convert_hf_to_gguf.py 292 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  261. )
  262. )
  263. or not new_name.endswith(".weight")
  264. ):
  265. data_qtype = gguf.GGMLQuantizationType.F32
  266. if data_qtype is False and any(
  267. self.match_model_tensor_name(new_name, key, bid)
  268. for key in (
  269. gguf.MODEL_TENSOR.TOKEN_EMBD,
  270. gguf.MODEL_TENSOR.OUTPUT,
  271. )
  272. ):
  273. if self.ftype in (
  274. gguf.LlamaFileType.MOSTLY_TQ1_0,
  275. gguf.LlamaFileType.MOSTLY_TQ2_0,
  276. ):
  277. # TODO: use Q4_K and Q6_K
  278. data_qtype = gguf.GGMLQuantizationType.F16
  279. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  280. if isinstance(data_qtype, bool):
  281. if self.ftype == gguf.LlamaFileType.ALL_F32:
  282. data_qtype = gguf.GGMLQuantizationType.F32
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  284. data_qtype = gguf.GGMLQuantizationType.F16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  286. data_qtype = gguf.GGMLQuantizationType.BF16
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  288. data_qtype = gguf.GGMLQuantizationType.Q8_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  292. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  293. else:
  294. raise ValueError(f"Unknown file type: {self.ftype.name}")
  295. try:
  296. data = gguf.quants.quantize(data, data_qtype)
  297. except gguf.QuantError as e:
  298. logger.warning("%s, %s", e, "falling back to F16")
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. data = gguf.quants.quantize(data, data_qtype)
  301. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  302. # reverse shape to make it similar to the internal ggml dimension order
  303. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  304. # n_dims is implicit in the shape
  305. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  306. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  307. def set_type(self):
  308. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  309. def prepare_metadata(self, vocab_only: bool):
  310. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  311. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  312. # If we are using HF model id, set the metadata name to the model id
  313. if self.remote_hf_model_id:
  314. self.metadata.name = self.remote_hf_model_id
  315. # Fallback to model directory name if metadata name is still missing
  316. if self.metadata.name is None:
  317. self.metadata.name = self.dir_model.name
  318. # Generate parameter weight class (useful for leader boards) if not yet determined
  319. if self.metadata.size_label is None and total_params > 0:
  320. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  321. self.set_type()
  322. logger.info("Set meta model")
  323. self.metadata.set_gguf_meta_model(self.gguf_writer)
  324. logger.info("Set model parameters")
  325. self.set_gguf_parameters()
  326. logger.info("Set model quantization version")
  327. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  328. def write_vocab(self):
  329. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  330. def write(self):
  331. self.prepare_tensors()
  332. self.prepare_metadata(vocab_only=False)
  333. self.gguf_writer.write_header_to_file(path=self.fname_out)
  334. self.gguf_writer.write_kv_data_to_file()
  335. self.gguf_writer.write_tensors_to_file(progress=True)
  336. self.gguf_writer.close()
  337. @staticmethod
  338. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  339. part_names: list[str] = []
  340. for filename in os.listdir(dir_model):
  341. if filename.startswith(prefix) and filename.endswith(suffix):
  342. part_names.append(filename)
  343. part_names.sort()
  344. return part_names
  345. @staticmethod
  346. def load_hparams(dir_model: Path):
  347. try:
  348. # for security reason, we don't allow loading remote code by default
  349. # if a model need remote code, we will fallback to config.json
  350. return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  351. except Exception as e:
  352. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  353. logger.warning("Trying to load config.json instead")
  354. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  355. config = json.load(f)
  356. if "llm_config" in config:
  357. # rename for InternVL
  358. config["text_config"] = config["llm_config"]
  359. if "thinker_config" in config:
  360. # rename for Qwen2.5-Omni
  361. config["text_config"] = config["thinker_config"]["text_config"]
  362. return config
  363. @classmethod
  364. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  365. assert names
  366. def func(modelcls: AnyModel) -> AnyModel:
  367. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  368. for name in names:
  369. cls._model_classes[model_type][name] = modelcls
  370. return modelcls
  371. return func
  372. @classmethod
  373. def print_registered_models(cls):
  374. for model_type, model_classes in cls._model_classes.items():
  375. logger.error(f"{model_type.name} models:")
  376. for name in sorted(model_classes.keys()):
  377. logger.error(f" - {name}")
  378. @classmethod
  379. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  380. try:
  381. return cls._model_classes[model_type][arch]
  382. except KeyError:
  383. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  384. class TextModel(ModelBase):
  385. model_type = ModelType.TEXT
  386. hf_arch: str
  387. def __init__(self, *args, **kwargs):
  388. super().__init__(*args, **kwargs)
  389. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  390. if "text_config" in self.hparams:
  391. # move the text_config to the root level
  392. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  393. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  394. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  395. @classmethod
  396. def __init_subclass__(cls):
  397. # can't use an abstract property, because overriding it without type errors
  398. # would require using decorated functions instead of simply defining the property
  399. if "model_arch" not in cls.__dict__:
  400. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  401. def set_vocab(self):
  402. self._set_vocab_gpt2()
  403. def prepare_metadata(self, vocab_only: bool):
  404. super().prepare_metadata(vocab_only=vocab_only)
  405. total_params = self.gguf_writer.get_total_parameter_count()[0]
  406. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  407. output_type: str = self.ftype.name.partition("_")[2]
  408. # Filename Output
  409. if self.fname_out.is_dir():
  410. # Generate default filename based on model specification and available metadata
  411. if not vocab_only:
  412. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  413. else:
  414. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  415. # Use the default filename
  416. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  417. else:
  418. # Output path is a custom defined templated filename
  419. # Note: `not is_dir()` is used because `.is_file()` will not detect
  420. # file template strings as it doesn't actually exist as a file
  421. # Process templated file name with the output ftype, useful with the "auto" ftype
  422. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  423. logger.info("Set model tokenizer")
  424. self.set_vocab()
  425. def set_gguf_parameters(self):
  426. self.gguf_writer.add_block_count(self.block_count)
  427. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
  428. self.gguf_writer.add_context_length(n_ctx)
  429. logger.info(f"gguf: context length = {n_ctx}")
  430. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  431. self.gguf_writer.add_embedding_length(n_embd)
  432. logger.info(f"gguf: embedding length = {n_embd}")
  433. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  434. self.gguf_writer.add_feed_forward_length(n_ff)
  435. logger.info(f"gguf: feed forward length = {n_ff}")
  436. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  437. self.gguf_writer.add_head_count(n_head)
  438. logger.info(f"gguf: head count = {n_head}")
  439. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  440. self.gguf_writer.add_head_count_kv(n_head_kv)
  441. logger.info(f"gguf: key-value head count = {n_head_kv}")
  442. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  443. self.gguf_writer.add_rope_freq_base(rope_theta)
  444. logger.info(f"gguf: rope theta = {rope_theta}")
  445. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  446. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  447. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  448. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  449. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  450. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  451. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  452. self.gguf_writer.add_expert_count(n_experts)
  453. logger.info(f"gguf: expert count = {n_experts}")
  454. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  455. self.gguf_writer.add_expert_used_count(n_experts_used)
  456. logger.info(f"gguf: experts used count = {n_experts_used}")
  457. if (head_dim := self.hparams.get("head_dim")) is not None:
  458. self.gguf_writer.add_key_length(head_dim)
  459. self.gguf_writer.add_value_length(head_dim)
  460. self.gguf_writer.add_file_type(self.ftype)
  461. logger.info(f"gguf: file type = {self.ftype}")
  462. def write_vocab(self):
  463. if len(self.gguf_writer.tensors) != 1:
  464. raise ValueError('Splitting the vocabulary is not supported')
  465. self.prepare_metadata(vocab_only=True)
  466. self.gguf_writer.write_header_to_file(path=self.fname_out)
  467. self.gguf_writer.write_kv_data_to_file()
  468. self.gguf_writer.close()
  469. def does_token_look_special(self, token: str | bytes) -> bool:
  470. if isinstance(token, (bytes, bytearray)):
  471. token_text = token.decode(encoding="utf-8")
  472. elif isinstance(token, memoryview):
  473. token_text = token.tobytes().decode(encoding="utf-8")
  474. else:
  475. token_text = token
  476. # Some models mark some added tokens which ought to be control tokens as not special.
  477. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  478. seems_special = token_text in (
  479. "<pad>", # deepseek-coder
  480. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  481. )
  482. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  483. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  484. # TODO: should these be marked as UNUSED instead? (maybe not)
  485. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  486. return seems_special
  487. # used for GPT-2 BPE and WordPiece vocabs
  488. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  489. tokens: list[str] = []
  490. toktypes: list[int] = []
  491. from transformers import AutoTokenizer
  492. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  493. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  494. assert max(tokenizer.vocab.values()) < vocab_size
  495. tokpre = self.get_vocab_base_pre(tokenizer)
  496. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  497. added_vocab = tokenizer.get_added_vocab()
  498. added_tokens_decoder = tokenizer.added_tokens_decoder
  499. for i in range(vocab_size):
  500. if i not in reverse_vocab:
  501. tokens.append(f"[PAD{i}]")
  502. toktypes.append(gguf.TokenType.UNUSED)
  503. else:
  504. token: str = reverse_vocab[i]
  505. if token in added_vocab:
  506. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  507. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  508. if not added_tokens_decoder[i].normalized:
  509. previous_token = token
  510. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  511. if previous_token != token:
  512. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  513. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  514. toktypes.append(gguf.TokenType.CONTROL)
  515. else:
  516. # NOTE: this was added for Gemma.
  517. # Encoding and decoding the tokens above isn't sufficient for this case.
  518. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  519. toktypes.append(gguf.TokenType.USER_DEFINED)
  520. else:
  521. toktypes.append(gguf.TokenType.NORMAL)
  522. tokens.append(token)
  523. return tokens, toktypes, tokpre
  524. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  525. # do not modify it manually!
  526. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  527. # Marker: Start get_vocab_base_pre
  528. def get_vocab_base_pre(self, tokenizer) -> str:
  529. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  530. # is specific for the BPE pre-tokenizer used by the model
  531. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  532. # use in llama.cpp to implement the same pre-tokenizer
  533. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  534. chktok = tokenizer.encode(chktxt)
  535. chkhsh = sha256(str(chktok).encode()).hexdigest()
  536. logger.debug(f"chktok: {chktok}")
  537. logger.debug(f"chkhsh: {chkhsh}")
  538. res = None
  539. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  540. # or pull the latest version of the model from Huggingface
  541. # don't edit the hashes manually!
