentencePieceTokenTypes.CONTROL
  1190. elif tokenizer.IsUnused(token_id):
  1191. toktype = SentencePieceTokenTypes.UNUSED
  1192. elif tokenizer.IsByte(token_id):
  1193. toktype = SentencePieceTokenTypes.BYTE
  1194. tokens[token_id] = text
  1195. scores[token_id] = score
  1196. toktypes[token_id] = toktype
  1197. added_tokens_file = self.dir_model / 'added_tokens.json'
  1198. if added_tokens_file.is_file():
  1199. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1200. added_tokens_json = json.load(f)
  1201. for key in added_tokens_json:
  1202. token_id = added_tokens_json[key]
  1203. if token_id >= vocab_size:
  1204. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1205. continue
  1206. tokens[token_id] = key.encode("utf-8")
  1207. scores[token_id] = -1000.0
  1208. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1209. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1210. if tokenizer_config_file.is_file():
  1211. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1212. tokenizer_config_json = json.load(f)
  1213. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1214. for token_id, token_data in added_tokens_decoder.items():
  1215. token_id = int(token_id)
  1216. token: str = token_data["content"]
  1217. if token_id >= vocab_size:
  1218. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1219. continue
  1220. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1221. if tokens[token_id] != token.encode("utf-8"):
  1222. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1223. if token_data.get("special") or self.does_token_look_special(token):
  1224. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1225. else:
  1226. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1227. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1228. scores[token_id] = -1000.0
  1229. tokens[token_id] = token.encode("utf-8")
  1230. if vocab_size > len(tokens):
  1231. pad_count = vocab_size - len(tokens)
  1232. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1233. for i in range(1, pad_count + 1):
  1234. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1235. scores.append(-1000.0)
  1236. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1237. return tokens, scores, toktypes
  1238. def _set_vocab_llama_hf(self):
  1239. vocab = gguf.LlamaHfVocab(self.dir_model)
  1240. tokens = []
  1241. scores = []
  1242. toktypes = []
  1243. for text, score, toktype in vocab.all_tokens():
  1244. tokens.append(text)
  1245. scores.append(score)
  1246. toktypes.append(toktype)
  1247. assert len(tokens) == vocab.vocab_size
  1248. self.gguf_writer.add_tokenizer_model("llama")
  1249. self.gguf_writer.add_tokenizer_pre("default")
  1250. self.gguf_writer.add_token_list(tokens)
  1251. self.gguf_writer.add_token_scores(scores)
  1252. self.gguf_writer.add_token_types(toktypes)
  1253. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1254. special_vocab.add_to_gguf(self.gguf_writer)
  1255. def _set_vocab_rwkv_world(self):
  1256. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1257. vocab_size = self.hparams.get("vocab_size", 65536)
  1258. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1259. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1260. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1261. lines = f.readlines()
  1262. for line in lines:
  1263. parts = line.split(' ')
  1264. assert len(parts) >= 3
  1265. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1266. token = token.encode("utf-8") if isinstance(token, str) else token
  1267. assert isinstance(token, bytes)
  1268. assert len(token) == token_len
  1269. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1270. tokens.append(token_text.encode("utf-8"))
  1271. toktypes.append(gguf.TokenType.NORMAL)
  1272. remainder = vocab_size - len(tokens)
  1273. assert remainder >= 0
  1274. for i in range(len(tokens), vocab_size):
  1275. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1276. toktypes.append(gguf.TokenType.UNUSED)
  1277. self.gguf_writer.add_tokenizer_model("rwkv")
  1278. self.gguf_writer.add_token_list(tokens)
  1279. self.gguf_writer.add_token_types(toktypes)
  1280. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1281. if special_vocab.chat_template is None:
  1282. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1283. if template_path.is_file():
  1284. with open(template_path, "r", encoding="utf-8") as f:
  1285. template = f.read()
  1286. else:
  1287. template = "rwkv-world"
  1288. special_vocab.chat_template = template
  1289. # hack: Add '\n\n' as the EOT token to make it chat normally
  1290. special_vocab._set_special_token("eot", 261)
  1291. # hack: Override these as they have already been set (incorrectly)
  1292. special_vocab.special_token_ids["bos"] = 0
  1293. special_vocab.special_token_ids["eos"] = 0
  1294. special_vocab.add_to_gguf(self.gguf_writer)
  1295. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1296. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1297. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1298. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1299. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1300. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1301. assert field # tokenizer model
  1302. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1303. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1304. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1305. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1306. assert field # token list
  1307. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1308. if model_name == "llama-spm":
  1309. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1310. assert field # token scores
  1311. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1312. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1313. assert field # token types
  1314. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1315. if model_name != "llama-spm":
  1316. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1317. assert field # token merges
  1318. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1319. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1320. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1321. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1322. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1323. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1324. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1325. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1326. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1327. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1328. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1329. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1330. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1331. def _try_set_pooling_type(self) -> None:
  1332. # get pooling path
  1333. pooling_path = None
  1334. module_path = self.dir_model / "modules.json"
  1335. if module_path.is_file():
  1336. with open(module_path, encoding="utf-8") as f:
  1337. modules = json.load(f)
  1338. for mod in modules:
  1339. if mod["type"] == "sentence_transformers.models.Pooling":
  1340. pooling_path = mod["path"]
  1341. break
  1342. # get pooling type
  1343. if pooling_path is not None:
  1344. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1345. pooling = json.load(f)
  1346. if pooling["pooling_mode_mean_tokens"]:
  1347. pooling_type = gguf.PoolingType.MEAN
  1348. elif pooling["pooling_mode_cls_token"]:
  1349. pooling_type = gguf.PoolingType.CLS
  1350. elif pooling["pooling_mode_lasttoken"]:
  1351. pooling_type = gguf.PoolingType.LAST
  1352. else:
  1353. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1354. self.gguf_writer.add_pooling_type(pooling_type)
  1355. def _set_vocab_glmedge(self):
  1356. from transformers import AutoTokenizer
  1357. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1358. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1359. tokens, toktypes, tokpre = self.get_vocab_base()
  1360. self.gguf_writer.add_tokenizer_model("gpt2")
  1361. self.gguf_writer.add_tokenizer_pre(tokpre)
  1362. self.gguf_writer.add_token_list(tokens)
  1363. self.gguf_writer.add_token_types(toktypes)
  1364. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1365. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1366. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1367. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1368. special_vocab.add_to_gguf(self.gguf_writer)
  1369. def _set_vocab_interns1(self):
  1370. tokens: list[str] = []
  1371. toktypes: list[int] = []
  1372. from transformers import AutoTokenizer
  1373. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1374. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1375. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1376. assert max(vocab.values()) < vocab_size
  1377. tokpre = self.get_vocab_base_pre(tokenizer)
  1378. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1379. added_vocab = tokenizer.get_added_vocab()
  1380. added_tokens_decoder = tokenizer.added_tokens_decoder
  1381. for i in range(vocab_size):
  1382. if i not in reverse_vocab:
  1383. tokens.append(f"[PAD{i}]")
  1384. toktypes.append(gguf.TokenType.UNUSED)
  1385. else:
  1386. token: str = reverse_vocab[i]
  1387. if token in added_vocab:
  1388. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1389. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1390. if not added_tokens_decoder[i].normalized:
  1391. previous_token = token
  1392. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1393. if previous_token != token:
  1394. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1395. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1396. toktypes.append(gguf.TokenType.CONTROL)
  1397. else:
  1398. toktypes.append(gguf.TokenType.USER_DEFINED)
  1399. else:
  1400. toktypes.append(gguf.TokenType.NORMAL)
  1401. tokens.append(token)
  1402. self.gguf_writer.add_tokenizer_model("gpt2")
  1403. self.gguf_writer.add_tokenizer_pre(tokpre)
  1404. self.gguf_writer.add_token_list(tokens)
  1405. self.gguf_writer.add_token_types(toktypes)
  1406. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1407. special_vocab._set_special_token("bos", 151643)
  1408. special_vocab.add_to_gguf(self.gguf_writer)
  1409. def _set_vocab_mistral(self):
  1410. if not _mistral_common_installed:
  1411. raise ImportError(_mistral_import_error_msg)
  1412. vocab = MistralVocab(self.dir_model)
  1413. logger.info(
  1414. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1415. )
  1416. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1417. tokens = []
  1418. scores = []
  1419. toktypes = []
  1420. for text, score, toktype in vocab.all_tokens():
  1421. tokens.append(text)
  1422. scores.append(score)
  1423. toktypes.append(toktype)
  1424. assert len(tokens) == vocab.vocab_size, (
  1425. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1426. )
  1427. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1428. self.gguf_writer.add_tokenizer_pre("tekken")
  1429. self.gguf_writer.add_token_merges(
  1430. vocab.extract_vocab_merges_from_model()
  1431. )
  1432. logger.info(
  1433. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1434. )
  1435. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1436. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1437. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1438. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1439. self.gguf_writer.add_token_list(tokens)
  1440. self.gguf_writer.add_token_scores(scores)
  1441. self.gguf_writer.add_token_types(toktypes)
  1442. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1443. self.gguf_writer.add_add_bos_token(True)
  1444. self.gguf_writer.add_add_eos_token(False)
  1445. local_template_file_path = self.dir_model / "chat_template.jinja"
  1446. if self.is_mistral_format and local_template_file_path.is_file():
  1447. # Ministral-3 and other new Mistral models come with chat templates.
  1448. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1449. logger.info("Using an existing Mistral local chat template.")
  1450. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1451. template = f.read()
  1452. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1453. template_dir = Path(__file__).parent / "models/templates/"
  1454. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1455. if self.is_mistral_format:
  1456. logger.info(
  1457. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1458. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1459. )
  1460. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1461. else:
  1462. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1463. template = None
  1464. if template is not None:
  1465. self.gguf_writer.add_chat_template(template)
  1466. def _set_vocab_plamo(self):
  1467. # PLaMo models use a custom tokenizer with a .jsonl file
  1468. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1469. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1470. if not tokenizer_jsonl_path.is_file():
  1471. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1472. # Load tokenizer config
  1473. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1474. tokenizer_config = json.load(f)
  1475. # Load tokens from JSONL file (actually a list format)
  1476. tokens = []
  1477. scores = []
  1478. toktypes = []
  1479. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1480. for line_num, line in enumerate(f):
  1481. if line.strip():
  1482. token_data = json.loads(line)
  1483. # Format: [token, score, type, ?, ?, ?, ?]
  1484. token = token_data[0].encode("utf-8")
  1485. score = float(token_data[1])
  1486. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1487. tokens.append(token)
  1488. scores.append(score)
  1489. if token_type_str == "UNKNOWN":
  1490. toktypes.append(gguf.TokenType.UNKNOWN)
  1491. elif token_type_str == "CONTROL":
  1492. toktypes.append(gguf.TokenType.CONTROL)
  1493. elif token_type_str == "BYTE":
  1494. toktypes.append(gguf.TokenType.BYTE)
  1495. else:
  1496. token_str = token_data[0]
  1497. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1498. toktypes.append(gguf.TokenType.CONTROL)
  1499. else:
  1500. toktypes.append(gguf.TokenType.NORMAL)
  1501. vocab_size = self.hparams["vocab_size"]
  1502. if vocab_size > len(tokens):
  1503. pad_count = vocab_size - len(tokens)
  1504. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1505. for i in range(1, pad_count + 1):
  1506. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1507. scores.append(-1000.0)
  1508. toktypes.append(gguf.TokenType.UNUSED)
  1509. self.gguf_writer.add_tokenizer_model("plamo2")
  1510. self.gguf_writer.add_tokenizer_pre("default")
  1511. self.gguf_writer.add_token_list(tokens)
  1512. self.gguf_writer.add_token_scores(scores)
  1513. self.gguf_writer.add_token_types(toktypes)
  1514. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1515. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1516. self.gguf_writer.add_bos_token_id(token_id)
  1517. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1518. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1519. self.gguf_writer.add_eos_token_id(token_id)
  1520. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1521. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1522. self.gguf_writer.add_pad_token_id(token_id)
  1523. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1524. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1525. self.gguf_writer.add_sep_token_id(token_id)
  1526. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1527. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1528. self.gguf_writer.add_unk_token_id(token_id)
  1529. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1530. self.gguf_writer.add_eot_token_id(4)
  1531. self.gguf_writer.add_add_space_prefix(False)
  1532. class MmprojModel(ModelBase):
  1533. model_type = ModelType.MMPROJ
  1534. model_arch = gguf.MODEL_ARCH.MMPROJ
  1535. preprocessor_config: dict[str, Any]
  1536. global_config: dict[str, Any]
  1537. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1538. has_vision_encoder: bool = True # by default
  1539. has_audio_encoder: bool = False
  1540. # for models having multiple encoders, we need to separate their hparams
  1541. hparams_vision: dict[str, Any] | None = None
  1542. hparams_audio: dict[str, Any] | None = None
  1543. def __init__(self, *args, **kwargs):
  1544. super().__init__(*args, **kwargs)
  1545. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1546. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1547. # get n_embd of the text model
  1548. if not self.is_mistral_format:
  1549. if "text_config" not in self.hparams:
  1550. self.hparams["text_config"] = {}
  1551. if "audio_config" not in self.hparams:
  1552. self.hparams["audio_config"] = {}
  1553. text_config = {**self.hparams, **self.hparams["text_config"]}
  1554. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1555. else:
  1556. text_config = {
  1557. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1558. }
  1559. self.n_embd_text = text_config.get("hidden_dim", 0)
  1560. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1561. # move vision config to the top level, while preserving the original hparams in global_config
  1562. import copy
  1563. self.global_config = copy.deepcopy(self.hparams)
  1564. self.hparams_vision = self.get_vision_config()
  1565. self.hparams_audio = self.get_audio_config()
  1566. if self.hparams_vision is None and self.hparams_audio is None:
  1567. raise ValueError("vision_config / audio_config not found in hparams")
  1568. # for compat with vision-only models
  1569. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1570. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1571. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1572. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1573. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1574. # load preprocessor config
  1575. self.preprocessor_config = {}
  1576. # prefer preprocessor_config.json if possible
  1577. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1578. if preprocessor_config_path.is_file():
  1579. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1580. self.preprocessor_config = json.load(f)
  1581. # prefer processor_config.json if possible
  1582. processor_config_path = self.dir_model / "processor_config.json"
  1583. if processor_config_path.is_file():
  1584. with open(processor_config_path, "r", encoding="utf-8") as f:
  1585. cfg = json.load(f)
  1586. # move image_processor to root level for compat
  1587. if "image_processor" in cfg:
  1588. cfg = {
  1589. **cfg,
  1590. **cfg["image_processor"],
  1591. }
  1592. # merge configs
  1593. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1594. def get_vision_config(self) -> dict[str, Any] | None:
  1595. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1596. return self.global_config.get(config_name)
  1597. def get_audio_config(self) -> dict[str, Any] | None:
  1598. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1599. return self.global_config.get(mm_config_key)
  1600. def set_type(self):
  1601. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1602. def prepare_metadata(self, vocab_only: bool):
  1603. super().prepare_metadata(vocab_only=vocab_only)
  1604. output_type: str = self.ftype.name.partition("_")[2]
  1605. if self.fname_out.is_dir():
  1606. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1607. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1608. else:
  1609. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1610. def set_gguf_parameters(self):
  1611. self.gguf_writer.add_file_type(self.ftype)
  1612. if self.has_vision_encoder:
  1613. self.gguf_writer.add_clip_has_vision_encoder(True)
  1614. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1615. # vision config
  1616. self.image_size = self.find_vparam(["image_size"])
  1617. self.gguf_writer.add_vision_image_size(self.image_size)
  1618. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1619. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1620. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1621. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1622. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1623. # preprocessor config
  1624. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1625. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1626. self.gguf_writer.add_vision_image_mean(image_mean)
  1627. self.gguf_writer.add_vision_image_std(image_std)
  1628. if self.has_audio_encoder:
  1629. self.gguf_writer.add_clip_has_audio_encoder(True)
  1630. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1631. # audio config
  1632. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1633. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1634. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1635. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1636. if not self.has_vision_encoder and not self.has_audio_encoder:
  1637. raise ValueError("MmprojModel must have either vision or audio encoder")
  1638. def write_vocab(self):
  1639. raise ValueError("MmprojModel does not support vocab writing")
  1640. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1641. assert self.hparams_vision is not None
  1642. return self._find_param(self.hparams_vision, keys, optional)
  1643. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1644. assert self.hparams_audio is not None
  1645. return self._find_param(self.hparams_audio, keys, optional)
  1646. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1647. key = next((k for k in keys if k in obj), None)
  1648. if key is not None:
  1649. return obj[key]
  1650. if optional:
  1651. return None
  1652. raise KeyError(f"could not find any of: {keys}")
  1653. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1654. del bid, name, n_dims # unused
  1655. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1656. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1657. return False
  1658. @ModelBase.register("GPTNeoXForCausalLM")
  1659. class GPTNeoXModel(TextModel):
  1660. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1661. def set_gguf_parameters(self):
  1662. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1663. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1664. self.gguf_writer.add_block_count(self.block_count)
  1665. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1666. self.gguf_writer.add_rope_dimension_count(
  1667. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1668. )
  1669. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1670. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1671. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1673. del bid # unused
  1674. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1675. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1676. tensors: list[tuple[str, Tensor]] = []
  1677. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1678. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1679. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1680. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1681. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1682. data_torch = torch.cat(
  1683. (
  1684. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1685. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1686. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1687. ),
  1688. dim=0,
  1689. )
  1690. logger.info("re-format attention.linear_qkv.weight")
  1691. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1692. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1693. data_torch = torch.cat(
  1694. (
  1695. qkv_bias[:, 0, :].reshape((n_embed,)),
  1696. qkv_bias[:, 1, :].reshape((n_embed,)),
  1697. qkv_bias[:, 2, :].reshape((n_embed,)),
  1698. ),
  1699. dim=0,
  1700. )
  1701. logger.info("re-format attention.linear_qkv.bias")
  1702. tensors.append((self.map_tensor_name(name), data_torch))
  1703. return tensors
  1704. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1705. class BloomModel(TextModel):
  1706. model_arch = gguf.MODEL_ARCH.BLOOM
  1707. def set_gguf_parameters(self):
  1708. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1709. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1710. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1711. self.gguf_writer.add_embedding_length(n_embed)
  1712. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1713. self.gguf_writer.add_block_count(self.block_count)
  1714. self.gguf_writer.add_head_count(n_head)
  1715. self.gguf_writer.add_head_count_kv(n_head)
  1716. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1717. self.gguf_writer.add_file_type(self.ftype)
  1718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1719. del bid # unused
  1720. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1721. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1722. name = re.sub(r'transformer\.', '', name)
  1723. tensors: list[tuple[str, Tensor]] = []
  1724. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1725. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1726. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1727. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1728. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1729. data_torch = torch.cat(
  1730. (
  1731. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1732. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1733. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1734. ),
  1735. dim=0,
  1736. )
  1737. logger.info("re-format attention.linear_qkv.weight")
  1738. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1739. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1740. data_torch = torch.cat(
  1741. (
  1742. qkv_bias[:, 0, :].reshape((n_embed,)),
  1743. qkv_bias[:, 1, :].reshape((n_embed,)),
  1744. qkv_bias[:, 2, :].reshape((n_embed,)),
  1745. ),
  1746. dim=0,
  1747. )
  1748. logger.info("re-format attention.linear_qkv.bias")
  1749. tensors.append((self.map_tensor_name(name), data_torch))
  1750. return tensors
  1751. @ModelBase.register("MPTForCausalLM")
  1752. class MPTModel(TextModel):
  1753. model_arch = gguf.MODEL_ARCH.MPT
  1754. def set_vocab(self):
  1755. try:
  1756. self._set_vocab_gpt2()
  1757. except Exception:
  1758. # Fallback for SEA-LION model
  1759. self._set_vocab_sentencepiece()
  1760. self.gguf_writer.add_add_bos_token(False)
  1761. self.gguf_writer.add_pad_token_id(3)
  1762. self.gguf_writer.add_eos_token_id(1)
  1763. self.gguf_writer.add_unk_token_id(0)
  1764. def set_gguf_parameters(self):
  1765. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1766. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1767. self.gguf_writer.add_block_count(self.block_count)
  1768. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1769. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1770. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1771. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1772. self.gguf_writer.add_layer_norm_eps(1e-5)
  1773. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1774. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1775. if self.hparams["attn_config"]["alibi"]:
  1776. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1777. else:
  1778. self.gguf_writer.add_max_alibi_bias(0.0)
  1779. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1780. del bid # unused
  1781. if "scales" in name:
  1782. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1783. new_name = new_name.replace("scales", "act.scales")
  1784. else:
  1785. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1786. return [(new_name, data_torch)]
  1787. @ModelBase.register("OrionForCausalLM")
  1788. class OrionModel(TextModel):
  1789. model_arch = gguf.MODEL_ARCH.ORION
  1790. def set_vocab(self):
  1791. self._set_vocab_sentencepiece()
  1792. def set_gguf_parameters(self):
  1793. head_count = self.hparams["num_attention_heads"]
  1794. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1795. ctx_length = 0
  1796. if "max_sequence_length" in self.hparams:
  1797. ctx_length = self.hparams["max_sequence_length"]
  1798. elif "max_position_embeddings" in self.hparams:
  1799. ctx_length = self.hparams["max_position_embeddings"]
  1800. elif "model_max_length" in self.hparams:
  1801. ctx_length = self.hparams["model_max_length"]
  1802. else:
  1803. raise ValueError("gguf: can not find ctx length parameter.")
  1804. self.gguf_writer.add_file_type(self.ftype)
  1805. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1806. self.gguf_writer.add_context_length(ctx_length)
  1807. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1808. self.gguf_writer.add_block_count(self.block_count)
  1809. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1810. self.gguf_writer.add_head_count(head_count)
  1811. self.gguf_writer.add_head_count_kv(head_count_kv)
  1812. # note: config provides rms norm but it is actually layer norm
  1813. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1814. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1815. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1816. class BaichuanModel(TextModel):
  1817. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1818. def set_vocab(self):
  1819. self._set_vocab_sentencepiece()
  1820. def set_gguf_parameters(self):
  1821. super().set_gguf_parameters()
  1822. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1823. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1824. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1825. head_count = self.hparams["num_attention_heads"]
  1826. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1827. tensors: list[tuple[str, Tensor]] = []
  1828. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1829. logger.info(f"Unpacking and permuting layer {bid}")
  1830. tensors = [
  1831. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1832. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1833. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1834. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1835. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1836. self._reverse_hf_part(data_torch, 2)),
  1837. ]
  1838. else:
  1839. tensors = [(self.map_tensor_name(name), data_torch)]
  1840. return tensors
  1841. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1842. if n_kv_head is not None and n_head != n_kv_head:
  1843. n_head //= n_kv_head
  1844. return (
  1845. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1846. .swapaxes(1, 2)
  1847. .reshape(weights.shape)
  1848. )
  1849. def _reverse_hf_permute_part(
  1850. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1851. ) -> Tensor:
  1852. r = weights.shape[0] // 3
  1853. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1854. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1855. r = weights.shape[0] // 3
  1856. return weights[r * n_part:r * n_part + r, ...]
  1857. @ModelBase.register("XverseForCausalLM")
  1858. class XverseModel(TextModel):
  1859. model_arch = gguf.MODEL_ARCH.XVERSE
  1860. def set_vocab(self):
  1861. assert (self.dir_model / "tokenizer.json").is_file()
  1862. dir_model = self.dir_model
  1863. hparams = self.hparams
  1864. tokens: list[bytes] = []
  1865. toktypes: list[int] = []
  1866. from transformers import AutoTokenizer
  1867. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1868. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1869. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1870. # because vocab_size is the count of items, and indexes start at 0.
  1871. max_vocab_index = max(tokenizer.get_vocab().values())
  1872. if max_vocab_index >= vocab_size:
  1873. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1874. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1875. added_vocab = tokenizer.get_added_vocab()
  1876. for token_id in range(vocab_size):
  1877. token_text = reverse_vocab[token_id].encode('utf-8')
  1878. # replace "\x00" to string with length > 0
  1879. if token_text == b"\x00":
  1880. toktype = gguf.TokenType.BYTE # special
  1881. token_text = f"<{token_text}>".encode('utf-8')
  1882. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1883. toktype = gguf.TokenType.BYTE # special
  1884. elif reverse_vocab[token_id] in added_vocab:
  1885. if tokenizer.added_tokens_decoder[token_id].special:
  1886. toktype = gguf.TokenType.CONTROL
  1887. else:
  1888. toktype = gguf.TokenType.USER_DEFINED
  1889. else:
  1890. toktype = gguf.TokenType.NORMAL
  1891. tokens.append(token_text)
  1892. toktypes.append(toktype)
  1893. self.gguf_writer.add_tokenizer_model("llama")
  1894. self.gguf_writer.add_tokenizer_pre("default")
  1895. self.gguf_writer.add_token_list(tokens)
  1896. self.gguf_writer.add_token_types(toktypes)
  1897. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1898. special_vocab.add_to_gguf(self.gguf_writer)
  1899. def set_gguf_parameters(self):
  1900. super().set_gguf_parameters()
  1901. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1902. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1903. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1904. del bid # unused
  1905. head_count = self.hparams["num_attention_heads"]
  1906. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1907. # HF models permute some of the tensors, so we need to undo that
  1908. if name.endswith("q_proj.weight"):
  1909. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1910. if name.endswith("k_proj.weight"):
  1911. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1912. return [(self.map_tensor_name(name), data_torch)]
  1913. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1914. if n_kv_head is not None and n_head != n_kv_head:
  1915. n_head //= n_kv_head
  1916. return (
  1917. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1918. .swapaxes(1, 2)
  1919. .reshape(weights.shape)
  1920. )
  1921. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1922. class FalconModel(TextModel):
  1923. model_arch = gguf.MODEL_ARCH.FALCON
  1924. def set_gguf_parameters(self):
  1925. n_head = self.hparams.get("num_attention_heads")
  1926. if n_head is None:
  1927. n_head = self.hparams["n_head"] # old name
  1928. n_head_kv = self.hparams.get("num_kv_heads")
  1929. if n_head_kv is None:
  1930. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1931. self.gguf_writer.add_context_length(2048) # not in config.json
  1932. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1933. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1934. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1935. self.gguf_writer.add_block_count(self.block_count)
  1936. self.gguf_writer.add_head_count(n_head)
  1937. self.gguf_writer.add_head_count_kv(n_head_kv)
  1938. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1939. self.gguf_writer.add_file_type(self.ftype)
  1940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1941. del bid # unused
  1942. # QKV tensor transform
  1943. # The original query_key_value tensor contains n_head_kv "kv groups",
  1944. # each consisting of n_head/n_head_kv query weights followed by one key
  1945. # and one value weight (shared by all query heads in the kv group).
  1946. # This layout makes it a big pain to work with in GGML.
  1947. # So we rearrange them here,, so that we have n_head query weights
  1948. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1949. # in contiguous fashion.
  1950. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1951. if "query_key_value" in name:
  1952. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1953. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1954. head_dim = self.hparams["hidden_size"] // n_head
  1955. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1956. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1957. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1958. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1959. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1960. return [(self.map_tensor_name(name), data_torch)]
  1961. @ModelBase.register("GPTBigCodeForCausalLM")
  1962. class StarCoderModel(TextModel):
  1963. model_arch = gguf.MODEL_ARCH.STARCODER
  1964. def set_gguf_parameters(self):
  1965. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1966. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1967. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1968. self.gguf_writer.add_block_count(self.block_count)
  1969. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1970. self.gguf_writer.add_head_count_kv(1)
  1971. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1972. self.gguf_writer.add_file_type(self.ftype)
  1973. @ModelBase.register("GPTRefactForCausalLM")
  1974. class RefactModel(TextModel):
  1975. model_arch = gguf.MODEL_ARCH.REFACT
  1976. def set_vocab(self):
  1977. super().set_vocab()
  1978. # TODO: how to determine special FIM tokens automatically?
  1979. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1980. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1981. special_vocab._set_special_token("prefix", 1)
  1982. special_vocab._set_special_token("suffix", 3)
  1983. special_vocab._set_special_token("middle", 2)
  1984. special_vocab.chat_template = None # do not add it twice
  1985. special_vocab.add_to_gguf(self.gguf_writer)
  1986. def set_gguf_parameters(self):
  1987. hidden_dim = self.hparams["n_embd"]
  1988. inner_dim = 4 * hidden_dim
  1989. hidden_dim = int(2 * inner_dim / 3)
  1990. multiple_of = 256
  1991. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1992. # refact uses Alibi. So this is from config.json which might be used by training.
  1993. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1994. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1995. self.gguf_writer.add_feed_forward_length(ff_dim)
  1996. self.gguf_writer.add_block_count(self.block_count)
  1997. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1998. self.gguf_writer.add_head_count_kv(1)
  1999. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2000. self.gguf_writer.add_file_type(self.ftype)
  2001. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2002. hidden_dim = self.hparams["n_embd"]
  2003. inner_dim = 4 * hidden_dim
  2004. hidden_dim = int(2 * inner_dim / 3)
  2005. multiple_of = 256
  2006. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  2007. n_head = self.hparams["n_head"]
  2008. n_head_kv = 1
  2009. head_dim = self.hparams["n_embd"] // n_head
  2010. tensors: list[tuple[str, Tensor]] = []
  2011. if bid is not None:
  2012. if name == f"transformer.h.{bid}.attn.kv.weight":
  2013. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  2014. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  2015. elif name == f"transformer.h.{bid}.attn.q.weight":
  2016. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  2017. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2018. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  2019. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  2020. if len(tensors) == 0:
  2021. tensors.append((self.map_tensor_name(name), data_torch))
  2022. return tensors
  2023. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2024. class StableLMModel(TextModel):
  2025. model_arch = gguf.MODEL_ARCH.STABLELM
  2026. def set_vocab(self):
  2027. if (self.dir_model / "tokenizer.json").is_file():
  2028. self._set_vocab_gpt2()
  2029. else:
  2030. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2031. self._set_vocab_qwen()
  2032. def set_gguf_parameters(self):
  2033. hparams = self.hparams
  2034. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2035. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2036. self.gguf_writer.add_block_count(self.block_count)
  2037. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2038. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2039. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2040. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2041. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2042. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2043. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2044. self.gguf_writer.add_file_type(self.ftype)
  2045. _q_norms: list[dict[str, Tensor]] | None = None
  2046. _k_norms: list[dict[str, Tensor]] | None = None
  2047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2048. n_head = self.hparams["num_attention_heads"]
  2049. n_kv_head = self.hparams["num_key_value_heads"]
  2050. if name.find("q_layernorm.norms") != -1:
  2051. assert bid is not None
  2052. if self._q_norms is None:
  2053. self._q_norms = [{} for _ in range(self.block_count)]
  2054. self._q_norms[bid][name] = data_torch
  2055. if len(self._q_norms[bid]) >= n_head:
  2056. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2057. else:
  2058. return []
  2059. if name.find("k_layernorm.norms") != -1:
  2060. assert bid is not None
  2061. if self._k_norms is None:
  2062. self._k_norms = [{} for _ in range(self.block_count)]
  2063. self._k_norms[bid][name] = data_torch
  2064. if len(self._k_norms[bid]) >= n_kv_head:
  2065. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2066. else:
  2067. return []
  2068. return [(self.map_tensor_name(name), data_torch)]
  2069. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2070. datas: list[Tensor] = []
  2071. # extract the norms in order
  2072. for xid in range(n_head):
  2073. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2074. datas.append(norms[ename])
  2075. del norms[ename]
  2076. data_torch = torch.stack(datas, dim=0)
  2077. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2078. new_name = self.map_tensor_name(merged_name)
  2079. return [(new_name, data_torch)]
  2080. def prepare_tensors(self):
  2081. super().prepare_tensors()
  2082. if self._q_norms is not None or self._k_norms is not None:
  2083. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2084. norms = (
  2085. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2086. ) + (
  2087. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2088. )
  2089. if len(norms) > 0:
  2090. raise ValueError(f"Unprocessed norms: {norms}")
  2091. @ModelBase.register(
  2092. "LLaMAForCausalLM",
  2093. "LlamaForCausalLM",
  2094. "MistralForCausalLM",
  2095. "MixtralForCausalLM",
  2096. "VLlama3ForCausalLM",
  2097. "LlavaForConditionalGeneration",
  2098. "VoxtralForConditionalGeneration",
  2099. "IQuestCoderForCausalLM",
  2100. "LlamaModel")
  2101. class LlamaModel(TextModel):
  2102. model_arch = gguf.MODEL_ARCH.LLAMA
  2103. undo_permute = True
  2104. def __init__(self, *args, **kwargs):
  2105. super().__init__(*args, **kwargs)
  2106. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2107. if self.hf_arch == "VLlama3ForCausalLM":
  2108. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2109. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2110. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2111. def set_vocab(self):
  2112. if self.origin_hf_arch == "GlmasrModel":
  2113. return self._set_vocab_glmedge()
  2114. if self.is_mistral_format:
  2115. return self._set_vocab_mistral()
  2116. path_tekken_json = self.dir_model / "tekken.json"
  2117. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2118. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2119. self._set_vocab_mistral()
  2120. try:
  2121. self._set_vocab_sentencepiece()
  2122. except FileNotFoundError:
  2123. try:
  2124. self._set_vocab_llama_hf()
  2125. except (FileNotFoundError, TypeError):
  2126. # Llama 3
  2127. self._set_vocab_gpt2()
  2128. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2129. if self.hparams.get("vocab_size", 32000) == 32016:
  2130. special_vocab = gguf.SpecialVocab(
  2131. self.dir_model, load_merges=False,
  2132. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2133. )
  2134. special_vocab._set_special_token("prefix", 32007)
  2135. special_vocab._set_special_token("suffix", 32008)
  2136. special_vocab._set_special_token("middle", 32009)
  2137. special_vocab._set_special_token("eot", 32010)
  2138. special_vocab.add_to_gguf(self.gguf_writer)
  2139. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2140. if tokenizer_config_file.is_file():
  2141. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2142. tokenizer_config_json = json.load(f)
  2143. if "add_prefix_space" in tokenizer_config_json:
  2144. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2145. # Apply to granite small models only
  2146. if self.hparams.get("vocab_size", 32000) == 49152:
  2147. self.gguf_writer.add_add_bos_token(False)
  2148. def set_gguf_parameters(self):
  2149. super().set_gguf_parameters()
  2150. hparams = self.hparams
  2151. if not self.is_mistral_format:
  2152. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2153. if (rope_dim := hparams.get("head_dim")) is None:
  2154. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2155. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2156. @staticmethod
  2157. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2158. if n_head_kv is not None and n_head != n_head_kv:
  2159. n_head = n_head_kv
  2160. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2161. .swapaxes(1, 2)
  2162. .reshape(weights.shape))
  2163. _experts: list[dict[str, Tensor]] | None = None
  2164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2165. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2166. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2167. vision_prefixes = [
  2168. "vision_encoder.",
  2169. "vision_language_adapter.",
  2170. "patch_merger.",
  2171. "pre_mm_projector_norm",
  2172. "audio_encoder.",
  2173. ]
  2174. is_multimodal_tensor = "vision_tower" in name \
  2175. or "vision_model" in name \
  2176. or "audio_tower" in name \
  2177. or "model.connector" in name \
  2178. or "multi_modal_projector" in name \
  2179. or any(
  2180. name.startswith(prefix)
  2181. for prefix in vision_prefixes
  2182. )
  2183. if is_multimodal_tensor:
  2184. return [] # skip vision tensors
  2185. elif self.hf_arch == "LlamaModel":
  2186. name = "model." + name
  2187. elif name.startswith("model.text_model"):
  2188. name = name.replace("text_model.", "") # for SmolVLM
  2189. elif name.startswith("language_model."):
  2190. name = name.replace("language_model.", "") # for the rest
  2191. if self.undo_permute:
  2192. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2193. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2194. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2195. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2196. # process the experts separately
  2197. if name.find("block_sparse_moe.experts") != -1:
  2198. n_experts = self.hparams["num_local_experts"]
  2199. assert bid is not None
  2200. if self._experts is None:
  2201. self._experts = [{} for _ in range(self.block_count)]
  2202. self._experts[bid][name] = data_torch
  2203. if len(self._experts[bid]) >= n_experts * 3:
  2204. tensors: list[tuple[str, Tensor]] = []
  2205. # merge the experts into a single 3d tensor
  2206. for wid in ["w1", "w2", "w3"]:
  2207. datas: list[Tensor] = []
  2208. for xid in range(n_experts):
  2209. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2210. datas.append(self._experts[bid][ename])
  2211. del self._experts[bid][ename]
  2212. data_torch = torch.stack(datas, dim=0)
  2213. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2214. new_name = self.map_tensor_name(merged_name)
  2215. tensors.append((new_name, data_torch))
  2216. return tensors
  2217. else:
  2218. return []
  2219. return [(self.map_tensor_name(name), data_torch)]
  2220. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2221. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2222. if rope_params.get("rope_type", '').lower() == "llama3":
  2223. base = rope_params.get("rope_theta", 10000.0)
  2224. if (dim := self.hparams.get("head_dim")) is None:
  2225. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2226. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2227. factor = rope_params.get("factor", 8.0)
  2228. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2229. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2230. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2231. low_freq_wavelen = old_context_len / low_freq_factor
  2232. high_freq_wavelen = old_context_len / high_freq_factor
  2233. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2234. rope_factors = []
  2235. for freq in freqs:
  2236. wavelen = 2 * math.pi / freq
  2237. if wavelen < high_freq_wavelen:
  2238. rope_factors.append(1)
  2239. elif wavelen > low_freq_wavelen:
  2240. rope_factors.append(factor)
  2241. else:
  2242. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2243. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2244. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2245. def prepare_tensors(self):
  2246. super().prepare_tensors()
  2247. if self._experts is not None:
  2248. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2249. experts = [k for d in self._experts for k in d.keys()]
  2250. if len(experts) > 0:
  2251. raise ValueError(f"Unprocessed experts: {experts}")
  2252. @ModelBase.register("ArceeForCausalLM")
  2253. class ArceeModel(LlamaModel):
  2254. model_arch = gguf.MODEL_ARCH.ARCEE
  2255. def set_gguf_parameters(self):
  2256. super().set_gguf_parameters()
  2257. self._try_set_pooling_type()
  2258. @ModelBase.register("AfmoeForCausalLM")
  2259. class AfmoeModel(LlamaModel):
  2260. model_arch = gguf.MODEL_ARCH.AFMOE
  2261. def set_gguf_parameters(self):
  2262. super().set_gguf_parameters()
  2263. # MoE parameters
  2264. if (n_experts := self.hparams.get("num_experts")) is not None:
  2265. self.gguf_writer.add_expert_count(n_experts)
  2266. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2267. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2268. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2269. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2270. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2271. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2272. # Route normalization and scaling
  2273. if (route_norm := self.hparams.get("route_norm")) is not None:
  2274. self.gguf_writer.add_expert_weights_norm(route_norm)
  2275. if (route_scale := self.hparams.get("route_scale")) is not None:
  2276. self.gguf_writer.add_expert_weights_scale(route_scale)
  2277. # Sliding window attention
  2278. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2279. self.gguf_writer.add_sliding_window(sliding_window)
  2280. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2281. # Handle expert weights - they're already merged in the HF format
  2282. # process the experts separately
  2283. if name.find("mlp.experts") != -1:
  2284. n_experts = self.hparams["num_experts"]
  2285. assert bid is not None
  2286. if self._experts is None:
  2287. self._experts = [{} for _ in range(self.block_count)]
  2288. self._experts[bid][name] = data_torch
  2289. if len(self._experts[bid]) >= n_experts * 3:
  2290. tensors: list[tuple[str, Tensor]] = []
  2291. # merge the experts into a single 3d tensor
  2292. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2293. datas: list[Tensor] = []
  2294. for xid in range(n_experts):
  2295. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2296. datas.append(self._experts[bid][ename_to_retrieve])
  2297. del self._experts[bid][ename_to_retrieve]
  2298. data_torch = torch.stack(datas, dim=0)
  2299. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2300. new_name = self.map_tensor_name(merged_name)
  2301. tensors.append((new_name, data_torch))
  2302. return tensors
  2303. else:
  2304. return []
  2305. if name.endswith(".expert_bias"):
  2306. name = name.replace(".expert_bias", ".expert_bias.bias")
  2307. return [(self.map_tensor_name(name), data_torch)]
  2308. @ModelBase.register(
  2309. "LlavaForConditionalGeneration", # pixtral
  2310. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2311. )
  2312. class LlavaVisionModel(MmprojModel):
  2313. img_break_tok_id = -1
  2314. use_break_tok = True
  2315. def __init__(self, *args, **kwargs):
  2316. super().__init__(*args, **kwargs)
  2317. if self.hparams.get("model_type") == "pixtral":
  2318. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2319. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2320. if self.use_break_tok:
  2321. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2322. elif self.is_mistral_format:
  2323. # hparams is already vision config here so norm_eps is only defined in global_config.
