llama.h 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  34. #define LLAMA_SESSION_VERSION 4
  35. #ifdef __cplusplus
  36. extern "C" {
  37. #endif
  38. //
  39. // C interface
  40. //
  41. // TODO: show sample usage
  42. //
  43. struct llama_model;
  44. struct llama_context;
  45. typedef int32_t llama_pos;
  46. typedef int32_t llama_token;
  47. typedef int32_t llama_seq_id;
  48. enum llama_vocab_type {
  49. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  50. LLAMA_VOCAB_TYPE_SPM = 1, // SentencePiece
  51. LLAMA_VOCAB_TYPE_BPE = 2, // Byte Pair Encoding
  52. LLAMA_VOCAB_TYPE_WPM = 3, // WordPiece
  53. };
  54. // note: these values should be synchronized with ggml_rope
  55. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  56. enum llama_rope_type {
  57. LLAMA_ROPE_TYPE_NONE = -1,
  58. LLAMA_ROPE_TYPE_NORM = 0,
  59. LLAMA_ROPE_TYPE_NEOX = 2,
  60. LLAMA_ROPE_TYPE_GLM = 4,
  61. };
  62. enum llama_token_type {
  63. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  64. LLAMA_TOKEN_TYPE_NORMAL = 1,
  65. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  66. LLAMA_TOKEN_TYPE_CONTROL = 3,
  67. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  68. LLAMA_TOKEN_TYPE_UNUSED = 5,
  69. LLAMA_TOKEN_TYPE_BYTE = 6,
  70. };
  71. // model file types
  72. enum llama_ftype {
  73. LLAMA_FTYPE_ALL_F32 = 0,
  74. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  77. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  78. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  79. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  80. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  95. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  96. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  97. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  104. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  105. };
  106. enum llama_rope_scaling_type {
  107. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  108. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  109. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  110. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  111. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  112. };
  113. enum llama_pooling_type {
  114. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  115. LLAMA_POOLING_TYPE_NONE = 0,
  116. LLAMA_POOLING_TYPE_MEAN = 1,
  117. LLAMA_POOLING_TYPE_CLS = 2,
  118. };
  119. enum llama_split_mode {
  120. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  121. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  122. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  123. };
  124. typedef struct llama_token_data {
  125. llama_token id; // token id
  126. float logit; // log-odds of the token
  127. float p; // probability of the token
  128. } llama_token_data;
  129. typedef struct llama_token_data_array {
  130. llama_token_data * data;
  131. size_t size;
  132. bool sorted;
  133. } llama_token_data_array;
  134. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  135. // Input data for llama_decode
  136. // A llama_batch object can contain input about one or many sequences
  137. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  138. //
  139. // - token : the token ids of the input (used when embd is NULL)
  140. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  141. // - pos : the positions of the respective token in the sequence
  142. // - seq_id : the sequence to which the respective token belongs
  143. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  144. //
  145. typedef struct llama_batch {
  146. int32_t n_tokens;
  147. llama_token * token;
  148. float * embd;
  149. llama_pos * pos;
  150. int32_t * n_seq_id;
  151. llama_seq_id ** seq_id;
  152. int8_t * logits; // TODO: rename this to "output"
  153. // NOTE: helpers for smooth API transition - can be deprecated in the future
  154. // for future-proof code, use the above fields instead and ignore everything below
  155. //
  156. // pos[i] = all_pos_0 + i*all_pos_1
  157. //
  158. llama_pos all_pos_0; // used if pos == NULL
  159. llama_pos all_pos_1; // used if pos == NULL
  160. llama_seq_id all_seq_id; // used if seq_id == NULL
  161. } llama_batch;
  162. enum llama_model_kv_override_type {
  163. LLAMA_KV_OVERRIDE_TYPE_INT,
  164. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  165. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  166. };
  167. struct llama_model_kv_override {
  168. char key[128];
  169. enum llama_model_kv_override_type tag;
  170. union {
  171. int64_t int_value;
  172. double float_value;
  173. bool bool_value;
  174. };
  175. };
  176. struct llama_model_params {
  177. int32_t n_gpu_layers; // number of layers to store in VRAM
  178. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  179. // main_gpu interpretation depends on split_mode:
  180. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  181. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  182. // LLAMA_SPLIT_LAYER: ignored
  183. int32_t main_gpu;
  184. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  185. const float * tensor_split;
  186. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  187. // If the provided progress_callback returns true, model loading continues.
  188. // If it returns false, model loading is immediately aborted.