  542. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  543. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  544. res = "llama-bpe"
  545. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  546. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  547. res = "deepseek-llm"
  548. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  549. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  550. res = "deepseek-coder"
  551. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  552. # ref: https://huggingface.co/tiiuae/falcon-7b
  553. res = "falcon"
  554. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  555. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  556. res = "falcon3"
  557. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  558. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  559. res = "bert-bge"
  560. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  561. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  562. res = "bert-bge-large"
  563. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  564. # ref: https://huggingface.co/mosaicml/mpt-7b
  565. res = "mpt"
  566. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  567. # ref: https://huggingface.co/bigcode/starcoder2-3b
  568. res = "starcoder"
  569. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  570. # ref: https://huggingface.co/openai-community/gpt2
  571. res = "gpt-2"
  572. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  573. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  574. res = "stablelm2"
  575. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  576. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  577. res = "refact"
  578. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  579. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  580. res = "command-r"
  581. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  582. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  583. res = "qwen2"
  584. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  585. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  586. res = "olmo"
  587. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  588. # ref: https://huggingface.co/databricks/dbrx-base
  589. res = "dbrx"
  590. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  591. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  592. res = "jina-v1-en"
  593. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  594. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  595. res = "jina-v2-en"
  596. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  597. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  598. res = "jina-v2-es"
  599. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  600. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  601. res = "jina-v2-de"
  602. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  603. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  604. res = "smaug-bpe"
  605. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  606. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  607. res = "poro-chat"
  608. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  609. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  610. res = "jina-v2-code"
  611. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  612. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  613. res = "chatglm-bpe"
  614. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  615. # ref: https://huggingface.co/LumiOpen/Viking-7B
  616. res = "viking"
  617. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  618. # ref: https://huggingface.co/core42/jais-13b
  619. res = "jais"
  620. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  621. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  622. res = "codeshell"
  623. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  624. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  625. res = "tekken"
  626. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  627. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  628. res = "smollm"
  629. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  630. # ref: https://huggingface.co/bigscience/bloom
  631. res = "bloom"
  632. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  633. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  634. res = "gpt3-finnish"
  635. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  636. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  637. res = "exaone"
  638. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  639. # ref: https://huggingface.co/microsoft/phi-2
  640. res = "phi-2"
  641. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  642. # ref: https://huggingface.co/facebook/chameleon-7b
  643. res = "chameleon"
  644. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  645. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  646. res = "minerva-7b"
  647. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  648. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  649. res = "roberta-bpe"
  650. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  651. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  652. res = "gigachat"
  653. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  654. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  655. res = "megrez"
  656. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  657. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  658. res = "deepseek-v3"
  659. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  660. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  661. res = "deepseek-r1-qwen"
  662. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  663. # ref: https://huggingface.co/Xenova/gpt-4o
  664. res = "gpt-4o"
  665. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  666. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  667. res = "superbpe"
  668. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  669. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  670. res = "trillion"
  671. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  672. # ref: https://huggingface.co/inclusionAI/Ling-lite
  673. res = "bailingmoe"
  674. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  675. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  676. res = "llama4"
  677. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  678. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  679. res = "glm4"
  680. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  681. # ref: https://huggingface.co/mistral-community/pixtral-12b
  682. res = "pixtral"
  683. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  684. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  685. res = "seed-coder"
  686. if res is None:
  687. logger.warning("\n")
  688. logger.warning("**************************************************************************************")
  689. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  690. logger.warning("** There are 2 possible reasons for this:")
  691. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  692. logger.warning("** - the pre-tokenization config has changed upstream")
  693. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  694. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  695. logger.warning("**")
  696. logger.warning(f"** chkhsh: {chkhsh}")
  697. logger.warning("**************************************************************************************")
  698. logger.warning("\n")
  699. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  700. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  701. logger.debug(f"chkhsh: {chkhsh}")
  702. return res
  703. # Marker: End get_vocab_base_pre
  704. def _set_vocab_none(self) -> None:
  705. self.gguf_writer.add_tokenizer_model("none")
  706. def _set_vocab_gpt2(self) -> None:
  707. tokens, toktypes, tokpre = self.get_vocab_base()
  708. self.gguf_writer.add_tokenizer_model("gpt2")
  709. self.gguf_writer.add_tokenizer_pre(tokpre)
  710. self.gguf_writer.add_token_list(tokens)
  711. self.gguf_writer.add_token_types(toktypes)
  712. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  713. special_vocab.add_to_gguf(self.gguf_writer)
  714. def _set_vocab_qwen(self):
  715. dir_model = self.dir_model
  716. hparams = self.hparams
  717. tokens: list[str] = []
  718. toktypes: list[int] = []
  719. from transformers import AutoTokenizer
  720. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  721. vocab_size = hparams["vocab_size"]
  722. assert max(tokenizer.get_vocab().values()) < vocab_size
  723. tokpre = self.get_vocab_base_pre(tokenizer)
  724. merges = []
  725. vocab = {}
  726. mergeable_ranks = tokenizer.mergeable_ranks
  727. for token, rank in mergeable_ranks.items():
  728. vocab[QwenModel.token_bytes_to_string(token)] = rank
  729. if len(token) == 1:
  730. continue
  731. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  732. assert len(merged) == 2
  733. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  734. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  735. added_vocab = tokenizer.special_tokens
  736. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  737. for i in range(vocab_size):
  738. if i not in reverse_vocab:
  739. tokens.append(f"[PAD{i}]")
  740. toktypes.append(gguf.TokenType.UNUSED)
  741. elif reverse_vocab[i] in added_vocab:
  742. tokens.append(reverse_vocab[i])
  743. toktypes.append(gguf.TokenType.CONTROL)
  744. else:
  745. tokens.append(reverse_vocab[i])
  746. toktypes.append(gguf.TokenType.NORMAL)
  747. self.gguf_writer.add_tokenizer_model("gpt2")
  748. self.gguf_writer.add_tokenizer_pre(tokpre)
  749. self.gguf_writer.add_token_list(tokens)
  750. self.gguf_writer.add_token_types(toktypes)
  751. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  752. special_vocab.merges = merges
  753. # only add special tokens when they were not already loaded from config.json
  754. if len(special_vocab.special_token_ids) == 0:
  755. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  756. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  757. # this one is usually not in config.json anyway
  758. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  759. special_vocab.add_to_gguf(self.gguf_writer)
  760. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  761. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  762. self.gguf_writer.add_tokenizer_model("llama")
  763. self.gguf_writer.add_tokenizer_pre("default")
  764. self.gguf_writer.add_token_list(tokens)
  765. self.gguf_writer.add_token_scores(scores)
  766. self.gguf_writer.add_token_types(toktypes)
  767. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  768. special_vocab.add_to_gguf(self.gguf_writer)
  769. def _create_vocab_sentencepiece(self):
  770. from sentencepiece import SentencePieceProcessor
  771. tokenizer_path = self.dir_model / 'tokenizer.model'
  772. if not tokenizer_path.is_file():
  773. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  774. tokenizer = SentencePieceProcessor()
  775. tokenizer.LoadFromFile(str(tokenizer_path))
  776. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  777. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  778. scores: list[float] = [-10000.0] * vocab_size
  779. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  780. for token_id in range(tokenizer.vocab_size()):
  781. piece = tokenizer.IdToPiece(token_id)
  782. text = piece.encode("utf-8")
  783. score = tokenizer.GetScore(token_id)
  784. toktype = SentencePieceTokenTypes.NORMAL
  785. if tokenizer.IsUnknown(token_id):
  786. toktype = SentencePieceTokenTypes.UNKNOWN
  787. elif tokenizer.IsControl(token_id):
  788. toktype = SentencePieceTokenTypes.CONTROL
  789. elif tokenizer.IsUnused(token_id):
  790. toktype = SentencePieceTokenTypes.UNUSED
  791. elif tokenizer.IsByte(token_id):
  792. toktype = SentencePieceTokenTypes.BYTE
  793. tokens[token_id] = text
  794. scores[token_id] = score
  795. toktypes[token_id] = toktype
  796. added_tokens_file = self.dir_model / 'added_tokens.json'
  797. if added_tokens_file.is_file():
  798. with open(added_tokens_file, "r", encoding="utf-8") as f:
  799. added_tokens_json = json.load(f)
  800. for key in added_tokens_json:
  801. token_id = added_tokens_json[key]
  802. if token_id >= vocab_size:
  803. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  804. continue
  805. tokens[token_id] = key.encode("utf-8")
  806. scores[token_id] = -1000.0
  807. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  808. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  809. if tokenizer_config_file.is_file():
  810. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  811. tokenizer_config_json = json.load(f)
  812. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  813. for token_id, token_data in added_tokens_decoder.items():
  814. token_id = int(token_id)
  815. token: str = token_data["content"]
  816. if token_id >= vocab_size:
  817. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  818. continue
  819. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  820. if tokens[token_id] != token.encode("utf-8"):
  821. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  822. if token_data.get("special") or self.does_token_look_special(token):
  823. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  824. else:
  825. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  826. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  827. scores[token_id] = -1000.0
  828. tokens[token_id] = token.encode("utf-8")
  829. if vocab_size > len(tokens):
  830. pad_count = vocab_size - len(tokens)
  831. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  832. for i in range(1, pad_count + 1):
  833. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  834. scores.append(-1000.0)
  835. toktypes.append(SentencePieceTokenTypes.UNUSED)
  836. return tokens, scores, toktypes
  837. def _set_vocab_llama_hf(self):
  838. vocab = gguf.LlamaHfVocab(self.dir_model)
  839. tokens = []
  840. scores = []
  841. toktypes = []
  842. for text, score, toktype in vocab.all_tokens():
  843. tokens.append(text)
  844. scores.append(score)
  845. toktypes.append(toktype)
  846. assert len(tokens) == vocab.vocab_size
  847. self.gguf_writer.add_tokenizer_model("llama")
  848. self.gguf_writer.add_tokenizer_pre("default")
  849. self.gguf_writer.add_token_list(tokens)
  850. self.gguf_writer.add_token_scores(scores)
  851. self.gguf_writer.add_token_types(toktypes)
  852. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  853. special_vocab.add_to_gguf(self.gguf_writer)
  854. def _set_vocab_rwkv_world(self):
  855. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  856. vocab_size = self.hparams.get("vocab_size", 65536)
  857. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  858. toktypes: list[int] = [gguf.TokenType.CONTROL]
  859. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  860. lines = f.readlines()
  861. for line in lines:
  862. parts = line.split(' ')
  863. assert len(parts) >= 3
  864. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  865. token = token.encode("utf-8") if isinstance(token, str) else token
  866. assert isinstance(token, bytes)
  867. assert len(token) == token_len
  868. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  869. tokens.append(token_text.encode("utf-8"))
  870. toktypes.append(gguf.TokenType.NORMAL)
  871. remainder = vocab_size - len(tokens)
  872. assert remainder >= 0
  873. for i in range(len(tokens), vocab_size):
  874. tokens.append(f"[PAD{i}]".encode("utf-8"))
  875. toktypes.append(gguf.TokenType.UNUSED)
  876. self.gguf_writer.add_tokenizer_model("rwkv")
  877. self.gguf_writer.add_token_list(tokens)
  878. self.gguf_writer.add_token_types(toktypes)
  879. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  880. special_vocab.chat_template = "rwkv-world"
  881. # hack: Add '\n\n' as the EOT token to make it chat normally
  882. special_vocab._set_special_token("eot", 261)
  883. special_vocab.add_to_gguf(self.gguf_writer)
  884. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  885. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  886. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  887. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  888. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  889. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  890. assert field # tokenizer model
  891. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  892. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  893. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  894. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  895. assert field # token list
  896. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  897. if model_name == "llama-spm":
  898. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  899. assert field # token scores
  900. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  901. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  902. assert field # token types
  903. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  904. if model_name != "llama-spm":
  905. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  906. assert field # token merges
  907. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  908. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  909. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  910. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  911. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  912. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  913. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  914. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  915. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  916. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  917. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  918. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  919. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  920. def _try_set_pooling_type(self) -> None:
  921. # get pooling path
  922. pooling_path = None
  923. module_path = self.dir_model / "modules.json"
  924. if module_path.is_file():
  925. with open(module_path, encoding="utf-8") as f:
  926. modules = json.load(f)
  927. for mod in modules:
  928. if mod["type"] == "sentence_transformers.models.Pooling":
  929. pooling_path = mod["path"]
  930. break
  931. # get pooling type
  932. if pooling_path is not None:
  933. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  934. pooling = json.load(f)
  935. if pooling["pooling_mode_mean_tokens"]:
  936. pooling_type = gguf.PoolingType.MEAN
  937. elif pooling["pooling_mode_cls_token"]:
  938. pooling_type = gguf.PoolingType.CLS
  939. elif pooling["pooling_mode_lasttoken"]:
  940. pooling_type = gguf.PoolingType.LAST
  941. else:
  942. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  943. self.gguf_writer.add_pooling_type(pooling_type)
  944. class MmprojModel(ModelBase):
  945. model_type = ModelType.MMPROJ
  946. model_arch = gguf.MODEL_ARCH.MMPROJ
  947. preprocessor_config: dict[str, Any]
  948. global_config: dict[str, Any]
  949. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  950. has_vision_encoder: bool = True # by default
  951. has_audio_encoder: bool = False
  952. # for models having multiple encoders, we need to separate their hparams
  953. hparams_vision: dict[str, Any] | None = None
  954. hparams_audio: dict[str, Any] | None = None
  955. def __init__(self, *args, **kwargs):
  956. super().__init__(*args, **kwargs)
  957. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  958. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  959. # get n_embd of the text model
  960. if "text_config" not in self.hparams:
  961. self.hparams["text_config"] = {}
  962. if "audio_config" not in self.hparams:
  963. self.hparams["audio_config"] = {}
  964. text_config = {**self.hparams, **self.hparams["text_config"]}
  965. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  966. assert self.n_embd_text > 0, "n_embd not found in hparams"
  967. # move vision config to the top level, while preserving the original hparams in global_config
  968. import copy
  969. self.global_config = copy.deepcopy(self.hparams)
  970. self.hparams_vision = self.get_vision_config()
  971. self.hparams_audio = self.get_audio_config()
  972. if self.hparams_vision is None and self.hparams_audio is None:
  973. raise ValueError("vision_config / audio_config not found in hparams")
  974. # for compat with vision-only models
  975. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  976. # TODO @ngxson : this is a hack to support both vision and audio encoders
  977. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  978. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  979. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  980. # load preprocessor config
  981. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  982. self.preprocessor_config = json.load(f)
  983. def get_vision_config(self) -> dict[str, Any] | None:
  984. return self.global_config.get("vision_config")
  985. def get_audio_config(self) -> dict[str, Any] | None:
  986. return self.global_config.get("audio_config")
  987. def set_type(self):
  988. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  989. def set_gguf_parameters(self):
  990. self.gguf_writer.add_file_type(self.ftype)
  991. if self.has_vision_encoder:
  992. self.gguf_writer.add_clip_has_vision_encoder(True)
  993. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  994. # vision config
  995. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  996. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  997. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  998. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  999. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1000. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1001. # preprocessor config
  1002. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1003. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1004. if self.has_audio_encoder:
  1005. self.gguf_writer.add_clip_has_audio_encoder(True)
  1006. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1007. # audio config
  1008. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1009. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1010. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1011. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1012. else:
  1013. raise ValueError("MmprojModel must have either vision or audio encoder")
  1014. def write_vocab(self):
  1015. raise ValueError("MmprojModel does not support vocab writing")
  1016. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1017. assert self.hparams_vision is not None
  1018. return self._find_param(self.hparams_vision, keys, optional)
  1019. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1020. assert self.hparams_audio is not None
  1021. return self._find_param(self.hparams_audio, keys, optional)
  1022. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1023. key = next((k for k in keys if k in obj), None)
  1024. if key is not None:
  1025. return obj[key]
  1026. if optional:
  1027. return None
  1028. raise KeyError(f"could not find any of: {keys}")
  1029. @ModelBase.register("GPTNeoXForCausalLM")
  1030. class GPTNeoXModel(TextModel):
  1031. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1032. def set_gguf_parameters(self):
  1033. block_count = self.hparams["num_hidden_layers"]
  1034. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1035. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1036. self.gguf_writer.add_block_count(block_count)
  1037. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1038. self.gguf_writer.add_rope_dimension_count(
  1039. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1040. )
  1041. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1042. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1043. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1044. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1045. del bid # unused
  1046. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1047. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1048. tensors: list[tuple[str, Tensor]] = []
  1049. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1050. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1051. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1052. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1053. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1054. data_torch = torch.cat(
  1055. (
  1056. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1057. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1058. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1059. ),
  1060. dim=0,
  1061. )
  1062. logger.info("re-format attention.linear_qkv.weight")
  1063. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1064. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1065. data_torch = torch.cat(
  1066. (
  1067. qkv_bias[:, 0, :].reshape((n_embed,)),
  1068. qkv_bias[:, 1, :].reshape((n_embed,)),
  1069. qkv_bias[:, 2, :].reshape((n_embed,)),
  1070. ),
  1071. dim=0,
  1072. )
  1073. logger.info("re-format attention.linear_qkv.bias")
  1074. tensors.append((self.map_tensor_name(name), data_torch))
  1075. return tensors
  1076. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1077. class BloomModel(TextModel):
  1078. model_arch = gguf.MODEL_ARCH.BLOOM
  1079. def set_gguf_parameters(self):
  1080. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1081. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1082. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1083. self.gguf_writer.add_embedding_length(n_embed)
  1084. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1085. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1086. self.gguf_writer.add_head_count(n_head)
  1087. self.gguf_writer.add_head_count_kv(n_head)
  1088. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1089. self.gguf_writer.add_file_type(self.ftype)
  1090. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1091. del bid # unused
  1092. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1093. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1094. name = re.sub(r'transformer\.', '', name)
  1095. tensors: list[tuple[str, Tensor]] = []
  1096. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1097. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1098. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1099. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1100. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1101. data_torch = torch.cat(
  1102. (
  1103. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1104. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1105. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1106. ),
  1107. dim=0,
  1108. )
  1109. logger.info("re-format attention.linear_qkv.weight")
  1110. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1111. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1112. data_torch = torch.cat(
  1113. (
  1114. qkv_bias[:, 0, :].reshape((n_embed,)),
  1115. qkv_bias[:, 1, :].reshape((n_embed,)),
  1116. qkv_bias[:, 2, :].reshape((n_embed,)),
  1117. ),
  1118. dim=0,
  1119. )
  1120. logger.info("re-format attention.linear_qkv.bias")
  1121. tensors.append((self.map_tensor_name(name), data_torch))
  1122. return tensors
  1123. @ModelBase.register("MPTForCausalLM")
  1124. class MPTModel(TextModel):
  1125. model_arch = gguf.MODEL_ARCH.MPT
  1126. def set_vocab(self):
  1127. try:
  1128. self._set_vocab_gpt2()
  1129. except Exception:
  1130. # Fallback for SEA-LION model
  1131. self._set_vocab_sentencepiece()
  1132. self.gguf_writer.add_add_bos_token(False)
  1133. self.gguf_writer.add_pad_token_id(3)
  1134. self.gguf_writer.add_eos_token_id(1)
  1135. self.gguf_writer.add_unk_token_id(0)
  1136. def set_gguf_parameters(self):
  1137. block_count = self.hparams["n_layers"]
  1138. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1139. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1140. self.gguf_writer.add_block_count(block_count)
  1141. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1142. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1143. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1144. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1145. self.gguf_writer.add_layer_norm_eps(1e-5)
  1146. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1147. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1148. if self.hparams["attn_config"]["alibi"]:
  1149. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1150. else:
  1151. self.gguf_writer.add_max_alibi_bias(0.0)
  1152. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1153. del bid # unused
  1154. if "scales" in name:
  1155. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1156. new_name = new_name.replace("scales", "act.scales")
  1157. else:
  1158. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1159. return [(new_name, data_torch)]
  1160. @ModelBase.register("OrionForCausalLM")
  1161. class OrionModel(TextModel):
  1162. model_arch = gguf.MODEL_ARCH.ORION
  1163. def set_vocab(self):
  1164. self._set_vocab_sentencepiece()
  1165. def set_gguf_parameters(self):
  1166. block_count = self.hparams["num_hidden_layers"]
  1167. head_count = self.hparams["num_attention_heads"]
  1168. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1169. ctx_length = 0
  1170. if "max_sequence_length" in self.hparams:
  1171. ctx_length = self.hparams["max_sequence_length"]
  1172. elif "max_position_embeddings" in self.hparams:
  1173. ctx_length = self.hparams["max_position_embeddings"]
  1174. elif "model_max_length" in self.hparams:
  1175. ctx_length = self.hparams["model_max_length"]
  1176. else:
  1177. raise ValueError("gguf: can not find ctx length parameter.")