  2324. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2325. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2326. if self.use_break_tok:
  2327. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2328. else:
  2329. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2330. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2331. def get_token_id(self, token: str) -> int:
  2332. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2333. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2334. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2335. for id_, token_data in added_tokens_decoder.items():
  2336. if token_data["content"] == token:
  2337. return int(id_)
  2338. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2339. def set_gguf_parameters(self):
  2340. super().set_gguf_parameters()
  2341. hparams = self.hparams
  2342. if hparams.get("model_type") == "pixtral":
  2343. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2344. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2345. # hidden_act
  2346. if hparams["hidden_act"] == "silu":
  2347. self.gguf_writer.add_vision_use_silu(True)
  2348. elif hparams["hidden_act"] == "gelu":
  2349. self.gguf_writer.add_vision_use_gelu(True)
  2350. else:
  2351. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2352. # spatial_merge_size
  2353. if "spatial_merge_size" in self.global_config:
  2354. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2355. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2356. del bid # unused
  2357. n_head = (
  2358. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2359. )
  2360. n_kv_head = n_head
  2361. valid_prefixes = (
  2362. "multi_modal_projector.",
  2363. "vision_tower.",
  2364. "vision_encoder.",
  2365. "vision_language_adapter.",
  2366. "patch_merger.",
  2367. "pre_mm_projector_norm",
  2368. )
  2369. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2370. # process vision tensors
  2371. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2372. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2373. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2374. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2375. return [(self.map_tensor_name(name), data_torch)]
  2376. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2377. if self.img_break_tok_id > 0 and embed_key in name:
  2378. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2379. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2380. img_break_embd = data_torch[self.img_break_tok_id]
  2381. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2382. return [(self.map_tensor_name(name), img_break_embd)]
  2383. return [] # skip other tensors
  2384. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2385. class SmolVLMModel(MmprojModel):
  2386. def __init__(self, *args, **kwargs):
  2387. super().__init__(*args, **kwargs)
  2388. if self.hparams["model_type"] == "smolvlm_vision":
  2389. # fix for SmolVLM2, missing some keys in config.json
  2390. # default values are taken from transformers code
  2391. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2392. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2393. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2394. def set_gguf_parameters(self):
  2395. super().set_gguf_parameters()
  2396. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2397. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2398. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2399. self.gguf_writer.add_vision_use_gelu(True)
  2400. # Add the preprocessor longest edge size
  2401. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2402. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2403. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2404. if ".embeddings." in name:
  2405. return gguf.GGMLQuantizationType.F32
  2406. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2407. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2408. del bid # unused
  2409. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2410. if is_vision_tensor:
  2411. return [(self.map_tensor_name(name), data_torch)]
  2412. return [] # skip other tensors
  2413. @ModelBase.register(
  2414. "Llama4ForConditionalGeneration",
  2415. "Llama4ForCausalLM",
  2416. )
  2417. class Llama4Model(LlamaModel):
  2418. model_arch = gguf.MODEL_ARCH.LLAMA4
  2419. undo_permute = False
  2420. def __init__(self, *args, **kwargs):
  2421. super().__init__(*args, **kwargs)
  2422. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2423. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2424. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2425. def set_vocab(self):
  2426. self._set_vocab_gpt2()
  2427. def set_gguf_parameters(self):
  2428. super().set_gguf_parameters()
  2429. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2430. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2431. if "layer_types" in self.hparams:
  2432. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2433. # all layers are full attention (for MobileLLM), disable swa
  2434. self.gguf_writer.add_sliding_window(0)
  2435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2436. if name.startswith("language_model."):
  2437. name = name.replace("language_model.", "")
  2438. # split the gate_up into gate and up
  2439. if "gate_up_proj" in name:
  2440. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2441. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2442. dim_half = data_torch.shape[-1] // 2
  2443. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2444. return [
  2445. (self.map_tensor_name(name_gate), gate_proj_weight),
  2446. (self.map_tensor_name(name_up), up_proj_weight)
  2447. ]
  2448. if name.endswith("down_proj"):
  2449. name += ".weight"
  2450. data_torch = data_torch.transpose(-1, -2)
  2451. if "multi_modal_projector" in name or "vision_model" in name:
  2452. return []
  2453. return super().modify_tensors(data_torch, name, bid)
  2454. @ModelBase.register("Llama4ForConditionalGeneration")
  2455. class Llama4VisionModel(MmprojModel):
  2456. def set_gguf_parameters(self):
  2457. super().set_gguf_parameters()
  2458. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2459. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2460. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2461. assert self.hparams["hidden_act"] == "gelu"
  2462. self.gguf_writer.add_vision_use_gelu(True)
  2463. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2464. del bid # unused
  2465. if "multi_modal_projector" in name or "vision_model" in name:
  2466. # process vision tensors
  2467. if "positional_embedding_vlm" in name and ".weight" not in name:
  2468. name += ".weight"
  2469. if "multi_modal_projector.linear_1" in name:
  2470. # despite the name with number postfix, this is a single fully connected layer
  2471. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2472. return [(self.map_tensor_name(name), data_torch)]
  2473. return []
  2474. @ModelBase.register("Mistral3ForConditionalGeneration")
  2475. class Mistral3Model(LlamaModel):
  2476. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2477. def __init__(self, *args, **kwargs):
  2478. super().__init__(*args, **kwargs)
  2479. # for compatibility, we use LLAMA arch for older models
  2480. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2481. if self.hparams.get("model_type") != "ministral3":
  2482. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2483. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2484. self.gguf_writer.add_architecture()
  2485. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2486. def set_gguf_parameters(self):
  2487. super().set_gguf_parameters()
  2488. rope_params = self.rope_parameters
  2489. if self.hparams.get("model_type") == "ministral3":
  2490. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2491. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2492. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2493. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2495. name = name.replace("language_model.", "")
  2496. if "multi_modal_projector" in name or "vision_tower" in name:
  2497. return []
  2498. return super().modify_tensors(data_torch, name, bid)
  2499. @ModelBase.register("DeciLMForCausalLM")
  2500. class DeciModel(TextModel):
  2501. model_arch = gguf.MODEL_ARCH.DECI
  2502. @staticmethod
  2503. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2504. # DeciLM-specific code
  2505. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2506. return DeciModel._find_multiple(intermediate_size, 256)
  2507. @staticmethod
  2508. def _find_multiple(n: int, k: int) -> int:
  2509. # DeciLM-specific code
  2510. if n % k == 0:
  2511. return n
  2512. return n + k - (n % k)
  2513. def __init__(self, *args, **kwargs):
  2514. super().__init__(*args, **kwargs)
  2515. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2516. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2517. assert self.block_count == len(_block_configs)
  2518. self._num_kv_heads = list()
  2519. self._num_heads = list()
  2520. _ffn_multipliers = list()
  2521. # ***linear attention layer***
  2522. # if n_heads_in_group is None and replace_with_linear is True
  2523. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2524. # ***attention-free layer***
  2525. # if n_heads_in_group is None and replace_with_linear is False
  2526. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2527. # ***normal attention-layer***
  2528. # if n_heads_in_group is not None, then
  2529. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2530. # _num_heads[il] is num_attention_head
  2531. # ***dummy layer*** for nemotron 253B
  2532. # if n_heads_in_group is None and ffn_mult is None
  2533. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2534. for il in range(len(_block_configs)):
  2535. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2536. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2537. self._num_kv_heads.append(0)
  2538. self._num_heads.append(self.hparams["num_attention_heads"])
  2539. else:
  2540. self._num_kv_heads.append(0)
  2541. self._num_heads.append(0)
  2542. else:
  2543. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2544. self._num_heads.append(self.hparams["num_attention_heads"])
  2545. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2546. _ffn_multipliers.append(0.0)
  2547. else:
  2548. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2549. assert self.block_count == len(self._num_kv_heads)
  2550. assert self.block_count == len(self._num_heads)
  2551. assert self.block_count == len(_ffn_multipliers)
  2552. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2553. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2554. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2555. self._ffn_dims: list[int] = [
  2556. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2557. for multiplier in _ffn_multipliers
  2558. ]
  2559. def set_vocab(self):
  2560. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2561. # eos_token from '|eot_id|' to '|end_of_text|'
  2562. if self.hparams.get("vocab_size", 128256) == 128256:
  2563. tokens, toktypes, tokpre = self.get_vocab_base()
  2564. self.gguf_writer.add_tokenizer_model("gpt2")
  2565. self.gguf_writer.add_tokenizer_pre(tokpre)
  2566. self.gguf_writer.add_token_list(tokens)
  2567. self.gguf_writer.add_token_types(toktypes)
  2568. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2569. special_vocab.add_to_gguf(self.gguf_writer)
  2570. else:
  2571. # DeciLM-7B
  2572. self._set_vocab_llama_hf()
  2573. def set_gguf_parameters(self):
  2574. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2575. assert self.block_count == len(self._num_kv_heads)
  2576. assert self.block_count == len(self._num_heads)
  2577. assert self.block_count == len(self._ffn_dims)
  2578. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2579. self.gguf_writer.add_rope_freq_base(rope_theta)
  2580. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2581. self.gguf_writer.add_head_count(self._num_heads)
  2582. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2583. self.gguf_writer.add_block_count(self.block_count)
  2584. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2585. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2586. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2587. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2588. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2589. self.gguf_writer.add_file_type(self.ftype)
  2590. else: # DeciLM-7B
  2591. super().set_gguf_parameters()
  2592. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2593. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2594. assert self.block_count == len(self._num_kv_heads)
  2595. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2596. hparams = self.hparams
  2597. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2598. if (rope_dim := hparams.get("head_dim")) is None:
  2599. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2600. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2601. @staticmethod
  2602. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2603. if n_head_kv is not None and n_head != n_head_kv:
  2604. n_head = n_head_kv
  2605. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2606. .swapaxes(1, 2)
  2607. .reshape(weights.shape))
  2608. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2609. n_head = self.hparams["num_attention_heads"]
  2610. if bid is not None:
  2611. if "num_key_value_heads_per_layer" in self.hparams:
  2612. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2613. elif "block_configs" in self.hparams:
  2614. n_kv_head = self._num_kv_heads[bid]
  2615. n_head = self._num_heads[bid]
  2616. else:
  2617. n_kv_head = self.hparams.get("num_key_value_heads")
  2618. else:
  2619. n_kv_head = self.hparams.get("num_key_value_heads")
  2620. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2621. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2622. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2623. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2624. return [(self.map_tensor_name(name), data_torch)]
  2625. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2626. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2627. if rope_params.get("rope_type", '').lower() == "llama3":
  2628. base = rope_params.get("rope_theta", 10000.0)
  2629. if (dim := self.hparams.get("head_dim")) is None:
  2630. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2631. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2632. factor = rope_params.get("factor", 8.0)
  2633. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2634. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2635. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2636. low_freq_wavelen = old_context_len / low_freq_factor
  2637. high_freq_wavelen = old_context_len / high_freq_factor
  2638. assert low_freq_wavelen != high_freq_wavelen
  2639. rope_factors = []
  2640. for freq in freqs:
  2641. wavelen = 2 * math.pi / freq
  2642. if wavelen < high_freq_wavelen:
  2643. rope_factors.append(1)
  2644. elif wavelen > low_freq_wavelen:
  2645. rope_factors.append(factor)
  2646. else:
  2647. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2648. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2649. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2650. def prepare_tensors(self):
  2651. super().prepare_tensors()
  2652. @ModelBase.register("BitnetForCausalLM")
  2653. class BitnetModel(TextModel):
  2654. model_arch = gguf.MODEL_ARCH.BITNET
  2655. def set_vocab(self):
  2656. self._set_vocab_sentencepiece()
  2657. def set_gguf_parameters(self):
  2658. super().set_gguf_parameters()
  2659. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2660. self.gguf_writer.add_rope_scaling_factor(1.0)
  2661. def weight_quant(self, weight: Tensor) -> Tensor:
  2662. dtype = weight.dtype
  2663. weight = weight.float()
  2664. scale = weight.abs().mean().clamp(min=1e-5)
  2665. iscale = 1 / scale
  2666. # TODO: multiply by the scale directly instead of inverting it twice
  2667. # (this is also unnecessarily doubly inverted upstream)
  2668. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2669. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2670. return result.type(dtype)
  2671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2672. new_name = self.map_tensor_name(name)
  2673. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2674. gguf.MODEL_TENSOR.ATTN_Q,
  2675. gguf.MODEL_TENSOR.ATTN_K,
  2676. gguf.MODEL_TENSOR.ATTN_V,
  2677. gguf.MODEL_TENSOR.ATTN_OUT,
  2678. gguf.MODEL_TENSOR.FFN_UP,
  2679. gguf.MODEL_TENSOR.FFN_DOWN,
  2680. gguf.MODEL_TENSOR.FFN_GATE,
  2681. ]):
  2682. # transform weight into 1/0/-1 (in fp32)
  2683. data_torch = self.weight_quant(data_torch)
  2684. yield (new_name, data_torch)
  2685. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2686. class GrokModel(TextModel):
  2687. model_arch = gguf.MODEL_ARCH.GROK
  2688. def set_vocab(self):
  2689. if (self.dir_model / 'tokenizer.model').is_file():
  2690. self._set_vocab_sentencepiece()
  2691. return
  2692. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2693. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2694. sys.exit(1)
  2695. self._set_vocab_gpt2()
  2696. def __init__(self, *args, **kwargs):
  2697. super().__init__(*args, **kwargs)
  2698. def set_gguf_parameters(self):
  2699. super().set_gguf_parameters()
  2700. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2701. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2702. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2703. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2704. if (rope_dim := self.hparams.get("head_dim")) is None:
  2705. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2706. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2707. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2708. # Treat "original" as "yarn", seems to have been a mistake
  2709. if self.hparams.get("rope_type") in ("yarn", "original"):
  2710. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2711. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2712. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2713. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2714. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2715. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2716. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2717. if temp_len := self.hparams.get("attn_temperature_len"):
  2718. self.gguf_writer.add_attn_temperature_length(temp_len)
  2719. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2720. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2721. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2722. _experts: list[dict[str, list[Tensor]]] | None = None
  2723. _cur_expert = ""
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. tensors: list[tuple[str, Tensor]] = []
  2726. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2727. if not is_expert:
  2728. tensors.append((self.map_tensor_name(name), data_torch))
  2729. # process the experts separately
  2730. if is_expert or self._cur_expert:
  2731. n_experts = self.hparams["num_local_experts"]
  2732. assert bid is not None
  2733. if self._experts is None:
  2734. self._experts = [{} for _ in range(self.block_count)]
  2735. # concatenate split tensors
  2736. if name in self._experts[bid]:
  2737. self._cur_expert = name
  2738. self._experts[bid][name].append(data_torch)
  2739. return []
  2740. elif is_expert:
  2741. self._cur_expert = name
  2742. self._experts[bid][name] = [data_torch]
  2743. return []
  2744. else:
  2745. self._cur_expert = ""
  2746. for bid in range(self.block_count):
  2747. if len(self._experts[bid]) >= n_experts * 3:
  2748. # merge the experts into a single 3d tensor
  2749. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2750. datas: list[Tensor] = []
  2751. for xid in range(n_experts):
  2752. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2753. if ename not in self._experts[bid]:
  2754. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2755. tensor_list = self._experts[bid][ename]
  2756. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2757. del self._experts[bid][ename]
  2758. data_torch = torch.stack(datas, dim=0)
  2759. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2760. new_name = self.map_tensor_name(merged_name)
  2761. yield (new_name, data_torch)
  2762. yield from tensors
  2763. @ModelBase.register("DbrxForCausalLM")
  2764. class DbrxModel(TextModel):
  2765. model_arch = gguf.MODEL_ARCH.DBRX
  2766. def set_gguf_parameters(self):
  2767. ffn_config = self.hparams["ffn_config"]
  2768. attn_config = self.hparams["attn_config"]
  2769. self.gguf_writer.add_block_count(self.block_count)
  2770. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2771. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2772. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2773. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2774. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2775. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2776. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2777. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2778. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2779. self.gguf_writer.add_layer_norm_eps(1e-5)
  2780. self.gguf_writer.add_file_type(self.ftype)
  2781. logger.info(f"gguf: file type = {self.ftype}")
  2782. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2783. del bid # unused
  2784. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2785. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2786. n_embd = self.hparams["d_model"]
  2787. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2788. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2789. # But llama.cpp moe graph works differently
  2790. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2791. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2792. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2793. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2794. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2795. experts = False
  2796. for exp_tensor_name in exp_tensor_names.keys():
  2797. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2798. experts = True
  2799. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2800. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2801. data_torch = data_torch.permute(*permute_tensor)
  2802. break
  2803. # map tensor names
  2804. # In MoE models the ffn tensors are typically most of the model weights,
  2805. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2806. # Every other model has the weight names ending in .weight,
  2807. # let's assume that is the convention which is not the case for dbrx:
  2808. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2809. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2810. return [(new_name, data_torch)]
  2811. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2812. del name, new_name, bid # unused
  2813. return n_dims > 1
  2814. @ModelBase.register("MiniCPMForCausalLM")
  2815. class MiniCPMModel(TextModel):
  2816. model_arch = gguf.MODEL_ARCH.MINICPM
  2817. def set_gguf_parameters(self):
  2818. super().set_gguf_parameters()
  2819. embedding_scale = float(self.hparams["scale_emb"])
  2820. self.gguf_writer.add_embedding_scale(embedding_scale)
  2821. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2822. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2823. self.gguf_writer.add_residual_scale(residual_scale)
  2824. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2825. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2826. self.gguf_writer.add_logit_scale(logit_scale)
  2827. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2828. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2829. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2830. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2831. if rope_scaling is not None:
  2832. long_factors = rope_scaling.get('long_factor', None)
  2833. short_factors = rope_scaling.get('short_factor', None)
  2834. if long_factors is None or short_factors is None:
  2835. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2836. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2837. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2838. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2839. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2840. def set_vocab(self):
  2841. self._set_vocab_sentencepiece()
  2842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2843. del bid # unused
  2844. n_head = self.hparams["num_attention_heads"]
  2845. n_kv_head = self.hparams.get("num_key_value_heads")
  2846. # HF models permute some of the tensors, so we need to undo that
  2847. if name.endswith(("q_proj.weight")):
  2848. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2849. if name.endswith(("k_proj.weight")):
  2850. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2851. return [(self.map_tensor_name(name), data_torch)]
  2852. @ModelBase.register("MiniCPM3ForCausalLM")
  2853. class MiniCPM3Model(TextModel):
  2854. model_arch = gguf.MODEL_ARCH.MINICPM3
  2855. def set_gguf_parameters(self):
  2856. hparams = self.hparams
  2857. self.gguf_writer.add_file_type(self.ftype)
  2858. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2859. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2860. self.gguf_writer.add_block_count(self.block_count)
  2861. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2862. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2863. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2864. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2865. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2866. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2867. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2868. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2869. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2870. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2871. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2872. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2873. if rope_scaling is not None:
  2874. rope_dims = self.hparams["qk_rope_head_dim"]
  2875. long_factors = rope_scaling.get('long_factor', None)
  2876. short_factors = rope_scaling.get('short_factor', None)
  2877. if long_factors is None or short_factors is None:
  2878. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2879. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2880. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2881. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2882. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2883. def set_vocab(self):
  2884. self._set_vocab_sentencepiece()
  2885. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2886. if n_kv_head is not None and n_head != n_kv_head:
  2887. n_head //= n_kv_head
  2888. return (
  2889. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2890. .swapaxes(1, 2)
  2891. .reshape(weights.shape)
  2892. )
  2893. @ModelBase.register("QWenLMHeadModel")
  2894. class QwenModel(TextModel):
  2895. model_arch = gguf.MODEL_ARCH.QWEN
  2896. @staticmethod
  2897. def token_bytes_to_string(b):
  2898. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2899. byte_encoder = bytes_to_unicode()
  2900. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2901. @staticmethod
  2902. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2903. parts = [bytes([b]) for b in token]
  2904. while True:
  2905. min_idx = None
  2906. min_rank = None
  2907. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2908. rank = mergeable_ranks.get(pair[0] + pair[1])
  2909. if rank is not None and (min_rank is None or rank < min_rank):
  2910. min_idx = i
  2911. min_rank = rank
  2912. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2913. break
  2914. assert min_idx is not None
  2915. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2916. return parts
  2917. def set_vocab(self):
  2918. self._set_vocab_qwen()
  2919. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2920. class Qwen2Model(TextModel):
  2921. model_arch = gguf.MODEL_ARCH.QWEN2
  2922. def set_vocab(self):
  2923. try:
  2924. self._set_vocab_sentencepiece()
  2925. except FileNotFoundError:
  2926. self._set_vocab_gpt2()
  2927. def set_gguf_parameters(self):
  2928. super().set_gguf_parameters()
  2929. self._try_set_pooling_type()
  2930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2931. if self.hf_arch == "Qwen2Model":
  2932. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2933. if "language_model." in name:
  2934. name = name.replace("language_model.", "") # for InternVL
  2935. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2936. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2937. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2938. # skip vision and audio tensors
  2939. return []
  2940. yield from super().modify_tensors(data_torch, name, bid)
  2941. @ModelBase.register("DreamModel")
  2942. class DreamModel(TextModel):
  2943. model_arch = gguf.MODEL_ARCH.DREAM
  2944. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2945. tokens: list[str] = []
  2946. toktypes: list[int] = []
  2947. from transformers import AutoTokenizer
  2948. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2949. vocab_dict = tokenizer.get_vocab()
  2950. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2951. assert max(vocab_dict.values()) < vocab_size
  2952. tokpre = self.get_vocab_base_pre(tokenizer)
  2953. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2954. added_vocab = tokenizer.get_added_vocab()
  2955. for i in range(vocab_size):
  2956. if i not in reverse_vocab:
  2957. tokens.append(f"[PAD{i}]")
  2958. toktypes.append(gguf.TokenType.UNUSED)
  2959. elif reverse_vocab[i] in added_vocab:
  2960. tokens.append(reverse_vocab[i])
  2961. # Check if it's a special token - treat special tokens as CONTROL tokens
  2962. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2963. if tokenizer.added_tokens_decoder[i].special:
  2964. toktypes.append(gguf.TokenType.CONTROL)
  2965. else:
  2966. toktypes.append(gguf.TokenType.USER_DEFINED)
  2967. else:
  2968. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2969. toktypes.append(gguf.TokenType.CONTROL)
  2970. else:
  2971. tokens.append(reverse_vocab[i])
  2972. toktypes.append(gguf.TokenType.NORMAL)
  2973. return tokens, toktypes, tokpre
  2974. def set_vocab(self):
  2975. try:
  2976. self._set_vocab_sentencepiece()
  2977. except FileNotFoundError:
  2978. self._set_vocab_gpt2()
  2979. def set_gguf_parameters(self):
  2980. super().set_gguf_parameters()
  2981. self._try_set_pooling_type()
  2982. # Dream models use non-causal attention for diffusion
  2983. self.gguf_writer.add_causal_attention(False)
  2984. # Add Dream-specific parameters
  2985. mask_token_id = self.hparams.get("mask_token_id")
  2986. if mask_token_id is not None:
  2987. self.gguf_writer.add_mask_token_id(mask_token_id)
  2988. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2989. # Dream model tensors should be mapped directly since it's the base model
  2990. yield from super().modify_tensors(data_torch, name, bid)
  2991. @ModelBase.register("LLaDAModelLM")
  2992. class LLaDAModel(TextModel):
  2993. model_arch = gguf.MODEL_ARCH.LLADA
  2994. undo_permute = True
  2995. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2996. tokens: list[str] = []
  2997. toktypes: list[int] = []
  2998. from transformers import AutoTokenizer
  2999. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  3000. vocab_dict = tokenizer.get_vocab()
  3001. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  3002. assert max(vocab_dict.values()) < vocab_size
  3003. tokpre = self.get_vocab_base_pre(tokenizer)
  3004. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  3005. added_vocab = tokenizer.get_added_vocab()
  3006. for i in range(vocab_size):
  3007. if i not in reverse_vocab:
  3008. tokens.append(f"[PAD{i}]")
  3009. toktypes.append(gguf.TokenType.UNUSED)
  3010. elif reverse_vocab[i] in added_vocab:
  3011. tokens.append(reverse_vocab[i])
  3012. # Check if it's a special token - treat special tokens as CONTROL tokens
  3013. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  3014. if tokenizer.added_tokens_decoder[i].special:
  3015. toktypes.append(gguf.TokenType.CONTROL)
  3016. else:
  3017. toktypes.append(gguf.TokenType.USER_DEFINED)
  3018. else:
  3019. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3020. toktypes.append(gguf.TokenType.CONTROL)
  3021. else:
  3022. tokens.append(reverse_vocab[i])
  3023. toktypes.append(gguf.TokenType.NORMAL)
  3024. return tokens, toktypes, tokpre
  3025. def set_vocab(self):
  3026. self._set_vocab_gpt2()
  3027. # LLaDA specific parameters
  3028. self.gguf_writer.add_add_bos_token(True)
  3029. def set_gguf_parameters(self):
  3030. super().set_gguf_parameters()
  3031. self._try_set_pooling_type()
  3032. # Add parameters similar to LlamaModel
  3033. hparams = self.hparams
  3034. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3035. if (rope_dim := hparams.get("head_dim")) is None:
  3036. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3037. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3038. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3039. # Set context length for LLaDA
  3040. context_length = self.hparams.get("max_sequence_length", 4096)
  3041. self.gguf_writer.add_context_length(context_length)
  3042. # Set embedding length (dimension size)
  3043. embedding_length = self.hparams.get("d_model", 4096)
  3044. self.gguf_writer.add_embedding_length(embedding_length)
  3045. # Set feed forward length (MLP hidden size)
  3046. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3047. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3048. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3049. self.gguf_writer.add_causal_attention(False)
  3050. # LLaDA models don't shift their logits
  3051. self.gguf_writer.add_diffusion_shift_logits(False)
  3052. @staticmethod
  3053. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3054. if n_head_kv is not None and n_head != n_head_kv:
  3055. n_head = n_head_kv
  3056. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3057. .swapaxes(1, 2)
  3058. .reshape(weights.shape))
  3059. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3060. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3061. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3062. if self.undo_permute:
  3063. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3064. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3065. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3066. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3067. # LLaDA model tensors should be mapped directly since it's the base model
  3068. yield from super().modify_tensors(data_torch, name, bid)
  3069. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3070. class Ernie4_5Model(TextModel):
  3071. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3072. def set_vocab(self):
  3073. self._set_vocab_sentencepiece()
  3074. def set_gguf_parameters(self):
  3075. super().set_gguf_parameters()
  3076. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3077. num_heads = self.hparams["num_attention_heads"]
  3078. num_kv_heads = self.hparams["num_key_value_heads"]
  3079. if (head_dim := self.hparams.get("head_dim")) is None:
  3080. head_dim = self.hparams["hidden_size"] // num_heads
  3081. if "ernie." in name:
  3082. name = name.replace("ernie.", "model.")