  189. llama_progress_callback progress_callback;
  190. // context pointer passed to the progress callback
  191. void * progress_callback_user_data;
  192. // override key-value pairs of the model meta data
  193. const struct llama_model_kv_override * kv_overrides;
  194. // Keep the booleans together to avoid misalignment during copy-by-value.
  195. bool vocab_only; // only load the vocabulary, no weights
  196. bool use_mmap; // use mmap if possible
  197. bool use_mlock; // force system to keep model in RAM
  198. };
  199. struct llama_context_params {
  200. uint32_t seed; // RNG seed, -1 for random
  201. uint32_t n_ctx; // text context, 0 = from model
  202. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  203. uint32_t n_ubatch; // physical maximum batch size
  204. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  205. uint32_t n_threads; // number of threads to use for generation
  206. uint32_t n_threads_batch; // number of threads to use for batch processing
  207. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  208. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  209. // (ignored if no pooling layer)
  210. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  211. float rope_freq_base; // RoPE base frequency, 0 = from model
  212. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  213. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  214. float yarn_attn_factor; // YaRN magnitude scaling factor
  215. float yarn_beta_fast; // YaRN low correction dim
  216. float yarn_beta_slow; // YaRN high correction dim
  217. uint32_t yarn_orig_ctx; // YaRN original context size
  218. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  219. ggml_backend_sched_eval_callback cb_eval;
  220. void * cb_eval_user_data;
  221. enum ggml_type type_k; // data type for K cache
  222. enum ggml_type type_v; // data type for V cache
  223. // Keep the booleans together to avoid misalignment during copy-by-value.
  224. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  225. bool embeddings; // if true, extract embeddings (together with logits)
  226. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  227. // Abort callback
  228. // if it returns true, execution of llama_decode() will be aborted
  229. // currently works only with CPU execution
  230. ggml_abort_callback abort_callback;
  231. void * abort_callback_data;
  232. };
  233. // model quantization parameters
  234. typedef struct llama_model_quantize_params {
  235. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  236. enum llama_ftype ftype; // quantize to this llama_ftype
  237. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  238. bool quantize_output_tensor; // quantize output.weight
  239. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  240. bool pure; // quantize all tensors to the default type
  241. void * imatrix; // pointer to importance matrix data
  242. } llama_model_quantize_params;
  243. // grammar types
  244. struct llama_grammar;
  245. // grammar element type
  246. enum llama_gretype {
  247. // end of rule definition
  248. LLAMA_GRETYPE_END = 0,
  249. // start of alternate definition for rule
  250. LLAMA_GRETYPE_ALT = 1,
  251. // non-terminal element: reference to rule
  252. LLAMA_GRETYPE_RULE_REF = 2,
  253. // terminal element: character (code point)
  254. LLAMA_GRETYPE_CHAR = 3,
  255. // inverse char(s) ([^a], [^a-b] [^abc])
  256. LLAMA_GRETYPE_CHAR_NOT = 4,
  257. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  258. // be an inclusive range ([a-z])
  259. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  260. // modifies a preceding LLAMA_GRETYPE_CHAR or
  261. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  262. LLAMA_GRETYPE_CHAR_ALT = 6,
  263. };
  264. typedef struct llama_grammar_element {
  265. enum llama_gretype type;
  266. uint32_t value; // Unicode code point or rule ID
  267. } llama_grammar_element;
  268. // performance timing information
  269. struct llama_timings {
  270. double t_start_ms;
  271. double t_end_ms;
  272. double t_load_ms;
  273. double t_sample_ms;
  274. double t_p_eval_ms;
  275. double t_eval_ms;
  276. int32_t n_sample;
  277. int32_t n_p_eval;
  278. int32_t n_eval;
  279. };
  280. // used in chat template
  281. typedef struct llama_chat_message {
  282. const char * role;
  283. const char * content;
  284. } llama_chat_message;
  285. // Helpers for getting default parameters
  286. LLAMA_API struct llama_model_params llama_model_default_params(void);
  287. LLAMA_API struct llama_context_params llama_context_default_params(void);
  288. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  289. // Initialize the llama + ggml backend
  290. // If numa is true, use NUMA optimizations
  291. // Call once at the start of the program
  292. LLAMA_API void llama_backend_init(void);
  293. //optional:
  294. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  295. // Call once at the end of the program - currently only used for MPI
  296. LLAMA_API void llama_backend_free(void);
  297. LLAMA_API struct llama_model * llama_load_model_from_file(
  298. const char * path_model,
  299. struct llama_model_params params);
  300. LLAMA_API void llama_free_model(struct llama_model * model);