  1178. self.gguf_writer.add_file_type(self.ftype)
  1179. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1180. self.gguf_writer.add_context_length(ctx_length)
  1181. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1182. self.gguf_writer.add_block_count(block_count)
  1183. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1184. self.gguf_writer.add_head_count(head_count)
  1185. self.gguf_writer.add_head_count_kv(head_count_kv)
  1186. # note: config provides rms norm but it is actually layer norm
  1187. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1188. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1189. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1190. class BaichuanModel(TextModel):
  1191. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1192. def set_vocab(self):
  1193. self._set_vocab_sentencepiece()
  1194. def set_gguf_parameters(self):
  1195. block_count = self.hparams["num_hidden_layers"]
  1196. head_count = self.hparams["num_attention_heads"]
  1197. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1198. ctx_length = 0
  1199. if "max_sequence_length" in self.hparams:
  1200. ctx_length = self.hparams["max_sequence_length"]
  1201. elif "max_position_embeddings" in self.hparams:
  1202. ctx_length = self.hparams["max_position_embeddings"]
  1203. elif "model_max_length" in self.hparams:
  1204. ctx_length = self.hparams["model_max_length"]
  1205. else:
  1206. raise ValueError("gguf: can not find ctx length parameter.")
  1207. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1208. self.gguf_writer.add_context_length(ctx_length)
  1209. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1210. self.gguf_writer.add_block_count(block_count)
  1211. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1212. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1213. self.gguf_writer.add_head_count(head_count)
  1214. self.gguf_writer.add_head_count_kv(head_count_kv)
  1215. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1216. self.gguf_writer.add_file_type(self.ftype)
  1217. rope_scaling = self.hparams.get("rope_scaling") or {}
  1218. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1219. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1220. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1222. head_count = self.hparams["num_attention_heads"]
  1223. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1224. tensors: list[tuple[str, Tensor]] = []
  1225. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1226. logger.info(f"Unpacking and permuting layer {bid}")
  1227. tensors = [
  1228. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1229. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1230. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1231. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1232. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1233. self._reverse_hf_part(data_torch, 2)),
  1234. ]
  1235. else:
  1236. tensors = [(self.map_tensor_name(name), data_torch)]
  1237. return tensors
  1238. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1239. if n_kv_head is not None and n_head != n_kv_head:
  1240. n_head //= n_kv_head
  1241. return (
  1242. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1243. .swapaxes(1, 2)
  1244. .reshape(weights.shape)
  1245. )
  1246. def _reverse_hf_permute_part(
  1247. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1248. ) -> Tensor:
  1249. r = weights.shape[0] // 3
  1250. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1251. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1252. r = weights.shape[0] // 3
  1253. return weights[r * n_part:r * n_part + r, ...]
  1254. @ModelBase.register("XverseForCausalLM")
  1255. class XverseModel(TextModel):
  1256. model_arch = gguf.MODEL_ARCH.XVERSE
  1257. def set_vocab(self):
  1258. assert (self.dir_model / "tokenizer.json").is_file()
  1259. dir_model = self.dir_model
  1260. hparams = self.hparams
  1261. tokens: list[bytes] = []
  1262. toktypes: list[int] = []
  1263. from transformers import AutoTokenizer
  1264. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1265. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1266. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1267. # because vocab_size is the count of items, and indexes start at 0.
  1268. max_vocab_index = max(tokenizer.get_vocab().values())
  1269. if max_vocab_index >= vocab_size:
  1270. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1271. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1272. added_vocab = tokenizer.get_added_vocab()
  1273. for token_id in range(vocab_size):
  1274. token_text = reverse_vocab[token_id].encode('utf-8')
  1275. # replace "\x00" to string with length > 0
  1276. if token_text == b"\x00":
  1277. toktype = gguf.TokenType.BYTE # special
  1278. token_text = f"<{token_text}>".encode('utf-8')
  1279. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1280. toktype = gguf.TokenType.BYTE # special
  1281. elif reverse_vocab[token_id] in added_vocab:
  1282. if tokenizer.added_tokens_decoder[token_id].special:
  1283. toktype = gguf.TokenType.CONTROL
  1284. else:
  1285. toktype = gguf.TokenType.USER_DEFINED
  1286. else:
  1287. toktype = gguf.TokenType.NORMAL
  1288. tokens.append(token_text)
  1289. toktypes.append(toktype)
  1290. self.gguf_writer.add_tokenizer_model("llama")
  1291. self.gguf_writer.add_tokenizer_pre("default")
  1292. self.gguf_writer.add_token_list(tokens)
  1293. self.gguf_writer.add_token_types(toktypes)
  1294. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1295. special_vocab.add_to_gguf(self.gguf_writer)
  1296. def set_gguf_parameters(self):
  1297. block_count = self.hparams["num_hidden_layers"]
  1298. head_count = self.hparams["num_attention_heads"]
  1299. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1300. ctx_length = 0
  1301. if "max_sequence_length" in self.hparams:
  1302. ctx_length = self.hparams["max_sequence_length"]
  1303. elif "max_position_embeddings" in self.hparams:
  1304. ctx_length = self.hparams["max_position_embeddings"]
  1305. elif "model_max_length" in self.hparams:
  1306. ctx_length = self.hparams["model_max_length"]
  1307. else:
  1308. raise ValueError("gguf: can not find ctx length parameter.")
  1309. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1310. self.gguf_writer.add_context_length(ctx_length)
  1311. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1312. self.gguf_writer.add_block_count(block_count)
  1313. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1314. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1315. self.gguf_writer.add_head_count(head_count)
  1316. self.gguf_writer.add_head_count_kv(head_count_kv)
  1317. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1318. self.gguf_writer.add_file_type(self.ftype)
  1319. rope_scaling = self.hparams.get("rope_scaling") or {}
  1320. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1321. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1322. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1324. del bid # unused
  1325. head_count = self.hparams["num_attention_heads"]
  1326. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1327. # HF models permute some of the tensors, so we need to undo that
  1328. if name.endswith("q_proj.weight"):
  1329. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1330. if name.endswith("k_proj.weight"):
  1331. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1332. return [(self.map_tensor_name(name), data_torch)]
  1333. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1334. if n_kv_head is not None and n_head != n_kv_head:
  1335. n_head //= n_kv_head
  1336. return (
  1337. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1338. .swapaxes(1, 2)
  1339. .reshape(weights.shape)
  1340. )
  1341. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1342. class FalconModel(TextModel):
  1343. model_arch = gguf.MODEL_ARCH.FALCON
  1344. def set_gguf_parameters(self):
  1345. block_count = self.hparams.get("num_hidden_layers")
  1346. if block_count is None:
  1347. block_count = self.hparams["n_layer"] # old name
  1348. n_head = self.hparams.get("num_attention_heads")
  1349. if n_head is None:
  1350. n_head = self.hparams["n_head"] # old name
  1351. n_head_kv = self.hparams.get("num_kv_heads")
  1352. if n_head_kv is None:
  1353. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1354. self.gguf_writer.add_context_length(2048) # not in config.json
  1355. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1356. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1357. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1358. self.gguf_writer.add_block_count(block_count)
  1359. self.gguf_writer.add_head_count(n_head)
  1360. self.gguf_writer.add_head_count_kv(n_head_kv)
  1361. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1362. self.gguf_writer.add_file_type(self.ftype)
  1363. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1364. del bid # unused
  1365. # QKV tensor transform
  1366. # The original query_key_value tensor contains n_head_kv "kv groups",
  1367. # each consisting of n_head/n_head_kv query weights followed by one key
  1368. # and one value weight (shared by all query heads in the kv group).
  1369. # This layout makes it a big pain to work with in GGML.
  1370. # So we rearrange them here,, so that we have n_head query weights
  1371. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1372. # in contiguous fashion.
  1373. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1374. if "query_key_value" in name:
  1375. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1376. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1377. head_dim = self.hparams["hidden_size"] // n_head
  1378. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1379. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1380. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1381. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1382. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1383. return [(self.map_tensor_name(name), data_torch)]
  1384. @ModelBase.register("GPTBigCodeForCausalLM")
  1385. class StarCoderModel(TextModel):
  1386. model_arch = gguf.MODEL_ARCH.STARCODER
  1387. def set_gguf_parameters(self):
  1388. block_count = self.hparams["n_layer"]
  1389. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1390. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1391. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1392. self.gguf_writer.add_block_count(block_count)
  1393. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1394. self.gguf_writer.add_head_count_kv(1)
  1395. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1396. self.gguf_writer.add_file_type(self.ftype)
  1397. @ModelBase.register("GPTRefactForCausalLM")
  1398. class RefactModel(TextModel):
  1399. model_arch = gguf.MODEL_ARCH.REFACT
  1400. def set_vocab(self):
  1401. super().set_vocab()
  1402. # TODO: how to determine special FIM tokens automatically?
  1403. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1404. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1405. special_vocab._set_special_token("prefix", 1)
  1406. special_vocab._set_special_token("suffix", 3)
  1407. special_vocab._set_special_token("middle", 2)
  1408. special_vocab.chat_template = None # do not add it twice
  1409. special_vocab.add_to_gguf(self.gguf_writer)
  1410. def set_gguf_parameters(self):
  1411. hidden_dim = self.hparams["n_embd"]
  1412. inner_dim = 4 * hidden_dim
  1413. hidden_dim = int(2 * inner_dim / 3)
  1414. multiple_of = 256
  1415. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1416. block_count = self.hparams["n_layer"]
  1417. # refact uses Alibi. So this is from config.json which might be used by training.