  3083. # split the qkv weights
  3084. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3085. if "qkv_proj" in name:
  3086. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3087. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3088. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3089. total_q_dim = num_heads * head_dim
  3090. total_k_dim = num_kv_heads * head_dim
  3091. total_v_dim = num_kv_heads * head_dim
  3092. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3093. return [
  3094. (self.map_tensor_name(name_q), q_proj_weight),
  3095. (self.map_tensor_name(name_k), k_proj_weight),
  3096. (self.map_tensor_name(name_v), v_proj_weight)
  3097. ]
  3098. # split the up_gate_proj into gate and up
  3099. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3100. if "up_gate_proj" in name:
  3101. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3102. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3103. dim_half = data_torch.shape[0] // 2
  3104. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3105. return [
  3106. (self.map_tensor_name(name_gate), gate_proj_weight),
  3107. (self.map_tensor_name(name_up), up_proj_weight)
  3108. ]
  3109. return [(self.map_tensor_name(name), data_torch)]
  3110. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3111. class Ernie4_5MoeModel(Ernie4_5Model):
  3112. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3113. _experts: list[dict[str, Tensor]] | None = None
  3114. def __init__(self, *args, **kwargs):
  3115. super().__init__(*args, **kwargs)
  3116. self._experts = [{} for _ in range(self.block_count)]
  3117. def set_gguf_parameters(self):
  3118. super().set_gguf_parameters()
  3119. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3120. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3121. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3122. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3123. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3124. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3125. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3126. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3127. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3128. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3130. # Modify correction bias name as in DeepseekV2
  3131. if name.endswith("e_score_correction_bias"):
  3132. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3133. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3134. match = re.match(r"model.mtp_block.(\d+)", name)
  3135. if match:
  3136. return []
  3137. # skip all other MTP tensors for now
  3138. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3139. if match:
  3140. return []
  3141. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3142. if match:
  3143. return []
  3144. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3145. if match:
  3146. return []
  3147. # process the experts separately
  3148. if name.find("mlp.experts") != -1:
  3149. n_experts = self.hparams["moe_num_experts"]
  3150. assert bid is not None
  3151. if self._experts is None:
  3152. self._experts = [{} for _ in range(self.block_count)]
  3153. self._experts[bid][name] = data_torch
  3154. if len(self._experts[bid]) >= n_experts * 3:
  3155. tensors: list[tuple[str, Tensor]] = []
  3156. # merge the experts into a single 3d tensor
  3157. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3158. datas: list[Tensor] = []
  3159. for xid in range(n_experts):
  3160. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3161. datas.append(self._experts[bid][ename_to_retrieve])
  3162. del self._experts[bid][ename_to_retrieve]
  3163. data_torch = torch.stack(datas, dim=0)
  3164. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3165. new_name = self.map_tensor_name(merged_name)
  3166. tensors.append((new_name, data_torch))
  3167. return tensors
  3168. else:
  3169. return []
  3170. return [(self.map_tensor_name(name), data_torch)]
  3171. def prepare_tensors(self):
  3172. super().prepare_tensors()
  3173. if self._experts is not None:
  3174. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3175. experts = [k for d in self._experts for k in d.keys()]
  3176. if len(experts) > 0:
  3177. raise ValueError(f"Unprocessed experts: {experts}")
  3178. @ModelBase.register(
  3179. "Qwen2VLModel",
  3180. "Qwen2VLForConditionalGeneration",
  3181. "Qwen2_5_VLForConditionalGeneration",
  3182. "Qwen2_5OmniModel",
  3183. )
  3184. class Qwen2VLModel(TextModel):
  3185. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3186. def set_gguf_parameters(self):
  3187. super().set_gguf_parameters()
  3188. def set_vocab(self):
  3189. try:
  3190. self._set_vocab_sentencepiece()
  3191. except FileNotFoundError:
  3192. self._set_vocab_gpt2()
  3193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3194. del bid # unused
  3195. if name.startswith("thinker."):
  3196. name = name.replace("thinker.", "")
  3197. if name.startswith("visual") or name.startswith("audio") or \
  3198. name.startswith("talker") or name.startswith("token2wav"):
  3199. # skip multimodal tensors
  3200. return []
  3201. return [(self.map_tensor_name(name), data_torch)]
  3202. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3203. class Qwen2VLVisionModel(MmprojModel):
  3204. def __init__(self, *args, **kwargs):
  3205. super().__init__(*args, **kwargs)
  3206. assert self.hparams_vision is not None
  3207. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3208. # rename config.json values
  3209. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3210. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3211. if "embed_dim" in self.hparams_vision: # qwen2vl
  3212. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3213. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3214. def set_gguf_parameters(self):
  3215. super().set_gguf_parameters()
  3216. assert self.hparams_vision is not None
  3217. hparams = self.hparams_vision
  3218. model_type = self.global_config['model_type']
  3219. if model_type == 'qwen2_vl':
  3220. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3221. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3222. if model_type == 'qwen2_5_omni':
  3223. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3224. else:
  3225. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3226. self.gguf_writer.add_vision_use_silu(True)
  3227. # find n_wa_pattern (window attention pattern)
  3228. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3229. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3230. n_wa_pattern = fullatt_block_indexes[0] + 1
  3231. # validate n_wa_pattern
  3232. for i in range(1, len(fullatt_block_indexes)):
  3233. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3234. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3235. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3236. else:
  3237. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3238. # default values below are taken from HF tranformers code
  3239. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3240. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3241. if ".position_embd." in new_name:
  3242. return gguf.GGMLQuantizationType.F32
  3243. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3244. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3245. del bid # unused
  3246. if name.startswith("visual."):
  3247. # process visual tensors
  3248. # split QKV tensors if needed
  3249. if ".qkv." in name:
  3250. if data_torch.ndim == 2: # weight
  3251. c3, _ = data_torch.shape
  3252. else: # bias
  3253. c3 = data_torch.shape[0]
  3254. assert c3 % 3 == 0
  3255. c = c3 // 3
  3256. wq = data_torch[:c]
  3257. wk = data_torch[c: c * 2]
  3258. wv = data_torch[c * 2:]
  3259. return [
  3260. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3261. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3262. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3263. ]
  3264. elif 'patch_embed.proj.weight' in name:
  3265. # split Conv3D into Conv2Ds
  3266. c1, c2, kt, kh, kw = data_torch.shape
  3267. del c1, c2, kh, kw # unused
  3268. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3269. return [
  3270. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3271. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3272. ]
  3273. else:
  3274. return [(self.map_tensor_name(name), data_torch)]
  3275. return [] # skip other tensors
  3276. @ModelBase.register("Qwen2_5OmniModel")
  3277. class Qwen25OmniModel(Qwen2VLVisionModel):
  3278. has_vision_encoder = True
  3279. has_audio_encoder = True
  3280. def __init__(self, *args, **kwargs):
  3281. super().__init__(*args, **kwargs)
  3282. assert self.hparams_audio is not None
  3283. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3284. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3285. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3286. def set_gguf_parameters(self):
  3287. super().set_gguf_parameters()
  3288. assert self.hparams_audio is not None
  3289. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3290. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3291. def get_vision_config(self) -> dict[str, Any] | None:
  3292. return self.global_config["thinker_config"].get("vision_config")
  3293. def get_audio_config(self) -> dict[str, Any] | None:
  3294. return self.global_config["thinker_config"].get("audio_config")
  3295. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3296. # SinusoidsPositionEmbedding
  3297. assert self.hparams_audio is not None
  3298. max_timescale = 10000
  3299. length = 1500
  3300. channels = self.hparams_audio["hidden_size"]
  3301. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3302. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3303. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3304. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3305. yield ("audio_tower.embed_positions.weight", pos_embd)
  3306. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3307. if ".conv" in name and ".weight" in name:
  3308. return gguf.GGMLQuantizationType.F16
  3309. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3311. if name.startswith("thinker."):
  3312. name = name.replace("thinker.", "")
  3313. if name.startswith("audio_tower"):
  3314. # process audio tensors
  3315. if "conv1.bias" in name or "conv2.bias" in name:
  3316. # transpose conv1 and conv2 bias
  3317. data_torch = data_torch.unsqueeze(-1)
  3318. if "audio_bos_eos_token" in name:
  3319. # this tensor is left unused in transformers code
  3320. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3321. return []
  3322. return [(self.map_tensor_name(name), data_torch)]
  3323. return super().modify_tensors(data_torch, name, bid)
  3324. @ModelBase.register("InternVisionModel")
  3325. class InternVisionModel(MmprojModel):
  3326. def set_gguf_parameters(self):
  3327. assert self.hparams_vision is not None
  3328. if isinstance(self.hparams_vision['image_size'], list):
  3329. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3330. if isinstance(self.hparams_vision['patch_size'], list):
  3331. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3332. super().set_gguf_parameters()
  3333. hparams = self.hparams
  3334. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3335. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3336. # hidden_act
  3337. if hparams["hidden_act"] == "silu":
  3338. self.gguf_writer.add_vision_use_silu(True)
  3339. elif hparams["hidden_act"] == "gelu":
  3340. self.gguf_writer.add_vision_use_gelu(True)
  3341. else:
  3342. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3343. # downsample_ratio
  3344. downsample_ratio = self.global_config.get("downsample_ratio")
  3345. assert downsample_ratio is not None
  3346. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3347. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3348. if ".position_embd." in new_name:
  3349. return gguf.GGMLQuantizationType.F32
  3350. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3351. def _mapping_interns1_name(self, name):
  3352. names_map = {
  3353. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3354. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3355. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3356. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3357. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3358. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3359. }
  3360. if name in names_map:
  3361. name = names_map[name]
  3362. return name
  3363. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3364. del bid # unused
  3365. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3366. # deal with intern-s1 special case
  3367. name = self._mapping_interns1_name(name)
  3368. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3369. # process visual tensors
  3370. # correct name
  3371. if name.startswith("vision_model"):
  3372. name = "vision_tower." + name
  3373. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3374. name += ".weight"
  3375. # split QKV tensors if needed
  3376. if ".qkv." in name:
  3377. if data_torch.ndim == 2: # weight
  3378. c3, _ = data_torch.shape
  3379. else: # bias
  3380. c3 = data_torch.shape[0]
  3381. assert c3 % 3 == 0
  3382. c = c3 // 3
  3383. wq = data_torch[:c]
  3384. wk = data_torch[c: c * 2]
  3385. wv = data_torch[c * 2:]
  3386. return [
  3387. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3388. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3389. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3390. ]
  3391. return [(self.map_tensor_name(name), data_torch)]
  3392. return [] # skip other tensors
  3393. @ModelBase.register("WavTokenizerDec")
  3394. class WavTokenizerDecModel(TextModel):
  3395. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3396. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3397. del bid # unused
  3398. if \
  3399. name.endswith("codebook.cluster_size") or \
  3400. name.endswith("codebook.embed_avg") or \
  3401. name.endswith("codebook.inited"):
  3402. logger.debug(f"Skipping {name!r}")
  3403. return []
  3404. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3405. return [(self.map_tensor_name(name), data_torch)]
  3406. def set_vocab(self):
  3407. self._set_vocab_none()
  3408. def set_gguf_parameters(self):
  3409. super().set_gguf_parameters()
  3410. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3411. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3412. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3413. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3414. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3415. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3416. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3417. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3418. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3419. self.gguf_writer.add_causal_attention(False)
  3420. @ModelBase.register("Qwen2MoeForCausalLM")
  3421. class Qwen2MoeModel(TextModel):
  3422. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3423. def set_gguf_parameters(self):
  3424. super().set_gguf_parameters()
  3425. if (n_experts := self.hparams.get("num_experts")) is not None:
  3426. self.gguf_writer.add_expert_count(n_experts)
  3427. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3428. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3429. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3430. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3431. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3432. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3433. _experts: list[dict[str, Tensor]] | None = None
  3434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3435. # process the experts separately
  3436. name = name.replace("language_model.", "") # InternVL
  3437. # handle aggregated expert tensors
  3438. # GGUF stores dimensions reversed from PyTorch, so:
  3439. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3440. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3441. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3442. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3443. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3444. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3445. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3446. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3447. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3448. permuted = data_torch.permute(0, 2, 1).contiguous()
  3449. return [(self.map_tensor_name(mapped), permuted)]
  3450. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3451. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3452. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3453. split_dim = data_torch.shape[-1] // 2
  3454. gate = data_torch[..., :split_dim].contiguous()
  3455. up = data_torch[..., split_dim:].contiguous()
  3456. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3457. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3458. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3459. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3460. base_name = name.removesuffix(".weight")
  3461. base = base_name.rsplit('.', 1)[0]
  3462. mapped_gate = f"{base}.gate_proj.weight"
  3463. mapped_up = f"{base}.up_proj.weight"
  3464. perm_gate = gate.permute(0, 2, 1).contiguous()
  3465. perm_up = up.permute(0, 2, 1).contiguous()
  3466. return [
  3467. (self.map_tensor_name(mapped_gate), perm_gate),
  3468. (self.map_tensor_name(mapped_up), perm_up),
  3469. ]
  3470. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3471. # skip visual tensors
  3472. return []
  3473. if name.find("experts") != -1:
  3474. n_experts = self.hparams["num_experts"]
  3475. assert bid is not None
  3476. if self._experts is None:
  3477. self._experts = [{} for _ in range(self.block_count)]
  3478. self._experts[bid][name] = data_torch
  3479. if len(self._experts[bid]) >= n_experts * 3:
  3480. tensors: list[tuple[str, Tensor]] = []
  3481. # merge the experts into a single 3d tensor
  3482. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3483. datas: list[Tensor] = []
  3484. for xid in range(n_experts):
  3485. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3486. datas.append(self._experts[bid][ename])
  3487. del self._experts[bid][ename]
  3488. data_torch = torch.stack(datas, dim=0)
  3489. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3490. new_name = self.map_tensor_name(merged_name)
  3491. tensors.append((new_name, data_torch))
  3492. return tensors
  3493. else:
  3494. return []
  3495. return [(self.map_tensor_name(name), data_torch)]
  3496. def prepare_tensors(self):
  3497. super().prepare_tensors()
  3498. if self._experts is not None:
  3499. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3500. experts = [k for d in self._experts for k in d.keys()]
  3501. if len(experts) > 0:
  3502. raise ValueError(f"Unprocessed experts: {experts}")
  3503. @ModelBase.register("Qwen3ForCausalLM")
  3504. class Qwen3Model(Qwen2Model):
  3505. model_arch = gguf.MODEL_ARCH.QWEN3
  3506. # extra logic for rerank models
  3507. is_rerank: bool = False
  3508. is_tied_embeddings: bool = False
  3509. token_false_id: int | None = None
  3510. token_true_id: int | None = None
  3511. def __init__(self, *args, **kwargs):
  3512. super().__init__(*args, **kwargs)
  3513. # track for intern-s1-mini
  3514. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3515. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3516. # a bit hacky, but currently the only way to detect if this is a rerank model
  3517. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3518. readme_path = self.dir_model / "README.md"
  3519. readme_text = ""
  3520. if readme_path.exists():
  3521. with readme_path.open("r", encoding="utf-8") as f:
  3522. readme_text = f.read()
  3523. if "# Qwen3-Reranker" in readme_text:
  3524. self._find_rerank_config()
  3525. def set_vocab(self):
  3526. # deal with intern-s1-mini
  3527. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3528. self._set_vocab_interns1()
  3529. return
  3530. super().set_vocab()
  3531. def _find_rerank_config(self):
  3532. from transformers import AutoTokenizer
  3533. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3534. self.is_rerank = True
  3535. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3536. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3537. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3538. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3539. assert self.token_false_id is not None and self.token_true_id is not None
  3540. def set_gguf_parameters(self):
  3541. super().set_gguf_parameters()
  3542. if self.is_rerank:
  3543. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3544. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3545. self.gguf_writer.add_chat_template([{
  3546. "name": "rerank",
  3547. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3548. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3549. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3550. }])
  3551. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3552. # extract "yes" and "no" tokens from the output lm_head tensor
  3553. false_row = data_torch[self.token_false_id]
  3554. true_row = data_torch[self.token_true_id]
  3555. return torch.stack([true_row, false_row], dim=0)
  3556. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3557. if "model.vision_" in name:
  3558. # skip multimodal tensors
  3559. return []
  3560. if self.is_rerank:
  3561. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3562. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3563. if is_tied_head or is_real_head:
  3564. cls_out_head = (
  3565. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3566. self._get_cls_out_tensor(data_torch),
  3567. )
  3568. if is_tied_head:
  3569. embed = (self.map_tensor_name(name), data_torch)
  3570. return [cls_out_head, embed]
  3571. if is_real_head:
  3572. return [cls_out_head]
  3573. return super().modify_tensors(data_torch, name, bid)
  3574. @ModelBase.register("Qwen3MoeForCausalLM")
  3575. class Qwen3MoeModel(Qwen2MoeModel):
  3576. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3577. def __init__(self, *args, **kwargs):
  3578. super().__init__(*args, **kwargs)
  3579. hparams = ModelBase.load_hparams(self.dir_model, False)
  3580. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3581. def set_vocab(self):
  3582. # deal with intern-s1
  3583. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3584. self._set_vocab_interns1()
  3585. return
  3586. super().set_vocab()
  3587. @ModelBase.register("Qwen3NextForCausalLM")
  3588. class Qwen3NextModel(Qwen2MoeModel):
  3589. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3590. def set_gguf_parameters(self):
  3591. super().set_gguf_parameters()
  3592. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3593. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3594. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3595. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3596. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3597. if (rope_dim := self.hparams.get("head_dim")) is None:
  3598. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3599. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3600. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3601. if name.startswith("mtp"):
  3602. return [] # ignore MTP layers for now
  3603. if name.endswith(".A_log"):
  3604. data_torch = -torch.exp(data_torch)
  3605. elif name.endswith(".dt_bias"):
  3606. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3607. elif "conv1d" in name:
  3608. data_torch = data_torch.squeeze()
  3609. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3610. data_torch = data_torch + 1
  3611. yield from super().modify_tensors(data_torch, name, bid)
  3612. @ModelBase.register("RND1")
  3613. class RND1Model(Qwen2MoeModel):
  3614. model_arch = gguf.MODEL_ARCH.RND1
  3615. def set_gguf_parameters(self):
  3616. super().set_gguf_parameters()
  3617. # RND1 specific parameters
  3618. # RND1 uses bidirectional attention
  3619. self.gguf_writer.add_causal_attention(False)
  3620. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3621. self.gguf_writer.add_mask_token_id(mask_token_id)
  3622. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3623. class Qwen3VLVisionModel(MmprojModel):
  3624. def __init__(self, *args, **kwargs):
  3625. super().__init__(*args, **kwargs)
  3626. assert self.hparams_vision is not None
  3627. # Compute image_size if not present
  3628. if "image_size" not in self.hparams_vision:
  3629. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3630. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3631. patch_size = self.hparams_vision.get("patch_size", 16)
  3632. # num_position_embeddings = (image_size / patch_size) ** 2
  3633. # So image_size = sqrt(num_position_embeddings) * patch_size
  3634. image_size = int(num_pos**0.5 * patch_size)
  3635. self.hparams_vision["image_size"] = image_size
  3636. # Rename config values for compatibility
  3637. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3638. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3639. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3640. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3641. self.is_deepstack_layers[idx] = True
  3642. def set_gguf_parameters(self):
  3643. super().set_gguf_parameters()
  3644. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3645. self.gguf_writer.add_vision_use_gelu(True)
  3646. if self.hparams_vision is not None:
  3647. merge_size = self.hparams_vision.get("spatial_merge_size")
  3648. if merge_size is not None:
  3649. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3650. # Use text config's rms_norm_eps for vision attention layernorm eps
  3651. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3652. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3653. if self.is_deepstack_layers:
  3654. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3656. assert self.hparams_vision is not None
  3657. # Skip text model tensors - they go in the text model file
  3658. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3659. return []
  3660. if name.startswith("model.visual."):
  3661. name = name.replace("model.visual.", "visual.", 1)
  3662. if name.startswith("visual.deepstack_merger_list."):
  3663. prefix, rest = name.split(".", maxsplit=3)[2:]
  3664. # prefix is the layer index, convert to absolute clip layer index!
  3665. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3666. target = rest
  3667. tensor_type: gguf.MODEL_TENSOR
  3668. if target.startswith("norm."):
  3669. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3670. suffix = target.split(".", 1)[1]
  3671. elif target.startswith("linear_fc1."):
  3672. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3673. suffix = target.split(".", 1)[1]
  3674. elif target.startswith("linear_fc2."):
  3675. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3676. suffix = target.split(".", 1)[1]
  3677. else:
  3678. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3679. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3680. return [(new_name, data_torch)]
  3681. if name.startswith("visual.merger."):
  3682. suffix = name.split(".", 2)[2]
  3683. if suffix.startswith("linear_fc"):
  3684. fc_idx_str, tail = suffix.split(".", 1)
  3685. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3686. # Qwen3VL has linear_fc1 and linear_fc2
  3687. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3688. if fc_num == 1:
  3689. fc_idx = 0
  3690. elif fc_num == 2:
  3691. fc_idx = 2
  3692. else:
  3693. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3694. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3695. elif suffix.startswith("norm."):
  3696. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3697. else:
  3698. raise ValueError(f"Unexpected merger tensor: {name}")
  3699. return [(new_name, data_torch)]
  3700. if name == "visual.patch_embed.proj.weight":
  3701. # split Conv3D into Conv2Ds along temporal dimension
  3702. c1, c2, kt, _, _ = data_torch.shape
  3703. del c1, c2
  3704. if kt != 2:
  3705. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3706. return [
  3707. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3708. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3709. ]
  3710. if name == "visual.patch_embed.proj.bias":
  3711. # Include the bias - it's used by the C++ code
  3712. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3713. if name.startswith("visual."):
  3714. return [(self.map_tensor_name(name), data_torch)]
  3715. # Fall back to parent class for other tensors
  3716. return super().modify_tensors(data_torch, name, bid)
  3717. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3718. class Glm4VVisionModel(Qwen3VLVisionModel):
  3719. def set_gguf_parameters(self):
  3720. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3721. assert self.hparams_vision is not None
  3722. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3723. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3724. if hidden_act == "gelu":
  3725. self.gguf_writer.add_vision_use_gelu(True)
  3726. elif hidden_act == "silu":
  3727. self.gguf_writer.add_vision_use_silu(True)
  3728. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3729. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3731. if name.startswith("model.visual."):
  3732. name = name.replace("model.visual.", "visual.")
  3733. if name.startswith("visual.merger."):
  3734. return [(self.map_tensor_name(name), data_torch)]
  3735. return super().modify_tensors(data_torch, name, bid)
  3736. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3737. class Qwen3VLTextModel(Qwen3Model):
  3738. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3739. def set_gguf_parameters(self):
  3740. super().set_gguf_parameters()
  3741. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3742. vision_config = self.hparams.get("vision_config", {})
  3743. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3744. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3746. # Skip vision tensors - they go in the mmproj file
  3747. if name.startswith("model.visual."):
  3748. return []
  3749. return super().modify_tensors(data_torch, name, bid)
  3750. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3751. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3752. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3753. def set_gguf_parameters(self):
  3754. super().set_gguf_parameters()
  3755. vision_config = self.hparams.get("vision_config", {})
  3756. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3757. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3759. # Skip vision tensors - they go in the mmproj file
  3760. if name.startswith("model.visual."):
  3761. return []
  3762. return super().modify_tensors(data_torch, name, bid)
  3763. @ModelBase.register("GPT2LMHeadModel")
  3764. class GPT2Model(TextModel):
  3765. model_arch = gguf.MODEL_ARCH.GPT2
  3766. def set_gguf_parameters(self):
  3767. self.gguf_writer.add_block_count(self.block_count)
  3768. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3769. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3770. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3771. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3772. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3773. self.gguf_writer.add_file_type(self.ftype)
  3774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3775. del bid # unused
  3776. tensors: list[tuple[str, Tensor]] = []
  3777. # we don't need these
  3778. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3779. return tensors
  3780. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3781. data_torch = data_torch.transpose(1, 0)
  3782. new_name = self.map_tensor_name(name)
  3783. tensors.append((new_name, data_torch))
  3784. return tensors
  3785. @ModelBase.register("PhiForCausalLM")
  3786. class Phi2Model(TextModel):
  3787. model_arch = gguf.MODEL_ARCH.PHI2
  3788. def set_gguf_parameters(self):
  3789. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3790. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3791. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3792. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3793. self.gguf_writer.add_embedding_length(n_embd)
  3794. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3795. self.gguf_writer.add_block_count(self.block_count)
  3796. self.gguf_writer.add_head_count(n_head)
  3797. self.gguf_writer.add_head_count_kv(n_head)
  3798. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3799. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3800. self.gguf_writer.add_file_type(self.ftype)
  3801. self.gguf_writer.add_add_bos_token(False)
  3802. @ModelBase.register("Phi3ForCausalLM")
  3803. class Phi3MiniModel(TextModel):
  3804. model_arch = gguf.MODEL_ARCH.PHI3
  3805. def set_vocab(self):
  3806. # Phi-4 model uses GPT2Tokenizer
  3807. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3808. if tokenizer_config_file.is_file():
  3809. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3810. tokenizer_config_json = json.load(f)
  3811. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3812. if tokenizer_class == 'GPT2Tokenizer':
  3813. return self._set_vocab_gpt2()
  3814. from sentencepiece import SentencePieceProcessor
  3815. tokenizer_path = self.dir_model / 'tokenizer.model'
  3816. if not tokenizer_path.is_file():
  3817. raise ValueError(f'Error: Missing {tokenizer_path}')
  3818. tokenizer = SentencePieceProcessor()
  3819. tokenizer.LoadFromFile(str(tokenizer_path))
  3820. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3821. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3822. scores: list[float] = [-10000.0] * vocab_size
  3823. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3824. for token_id in range(tokenizer.vocab_size()):
  3825. piece = tokenizer.IdToPiece(token_id)
  3826. text = piece.encode("utf-8")
  3827. score = tokenizer.GetScore(token_id)
  3828. toktype = SentencePieceTokenTypes.NORMAL
  3829. if tokenizer.IsUnknown(token_id):
  3830. toktype = SentencePieceTokenTypes.UNKNOWN
  3831. elif tokenizer.IsControl(token_id):
  3832. toktype = SentencePieceTokenTypes.CONTROL
  3833. elif tokenizer.IsUnused(token_id):
  3834. toktype = SentencePieceTokenTypes.UNUSED
  3835. elif tokenizer.IsByte(token_id):
  3836. toktype = SentencePieceTokenTypes.BYTE
  3837. tokens[token_id] = text
  3838. scores[token_id] = score
  3839. toktypes[token_id] = toktype
  3840. added_tokens_file = self.dir_model / 'added_tokens.json'
  3841. if added_tokens_file.is_file():
  3842. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3843. added_tokens_json = json.load(f)
  3844. for key in added_tokens_json:
  3845. token_id = added_tokens_json[key]
  3846. if token_id >= vocab_size:
  3847. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3848. continue
  3849. tokens[token_id] = key.encode("utf-8")
  3850. scores[token_id] = -1000.0
  3851. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3852. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3853. if tokenizer_config_file.is_file():
  3854. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3855. tokenizer_config_json = json.load(f)
  3856. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3857. for token_id, foken_data in added_tokens_decoder.items():
  3858. token_id = int(token_id)
  3859. token = foken_data["content"].encode("utf-8")
  3860. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3861. if tokens[token_id] != token:
  3862. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3863. tokens[token_id] = token
  3864. scores[token_id] = -1000.0
  3865. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3866. if foken_data.get("special"):
  3867. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3868. tokenizer_file = self.dir_model / 'tokenizer.json'
  3869. if tokenizer_file.is_file():
  3870. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3871. tokenizer_json = json.load(f)
  3872. added_tokens = tokenizer_json.get("added_tokens", [])
  3873. for foken_data in added_tokens:
  3874. token_id = int(foken_data["id"])
  3875. token = foken_data["content"].encode("utf-8")
  3876. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3877. if tokens[token_id] != token:
  3878. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3879. tokens[token_id] = token
  3880. scores[token_id] = -1000.0
  3881. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3882. if foken_data.get("special"):
  3883. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3884. self.gguf_writer.add_tokenizer_model("llama")
  3885. self.gguf_writer.add_tokenizer_pre("default")
  3886. self.gguf_writer.add_token_list(tokens)
  3887. self.gguf_writer.add_token_scores(scores)
  3888. self.gguf_writer.add_token_types(toktypes)
  3889. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3890. special_vocab.add_to_gguf(self.gguf_writer)
  3891. def set_gguf_parameters(self):
  3892. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3893. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3894. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3895. rms_eps = self.find_hparam(["rms_norm_eps"])
  3896. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3897. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3898. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3899. rope_dims = int(rot_pct * n_embd) // n_head
  3900. self.gguf_writer.add_context_length(max_pos_embds)
  3901. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3902. self.gguf_writer.add_embedding_length(n_embd)
  3903. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3904. self.gguf_writer.add_block_count(self.block_count)
  3905. self.gguf_writer.add_head_count(n_head)
  3906. self.gguf_writer.add_head_count_kv(n_head_kv)
  3907. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3908. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3909. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3910. self.gguf_writer.add_file_type(self.ftype)
  3911. sliding_window = self.hparams.get("sliding_window")
  3912. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3913. if sliding_window is None:
  3914. sliding_window = 0
  3915. self.gguf_writer.add_sliding_window(sliding_window)
  3916. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3917. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3918. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3919. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3920. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3921. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3922. rope_dims = int(rot_pct * n_embd) // n_head
  3923. # write rope scaling for long context (128k) model
  3924. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3925. if rope_scaling is None:
  3926. return
  3927. scale = max_pos_embds / orig_max_pos_embds
  3928. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3929. if len(rope_scaling_type) == 0:
  3930. raise KeyError('Missing the required key rope_scaling.type')
  3931. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3932. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3933. elif rope_scaling_type == 'yarn':
  3934. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3935. else:
  3936. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3937. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3938. long_factors = rope_scaling.get('long_factor', None)
  3939. short_factors = rope_scaling.get('short_factor', None)
  3940. if long_factors is None or short_factors is None:
  3941. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3942. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3943. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3944. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3945. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3946. @ModelBase.register("PhiMoEForCausalLM")
  3947. class PhiMoeModel(Phi3MiniModel):
  3948. model_arch = gguf.MODEL_ARCH.PHIMOE
  3949. _experts: list[dict[str, Tensor]] | None = None
  3950. def set_gguf_parameters(self):
  3951. super().set_gguf_parameters()
  3952. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3953. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3955. # process the experts separately
  3956. if name.find("block_sparse_moe.experts") != -1:
  3957. n_experts = self.hparams["num_local_experts"]
  3958. assert bid is not None
  3959. if self._experts is None:
  3960. self._experts = [{} for _ in range(self.block_count)]
  3961. self._experts[bid][name] = data_torch
  3962. if len(self._experts[bid]) >= n_experts * 3:
  3963. tensors: list[tuple[str, Tensor]] = []
  3964. # merge the experts into a single 3d tensor
  3965. for w_name in ["w1", "w2", "w3"]:
  3966. datas: list[Tensor] = []
  3967. for xid in range(n_experts):
  3968. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3969. datas.append(self._experts[bid][ename])
  3970. del self._experts[bid][ename]
  3971. data_torch = torch.stack(datas, dim=0)
  3972. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3973. new_name = self.map_tensor_name(merged_name)
  3974. tensors.append((new_name, data_torch))
  3975. return tensors
  3976. else:
  3977. return []
  3978. return [(self.map_tensor_name(name), data_torch)]
  3979. def prepare_tensors(self):
  3980. super().prepare_tensors()
  3981. if self._experts is not None:
  3982. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3983. experts = [k for d in self._experts for k in d.keys()]
  3984. if len(experts) > 0:
  3985. raise ValueError(f"Unprocessed experts: {experts}")
  3986. @ModelBase.register("PlamoForCausalLM")
  3987. class PlamoModel(TextModel):
  3988. model_arch = gguf.MODEL_ARCH.PLAMO
  3989. def set_vocab(self):
  3990. self._set_vocab_sentencepiece()
  3991. def set_gguf_parameters(self):
  3992. hparams = self.hparams
  3993. self.gguf_writer.add_context_length(4096) # not in config.json
  3994. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3995. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3996. self.gguf_writer.add_block_count(self.block_count)
  3997. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3998. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3999. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  4000. self.gguf_writer.add_file_type(self.ftype)
  4001. def shuffle_attn_q_weight(self, data_torch):
  4002. assert data_torch.size() == (5120, 5120)
  4003. data_torch = data_torch.reshape(8, 5, 128, 5120)
  4004. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  4005. data_torch = torch.reshape(data_torch, (5120, 5120))
  4006. return data_torch
  4007. def shuffle_attn_output_weight(self, data_torch):
  4008. assert data_torch.size() == (5120, 5120)
  4009. data_torch = data_torch.reshape(5120, 8, 5, 128)
  4010. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  4011. data_torch = torch.reshape(data_torch, (5120, 5120))
  4012. return data_torch
  4013. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4014. del bid # unused
  4015. new_name = self.map_tensor_name(name)
  4016. # shuffle for broadcasting of gqa in ggml_mul_mat
  4017. if new_name.endswith("attn_q.weight"):
  4018. data_torch = self.shuffle_attn_q_weight(data_torch)
  4019. elif new_name.endswith("attn_output.weight"):
  4020. data_torch = self.shuffle_attn_output_weight(data_torch)
  4021. return [(new_name, data_torch)]
  4022. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4023. class Plamo2Model(TextModel):
  4024. model_arch = gguf.MODEL_ARCH.PLAMO2
  4025. def set_vocab(self):
  4026. self._set_vocab_plamo()
  4027. def set_gguf_parameters(self):
  4028. hparams = self.hparams
  4029. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4030. # Which layers are Mamba layers
  4031. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4032. # This logic matches modeling_plamo.py's is_mamba function
  4033. mamba_step = hparams.get("mamba_step", 2)
  4034. mamba_enabled = hparams.get("mamba_enabled", True)
  4035. num_key_value_heads = []
  4036. num_attention_heads = []
  4037. if mamba_enabled:
  4038. for i in range(self.block_count):
  4039. if self.block_count <= (mamba_step // 2):
  4040. # use attention in last layer
  4041. is_mamba = (i != self.block_count - 1)
  4042. else:
  4043. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4044. if is_mamba:
  4045. num_key_value_heads.append(0)
  4046. num_attention_heads.append(0)
  4047. else:
  4048. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4049. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4050. if num_key_value_heads and num_attention_heads:
  4051. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4052. self.gguf_writer.add_head_count(num_attention_heads)
  4053. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4054. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4055. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4056. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4057. self.gguf_writer.add_block_count(self.block_count)
  4058. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4059. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4060. # Mamba parameters
  4061. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4062. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4063. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4064. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4065. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4066. self.gguf_writer.add_ssm_group_count(0)
  4067. # MLP feed forward parameters (for attention layers)
  4068. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4069. self.gguf_writer.add_file_type(self.ftype)
  4070. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4071. del bid # unused
  4072. if name.endswith(".A_log"):
  4073. data_torch = -torch.exp(data_torch)
  4074. elif name.endswith(".dt_bias"):
  4075. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4076. elif name.endswith(".dt_norm_weight"):
  4077. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4078. elif name.endswith(".B_norm_weight"):
  4079. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4080. elif name.endswith(".C_norm_weight"):
  4081. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4082. elif name.endswith(".k_weight"):
  4083. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4084. elif name.endswith(".q_weight"):
  4085. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4086. elif name.endswith(".conv1d.weight"):
  4087. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4088. assert data_torch.ndim == 2
  4089. elif name.endswith(".pre_mixer_norm.weight"):
  4090. data_torch += 1.0
  4091. elif name.endswith(".post_mixer_norm.weight"):
  4092. data_torch += 1.0 / 5
  4093. elif name.endswith(".pre_mlp_norm.weight"):
  4094. data_torch += 1.0
  4095. elif name.endswith(".post_mlp_norm.weight"):
  4096. data_torch += 1.0 / (5**1.5)
  4097. elif name.endswith(".norm.weight"):
  4098. data_torch += 1.0
  4099. new_name = self.map_tensor_name(name)
  4100. return [(new_name, data_torch)]
  4101. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4102. class Plamo3Model(TextModel):
  4103. model_arch = gguf.MODEL_ARCH.PLAMO3
  4104. def set_vocab(self):
  4105. self._set_vocab_plamo()
  4106. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4107. tokenizer_config = {}
  4108. if tokenizer_config_path.is_file():
  4109. with open(tokenizer_config_path, encoding="utf-8") as f:
  4110. tokenizer_config = json.load(f)
  4111. chat_template = tokenizer_config.get("chat_template")
  4112. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4113. if chat_template_jinja.is_file():
  4114. with open(chat_template_jinja, encoding="utf-8") as f:
  4115. chat_template = f.read()
  4116. if chat_template:
  4117. self.gguf_writer.add_chat_template(chat_template)
  4118. def set_gguf_parameters(self):
  4119. super().set_gguf_parameters()
  4120. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4121. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4122. self.gguf_writer.add_sliding_window(sliding_window)
  4123. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4125. if name.endswith(".pre_mixer_norm.weight"):
  4126. data_torch = data_torch + 1.0
  4127. elif name.endswith(".post_mixer_norm.weight"):
  4128. data_torch = data_torch + 1.0 / 5
  4129. elif name.endswith(".pre_mlp_norm.weight"):
  4130. data_torch = data_torch + 1.0
  4131. elif name.endswith(".post_mlp_norm.weight"):
  4132. data_torch = data_torch + 1.0 / (5**1.5)
  4133. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4134. data_torch = data_torch + 1.0
  4135. elif name.endswith(".norm.weight"):
  4136. data_torch = data_torch + 1.0
  4137. return [(self.map_tensor_name(name), data_torch)]
  4138. @ModelBase.register("CodeShellForCausalLM")
  4139. class CodeShellModel(TextModel):
  4140. model_arch = gguf.MODEL_ARCH.CODESHELL
  4141. def set_gguf_parameters(self):
  4142. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4143. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4144. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4145. self.gguf_writer.add_block_count(self.block_count)
  4146. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4147. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4148. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4149. self.gguf_writer.add_file_type(self.ftype)
  4150. self.gguf_writer.add_rope_freq_base(10000.0)
  4151. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4152. self.gguf_writer.add_rope_scaling_factor(1.0)
  4153. @ModelBase.register("InternLM2ForCausalLM")
  4154. class InternLM2Model(TextModel):
  4155. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4156. def set_vocab(self):
  4157. # (TODO): Is there a better way?
  4158. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4159. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4160. # recognized as an empty string in C++.
  4161. from sentencepiece import SentencePieceProcessor
  4162. from sentencepiece import sentencepiece_model_pb2 as model
  4163. tokenizer_path = self.dir_model / 'tokenizer.model'
  4164. tokens: list[bytes] = []
  4165. scores: list[float] = []
  4166. toktypes: list[int] = []
  4167. if not tokenizer_path.is_file():
  4168. logger.error(f'Error: Missing {tokenizer_path}')
  4169. sys.exit(1)
  4170. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4171. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4172. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4173. tokenizer = SentencePieceProcessor()
  4174. tokenizer.LoadFromFile(str(tokenizer_path))
  4175. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4176. for token_id in range(vocab_size):
  4177. piece = tokenizer.IdToPiece(token_id)
  4178. text = piece.encode("utf-8")
  4179. score = tokenizer.GetScore(token_id)
  4180. if text == b"\x00":
  4181. # (TODO): fixme
  4182. # Hack here and replace the \x00 characters.