  301. LLAMA_API struct llama_context * llama_new_context_with_model(
  302. struct llama_model * model,
  303. struct llama_context_params params);
  304. // Frees all allocated memory
  305. LLAMA_API void llama_free(struct llama_context * ctx);
  306. LLAMA_API int64_t llama_time_us(void);
  307. LLAMA_API size_t llama_max_devices(void);
  308. LLAMA_API bool llama_supports_mmap (void);
  309. LLAMA_API bool llama_supports_mlock (void);
  310. LLAMA_API bool llama_supports_gpu_offload(void);
  311. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  312. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  313. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  314. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  315. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  316. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  317. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  318. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  319. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  320. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  321. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  322. // Get the model's RoPE frequency scaling factor
  323. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  324. // Functions to access the model's GGUF metadata scalar values
  325. // - The functions return the length of the string on success, or -1 on failure
  326. // - The output string is always null-terminated and cleared on failure
  327. // - GGUF array values are not supported by these functions
  328. // Get metadata value as a string by key name
  329. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  330. // Get the number of metadata key/value pairs
  331. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  332. // Get metadata key name by index
  333. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  334. // Get metadata value as a string by index
  335. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  336. // Get a string describing the model type
  337. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  338. // Returns the total size of all the tensors in the model in bytes
  339. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  340. // Returns the total number of parameters in the model
  341. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  342. // Get a llama model tensor
  343. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  344. // Returns 0 on success
  345. LLAMA_API uint32_t llama_model_quantize(
  346. const char * fname_inp,
  347. const char * fname_out,
  348. const llama_model_quantize_params * params);
  349. // Apply a LoRA adapter to a loaded model
  350. // path_base_model is the path to a higher quality model to use as a base for
  351. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  352. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  353. // will be applied on top of the previous one
  354. // Returns 0 on success
  355. LLAMA_API int32_t llama_model_apply_lora_from_file(
  356. const struct llama_model * model,
  357. const char * path_lora,
  358. float scale,
  359. const char * path_base_model,
  360. int32_t n_threads);
  361. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  362. // the currently loaded vector.
  363. // n_embd should be the size of a single layer's control, and data should point
  364. // to an n_embd x n_layers buffer starting from layer 1.
  365. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  366. // See llama_control_vector_load in common to load a control vector.
  367. LLAMA_API int32_t llama_control_vector_apply(
  368. struct llama_context * lctx,
  369. const float * data,
  370. size_t len,
  371. int32_t n_embd,
  372. int32_t il_start,
  373. int32_t il_end);
  374. //
  375. // KV cache
  376. //
  377. // Information associated with an individual cell in the KV cache view.
  378. struct llama_kv_cache_view_cell {
  379. // The position for this cell. Takes KV cache shifts into account.
  380. // May be negative if the cell is not populated.
  381. llama_pos pos;
  382. };
  383. // An updateable view of the KV cache.
  384. struct llama_kv_cache_view {
  385. // Number of KV cache cells. This will be the same as the context size.
  386. int32_t n_cells;
  387. // Maximum number of sequences that can exist in a cell. It's not an error
  388. // if there are more sequences in a cell than this value, however they will
  389. // not be visible in the view cells_sequences.
  390. int32_t n_seq_max;
  391. // Number of tokens in the cache. For example, if there are two populated
  392. // cells, the first with 1 sequence id in it and the second with 2 sequence
  393. // ids then you'll have 3 tokens.
  394. int32_t token_count;
  395. // Number of populated cache cells.
  396. int32_t used_cells;
  397. // Maximum contiguous empty slots in the cache.
  398. int32_t max_contiguous;
  399. // Index to the start of the max_contiguous slot range. Can be negative
  400. // when cache is full.
  401. int32_t max_contiguous_idx;
  402. // Information for an individual cell.
  403. struct llama_kv_cache_view_cell * cells;
  404. // The sequences for each cell. There will be n_seq_max items per cell.