  1418. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1419. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1420. self.gguf_writer.add_feed_forward_length(ff_dim)
  1421. self.gguf_writer.add_block_count(block_count)
  1422. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1423. self.gguf_writer.add_head_count_kv(1)
  1424. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1425. self.gguf_writer.add_file_type(self.ftype)
  1426. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1427. hidden_dim = self.hparams["n_embd"]
  1428. inner_dim = 4 * hidden_dim
  1429. hidden_dim = int(2 * inner_dim / 3)
  1430. multiple_of = 256
  1431. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1432. n_head = self.hparams["n_head"]
  1433. n_head_kv = 1
  1434. head_dim = self.hparams["n_embd"] // n_head
  1435. tensors: list[tuple[str, Tensor]] = []
  1436. if bid is not None:
  1437. if name == f"transformer.h.{bid}.attn.kv.weight":
  1438. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1439. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1440. elif name == f"transformer.h.{bid}.attn.q.weight":
  1441. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1442. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1443. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1444. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1445. if len(tensors) == 0:
  1446. tensors.append((self.map_tensor_name(name), data_torch))
  1447. return tensors
  1448. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1449. class StableLMModel(TextModel):
  1450. model_arch = gguf.MODEL_ARCH.STABLELM
  1451. def set_vocab(self):
  1452. if (self.dir_model / "tokenizer.json").is_file():
  1453. self._set_vocab_gpt2()
  1454. else:
  1455. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1456. self._set_vocab_qwen()
  1457. def set_gguf_parameters(self):
  1458. hparams = self.hparams
  1459. block_count = hparams["num_hidden_layers"]
  1460. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1461. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1462. self.gguf_writer.add_block_count(block_count)
  1463. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1464. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1465. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1466. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1467. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1468. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1469. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1470. self.gguf_writer.add_file_type(self.ftype)
  1471. _q_norms: list[dict[str, Tensor]] | None = None
  1472. _k_norms: list[dict[str, Tensor]] | None = None
  1473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1474. n_head = self.hparams["num_attention_heads"]
  1475. n_kv_head = self.hparams["num_key_value_heads"]
  1476. if name.find("q_layernorm.norms") != -1:
  1477. assert bid is not None
  1478. if self._q_norms is None:
  1479. self._q_norms = [{} for _ in range(self.block_count)]
  1480. self._q_norms[bid][name] = data_torch
  1481. if len(self._q_norms[bid]) >= n_head:
  1482. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1483. else:
  1484. return []
  1485. if name.find("k_layernorm.norms") != -1:
  1486. assert bid is not None
  1487. if self._k_norms is None:
  1488. self._k_norms = [{} for _ in range(self.block_count)]
  1489. self._k_norms[bid][name] = data_torch
  1490. if len(self._k_norms[bid]) >= n_kv_head:
  1491. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1492. else:
  1493. return []
  1494. return [(self.map_tensor_name(name), data_torch)]
  1495. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1496. datas: list[Tensor] = []
  1497. # extract the norms in order
  1498. for xid in range(n_head):
  1499. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1500. datas.append(norms[ename])
  1501. del norms[ename]
  1502. data_torch = torch.stack(datas, dim=0)
  1503. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1504. new_name = self.map_tensor_name(merged_name)
  1505. return [(new_name, data_torch)]
  1506. def prepare_tensors(self):
  1507. super().prepare_tensors()
  1508. if self._q_norms is not None or self._k_norms is not None:
  1509. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1510. norms = (
  1511. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1512. ) + (
  1513. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1514. )
  1515. if len(norms) > 0:
  1516. raise ValueError(f"Unprocessed norms: {norms}")
  1517. @ModelBase.register(
  1518. "LLaMAForCausalLM",
  1519. "LlamaForCausalLM",
  1520. "MistralForCausalLM",
  1521. "MixtralForCausalLM",
  1522. "VLlama3ForCausalLM",
  1523. "LlavaForConditionalGeneration")
  1524. class LlamaModel(TextModel):
  1525. model_arch = gguf.MODEL_ARCH.LLAMA
  1526. undo_permute = True
  1527. def __init__(self, *args, **kwargs):
  1528. super().__init__(*args, **kwargs)
  1529. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1530. if self.hf_arch == "VLlama3ForCausalLM":
  1531. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1532. def set_vocab(self):
  1533. try:
  1534. self._set_vocab_sentencepiece()
  1535. except FileNotFoundError:
  1536. try:
  1537. self._set_vocab_llama_hf()
  1538. except (FileNotFoundError, TypeError):
  1539. # Llama 3
  1540. self._set_vocab_gpt2()
  1541. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1542. if self.hparams.get("vocab_size", 32000) == 32016:
  1543. special_vocab = gguf.SpecialVocab(
  1544. self.dir_model, load_merges=False,
  1545. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1546. )
  1547. special_vocab._set_special_token("prefix", 32007)
  1548. special_vocab._set_special_token("suffix", 32008)
  1549. special_vocab._set_special_token("middle", 32009)
  1550. special_vocab._set_special_token("eot", 32010)
  1551. special_vocab.add_to_gguf(self.gguf_writer)
  1552. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1553. if tokenizer_config_file.is_file():
  1554. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1555. tokenizer_config_json = json.load(f)
  1556. if "add_prefix_space" in tokenizer_config_json:
  1557. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1558. # Apply to granite small models only
  1559. if self.hparams.get("vocab_size", 32000) == 49152:
  1560. self.gguf_writer.add_add_bos_token(False)
  1561. def set_gguf_parameters(self):
  1562. super().set_gguf_parameters()
  1563. hparams = self.hparams
  1564. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1565. if "head_dim" in hparams:
  1566. rope_dim = hparams["head_dim"]
  1567. else:
  1568. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1569. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1570. rope_scaling = self.hparams.get("rope_scaling") or {}
  1571. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1572. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1573. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1574. @staticmethod
  1575. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1576. if n_head_kv is not None and n_head != n_head_kv:
  1577. n_head = n_head_kv
  1578. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1579. .swapaxes(1, 2)
  1580. .reshape(weights.shape))
  1581. _experts: list[dict[str, Tensor]] | None = None
  1582. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1583. n_head = self.hparams["num_attention_heads"]
  1584. n_kv_head = self.hparams.get("num_key_value_heads")
  1585. is_vision_tensor = "vision_tower" in name \
  1586. or "vision_model" in name \
  1587. or "model.connector" in name \
  1588. or "multi_modal_projector" in name
  1589. if is_vision_tensor:
  1590. return [] # skip vision tensors
  1591. elif name.startswith("model.text_model"):
  1592. name = name.replace("text_model.", "") # for SmolVLM
  1593. elif name.startswith("language_model."):
  1594. name = name.replace("language_model.", "") # for the rest
  1595. if self.undo_permute:
  1596. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1597. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1598. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1599. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1600. # process the experts separately
  1601. if name.find("block_sparse_moe.experts") != -1:
  1602. n_experts = self.hparams["num_local_experts"]
  1603. assert bid is not None
  1604. if self._experts is None:
  1605. self._experts = [{} for _ in range(self.block_count)]
  1606. self._experts[bid][name] = data_torch
  1607. if len(self._experts[bid]) >= n_experts * 3:
  1608. tensors: list[tuple[str, Tensor]] = []
  1609. # merge the experts into a single 3d tensor
  1610. for wid in ["w1", "w2", "w3"]:
  1611. datas: list[Tensor] = []
  1612. for xid in range(n_experts):
  1613. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1614. datas.append(self._experts[bid][ename])
  1615. del self._experts[bid][ename]
  1616. data_torch = torch.stack(datas, dim=0)
  1617. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1618. new_name = self.map_tensor_name(merged_name)
  1619. tensors.append((new_name, data_torch))
  1620. return tensors
  1621. else:
  1622. return []
  1623. return [(self.map_tensor_name(name), data_torch)]
  1624. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1625. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1626. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1627. base = self.hparams.get("rope_theta", 10000.0)
  1628. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1629. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1630. factor = rope_scaling.get("factor", 8.0)
  1631. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1632. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1633. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1634. low_freq_wavelen = old_context_len / low_freq_factor
  1635. high_freq_wavelen = old_context_len / high_freq_factor
  1636. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1637. rope_factors = []
  1638. for freq in freqs:
  1639. wavelen = 2 * math.pi / freq
  1640. if wavelen < high_freq_wavelen:
  1641. rope_factors.append(1)
  1642. elif wavelen > low_freq_wavelen:
  1643. rope_factors.append(factor)
  1644. else:
  1645. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1646. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1647. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1648. def prepare_tensors(self):
  1649. super().prepare_tensors()
  1650. if self._experts is not None:
  1651. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1652. experts = [k for d in self._experts for k in d.keys()]
  1653. if len(experts) > 0:
  1654. raise ValueError(f"Unprocessed experts: {experts}")
  1655. @ModelBase.register(
  1656. "LlavaForConditionalGeneration", # pixtral
  1657. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1658. )
  1659. class LlavaVisionModel(MmprojModel):
  1660. img_break_tok_id = -1
  1661. def __init__(self, *args, **kwargs):
  1662. super().__init__(*args, **kwargs)
  1663. if self.hparams["model_type"] == "pixtral":
  1664. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1665. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1666. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1667. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1668. else:
  1669. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1670. def get_token_id(self, token: str) -> int:
  1671. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1672. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1673. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1674. for id_, token_data in added_tokens_decoder.items():
  1675. if token_data["content"] == token:
  1676. return int(id_)
  1677. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1678. def set_gguf_parameters(self):
  1679. super().set_gguf_parameters()
  1680. hparams = self.hparams
  1681. if hparams["model_type"] == "pixtral":
  1682. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1683. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1684. # hidden_act
  1685. if hparams["hidden_act"] == "silu":
  1686. self.gguf_writer.add_vision_use_silu(True)
  1687. elif hparams["hidden_act"] == "gelu":
  1688. self.gguf_writer.add_vision_use_gelu(True)
  1689. else:
  1690. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1691. # spatial_merge_size
  1692. if "spatial_merge_size" in self.global_config:
  1693. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1694. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1695. del bid # unused
  1696. n_head = self.hparams["num_attention_heads"]
  1697. n_kv_head = n_head
  1698. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1699. # process vision tensors
  1700. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1701. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1702. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1703. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1704. return [(self.map_tensor_name(name), data_torch)]
  1705. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1706. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1707. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1708. img_break_embd = data_torch[self.img_break_tok_id]
  1709. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1710. return [(self.map_tensor_name(name), img_break_embd)]
  1711. return [] # skip other tensors
  1712. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1713. class SmolVLMModel(MmprojModel):
  1714. def __init__(self, *args, **kwargs):
  1715. super().__init__(*args, **kwargs)
  1716. if self.hparams["model_type"] == "smolvlm_vision":
  1717. # fix for SmolVLM2, missing some keys in config.json
  1718. # default values are taken from transformers code
  1719. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1720. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1721. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1722. def set_gguf_parameters(self):
  1723. super().set_gguf_parameters()
  1724. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1725. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1726. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1727. self.gguf_writer.add_vision_use_gelu(True)
  1728. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1729. del bid, new_name, n_dims # unused
  1730. if ".embeddings." in name:
  1731. return gguf.GGMLQuantizationType.F32
  1732. return False
  1733. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1734. del bid # unused
  1735. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1736. if is_vision_tensor:
  1737. return [(self.map_tensor_name(name), data_torch)]
  1738. return [] # skip other tensors
  1739. @ModelBase.register("Llama4ForConditionalGeneration")
  1740. class Llama4Model(LlamaModel):
  1741. model_arch = gguf.MODEL_ARCH.LLAMA4
  1742. undo_permute = False
  1743. def __init__(self, *args, **kwargs):
  1744. super().__init__(*args, **kwargs)
  1745. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1746. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1747. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1748. def set_vocab(self):
  1749. self._set_vocab_gpt2()
  1750. self.gguf_writer.add_add_bos_token(True)
  1751. def set_gguf_parameters(self):
  1752. super().set_gguf_parameters()
  1753. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1754. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1756. if name.startswith("language_model."):
  1757. name = name.replace("language_model.", "")
  1758. # split the gate_up into gate and up
  1759. if "gate_up_proj" in name:
  1760. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1761. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1762. dim_half = data_torch.shape[-1] // 2
  1763. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1764. return [
  1765. (self.map_tensor_name(name_gate), gate_proj_weight),
  1766. (self.map_tensor_name(name_up), up_proj_weight)
  1767. ]
  1768. if name.endswith("down_proj"):
  1769. name += ".weight"
  1770. data_torch = data_torch.transpose(-1, -2)
  1771. if "multi_modal_projector" in name or "vision_model" in name:
  1772. return []
  1773. return super().modify_tensors(data_torch, name, bid)
  1774. @ModelBase.register("Llama4ForConditionalGeneration")
  1775. class Llama4VisionModel(MmprojModel):
  1776. def set_gguf_parameters(self):
  1777. super().set_gguf_parameters()
  1778. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1779. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1780. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1781. assert self.hparams["hidden_act"] == "gelu"
  1782. self.gguf_writer.add_vision_use_gelu(True)
  1783. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1784. del bid # unused
  1785. if "multi_modal_projector" in name or "vision_model" in name:
  1786. # process vision tensors
  1787. if "positional_embedding_vlm" in name and ".weight" not in name:
  1788. name += ".weight"
  1789. return [(self.map_tensor_name(name), data_torch)]
  1790. return []
  1791. @ModelBase.register("Mistral3ForConditionalGeneration")
  1792. class Mistral3Model(LlamaModel):
  1793. model_arch = gguf.MODEL_ARCH.LLAMA
  1794. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1795. name = name.replace("language_model.", "")
  1796. if "multi_modal_projector" in name or "vision_tower" in name:
  1797. return []
  1798. return super().modify_tensors(data_torch, name, bid)
  1799. @ModelBase.register("DeciLMForCausalLM")
  1800. class DeciModel(TextModel):
  1801. model_arch = gguf.MODEL_ARCH.DECI
  1802. @staticmethod
  1803. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1804. # DeciLM-specific code
  1805. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1806. return DeciModel._find_multiple(intermediate_size, 256)
  1807. @staticmethod