  4183. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4184. text = "🐉".encode("utf-8")
  4185. toktype = SentencePieceTokenTypes.NORMAL
  4186. if tokenizer.IsUnknown(token_id):
  4187. toktype = SentencePieceTokenTypes.UNKNOWN
  4188. elif tokenizer.IsControl(token_id):
  4189. toktype = SentencePieceTokenTypes.CONTROL
  4190. elif tokenizer.IsUnused(token_id):
  4191. toktype = SentencePieceTokenTypes.UNUSED
  4192. elif tokenizer.IsByte(token_id):
  4193. toktype = SentencePieceTokenTypes.BYTE
  4194. # take care of ununsed raw token
  4195. if piece.startswith('[UNUSED'):
  4196. toktype = SentencePieceTokenTypes.UNUSED
  4197. tokens.append(text)
  4198. scores.append(score)
  4199. toktypes.append(toktype)
  4200. added_tokens_file = self.dir_model / 'added_tokens.json'
  4201. if added_tokens_file.is_file():
  4202. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4203. added_tokens_json = json.load(f)
  4204. for key in added_tokens_json:
  4205. tokens.append(key.encode("utf-8"))
  4206. scores.append(-1000.0)
  4207. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4208. chat_eos_token = '<|im_end|>'
  4209. chat_eos_token_id = None
  4210. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4211. if tokenizer_config_file.is_file():
  4212. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4213. tokenizer_config_json = json.load(f)
  4214. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4215. for token_id, foken_data in added_tokens_decoder.items():
  4216. token_id = int(token_id)
  4217. token = foken_data["content"]
  4218. if token == chat_eos_token:
  4219. chat_eos_token_id = token_id
  4220. token = token.encode("utf-8")
  4221. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4222. if tokens[token_id] != token:
  4223. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4224. tokens[token_id] = token
  4225. scores[token_id] = -1000.0
  4226. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4227. if foken_data.get("special"):
  4228. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4229. tokenizer_file = self.dir_model / 'tokenizer.json'
  4230. if tokenizer_file.is_file():
  4231. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4232. tokenizer_json = json.load(f)
  4233. added_tokens = tokenizer_json.get("added_tokens", [])
  4234. for foken_data in added_tokens:
  4235. token_id = int(foken_data["id"])
  4236. token = foken_data["content"]
  4237. if token == chat_eos_token:
  4238. chat_eos_token_id = token_id
  4239. token = token.encode("utf-8")
  4240. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4241. if tokens[token_id] != token:
  4242. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4243. tokens[token_id] = token
  4244. scores[token_id] = -1000.0
  4245. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4246. if foken_data.get("special"):
  4247. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4248. self.gguf_writer.add_tokenizer_model("llama")
  4249. self.gguf_writer.add_tokenizer_pre("default")
  4250. self.gguf_writer.add_token_list(tokens)
  4251. self.gguf_writer.add_token_scores(scores)
  4252. self.gguf_writer.add_token_types(toktypes)
  4253. self.gguf_writer.add_add_space_prefix(add_prefix)
  4254. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4255. old_eos = special_vocab.special_token_ids["eos"]
  4256. if chat_eos_token_id is not None:
  4257. # For the chat model, we replace the eos with '<|im_end|>'.
  4258. # TODO: this is a hack, should be fixed
  4259. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4260. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4261. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4262. " in chat mode so that the conversation can end normally.")
  4263. special_vocab.add_to_gguf(self.gguf_writer)
  4264. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4265. num_heads = self.hparams["num_attention_heads"]
  4266. num_kv_heads = self.hparams["num_key_value_heads"]
  4267. n_embd = self.hparams["hidden_size"]
  4268. q_per_kv = num_heads // num_kv_heads
  4269. head_dim = n_embd // num_heads
  4270. num_groups = num_heads // q_per_kv
  4271. name = name.replace("language_model.", "") # InternVL
  4272. if name.startswith("mlp") or name.startswith("vision_model"):
  4273. # skip visual tensors
  4274. return []
  4275. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4276. qkv = data_torch
  4277. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4278. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4279. # The model weights of q and k equire additional reshape.
  4280. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4281. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4282. v = v.reshape((-1, v.shape[-1]))
  4283. return [
  4284. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4285. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4286. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4287. ]
  4288. else:
  4289. return [(self.map_tensor_name(name), data_torch)]
  4290. @ModelBase.register("InternLM3ForCausalLM")
  4291. class InternLM3Model(TextModel):
  4292. model_arch = gguf.MODEL_ARCH.LLAMA
  4293. def set_vocab(self):
  4294. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4295. self.gguf_writer.add_tokenizer_model("llama")
  4296. self.gguf_writer.add_tokenizer_pre("default")
  4297. self.gguf_writer.add_token_list(tokens)
  4298. self.gguf_writer.add_token_scores(scores)
  4299. self.gguf_writer.add_token_types(toktypes)
  4300. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4301. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4302. if tokenizer_config_file.is_file():
  4303. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4304. tokenizer_config_json = json.load(f)
  4305. if "add_prefix_space" in tokenizer_config_json:
  4306. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4307. if "added_tokens_decoder" in tokenizer_config_json:
  4308. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4309. if token_data.get("special"):
  4310. token_id = int(token_id)
  4311. token = token_data["content"]
  4312. special_vocab._set_special_token(token, token_id)
  4313. # update eos token
  4314. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4315. special_vocab.special_token_ids["eos"] = token_id
  4316. special_vocab.add_to_gguf(self.gguf_writer)
  4317. def set_gguf_parameters(self):
  4318. super().set_gguf_parameters()
  4319. hparams = self.hparams
  4320. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4321. if (rope_dim := hparams.get("head_dim")) is None:
  4322. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4323. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4325. n_head = self.hparams["num_attention_heads"]
  4326. n_kv_head = self.hparams.get("num_key_value_heads")
  4327. name = name.replace("language_model.", "") # InternVL
  4328. if name.startswith("mlp") or name.startswith("vision_model"):
  4329. # skip visual tensors
  4330. return []
  4331. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4332. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4333. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4334. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4335. return [(self.map_tensor_name(name), data_torch)]
  4336. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4337. class BertModel(TextModel):
  4338. model_arch = gguf.MODEL_ARCH.BERT
  4339. def __init__(self, *args, **kwargs):
  4340. super().__init__(*args, **kwargs)
  4341. self.vocab_size = None
  4342. if cls_out_labels := self.hparams.get("id2label"):
  4343. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4344. # Remove dummy labels added by AutoConfig
  4345. cls_out_labels = None
  4346. self.cls_out_labels = cls_out_labels
  4347. def set_gguf_parameters(self):
  4348. super().set_gguf_parameters()
  4349. self.gguf_writer.add_causal_attention(False)
  4350. self._try_set_pooling_type()
  4351. if self.cls_out_labels:
  4352. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4353. def set_vocab(self):
  4354. tokens, toktypes, tokpre = self.get_vocab_base()
  4355. self.vocab_size = len(tokens)
  4356. # we need this to validate the size of the token_type embeddings
  4357. # though currently we are passing all zeros to the token_type embeddings
  4358. # "Sequence A" or "Sequence B"
  4359. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4360. # convert to phantom space vocab
  4361. def phantom(tok, toktype):
  4362. if toktype == gguf.TokenType.CONTROL:
  4363. return tok
  4364. if tok.startswith("##"):
  4365. return tok[2:]
  4366. return "\u2581" + tok
  4367. assert len(tokens) == len(toktypes)
  4368. tokens = list(map(phantom, tokens, toktypes))
  4369. # add vocab to gguf
  4370. self.gguf_writer.add_tokenizer_model("bert")
  4371. self.gguf_writer.add_tokenizer_pre(tokpre)
  4372. self.gguf_writer.add_token_list(tokens)
  4373. self.gguf_writer.add_token_types(toktypes)
  4374. # handle special tokens
  4375. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4376. special_vocab.add_to_gguf(self.gguf_writer)
  4377. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4378. del bid # unused
  4379. if name.startswith("bert."):
  4380. name = name[5:]
  4381. if name.endswith(".gamma"):
  4382. name = name[:-6] + ".weight"
  4383. if name.endswith(".beta"):
  4384. name = name[:-5] + ".bias"
  4385. # we are only using BERT for embeddings so we don't need the pooling layer
  4386. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4387. return [] # we don't need these
  4388. if name.startswith("cls.predictions"):
  4389. return []
  4390. if name.startswith("cls.seq_relationship"):
  4391. return []
  4392. if self.cls_out_labels:
  4393. # For BertForSequenceClassification (direct projection layer)
  4394. if name == "classifier.weight":
  4395. name = "classifier.out_proj.weight"
  4396. if name == "classifier.bias":
  4397. name = "classifier.out_proj.bias"
  4398. return [(self.map_tensor_name(name), data_torch)]
  4399. def _xlmroberta_tokenizer_init(self) -> None:
  4400. # we need the pad_token_id to know how to chop down position_embd matrix
  4401. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4402. self._position_offset = 1 + pad_token_id
  4403. if "max_position_embeddings" in self.hparams:
  4404. self.hparams["max_position_embeddings"] -= self._position_offset
  4405. else:
  4406. self._position_offset = None
  4407. def _xlmroberta_set_vocab(self) -> None:
  4408. # to avoid TypeError: Descriptors cannot be created directly
  4409. # exception when importing sentencepiece_model_pb2
  4410. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4411. from sentencepiece import SentencePieceProcessor
  4412. from sentencepiece import sentencepiece_model_pb2 as model
  4413. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4414. tokenizer_json = {}
  4415. tokenizer_config_json = {}
  4416. if not tokenizer_path.is_file():
  4417. tokenizer_path = self.dir_model / 'tokenizer.json'
  4418. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4419. if not tokenizer_path.is_file():
  4420. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4421. from base64 import b64decode
  4422. from transformers import AutoTokenizer
  4423. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4424. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4425. tokenizer_json = json.load(fp)
  4426. if tokenizer_config_path.is_file():
  4427. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4428. tokenizer_config_json = json.load(fp)
  4429. add_prefix = tokenizer.add_prefix_space
  4430. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4431. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4432. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4433. else:
  4434. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4435. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4436. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4437. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4438. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4439. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4440. tokenizer = SentencePieceProcessor()
  4441. tokenizer.LoadFromFile(str(tokenizer_path))
  4442. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4443. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4444. scores: list[float] = [-10000.0] * vocab_size
  4445. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4446. if isinstance(tokenizer, SentencePieceProcessor):
  4447. for token_id in range(tokenizer.vocab_size()):
  4448. piece = tokenizer.IdToPiece(token_id)
  4449. text = piece.encode("utf-8")
  4450. score = tokenizer.GetScore(token_id)
  4451. toktype = SentencePieceTokenTypes.NORMAL
  4452. if tokenizer.IsUnknown(token_id):
  4453. toktype = SentencePieceTokenTypes.UNKNOWN
  4454. elif tokenizer.IsControl(token_id):
  4455. toktype = SentencePieceTokenTypes.CONTROL
  4456. elif tokenizer.IsUnused(token_id):
  4457. toktype = SentencePieceTokenTypes.UNUSED
  4458. elif tokenizer.IsByte(token_id):
  4459. toktype = SentencePieceTokenTypes.BYTE
  4460. tokens[token_id] = text
  4461. scores[token_id] = score
  4462. toktypes[token_id] = toktype
  4463. else:
  4464. added_vocab = tokenizer.get_added_vocab()
  4465. unk_token = tokenizer_config_json.get("unk_token")
  4466. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4467. for token_id in range(tokenizer.vocab_size):
  4468. piece = tokenizer._convert_id_to_token(token_id)
  4469. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4470. text = piece.encode("utf-8")
  4471. score = tokenizer_json["model"]["vocab"][token_id][1]
  4472. toktype = SentencePieceTokenTypes.NORMAL
  4473. if token_id == unk_token_id:
  4474. toktype = SentencePieceTokenTypes.UNKNOWN
  4475. elif token_id in tokenizer.all_special_ids:
  4476. toktype = SentencePieceTokenTypes.CONTROL
  4477. elif token_id in added_vocab.values():
  4478. toktype = SentencePieceTokenTypes.USER_DEFINED
  4479. # No reliable way to detect this, but jina doesn't have any
  4480. # elif tokenizer.IsByte(token_id):
  4481. # toktype = SentencePieceTokenTypes.BYTE
  4482. tokens[token_id] = text
  4483. scores[token_id] = score
  4484. toktypes[token_id] = toktype
  4485. if isinstance(tokenizer, SentencePieceProcessor):
  4486. # realign tokens (see HF tokenizer code)
  4487. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4488. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4489. toktypes = [
  4490. SentencePieceTokenTypes.CONTROL,
  4491. SentencePieceTokenTypes.CONTROL,
  4492. SentencePieceTokenTypes.CONTROL,
  4493. SentencePieceTokenTypes.UNKNOWN,
  4494. ] + toktypes[3:-1]
  4495. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4496. # Add mask token missing from sentencepiece.bpe.model
  4497. tokens[250001] = b'<mask>'
  4498. scores[250001] = 0.0
  4499. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4500. self.gguf_writer.add_tokenizer_model("t5")
  4501. self.gguf_writer.add_tokenizer_pre("default")
  4502. self.gguf_writer.add_token_list(tokens)
  4503. self.gguf_writer.add_token_scores(scores)
  4504. self.gguf_writer.add_token_types(toktypes)
  4505. self.gguf_writer.add_add_space_prefix(add_prefix)
  4506. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4507. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4508. if precompiled_charsmap:
  4509. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4510. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4511. special_vocab.add_to_gguf(self.gguf_writer)
  4512. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4513. class DistilBertModel(BertModel):
  4514. model_arch = gguf.MODEL_ARCH.BERT
  4515. def set_gguf_parameters(self):
  4516. self.gguf_writer.add_layer_norm_eps(1e-12)
  4517. logger.info("gguf: layer norm epsilon = 1e-12")
  4518. super().set_gguf_parameters()
  4519. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4520. if name.startswith("distilbert."):
  4521. name = name[11:]
  4522. # These layers act as MLM head, so we don't need them
  4523. if name.startswith("vocab_"):
  4524. return []
  4525. return super().modify_tensors(data_torch, name, bid)
  4526. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4527. class RobertaModel(BertModel):
  4528. model_arch = gguf.MODEL_ARCH.BERT
  4529. def __init__(self, *args, **kwargs):
  4530. super().__init__(*args, **kwargs)
  4531. # we need the pad_token_id to know how to chop down position_embd matrix
  4532. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4533. self._position_offset = 1 + pad_token_id
  4534. if "max_position_embeddings" in self.hparams:
  4535. self.hparams["max_position_embeddings"] -= self._position_offset
  4536. else:
  4537. self._position_offset = None
  4538. def set_vocab(self):
  4539. """Support BPE tokenizers for roberta models"""
  4540. bpe_tok_path = self.dir_model / "tokenizer.json"
  4541. if bpe_tok_path.exists():
  4542. self._set_vocab_gpt2()
  4543. # we need this to validate the size of the token_type embeddings
  4544. # though currently we are passing all zeros to the token_type embeddings
  4545. # "Sequence A" or "Sequence B"
  4546. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4547. else:
  4548. return super().set_vocab()
  4549. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4550. # if name starts with "roberta.", remove the prefix
  4551. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4552. if name.startswith("roberta."):
  4553. name = name[8:]
  4554. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4555. if name == "embeddings.position_embeddings.weight":
  4556. if self._position_offset is not None:
  4557. data_torch = data_torch[self._position_offset:,:]
  4558. return super().modify_tensors(data_torch, name, bid)
  4559. @ModelBase.register("NomicBertModel")
  4560. class NomicBertModel(BertModel):
  4561. model_arch = gguf.MODEL_ARCH.BERT
  4562. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4563. hparams = kwargs.pop("hparams", None)
  4564. if hparams is None:
  4565. hparams = ModelBase.load_hparams(dir_model, False)
  4566. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4567. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4568. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4569. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4570. if self._tokenizer_is_xlmroberta:
  4571. self._xlmroberta_tokenizer_init()
  4572. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4573. if npos == 8192 and mtp == 2048:
  4574. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4575. elif npos == 2048 and mtp == 2048:
  4576. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4577. else:
  4578. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4579. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4580. # this doesn't do anything in the HF version
  4581. assert self.hparams["causal"] is False
  4582. # no bias tensors unless MoE
  4583. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4584. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4585. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4586. # norm at end of layer
  4587. assert self.hparams["prenorm"] is False
  4588. # standard RoPE
  4589. assert self.hparams["rotary_emb_fraction"] == 1.0
  4590. assert self.hparams["rotary_emb_interleaved"] is False
  4591. assert self.hparams["rotary_emb_scale_base"] is None
  4592. def set_vocab(self) -> None:
  4593. if self._tokenizer_is_xlmroberta:
  4594. return self._xlmroberta_set_vocab()
  4595. return super().set_vocab()
  4596. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4597. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4598. if "mlp.experts.bias" in name:
  4599. return [] # Explicitly return an empty list.
  4600. if "mlp.experts.mlp.w1" in name:
  4601. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4602. name += ".weight"
  4603. if "mlp.experts.mlp.w2" in name:
  4604. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4605. data_torch = data_torch.transpose(1, 2)
  4606. name += ".weight"
  4607. return [(self.map_tensor_name(name), data_torch)]
  4608. def set_gguf_parameters(self):
  4609. super().set_gguf_parameters()
  4610. if self.is_moe:
  4611. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4612. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4613. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4614. def _is_tokenizer_xlmroberta(self) -> bool:
  4615. with open(self.dir_model / "tokenizer.json") as f:
  4616. tokenizer_json = json.load(f)
  4617. toktyp = tokenizer_json["model"]["type"]
  4618. if toktyp == "Unigram":
  4619. return True
  4620. if toktyp == "WordPiece":
  4621. return False
  4622. raise ValueError(f"unknown tokenizer: {toktyp}")
  4623. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4624. class NeoBert(BertModel):
  4625. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4626. def set_gguf_parameters(self):
  4627. super().set_gguf_parameters()
  4628. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4629. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4630. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4631. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4632. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4633. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4634. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4635. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4636. def modify_tensors(self, data_torch, name, bid):
  4637. if name.startswith("decoder."):
  4638. return []
  4639. if name.startswith("model."):
  4640. name = name[6:]
  4641. return super().modify_tensors(data_torch, name, bid)
  4642. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4643. class XLMRobertaModel(BertModel):
  4644. model_arch = gguf.MODEL_ARCH.BERT
  4645. _lora_files = {}
  4646. _lora_names = []
  4647. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4648. hparams = kwargs.pop("hparams", None)
  4649. if hparams is None:
  4650. hparams = ModelBase.load_hparams(dir_model, False)
  4651. if lora_names := hparams.get("lora_adaptations"):
  4652. self._lora_names = lora_names
  4653. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4654. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4655. self._xlmroberta_tokenizer_init()
  4656. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4657. if self._lora_names:
  4658. for name in self._lora_names:
  4659. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4660. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4661. return super().generate_extra_tensors()
  4662. def set_type(self):
  4663. for lora_writer in self._lora_files.values():
  4664. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4665. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4666. super().set_type()
  4667. def set_vocab(self):
  4668. self._xlmroberta_set_vocab()
  4669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4670. # if name starts with "roberta.", remove the prefix
  4671. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4672. if name.startswith("roberta."):
  4673. name = name[8:]
  4674. # jina-embeddings-v3
  4675. if ".parametrizations." in name:
  4676. name = name.replace(".parametrizations.", ".")
  4677. if name.endswith(".original"):
  4678. name = name[:-9]
  4679. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4680. if name == "embeddings.position_embeddings.weight":
  4681. if self._position_offset is not None:
  4682. data_torch = data_torch[self._position_offset:,:]
  4683. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4684. if name.startswith("pooler.dense"):
  4685. return []
  4686. num_loras = data_torch.size(0)
  4687. assert num_loras == len(self._lora_names)
  4688. # Split out each LoRA in their own GGUF
  4689. for i, lora_writer in enumerate(self._lora_files.values()):
  4690. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4691. data = data_torch[i, :, :]
  4692. # Transpose/flip token_embd/types into correct shape
  4693. if new_name == "token_embd.weight.lora_b":
  4694. data = data.T
  4695. elif new_name.startswith("token_types.weight."):
  4696. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4697. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4698. return []
  4699. return super().modify_tensors(data_torch, name, bid)
  4700. def set_gguf_parameters(self):
  4701. super().set_gguf_parameters()
  4702. # jina-embeddings-v3
  4703. lora_alpha = self.hparams.get("lora_alpha")
  4704. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4705. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4706. for lora_name, lora_writer in self._lora_files.items():
  4707. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4708. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4709. if lora_prompt_prefixes:
  4710. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4711. def write(self):
  4712. super().write()
  4713. for lora_writer in self._lora_files.values():
  4714. lora_writer.write_header_to_file()
  4715. lora_writer.write_kv_data_to_file()
  4716. lora_writer.write_tensors_to_file(progress=True)
  4717. lora_writer.close()
  4718. @ModelBase.register("GemmaForCausalLM")
  4719. class GemmaModel(TextModel):
  4720. model_arch = gguf.MODEL_ARCH.GEMMA
  4721. def set_vocab(self):
  4722. self._set_vocab_sentencepiece()
  4723. # TODO: these special tokens should be exported only for the CodeGemma family
  4724. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4725. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4726. special_vocab._set_special_token("prefix", 67)
  4727. special_vocab._set_special_token("suffix", 69)
  4728. special_vocab._set_special_token("middle", 68)
  4729. special_vocab._set_special_token("fsep", 70)
  4730. special_vocab._set_special_token("eot", 107)
  4731. special_vocab.chat_template = None # do not add it twice
  4732. special_vocab.add_to_gguf(self.gguf_writer)
  4733. self.gguf_writer.add_add_space_prefix(False)
  4734. def set_gguf_parameters(self):
  4735. hparams = self.hparams
  4736. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4737. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4738. self.gguf_writer.add_block_count(self.block_count)
  4739. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4740. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4741. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4742. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4743. self.gguf_writer.add_key_length(hparams["head_dim"])
  4744. self.gguf_writer.add_value_length(hparams["head_dim"])
  4745. self.gguf_writer.add_file_type(self.ftype)
  4746. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4747. del bid # unused
  4748. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4749. # To prevent errors, skip loading lm_head.weight.
  4750. if name == "lm_head.weight":
  4751. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4752. return []
  4753. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4754. if name.endswith("norm.weight"):
  4755. data_torch = data_torch + 1
  4756. return [(self.map_tensor_name(name), data_torch)]
  4757. @ModelBase.register("Gemma2ForCausalLM")
  4758. class Gemma2Model(TextModel):
  4759. model_arch = gguf.MODEL_ARCH.GEMMA2
  4760. def set_vocab(self):
  4761. self._set_vocab_sentencepiece()
  4762. self.gguf_writer.add_add_space_prefix(False)
  4763. def set_gguf_parameters(self):
  4764. hparams = self.hparams
  4765. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4766. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4767. self.gguf_writer.add_block_count(self.block_count)
  4768. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4769. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4770. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4771. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4772. self.gguf_writer.add_key_length(hparams["head_dim"])
  4773. self.gguf_writer.add_value_length(hparams["head_dim"])
  4774. self.gguf_writer.add_file_type(self.ftype)
  4775. self.gguf_writer.add_attn_logit_softcapping(
  4776. self.hparams["attn_logit_softcapping"]
  4777. )
  4778. self.gguf_writer.add_final_logit_softcapping(
  4779. self.hparams["final_logit_softcapping"]
  4780. )
  4781. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4782. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4783. del bid # unused
  4784. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4785. # To prevent errors, skip loading lm_head.weight.
  4786. if name == "lm_head.weight":
  4787. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4788. return []
  4789. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4790. if name.endswith("norm.weight"):
  4791. data_torch = data_torch + 1
  4792. return [(self.map_tensor_name(name), data_torch)]
  4793. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4794. class Gemma3Model(TextModel):
  4795. model_arch = gguf.MODEL_ARCH.GEMMA3
  4796. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4797. def set_vocab(self):
  4798. if (self.dir_model / "tokenizer.model").is_file():
  4799. self._set_vocab_sentencepiece()
  4800. self.gguf_writer.add_add_space_prefix(False)
  4801. else:
  4802. self._set_vocab_gpt2()
  4803. def set_gguf_parameters(self):
  4804. super().set_gguf_parameters()
  4805. hparams = self.hparams
  4806. # some default values are not specified in the hparams
  4807. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4808. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4809. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4810. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4811. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4812. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4813. # attn_logit_softcapping is removed in Gemma3
  4814. assert hparams.get("attn_logit_softcapping") is None
  4815. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4816. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4817. if hparams.get("sliding_window_pattern") != 1:
  4818. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4819. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4821. del bid # unused
  4822. if "language_model." in name:
  4823. name = name.replace("language_model.", "")
  4824. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4825. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4826. return [] # skip vision tensors
  4827. # remove OOV (out-of-vocabulary) rows in token_embd
  4828. if "embed_tokens.weight" in name:
  4829. if (self.dir_model / "tokenizer.model").is_file():
  4830. tokens = self._create_vocab_sentencepiece()[0]
  4831. else:
  4832. tokens = self.get_vocab_base()[0]
  4833. data_torch = data_torch[:len(tokens)]
  4834. # ref code in Gemma3RMSNorm
  4835. # output = output * (1.0 + self.weight.float())
  4836. # note: this is not the case on gemma3n
  4837. if name.endswith("norm.weight"):
  4838. data_torch = data_torch + self.norm_shift
  4839. return [(self.map_tensor_name(name), data_torch)]
  4840. @ModelBase.register("Gemma3TextModel")
  4841. class EmbeddingGemma(Gemma3Model):
  4842. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4843. module_paths = []
  4844. dense_features_dims = {}
  4845. def __init__(self, *args, **kwargs):
  4846. super().__init__(*args, **kwargs)
  4847. if self.sentence_transformers_dense_modules:
  4848. # read modules.json to determine if model has Dense layers
  4849. modules_file = self.dir_model / "modules.json"
  4850. if modules_file.is_file():
  4851. with open(modules_file, encoding="utf-8") as modules_json_file:
  4852. mods = json.load(modules_json_file)
  4853. for mod in mods:
  4854. if mod["type"] == "sentence_transformers.models.Dense":
  4855. mod_path = mod["path"]
  4856. # check if model.safetensors file for Dense layer exists
  4857. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4858. if model_tensors_file.is_file():
  4859. self.module_paths.append(mod_path)
  4860. # read config.json of the Dense layer to get in/out features
  4861. mod_conf_file = self.dir_model / mod_path / "config.json"
  4862. if mod_conf_file.is_file():
  4863. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4864. mod_conf = json.load(mod_conf_json_file)
  4865. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4866. prefix = self._get_dense_prefix(mod_path)
  4867. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4868. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4869. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4870. from safetensors.torch import load_file
  4871. module_paths = list(self.module_paths)
  4872. for i, module_path in enumerate(module_paths):
  4873. tensors_file = self.dir_model / module_path / "model.safetensors"
  4874. local_tensors = load_file(tensors_file)
  4875. tensor_name = self._get_dense_prefix(module_path)
  4876. for name, local_tensor in local_tensors.items():
  4877. if not name.endswith(".weight"):
  4878. continue
  4879. orig_name = name.replace("linear", tensor_name)
  4880. name = self.map_tensor_name(orig_name)
  4881. yield name, local_tensor.clone()
  4882. @staticmethod
  4883. def _get_dense_prefix(module_path) -> str:
  4884. """Get the tensor name prefix for the Dense layer from module path."""
  4885. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4886. return tensor_name
  4887. def set_gguf_parameters(self):
  4888. super().set_gguf_parameters()
  4889. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4890. # constructor. We want to use the value from the original model's config.json.