  405. llama_seq_id * cells_sequences;
  406. };
  407. // Create an empty KV cache view. (use only for debugging purposes)
  408. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  409. // Free a KV cache view. (use only for debugging purposes)
  410. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  411. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  412. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  413. // Returns the number of tokens in the KV cache (slow, use only for debug)
  414. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  415. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  416. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  417. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  418. // Clear the KV cache
  419. LLAMA_API void llama_kv_cache_clear(
  420. struct llama_context * ctx);
  421. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  422. // seq_id < 0 : match any sequence
  423. // p0 < 0 : [0, p1]
  424. // p1 < 0 : [p0, inf)
  425. LLAMA_API bool llama_kv_cache_seq_rm(
  426. struct llama_context * ctx,
  427. llama_seq_id seq_id,
  428. llama_pos p0,
  429. llama_pos p1);
  430. // Copy all tokens that belong to the specified sequence to another sequence
  431. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  432. // p0 < 0 : [0, p1]
  433. // p1 < 0 : [p0, inf)
  434. LLAMA_API void llama_kv_cache_seq_cp(
  435. struct llama_context * ctx,
  436. llama_seq_id seq_id_src,
  437. llama_seq_id seq_id_dst,
  438. llama_pos p0,
  439. llama_pos p1);
  440. // Removes all tokens that do not belong to the specified sequence
  441. LLAMA_API void llama_kv_cache_seq_keep(
  442. struct llama_context * ctx,
  443. llama_seq_id seq_id);
  444. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  445. // If the KV cache is RoPEd, the KV data is updated accordingly:
  446. // - lazily on next llama_decode()
  447. // - explicitly with llama_kv_cache_update()
  448. // p0 < 0 : [0, p1]
  449. // p1 < 0 : [p0, inf)
  450. LLAMA_API void llama_kv_cache_seq_add(
  451. struct llama_context * ctx,
  452. llama_seq_id seq_id,
  453. llama_pos p0,
  454. llama_pos p1,
  455. llama_pos delta);
  456. // Integer division of the positions by factor of `d > 1`
  457. // If the KV cache is RoPEd, the KV data is updated accordingly:
  458. // - lazily on next llama_decode()
  459. // - explicitly with llama_kv_cache_update()
  460. // p0 < 0 : [0, p1]
  461. // p1 < 0 : [p0, inf)
  462. LLAMA_API void llama_kv_cache_seq_div(
  463. struct llama_context * ctx,
  464. llama_seq_id seq_id,
  465. llama_pos p0,
  466. llama_pos p1,
  467. int d);
  468. // Returns the largest position present in the KV cache for the specified sequence
  469. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  470. struct llama_context * ctx,
  471. llama_seq_id seq_id);
  472. // Defragment the KV cache
  473. // This will be applied:
  474. // - lazily on next llama_decode()
  475. // - explicitly with llama_kv_cache_update()
  476. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  477. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  478. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  479. //
  480. // State / sessions
  481. //
  482. // Returns the maximum size in bytes of the state (rng, logits, embedding
  483. // and kv_cache) - will often be smaller after compacting tokens
  484. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  485. // Copies the state to the specified destination address.
  486. // Destination needs to have allocated enough memory.
  487. // Returns the number of bytes copied
  488. LLAMA_API size_t llama_copy_state_data(
  489. struct llama_context * ctx,
  490. uint8_t * dst);
  491. // Set the state reading from the specified address
  492. // Returns the number of bytes read
  493. LLAMA_API size_t llama_set_state_data(
  494. struct llama_context * ctx,
  495. const uint8_t * src);
  496. // Save/load session file
  497. LLAMA_API bool llama_load_session_file(
  498. struct llama_context * ctx,
  499. const char * path_session,
  500. llama_token * tokens_out,
  501. size_t n_token_capacity,
  502. size_t * n_token_count_out);
  503. LLAMA_API bool llama_save_session_file(
  504. struct llama_context * ctx,
  505. const char * path_session,
  506. const llama_token * tokens,
  507. size_t n_token_count);
  508. //
  509. // Decoding
  510. //
  511. // Return batch for single sequence of tokens starting at pos_0
  512. //
  513. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  514. //
  515. LLAMA_API struct llama_batch llama_batch_get_one(
  516. llama_token * tokens,
  517. int32_t n_tokens,
  518. llama_pos pos_0,
  519. llama_seq_id seq_id);
  520. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  521. // Each token can be assigned up to n_seq_max sequence ids
  522. // The batch has to be freed with llama_batch_free()
  523. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  524. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  525. // The rest of the llama_batch members are allocated with size n_tokens
  526. // All members are left uninitialized
  527. LLAMA_API struct llama_batch llama_batch_init(
  528. int32_t n_tokens,
  529. int32_t embd,
  530. int32_t n_seq_max);
  531. // Frees a batch of tokens allocated with llama_batch_init()
  532. LLAMA_API void llama_batch_free(struct llama_batch batch);
  533. // Positive return values does not mean a fatal error, but rather a warning.