  1808. def _find_multiple(n: int, k: int) -> int:
  1809. # DeciLM-specific code
  1810. if n % k == 0:
  1811. return n
  1812. return n + k - (n % k)
  1813. def __init__(self, *args, **kwargs):
  1814. super().__init__(*args, **kwargs)
  1815. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1816. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1817. assert self.block_count == len(_block_configs)
  1818. self._num_kv_heads = list()
  1819. self._num_heads = list()
  1820. _ffn_multipliers = list()
  1821. # ***linear attention layer***
  1822. # if n_heads_in_group is None and replace_with_linear is True
  1823. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1824. # ***attention-free layer***
  1825. # if n_heads_in_group is None and replace_with_linear is False
  1826. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1827. # ***normal attention-layer***
  1828. # if n_heads_in_group is not None, then
  1829. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1830. # _num_heads[il] is num_attention_head
  1831. # ***dummy layer*** for nemotron 253B
  1832. # if n_heads_in_group is None and ffn_mult is None
  1833. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1834. for il in range(len(_block_configs)):
  1835. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1836. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1837. self._num_kv_heads.append(0)
  1838. self._num_heads.append(self.hparams["num_attention_heads"])
  1839. else:
  1840. self._num_kv_heads.append(0)
  1841. self._num_heads.append(0)
  1842. else:
  1843. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1844. self._num_heads.append(self.hparams["num_attention_heads"])
  1845. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1846. _ffn_multipliers.append(0.0)
  1847. else:
  1848. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1849. assert self.block_count == len(self._num_kv_heads)
  1850. assert self.block_count == len(self._num_heads)
  1851. assert self.block_count == len(_ffn_multipliers)
  1852. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1853. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1854. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1855. self._ffn_dims: list[int] = [
  1856. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1857. for multiplier in _ffn_multipliers
  1858. ]
  1859. def set_vocab(self):
  1860. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1861. # eos_token from '|eot_id|' to '|end_of_text|'
  1862. if self.hparams.get("vocab_size", 128256) == 128256:
  1863. tokens, toktypes, tokpre = self.get_vocab_base()
  1864. self.gguf_writer.add_tokenizer_model("gpt2")
  1865. self.gguf_writer.add_tokenizer_pre(tokpre)
  1866. self.gguf_writer.add_token_list(tokens)
  1867. self.gguf_writer.add_token_types(toktypes)
  1868. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1869. special_vocab.add_to_gguf(self.gguf_writer)
  1870. else:
  1871. # DeciLM-7B
  1872. self._set_vocab_llama_hf()
  1873. def set_gguf_parameters(self):
  1874. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1875. assert self.block_count == len(self._num_kv_heads)
  1876. assert self.block_count == len(self._num_heads)
  1877. assert self.block_count == len(self._ffn_dims)
  1878. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1879. self.gguf_writer.add_rope_freq_base(rope_theta)
  1880. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1881. self.gguf_writer.add_head_count(self._num_heads)
  1882. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1883. self.gguf_writer.add_block_count(self.block_count)
  1884. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1885. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1886. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1887. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1888. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1889. self.gguf_writer.add_file_type(self.ftype)
  1890. else: # DeciLM-7B
  1891. super().set_gguf_parameters()
  1892. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1893. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1894. assert self.block_count == len(self._num_kv_heads)
  1895. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1896. hparams = self.hparams
  1897. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1898. if "head_dim" in hparams:
  1899. rope_dim = hparams["head_dim"]
  1900. else:
  1901. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1902. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1903. rope_scaling = self.hparams.get("rope_scaling") or {}
  1904. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1905. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1906. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1907. @staticmethod
  1908. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1909. if n_head_kv is not None and n_head != n_head_kv:
  1910. n_head = n_head_kv
  1911. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1912. .swapaxes(1, 2)
  1913. .reshape(weights.shape))
  1914. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1915. n_head = self.hparams["num_attention_heads"]
  1916. if bid is not None:
  1917. if "num_key_value_heads_per_layer" in self.hparams:
  1918. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1919. elif "block_configs" in self.hparams:
  1920. n_kv_head = self._num_kv_heads[bid]
  1921. n_head = self._num_heads[bid]
  1922. else:
  1923. n_kv_head = self.hparams.get("num_key_value_heads")
  1924. else:
  1925. n_kv_head = self.hparams.get("num_key_value_heads")
  1926. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1927. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1928. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1929. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1930. return [(self.map_tensor_name(name), data_torch)]
  1931. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1932. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1933. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1934. base = self.hparams.get("rope_theta", 10000.0)
  1935. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1936. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1937. factor = rope_scaling.get("factor", 8.0)
  1938. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1939. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1940. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1941. low_freq_wavelen = old_context_len / low_freq_factor
  1942. high_freq_wavelen = old_context_len / high_freq_factor
  1943. assert low_freq_wavelen != high_freq_wavelen
  1944. rope_factors = []
  1945. for freq in freqs:
  1946. wavelen = 2 * math.pi / freq
  1947. if wavelen < high_freq_wavelen:
  1948. rope_factors.append(1)
  1949. elif wavelen > low_freq_wavelen:
  1950. rope_factors.append(factor)
  1951. else:
  1952. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1953. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1954. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1955. def prepare_tensors(self):
  1956. super().prepare_tensors()
  1957. @ModelBase.register("BitnetForCausalLM")
  1958. class BitnetModel(TextModel):
  1959. model_arch = gguf.MODEL_ARCH.BITNET
  1960. def set_vocab(self):
  1961. self._set_vocab_sentencepiece()
  1962. def set_gguf_parameters(self):
  1963. super().set_gguf_parameters()
  1964. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1965. self.gguf_writer.add_rope_scaling_factor(1.0)
  1966. def weight_quant(self, weight: Tensor) -> Tensor:
  1967. dtype = weight.dtype
  1968. weight = weight.float()
  1969. scale = weight.abs().mean().clamp(min=1e-5)
  1970. iscale = 1 / scale
  1971. # TODO: multiply by the scale directly instead of inverting it twice
  1972. # (this is also unnecessarily doubly inverted upstream)
  1973. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1974. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1975. return result.type(dtype)
  1976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1977. new_name = self.map_tensor_name(name)
  1978. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1979. gguf.MODEL_TENSOR.ATTN_Q,
  1980. gguf.MODEL_TENSOR.ATTN_K,
  1981. gguf.MODEL_TENSOR.ATTN_V,
  1982. gguf.MODEL_TENSOR.ATTN_OUT,
  1983. gguf.MODEL_TENSOR.FFN_UP,
  1984. gguf.MODEL_TENSOR.FFN_DOWN,
  1985. gguf.MODEL_TENSOR.FFN_GATE,
  1986. ]):
  1987. # transform weight into 1/0/-1 (in fp32)
  1988. data_torch = self.weight_quant(data_torch)
  1989. yield (new_name, data_torch)
  1990. @ModelBase.register("GrokForCausalLM")
  1991. class GrokModel(TextModel):
  1992. model_arch = gguf.MODEL_ARCH.GROK
  1993. def set_vocab(self):
  1994. self._set_vocab_sentencepiece()
  1995. def __init__(self, *args, **kwargs):
  1996. super().__init__(*args, **kwargs)
  1997. def set_gguf_parameters(self):
  1998. super().set_gguf_parameters()
  1999. _experts: list[dict[str, Tensor]] | None = None
  2000. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2001. # process the experts separately
  2002. if name.find(".moe.") != -1:
  2003. n_experts = self.hparams["num_local_experts"]
  2004. assert bid is not None
  2005. if self._experts is None:
  2006. self._experts = [{} for _ in range(self.block_count)]
  2007. self._experts[bid][name] = data_torch
  2008. if len(self._experts[bid]) >= n_experts * 3:
  2009. tensors: list[tuple[str, Tensor]] = []
  2010. # merge the experts into a single 3d tensor
  2011. for wid in ["linear", "linear_1", "linear_v"]:
  2012. datas: list[Tensor] = []
  2013. for xid in range(n_experts):
  2014. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2015. datas.append(self._experts[bid][ename])
  2016. del self._experts[bid][ename]
  2017. data_torch = torch.stack(datas, dim=0)
  2018. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2019. new_name = self.map_tensor_name(merged_name)
  2020. tensors.append((new_name, data_torch))
  2021. return tensors
  2022. else:
  2023. return []
  2024. return [(self.map_tensor_name(name), data_torch)]
  2025. @ModelBase.register("DbrxForCausalLM")
  2026. class DbrxModel(TextModel):
  2027. model_arch = gguf.MODEL_ARCH.DBRX
  2028. def set_gguf_parameters(self):
  2029. ffn_config = self.hparams["ffn_config"]
  2030. attn_config = self.hparams["attn_config"]
  2031. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2032. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2033. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2034. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2035. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2036. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2037. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2038. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2039. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2040. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2041. self.gguf_writer.add_layer_norm_eps(1e-5)
  2042. self.gguf_writer.add_file_type(self.ftype)
  2043. logger.info(f"gguf: file type = {self.ftype}")
  2044. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2045. del bid # unused
  2046. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2047. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2048. n_embd = self.hparams["d_model"]
  2049. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2050. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2051. # But llama.cpp moe graph works differently
  2052. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2053. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2054. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2055. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2056. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2057. experts = False
  2058. for exp_tensor_name in exp_tensor_names.keys():
  2059. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2060. experts = True
  2061. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2062. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2063. data_torch = data_torch.permute(*permute_tensor)
  2064. break
  2065. # map tensor names
  2066. # In MoE models the ffn tensors are typically most of the model weights,
  2067. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2068. # Every other model has the weight names ending in .weight,
  2069. # let's assume that is the convention which is not the case for dbrx:
  2070. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2071. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2072. return [(new_name, data_torch)]
  2073. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2074. del name, new_name, bid # unused
  2075. return n_dims > 1
  2076. @ModelBase.register("MiniCPMForCausalLM")
  2077. class MiniCPMModel(TextModel):
  2078. model_arch = gguf.MODEL_ARCH.MINICPM
  2079. def set_gguf_parameters(self):
  2080. super().set_gguf_parameters()
  2081. embedding_scale = float(self.hparams["scale_emb"])
  2082. self.gguf_writer.add_embedding_scale(embedding_scale)
  2083. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2084. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2085. self.gguf_writer.add_residual_scale(residual_scale)
  2086. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2087. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2088. self.gguf_writer.add_logit_scale(logit_scale)
  2089. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2090. rope_scaling = self.hparams.get("rope_scaling") or {}
  2091. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2092. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2093. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2094. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2095. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2096. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2097. if rope_scaling is not None:
  2098. long_factors = rope_scaling.get('long_factor', None)
  2099. short_factors = rope_scaling.get('short_factor', None)
  2100. if long_factors is None or short_factors is None:
  2101. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2102. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2103. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2104. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2105. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2106. def set_vocab(self):
  2107. self._set_vocab_sentencepiece()
  2108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2109. del bid # unused
  2110. n_head = self.hparams["num_attention_heads"]
  2111. n_kv_head = self.hparams.get("num_key_value_heads")
  2112. # HF models permute some of the tensors, so we need to undo that
  2113. if name.endswith(("q_proj.weight")):
  2114. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2115. if name.endswith(("k_proj.weight")):
  2116. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2117. return [(self.map_tensor_name(name), data_torch)]
  2118. @ModelBase.register("MiniCPM3ForCausalLM")
  2119. class MiniCPM3Model(TextModel):
  2120. model_arch = gguf.MODEL_ARCH.MINICPM3
  2121. def set_gguf_parameters(self):
  2122. hparams = self.hparams
  2123. self.gguf_writer.add_file_type(self.ftype)
  2124. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2125. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2126. self.gguf_writer.add_block_count(self.block_count)
  2127. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2128. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2129. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2130. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2131. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2132. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2133. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2134. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2135. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2136. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2137. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2138. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2139. if rope_scaling is not None:
  2140. rope_dims = self.hparams["qk_rope_head_dim"]
  2141. long_factors = rope_scaling.get('long_factor', None)
  2142. short_factors = rope_scaling.get('short_factor', None)
  2143. if long_factors is None or short_factors is None:
  2144. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2145. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2146. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2147. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2148. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2149. def set_vocab(self):
  2150. self._set_vocab_sentencepiece()
  2151. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2152. if n_kv_head is not None and n_head != n_kv_head:
  2153. n_head //= n_kv_head
  2154. return (
  2155. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2156. .swapaxes(1, 2)
  2157. .reshape(weights.shape)
  2158. )
  2159. @ModelBase.register("QWenLMHeadModel")
  2160. class QwenModel(TextModel):
  2161. model_arch = gguf.MODEL_ARCH.QWEN
  2162. @staticmethod
  2163. def token_bytes_to_string(b):
  2164. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2165. byte_encoder = bytes_to_unicode()
  2166. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2167. @staticmethod
  2168. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2169. parts = [bytes([b]) for b in token]
  2170. while True:
  2171. min_idx = None
  2172. min_rank = None
  2173. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2174. rank = mergeable_ranks.get(pair[0] + pair[1])
  2175. if rank is not None and (min_rank is None or rank < min_rank):
  2176. min_idx = i
  2177. min_rank = rank
  2178. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2179. break
  2180. assert min_idx is not None
  2181. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2182. return parts
  2183. def set_vocab(self):