  4891. # ref: https://github.com/huggingface/transformers/pull/40700
  4892. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4893. config = json.load(f)
  4894. orig_sliding_window = config.get("sliding_window")
  4895. if orig_sliding_window is None:
  4896. raise ValueError("sliding_window not found in model config - this is required for the model")
  4897. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4898. f"instead of {self.hparams['sliding_window']}")
  4899. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4900. if self.sentence_transformers_dense_modules:
  4901. for dense, dims in self.dense_features_dims.items():
  4902. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4903. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4904. self._try_set_pooling_type()
  4905. @ModelBase.register("Gemma3ForConditionalGeneration")
  4906. class Gemma3VisionModel(MmprojModel):
  4907. def set_gguf_parameters(self):
  4908. super().set_gguf_parameters()
  4909. hparams = self.hparams
  4910. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4911. # default values below are taken from HF tranformers code
  4912. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4913. self.gguf_writer.add_vision_use_gelu(True)
  4914. # calculate proj_scale_factor (used by tinygemma3 test model)
  4915. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4916. n_per_side = int(image_seq_length ** 0.5)
  4917. image_size = self.hparams["image_size"]
  4918. patch_size = self.hparams["patch_size"]
  4919. proj_scale_factor = (image_size // patch_size) // n_per_side
  4920. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4921. # we only need to write this if it's not the default value
  4922. # in this case, we are converting a test model
  4923. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4924. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4925. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4926. if "input_projection" in name:
  4927. return gguf.GGMLQuantizationType.F16
  4928. if ".embeddings." in name:
  4929. return gguf.GGMLQuantizationType.F32
  4930. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4931. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4932. del bid # unused
  4933. if "vision_model.head." in name:
  4934. return [] # skip redundant tensors for tinygemma3
  4935. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4936. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4937. # process vision tensors
  4938. name = name.replace("_weight", ".weight")
  4939. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4940. # the other norm values are part of SigLIP model, and they are already correct
  4941. # ref code: Gemma3RMSNorm
  4942. if "soft_emb_norm.weight" in name:
  4943. logger.info(f"Correcting norm value for '{name}'")
  4944. data_torch = data_torch + 1
  4945. return [(self.map_tensor_name(name), data_torch)]
  4946. return [] # skip other tensors
  4947. @ModelBase.register("Gemma3nForConditionalGeneration")
  4948. class Gemma3NModel(Gemma3Model):
  4949. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4950. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4951. _altup_proj: list[Tensor] = []
  4952. _altup_unembd: list[Tensor] = []
  4953. def __init__(self, *args, **kwargs):
  4954. super().__init__(*args, **kwargs)
  4955. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4956. self._altup_proj = [
  4957. torch.Tensor(), # to be replaced
  4958. torch.Tensor(), # to be replaced
  4959. torch.Tensor(), # to be replaced
  4960. ]
  4961. self._altup_unembd = [
  4962. torch.Tensor(), # to be replaced
  4963. torch.Tensor(), # to be replaced
  4964. torch.Tensor(), # to be replaced
  4965. ]
  4966. def set_vocab(self):
  4967. super().set_vocab()
  4968. def set_gguf_parameters(self):
  4969. super().set_gguf_parameters()
  4970. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4971. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4972. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4973. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4974. activation_sparsity_scale = []
  4975. for s in self.hparams["activation_sparsity_pattern"]:
  4976. normal_dist = torch.distributions.normal.Normal(0, 1)
  4977. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4978. activation_sparsity_scale.append(std_multiplier.item())
  4979. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4980. sliding_window_pattern = []
  4981. for t in self.hparams["layer_types"]:
  4982. sliding_window_pattern.append(t == "sliding_attention")
  4983. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4984. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4985. has_all = all(m.numel() > 0 for m in matrices)
  4986. if not has_all:
  4987. return None
  4988. else:
  4989. return torch.stack(matrices, dim=0)
  4990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4991. if name.endswith("_scale"):
  4992. name = name + ".weight"
  4993. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4994. if "language_model." not in name:
  4995. return [] # skip non-language model tensors
  4996. if "altup_unembed_projections" in name:
  4997. data_torch = data_torch.to(device="cpu")
  4998. if ".0." in name:
  4999. self._altup_unembd[0] = data_torch
  5000. elif ".1." in name:
  5001. self._altup_unembd[1] = data_torch
  5002. elif ".2." in name:
  5003. self._altup_unembd[2] = data_torch
  5004. else:
  5005. raise ValueError(f"Unknown name: {name}")
  5006. out = self._stack_matrices(self._altup_unembd)
  5007. if out is not None:
  5008. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  5009. else:
  5010. return []
  5011. if "altup_projections" in name:
  5012. data_torch = data_torch.to(device="cpu")
  5013. if ".0." in name:
  5014. self._altup_proj[0] = data_torch
  5015. elif ".1." in name:
  5016. self._altup_proj[1] = data_torch
  5017. elif ".2." in name:
  5018. self._altup_proj[2] = data_torch
  5019. else:
  5020. raise ValueError(f"Unknown name: {name}")
  5021. out = self._stack_matrices(self._altup_proj)
  5022. if out is not None:
  5023. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5024. else:
  5025. return []
  5026. return super().modify_tensors(data_torch, name, bid)
  5027. @ModelBase.register("Starcoder2ForCausalLM")
  5028. class StarCoder2Model(TextModel):
  5029. model_arch = gguf.MODEL_ARCH.STARCODER2
  5030. @ModelBase.register("Rwkv6ForCausalLM")
  5031. class Rwkv6Model(TextModel):
  5032. model_arch = gguf.MODEL_ARCH.RWKV6
  5033. def set_vocab(self):
  5034. self._set_vocab_rwkv_world()
  5035. def set_gguf_parameters(self):
  5036. head_size = self.hparams["head_size"]
  5037. hidden_size = self.hparams["hidden_size"]
  5038. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5039. rescale_every_n_layers = self.hparams["rescale_every"]
  5040. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5041. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5042. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5043. # RWKV isn't context limited
  5044. self.gguf_writer.add_context_length(1048576)
  5045. self.gguf_writer.add_embedding_length(hidden_size)
  5046. self.gguf_writer.add_block_count(self.block_count)
  5047. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5048. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5049. self.gguf_writer.add_wkv_head_size(head_size)
  5050. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5051. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5052. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5053. self.gguf_writer.add_file_type(self.ftype)
  5054. # required by llama.cpp, unused
  5055. self.gguf_writer.add_head_count(0)
  5056. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5058. new_name = self.map_tensor_name(name)
  5059. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5060. new_name += ".weight"
  5061. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5062. data_torch = data_torch.transpose(0, 1)
  5063. if new_name.endswith("time_mix_w2.weight"):
  5064. data_torch = data_torch.permute(0, 2, 1)
  5065. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5066. data_torch = data_torch.squeeze()
  5067. try:
  5068. rescale_every_n_layers = self.hparams["rescale_every"]
  5069. if rescale_every_n_layers > 0:
  5070. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5071. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5072. except KeyError:
  5073. pass
  5074. # concat time_mix_lerp weights to reduce some cpu overhead
  5075. # also reduces the number of tensors in the model
  5076. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5077. try:
  5078. self.lerp_weights[bid][new_name] = data_torch
  5079. except KeyError:
  5080. self.lerp_weights[bid] = {new_name: data_torch}
  5081. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5082. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5083. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5084. yield (new_name, data)
  5085. return
  5086. yield (new_name, data_torch)
  5087. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5088. class RWKV6Qwen2Model(Rwkv6Model):
  5089. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5090. def set_vocab(self):
  5091. try:
  5092. self._set_vocab_sentencepiece()
  5093. except FileNotFoundError:
  5094. self._set_vocab_gpt2()
  5095. def set_gguf_parameters(self):
  5096. num_attention_heads = self.hparams["num_attention_heads"]
  5097. num_key_value_heads = self.hparams["num_key_value_heads"]
  5098. hidden_size = self.hparams["hidden_size"]
  5099. head_size = hidden_size // num_attention_heads
  5100. rms_norm_eps = self.hparams["rms_norm_eps"]
  5101. intermediate_size = self.hparams["intermediate_size"]
  5102. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5103. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5104. # RWKV isn't context limited
  5105. self.gguf_writer.add_context_length(1048576)
  5106. self.gguf_writer.add_embedding_length(hidden_size)
  5107. self.gguf_writer.add_block_count(self.block_count)
  5108. self.gguf_writer.add_wkv_head_size(head_size)
  5109. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5110. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5111. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5112. self.gguf_writer.add_file_type(self.ftype)
  5113. # special parameters for time_mixing in RWKV6QWEN2
  5114. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5115. self.gguf_writer.add_token_shift_count(1)
  5116. # RWKV6QWEN2 use grouped key/value like GQA
  5117. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5118. # required by llama.cpp, unused
  5119. self.gguf_writer.add_head_count(0)
  5120. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5121. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5122. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5123. data = data.view(5, -1, data.shape[-1])
  5124. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5125. # permute them here to avoid code changes
  5126. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5127. if "w2" in new_name:
  5128. data = data.view(5, -1, data.shape[-1])
  5129. yield (new_name, data)
  5130. continue
  5131. yield (new_name, data)
  5132. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5133. class Rwkv7Model(TextModel):
  5134. model_arch = gguf.MODEL_ARCH.RWKV7
  5135. def set_vocab(self):
  5136. self._set_vocab_rwkv_world()
  5137. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5138. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5139. def set_gguf_parameters(self):
  5140. try:
  5141. head_size = self.hparams["head_size"]
  5142. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5143. except KeyError:
  5144. head_size = self.hparams["head_dim"]
  5145. layer_norm_eps = self.hparams["norm_eps"]
  5146. hidden_size = self.hparams["hidden_size"]
  5147. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5148. # ICLR: In-Context-Learning-Rate
  5149. try:
  5150. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5151. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5152. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5153. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5154. except KeyError:
  5155. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5156. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5157. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5158. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5159. # RWKV isn't context limited
  5160. self.gguf_writer.add_context_length(1048576)
  5161. self.gguf_writer.add_embedding_length(hidden_size)
  5162. self.gguf_writer.add_block_count(self.block_count)
  5163. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5164. self.gguf_writer.add_wkv_head_size(head_size)
  5165. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5166. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5167. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5168. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5169. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5170. self.gguf_writer.add_file_type(self.ftype)
  5171. # required by llama.cpp, unused
  5172. self.gguf_writer.add_head_count(0)
  5173. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5174. lora_needs_transpose: bool = True
  5175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5176. # unify tensor names here to make life easier
  5177. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5178. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5179. name = name.replace("time_mixer.", "")
  5180. # lora layer names in fla-hub's impl
  5181. if "_lora.lora" in name:
  5182. self.lora_needs_transpose = False
  5183. name = name.replace("_lora.lora.0.weight", "1.weight")
  5184. name = name.replace("_lora.lora.2.weight", "2.weight")
  5185. name = name.replace("_lora.lora.2.bias", "0.weight")
  5186. name = name.replace("feed_forward_norm", "ln2")
  5187. name = name.replace("g_norm", "ln_x")
  5188. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5189. # some models have dummy v0/v1/v2 on first layer while others don't
  5190. # ignore them all since they are not used
  5191. return
  5192. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5193. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5194. if bid is not None and "attention.x_" in name:
  5195. if "attention.x_x" in name:
  5196. # already concatenated
  5197. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5198. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5199. yield (new_name, data)
  5200. else:
  5201. try:
  5202. self.lerp_weights[bid][name] = data_torch
  5203. except KeyError:
  5204. self.lerp_weights[bid] = {name: data_torch}
  5205. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5206. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5207. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5208. yield (new_name, data)
  5209. return
  5210. else:
  5211. data_torch = data_torch.squeeze()
  5212. new_name = self.map_tensor_name(name)
  5213. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5214. new_name += ".weight"
  5215. if self.lora_needs_transpose and any(
  5216. new_name.endswith(t) for t in [
  5217. "time_mix_w1.weight", "time_mix_w2.weight",
  5218. "time_mix_a1.weight", "time_mix_a2.weight",
  5219. "time_mix_v1.weight", "time_mix_v2.weight",
  5220. "time_mix_g1.weight", "time_mix_g2.weight",
  5221. ]
  5222. ):
  5223. data_torch = data_torch.transpose(0, 1)
  5224. if 'r_k' in new_name:
  5225. data_torch = data_torch.flatten()
  5226. if bid == 0 and "time_mix_a" in new_name:
  5227. # dummy v0/v1/v2 on first layer
  5228. # easist way to make llama happy
  5229. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5230. yield (new_name, data_torch)
  5231. @ModelBase.register("RwkvHybridForCausalLM")
  5232. class ARwkv7Model(Rwkv7Model):
  5233. model_arch = gguf.MODEL_ARCH.ARWKV7
  5234. def set_vocab(self):
  5235. try:
  5236. self._set_vocab_sentencepiece()
  5237. except FileNotFoundError:
  5238. self._set_vocab_gpt2()
  5239. def set_gguf_parameters(self):
  5240. hidden_size = self.hparams["hidden_size"]
  5241. head_size = self.hparams["head_size"]
  5242. rms_norm_eps = self.hparams["rms_norm_eps"]
  5243. intermediate_size = self.hparams["intermediate_size"]
  5244. wkv_has_gate = self.hparams["wkv_has_gate"]
  5245. assert self.hparams["wkv_version"] == 7
  5246. # ICLR: In-Context-Learning-Rate
  5247. lora_rank_decay = 64
  5248. lora_rank_iclr = 64
  5249. lora_rank_value_residual_mix = 32
  5250. lora_rank_gate = 128 if wkv_has_gate else 0
  5251. # RWKV isn't context limited
  5252. self.gguf_writer.add_context_length(1048576)
  5253. self.gguf_writer.add_embedding_length(hidden_size)
  5254. self.gguf_writer.add_block_count(self.block_count)
  5255. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5256. self.gguf_writer.add_wkv_head_size(head_size)
  5257. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5258. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5259. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5260. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5261. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5262. self.gguf_writer.add_file_type(self.ftype)
  5263. self.gguf_writer.add_token_shift_count(1)
  5264. # required by llama.cpp, unused
  5265. self.gguf_writer.add_head_count(0)
  5266. @ModelBase.register("MaincoderForCausalLM")
  5267. class MaincoderModel(TextModel):
  5268. model_arch = gguf.MODEL_ARCH.MAINCODER
  5269. def set_gguf_parameters(self):
  5270. super().set_gguf_parameters()
  5271. if (head_dim := self.hparams.get("head_dim")) is not None:
  5272. self.gguf_writer.add_rope_dimension_count(head_dim)
  5273. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5274. class MambaModel(TextModel):
  5275. model_arch = gguf.MODEL_ARCH.MAMBA
  5276. def __init__(self, dir_model: Path, *args, **kwargs):
  5277. # Avoid using AutoConfig for hparams
  5278. hparams = kwargs.pop("hparams", None)
  5279. if hparams is None:
  5280. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5281. hparams = json.load(f)
  5282. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5283. def set_vocab(self):
  5284. vocab_size = self.hparams["vocab_size"]
  5285. # Round vocab size to next multiple of 8
  5286. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5287. # pad using ceiling division
  5288. # ref: https://stackoverflow.com/a/17511341/22827863
  5289. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5290. self.hparams["vocab_size"] = vocab_size
  5291. if (self.dir_model / "tokenizer.json").is_file():
  5292. self._set_vocab_gpt2()
  5293. elif (self.dir_model / "tokenizer.model").is_file():
  5294. self._set_vocab_sentencepiece()
  5295. else:
  5296. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5297. self._set_vocab_builtin("gpt-neox", vocab_size)
  5298. def set_gguf_parameters(self):
  5299. d_model = self.find_hparam(["hidden_size", "d_model"])
  5300. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5301. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5302. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5303. # ceiling division
  5304. # ref: https://stackoverflow.com/a/17511341/22827863
  5305. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5306. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5307. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5308. use_dt_b_c_norm = False
  5309. # For falconmamba we do apply RMS norm on B / DT and C layers
  5310. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5311. use_dt_b_c_norm = True
  5312. # Fail early for models which don't have a block expansion factor of 2
  5313. assert d_inner == 2 * d_model
  5314. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5315. self.gguf_writer.add_embedding_length(d_model)
  5316. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5317. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5318. self.gguf_writer.add_block_count(self.block_count)
  5319. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5320. self.gguf_writer.add_ssm_inner_size(d_inner)
  5321. self.gguf_writer.add_ssm_state_size(d_state)
  5322. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5323. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5324. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5325. self.gguf_writer.add_file_type(self.ftype)
  5326. _tok_embd = None
  5327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5328. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5329. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5330. new_name = self.map_tensor_name(name)
  5331. if name.endswith(".A_log"):
  5332. logger.debug("A_log --> A ==> " + new_name)
  5333. data_torch = -torch.exp(data_torch)
  5334. # [4 1 8192 1] -> [4 8192 1 1]
  5335. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5336. data_torch = data_torch.squeeze()
  5337. # assuming token_embd.weight is seen before output.weight
  5338. if self._tok_embd is not None and new_name == output_name:
  5339. if torch.equal(self._tok_embd, data_torch):
  5340. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5341. return []
  5342. elif new_name == tok_embd_name:
  5343. self._tok_embd = data_torch
  5344. return [(new_name, data_torch)]
  5345. @ModelBase.register("Mamba2ForCausalLM")
  5346. class Mamba2Model(TextModel):
  5347. model_arch = gguf.MODEL_ARCH.MAMBA2
  5348. def __init__(self, dir_model: Path, *args, **kwargs):
  5349. # Avoid using AutoConfig for hparams
  5350. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5351. hparams = kwargs.pop("hparams", None)
  5352. if hparams is None:
  5353. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5354. hparams = json.load(f)
  5355. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5356. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5357. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5358. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5359. def set_vocab(self):
  5360. vocab_size = self.hparams["vocab_size"]
  5361. # Round vocab size to next multiple of 16
  5362. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5363. # pad using ceiling division
  5364. # ref: https://stackoverflow.com/a/17511341/22827863
  5365. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5366. self.hparams["vocab_size"] = vocab_size
  5367. if (self.dir_model / "tokenizer.model").is_file():
  5368. self._set_vocab_sentencepiece()
  5369. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5370. # mamba-codestral
  5371. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5372. elif (self.dir_model / "tokenizer.json").is_file():
  5373. self._set_vocab_gpt2()
  5374. else:
  5375. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5376. self._set_vocab_builtin("gpt-neox", vocab_size)
  5377. def set_gguf_parameters(self):
  5378. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5379. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5380. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5381. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5382. # Fail early for models which don't have a block expansion factor of 2
  5383. # TODO: does this really matter?
  5384. # skip the assertion for FalconH1 Model
  5385. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5386. assert self.d_inner == 2 * self.d_model
  5387. assert self.d_inner % head_dim == 0
  5388. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5389. self.gguf_writer.add_embedding_length(self.d_model)
  5390. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5391. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5392. self.gguf_writer.add_block_count(self.block_count)
  5393. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5394. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5395. self.gguf_writer.add_ssm_state_size(d_state)
  5396. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5397. self.gguf_writer.add_ssm_group_count(self.n_group)
  5398. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5399. self.gguf_writer.add_file_type(self.ftype)
  5400. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5401. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5402. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5403. name = name.removeprefix("model.")
  5404. if name.endswith(".dt_bias"):
  5405. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5406. new_name = self.map_tensor_name(name)
  5407. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5408. data_torch = data_torch.squeeze()
  5409. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5410. gguf.MODEL_TENSOR.SSM_A,
  5411. gguf.MODEL_TENSOR.SSM_D,
  5412. ]):
  5413. # unsqueeze A to use similar shape semantics as Mamba-1
  5414. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5415. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5416. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5417. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5418. if name.endswith(".A_log"):
  5419. logger.debug("A_log --> A ==> " + new_name)
  5420. data_torch = -torch.exp(data_torch)
  5421. yield (new_name, data_torch)
  5422. @ModelBase.register("JambaForCausalLM")
  5423. class JambaModel(TextModel):
  5424. model_arch = gguf.MODEL_ARCH.JAMBA
  5425. def set_vocab(self):
  5426. if (self.dir_model / "tokenizer.model").is_file():
  5427. self._set_vocab_sentencepiece()
  5428. else:
  5429. self._set_vocab_llama_hf()
  5430. self.gguf_writer.add_add_space_prefix(False)
  5431. def set_gguf_parameters(self):
  5432. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5433. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5434. d_inner = self.hparams["mamba_expand"] * d_model
  5435. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5436. # ceiling division
  5437. # ref: https://stackoverflow.com/a/17511341/22827863
  5438. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5439. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5440. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5441. n_kv_head = self.hparams["num_key_value_heads"]
  5442. attn_offset = self.hparams["attn_layer_offset"]
  5443. attn_period = self.hparams["attn_layer_period"]
  5444. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5445. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5446. ]
  5447. self.gguf_writer.add_block_count(self.block_count)
  5448. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5449. self.gguf_writer.add_embedding_length(d_model)
  5450. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5451. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5452. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5453. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5454. self.gguf_writer.add_ssm_inner_size(d_inner)
  5455. self.gguf_writer.add_ssm_state_size(d_state)
  5456. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5457. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5458. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5459. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5460. self.gguf_writer.add_file_type(self.ftype)
  5461. _experts: list[dict[str, Tensor]] | None = None
  5462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5463. # Mini-Jamba
  5464. name = name.replace(".moe.", ".feed_forward.")
  5465. if bid is not None:
  5466. moe_offset = self.hparams["expert_layer_offset"]
  5467. moe_period = self.hparams["expert_layer_period"]
  5468. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5469. name = name.replace(".experts.0.", ".")
  5470. # process the experts separately
  5471. if ".feed_forward.experts." in name:
  5472. n_experts = self.hparams["num_experts"]
  5473. assert bid is not None
  5474. if self._experts is None:
  5475. self._experts = [{} for _ in range(self.block_count)]
  5476. self._experts[bid][name] = data_torch
  5477. if len(self._experts[bid]) >= n_experts * 3:
  5478. # merge the experts into a single 3d tensor
  5479. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5480. datas: list[Tensor] = []
  5481. for xid in range(n_experts):
  5482. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5483. datas.append(self._experts[bid][ename])
  5484. del self._experts[bid][ename]
  5485. data_torch = torch.stack(datas, dim=0)
  5486. # using the same merged name as qwen2moe
  5487. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5488. new_name = self.map_tensor_name(merged_name)
  5489. yield new_name, data_torch
  5490. return
  5491. new_name = self.map_tensor_name(name)
  5492. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5493. data_torch = data_torch.squeeze()
  5494. if name.endswith(".A_log"):
  5495. logger.debug("A_log --> A ==> " + new_name)
  5496. data_torch = -torch.exp(data_torch)
  5497. yield (new_name, data_torch)
  5498. def prepare_tensors(self):
  5499. super().prepare_tensors()
  5500. if self._experts is not None:
  5501. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5502. experts = [k for d in self._experts for k in d.keys()]
  5503. if len(experts) > 0:
  5504. raise ValueError(f"Unprocessed experts: {experts}")
  5505. @ModelBase.register("CohereForCausalLM")
  5506. class CommandR2Model(TextModel):
  5507. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5508. def __init__(self, *args, **kwargs):
  5509. super().__init__(*args, **kwargs)
  5510. # max_position_embeddings = 8192 in config.json but model was actually
  5511. # trained on 128k context length
  5512. # aya-23 models don't have model_max_length specified
  5513. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5514. def set_gguf_parameters(self):
  5515. super().set_gguf_parameters()
  5516. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5517. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5518. @ModelBase.register("Cohere2ForCausalLM")
  5519. class Cohere2Model(TextModel):
  5520. model_arch = gguf.MODEL_ARCH.COHERE2
  5521. def set_gguf_parameters(self):
  5522. super().set_gguf_parameters()
  5523. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5524. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5525. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5526. rotary_pct = self.hparams["rotary_pct"]
  5527. hidden_size = self.hparams["hidden_size"]
  5528. num_attention_heads = self.hparams["num_attention_heads"]
  5529. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5530. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5531. @ModelBase.register("OlmoForCausalLM")
  5532. @ModelBase.register("OLMoForCausalLM")
  5533. class OlmoModel(TextModel):
  5534. model_arch = gguf.MODEL_ARCH.OLMO
  5535. def set_gguf_parameters(self):
  5536. super().set_gguf_parameters()
  5537. self.gguf_writer.add_layer_norm_eps(1e-5)
  5538. clip_qkv = self.hparams.get("clip_qkv")
  5539. if clip_qkv is not None:
  5540. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5541. # Same as super class, but permuting q_proj, k_proj
  5542. # Copied from: LlamaModel
  5543. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5544. del bid # unused
  5545. n_head = self.hparams["num_attention_heads"]
  5546. n_kv_head = self.hparams.get("num_key_value_heads")
  5547. if name.endswith("q_proj.weight"):
  5548. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5549. if name.endswith("k_proj.weight"):
  5550. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5551. return [(self.map_tensor_name(name), data_torch)]
  5552. @ModelBase.register("SeedOssForCausalLM")
  5553. class SeedOssModel(TextModel):
  5554. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5555. @ModelBase.register("Olmo2ForCausalLM")
  5556. @ModelBase.register("Olmo3ForCausalLM")
  5557. class Olmo2Model(TextModel):
  5558. model_arch = gguf.MODEL_ARCH.OLMO2
  5559. def set_gguf_parameters(self):
  5560. super().set_gguf_parameters()
  5561. if "sliding_window" in self.hparams:
  5562. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5563. sliding_window_pattern = []
  5564. if "layer_types" in self.hparams:
  5565. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5566. else:
  5567. # Olmo2 does not use sliding window attention.
  5568. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5569. for i in range(self.hparams["num_hidden_layers"]):
  5570. sliding_window_pattern.append((i + 1) % 4 != 0)
  5571. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5572. @ModelBase.register("OlmoeForCausalLM")
  5573. class OlmoeModel(TextModel):
  5574. model_arch = gguf.MODEL_ARCH.OLMOE
  5575. def set_gguf_parameters(self):
  5576. super().set_gguf_parameters()
  5577. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5578. if (n_experts := self.hparams.get("num_experts")) is not None:
  5579. self.gguf_writer.add_expert_count(n_experts)
  5580. _experts: list[dict[str, Tensor]] | None = None
  5581. # Copied from: Qwen2MoeModel
  5582. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5583. # process the experts separately
  5584. if name.find("experts") != -1:
  5585. n_experts = self.hparams["num_experts"]
  5586. assert bid is not None
  5587. if self._experts is None:
  5588. self._experts = [{} for _ in range(self.block_count)]
  5589. self._experts[bid][name] = data_torch
  5590. if len(self._experts[bid]) >= n_experts * 3:
  5591. tensors: list[tuple[str, Tensor]] = []
  5592. # merge the experts into a single 3d tensor
  5593. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5594. datas: list[Tensor] = []
  5595. for xid in range(n_experts):
  5596. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5597. datas.append(self._experts[bid][ename])
  5598. del self._experts[bid][ename]
  5599. data_torch = torch.stack(datas, dim=0)
  5600. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5601. new_name = self.map_tensor_name(merged_name)
  5602. tensors.append((new_name, data_torch))
  5603. return tensors
  5604. else:
  5605. return []
  5606. return [(self.map_tensor_name(name), data_torch)]
  5607. # Copied from: Qwen2MoeModel
  5608. def prepare_tensors(self):
  5609. super().prepare_tensors()
  5610. if self._experts is not None:
  5611. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5612. experts = [k for d in self._experts for k in d.keys()]
  5613. if len(experts) > 0:
  5614. raise ValueError(f"Unprocessed experts: {experts}")
  5615. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5616. class JinaBertV2Model(BertModel):
  5617. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5618. def set_vocab(self):
  5619. tokenizer_class = 'BertTokenizer'
  5620. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5621. tokenizer_class = json.load(f)['tokenizer_class']
  5622. if tokenizer_class == 'BertTokenizer':
  5623. super().set_vocab()
  5624. elif tokenizer_class == 'RobertaTokenizer':
  5625. self._set_vocab_gpt2()
  5626. self.gguf_writer.add_token_type_count(2)
  5627. else:
  5628. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5629. @ModelBase.register("OpenELMForCausalLM")
  5630. class OpenELMModel(TextModel):
  5631. model_arch = gguf.MODEL_ARCH.OPENELM
  5632. @staticmethod
  5633. def _make_divisible(v: float | int, divisor: int) -> int:
  5634. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5635. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5636. # Make sure that round down does not go down by more than 10%.
  5637. if new_v < 0.9 * v:
  5638. new_v += divisor
  5639. return new_v
  5640. def __init__(self, *args, **kwargs):
  5641. super().__init__(*args, **kwargs)
  5642. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5643. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5644. self._n_embd: int = self.hparams["model_dim"]
  5645. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5646. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5647. self._ffn_dims: list[int] = [
  5648. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5649. for multiplier in ffn_multipliers
  5650. ]
  5651. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5652. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5653. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5654. def set_vocab(self):
  5655. try:
  5656. self._set_vocab_sentencepiece()
  5657. except FileNotFoundError:
  5658. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5659. def set_gguf_parameters(self):
  5660. n_embd = self._n_embd
  5661. head_dim = self.hparams["head_dim"]
  5662. rot_pct = 1.0
  5663. assert self.block_count == len(self._num_kv_heads)
  5664. assert self.block_count == len(self._num_query_heads)
  5665. assert self.block_count == len(self._ffn_dims)
  5666. self.gguf_writer.add_block_count(self.block_count)
  5667. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5668. self.gguf_writer.add_embedding_length(n_embd)
  5669. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5670. self.gguf_writer.add_head_count(self._num_query_heads)
  5671. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5672. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5673. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5674. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5675. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5676. self.gguf_writer.add_key_length(head_dim)
  5677. self.gguf_writer.add_value_length(head_dim)
  5678. self.gguf_writer.add_file_type(self.ftype)
  5679. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5680. if "n_layers" in keys:
  5681. return self.hparams["num_transformer_layers"]
  5682. return super().find_hparam(keys, optional)
  5683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5684. # split ff
  5685. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5686. ff_dim = self._ffn_dims[bid]
  5687. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5688. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5689. return
  5690. yield (self.map_tensor_name(name), data_torch)
  5691. @ModelBase.register("ArcticForCausalLM")
  5692. class ArcticModel(TextModel):
  5693. model_arch = gguf.MODEL_ARCH.ARCTIC
  5694. def set_vocab(self):
  5695. # The reason for using a custom implementation here is that the
  5696. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5697. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5698. from sentencepiece import SentencePieceProcessor
  5699. tokenizer_path = self.dir_model / 'tokenizer.model'
  5700. if not tokenizer_path.is_file():
  5701. logger.error(f'Error: Missing {tokenizer_path}')
  5702. sys.exit(1)
  5703. # Read the whole vocabulary from the tokenizer.model file
  5704. tokenizer = SentencePieceProcessor()
  5705. tokenizer.LoadFromFile(str(tokenizer_path))
  5706. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5707. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5708. scores: list[float] = [-10000.0] * vocab_size
  5709. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5710. for token_id in range(tokenizer.vocab_size()):
  5711. piece = tokenizer.IdToPiece(token_id)
  5712. text = piece.encode("utf-8")
  5713. score = tokenizer.GetScore(token_id)
  5714. toktype = SentencePieceTokenTypes.NORMAL
  5715. if tokenizer.IsUnknown(token_id):
  5716. toktype = SentencePieceTokenTypes.UNKNOWN
  5717. elif tokenizer.IsControl(token_id):
  5718. toktype = SentencePieceTokenTypes.CONTROL
  5719. elif tokenizer.IsUnused(token_id):
  5720. toktype = SentencePieceTokenTypes.UNUSED
  5721. elif tokenizer.IsByte(token_id):
  5722. toktype = SentencePieceTokenTypes.BYTE
  5723. tokens[token_id] = text
  5724. scores[token_id] = score
  5725. toktypes[token_id] = toktype
  5726. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5727. # of information about added/redefined tokens and modify them accordingly.
  5728. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5729. if tokenizer_config_file.is_file():
  5730. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5731. tokenizer_config_json = json.load(f)
  5732. if "added_tokens_decoder" in tokenizer_config_json:
  5733. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5734. for token_id, token_json in added_tokens_decoder.items():
  5735. token_id = int(token_id)
  5736. if token_id >= vocab_size:
  5737. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5738. continue
  5739. token_content = token_json["content"]
  5740. token_type = SentencePieceTokenTypes.USER_DEFINED
  5741. token_score = -10000.0
  5742. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5743. # Set the score to 0.0 as in the original tokenizer.model
  5744. if ("special" in token_json) and token_json["special"]:
  5745. if token_content == tokenizer_config_json["unk_token"]:
  5746. token_type = SentencePieceTokenTypes.UNKNOWN
  5747. else:
  5748. token_type = SentencePieceTokenTypes.CONTROL
  5749. token_score = 0.0
  5750. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5751. tokens[token_id] = token_content.encode("utf-8")
  5752. toktypes[token_id] = token_type
  5753. scores[token_id] = token_score
  5754. self.gguf_writer.add_tokenizer_model("llama")
  5755. self.gguf_writer.add_tokenizer_pre("default")
  5756. self.gguf_writer.add_token_list(tokens)
  5757. self.gguf_writer.add_token_scores(scores)
  5758. self.gguf_writer.add_token_types(toktypes)
  5759. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5760. special_vocab.add_to_gguf(self.gguf_writer)
  5761. def set_gguf_parameters(self):
  5762. super().set_gguf_parameters()
  5763. hparams = self.hparams
  5764. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5765. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5766. _experts: list[dict[str, Tensor]] | None = None
  5767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5768. n_head = self.hparams["num_attention_heads"]
  5769. n_kv_head = self.hparams.get("num_key_value_heads")
  5770. if name.endswith("q_proj.weight"):
  5771. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5772. if name.endswith("k_proj.weight"):
  5773. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5774. # process the experts separately
  5775. if name.find("block_sparse_moe.experts") != -1:
  5776. n_experts = self.hparams["num_local_experts"]
  5777. assert bid is not None
  5778. if self._experts is None:
  5779. self._experts = [{} for _ in range(self.block_count)]
  5780. self._experts[bid][name] = data_torch
  5781. if len(self._experts[bid]) >= n_experts * 3:
  5782. tensors: list[tuple[str, Tensor]] = []
  5783. # merge the experts into a single 3d tensor
  5784. for wid in ["w1", "w2", "w3"]:
  5785. datas: list[Tensor] = []
  5786. for xid in range(n_experts):
  5787. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5788. datas.append(self._experts[bid][ename])
  5789. del self._experts[bid][ename]
  5790. data_torch = torch.stack(datas, dim=0)
  5791. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5792. new_name = self.map_tensor_name(merged_name)
  5793. tensors.append((new_name, data_torch))
  5794. return tensors
  5795. else:
  5796. return []
  5797. return [(self.map_tensor_name(name), data_torch)]
  5798. def prepare_tensors(self):
  5799. super().prepare_tensors()
  5800. if self._experts is not None:
  5801. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5802. experts = [k for d in self._experts for k in d.keys()]
  5803. if len(experts) > 0:
  5804. raise ValueError(f"Unprocessed experts: {experts}")
  5805. @ModelBase.register("DeepseekForCausalLM")
  5806. class DeepseekModel(TextModel):
  5807. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5808. def set_vocab(self):
  5809. try:
  5810. self._set_vocab_sentencepiece()
  5811. except FileNotFoundError:
  5812. self._set_vocab_gpt2()
  5813. def set_gguf_parameters(self):
  5814. super().set_gguf_parameters()
  5815. hparams = self.hparams
  5816. if (rope_dim := hparams.get("head_dim")) is None:
  5817. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5818. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5819. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5820. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5821. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5822. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5823. self.gguf_writer.add_expert_weights_scale(1.0)
  5824. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5825. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5826. _experts: list[dict[str, Tensor]] | None = None
  5827. @staticmethod
  5828. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5829. if n_head_kv is not None and n_head != n_head_kv:
  5830. n_head = n_head_kv
  5831. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5832. .swapaxes(1, 2)
  5833. .reshape(weights.shape))
  5834. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5835. n_head = self.hparams["num_attention_heads"]
  5836. n_kv_head = self.hparams.get("num_key_value_heads")
  5837. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5838. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5839. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5840. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5841. # process the experts separately
  5842. if name.find("mlp.experts") != -1:
  5843. n_experts = self.hparams["n_routed_experts"]
  5844. assert bid is not None
  5845. if self._experts is None:
  5846. self._experts = [{} for _ in range(self.block_count)]
  5847. self._experts[bid][name] = data_torch
  5848. if len(self._experts[bid]) >= n_experts * 3:
  5849. tensors: list[tuple[str, Tensor]] = []
  5850. # merge the experts into a single 3d tensor
  5851. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5852. datas: list[Tensor] = []
  5853. for xid in range(n_experts):
  5854. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5855. datas.append(self._experts[bid][ename])
  5856. del self._experts[bid][ename]
  5857. data_torch = torch.stack(datas, dim=0)
  5858. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5859. new_name = self.map_tensor_name(merged_name)
  5860. tensors.append((new_name, data_torch))
  5861. return tensors
  5862. else:
  5863. return []
  5864. return [(self.map_tensor_name(name), data_torch)]
  5865. def prepare_tensors(self):
  5866. super().prepare_tensors()
  5867. if self._experts is not None:
  5868. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5869. experts = [k for d in self._experts for k in d.keys()]
  5870. if len(experts) > 0:
  5871. raise ValueError(f"Unprocessed experts: {experts}")
  5872. @ModelBase.register(
  5873. "DeepseekV2ForCausalLM",
  5874. "DeepseekV3ForCausalLM",
  5875. "KimiVLForConditionalGeneration",
  5876. "YoutuForCausalLM",
  5877. "YoutuVLForConditionalGeneration"
  5878. )
  5879. class DeepseekV2Model(TextModel):
  5880. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5881. def set_vocab(self):
  5882. try:
  5883. self._set_vocab_gpt2()
  5884. return
  5885. except Exception:
  5886. pass
  5887. from transformers import AutoTokenizer
  5888. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5889. tokpre = self.get_vocab_base_pre(tokenizer)
  5890. if tokpre == "kimi-k2":
  5891. # Build merges list using the approach similar to HunYuanMoE
  5892. merges = []
  5893. vocab = {}
  5894. mergeable_ranks = tokenizer.model._mergeable_ranks
  5895. for token, rank in mergeable_ranks.items():
  5896. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5897. if len(token) == 1:
  5898. continue
  5899. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5900. if len(merged) == 2:
  5901. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5902. # Build token list
  5903. vocab_size = self.hparams["vocab_size"]
  5904. special_tokens = tokenizer.special_tokens
  5905. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5906. tokens: list[str] = []
  5907. toktypes: list[int] = []
  5908. for i in range(vocab_size):
  5909. if i not in reverse_vocab:
  5910. tokens.append(f"[PAD{i}]")
  5911. toktypes.append(gguf.TokenType.UNUSED)
  5912. else:
  5913. token = reverse_vocab[i]
  5914. tokens.append(token)
  5915. if i in special_tokens.values():
  5916. toktypes.append(gguf.TokenType.CONTROL)
  5917. else:
  5918. toktypes.append(gguf.TokenType.NORMAL)
  5919. self.gguf_writer.add_tokenizer_model("gpt2")
  5920. self.gguf_writer.add_tokenizer_pre(tokpre)
  5921. self.gguf_writer.add_token_list(tokens)
  5922. self.gguf_writer.add_token_types(toktypes)
  5923. self.gguf_writer.add_token_merges(merges)
  5924. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5925. special_vocab.add_to_gguf(self.gguf_writer)
  5926. else:
  5927. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5928. def set_gguf_parameters(self):
  5929. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5930. self.hparams["num_key_value_heads"] = 1
  5931. super().set_gguf_parameters()
  5932. hparams = self.hparams
  5933. # first_k_dense_replace: number of leading layers using dense FFN instead of MoE
  5934. # For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
  5935. # For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
  5936. has_moe = hparams.get("n_routed_experts") is not None
  5937. first_k_dense_replace = hparams.get("first_k_dense_replace")
  5938. if first_k_dense_replace is None:
  5939. # Default: if no MoE, all layers are dense; if MoE, none are dense
  5940. first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
  5941. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5942. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5943. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5944. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5945. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5946. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5947. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5948. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5949. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5950. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5951. # MoE parameters (required by C++ code for DEEPSEEK2 arch)
  5952. # For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
  5953. moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
  5954. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5955. if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
  5956. self.gguf_writer.add_expert_count(n_routed_experts)
  5957. # expert_shared_count is required by C++ code, default to 0 for non-MoE models
  5958. n_shared_experts = hparams.get("n_shared_experts", 0)
  5959. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5960. # When not set, C++ code will use scale_w = false to skip the no-op scaling
  5961. if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
  5962. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5963. if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
  5964. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5965. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5966. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5967. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5968. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5969. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5970. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5971. _experts: list[dict[str, Tensor]] | None = None
  5972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5973. # skip vision tensors and remove "language_model." for Kimi-VL
  5974. if "vision_tower" in name or "multi_modal_projector" in name:
  5975. return []
  5976. if name.startswith("siglip2.") or name.startswith("merger."):
  5977. return []
  5978. if name.startswith("language_model."):
  5979. name = name.replace("language_model.", "")
  5980. # skip lm_head.weight if tie_word_embeddings is True
  5981. if self.hparams.get("tie_word_embeddings", False):
  5982. if name == "lm_head.weight" or name == "model.lm_head.weight":
  5983. logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
  5984. return []
  5985. # rename e_score_correction_bias tensors
  5986. if name.endswith("e_score_correction_bias"):
  5987. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5988. # skip Multi-Token Prediction (MTP) layers
  5989. block_count = self.hparams["num_hidden_layers"]
  5990. match = re.match(r"model.layers.(\d+)", name)
  5991. if match and int(match.group(1)) >= block_count:
  5992. return []
  5993. # process the experts separately
  5994. if name.find("mlp.experts") != -1:
  5995. n_experts = self.hparams["n_routed_experts"]
  5996. assert bid is not None
  5997. if self._experts is None:
  5998. self._experts = [{} for _ in range(self.block_count)]
  5999. self._experts[bid][name] = data_torch
  6000. if len(self._experts[bid]) >= n_experts * 3:
  6001. tensors: list[tuple[str, Tensor]] = []
  6002. # merge the experts into a single 3d tensor
  6003. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6004. datas: list[Tensor] = []
  6005. for xid in range(n_experts):
  6006. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6007. datas.append(self._experts[bid][ename])
  6008. del self._experts[bid][ename]
  6009. data_torch = torch.stack(datas, dim=0)
  6010. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6011. new_name = self.map_tensor_name(merged_name)
  6012. tensors.append((new_name, data_torch))
  6013. return tensors
  6014. else:
  6015. return []
  6016. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  6017. if name.endswith("kv_b_proj.weight"):
  6018. name_kb = name.replace("kv_b_proj", "k_b_proj")
  6019. name_vb = name.replace("kv_b_proj", "v_b_proj")
  6020. n_head_kv = self.hparams["num_key_value_heads"]
  6021. v_head_dim = self.hparams["v_head_dim"]
  6022. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  6023. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  6024. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  6025. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  6026. k_b = k_b.transpose(1, 2)
  6027. return [
  6028. (self.map_tensor_name(name_kb), k_b),
  6029. (self.map_tensor_name(name_vb), v_b)
  6030. ]
  6031. return [(self.map_tensor_name(name), data_torch)]
  6032. def prepare_tensors(self):
  6033. super().prepare_tensors()
  6034. if self._experts is not None:
  6035. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6036. experts = [k for d in self._experts for k in d.keys()]
  6037. if len(experts) > 0:
  6038. raise ValueError(f"Unprocessed experts: {experts}")
  6039. @ModelBase.register("MiniMaxM2ForCausalLM")
  6040. class MiniMaxM2Model(TextModel):
  6041. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6042. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6043. def __init__(self, *args, **kwargs):
  6044. super().__init__(*args, **kwargs)
  6045. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6046. def set_gguf_parameters(self):
  6047. super().set_gguf_parameters()
  6048. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6049. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6051. if name.endswith("e_score_correction_bias"):
  6052. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6053. # merge expert weights
  6054. if 'experts' in name:
  6055. n_experts = self.hparams["num_experts"]
  6056. assert bid is not None
  6057. expert_cache = self._experts_cache.setdefault(bid, {})
  6058. expert_cache[name] = data_torch
  6059. expert_weights = ["w1", "w2", "w3"]
  6060. # not enough expert weights to merge
  6061. if len(expert_cache) < n_experts * len(expert_weights):
  6062. return []
  6063. tensors: list[tuple[str, Tensor]] = []
  6064. for w_name in expert_weights:
  6065. datas: list[Tensor] = []
  6066. for xid in range(n_experts):
  6067. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6068. datas.append(expert_cache[ename])
  6069. del expert_cache[ename]
  6070. data_torch = torch.stack(datas, dim=0)
  6071. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6072. new_name = self.map_tensor_name(merged_name)
  6073. tensors.append((new_name, data_torch))
  6074. del self._experts_cache[bid]
  6075. return tensors
  6076. return super().modify_tensors(data_torch, name, bid)
  6077. @ModelBase.register("MiMoV2FlashForCausalLM")
  6078. class MimoV2Model(TextModel):
  6079. model_arch = gguf.MODEL_ARCH.MIMO2
  6080. def set_gguf_parameters(self):
  6081. super().set_gguf_parameters()
  6082. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6083. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6084. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6085. assert self.hparams["topk_method"] == "noaux_tc"
  6086. n_head_kv = self.hparams["num_key_value_heads"]
  6087. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6088. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6089. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6090. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6091. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6092. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6093. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6094. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6095. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6096. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6097. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6098. _experts: list[dict[str, Tensor]] | None = None
  6099. def modify_tensors(self, data_torch, name, bid):
  6100. if name.endswith("e_score_correction_bias"):
  6101. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6102. if "attention_sink" in name and not name.endswith(".weight"):
  6103. name += ".weight"
  6104. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6105. if "model.mtp." in name:
  6106. return []
  6107. # process the experts separately
  6108. if name.find("mlp.experts") != -1:
  6109. n_experts = self.hparams["n_routed_experts"]
  6110. assert bid is not None
  6111. if self._experts is None:
  6112. self._experts = [{} for _ in range(self.block_count)]
  6113. self._experts[bid][name] = data_torch
  6114. if len(self._experts[bid]) >= n_experts * 3:
  6115. tensors: list[tuple[str, Tensor]] = []
  6116. # merge the experts into a single 3d tensor
  6117. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6118. datas: list[Tensor] = []
  6119. for xid in range(n_experts):
  6120. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6121. datas.append(self._experts[bid][ename_to_retrieve])
  6122. del self._experts[bid][ename_to_retrieve]
  6123. data_torch = torch.stack(datas, dim=0)
  6124. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6125. new_name = self.map_tensor_name(merged_name)
  6126. tensors.append((new_name, data_torch))
  6127. return tensors
  6128. else:
  6129. return []
  6130. return [(self.map_tensor_name(name), data_torch)]
  6131. def prepare_tensors(self):
  6132. super().prepare_tensors()
  6133. if self._experts is not None:
  6134. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6135. experts = [k for d in self._experts for k in d.keys()]
  6136. if len(experts) > 0:
  6137. raise ValueError(f"Unprocessed experts: {experts}")
  6138. @ModelBase.register("PanguEmbeddedForCausalLM")
  6139. class PanguEmbeddedModel(TextModel):
  6140. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6141. def set_vocab(self):
  6142. self._set_vocab_sentencepiece()
  6143. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6144. if tokenizer_config_file.is_file():
  6145. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6146. tokenizer_config_json = json.load(f)
  6147. if "add_prefix_space" in tokenizer_config_json:
  6148. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6149. def set_gguf_parameters(self):
  6150. super().set_gguf_parameters()
  6151. hparams = self.hparams
  6152. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6153. # PanguEmbedded's hparam loaded from config.json without head_dim
  6154. if (rope_dim := hparams.get("head_dim")) is None:
  6155. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6156. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6157. if hparams.get("head_dim") is None:
  6158. self.gguf_writer.add_key_length(rope_dim)
  6159. self.gguf_writer.add_value_length(rope_dim)
  6160. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6161. if name == "lm_head.weight":
  6162. if self.hparams.get("tie_word_embeddings", False):
  6163. logger.info("Skipping tied output layer 'lm_head.weight'")
  6164. return []
  6165. return [(self.map_tensor_name(name), data_torch)]
  6166. @ModelBase.register("Dots1ForCausalLM")
  6167. class Dots1Model(Qwen2MoeModel):
  6168. model_arch = gguf.MODEL_ARCH.DOTS1
  6169. def __init__(self, *args, **kwargs):
  6170. super().__init__(*args, **kwargs)
  6171. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6172. def set_gguf_parameters(self):
  6173. super().set_gguf_parameters()
  6174. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6175. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6176. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6177. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6179. if name.endswith("e_score_correction_bias"):
  6180. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6181. if "shared_experts" in name:
  6182. return [(self.map_tensor_name(name), data_torch)]
  6183. return super().modify_tensors(data_torch, name, bid)
  6184. @ModelBase.register("PLMForCausalLM")
  6185. class PLMModel(TextModel):
  6186. model_arch = gguf.MODEL_ARCH.PLM
  6187. def set_vocab(self):
  6188. self._set_vocab_gpt2()
  6189. def set_gguf_parameters(self):
  6190. super().set_gguf_parameters()
  6191. hparams = self.hparams
  6192. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6193. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6194. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6195. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6196. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6197. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6198. return [(self.map_tensor_name(name), data_torch)]
  6199. def prepare_tensors(self):
  6200. super().prepare_tensors()
  6201. @ModelBase.register("T5WithLMHeadModel")
  6202. @ModelBase.register("T5ForConditionalGeneration")
  6203. @ModelBase.register("MT5ForConditionalGeneration")
  6204. @ModelBase.register("UMT5ForConditionalGeneration")
  6205. @ModelBase.register("UMT5Model")
  6206. class T5Model(TextModel):
  6207. model_arch = gguf.MODEL_ARCH.T5
  6208. def __init__(self, *args, **kwargs):
  6209. super().__init__(*args, **kwargs)
  6210. self.shared_token_embeddings_found = False
  6211. def set_vocab(self):
  6212. # to avoid TypeError: Descriptors cannot be created directly
  6213. # exception when importing sentencepiece_model_pb2
  6214. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6215. from sentencepiece import SentencePieceProcessor
  6216. from sentencepiece import sentencepiece_model_pb2 as model
  6217. tokenizer_path = self.dir_model / 'tokenizer.model'
  6218. # many older models use spiece.model tokenizer model filename
  6219. if not tokenizer_path.is_file():
  6220. tokenizer_path = self.dir_model / 'spiece.model'
  6221. if not tokenizer_path.is_file():
  6222. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6223. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6224. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6225. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6226. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6227. # assure the tokenizer model file name is correct
  6228. assert tokenizer_path.name == 'tokenizer.model'
  6229. return self._set_vocab_sentencepiece()
  6230. else:
  6231. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6232. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6233. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6234. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6235. tokenizer = SentencePieceProcessor()
  6236. tokenizer.LoadFromFile(str(tokenizer_path))
  6237. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6238. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6239. scores: list[float] = [-10000.0] * vocab_size
  6240. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6241. for token_id in range(tokenizer.vocab_size()):
  6242. piece = tokenizer.IdToPiece(token_id)
  6243. text = piece.encode("utf-8")
  6244. score = tokenizer.GetScore(token_id)
  6245. toktype = SentencePieceTokenTypes.NORMAL
  6246. if tokenizer.IsUnknown(token_id):
  6247. toktype = SentencePieceTokenTypes.UNKNOWN
  6248. elif tokenizer.IsControl(token_id):
  6249. toktype = SentencePieceTokenTypes.CONTROL
  6250. elif tokenizer.IsUnused(token_id):
  6251. toktype = SentencePieceTokenTypes.UNUSED
  6252. elif tokenizer.IsByte(token_id):
  6253. toktype = SentencePieceTokenTypes.BYTE
  6254. tokens[token_id] = text
  6255. scores[token_id] = score
  6256. toktypes[token_id] = toktype
  6257. added_tokens_file = self.dir_model / 'added_tokens.json'
  6258. if added_tokens_file.is_file():
  6259. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6260. added_tokens_json = json.load(f)
  6261. for key in added_tokens_json:
  6262. token_id = added_tokens_json[key]
  6263. if token_id >= vocab_size:
  6264. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6265. continue
  6266. tokens[token_id] = key.encode("utf-8")
  6267. scores[token_id] = -1000.0
  6268. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6269. if vocab_size > len(tokens):
  6270. pad_count = vocab_size - len(tokens)
  6271. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6272. for i in range(1, pad_count + 1):
  6273. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6274. scores.append(-1000.0)
  6275. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6276. self.gguf_writer.add_tokenizer_model("t5")
  6277. self.gguf_writer.add_tokenizer_pre("default")
  6278. self.gguf_writer.add_token_list(tokens)
  6279. self.gguf_writer.add_token_scores(scores)
  6280. self.gguf_writer.add_token_types(toktypes)
  6281. self.gguf_writer.add_add_space_prefix(add_prefix)
  6282. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6283. if precompiled_charsmap:
  6284. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6285. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6286. special_vocab.add_to_gguf(self.gguf_writer)
  6287. def set_gguf_parameters(self):
  6288. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6289. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6290. n_ctx = 512
  6291. self.gguf_writer.add_context_length(n_ctx)
  6292. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6293. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6294. self.gguf_writer.add_block_count(self.block_count)
  6295. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6296. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6297. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6298. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6299. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6300. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6301. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6302. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6303. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6304. self.gguf_writer.add_file_type(self.ftype)
  6305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6306. del bid # unused
  6307. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6308. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6309. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6310. # and decoder and ignore the remaining ones.