  534. // 0 - success
  535. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  536. // < 0 - error
  537. LLAMA_API int32_t llama_decode(
  538. struct llama_context * ctx,
  539. struct llama_batch batch);
  540. // Set the number of threads used for decoding
  541. // n_threads is the number of threads used for generation (single token)
  542. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  543. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  544. // Set whether to use causal attention or not
  545. // If set to true, the model will only attend to the past tokens
  546. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  547. // Set abort callback
  548. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  549. // Wait until all computations are finished
  550. // This is automatically done when using one of the functions below to obtain the computation results
  551. // and is not necessary to call it explicitly in most cases
  552. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  553. // Token logits obtained from the last call to llama_decode()
  554. // The logits for the last token are stored in the last row
  555. // Logits for which llama_batch.logits[i] == 0 are undefined
  556. // Rows: n_tokens provided with llama_batch
  557. // Cols: n_vocab
  558. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  559. // Logits for the ith token. Equivalent to:
  560. // llama_get_logits(ctx) + i*n_vocab
  561. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  562. // Get all output token embeddings
  563. // shape: [n_tokens*n_embd] (1-dimensional)
  564. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  565. // Get the embeddings for the ith token
  566. // llama_get_embeddings(ctx) + i*n_embd
  567. // shape: [n_embd] (1-dimensional)
  568. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  569. // Get the embeddings for a sequence id
  570. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  571. // shape: [n_embd] (1-dimensional)
  572. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  573. //
  574. // Vocab
  575. //
  576. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  577. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  578. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  579. // Special tokens
  580. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  581. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  582. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  583. // Returns -1 if unknown, 1 for true or 0 for false.
  584. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  585. // Returns -1 if unknown, 1 for true or 0 for false.
  586. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  587. // codellama infill tokens
  588. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  589. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  590. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  591. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  592. //
  593. // Tokenization
  594. //
  595. /// @details Convert the provided text into tokens.
  596. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  597. /// @return Returns the number of tokens on success, no more than n_tokens_max
  598. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  599. /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
  600. /// Does not insert a leading space.
  601. LLAMA_API int32_t llama_tokenize(
  602. const struct llama_model * model,
  603. const char * text,
  604. int32_t text_len,
  605. llama_token * tokens,
  606. int32_t n_tokens_max,
  607. bool add_bos,
  608. bool special);
  609. // Token Id -> Piece.
  610. // Uses the vocabulary in the provided context.
  611. // Does not write null terminator to the buffer.
  612. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  613. LLAMA_API int32_t llama_token_to_piece(
  614. const struct llama_model * model,
  615. llama_token token,
  616. char * buf,
  617. int32_t length);
  618. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  619. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  620. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  621. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  622. /// @param chat Pointer to a list of multiple llama_chat_message
  623. /// @param n_msg Number of llama_chat_message in this chat
  624. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  625. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  626. /// @param length The size of the allocated buffer
  627. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  628. LLAMA_API int32_t llama_chat_apply_template(
  629. const struct llama_model * model,
  630. const char * tmpl,
  631. const struct llama_chat_message * chat,
  632. size_t n_msg,
  633. bool add_ass,
  634. char * buf,
  635. int32_t length);
  636. //
  637. // Grammar
  638. //
  639. LLAMA_API struct llama_grammar * llama_grammar_init(
  640. const llama_grammar_element ** rules,
  641. size_t n_rules,
  642. size_t start_rule_index);
  643. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  644. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  645. //
  646. // Sampling functions
  647. //
  648. // Sets the current rng seed.
  649. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  650. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  651. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  652. LLAMA_API void llama_sample_repetition_penalties(
  653. struct llama_context * ctx,
  654. llama_token_data_array * candidates,
  655. const llama_token * last_tokens,
  656. size_t penalty_last_n,
  657. float penalty_repeat,
  658. float penalty_freq,
  659. float penalty_present);
  660. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  661. /// @param logits Logits extracted from the original generation context.