  2184. self._set_vocab_qwen()
  2185. def set_gguf_parameters(self):
  2186. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2187. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2188. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2189. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2190. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2191. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2192. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2193. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2194. self.gguf_writer.add_file_type(self.ftype)
  2195. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2196. class Qwen2Model(TextModel):
  2197. model_arch = gguf.MODEL_ARCH.QWEN2
  2198. def set_vocab(self):
  2199. try:
  2200. self._set_vocab_sentencepiece()
  2201. except FileNotFoundError:
  2202. self._set_vocab_gpt2()
  2203. def set_gguf_parameters(self):
  2204. super().set_gguf_parameters()
  2205. self._try_set_pooling_type()
  2206. rope_scaling = self.hparams.get("rope_scaling") or {}
  2207. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2208. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2209. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2210. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2212. if self.hf_arch == "Qwen2Model":
  2213. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2214. if "language_model." in name:
  2215. name = name.replace("language_model.", "") # for InternVL
  2216. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2217. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2218. # skip vision and audio tensors
  2219. return []
  2220. yield from super().modify_tensors(data_torch, name, bid)
  2221. @ModelBase.register(
  2222. "Qwen2VLModel",
  2223. "Qwen2VLForConditionalGeneration",
  2224. "Qwen2_5_VLForConditionalGeneration",
  2225. "Qwen2_5OmniModel",
  2226. )
  2227. class Qwen2VLModel(TextModel):
  2228. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2229. def set_gguf_parameters(self):
  2230. super().set_gguf_parameters()
  2231. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2232. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2233. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2234. def set_vocab(self):
  2235. try:
  2236. self._set_vocab_sentencepiece()
  2237. except FileNotFoundError:
  2238. self._set_vocab_gpt2()
  2239. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2240. del bid # unused
  2241. if name.startswith("thinker."):
  2242. name = name.replace("thinker.", "")
  2243. if name.startswith("visual") or name.startswith("audio") or \
  2244. name.startswith("talker") or name.startswith("token2wav"):
  2245. # skip multimodal tensors
  2246. return []
  2247. return [(self.map_tensor_name(name), data_torch)]
  2248. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2249. class Qwen2VLVisionModel(MmprojModel):
  2250. def __init__(self, *args, **kwargs):
  2251. super().__init__(*args, **kwargs)
  2252. assert self.hparams_vision is not None
  2253. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2254. # rename config.json values
  2255. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2256. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2257. if "embed_dim" in self.hparams_vision: # qwen2vl
  2258. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2259. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2260. def set_gguf_parameters(self):
  2261. super().set_gguf_parameters()
  2262. assert self.hparams_vision is not None
  2263. hparams = self.hparams_vision
  2264. model_type = self.global_config['model_type']
  2265. if model_type == 'qwen2_vl':
  2266. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2267. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2268. if model_type == 'qwen2_5_omni':
  2269. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2270. else:
  2271. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2272. self.gguf_writer.add_vision_use_silu(True)
  2273. # find n_wa_pattern (window attention pattern)
  2274. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2275. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2276. n_wa_pattern = fullatt_block_indexes[0] + 1
  2277. # validate n_wa_pattern
  2278. for i in range(1, len(fullatt_block_indexes)):
  2279. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2280. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2281. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2282. else:
  2283. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2284. # default values below are taken from HF tranformers code
  2285. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2286. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2287. del bid, name, n_dims # unused
  2288. if ".patch_embd." in new_name:
  2289. return gguf.GGMLQuantizationType.F16
  2290. if ".position_embd." in new_name:
  2291. return gguf.GGMLQuantizationType.F32
  2292. return False
  2293. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2294. del bid # unused
  2295. if name.startswith("visual."):
  2296. # process visual tensors
  2297. # split QKV tensors if needed
  2298. if ".qkv." in name:
  2299. if data_torch.ndim == 2: # weight
  2300. c3, _ = data_torch.shape
  2301. else: # bias
  2302. c3 = data_torch.shape[0]
  2303. assert c3 % 3 == 0
  2304. c = c3 // 3
  2305. wq = data_torch[:c]
  2306. wk = data_torch[c: c * 2]
  2307. wv = data_torch[c * 2:]
  2308. return [
  2309. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2310. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2311. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2312. ]
  2313. elif 'patch_embed.proj.weight' in name:
  2314. # split Conv3D into Conv2Ds
  2315. c1, c2, kt, kh, kw = data_torch.shape
  2316. del c1, c2, kh, kw # unused
  2317. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2318. return [
  2319. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2320. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2321. ]
  2322. else:
  2323. return [(self.map_tensor_name(name), data_torch)]
  2324. return [] # skip other tensors
  2325. @ModelBase.register("Qwen2_5OmniModel")
  2326. class Qwen25OmniModel(Qwen2VLVisionModel):
  2327. has_vision_encoder = True
  2328. has_audio_encoder = True
  2329. def __init__(self, *args, **kwargs):
  2330. super().__init__(*args, **kwargs)
  2331. assert self.hparams_audio is not None
  2332. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2333. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2334. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2335. def set_gguf_parameters(self):
  2336. super().set_gguf_parameters()
  2337. assert self.hparams_audio is not None
  2338. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2339. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2340. def get_vision_config(self) -> dict[str, Any] | None:
  2341. return self.global_config["thinker_config"].get("vision_config")
  2342. def get_audio_config(self) -> dict[str, Any] | None:
  2343. return self.global_config["thinker_config"].get("audio_config")
  2344. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2345. # SinusoidsPositionEmbedding
  2346. assert self.hparams_audio is not None
  2347. max_timescale = 10000
  2348. length = 1500
  2349. channels = self.hparams_audio["hidden_size"]
  2350. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2351. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2352. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2353. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2354. yield ("audio_tower.embed_positions.weight", pos_embd)
  2355. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2356. del bid, new_name, n_dims # unused
  2357. if ".conv" in name and ".weight" in name:
  2358. return gguf.GGMLQuantizationType.F16
  2359. return False
  2360. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2361. if name.startswith("thinker."):
  2362. name = name.replace("thinker.", "")
  2363. if name.startswith("audio_tower"):
  2364. # process audio tensors
  2365. if "conv1.bias" in name or "conv2.bias" in name:
  2366. # transpose conv1 and conv2 bias
  2367. data_torch = data_torch.unsqueeze(-1)
  2368. if "audio_bos_eos_token" in name:
  2369. # this tensor is left unused in transformers code
  2370. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2371. return []
  2372. return [(self.map_tensor_name(name), data_torch)]
  2373. return super().modify_tensors(data_torch, name, bid)
  2374. @ModelBase.register("InternVisionModel")
  2375. class InternVisionModel(MmprojModel):
  2376. def set_gguf_parameters(self):
  2377. super().set_gguf_parameters()
  2378. hparams = self.hparams
  2379. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2380. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2381. # hidden_act
  2382. if hparams["hidden_act"] == "silu":
  2383. self.gguf_writer.add_vision_use_silu(True)
  2384. elif hparams["hidden_act"] == "gelu":
  2385. self.gguf_writer.add_vision_use_gelu(True)
  2386. else:
  2387. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2388. # downsample_ratio
  2389. downsample_ratio = self.global_config.get("downsample_ratio")
  2390. assert downsample_ratio is not None
  2391. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2392. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2393. del bid, name, n_dims # unused
  2394. if ".patch_embd." in new_name:
  2395. return gguf.GGMLQuantizationType.F16
  2396. if ".position_embd." in new_name:
  2397. return gguf.GGMLQuantizationType.F32
  2398. return False
  2399. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2400. del bid # unused
  2401. if name.startswith("vision_model") or name.startswith("mlp"):
  2402. # process visual tensors
  2403. # correct name
  2404. if name.startswith("vision_model"):
  2405. name = "vision_tower." + name
  2406. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2407. name += ".weight"
  2408. # split QKV tensors if needed
  2409. if ".qkv." in name:
  2410. if data_torch.ndim == 2: # weight
  2411. c3, _ = data_torch.shape
  2412. else: # bias
  2413. c3 = data_torch.shape[0]
  2414. assert c3 % 3 == 0
  2415. c = c3 // 3
  2416. wq = data_torch[:c]
  2417. wk = data_torch[c: c * 2]
  2418. wv = data_torch[c * 2:]
  2419. return [
  2420. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2421. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2422. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2423. ]
  2424. return [(self.map_tensor_name(name), data_torch)]
  2425. return [] # skip other tensors
  2426. @ModelBase.register("WavTokenizerDec")
  2427. class WavTokenizerDecModel(TextModel):
  2428. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2429. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2430. del bid # unused
  2431. if \
  2432. name.endswith("codebook.cluster_size") or \
  2433. name.endswith("codebook.embed_avg") or \
  2434. name.endswith("codebook.inited"):
  2435. logger.debug(f"Skipping {name!r}")
  2436. return []
  2437. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2438. return [(self.map_tensor_name(name), data_torch)]
  2439. def set_vocab(self):
  2440. self._set_vocab_none()
  2441. def set_gguf_parameters(self):
  2442. super().set_gguf_parameters()
  2443. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2444. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2445. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2446. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2447. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2448. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2449. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2450. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2451. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2452. self.gguf_writer.add_causal_attention(False)
  2453. @ModelBase.register("Qwen2MoeForCausalLM")
  2454. class Qwen2MoeModel(TextModel):
  2455. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2456. def set_gguf_parameters(self):
  2457. super().set_gguf_parameters()
  2458. if (n_experts := self.hparams.get("num_experts")) is not None:
  2459. self.gguf_writer.add_expert_count(n_experts)
  2460. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2461. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2462. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2463. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2464. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2465. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2466. # YaRN is not enabled by default
  2467. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2468. rope_scaling = self.hparams.get("rope_scaling") or {}
  2469. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2470. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2471. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2472. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2473. _experts: list[dict[str, Tensor]] | None = None
  2474. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2475. # process the experts separately
  2476. if name.find("experts") != -1:
  2477. n_experts = self.hparams["num_experts"]
  2478. assert bid is not None
  2479. if self._experts is None:
  2480. self._experts = [{} for _ in range(self.block_count)]
  2481. self._experts[bid][name] = data_torch
  2482. if len(self._experts[bid]) >= n_experts * 3:
  2483. tensors: list[tuple[str, Tensor]] = []
  2484. # merge the experts into a single 3d tensor
  2485. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2486. datas: list[Tensor] = []
  2487. for xid in range(n_experts):
  2488. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2489. datas.append(self._experts[bid][ename])
  2490. del self._experts[bid][ename]
  2491. data_torch = torch.stack(datas, dim=0)
  2492. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2493. new_name = self.map_tensor_name(merged_name)
  2494. tensors.append((new_name, data_torch))
  2495. return tensors
  2496. else:
  2497. return []
  2498. return [(self.map_tensor_name(name), data_torch)]
  2499. def prepare_tensors(self):
  2500. super().prepare_tensors()
  2501. if self._experts is not None:
  2502. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2503. experts = [k for d in self._experts for k in d.keys()]
  2504. if len(experts) > 0:
  2505. raise ValueError(f"Unprocessed experts: {experts}")
  2506. @ModelBase.register("Qwen3ForCausalLM")
  2507. class Qwen3Model(Qwen2Model):
  2508. model_arch = gguf.MODEL_ARCH.QWEN3
  2509. @ModelBase.register("Qwen3MoeForCausalLM")
  2510. class Qwen3MoeModel(Qwen2MoeModel):
  2511. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2512. @ModelBase.register("GPT2LMHeadModel")
  2513. class GPT2Model(TextModel):
  2514. model_arch = gguf.MODEL_ARCH.GPT2
  2515. def set_gguf_parameters(self):
  2516. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2517. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2518. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2519. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2520. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2521. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2522. self.gguf_writer.add_file_type(self.ftype)
  2523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2524. del bid # unused
  2525. tensors: list[tuple[str, Tensor]] = []
  2526. # we don't need these
  2527. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2528. return tensors
  2529. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2530. data_torch = data_torch.transpose(1, 0)
  2531. new_name = self.map_tensor_name(name)
  2532. tensors.append((new_name, data_torch))
  2533. return tensors
  2534. @ModelBase.register("PhiForCausalLM")
  2535. class Phi2Model(TextModel):
  2536. model_arch = gguf.MODEL_ARCH.PHI2
  2537. def set_gguf_parameters(self):
  2538. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2539. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2540. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2541. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2542. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2543. self.gguf_writer.add_embedding_length(n_embd)
  2544. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2545. self.gguf_writer.add_block_count(block_count)
  2546. self.gguf_writer.add_head_count(n_head)
  2547. self.gguf_writer.add_head_count_kv(n_head)
  2548. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2549. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2550. self.gguf_writer.add_file_type(self.ftype)
  2551. self.gguf_writer.add_add_bos_token(False)
  2552. @ModelBase.register("Phi3ForCausalLM")
  2553. class Phi3MiniModel(TextModel):
  2554. model_arch = gguf.MODEL_ARCH.PHI3
  2555. def set_vocab(self):
  2556. # Phi-4 model uses GPT2Tokenizer
  2557. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2558. if tokenizer_config_file.is_file():
  2559. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2560. tokenizer_config_json = json.load(f)
  2561. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2562. if tokenizer_class == 'GPT2Tokenizer':
  2563. return self._set_vocab_gpt2()
  2564. from sentencepiece import SentencePieceProcessor
  2565. tokenizer_path = self.dir_model / 'tokenizer.model'
  2566. if not tokenizer_path.is_file():
  2567. raise ValueError(f'Error: Missing {tokenizer_path}')
  2568. tokenizer = SentencePieceProcessor()
  2569. tokenizer.LoadFromFile(str(tokenizer_path))
  2570. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2571. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2572. scores: list[float] = [-10000.0] * vocab_size
  2573. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2574. for token_id in range(tokenizer.vocab_size()):
  2575. piece = tokenizer.IdToPiece(token_id)
  2576. text = piece.encode("utf-8")