  6311. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6312. if not self.shared_token_embeddings_found:
  6313. name = "shared.weight"
  6314. self.shared_token_embeddings_found = True
  6315. else:
  6316. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6317. return []
  6318. return [(self.map_tensor_name(name), data_torch)]
  6319. @ModelBase.register("T5EncoderModel")
  6320. class T5EncoderModel(TextModel):
  6321. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6322. def __init__(self, *args, **kwargs):
  6323. super().__init__(*args, **kwargs)
  6324. self.shared_token_embeddings_found = False
  6325. def set_vocab(self):
  6326. # to avoid TypeError: Descriptors cannot be created directly
  6327. # exception when importing sentencepiece_model_pb2
  6328. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6329. from sentencepiece import SentencePieceProcessor
  6330. from sentencepiece import sentencepiece_model_pb2 as model
  6331. tokenizer_path = self.dir_model / 'tokenizer.model'
  6332. # many older models use spiece.model tokenizer model filename
  6333. if not tokenizer_path.is_file():
  6334. tokenizer_path = self.dir_model / 'spiece.model'
  6335. if not tokenizer_path.is_file():
  6336. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6337. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6338. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6339. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6340. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6341. # assure the tokenizer model file name is correct
  6342. assert tokenizer_path.name == 'tokenizer.model'
  6343. return self._set_vocab_sentencepiece()
  6344. else:
  6345. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6346. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6347. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6348. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6349. tokenizer = SentencePieceProcessor()
  6350. tokenizer.LoadFromFile(str(tokenizer_path))
  6351. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6352. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6353. scores: list[float] = [-10000.0] * vocab_size
  6354. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6355. for token_id in range(tokenizer.vocab_size()):
  6356. piece = tokenizer.IdToPiece(token_id)
  6357. text = piece.encode("utf-8")
  6358. score = tokenizer.GetScore(token_id)
  6359. toktype = SentencePieceTokenTypes.NORMAL
  6360. if tokenizer.IsUnknown(token_id):
  6361. toktype = SentencePieceTokenTypes.UNKNOWN
  6362. elif tokenizer.IsControl(token_id):
  6363. toktype = SentencePieceTokenTypes.CONTROL
  6364. elif tokenizer.IsUnused(token_id):
  6365. toktype = SentencePieceTokenTypes.UNUSED
  6366. elif tokenizer.IsByte(token_id):
  6367. toktype = SentencePieceTokenTypes.BYTE
  6368. tokens[token_id] = text
  6369. scores[token_id] = score
  6370. toktypes[token_id] = toktype
  6371. added_tokens_file = self.dir_model / 'added_tokens.json'
  6372. if added_tokens_file.is_file():
  6373. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6374. added_tokens_json = json.load(f)
  6375. for key in added_tokens_json:
  6376. token_id = added_tokens_json[key]
  6377. if token_id >= vocab_size:
  6378. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6379. continue
  6380. tokens[token_id] = key.encode("utf-8")
  6381. scores[token_id] = -1000.0
  6382. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6383. if vocab_size > len(tokens):
  6384. pad_count = vocab_size - len(tokens)
  6385. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6386. for i in range(1, pad_count + 1):
  6387. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6388. scores.append(-1000.0)
  6389. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6390. self.gguf_writer.add_tokenizer_model("t5")
  6391. self.gguf_writer.add_tokenizer_pre("default")
  6392. self.gguf_writer.add_token_list(tokens)
  6393. self.gguf_writer.add_token_scores(scores)
  6394. self.gguf_writer.add_token_types(toktypes)
  6395. self.gguf_writer.add_add_space_prefix(add_prefix)
  6396. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6397. if precompiled_charsmap:
  6398. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6399. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6400. special_vocab.add_to_gguf(self.gguf_writer)
  6401. def set_gguf_parameters(self):
  6402. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6403. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6404. n_ctx = 512
  6405. self.gguf_writer.add_context_length(n_ctx)
  6406. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6407. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6408. self.gguf_writer.add_block_count(self.block_count)
  6409. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6410. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6411. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6412. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6413. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6414. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6415. self.gguf_writer.add_file_type(self.ftype)
  6416. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6417. del bid # unused
  6418. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6419. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6420. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6421. # and decoder and ignore the remaining ones.
  6422. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6423. if not self.shared_token_embeddings_found:
  6424. name = "shared.weight"
  6425. self.shared_token_embeddings_found = True
  6426. else:
  6427. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6428. return []
  6429. return [(self.map_tensor_name(name), data_torch)]
  6430. @ModelBase.register("JAISLMHeadModel")
  6431. class JaisModel(TextModel):
  6432. model_arch = gguf.MODEL_ARCH.JAIS
  6433. def __init__(self, *args, **kwargs):
  6434. super().__init__(*args, **kwargs)
  6435. # SwigLU activation
  6436. assert self.hparams["activation_function"] == "swiglu"
  6437. # ALiBi position embedding
  6438. assert self.hparams["position_embedding_type"] == "alibi"
  6439. # Embeddings scale
  6440. self.embeddings_scale = 1.0
  6441. if 'mup_embeddings_scale' in self.hparams:
  6442. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6443. elif 'embeddings_scale' in self.hparams:
  6444. self.embeddings_scale = self.hparams['embeddings_scale']
  6445. else:
  6446. assert False
  6447. self.width_scale = 1.0
  6448. if 'mup_output_alpha' in self.hparams:
  6449. assert 'mup_width_scale' in self.hparams
  6450. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6451. elif 'width_scale' in self.hparams:
  6452. self.width_scale = self.hparams['width_scale']
  6453. else:
  6454. assert False
  6455. self.max_alibi_bias = 8.0
  6456. def set_vocab(self):
  6457. self._set_vocab_gpt2()
  6458. def set_gguf_parameters(self):
  6459. self.gguf_writer.add_block_count(self.block_count)
  6460. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6461. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6462. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6463. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6464. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6465. self.gguf_writer.add_file_type(self.ftype)
  6466. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6467. del bid # unused
  6468. tensors: list[tuple[str, Tensor]] = []
  6469. # we don't need these
  6470. if name.endswith((".attn.bias")):
  6471. return tensors
  6472. if name.endswith(("relative_pe.slopes")):
  6473. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6474. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6475. # but Jais's PyTorch model simply precalculates the slope values and places them
  6476. # in relative_pes.slopes
  6477. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6478. first_val = float(data_torch[0].item())
  6479. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6480. return tensors
  6481. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6482. data_torch = data_torch.transpose(1, 0)
  6483. new_name = self.map_tensor_name(name)
  6484. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6485. tensors.append((new_name, data_torch * self.embeddings_scale))
  6486. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6487. tensors.append((new_name, data_torch * self.width_scale))
  6488. else:
  6489. tensors.append((new_name, data_torch))
  6490. return tensors
  6491. def prepare_tensors(self):
  6492. super().prepare_tensors()
  6493. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6494. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6495. class Glm4Model(TextModel):
  6496. model_arch = gguf.MODEL_ARCH.GLM4
  6497. use_mrope = False
  6498. partial_rotary_factor = 0.5
  6499. def __init__(self, *args, **kwargs):
  6500. super().__init__(*args, **kwargs)
  6501. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6502. if "mrope_section" in self.rope_parameters:
  6503. self.use_mrope = True
  6504. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6505. def set_vocab(self):
  6506. from transformers import AutoTokenizer
  6507. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6508. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6509. tokens, toktypes, tokpre = self.get_vocab_base()
  6510. self.gguf_writer.add_tokenizer_model("gpt2")
  6511. self.gguf_writer.add_tokenizer_pre(tokpre)
  6512. self.gguf_writer.add_token_list(tokens)
  6513. self.gguf_writer.add_token_types(toktypes)
  6514. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6515. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6516. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6517. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6518. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6519. special_vocab.add_to_gguf(self.gguf_writer)
  6520. def set_gguf_parameters(self):
  6521. super().set_gguf_parameters()
  6522. if (rope_dim := self.hparams.get("head_dim")) is None:
  6523. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6524. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6525. @staticmethod
  6526. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6527. orig_shape = weights.shape
  6528. if len(orig_shape) == 1:
  6529. weights = weights.unsqueeze(1) # [out_dim, 1]
  6530. if len(weights.shape) != 2:
  6531. raise ValueError("Only 1D and 2D tensors are supported.")
  6532. n_effective_heads = weights.shape[0] // head_dim
  6533. if n_head_kv is not None and n_effective_heads != n_head:
  6534. if n_effective_heads != n_head_kv:
  6535. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6536. rotary_dim = int(head_dim * partial_rotary_factor)
  6537. if rotary_dim % 2 != 0:
  6538. raise ValueError("rotary_dim must be even.")
  6539. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6540. rot_part = reshaped[:, :rotary_dim, :]
  6541. non_rot_part = reshaped[:, rotary_dim:, :]
  6542. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6543. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6544. result = combined.reshape(weights.shape)
  6545. return result if len(orig_shape) != 1 else result.squeeze(1)
  6546. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6547. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6548. return []
  6549. elif name.startswith("model.language_model."):
  6550. name = name.replace("language_model.", "") # for Glm4v
  6551. if self.use_mrope:
  6552. n_head = self.hparams["num_attention_heads"]
  6553. n_kv_head = self.hparams["num_key_value_heads"]
  6554. n_embd = self.hparams["hidden_size"]
  6555. head_dim = n_embd // n_head
  6556. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6557. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6558. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6559. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6560. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6561. return super().modify_tensors(data_torch, name, bid)
  6562. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6563. class Glm4MoeModel(TextModel):
  6564. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6565. def __init__(self, *args, **kwargs):
  6566. super().__init__(*args, **kwargs)
  6567. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6568. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6569. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6570. def set_vocab(self):
  6571. from transformers import AutoTokenizer
  6572. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6573. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6574. tokens, toktypes, tokpre = self.get_vocab_base()
  6575. self.gguf_writer.add_tokenizer_model("gpt2")
  6576. self.gguf_writer.add_tokenizer_pre(tokpre)
  6577. self.gguf_writer.add_token_list(tokens)
  6578. self.gguf_writer.add_token_types(toktypes)
  6579. # Special tokens
  6580. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6581. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6582. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6583. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6584. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6585. special_vocab.add_to_gguf(self.gguf_writer)
  6586. def set_gguf_parameters(self):
  6587. super().set_gguf_parameters()
  6588. if (rope_dim := self.hparams.get("head_dim")) is None:
  6589. rope_dim = (
  6590. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6591. )
  6592. self.gguf_writer.add_rope_dimension_count(
  6593. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6594. )
  6595. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6596. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6597. self.gguf_writer.add_expert_count(n_routed_experts)
  6598. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6599. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6600. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6601. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6602. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6603. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6604. # Expert gating function (sigmoid for GLM4_MOE)
  6605. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6606. # Routed scaling factor
  6607. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6608. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6609. # Normalise topk probabilities
  6610. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6611. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6612. # NextN/MTP prediction layers
  6613. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6614. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6615. _experts: list[dict[str, Tensor]] | None = None
  6616. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6617. def modify_tensors(
  6618. self, data_torch: Tensor, name: str, bid: int | None
  6619. ) -> Iterable[tuple[str, Tensor]]:
  6620. if name.startswith("model.visual."): # ignore visual part
  6621. return []
  6622. elif name.startswith("model.language_model."):
  6623. name = name.replace("language_model.", "") # for multimodal variants
  6624. # Handle main token embedding (but not layer-specific NextN embeddings)
  6625. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6626. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6627. # Handle routed experts
  6628. if name.find("mlp.experts") != -1:
  6629. n_experts = self.hparams["n_routed_experts"]
  6630. assert bid is not None
  6631. if self._experts is None:
  6632. self._experts = [{} for _ in range(self.block_count)]
  6633. self._experts[bid][name] = data_torch
  6634. if len(self._experts[bid]) >= n_experts * 3:
  6635. tensors: list[tuple[str, Tensor]] = []
  6636. # merge the experts into a single 3d tensor
  6637. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6638. datas: list[Tensor] = []
  6639. for xid in range(n_experts):
  6640. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6641. datas.append(self._experts[bid][ename])
  6642. del self._experts[bid][ename]
  6643. data_torch = torch.stack(datas, dim=0)
  6644. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6645. new_name = self.map_tensor_name(merged_name)
  6646. tensors.append((new_name, data_torch))
  6647. return tensors
  6648. else:
  6649. return []
  6650. if name.endswith("e_score_correction_bias"):
  6651. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6652. new_name = self.map_tensor_name(name)
  6653. return [(new_name, data_torch)]
  6654. def prepare_tensors(self):
  6655. super().prepare_tensors()
  6656. if self._experts is not None:
  6657. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6658. experts = [k for d in self._experts for k in d.keys()]
  6659. if len(experts) > 0:
  6660. raise ValueError(f"Unprocessed experts: {experts}")
  6661. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6662. class ChatGLMModel(TextModel):
  6663. model_arch = gguf.MODEL_ARCH.CHATGLM
  6664. def set_vocab_chatglm3(self):
  6665. dir_model = self.dir_model
  6666. hparams = self.hparams
  6667. tokens: list[bytes] = []
  6668. toktypes: list[int] = []
  6669. scores: list[float] = []
  6670. from transformers import AutoTokenizer
  6671. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6672. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6673. assert max(tokenizer.get_vocab().values()) < vocab_size
  6674. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6675. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6676. for token_id in range(vocab_size):
  6677. piece = tokenizer._convert_id_to_token(token_id)
  6678. if token_id == 0:
  6679. piece = "<unk>"
  6680. elif token_id == 1:
  6681. piece = "<bos>"
  6682. elif token_id == 2:
  6683. piece = "<eos>"
  6684. text = piece.encode("utf-8")
  6685. score = 0.0
  6686. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6687. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6688. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6689. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6690. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6691. if piece in special_tokens:
  6692. toktype = SentencePieceTokenTypes.CONTROL
  6693. elif len(piece) == 0:
  6694. text = f"[PAD{token_id}]".encode("utf-8")
  6695. toktype = SentencePieceTokenTypes.UNUSED
  6696. else:
  6697. toktype = SentencePieceTokenTypes.USER_DEFINED
  6698. tokens.append(text)
  6699. scores.append(score)
  6700. toktypes.append(toktype)
  6701. continue
  6702. toktype = SentencePieceTokenTypes.NORMAL
  6703. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6704. toktype = SentencePieceTokenTypes.UNKNOWN
  6705. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6706. toktype = SentencePieceTokenTypes.CONTROL
  6707. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6708. toktype = SentencePieceTokenTypes.UNUSED
  6709. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6710. toktype = SentencePieceTokenTypes.BYTE
  6711. tokens.append(text)
  6712. scores.append(score)
  6713. toktypes.append(toktype)
  6714. self.gguf_writer.add_tokenizer_model("llama")
  6715. # glm3 needs prefix and suffix formatted as:
  6716. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6717. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6718. self.gguf_writer.add_token_list(tokens)
  6719. self.gguf_writer.add_token_scores(scores)
  6720. self.gguf_writer.add_token_types(toktypes)
  6721. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6722. special_vocab.add_to_gguf(self.gguf_writer)
  6723. @staticmethod
  6724. def token_bytes_to_string(b):
  6725. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6726. byte_encoder = bytes_to_unicode()
  6727. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6728. @staticmethod
  6729. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6730. parts = [bytes([b]) for b in token]
  6731. while True:
  6732. min_idx = None
  6733. min_rank = None
  6734. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6735. rank = mergeable_ranks.get(pair[0] + pair[1])
  6736. if rank is not None and (min_rank is None or rank < min_rank):
  6737. min_idx = i
  6738. min_rank = rank
  6739. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6740. break
  6741. assert min_idx is not None
  6742. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6743. return parts
  6744. def set_vocab(self):
  6745. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6746. self.set_vocab_chatglm3()
  6747. return
  6748. dir_model = self.dir_model
  6749. hparams = self.hparams
  6750. tokens: list[str] = []
  6751. toktypes: list[int] = []
  6752. from transformers import AutoTokenizer
  6753. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6754. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6755. assert max(tokenizer.get_vocab().values()) < vocab_size
  6756. tokens, toktypes, tokpre = self.get_vocab_base()
  6757. self.gguf_writer.add_tokenizer_model("gpt2")
  6758. self.gguf_writer.add_tokenizer_pre(tokpre)
  6759. self.gguf_writer.add_token_list(tokens)
  6760. self.gguf_writer.add_token_types(toktypes)
  6761. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6762. # only add special tokens when they were not already loaded from config.json
  6763. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6764. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6765. # this one is usually not in config.json anyway
  6766. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6767. special_vocab.add_to_gguf(self.gguf_writer)
  6768. def set_gguf_parameters(self):
  6769. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6770. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6771. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6772. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6773. self.gguf_writer.add_embedding_length(n_embed)
  6774. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6775. self.gguf_writer.add_block_count(self.block_count)
  6776. self.gguf_writer.add_head_count(n_head)
  6777. self.gguf_writer.add_head_count_kv(n_head_kv)
  6778. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6779. self.gguf_writer.add_file_type(self.ftype)
  6780. if "attention_dim" in self.hparams:
  6781. rope_dim = self.hparams["attention_dim"]
  6782. else:
  6783. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6784. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6785. self.gguf_writer.add_add_bos_token(False)
  6786. rope_freq = 10000
  6787. if "rope_ratio" in self.hparams:
  6788. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6789. self.gguf_writer.add_rope_freq_base(rope_freq)
  6790. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6791. del bid # unused
  6792. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6793. return []
  6794. name = name.removeprefix("transformer.")
  6795. return [(self.map_tensor_name(name), data_torch)]
  6796. @ModelBase.register("NemotronForCausalLM")
  6797. class NemotronModel(TextModel):
  6798. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6799. def set_vocab(self):
  6800. self._set_vocab_sentencepiece()
  6801. self.gguf_writer.add_pad_token_id(0)
  6802. self.gguf_writer.add_unk_token_id(1)
  6803. def set_gguf_parameters(self):
  6804. super().set_gguf_parameters()
  6805. hparams = self.hparams
  6806. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6807. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6808. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6809. # * Partial RoPE
  6810. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6811. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6812. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6813. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6814. # * RopeScaling for Nemotron
  6815. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6816. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6817. else:
  6818. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6819. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6821. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6822. # model.layers.{l}.input_layernorm.weight
  6823. # model.layers.{l}.post_attention_layernorm.weight
  6824. # model.norm.weight
  6825. if name.endswith("norm.weight"):
  6826. data_torch = data_torch + 1
  6827. return [(self.map_tensor_name(name), data_torch)]
  6828. @ModelBase.register("ExaoneForCausalLM")
  6829. class ExaoneModel(TextModel):
  6830. model_arch = gguf.MODEL_ARCH.EXAONE
  6831. def set_gguf_parameters(self):
  6832. super().set_gguf_parameters()
  6833. hparams = self.hparams
  6834. assert (hparams["activation_function"] == "silu")
  6835. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6836. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6837. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6838. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6839. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6840. if rope_params.get("rope_type", '').lower() == "llama3":
  6841. base = self.rope_parameters.get("rope_theta", 10000.0)
  6842. if (dim := self.hparams.get("head_dim")) is None:
  6843. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6844. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6845. factor = rope_params.get("factor", 8.0)
  6846. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6847. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6848. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6849. low_freq_wavelen = old_context_len / low_freq_factor
  6850. high_freq_wavelen = old_context_len / high_freq_factor
  6851. assert low_freq_wavelen != high_freq_wavelen
  6852. rope_factors = []
  6853. for freq in freqs:
  6854. wavelen = 2 * math.pi / freq
  6855. if wavelen < high_freq_wavelen:
  6856. rope_factors.append(1)
  6857. elif wavelen > low_freq_wavelen:
  6858. rope_factors.append(factor)
  6859. else:
  6860. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6861. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6862. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6863. @ModelBase.register("Exaone4ForCausalLM")
  6864. class Exaone4Model(TextModel):
  6865. model_arch = gguf.MODEL_ARCH.EXAONE4
  6866. def set_vocab(self):
  6867. tokens, toktypes, tokpre = self.get_vocab_base()
  6868. self.gguf_writer.add_tokenizer_model("gpt2")
  6869. self.gguf_writer.add_tokenizer_pre(tokpre)
  6870. self.gguf_writer.add_token_list(tokens)
  6871. self.gguf_writer.add_token_types(toktypes)
  6872. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6873. special_vocab.add_to_gguf(self.gguf_writer)
  6874. def set_gguf_parameters(self):
  6875. super().set_gguf_parameters()
  6876. hparams = self.hparams
  6877. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6878. if hparams.get("sliding_window") is not None:
  6879. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6880. if "layer_types" in hparams:
  6881. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6882. elif "sliding_window_pattern" in hparams:
  6883. sliding_window_pattern = []
  6884. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6885. for i in range(hparams["num_hidden_layers"]):
  6886. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6887. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6888. for i in range(hparams["num_hidden_layers"]):
  6889. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6890. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6891. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6892. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6893. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6894. if rope_params.get("rope_type", '').lower() == "llama3":
  6895. base = rope_params.get("rope_theta", 10_000.0)
  6896. if (dim := self.hparams.get("head_dim")) is None:
  6897. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6898. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6899. factor = rope_params.get("factor", 16.0)
  6900. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6901. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6902. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6903. low_freq_wavelen = old_context_len / low_freq_factor
  6904. high_freq_wavelen = old_context_len / high_freq_factor
  6905. rope_factors = []
  6906. for freq in freqs:
  6907. wavelen = 2 * math.pi / freq
  6908. if wavelen < high_freq_wavelen:
  6909. rope_factors.append(1)
  6910. elif wavelen > low_freq_wavelen:
  6911. rope_factors.append(factor)
  6912. else:
  6913. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6914. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6915. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6916. @ModelBase.register("GraniteForCausalLM")
  6917. class GraniteModel(LlamaModel):
  6918. """Conversion for IBM's GraniteForCausalLM"""
  6919. model_arch = gguf.MODEL_ARCH.GRANITE
  6920. def set_gguf_parameters(self):
  6921. """Granite uses standard llama parameters with the following differences:
  6922. - No head_dim support
  6923. - New multiplier params:
  6924. - attention_scale
  6925. - embedding_scale
  6926. - residual_scale
  6927. - logits_scaling
  6928. """
  6929. if head_dim := self.hparams.pop("head_dim", None):
  6930. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6931. super().set_gguf_parameters()
  6932. # NOTE: Convert _multiplier params to _scale params for naming
  6933. # consistency
  6934. if attention_scale := self.hparams.get("attention_multiplier"):
  6935. self.gguf_writer.add_attention_scale(attention_scale)
  6936. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6937. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6938. self.gguf_writer.add_embedding_scale(embedding_scale)
  6939. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6940. if residual_scale := self.hparams.get("residual_multiplier"):
  6941. self.gguf_writer.add_residual_scale(residual_scale)
  6942. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6943. if logits_scale := self.hparams.get("logits_scaling"):
  6944. self.gguf_writer.add_logit_scale(logits_scale)
  6945. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6946. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6947. class GraniteMoeModel(GraniteModel):
  6948. """Conversion for IBM's GraniteMoeForCausalLM"""
  6949. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6950. def set_gguf_parameters(self):
  6951. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6952. - shared_intermediate_size
  6953. """
  6954. super().set_gguf_parameters()
  6955. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6956. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6957. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6958. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6959. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6960. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6961. the hidden size that is then split during forward. To keep compatibility
  6962. with existing mixtral support, we pull them apart here.
  6963. """
  6964. if name.endswith("block_sparse_moe.input_linear.weight"):
  6965. ffn_dim = self.hparams["intermediate_size"]
  6966. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6967. gate, up = data_torch.split(ffn_dim, dim=-2)
  6968. return [
  6969. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6970. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6971. ]
  6972. has_experts = bool(self.hparams.get('num_local_experts'))
  6973. if name.endswith("shared_mlp.input_linear.weight"):
  6974. ffn_dim = self.hparams["shared_intermediate_size"]
  6975. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6976. gate, up = data_torch.split(ffn_dim, dim=-2)
  6977. if has_experts:
  6978. return [
  6979. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6980. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6981. ]
  6982. return [
  6983. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6984. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6985. ]
  6986. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6987. return [
  6988. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6989. ]
  6990. return super().modify_tensors(data_torch, name, bid)
  6991. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6992. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6993. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6994. layers and optionally uses MoE w/ a shared expert"""
  6995. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6996. undo_permute = True
  6997. def __init__(self, *args, **kwargs):
  6998. # Hybrid mamba models use a prefix for the mamba-specific params.