  662. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  663. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  664. LLAMA_API void llama_sample_apply_guidance(
  665. struct llama_context * ctx,
  666. float * logits,
  667. float * logits_guidance,
  668. float scale);
  669. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  670. LLAMA_API void llama_sample_softmax(
  671. struct llama_context * ctx,
  672. llama_token_data_array * candidates);
  673. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  674. LLAMA_API void llama_sample_top_k(
  675. struct llama_context * ctx,
  676. llama_token_data_array * candidates,
  677. int32_t k,
  678. size_t min_keep);
  679. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  680. LLAMA_API void llama_sample_top_p(
  681. struct llama_context * ctx,
  682. llama_token_data_array * candidates,
  683. float p,
  684. size_t min_keep);
  685. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  686. LLAMA_API void llama_sample_min_p(
  687. struct llama_context * ctx,
  688. llama_token_data_array * candidates,
  689. float p,
  690. size_t min_keep);
  691. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  692. LLAMA_API void llama_sample_tail_free(
  693. struct llama_context * ctx,
  694. llama_token_data_array * candidates,
  695. float z,
  696. size_t min_keep);
  697. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  698. LLAMA_API void llama_sample_typical(
  699. struct llama_context * ctx,
  700. llama_token_data_array * candidates,
  701. float p,
  702. size_t min_keep);
  703. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  704. LLAMA_API void llama_sample_entropy(
  705. struct llama_context * ctx,
  706. llama_token_data_array * candidates_p,
  707. float min_temp,
  708. float max_temp,
  709. float exponent_val);
  710. LLAMA_API void llama_sample_temp(
  711. struct llama_context * ctx,
  712. llama_token_data_array * candidates,
  713. float temp);
  714. /// @details Apply constraints from grammar
  715. LLAMA_API void llama_sample_grammar(
  716. struct llama_context * ctx,
  717. llama_token_data_array * candidates,
  718. const struct llama_grammar * grammar);
  719. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  720. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  721. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  722. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  723. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  724. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  725. LLAMA_API llama_token llama_sample_token_mirostat(
  726. struct llama_context * ctx,
  727. llama_token_data_array * candidates,
  728. float tau,
  729. float eta,
  730. int32_t m,
  731. float * mu);
  732. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  733. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  734. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  735. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  736. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  737. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  738. struct llama_context * ctx,
  739. llama_token_data_array * candidates,
  740. float tau,
  741. float eta,
  742. float * mu);
  743. /// @details Selects the token with the highest probability.
  744. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  745. LLAMA_API llama_token llama_sample_token_greedy(
  746. struct llama_context * ctx,
  747. llama_token_data_array * candidates);
  748. /// @details Randomly selects a token from the candidates based on their probabilities.
  749. LLAMA_API llama_token llama_sample_token(
  750. struct llama_context * ctx,
  751. llama_token_data_array * candidates);
  752. /// @details Accepts the sampled token into the grammar
  753. LLAMA_API void llama_grammar_accept_token(
  754. struct llama_context * ctx,
  755. struct llama_grammar * grammar,
  756. llama_token token);
  757. //
  758. // Beam search
  759. //
  760. struct llama_beam_view {
  761. const llama_token * tokens;
  762. size_t n_tokens;
  763. float p; // Cumulative beam probability (renormalized relative to all beams)
  764. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  765. };
  766. // Passed to beam_search_callback function.
  767. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  768. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  769. // These pointers are valid only during the synchronous callback, so should not be saved.
  770. struct llama_beams_state {
  771. struct llama_beam_view * beam_views;
  772. size_t n_beams; // Number of elements in beam_views[].
  773. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  774. bool last_call; // True iff this is the last callback invocation.
  775. };
  776. // Type of pointer to the beam_search_callback function.
  777. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  778. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  779. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  780. /// @details Deterministically returns entire sentence constructed by a beam search.
  781. /// @param ctx Pointer to the llama_context.
  782. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  783. /// @param callback_data A pointer that is simply passed back to callback.
  784. /// @param n_beams Number of beams to use.
  785. /// @param n_past Number of tokens already evaluated.
  786. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  787. LLAMA_API void llama_beam_search(
  788. struct llama_context * ctx,
  789. llama_beam_search_callback_fn_t callback,
  790. void * callback_data,
  791. size_t n_beams,
  792. int32_t n_past,
  793. int32_t n_predict);
  794. // Performance information
  795. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  796. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  797. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  798. // Print system information
  799. LLAMA_API const char * llama_print_system_info(void);
  800. // Set callback for all future logging events.
  801. // If this is not called, or NULL is supplied, everything is output on stderr.
  802. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  803. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  804. #ifdef __cplusplus
  805. }
  806. #endif
  807. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  808. #ifdef LLAMA_API_INTERNAL
  809. #include <vector>
  810. #include <string>
  811. struct ggml_tensor;
  812. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  813. struct llama_context * ctx
  814. );
  815. #endif // LLAMA_API_INTERNAL
  816. #endif // LLAMA_H