  2577. score = tokenizer.GetScore(token_id)
  2578. toktype = SentencePieceTokenTypes.NORMAL
  2579. if tokenizer.IsUnknown(token_id):
  2580. toktype = SentencePieceTokenTypes.UNKNOWN
  2581. elif tokenizer.IsControl(token_id):
  2582. toktype = SentencePieceTokenTypes.CONTROL
  2583. elif tokenizer.IsUnused(token_id):
  2584. toktype = SentencePieceTokenTypes.UNUSED
  2585. elif tokenizer.IsByte(token_id):
  2586. toktype = SentencePieceTokenTypes.BYTE
  2587. tokens[token_id] = text
  2588. scores[token_id] = score
  2589. toktypes[token_id] = toktype
  2590. added_tokens_file = self.dir_model / 'added_tokens.json'
  2591. if added_tokens_file.is_file():
  2592. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2593. added_tokens_json = json.load(f)
  2594. for key in added_tokens_json:
  2595. token_id = added_tokens_json[key]
  2596. if token_id >= vocab_size:
  2597. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2598. continue
  2599. tokens[token_id] = key.encode("utf-8")
  2600. scores[token_id] = -1000.0
  2601. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2602. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2603. if tokenizer_config_file.is_file():
  2604. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2605. tokenizer_config_json = json.load(f)
  2606. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2607. for token_id, foken_data in added_tokens_decoder.items():
  2608. token_id = int(token_id)
  2609. token = foken_data["content"].encode("utf-8")
  2610. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2611. if tokens[token_id] != token:
  2612. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2613. tokens[token_id] = token
  2614. scores[token_id] = -1000.0
  2615. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2616. if foken_data.get("special"):
  2617. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2618. tokenizer_file = self.dir_model / 'tokenizer.json'
  2619. if tokenizer_file.is_file():
  2620. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2621. tokenizer_json = json.load(f)
  2622. added_tokens = tokenizer_json.get("added_tokens", [])
  2623. for foken_data in added_tokens:
  2624. token_id = int(foken_data["id"])
  2625. token = foken_data["content"].encode("utf-8")
  2626. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2627. if tokens[token_id] != token:
  2628. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2629. tokens[token_id] = token
  2630. scores[token_id] = -1000.0
  2631. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2632. if foken_data.get("special"):
  2633. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2634. self.gguf_writer.add_tokenizer_model("llama")
  2635. self.gguf_writer.add_tokenizer_pre("default")
  2636. self.gguf_writer.add_token_list(tokens)
  2637. self.gguf_writer.add_token_scores(scores)
  2638. self.gguf_writer.add_token_types(toktypes)
  2639. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2640. special_vocab.add_to_gguf(self.gguf_writer)
  2641. def set_gguf_parameters(self):
  2642. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2643. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2644. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2645. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2646. rms_eps = self.find_hparam(["rms_norm_eps"])
  2647. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2648. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2649. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2650. rope_dims = int(rot_pct * n_embd) // n_head
  2651. self.gguf_writer.add_context_length(max_pos_embds)
  2652. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2653. self.gguf_writer.add_embedding_length(n_embd)
  2654. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2655. self.gguf_writer.add_block_count(block_count)
  2656. self.gguf_writer.add_head_count(n_head)
  2657. self.gguf_writer.add_head_count_kv(n_head_kv)
  2658. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2659. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2660. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2661. self.gguf_writer.add_file_type(self.ftype)
  2662. sliding_window = self.hparams.get("sliding_window")
  2663. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2664. if sliding_window is None:
  2665. sliding_window = 0
  2666. self.gguf_writer.add_sliding_window(sliding_window)
  2667. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2668. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2669. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2670. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2671. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2672. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2673. rope_dims = int(rot_pct * n_embd) // n_head
  2674. # write rope scaling for long context (128k) model
  2675. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2676. if rope_scaling is None:
  2677. return
  2678. scale = max_pos_embds / orig_max_pos_embds
  2679. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2680. if len(rope_scaling_type) == 0:
  2681. raise KeyError('Missing the required key rope_scaling.type')
  2682. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2683. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2684. elif rope_scaling_type == 'yarn':
  2685. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2686. else:
  2687. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2688. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2689. long_factors = rope_scaling.get('long_factor', None)
  2690. short_factors = rope_scaling.get('short_factor', None)
  2691. if long_factors is None or short_factors is None:
  2692. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2693. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2694. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2695. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2696. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2697. @ModelBase.register("PhiMoEForCausalLM")
  2698. class PhiMoeModel(Phi3MiniModel):
  2699. model_arch = gguf.MODEL_ARCH.PHIMOE
  2700. _experts: list[dict[str, Tensor]] | None = None
  2701. def set_gguf_parameters(self):
  2702. super().set_gguf_parameters()
  2703. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2704. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2705. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2706. # process the experts separately
  2707. if name.find("block_sparse_moe.experts") != -1:
  2708. n_experts = self.hparams["num_local_experts"]
  2709. assert bid is not None
  2710. if self._experts is None:
  2711. self._experts = [{} for _ in range(self.block_count)]
  2712. self._experts[bid][name] = data_torch
  2713. if len(self._experts[bid]) >= n_experts * 3:
  2714. tensors: list[tuple[str, Tensor]] = []
  2715. # merge the experts into a single 3d tensor
  2716. for w_name in ["w1", "w2", "w3"]:
  2717. datas: list[Tensor] = []
  2718. for xid in range(n_experts):
  2719. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2720. datas.append(self._experts[bid][ename])
  2721. del self._experts[bid][ename]
  2722. data_torch = torch.stack(datas, dim=0)
  2723. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2724. new_name = self.map_tensor_name(merged_name)
  2725. tensors.append((new_name, data_torch))
  2726. return tensors
  2727. else:
  2728. return []
  2729. return [(self.map_tensor_name(name), data_torch)]
  2730. def prepare_tensors(self):
  2731. super().prepare_tensors()
  2732. if self._experts is not None:
  2733. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2734. experts = [k for d in self._experts for k in d.keys()]
  2735. if len(experts) > 0:
  2736. raise ValueError(f"Unprocessed experts: {experts}")
  2737. @ModelBase.register("PlamoForCausalLM")
  2738. class PlamoModel(TextModel):
  2739. model_arch = gguf.MODEL_ARCH.PLAMO
  2740. def set_vocab(self):
  2741. self._set_vocab_sentencepiece()
  2742. def set_gguf_parameters(self):
  2743. hparams = self.hparams
  2744. block_count = hparams["num_hidden_layers"]
  2745. self.gguf_writer.add_context_length(4096) # not in config.json
  2746. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2747. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2748. self.gguf_writer.add_block_count(block_count)
  2749. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2750. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2751. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2752. self.gguf_writer.add_file_type(self.ftype)
  2753. def shuffle_attn_q_weight(self, data_torch):
  2754. assert data_torch.size() == (5120, 5120)
  2755. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2756. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2757. data_torch = torch.reshape(data_torch, (5120, 5120))
  2758. return data_torch
  2759. def shuffle_attn_output_weight(self, data_torch):
  2760. assert data_torch.size() == (5120, 5120)
  2761. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2762. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2763. data_torch = torch.reshape(data_torch, (5120, 5120))
  2764. return data_torch
  2765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2766. del bid # unused
  2767. new_name = self.map_tensor_name(name)
  2768. # shuffle for broadcasting of gqa in ggml_mul_mat
  2769. if new_name.endswith("attn_q.weight"):
  2770. data_torch = self.shuffle_attn_q_weight(data_torch)
  2771. elif new_name.endswith("attn_output.weight"):
  2772. data_torch = self.shuffle_attn_output_weight(data_torch)
  2773. return [(new_name, data_torch)]
  2774. @ModelBase.register("CodeShellForCausalLM")
  2775. class CodeShellModel(TextModel):
  2776. model_arch = gguf.MODEL_ARCH.CODESHELL
  2777. def set_gguf_parameters(self):
  2778. block_count = self.hparams["n_layer"]
  2779. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2780. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2781. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2782. self.gguf_writer.add_block_count(block_count)
  2783. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2784. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2785. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2786. self.gguf_writer.add_file_type(self.ftype)
  2787. self.gguf_writer.add_rope_freq_base(10000.0)
  2788. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2789. self.gguf_writer.add_rope_scaling_factor(1.0)
  2790. _has_tok_embd = False
  2791. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2792. del bid # unused
  2793. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2794. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2795. new_name = self.map_tensor_name(name)
  2796. # assuming token_embd.weight is seen before output.weight
  2797. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2798. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2799. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2800. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2801. self.tensor_names.remove("transformer.wte.weight")
  2802. elif new_name == tok_embd_name:
  2803. self._has_tok_embd = True
  2804. return [(new_name, data_torch)]
  2805. @ModelBase.register("InternLM2ForCausalLM")
  2806. class InternLM2Model(TextModel):
  2807. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2808. def set_vocab(self):
  2809. # (TODO): Is there a better way?
  2810. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2811. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2812. # recognized as an empty string in C++.
  2813. from sentencepiece import SentencePieceProcessor
  2814. from sentencepiece import sentencepiece_model_pb2 as model
  2815. tokenizer_path = self.dir_model / 'tokenizer.model'
  2816. tokens: list[bytes] = []
  2817. scores: list[float] = []
  2818. toktypes: list[int] = []
  2819. if not tokenizer_path.is_file():
  2820. logger.error(f'Error: Missing {tokenizer_path}')
  2821. sys.exit(1)
  2822. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2823. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2824. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2825. tokenizer = SentencePieceProcessor()
  2826. tokenizer.LoadFromFile(str(tokenizer_path))
  2827. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2828. for token_id in range(vocab_size):
  2829. piece = tokenizer.IdToPiece(token_id)
  2830. text = piece.encode("utf-8")
  2831. score = tokenizer.GetScore(token_id)
  2832. if text == b"\x00":
  2833. # (TODO): fixme
  2834. # Hack here and replace the \x00 characters.
  2835. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2836. text = "🐉".encode("utf-8")
  2837. toktype = SentencePieceTokenTypes.NORMAL
  2838. if tokenizer.IsUnknown(token_id):
  2839. toktype = SentencePieceTokenTypes.UNKNOWN
  2840. elif tokenizer.IsControl(token_id):
  2841. toktype = SentencePieceTokenTypes.CONTROL
  2842. elif tokenizer.IsUnused(token_id):
  2843. toktype = SentencePieceTokenTypes.UNUSED
  2844. elif tokenizer.IsByte(token_id):
  2845. toktype = SentencePieceTokenTypes.BYTE
  2846. # take care of ununsed raw token
  2847. if piece.startswith('[UNUSED'):
  2848. toktype = SentencePieceTokenTypes.UNUSED
  2849. tokens.append(text)
  2850. scores.append(score)
  2851. toktypes.append(toktype)
  2852. added_tokens_file = self.dir_model / 'added_tokens.json'
  2853. if added_tokens_file.is_file():
  2854. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2855. added_tokens_json = json.load(f)
  2856. for key in added_tokens_json:
  2857. tokens.append(key.encode("utf-8"))
  2858. scores.append(-1000.0)
  2859. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2860. chat_eos_token = '<|im_end|>'
  2861. chat_eos_token_id = None
  2862. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2863. if tokenizer_config_file.is_file():
  2864. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2865. tokenizer_config_json = json.load(f)
  2866. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2867. for token_id, foken_data in added_tokens_decoder.items():
  2868. token_id = int(token_id)
  2869. token = foken_data["content"]
  2870. if token == chat_eos_token:
  2871. chat_eos_token_id = token_id
  2872. token = token.encode("utf-8")
  2873. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2874. if tokens[token_id] != token:
  2875. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2876. tokens[token_id] = token
  2877. scores[token_id] = -1000.0
  2878. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2879. if foken_data.get("special"):
  2880. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2881. tokenizer_file = self.dir_model / 'tokenizer.json'
  2882. if tokenizer_file.is_file():
  2883. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2884. tokenizer_json = json.load(f)
  2885. added_tokens = tokenizer_json.get("added_tokens", [])
  2886. for foken_data in added_tokens:
  2887. token_id = int(foken_data["id"])
  2888. token = foken_data["content"]
  2889. if token == chat_eos_token:
  2890. chat_eos_token_id = token_id
  2891. token = token.encode("utf-8")
  2892. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2893. if tokens[token_id] != token:
  2894. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2895. tokens[token_id] = token
  2896. scores[token_id] = -1000.0
  2897. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2898. if foken_data.get("special"):
  2899. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2900. self.gguf_writer.add_tokenizer_model("llama")
  2901. self.gguf_writer.add_tokenizer_pre("default")
  2902. self.gguf_writer.add_token_list(tokens)
  2903. self.gguf_writer.add_token_scores(scores)
  2904. self.gguf_writer.add_token_types(toktypes)
  2905. self.gguf_writer.add_add_space_prefix(add_prefix)
  2906. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2907. old_eos = special_vocab.special_token_ids["eos"]
  2908. if chat_eos_token_id is not None:
  2909. # For the chat model, we replace the eos with '<|im_end|>'.
  2910. # TODO: this is a hack, should be fixed
  2911. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2912. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2913. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2914. " in chat mode so that the conversation can end normally.")
  2915. special_vocab.add_to_gguf(self.gguf_writer)
  2916. def set_gguf_parameters(self):
  2917. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2918. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2919. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2920. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2921. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2922. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2923. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2924. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2925. self.gguf_writer.add_file_type(self.ftype)
  2926. rope_scaling = self.hparams.get("rope_scaling") or {}
  2927. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2928. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2929. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2931. num_heads = self.hparams["num_attention_heads"]
  2932. num_kv_heads = self.hparams["num_key_value_heads"]
  2933. n_embd = self.hparams["hidden_size"]
  2934. q_per_kv = num_heads // num_kv_heads
  2935. head_dim = n_embd // num_heads
  2936. num_groups = num_heads // q_per_kv
  2937. name = name.replace("language_model.", "") # InternVL
  2938. if name.startswith("mlp") or name.startswith("vision_model"):
  2939. # skip visual tensors
  2940. return []
  2941. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2942. qkv = data_torch
  2943. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2944. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2945. # The model weights of q and k equire additional reshape.