  6999. # TODO: Extend this if the prefix(es) need to be configurable
  7000. self.hparam_prefixes = ["mamba"]
  7001. super().__init__(*args, **kwargs)
  7002. # Lists of which layers use ssm vs attention
  7003. self._attn_layers = self.get_attn_layers()
  7004. self._ssm_layers = [
  7005. i for i in range(self.block_count)
  7006. if i not in self._attn_layers
  7007. ]
  7008. # There are some models in this family that are non-hybrid, but keep the
  7009. # same parent class by setting all layers to "attention." If this is the
  7010. # case, the model architecture needs to be updated to a standard
  7011. # "granite" or "granitemoe" model
  7012. if not self._ssm_layers:
  7013. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  7014. new_arch = (
  7015. gguf.MODEL_ARCH.GRANITE_MOE
  7016. if has_experts else
  7017. gguf.MODEL_ARCH.GRANITE
  7018. )
  7019. self.model_arch = new_arch
  7020. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  7021. self.gguf_writer.add_architecture()
  7022. # n_group and d_inner are used during reshape_tensors for mamba2
  7023. # NOTE: Explicitly include hparam prefix prefix for d_model to
  7024. # disambiguate with top-level head_dim
  7025. # NOTE 2: If needed for future models, this can be isolated in a method
  7026. # to separate the prefix setting and teh keys used
  7027. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  7028. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  7029. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  7030. def get_attn_layers(self):
  7031. # Explicit list of layer type names
  7032. if layer_types := self.hparams.get("layer_types"):
  7033. return [
  7034. i for i, typ in enumerate(layer_types)
  7035. if typ == "attention"
  7036. ]
  7037. # Layer types indicated by index or period
  7038. attn_layers = self.hparams.get("attn_layer_indices", [])
  7039. if not attn_layers:
  7040. attn_period = self.hparams.get("attn_layer_period")
  7041. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  7042. attn_offset = self.hparams.get("attn_layer_offset")
  7043. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  7044. attn_layers = [
  7045. i for i in range(self.block_count)
  7046. if i % attn_period == attn_offset
  7047. ]
  7048. return attn_layers
  7049. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7050. prefixed = []
  7051. for pfx in self.hparam_prefixes:
  7052. prefixed.extend(
  7053. "_".join([pfx, k])
  7054. for k in keys
  7055. )
  7056. keys = list(keys) + prefixed
  7057. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7058. def modify_tensors(
  7059. self, data_torch: Tensor, name: str, bid: int | None
  7060. ) -> Iterable[tuple[str, Tensor]]:
  7061. if (
  7062. name.endswith("block_sparse_moe.input_linear.weight")
  7063. or "shared_mlp" in name
  7064. ):
  7065. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7066. # Determine whether this is a mamba layer or an attention layer
  7067. if bid in self._ssm_layers:
  7068. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7069. elif bid in self._attn_layers:
  7070. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7071. return [(self.map_tensor_name(name), data_torch)]
  7072. def set_gguf_parameters(self):
  7073. """This method merges params from both parents and some that are
  7074. specific to this model. The result is some duplication of how the params
  7075. get set. The following warnings are expected during conversion:
  7076. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7077. WARNING:Duplicated key name 'granitehybrid.context_length'
  7078. """
  7079. GraniteMoeModel.set_gguf_parameters(self)
  7080. ## Mamba mixer params ##
  7081. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7082. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7083. self.gguf_writer.add_ssm_group_count(self.n_group)
  7084. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7085. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7086. # in llama.cpp
  7087. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7088. ## Attention params ##
  7089. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7090. head_count_kv_vec = [
  7091. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7092. ]
  7093. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7094. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7095. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7096. ## If Bamba or non-hybrid, use rope, otherwise don't
  7097. use_rope = (
  7098. "BambaForCausalLM" in self.hparams["architectures"]
  7099. or not self._ssm_layers
  7100. )
  7101. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7102. if not use_rope:
  7103. self.gguf_writer.add_context_length(2**20)
  7104. ## Validation ##
  7105. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7106. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7107. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7108. def set_vocab(self):
  7109. self.hparams["pad_vocab_size_multiple"] = 8
  7110. Mamba2Model.set_vocab(self)
  7111. @ModelBase.register("NemotronHForCausalLM")
  7112. class NemotronHModel(GraniteHybridModel):
  7113. """Hybrid mamba2/attention model from NVIDIA"""
  7114. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7115. is_moe: bool = False
  7116. def __init__(self, *args, **kwargs):
  7117. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7118. # calling the parent __init__. This is because the parent constructor
  7119. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7120. # mappings would be missed if it were called with the default non-MoE arch.
  7121. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7122. if "num_experts_per_tok" in hparams:
  7123. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7124. self.is_moe = True
  7125. super().__init__(*args, **kwargs)
  7126. # Save the top-level head_dim for later
  7127. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7128. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7129. # Don't use expand to calculate d_inner
  7130. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7131. # Update the ssm / attn / mlp layers
  7132. # M: Mamba2, *: Attention, -: MLP
  7133. # MoE:
  7134. # M: Mamba2, *: Attention, E: Expert
  7135. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7136. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7137. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7138. def get_attn_layers(self):
  7139. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7140. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7141. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7142. def set_gguf_parameters(self):
  7143. super().set_gguf_parameters()
  7144. self.gguf_writer.add_key_length(self.head_dim)
  7145. self.gguf_writer.add_value_length(self.head_dim)
  7146. # Set feed_forward_length
  7147. # NOTE: This will trigger an override warning. This is preferrable to
  7148. # duplicating all the parent logic
  7149. if not self.is_moe:
  7150. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7151. self.gguf_writer.add_feed_forward_length([
  7152. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7153. ])
  7154. else:
  7155. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7156. self.gguf_writer.add_feed_forward_length([
  7157. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7158. ])
  7159. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7160. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7161. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7162. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7163. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7164. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7165. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7166. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7167. # number of experts used per token (top-k)
  7168. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7169. self.gguf_writer.add_expert_used_count(n_experts_used)
  7170. def set_vocab(self):
  7171. super().set_vocab()
  7172. # The tokenizer _does_ add a BOS token (via post_processor type
  7173. # TemplateProcessing) but does not set add_bos_token to true in the
  7174. # config, so we need to explicitly override it here.
  7175. if not self.is_moe:
  7176. self.gguf_writer.add_add_bos_token(True)
  7177. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7178. if self.is_moe and bid is not None:
  7179. if name.endswith("mixer.gate.e_score_correction_bias"):
  7180. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7181. mapped_name = self.map_tensor_name(new_name)
  7182. return [(mapped_name, data_torch)]
  7183. if name.endswith("mixer.dt_bias"):
  7184. new_name = name.replace("dt_bias", "dt.bias")
  7185. mapped_name = self.map_tensor_name(new_name)
  7186. return [(mapped_name, data_torch)]
  7187. if name.endswith("mixer.conv1d.weight"):
  7188. squeezed_data = data_torch.squeeze()
  7189. mapped_name = self.map_tensor_name(name)
  7190. return [(mapped_name, squeezed_data)]
  7191. if name.endswith("mixer.A_log"):
  7192. transformed_data = -torch.exp(data_torch)
  7193. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7194. mapped_name = self.map_tensor_name(name)
  7195. return [(mapped_name, reshaped_data)]
  7196. if name.endswith("mixer.D"):
  7197. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7198. mapped_name = self.map_tensor_name(name)
  7199. return [(mapped_name, reshaped_data)]
  7200. if name.endswith("mixer.norm.weight"):
  7201. reshaped_data = data_torch.reshape(8, 512)
  7202. mapped_name = self.map_tensor_name(name)
  7203. return [(mapped_name, reshaped_data)]
  7204. if name.find("mixer.experts") != -1:
  7205. n_experts = self.hparams["n_routed_experts"]
  7206. assert bid is not None
  7207. if self._experts is None:
  7208. self._experts = [{} for _ in range(self.block_count)]
  7209. self._experts[bid][name] = data_torch
  7210. if len(self._experts[bid]) >= n_experts * 2:
  7211. # merge the experts into a single tensor
  7212. tensors: list[tuple[str, Tensor]] = []
  7213. for w_name in ["down_proj", "up_proj"]:
  7214. datas: list[Tensor] = []
  7215. for xid in range(n_experts):
  7216. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7217. datas.append(self._experts[bid][ename])
  7218. del self._experts[bid][ename]
  7219. data_torch = torch.stack(datas, dim=0)
  7220. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7221. new_name = self.map_tensor_name(merged_name)
  7222. tensors.append((new_name, data_torch))
  7223. return tensors
  7224. else:
  7225. return []
  7226. return super().modify_tensors(data_torch, name, bid)
  7227. def prepare_tensors(self):
  7228. super().prepare_tensors()
  7229. if self._experts is not None:
  7230. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7231. experts = [k for d in self._experts for k in d.keys()]
  7232. if len(experts) > 0:
  7233. raise ValueError(f"Unprocessed experts: {experts}")
  7234. @ModelBase.register("LlamaBidirectionalModel")
  7235. class LlamaEmbedNemotronModel(LlamaModel):
  7236. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7237. @ModelBase.register("BailingMoeForCausalLM")
  7238. class BailingMoeModel(TextModel):
  7239. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7240. def set_vocab(self):
  7241. self._set_vocab_gpt2()
  7242. def set_gguf_parameters(self):
  7243. super().set_gguf_parameters()
  7244. hparams = self.hparams
  7245. if (rope_dim := hparams.get("head_dim")) is None:
  7246. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7247. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7248. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7249. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7250. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7251. self.gguf_writer.add_expert_weights_scale(1.0)
  7252. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7253. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7254. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7255. _experts: list[dict[str, Tensor]] | None = None
  7256. @staticmethod
  7257. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7258. if n_head_kv is not None and n_head != n_head_kv:
  7259. n_head = n_head_kv
  7260. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7261. .swapaxes(1, 2)
  7262. .reshape(weights.shape))
  7263. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7264. n_head = self.hparams["num_attention_heads"]
  7265. n_kv_head = self.hparams.get("num_key_value_heads")
  7266. n_embd = self.hparams["hidden_size"]
  7267. if (head_dim := self.hparams.get("head_dim")) is None:
  7268. head_dim = n_embd // n_head
  7269. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7270. if name.endswith("attention.dense.weight"):
  7271. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7272. elif name.endswith("query_key_value.weight"):
  7273. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7274. return [
  7275. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7276. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7277. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7278. ]
  7279. elif name.find("mlp.experts") != -1:
  7280. n_experts = self.hparams["num_experts"]
  7281. assert bid is not None
  7282. tensors: list[tuple[str, Tensor]] = []
  7283. if self._experts is None:
  7284. self._experts = [{} for _ in range(self.block_count)]
  7285. self._experts[bid][name] = data_torch
  7286. if len(self._experts[bid]) >= n_experts * 3:
  7287. # merge the experts into a single 3d tensor
  7288. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7289. datas: list[Tensor] = []
  7290. for xid in range(n_experts):
  7291. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7292. datas.append(self._experts[bid][ename])
  7293. del self._experts[bid][ename]
  7294. data_torch = torch.stack(datas, dim=0)
  7295. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7296. new_name = self.map_tensor_name(merged_name)
  7297. tensors.append((new_name, data_torch))
  7298. return tensors
  7299. new_name = self.map_tensor_name(name)
  7300. if new_name == output_name and self.hparams.get("norm_head"):
  7301. data_torch = data_torch.float()
  7302. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7303. return [(new_name, data_torch)]
  7304. def prepare_tensors(self):
  7305. super().prepare_tensors()
  7306. if self._experts is not None:
  7307. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7308. experts = [k for d in self._experts for k in d.keys()]
  7309. if len(experts) > 0:
  7310. raise ValueError(f"Unprocessed experts: {experts}")
  7311. @ModelBase.register("BailingMoeV2ForCausalLM")
  7312. class BailingMoeV2Model(TextModel):
  7313. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7314. def __init__(self, *args, **kwargs):
  7315. super().__init__(*args, **kwargs)
  7316. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7317. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7318. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7319. def set_vocab(self):
  7320. self._set_vocab_gpt2()
  7321. def set_gguf_parameters(self):
  7322. super().set_gguf_parameters()
  7323. hparams = self.hparams
  7324. if (rope_dim := hparams.get("head_dim")) is None:
  7325. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7326. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7327. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7328. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7329. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7330. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7331. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7332. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7333. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7334. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7335. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7336. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7337. _experts: list[dict[str, Tensor]] | None = None
  7338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7339. if "mlp.experts" in name:
  7340. n_experts = self.hparams["num_experts"]
  7341. assert bid is not None
  7342. tensors: list[tuple[str, Tensor]] = []
  7343. if self._experts is None:
  7344. self._experts = [{} for _ in range(self.block_count)]
  7345. self._experts[bid][name] = data_torch
  7346. if len(self._experts[bid]) >= n_experts * 3:
  7347. # merge the experts into a single 3d tensor
  7348. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7349. datas: list[Tensor] = []
  7350. for xid in range(n_experts):
  7351. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7352. datas.append(self._experts[bid][ename])
  7353. del self._experts[bid][ename]
  7354. data_torch = torch.stack(datas, dim=0)
  7355. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7356. new_name = self.map_tensor_name(merged_name)
  7357. tensors.append((new_name, data_torch))
  7358. return tensors
  7359. if name.endswith(".expert_bias"):
  7360. name = name.replace(".expert_bias", ".expert_bias.bias")
  7361. return [(self.map_tensor_name(name), data_torch)]
  7362. def prepare_tensors(self):
  7363. super().prepare_tensors()
  7364. if self._experts is not None:
  7365. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7366. experts = [k for d in self._experts for k in d.keys()]
  7367. if len(experts) > 0:
  7368. raise ValueError(f"Unprocessed experts: {experts}")
  7369. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7370. class GroveMoeModel(TextModel):
  7371. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7372. def set_gguf_parameters(self):
  7373. super().set_gguf_parameters()
  7374. if (n_experts := self.hparams.get("num_experts")) is not None:
  7375. self.gguf_writer.add_expert_count(n_experts)
  7376. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7377. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7378. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7379. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7380. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7381. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7382. self.gguf_writer.add_experts_per_group(2)
  7383. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7384. self.gguf_writer.add_expert_group_scale(0.05)
  7385. _experts: list[dict[str, Tensor]] | None = None
  7386. _chunk_experts: list[dict[str, Tensor]] | None = None
  7387. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7388. if name.endswith(".expert_bias"):
  7389. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7390. return []
  7391. # process the experts separately
  7392. if name.find("chunk_experts") != -1:
  7393. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7394. assert bid is not None
  7395. if self._chunk_experts is None:
  7396. self._chunk_experts = [{} for _ in range(self.block_count)]
  7397. self._chunk_experts[bid][name] = data_torch
  7398. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7399. tensors: list[tuple[str, Tensor]] = []
  7400. # merge the experts into a single 3d tensor
  7401. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7402. datas: list[Tensor] = []
  7403. for xid in range(n_experts):
  7404. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7405. datas.append(self._chunk_experts[bid][ename])
  7406. del self._chunk_experts[bid][ename]
  7407. data_torch = torch.stack(datas, dim=0)
  7408. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7409. new_name = self.map_tensor_name(merged_name)
  7410. tensors.append((new_name, data_torch))
  7411. return tensors
  7412. else:
  7413. return []
  7414. elif name.find("experts") != -1:
  7415. n_experts = self.hparams["num_experts"]
  7416. assert bid is not None
  7417. if self._experts is None:
  7418. self._experts = [{} for _ in range(self.block_count)]
  7419. self._experts[bid][name] = data_torch
  7420. if len(self._experts[bid]) >= n_experts * 3:
  7421. tensors: list[tuple[str, Tensor]] = []
  7422. # merge the experts into a single 3d tensor
  7423. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7424. datas: list[Tensor] = []
  7425. for xid in range(n_experts):
  7426. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7427. datas.append(self._experts[bid][ename])
  7428. del self._experts[bid][ename]
  7429. data_torch = torch.stack(datas, dim=0)
  7430. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7431. new_name = self.map_tensor_name(merged_name)
  7432. tensors.append((new_name, data_torch))
  7433. return tensors
  7434. else:
  7435. return []
  7436. return [(self.map_tensor_name(name), data_torch)]
  7437. def prepare_tensors(self):
  7438. super().prepare_tensors()
  7439. if self._chunk_experts is not None:
  7440. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7441. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7442. if len(chunk_experts) > 0:
  7443. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7444. if self._experts is not None:
  7445. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7446. experts = [k for d in self._experts for k in d.keys()]
  7447. if len(experts) > 0:
  7448. raise ValueError(f"Unprocessed experts: {experts}")
  7449. @ModelBase.register("ChameleonForConditionalGeneration")
  7450. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7451. class ChameleonModel(TextModel):
  7452. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7453. def set_gguf_parameters(self):
  7454. super().set_gguf_parameters()
  7455. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7456. def set_vocab(self):
  7457. self._set_vocab_gpt2()
  7458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7459. # ignore image tokenizer for now
  7460. # TODO: remove this once image support is implemented for Chameleon
  7461. if name.startswith("model.vqmodel"):
  7462. return []
  7463. n_head = self.hparams["num_attention_heads"]
  7464. n_kv_head = self.hparams.get("num_key_value_heads")
  7465. hidden_dim = self.hparams.get("hidden_size")
  7466. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7467. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7468. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7469. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7470. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7471. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7472. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7473. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7474. return [(self.map_tensor_name(name), data_torch)]
  7475. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7476. @staticmethod
  7477. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7478. head_dim = hidden_dim // n_heads
  7479. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7480. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7481. return data_torch
  7482. @ModelBase.register("UltravoxModel")
  7483. class UltravoxModel(TextModel):
  7484. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7485. def __init__(self, *args, **kwargs):
  7486. super().__init__(*args, **kwargs)
  7487. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7488. @ModelBase.register("GlmasrModel")
  7489. class GlmASRWhisperEncoderModel(MmprojModel):
  7490. has_vision_encoder = False
  7491. has_audio_encoder = True
  7492. def __init__(self, *args, **kwargs):
  7493. super().__init__(*args, **kwargs)
  7494. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7495. self.hparams["hidden_size"] = self.hparams["d_model"]
  7496. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7497. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7498. def set_gguf_parameters(self):
  7499. super().set_gguf_parameters()
  7500. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7501. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7502. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7503. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7504. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7505. if ".conv" in name and ".weight" in name:
  7506. return gguf.GGMLQuantizationType.F16
  7507. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7508. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7509. del bid # unused
  7510. if name.startswith("model.") or name.startswith("lm_head."):
  7511. # skip language model tensors
  7512. return []
  7513. if name.startswith("audio_encoder.whisper."):
  7514. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7515. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7516. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7517. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7518. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7519. if name.startswith("audio_encoder.adapting."):
  7520. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7521. if ".layer_norm." in name:
  7522. name = name.replace(".layer_norm.", ".ln_pre.")
  7523. if ".0." in name:
  7524. name = name.replace(".0.", ".linear_1.")
  7525. if ".2." in name:
  7526. name = name.replace(".2.", ".linear_2.")
  7527. if ".proj." in name:
  7528. return []
  7529. if "conv1.bias" in name or "conv2.bias" in name:
  7530. # transpose conv1 and conv2 bias
  7531. data_torch = data_torch.unsqueeze(-1)
  7532. return [(self.map_tensor_name(name), data_torch)]
  7533. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7534. class WhisperEncoderModel(MmprojModel):
  7535. has_vision_encoder = False # no vision encoder
  7536. has_audio_encoder = True
  7537. def __init__(self, *args, **kwargs):
  7538. super().__init__(*args, **kwargs)
  7539. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7540. self.hparams["hidden_size"] = self.hparams["d_model"]
  7541. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7542. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7543. def set_gguf_parameters(self):
  7544. super().set_gguf_parameters()
  7545. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7546. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7547. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7548. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7549. if ".conv" in name and ".weight" in name:
  7550. return gguf.GGMLQuantizationType.F16
  7551. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7552. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7553. del bid # unused
  7554. if name.startswith("language_model."):
  7555. # skip language model tensors
  7556. return []
  7557. # prevent clash naming with vision tensors
  7558. if name.startswith("multi_modal_projector"):
  7559. name = "audio." + name
  7560. if "conv1.bias" in name or "conv2.bias" in name:
  7561. # transpose conv1 and conv2 bias
  7562. data_torch = data_torch.unsqueeze(-1)
  7563. return [(self.map_tensor_name(name), data_torch)]
  7564. @ModelBase.register("UltravoxModel")
  7565. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7566. has_vision_encoder = False # no vision encoder
  7567. has_audio_encoder = True
  7568. def set_gguf_parameters(self):
  7569. super().set_gguf_parameters()
  7570. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7571. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7572. @ModelBase.register("VoxtralForConditionalGeneration")
  7573. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7574. has_vision_encoder = False # no vision encoder
  7575. has_audio_encoder = True
  7576. def set_gguf_parameters(self):
  7577. super().set_gguf_parameters()
  7578. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7579. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7580. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7581. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7582. def set_gguf_parameters(self):
  7583. super().set_gguf_parameters()
  7584. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7585. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7586. if ".conv" in name and ".weight" in name:
  7587. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7588. return gguf.GGMLQuantizationType.F32
  7589. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7590. @ModelBase.register("FalconH1ForCausalLM")
  7591. class FalconH1Model(Mamba2Model):
  7592. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7593. def __init__(self, *args, **kwargs):
  7594. # Set the hparam prefixes for Falcon Mamba2
  7595. self.hparam_prefixes = ["mamba"]
  7596. # Initialize the base Mamba2Model
  7597. super().__init__(*args, **kwargs)
  7598. # Use Llama conversion for attention
  7599. self._transformer_model_class = LlamaModel
  7600. # n_group and d_inner are used during reshape_tensors for mamba2
  7601. self.n_group = self.find_hparam(["n_groups"])
  7602. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7603. self.d_head = self.find_hparam(["d_head"])
  7604. # Initialize any Falcon Mamba2 specific attributes
  7605. self.has_attention = True # Falcon Mamba2 has attention components
  7606. # Load Falcon-H1 multipliers from hyperparameters
  7607. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7608. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7609. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7610. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7611. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7612. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7613. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7614. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7615. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7616. prefixed = []
  7617. for pfx in self.hparam_prefixes:
  7618. prefixed.extend(
  7619. "_".join([pfx, k])
  7620. for k in keys
  7621. )
  7622. keys = list(keys) + prefixed
  7623. return super().find_hparam(keys, *args, **kwargs)
  7624. def set_vocab(self):
  7625. self._set_vocab_gpt2()
  7626. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7627. tensors = list(super().modify_tensors(data_torch, name, bid))
  7628. tensor = tensors[0][1]
  7629. if "down_proj" in name:
  7630. tensor = tensor * self.mlp_multipliers[1]
  7631. elif "gate_proj" in name:
  7632. tensor = tensor * self.mlp_multipliers[0]
  7633. elif "k_proj" in name:
  7634. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7635. elif "q_proj" in name:
  7636. tensor = tensor * self.attention_in_multiplier
  7637. elif "v_proj" in name:
  7638. tensor = tensor * self.attention_in_multiplier
  7639. elif "o_proj" in name:
  7640. tensor = tensor * self.attention_out_multiplier
  7641. elif "out_proj" in name:
  7642. tensor = tensor * self.ssm_out_multiplier
  7643. elif "in_proj" in name:
  7644. tensor = tensor * self.ssm_in_multiplier
  7645. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7646. intermediate_size = self.hparams["mamba_d_ssm"]
  7647. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7648. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7649. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7650. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7651. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7652. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7653. elif "lm_head" in name:
  7654. tensor = tensor * self.hparams["lm_head_multiplier"]
  7655. elif "embed_tokens" in name:
  7656. tensor = tensor * self.hparams["embedding_multiplier"]
  7657. elif "mamba.norm" in name:
  7658. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7659. tensors = [(tensors[0][0], tensor)]
  7660. return tensors
  7661. def set_gguf_parameters(self):
  7662. super().set_gguf_parameters()
  7663. ## General Params ##
  7664. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7665. # Override some Mamba2 defaults
  7666. self.gguf_writer.add_block_count(self.block_count)
  7667. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7668. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7669. ## Attention params ##
  7670. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7671. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7672. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7673. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7674. ## Validation ##
  7675. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7676. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7677. # Add any other Falcon Mamba2 specific configuration
  7678. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7679. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7680. class HunYuanMoEModel(TextModel):
  7681. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7682. def set_vocab(self):
  7683. from transformers import AutoTokenizer
  7684. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7685. # 1. Get the pre-tokenizer identifier hash
  7686. tokpre = self.get_vocab_base_pre(tokenizer)
  7687. # 2. Reverse-engineer the merges list from mergeable_ranks
  7688. merges = []
  7689. vocab = {}
  7690. mergeable_ranks = tokenizer.mergeable_ranks
  7691. for token, rank in mergeable_ranks.items():
  7692. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7693. if len(token) == 1:
  7694. continue
  7695. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7696. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7697. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7698. # 3. Generate the tokens and toktypes lists
  7699. vocab_size = self.hparams["vocab_size"]
  7700. assert tokenizer.vocab_size == vocab_size
  7701. special_tokens = tokenizer.special_tokens
  7702. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7703. tokens: list[str] = []
  7704. toktypes: list[int] = []
  7705. for i in range(vocab_size):
  7706. if i not in reverse_vocab:
  7707. tokens.append(f"[PAD{i}]")
  7708. toktypes.append(gguf.TokenType.UNUSED)
  7709. else:
  7710. token = reverse_vocab[i]
  7711. tokens.append(token)
  7712. if i in special_tokens.values():
  7713. toktypes.append(gguf.TokenType.CONTROL)
  7714. else:
  7715. toktypes.append(gguf.TokenType.NORMAL)
  7716. # 4. Write all vocab-related fields to the GGUF writer
  7717. self.gguf_writer.add_tokenizer_model("gpt2")
  7718. self.gguf_writer.add_tokenizer_pre(tokpre)
  7719. self.gguf_writer.add_token_list(tokens)
  7720. self.gguf_writer.add_token_types(toktypes)
  7721. self.gguf_writer.add_token_merges(merges)
  7722. # 5. Add special tokens and chat templates
  7723. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7724. special_vocab.add_to_gguf(self.gguf_writer)
  7725. # FIX for BOS token: Overwrite incorrect id read from config.json
  7726. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7727. def set_gguf_parameters(self):
  7728. super().set_gguf_parameters()
  7729. hparams = self.hparams
  7730. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7731. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7732. moe_intermediate_size = hparams["moe_intermediate_size"]
  7733. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7734. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7735. moe_topk = hparams["moe_topk"]
  7736. assert all(topk == moe_topk[0] for topk in moe_topk)
  7737. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7738. moe_shared_expert = hparams["num_shared_expert"]
  7739. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7740. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7741. # Rope
  7742. if self.rope_parameters.get("rope_type") == "dynamic":
  7743. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7744. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7745. alpha = self.rope_parameters.get("alpha", 1000)
  7746. base = self.rope_parameters.get("rope_theta", 10000.0)
  7747. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7748. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7749. self.gguf_writer.add_rope_freq_base(scaled_base)
  7750. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7751. self.gguf_writer.add_rope_scaling_factor(1)
  7752. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7753. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7754. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7755. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7756. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7757. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7758. _experts: list[dict[str, Tensor]] | None = None
  7759. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7760. if name == "lm_head.weight":
  7761. if self.hparams.get("tie_word_embeddings", False):
  7762. logger.info("Skipping tied output layer 'lm_head.weight'")
  7763. return []
  7764. if name.find("mlp.experts") != -1:
  7765. n_experts = self.hparams["num_experts"]
  7766. assert bid is not None
  7767. if self._experts is None:
  7768. self._experts = [{} for _ in range(self.block_count)]
  7769. self._experts[bid][name] = data_torch
  7770. if len(self._experts[bid]) >= n_experts * 3:
  7771. # merge the experts into a single 3d tensor
  7772. tensors: list[tuple[str, Tensor]] = []
  7773. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7774. datas: list[Tensor] = []
  7775. for xid in range(n_experts):
  7776. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7777. datas.append(self._experts[bid][ename])
  7778. del self._experts[bid][ename]
  7779. data_torch = torch.stack(datas, dim=0)
  7780. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7781. new_name = self.map_tensor_name(merged_name)
  7782. tensors.append((new_name, data_torch))
  7783. return tensors
  7784. else:
  7785. return []
  7786. return [(self.map_tensor_name(name), data_torch)]
  7787. def prepare_tensors(self):
  7788. super().prepare_tensors()
  7789. if self._experts is not None:
  7790. experts = [k for d in self._experts for k in d.keys()]
  7791. if len(experts) > 0:
  7792. raise ValueError(f"Unprocessed experts: {experts}")
  7793. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7794. class LLaDAMoEModel(TextModel):
  7795. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7796. def set_gguf_parameters(self):
  7797. super().set_gguf_parameters()
  7798. if (n_experts := self.hparams.get("num_experts")) is not None:
  7799. self.gguf_writer.add_expert_count(n_experts)
  7800. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7801. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7802. # number of experts used per token (top-k)
  7803. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7804. self.gguf_writer.add_expert_used_count(n_experts_used)
  7805. self.gguf_writer.add_mask_token_id(156895)
  7806. self.gguf_writer.add_causal_attention(False)
  7807. self.gguf_writer.add_diffusion_shift_logits(False)
  7808. _experts: list[dict[str, Tensor]] | None = None
  7809. # Copied from: Qwen2MoeModel
  7810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7811. # process the experts separately
  7812. if name.find("experts") != -1:
  7813. n_experts = self.hparams["num_experts"]
  7814. assert bid is not None
  7815. if self._experts is None:
  7816. self._experts = [{} for _ in range(self.block_count)]
  7817. self._experts[bid][name] = data_torch
  7818. if len(self._experts[bid]) >= n_experts * 3:
  7819. tensors: list[tuple[str, Tensor]] = []
  7820. # merge the experts into a single 3d tensor
  7821. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7822. datas: list[Tensor] = []
  7823. for xid in range(n_experts):
  7824. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7825. datas.append(self._experts[bid][ename])
  7826. del self._experts[bid][ename]
  7827. data_torch = torch.stack(datas, dim=0)
  7828. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7829. new_name = self.map_tensor_name(merged_name)
  7830. tensors.append((new_name, data_torch))
  7831. return tensors
  7832. else:
  7833. return []
  7834. return [(self.map_tensor_name(name), data_torch)]
  7835. # Copied from: Qwen2MoeModel
  7836. def prepare_tensors(self):
  7837. super().prepare_tensors()
  7838. if self._experts is not None:
  7839. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7840. experts = [k for d in self._experts for k in d.keys()]
  7841. if len(experts) > 0:
  7842. raise ValueError(f"Unprocessed experts: {experts}")
  7843. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7844. class HunYuanModel(TextModel):
  7845. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7846. def set_vocab(self):
  7847. if (self.dir_model / "tokenizer.json").is_file():
  7848. self._set_vocab_gpt2()
  7849. else:
  7850. from transformers import AutoTokenizer
  7851. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7852. # 1. Get the pre-tokenizer identifier hash
  7853. tokpre = self.get_vocab_base_pre(tokenizer)
  7854. # 2. Reverse-engineer the merges list from mergeable_ranks
  7855. merges = []
  7856. vocab = {}
  7857. mergeable_ranks = tokenizer.mergeable_ranks
  7858. for token, rank in mergeable_ranks.items():
  7859. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7860. if len(token) == 1:
  7861. continue
  7862. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7863. if len(merged) == 2:
  7864. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7865. # 3. Generate the tokens and toktypes lists
  7866. vocab_size = self.hparams["vocab_size"]
  7867. assert tokenizer.vocab_size == vocab_size
  7868. special_tokens = tokenizer.special_tokens
  7869. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7870. tokens: list[str] = []
  7871. toktypes: list[int] = []
  7872. for i in range(vocab_size):
  7873. if i not in reverse_vocab:
  7874. tokens.append(f"[PAD{i}]")
  7875. toktypes.append(gguf.TokenType.UNUSED)
  7876. else:
  7877. token = reverse_vocab[i]
  7878. tokens.append(token)
  7879. if i in special_tokens.values():
  7880. toktypes.append(gguf.TokenType.CONTROL)
  7881. else:
  7882. toktypes.append(gguf.TokenType.NORMAL)
  7883. # 4. Write all vocab-related fields to the GGUF writer
  7884. self.gguf_writer.add_tokenizer_model("gpt2")
  7885. self.gguf_writer.add_tokenizer_pre(tokpre)
  7886. self.gguf_writer.add_token_list(tokens)
  7887. self.gguf_writer.add_token_types(toktypes)
  7888. self.gguf_writer.add_token_merges(merges)
  7889. # 5. Add special tokens and chat templates
  7890. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7891. special_vocab.add_to_gguf(self.gguf_writer)
  7892. # FIX for BOS token: Overwrite incorrect id read from config.json
  7893. if self.hparams['hidden_size'] == 4096:
  7894. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7895. def set_gguf_parameters(self):
  7896. super().set_gguf_parameters()
  7897. hparams = self.hparams
  7898. # Rope
  7899. if self.rope_parameters.get("rope_type") == "dynamic":
  7900. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7901. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7902. alpha = self.rope_parameters.get("alpha", 50)
  7903. base = self.rope_parameters.get("rope_theta", 10000.0)
  7904. dim = hparams["head_dim"]
  7905. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7906. self.gguf_writer.add_rope_freq_base(scaled_base)
  7907. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7908. self.gguf_writer.add_rope_scaling_factor(1)
  7909. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7910. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7911. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7912. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7913. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7914. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7916. if name == "lm_head.weight":
  7917. if self.hparams.get("tie_word_embeddings", False):
  7918. logger.info("Skipping tied output layer 'lm_head.weight'")
  7919. return []
  7920. return [(self.map_tensor_name(name), data_torch)]
  7921. @ModelBase.register("SmolLM3ForCausalLM")
  7922. class SmolLM3Model(LlamaModel):
  7923. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7924. @ModelBase.register("GptOssForCausalLM")
  7925. class GptOssModel(TextModel):
  7926. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7927. # TODO: remove once MXFP4 is supported more generally
  7928. def dequant_model(self):
  7929. quant_config = self.hparams.get("quantization_config")
  7930. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7931. return
  7932. return super().dequant_model()
  7933. def transform_nibble_layout(self, tensor):
  7934. assert tensor.dtype == torch.uint8
  7935. assert tensor.shape[-1] == 16
  7936. # swap nibbles
  7937. t_lo = tensor & 0x0F
  7938. t_hi = tensor & 0xF0
  7939. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7940. tensor = t_swapped
  7941. # transform aaaa...bbbb... to abababab...
  7942. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7943. # get a_
  7944. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7945. blk_a1 = (blk_a << 4).view(-1, 1)
  7946. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7947. # get _b
  7948. blk_b0 = (blk_b >> 4).view(-1, 1)
  7949. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7950. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7951. # swap once more
  7952. out = blk_a | blk_b
  7953. out_h = out & 0xF0
  7954. out_l = out & 0x0F
  7955. out = (out_h >> 4) | (out_l << 4)
  7956. return out
  7957. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7958. assert blocks.dtype == torch.uint8
  7959. assert scales.dtype == torch.uint8
  7960. scales = scales.unsqueeze(-1)
  7961. assert len(blocks.shape) == 4
  7962. assert len(scales.shape) == 4
  7963. blocks = self.transform_nibble_layout(blocks)
  7964. new_data = torch.concat((scales, blocks), dim=-1)
  7965. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7966. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7967. # flatten last dim
  7968. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7969. new_data = new_data.numpy()
  7970. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7971. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7972. blocks0: Tensor = torch.zeros(1)
  7973. blocks1: Tensor = torch.zeros(1)
  7974. # we assume that tensors are loaded in the correct order
  7975. for name, data_torch in self.get_tensors():
  7976. if "mlp.experts.down_proj_blocks" in name:
  7977. blocks0 = data_torch
  7978. elif "mlp.experts.down_proj_scales" in name:
  7979. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7980. self.repack_mxfp4(new_name, blocks0, data_torch)
  7981. elif "mlp.experts.gate_up_proj_blocks" in name:
  7982. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7983. elif "mlp.experts.gate_up_proj_scales" in name:
  7984. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7985. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7986. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7987. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7988. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7989. return []
  7990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7991. del bid # unused
  7992. if "sinks" in name:
  7993. name += ".weight"
  7994. # correct naming for down_proj
  7995. if "down_proj" in name:
  7996. if name.endswith("_bias"):
  7997. name = name.replace("down_proj_bias", "down_proj.bias")
  7998. elif "_blocks" not in name and "_scales" not in name:
  7999. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8000. name = name.replace("down_proj", "down_proj.weight")
  8001. data_torch = data_torch.transpose(-1, -2)
  8002. else:
  8003. # otherwise, it should already be repacked to ggml MXFP4 format
  8004. return []
  8005. # split the gate_up into gate and up
  8006. if "gate_up_proj" in name:
  8007. if name.endswith("_bias"):
  8008. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  8009. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  8010. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  8011. return [
  8012. (self.map_tensor_name(name_gate), gate_proj_bias),
  8013. (self.map_tensor_name(name_up), up_proj_bias)
  8014. ]
  8015. elif "_blocks" not in name and "_scales" not in name:
  8016. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8017. name_up = name.replace("gate_up_proj", "up_proj.weight")
  8018. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  8019. data_torch = data_torch.transpose(-1, -2)
  8020. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8021. return [
  8022. (self.map_tensor_name(name_gate), gate_proj_weight),
  8023. (self.map_tensor_name(name_up), up_proj_weight)
  8024. ]
  8025. else:
  8026. # otherwise, it should already be repacked to ggml MXFP4 format
  8027. return []
  8028. return [(self.map_tensor_name(name), data_torch)]
  8029. def set_vocab(self):
  8030. self._set_vocab_gpt2()
  8031. def set_gguf_parameters(self):
  8032. super().set_gguf_parameters()
  8033. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  8034. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  8035. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  8036. class LFM2Model(TextModel):
  8037. model_arch = gguf.MODEL_ARCH.LFM2
  8038. def _add_feed_forward_length(self):
  8039. ff_dim = self.hparams["block_ff_dim"]
  8040. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  8041. ff_dim = self.hparams["block_ff_dim"]
  8042. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  8043. multiple_of = self.hparams["block_multiple_of"]
  8044. if auto_adjust_ff_dim:
  8045. ff_dim = int(2 * ff_dim / 3)
  8046. # custom dim factor multiplier
  8047. if ffn_dim_multiplier is not None:
  8048. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8049. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8050. self.gguf_writer.add_feed_forward_length(ff_dim)
  8051. def set_gguf_parameters(self):
  8052. # set num_key_value_heads only for attention layers
  8053. self.hparams["num_key_value_heads"] = [
  8054. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8055. for layer_type in self.hparams["layer_types"]
  8056. ]
  8057. super().set_gguf_parameters()
  8058. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8059. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8060. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8061. self._add_feed_forward_length()
  8062. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8063. if self._is_vision_tensor(name) or self._is_audio_tensor(name):
  8064. # skip multimodal tensors
  8065. return []
  8066. name = name.replace("language_model.", "") # vision
  8067. name = name.replace("lfm.", "model.") # audio
  8068. # conv op requires 2d tensor
  8069. if 'conv.conv' in name:
  8070. data_torch = data_torch.squeeze(1)
  8071. return [(self.map_tensor_name(name), data_torch)]
  8072. def _is_vision_tensor(self, name: str) -> bool:
  8073. return "vision_tower" in name or "multi_modal_projector" in name
  8074. def _is_audio_tensor(self, name: str):
  8075. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  8076. @ModelBase.register("Lfm2Model")
  8077. class LFM2ColBertModel(LFM2Model):
  8078. model_arch = gguf.MODEL_ARCH.LFM2
  8079. dense_tensor_name = "dense_2"
  8080. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8081. if not name.startswith(self.dense_tensor_name):
  8082. name = "model." + name
  8083. return super().modify_tensors(data_torch, name, bid)
  8084. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8085. # dense tensor is stored in a separate safetensors file
  8086. from safetensors.torch import load_file
  8087. tensors_file = self.dir_model / "1_Dense" / "model.safetensors"
  8088. assert tensors_file.is_file()
  8089. tensor = load_file(tensors_file)["linear.weight"]
  8090. self.gguf_writer.add_embedding_length_out(tensor.shape[0])
  8091. yield f"{self.dense_tensor_name}.weight", tensor.clone()
  8092. @ModelBase.register("Lfm2MoeForCausalLM")
  8093. class LFM2MoeModel(TextModel):
  8094. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8095. def set_gguf_parameters(self):
  8096. # set num_key_value_heads only for attention layers
  8097. self.hparams["num_key_value_heads"] = [
  8098. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8099. for layer_type in self.hparams["layer_types"]
  8100. ]
  8101. super().set_gguf_parameters()
  8102. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8103. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8104. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8105. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8106. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8107. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8108. # cache for experts weights for merging
  8109. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8111. # conv op requires 2d tensor
  8112. if 'conv.conv' in name:
  8113. data_torch = data_torch.squeeze(1)
  8114. if name.endswith(".expert_bias"):
  8115. name = name.replace(".expert_bias", ".expert_bias.bias")
  8116. # merge expert weights
  8117. if 'experts' in name:
  8118. n_experts = self.hparams["num_experts"]
  8119. assert bid is not None
  8120. expert_cache = self._experts_cache.setdefault(bid, {})
  8121. expert_cache[name] = data_torch
  8122. expert_weights = ["w1", "w2", "w3"]
  8123. # not enough expert weights to merge
  8124. if len(expert_cache) < n_experts * len(expert_weights):
  8125. return []
  8126. tensors: list[tuple[str, Tensor]] = []
  8127. for w_name in expert_weights:
  8128. datas: list[Tensor] = []
  8129. for xid in range(n_experts):
  8130. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8131. datas.append(expert_cache[ename])
  8132. del expert_cache[ename]
  8133. data_torch = torch.stack(datas, dim=0)
  8134. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8135. new_name = self.map_tensor_name(merged_name)
  8136. tensors.append((new_name, data_torch))
  8137. del self._experts_cache[bid]
  8138. return tensors
  8139. return [(self.map_tensor_name(name), data_torch)]
  8140. def prepare_tensors(self):
  8141. super().prepare_tensors()
  8142. assert not self._experts_cache
  8143. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8144. class LFM2VLModel(MmprojModel):
  8145. def __init__(self, *args, **kwargs):
  8146. super().__init__(*args, **kwargs)
  8147. assert self.hparams_vision is not None
  8148. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8149. self.hparams_vision["image_size"] = 256
  8150. def set_gguf_parameters(self):
  8151. super().set_gguf_parameters()
  8152. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8153. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8154. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8155. self.gguf_writer.add_vision_use_gelu(True)
  8156. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8157. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8158. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8159. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8160. del bid # unused
  8161. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8162. if is_vision_tensor:
  8163. # remove "model." prefix
  8164. name = name.replace("model.vision_tower.", "vision_tower.")
  8165. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8166. if "patch_embedding.weight" in name:
  8167. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8168. return [(self.map_tensor_name(name), data_torch)]
  8169. return [] # skip other tensors
  8170. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8171. class LFM2AudioModel(MmprojModel):
  8172. has_vision_encoder = False
  8173. has_audio_encoder = True
  8174. model_name = "Lfm2AudioEncoder"
  8175. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  8176. def get_audio_config(self) -> dict[str, Any] | None:
  8177. return self.global_config.get("encoder")
  8178. def set_gguf_parameters(self):
  8179. assert self.hparams_audio is not None
  8180. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8181. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8182. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8183. super().set_gguf_parameters()
  8184. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8185. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8186. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8187. def tensor_force_quant(self, name, new_name, bid, n_dims):
  8188. if ".conv" in name and ".weight" in name:
  8189. return gguf.GGMLQuantizationType.F32
  8190. return super().tensor_force_quant(name, new_name, bid, n_dims)
  8191. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8192. # skip language model tensors
  8193. if name.startswith("lfm."):
  8194. return []
  8195. # for training only
  8196. if any(p in name for p in ["audio_loss_weight"]):
  8197. return []
  8198. # for audio output
  8199. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8200. return []
  8201. # fold running_mean, running_var and eps into weight and bias for batch_norm
  8202. if "batch_norm" in name:
  8203. if self._batch_norm_tensors is None:
  8204. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  8205. assert bid is not None
  8206. self._batch_norm_tensors[bid][name] = data_torch
  8207. if len(self._batch_norm_tensors[bid]) < 5:
  8208. return []
  8209. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  8210. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  8211. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  8212. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  8213. eps = 1e-5 # default value
  8214. a = weight / torch.sqrt(running_var + eps)
  8215. b = bias - running_mean * a
  8216. return [
  8217. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  8218. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  8219. ]
  8220. # reshape conv weights
  8221. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  8222. data_torch = data_torch[:, None, None]
  8223. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  8224. assert data_torch.shape[1] == 1
  8225. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  8226. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  8227. assert data_torch.shape[2] == 1
  8228. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  8229. return [(self.map_tensor_name(name), data_torch)]
  8230. @ModelBase.register("SmallThinkerForCausalLM")
  8231. class SmallThinkerModel(TextModel):
  8232. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8233. def set_gguf_parameters(self):
  8234. super().set_gguf_parameters()
  8235. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8236. self.gguf_writer.add_expert_count(n_experts)
  8237. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8238. self.gguf_writer.add_expert_used_count(n_experts_used)
  8239. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8240. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8241. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8242. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8243. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8244. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8245. else:
  8246. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8247. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8248. if sliding_window_layout:
  8249. for i in sliding_window_layout:
  8250. if i != 0:
  8251. sliding_window = self.hparams.get("sliding_window_size")
  8252. if sliding_window:
  8253. self.gguf_writer.add_sliding_window(sliding_window)
  8254. break
  8255. _experts: list[dict[str, Tensor]] | None = None
  8256. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8257. # process the experts separately
  8258. if name.find("experts") != -1:
  8259. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8260. assert bid is not None
  8261. if self._experts is None:
  8262. self._experts = [{} for _ in range(self.block_count)]
  8263. self._experts[bid][name] = data_torch
  8264. if len(self._experts[bid]) >= n_experts * 3:
  8265. tensors: list[tuple[str, Tensor]] = []
  8266. # merge the experts into a single 3d tensor
  8267. for w_name in ["down", "gate", "up"]:
  8268. datas: list[Tensor] = []
  8269. for xid in range(n_experts):
  8270. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8271. datas.append(self._experts[bid][ename])
  8272. del self._experts[bid][ename]
  8273. data_torch = torch.stack(datas, dim=0)
  8274. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8275. new_name = self.map_tensor_name(merged_name)
  8276. tensors.append((new_name, data_torch))
  8277. return tensors
  8278. else:
  8279. return []
  8280. return [(self.map_tensor_name(name), data_torch)]
  8281. def prepare_tensors(self):
  8282. super().prepare_tensors()
  8283. if self._experts is not None:
  8284. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8285. experts = [k for d in self._experts for k in d.keys()]
  8286. if len(experts) > 0:
  8287. raise ValueError(f"Unprocessed experts: {experts}")
  8288. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8289. class ModernBertModel(BertModel):
  8290. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8291. def set_vocab(self):
  8292. self.gguf_writer.add_add_bos_token(True)
  8293. self.gguf_writer.add_add_eos_token(True)
  8294. self.gguf_writer.add_add_sep_token(True)
  8295. self._set_vocab_gpt2()
  8296. def set_gguf_parameters(self):
  8297. super().set_gguf_parameters()
  8298. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8299. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8300. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8301. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8302. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8303. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8304. # these layers act as MLM head, so we don't need them
  8305. if name.startswith("decoder."):
  8306. return []
  8307. if name.startswith("model."):
  8308. name = name[6:]
  8309. return super().modify_tensors(data_torch, name, bid)
  8310. @ModelBase.register("ApertusForCausalLM")
  8311. class ApertusModel(LlamaModel):
  8312. model_arch = gguf.MODEL_ARCH.APERTUS
  8313. undo_permute = False
  8314. _alpha_n = {}
  8315. _alpha_p = {}
  8316. _beta = {}
  8317. _eps = {}
  8318. def modify_tensors(self, data_torch, name, bid):
  8319. # Handle xIELU activation parameters
  8320. n_layers = self.hparams["num_hidden_layers"]
  8321. if name.endswith(".act_fn.alpha_n"):
  8322. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8323. if (len(self._alpha_n) == n_layers):
  8324. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8325. return []
  8326. if name.endswith(".act_fn.alpha_p"):
  8327. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8328. if (len(self._alpha_p) == n_layers):
  8329. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8330. return []
  8331. if name.endswith(".act_fn.beta"):
  8332. self._beta[bid] = data_torch.to("cpu").float().item()
  8333. if (len(self._beta) == n_layers):
  8334. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8335. return []
  8336. if name.endswith(".act_fn.eps"):
  8337. self._eps[bid] = data_torch.to("cpu").float().item()
  8338. if (len(self._eps) == n_layers):
  8339. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8340. return []
  8341. return super().modify_tensors(data_torch, name, bid)
  8342. class MistralModel(LlamaModel):
  8343. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8344. model_name = "Mistral"
  8345. hf_arch = ""
  8346. is_mistral_format = True
  8347. undo_permute = False
  8348. def __init__(self, *args, **kwargs):
  8349. super().__init__(*args, **kwargs)
  8350. # for compatibility, we use LLAMA arch for older models
  8351. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8352. if "llama_4_scaling" not in self.hparams:
  8353. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8354. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8355. self.gguf_writer.add_architecture()
  8356. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8357. def dequant_model(self):
  8358. # transform quantization config into HF format
  8359. quant_config = self.hparams.get("quantization")
  8360. if quant_config is not None:
  8361. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8362. self.hparams["quantization_config"] = {
  8363. "activation_scheme": "static",
  8364. "quant_method": "fp8",
  8365. "weight_block_size": None,
  8366. }
  8367. return super().dequant_model()
  8368. @staticmethod
  8369. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8370. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8371. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8372. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8373. )
  8374. if vocab.tokenizer.version == TokenizerVersion.v1:
  8375. return "mistral-v1"
  8376. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8377. return "mistral-v3"
  8378. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8379. return "mistral-v3-tekken"
  8380. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8381. return "mistral-v7"
  8382. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8383. return "mistral-v7-tekken"
  8384. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8385. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8386. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8387. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8388. else:
  8389. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8390. if is_mistral_format:
  8391. err_message += (
  8392. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8393. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8394. )
  8395. raise ValueError(err_message)
  8396. template_path = templates_dir / template_file
  8397. if not template_path.exists():
  8398. raise FileNotFoundError(f"Template file not found: {template_path}")
  8399. with open(template_path, "r", encoding="utf-8") as f:
  8400. template = f.read()
  8401. return template
  8402. def set_gguf_parameters(self):
  8403. super().set_gguf_parameters()
  8404. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8405. @staticmethod
  8406. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8407. if "yarn" in hparams:
  8408. yarn_params = hparams["yarn"]
  8409. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8410. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8411. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8412. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8413. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8414. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8415. if "llama_4_scaling" in hparams:
  8416. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8417. class MistralMoeModel(DeepseekV2Model):
  8418. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8419. model_name = "Mistral"
  8420. hf_arch = ""
  8421. is_mistral_format = True
  8422. def __init__(self, *args, **kwargs):
  8423. super().__init__(*args, **kwargs)
  8424. logger.info("Using MistralMoeModel")
  8425. # remap hparams from Mistral MoE format to DeepseekV2 format
  8426. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8427. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8428. config = self.hparams
  8429. # Mistral key -> HF key
  8430. config_mapping = {
  8431. "dim": "hidden_size",
  8432. "norm_eps": "rms_norm_eps",
  8433. "n_kv_heads": "num_key_value_heads",
  8434. "n_layers": "num_hidden_layers",
  8435. "n_heads": "num_attention_heads",
  8436. "hidden_dim": "intermediate_size",
  8437. }
  8438. # HF key -> (Mistral key, default value)
  8439. top_level_mapping_with_default = {
  8440. "model_type": ("model_type", "transformer"),
  8441. "hidden_act": ("activation", "silu"),
  8442. "tie_word_embeddings": ("tied_embeddings", False),
  8443. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8444. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8445. }
  8446. # mapping top-level keys
  8447. for key, new_key in config_mapping.items():
  8448. if key in config:
  8449. config[new_key] = config[key]
  8450. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8451. config[new_key] = config.get(key, default_value)
  8452. # mapping MoE-specific keys
  8453. moe_config_map = {
  8454. "route_every_n": "moe_layer_freq",
  8455. "first_k_dense_replace": "first_k_dense_replace",
  8456. "num_experts_per_tok": "num_experts_per_tok",
  8457. "num_experts": "n_routed_experts",
  8458. "expert_hidden_dim": "moe_intermediate_size",
  8459. "routed_scale": "routed_scaling_factor",
  8460. "num_shared_experts": "n_shared_experts",
  8461. "num_expert_groups": "n_group",
  8462. "num_expert_groups_per_tok": "topk_group",
  8463. }
  8464. moe = config["moe"]
  8465. for key, new_key in moe_config_map.items():
  8466. if key in moe:
  8467. config[new_key] = moe[key]
  8468. # provide missing values
  8469. config["topk_method"] = None
  8470. config["norm_topk_prob"] = True
  8471. config["scoring_func"] = "softmax"
  8472. def set_vocab(self):
  8473. self._set_vocab_mistral()
  8474. def set_gguf_parameters(self):
  8475. super().set_gguf_parameters()
  8476. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8477. yarn_params = self.hparams["yarn"]
  8478. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8479. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8480. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8481. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8482. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8484. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8485. return []
  8486. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8487. if name.endswith(".qscale_act"):
  8488. name = name.replace(".qscale_act", ".input_scale")
  8489. if name.endswith(".qscale_weight"):
  8490. name = name.replace(".qscale_weight", ".weight_scale")
  8491. if ".wkv_b." in name:
  8492. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8493. if ".experts." in name:
  8494. name = name.replace(".experts.", ".mlp.experts.")
  8495. name = name.replace(".w1.", ".gate_proj.")
  8496. name = name.replace(".w2.", ".down_proj.")
  8497. name = name.replace(".w3.", ".up_proj.")
  8498. name = "model." + name
  8499. return super().modify_tensors(data_torch, name, bid)
  8500. class PixtralModel(LlavaVisionModel):
  8501. model_name = "Pixtral"
  8502. hf_arch = ""
  8503. is_mistral_format = True
  8504. def set_gguf_parameters(self):
  8505. super().set_gguf_parameters()
  8506. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8507. self.gguf_writer.add_vision_attention_layernorm_eps(
  8508. self.find_hparam(["norm_eps"])
  8509. )
  8510. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8511. self.gguf_writer.add_vision_use_silu(True)
  8512. # spatial_merge_size
  8513. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8514. self.gguf_writer.add_vision_spatial_merge_size(
  8515. self.find_vparam(["spatial_merge_size"])
  8516. )
  8517. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8518. if name == "vision_language_adapter.w_in.weight":
  8519. return "mm.1.weight"
  8520. elif name == "vision_language_adapter.w_out.weight":
  8521. return "mm.2.weight"
  8522. return super().map_tensor_name(name, try_suffixes)
  8523. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8524. class LightOnOCRVisionModel(LlavaVisionModel):
  8525. is_mistral_format = False
  8526. use_break_tok = False
  8527. def set_gguf_parameters(self):
  8528. super().set_gguf_parameters()
  8529. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8530. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8531. name = name.replace("model.vision_encoder.", "vision_tower.")
  8532. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8533. return super().modify_tensors(data_torch, name, bid)
  8534. @ModelBase.register("KimiVLForConditionalGeneration")
  8535. class KimiVLModel(MmprojModel):
  8536. def __init__(self, *args, **kwargs):
  8537. super().__init__(*args, **kwargs)
  8538. assert self.hparams_vision is not None
  8539. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8540. def set_gguf_parameters(self):
  8541. super().set_gguf_parameters()
  8542. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8543. self.gguf_writer.add_vision_use_gelu(True)
  8544. self.gguf_writer.add_vision_projector_scale_factor(2)
  8545. # eps is the same as pytorch's default value
  8546. assert self.hparams_vision is not None
  8547. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8548. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8549. del bid # unused
  8550. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8551. if is_vision_tensor:
  8552. if "pos_emb.weight" in name:
  8553. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8554. elif "wqkv" in name:
  8555. split_dim = 0 if "weight" in name else -1
  8556. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8557. return [
  8558. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8559. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8560. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8561. ]
  8562. return [(self.map_tensor_name(name), data_torch)]
  8563. return [] # skip other tensors
  8564. @ModelBase.register("CogVLMForCausalLM")
  8565. class CogVLMVisionModel(MmprojModel):
  8566. def set_gguf_parameters(self):
  8567. super().set_gguf_parameters()
  8568. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8569. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8571. del bid # unused
  8572. if not name.startswith("model.vision."):
  8573. return []
  8574. return [(self.map_tensor_name(name), data_torch)]
  8575. @ModelBase.register("CogVLMForCausalLM")
  8576. class CogVLMModel(LlamaModel):
  8577. model_arch = gguf.MODEL_ARCH.COGVLM
  8578. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8579. del bid # unused
  8580. # block vision tensors
  8581. if name.startswith("model.vision."):
  8582. return []
  8583. return [(self.map_tensor_name(name), data_torch)]
  8584. @ModelBase.register("JanusForConditionalGeneration")
  8585. class JanusProModel(LlamaModel):
  8586. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8588. # Skip vision, aligner, and generation tensors
  8589. skip_prefixes = (
  8590. 'model.vision_model.',
  8591. 'model.aligner.',
  8592. 'model.vqmodel.',
  8593. 'model.generation_embeddings.',
  8594. 'model.generation_aligner.',
  8595. 'model.generation_head.',
  8596. )
  8597. if name.startswith(skip_prefixes):
  8598. return []
  8599. if name.startswith('model.language_model.'):
  8600. name = name.replace('model.language_model.', 'model.')
  8601. elif name.startswith('language_model.'):
  8602. name = name.replace('language_model.', '')
  8603. return super().modify_tensors(data_torch, name, bid)
  8604. @ModelBase.register("JanusForConditionalGeneration")
  8605. class JanusProVisionModel(MmprojModel):
  8606. def __init__(self, *args, **kwargs):
  8607. super().__init__(*args, **kwargs)
  8608. assert self.hparams_vision is not None
  8609. if "intermediate_size" not in self.hparams_vision:
  8610. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8611. hidden_size = self.hparams_vision.get("hidden_size")
  8612. if mlp_ratio is not None and hidden_size is not None:
  8613. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8614. def set_gguf_parameters(self):
  8615. super().set_gguf_parameters()
  8616. assert self.hparams_vision is not None
  8617. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8618. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8619. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8620. if hidden_act == "gelu":
  8621. self.gguf_writer.add_vision_use_gelu(True)
  8622. elif hidden_act == "silu":
  8623. self.gguf_writer.add_vision_use_silu(True)
  8624. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8625. """Map aligner tensors to projector format"""
  8626. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8627. if name.startswith("model.aligner."):
  8628. local_name = name[len("model.aligner."):]
  8629. elif name.startswith("aligner."):
  8630. local_name = name[len("aligner."):]
  8631. else:
  8632. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8633. if local_name.startswith("fc1."):
  8634. mm_index = 0
  8635. elif local_name.startswith("hidden_layers."):
  8636. parts = local_name.split(".", 2)
  8637. if len(parts) < 3:
  8638. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8639. mm_index = int(parts[1]) + 1
  8640. else:
  8641. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8642. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8643. return [(tensor_name, data_torch)]
  8644. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8645. del bid # unused
  8646. # Skip language model tensors as they will be handled by `JanusProModel`
  8647. if name.startswith(('model.language_model.', 'language_model.')):
  8648. return []
  8649. # Skip generation-related components
  8650. skip_generation_prefixes = (
  8651. 'model.vqmodel.',
  8652. 'vqmodel.',
  8653. 'model.generation_embeddings.',
  8654. 'generation_embeddings.',
  8655. 'model.generation_aligner.',
  8656. 'generation_aligner.',
  8657. 'model.generation_head.',
  8658. 'generation_head.',
  8659. )
  8660. if name.startswith(skip_generation_prefixes):
  8661. return []
  8662. # Handle aligner tensors
  8663. if name.startswith(('model.aligner.', 'aligner.')):
  8664. return list(self._map_aligner_tensor(data_torch, name))
  8665. # Handle vision tensors
  8666. if name.startswith(('model.vision_model.', 'vision_model.')):
  8667. return [(self.map_tensor_name(name), data_torch)]
  8668. return []
  8669. @ModelBase.register("YoutuVLForConditionalGeneration")
  8670. class YoutuVLVisionModel(MmprojModel):
  8671. def __init__(self, *args, **kwargs):
  8672. super().__init__(*args, **kwargs)
  8673. assert self.hparams_vision is not None
  8674. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  8675. def set_gguf_parameters(self):
  8676. super().set_gguf_parameters()
  8677. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
  8678. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8679. # Handle activation function
  8680. hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
  8681. if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
  8682. self.gguf_writer.add_vision_use_gelu(True)
  8683. elif hidden_act == "silu":
  8684. self.gguf_writer.add_vision_use_silu(True)
  8685. else:
  8686. raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
  8687. self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
  8688. window_size = self.hparams.get("window_size")
  8689. if window_size is not None:
  8690. self.gguf_writer.add_vision_window_size(window_size)
  8691. # fullatt_block_indexes contains explicit layer indices that use full attention
  8692. # e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
  8693. # All other layers use window attention
  8694. fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
  8695. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
  8696. # Store the explicit layer indices for YoutuVL (irregular pattern approach)
  8697. self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
  8698. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8699. del bid # unused
  8700. # Skip language model tensors
  8701. skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
  8702. if name.startswith(skip_prefixes):
  8703. return []
  8704. # Try to map the tensor using TensorNameMap (handles vision encoder and projector)
  8705. try:
  8706. new_name = self.map_tensor_name(name)
  8707. return [(new_name, data_torch)]
  8708. except ValueError:
  8709. # If mapping fails, log warning and skip
  8710. logger.warning(f"Cannot map tensor: {name}")
  8711. return []
  8712. @ModelBase.register("SolarOpenForCausalLM")
  8713. class SolarOpenModel(Glm4MoeModel):
  8714. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8715. def set_vocab(self):
  8716. from transformers import AutoTokenizer
  8717. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8718. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8719. tokens, toktypes, tokpre = self.get_vocab_base()
  8720. self.gguf_writer.add_tokenizer_model("gpt2")
  8721. self.gguf_writer.add_tokenizer_pre(tokpre)
  8722. self.gguf_writer.add_token_list(tokens)
  8723. self.gguf_writer.add_token_types(toktypes)
  8724. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8725. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8726. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8727. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  8728. special_vocab.add_to_gguf(self.gguf_writer)
  8729. ###### CONVERSION LOGIC ######
  8730. # tree of lazy tensors
  8731. class LazyTorchTensor(gguf.LazyBase):
  8732. _tensor_type = torch.Tensor
  8733. # to keep the type-checker happy
  8734. dtype: torch.dtype
  8735. shape: torch.Size
  8736. # only used when converting a torch.Tensor to a np.ndarray
  8737. _dtype_map: dict[torch.dtype, type] = {
  8738. torch.float16: np.float16,
  8739. torch.float32: np.float32,
  8740. torch.uint8: np.uint8,
  8741. }
  8742. # only used when byteswapping data. Only correct size is needed
  8743. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8744. torch.float64: np.float64,
  8745. torch.float32: np.float32,
  8746. torch.bfloat16: np.float16,
  8747. torch.float16: np.float16,
  8748. torch.int64: np.int64,
  8749. torch.uint64: np.uint64,
  8750. torch.int32: np.int32,
  8751. torch.uint32: np.uint32,
  8752. torch.int16: np.int16,
  8753. torch.uint16: np.uint16,
  8754. torch.int8: np.int8,
  8755. torch.uint8: np.uint8,
  8756. torch.bool: np.uint8,
  8757. torch.float8_e4m3fn: np.uint8,
  8758. torch.float8_e5m2: np.uint8,
  8759. }
  8760. # used for safetensors slices
  8761. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8762. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8763. _dtype_str_map: dict[str, torch.dtype] = {
  8764. "F64": torch.float64,
  8765. "F32": torch.float32,
  8766. "BF16": torch.bfloat16,
  8767. "F16": torch.float16,
  8768. # "U64": torch.uint64,
  8769. "I64": torch.int64,
  8770. # "U32": torch.uint32,
  8771. "I32": torch.int32,
  8772. # "U16": torch.uint16,
  8773. "I16": torch.int16,
  8774. "U8": torch.uint8,
  8775. "I8": torch.int8,
  8776. "BOOL": torch.bool,
  8777. "F8_E4M3": torch.float8_e4m3fn,
  8778. "F8_E5M2": torch.float8_e5m2,
  8779. }
  8780. def numpy(self) -> gguf.LazyNumpyTensor:
  8781. dtype = self._dtype_map[self.dtype]
  8782. return gguf.LazyNumpyTensor(
  8783. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8784. args=(self,),
  8785. func=(lambda s: s.numpy())
  8786. )
  8787. @classmethod
  8788. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8789. return torch.empty(size=shape, dtype=dtype, device="meta")
  8790. @classmethod
  8791. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8792. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8793. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8794. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8795. return cast(torch.Tensor, lazy)
  8796. @classmethod
  8797. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8798. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8799. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8800. if sys.byteorder == 'big':
  8801. # switch data back to big endian
  8802. tensor = tensor.view(dtype).byteswap(inplace=False)
  8803. return tensor
  8804. dtype = cls._dtype_str_map[tensor.dtype]
  8805. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8806. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8807. dtype = cls._dtype_str_map[t.dtype]
  8808. shape = t.shape
  8809. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8810. return cast(torch.Tensor, lazy)
  8811. @classmethod
  8812. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8813. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8814. if sys.byteorder == 'big':
  8815. # switch data back to big endian
  8816. tensor = tensor.view(dtype).byteswap(inplace=False)
  8817. return tensor
  8818. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8819. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8820. shape = remote_tensor.shape
  8821. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8822. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8823. return cast(torch.Tensor, lazy)
  8824. @classmethod
  8825. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8826. del types # unused
  8827. if kwargs is None:
  8828. kwargs = {}
  8829. if func is torch.Tensor.numpy:
  8830. return args[0].numpy()
  8831. return cls._wrap_fn(func)(*args, **kwargs)
  8832. def parse_args() -> argparse.Namespace:
  8833. parser = argparse.ArgumentParser(
  8834. description="Convert a huggingface model to a GGML compatible file")
  8835. parser.add_argument(
  8836. "--vocab-only", action="store_true",
  8837. help="extract only the vocab",
  8838. )
  8839. parser.add_argument(
  8840. "--outfile", type=Path,
  8841. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8842. )
  8843. parser.add_argument(
  8844. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  8845. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  8846. )
  8847. parser.add_argument(
  8848. "--bigendian", action="store_true",
  8849. help="model is executed on big endian machine",
  8850. )
  8851. parser.add_argument(
  8852. "model", type=str,
  8853. help="directory containing model file or huggingface repository ID (if --remote)",
  8854. nargs="?",
  8855. )
  8856. parser.add_argument(
  8857. "--use-temp-file", action="store_true",
  8858. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8859. )
  8860. parser.add_argument(
  8861. "--no-lazy", action="store_true",
  8862. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8863. )
  8864. parser.add_argument(
  8865. "--model-name", type=str, default=None,
  8866. help="name of the model",
  8867. )
  8868. parser.add_argument(
  8869. "--verbose", action="store_true",
  8870. help="increase output verbosity",
  8871. )
  8872. parser.add_argument(
  8873. "--split-max-tensors", type=int, default=0,
  8874. help="max tensors in each split",
  8875. )
  8876. parser.add_argument(
  8877. "--split-max-size", type=str, default="0",
  8878. help="max size per split N(M|G)",
  8879. )
  8880. parser.add_argument(
  8881. "--dry-run", action="store_true",
  8882. help="only print out a split plan and exit, without writing any new files",
  8883. )
  8884. parser.add_argument(
  8885. "--no-tensor-first-split", action="store_true",
  8886. help="do not add tensors to the first split (disabled by default)"
  8887. )
  8888. parser.add_argument(
  8889. "--metadata", type=Path,
  8890. help="Specify the path for an authorship metadata override file"
  8891. )
  8892. parser.add_argument(
  8893. "--print-supported-models", action="store_true",
  8894. help="Print the supported models"
  8895. )
  8896. parser.add_argument(
  8897. "--remote", action="store_true",
  8898. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8899. )
  8900. parser.add_argument(
  8901. "--mmproj", action="store_true",
  8902. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8903. )
  8904. parser.add_argument(
  8905. "--mistral-format", action="store_true",
  8906. help="Whether the model is stored following the Mistral format.",
  8907. )
  8908. parser.add_argument(
  8909. "--disable-mistral-community-chat-template", action="store_true",
  8910. help=(
  8911. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8912. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8913. )
  8914. )
  8915. parser.add_argument(
  8916. "--sentence-transformers-dense-modules", action="store_true",
  8917. help=("Whether to include sentence-transformers dense modules. "
  8918. "It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
  8919. "Default these modules are not included.")
  8920. )
  8921. args = parser.parse_args()
  8922. if not args.print_supported_models and args.model is None:
  8923. parser.error("the following arguments are required: model")
  8924. return args
  8925. def split_str_to_n_bytes(split_str: str) -> int:
  8926. if split_str.endswith("K"):
  8927. n = int(split_str[:-1]) * 1000
  8928. elif split_str.endswith("M"):
  8929. n = int(split_str[:-1]) * 1000 * 1000
  8930. elif split_str.endswith("G"):
  8931. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8932. elif split_str.isnumeric():
  8933. n = int(split_str)
  8934. else:
  8935. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8936. if n < 0:
  8937. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8938. return n
  8939. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8940. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8941. # maybe we should fallback to text model's arch in that case, since not many models have both
  8942. text_config = hparams.get("text_config", {})
  8943. vision_config = hparams.get("vision_config", {})
  8944. arch = None
  8945. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8946. arch = arches[0]
  8947. elif "ssm_cfg" in hparams:
  8948. # For non-hf Mamba and Mamba2 models
  8949. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8950. # if "architectures" is found in the sub-config, use that instead
  8951. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8952. arch = text_config["architectures"][0]
  8953. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8954. arch = vision_config["architectures"][0]
  8955. if arch is None:
  8956. raise ValueError("Failed to detect model architecture")
  8957. return arch
  8958. def main() -> None:
  8959. args = parse_args()
  8960. if args.print_supported_models:
  8961. logger.error("Supported models:")
  8962. ModelBase.print_registered_models()
  8963. sys.exit(0)
  8964. if args.verbose:
  8965. logging.basicConfig(level=logging.DEBUG)
  8966. else:
  8967. logging.basicConfig(level=logging.INFO)
  8968. if args.remote:
  8969. hf_repo_id = args.model
  8970. from huggingface_hub import snapshot_download
  8971. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8972. if args.sentence_transformers_dense_modules:
  8973. # include sentence-transformers dense modules safetensors files
  8974. allowed_patterns.append("*.safetensors")
  8975. local_dir = snapshot_download(
  8976. repo_id=hf_repo_id,
  8977. allow_patterns=allowed_patterns)
  8978. dir_model = Path(local_dir)
  8979. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8980. else:
  8981. hf_repo_id = None
  8982. dir_model = Path(args.model)
  8983. if not dir_model.is_dir():
  8984. logger.error(f'Error: {dir_model} is not a directory')
  8985. sys.exit(1)
  8986. ftype_map: dict[str, gguf.LlamaFileType] = {
  8987. "f32": gguf.LlamaFileType.ALL_F32,
  8988. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8989. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8990. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8991. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8992. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8993. "auto": gguf.LlamaFileType.GUESSED,
  8994. }
  8995. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8996. if args.use_temp_file and is_split:
  8997. logger.error("Error: Cannot use temp file when splitting")
  8998. sys.exit(1)
  8999. if args.outfile is not None:
  9000. fname_out = args.outfile
  9001. elif hf_repo_id:
  9002. # if remote, use the model ID as the output file name
  9003. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  9004. else:
  9005. fname_out = dir_model
  9006. logger.info(f"Loading model: {dir_model.name}")
  9007. is_mistral_format = args.mistral_format
  9008. if is_mistral_format and not _mistral_common_installed:
  9009. raise ImportError(_mistral_import_error_msg)
  9010. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  9011. with torch.inference_mode():
  9012. output_type = ftype_map[args.outtype]
  9013. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  9014. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  9015. if not is_mistral_format:
  9016. model_architecture = get_model_architecture(hparams, model_type)
  9017. logger.info(f"Model architecture: {model_architecture}")
  9018. try:
  9019. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  9020. except NotImplementedError:
  9021. logger.error(f"Model {model_architecture} is not supported")
  9022. sys.exit(1)
  9023. elif args.mmproj:
  9024. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  9025. model_class = PixtralModel
  9026. elif "moe" in hparams:
  9027. model_class = MistralMoeModel
  9028. else:
  9029. model_class = MistralModel
  9030. model_instance = model_class(dir_model, output_type, fname_out,
  9031. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  9032. eager=args.no_lazy,
  9033. metadata_override=args.metadata, model_name=args.model_name,
  9034. split_max_tensors=args.split_max_tensors,
  9035. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  9036. small_first_shard=args.no_tensor_first_split,
  9037. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  9038. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  9039. )
  9040. if args.vocab_only:
  9041. logger.info("Exporting model vocab...")
  9042. model_instance.write_vocab()
  9043. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  9044. else:
  9045. logger.info("Exporting model...")
  9046. model_instance.write()
  9047. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  9048. logger.info(f"Model successfully exported to {out_path}")
  9049. if __name__ == '__main__':
  9050. main()