  2946. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2947. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2948. v = v.reshape((-1, v.shape[-1]))
  2949. return [
  2950. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2951. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2952. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2953. ]
  2954. else:
  2955. return [(self.map_tensor_name(name), data_torch)]
  2956. @ModelBase.register("InternLM3ForCausalLM")
  2957. class InternLM3Model(TextModel):
  2958. model_arch = gguf.MODEL_ARCH.LLAMA
  2959. def set_vocab(self):
  2960. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2961. self.gguf_writer.add_tokenizer_model("llama")
  2962. self.gguf_writer.add_tokenizer_pre("default")
  2963. self.gguf_writer.add_token_list(tokens)
  2964. self.gguf_writer.add_token_scores(scores)
  2965. self.gguf_writer.add_token_types(toktypes)
  2966. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2967. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2968. if tokenizer_config_file.is_file():
  2969. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2970. tokenizer_config_json = json.load(f)
  2971. if "add_prefix_space" in tokenizer_config_json:
  2972. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2973. if "added_tokens_decoder" in tokenizer_config_json:
  2974. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2975. if token_data.get("special"):
  2976. token_id = int(token_id)
  2977. token = token_data["content"]
  2978. special_vocab._set_special_token(token, token_id)
  2979. # update eos token
  2980. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2981. special_vocab.special_token_ids["eos"] = token_id
  2982. special_vocab.add_to_gguf(self.gguf_writer)
  2983. def set_gguf_parameters(self):
  2984. super().set_gguf_parameters()
  2985. hparams = self.hparams
  2986. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2987. if "head_dim" in hparams:
  2988. rope_dim = hparams["head_dim"]
  2989. else:
  2990. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2991. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2992. rope_scaling = self.hparams.get("rope_scaling") or {}
  2993. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2994. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2995. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2997. n_head = self.hparams["num_attention_heads"]
  2998. n_kv_head = self.hparams.get("num_key_value_heads")
  2999. name = name.replace("language_model.", "") # InternVL
  3000. if name.startswith("mlp") or name.startswith("vision_model"):
  3001. # skip visual tensors
  3002. return []
  3003. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3004. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3005. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3006. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3007. return [(self.map_tensor_name(name), data_torch)]
  3008. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  3009. class BertModel(TextModel):
  3010. model_arch = gguf.MODEL_ARCH.BERT
  3011. def __init__(self, *args, **kwargs):
  3012. super().__init__(*args, **kwargs)
  3013. self.vocab_size = None
  3014. def set_gguf_parameters(self):
  3015. super().set_gguf_parameters()
  3016. self.gguf_writer.add_causal_attention(False)
  3017. self._try_set_pooling_type()
  3018. def set_vocab(self):
  3019. tokens, toktypes, tokpre = self.get_vocab_base()
  3020. self.vocab_size = len(tokens)
  3021. # we need this to validate the size of the token_type embeddings
  3022. # though currently we are passing all zeros to the token_type embeddings
  3023. # "Sequence A" or "Sequence B"
  3024. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3025. # convert to phantom space vocab
  3026. def phantom(tok):
  3027. if tok.startswith("[") and tok.endswith("]"):
  3028. return tok
  3029. if tok.startswith("##"):
  3030. return tok[2:]
  3031. return "\u2581" + tok
  3032. tokens = list(map(phantom, tokens))
  3033. # add vocab to gguf
  3034. self.gguf_writer.add_tokenizer_model("bert")
  3035. self.gguf_writer.add_tokenizer_pre(tokpre)
  3036. self.gguf_writer.add_token_list(tokens)
  3037. self.gguf_writer.add_token_types(toktypes)
  3038. # handle special tokens
  3039. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3040. special_vocab.add_to_gguf(self.gguf_writer)
  3041. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3042. del bid # unused
  3043. if name.startswith("bert."):
  3044. name = name[5:]
  3045. if name.endswith(".gamma"):
  3046. name = name[:-6] + ".weight"
  3047. if name.endswith(".beta"):
  3048. name = name[:-5] + ".bias"
  3049. # we are only using BERT for embeddings so we don't need the pooling layer
  3050. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3051. return [] # we don't need these
  3052. if name.startswith("cls.predictions"):
  3053. return []
  3054. if name.startswith("cls.seq_relationship"):
  3055. return []
  3056. return [(self.map_tensor_name(name), data_torch)]
  3057. def _xlmroberta_tokenizer_init(self) -> None:
  3058. # we need the pad_token_id to know how to chop down position_embd matrix
  3059. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3060. self._position_offset = 1 + pad_token_id
  3061. if "max_position_embeddings" in self.hparams:
  3062. self.hparams["max_position_embeddings"] -= self._position_offset
  3063. else:
  3064. self._position_offset = None
  3065. def _xlmroberta_set_vocab(self) -> None:
  3066. # to avoid TypeError: Descriptors cannot be created directly
  3067. # exception when importing sentencepiece_model_pb2
  3068. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3069. from sentencepiece import SentencePieceProcessor
  3070. from sentencepiece import sentencepiece_model_pb2 as model
  3071. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3072. if not tokenizer_path.is_file():
  3073. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3074. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3075. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3076. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3077. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3078. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3079. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3080. tokenizer = SentencePieceProcessor()
  3081. tokenizer.LoadFromFile(str(tokenizer_path))
  3082. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3083. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3084. scores: list[float] = [-10000.0] * vocab_size
  3085. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3086. for token_id in range(tokenizer.vocab_size()):
  3087. piece = tokenizer.IdToPiece(token_id)
  3088. text = piece.encode("utf-8")
  3089. score = tokenizer.GetScore(token_id)
  3090. toktype = SentencePieceTokenTypes.NORMAL
  3091. if tokenizer.IsUnknown(token_id):
  3092. toktype = SentencePieceTokenTypes.UNKNOWN
  3093. elif tokenizer.IsControl(token_id):
  3094. toktype = SentencePieceTokenTypes.CONTROL
  3095. elif tokenizer.IsUnused(token_id):
  3096. toktype = SentencePieceTokenTypes.UNUSED
  3097. elif tokenizer.IsByte(token_id):
  3098. toktype = SentencePieceTokenTypes.BYTE
  3099. tokens[token_id] = text
  3100. scores[token_id] = score
  3101. toktypes[token_id] = toktype
  3102. if vocab_size > len(tokens):
  3103. pad_count = vocab_size - len(tokens)
  3104. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3105. for i in range(1, pad_count + 1):
  3106. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3107. scores.append(-1000.0)
  3108. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3109. # realign tokens (see HF tokenizer code)
  3110. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3111. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3112. toktypes = [
  3113. SentencePieceTokenTypes.CONTROL,
  3114. SentencePieceTokenTypes.CONTROL,
  3115. SentencePieceTokenTypes.CONTROL,
  3116. SentencePieceTokenTypes.UNKNOWN,
  3117. ] + toktypes[3:-1]
  3118. self.gguf_writer.add_tokenizer_model("t5")
  3119. self.gguf_writer.add_tokenizer_pre("default")
  3120. self.gguf_writer.add_token_list(tokens)
  3121. self.gguf_writer.add_token_scores(scores)
  3122. self.gguf_writer.add_token_types(toktypes)
  3123. self.gguf_writer.add_add_space_prefix(add_prefix)
  3124. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3125. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3126. if precompiled_charsmap:
  3127. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3128. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3129. special_vocab.add_to_gguf(self.gguf_writer)
  3130. self.gguf_writer.add_add_bos_token(True)
  3131. self.gguf_writer.add_add_eos_token(True)
  3132. @ModelBase.register("RobertaModel")
  3133. class RobertaModel(BertModel):
  3134. model_arch = gguf.MODEL_ARCH.BERT
  3135. def __init__(self, *args, **kwargs):
  3136. super().__init__(*args, **kwargs)
  3137. # we need the pad_token_id to know how to chop down position_embd matrix
  3138. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3139. self._position_offset = 1 + pad_token_id
  3140. if "max_position_embeddings" in self.hparams:
  3141. self.hparams["max_position_embeddings"] -= self._position_offset
  3142. else:
  3143. self._position_offset = None
  3144. def set_vocab(self):
  3145. """Support BPE tokenizers for roberta models"""
  3146. bpe_tok_path = self.dir_model / "tokenizer.json"
  3147. if bpe_tok_path.exists():
  3148. self._set_vocab_gpt2()
  3149. self.gguf_writer.add_add_bos_token(True)
  3150. self.gguf_writer.add_add_eos_token(True)
  3151. # we need this to validate the size of the token_type embeddings
  3152. # though currently we are passing all zeros to the token_type embeddings
  3153. # "Sequence A" or "Sequence B"
  3154. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3155. else:
  3156. return super().set_vocab()
  3157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3158. # if name starts with "roberta.", remove the prefix
  3159. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3160. if name.startswith("roberta."):
  3161. name = name[8:]
  3162. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3163. if name == "embeddings.position_embeddings.weight":
  3164. if self._position_offset is not None:
  3165. data_torch = data_torch[self._position_offset:,:]
  3166. return super().modify_tensors(data_torch, name, bid)
  3167. @ModelBase.register("NomicBertModel")
  3168. class NomicBertModel(BertModel):
  3169. model_arch = gguf.MODEL_ARCH.BERT
  3170. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3171. hparams = kwargs.pop("hparams", None)
  3172. if hparams is None:
  3173. hparams = ModelBase.load_hparams(dir_model)
  3174. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3175. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3176. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3177. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3178. if self._tokenizer_is_xlmroberta:
  3179. self._xlmroberta_tokenizer_init()
  3180. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3181. if npos == 8192 and mtp == 2048:
  3182. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3183. elif npos == 2048 and mtp == 2048:
  3184. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3185. else:
  3186. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3187. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3188. # this doesn't do anything in the HF version
  3189. assert self.hparams["causal"] is False
  3190. # no bias tensors unless MoE
  3191. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3192. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3193. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3194. # norm at end of layer
  3195. assert self.hparams["prenorm"] is False
  3196. # standard RoPE
  3197. assert self.hparams["rotary_emb_fraction"] == 1.0
  3198. assert self.hparams["rotary_emb_interleaved"] is False
  3199. assert self.hparams["rotary_emb_scale_base"] is None
  3200. def set_vocab(self) -> None:
  3201. if self._tokenizer_is_xlmroberta:
  3202. return self._xlmroberta_set_vocab()
  3203. return super().set_vocab()
  3204. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3205. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3206. if "mlp.experts.bias" in name:
  3207. return [] # Explicitly return an empty list.
  3208. if "mlp.experts.mlp.w1" in name:
  3209. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3210. name += ".weight"
  3211. if "mlp.experts.mlp.w2" in name:
  3212. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3213. data_torch = data_torch.transpose(1, 2)
  3214. name += ".weight"
  3215. return [(self.map_tensor_name(name), data_torch)]
  3216. def set_gguf_parameters(self):
  3217. super().set_gguf_parameters()
  3218. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3219. if self.is_moe:
  3220. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3221. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3222. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3223. def _is_tokenizer_xlmroberta(self) -> bool:
  3224. with open(self.dir_model / "tokenizer.json") as f:
  3225. tokenizer_json = json.load(f)
  3226. toktyp = tokenizer_json["model"]["type"]
  3227. if toktyp == "Unigram":
  3228. return True
  3229. if toktyp == "WordPiece":
  3230. return False
  3231. raise ValueError(f"unknown tokenizer: {toktyp}")
  3232. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3233. class XLMRobertaModel(BertModel):
  3234. model_arch = gguf.MODEL_ARCH.BERT
  3235. def __init__(self, *args, **kwargs):
  3236. super().__init__(*args, **kwargs)
  3237. self._xlmroberta_tokenizer_init()
  3238. def set_vocab(self):
  3239. self._xlmroberta_set_vocab()
  3240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3241. # if name starts with "roberta.", remove the prefix
  3242. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3243. if name.startswith("roberta."):
  3244. name = name[8:]
  3245. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3246. if name == "embeddings.position_embeddings.weight":
  3247. if self._position_offset is not None:
  3248. data_torch = data_torch[self._position_offset:,:]
  3249. return super().modify_tensors(data_torch, name, bid)
  3250. @ModelBase.register("GemmaForCausalLM")
  3251. class GemmaModel(TextModel):
  3252. model_arch = gguf.MODEL_ARCH.GEMMA
  3253. def set_vocab(self):
  3254. self._set_vocab_sentencepiece()
  3255. # TODO: these special tokens should be exported only for the CodeGemma family
  3256. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3257. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3258. special_vocab._set_special_token("prefix", 67)
  3259. special_vocab._set_special_token("suffix", 69)
  3260. special_vocab._set_special_token("middle", 68)
  3261. special_vocab._set_special_token("fsep", 70)
  3262. special_vocab._set_special_token("eot", 107)
  3263. special_vocab.chat_template = None # do not add it twice
  3264. special_vocab.add_to_gguf(self.gguf_writer)
  3265. self.gguf_writer.add_add_space_prefix(False)
  3266. def set_gguf_parameters(self):
  3267. hparams = self.hparams
  3268. block_count = hparams["num_hidden_layers"]
  3269. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3270. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3271. self.gguf_writer.add_block_count(block_count)
  3272. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3273. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3274. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3275. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3276. self.gguf_writer.add_key_length(hparams["head_dim"])
  3277. self.gguf_writer.add_value_length(hparams["head_dim"])
  3278. self.gguf_writer.add_file_type(self.ftype)
  3279. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3280. del bid # unused
  3281. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3282. # To prevent errors, skip loading lm_head.weight.
  3283. if name == "lm_head.weight":
  3284. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3285. return []
  3286. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3287. if name.endswith("norm.weight"):
  3288. data_torch = data_torch + 1
  3289. return [(self.map_tensor_name(name), data_torch)]
  3290. @ModelBase.register("Gemma2ForCausalLM")
  3291. class Gemma2Model(TextModel):
  3292. model_arch = gguf.MODEL_ARCH.GEMMA2
  3293. def set_vocab(self):
  3294. self._set_vocab_sentencepiece()
  3295. self.gguf_writer.add_add_space_prefix(False)
  3296. def set_gguf_parameters(self):
  3297. hparams = self.hparams
  3298. block_count = hparams["num_hidden_layers"]
  3299. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3300. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3301. self.gguf_writer.add_block_count(block_count)
  3302. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3303. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3304. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3305. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3306. self.gguf_writer.add_key_length(hparams["head_dim"])
  3307. self.gguf_writer.add_value_length(hparams["head_dim"])
  3308. self.gguf_writer.add_file_type(self.ftype)
  3309. self.gguf_writer.add_attn_logit_softcapping(
  3310. self.hparams["attn_logit_softcapping"]
  3311. )
  3312. self.gguf_writer.add_final_logit_softcapping(
  3313. self.hparams["final_logit_softcapping"]
  3314. )
  3315. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3317. del bid # unused
  3318. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3319. # To prevent errors, skip loading lm_head.weight.
  3320. if name == "lm_head.weight":
  3321. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3322. return []
  3323. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3324. if name.endswith("norm.weight"):
  3325. data_torch = data_torch + 1
  3326. return [(self.map_tensor_name(name), data_torch)]
  3327. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3328. class Gemma3Model(TextModel):
  3329. model_arch = gguf.MODEL_ARCH.GEMMA3
  3330. def set_vocab(self):
  3331. self._set_vocab_sentencepiece()
  3332. self.gguf_writer.add_add_space_prefix(False)
  3333. def set_gguf_parameters(self):
  3334. hparams = self.hparams
  3335. block_count = hparams["num_hidden_layers"]
  3336. # some default values are not specified in the hparams
  3337. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3338. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3339. self.gguf_writer.add_block_count(block_count)
  3340. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3341. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3342. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3343. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3344. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3345. self.gguf_writer.add_file_type(self.ftype)
  3346. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3347. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3348. assert hparams.get("attn_logit_softcapping") is None
  3349. assert hparams.get("final_logit_softcapping") is None
  3350. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3351. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3352. if hparams.get("rope_scaling") is not None:
  3353. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3354. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3355. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3356. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3357. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3358. del bid # unused
  3359. if name.startswith("language_model."):
  3360. name = name.replace("language_model.", "")
  3361. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3362. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3363. return [] # skip vision tensors
  3364. # remove OOV (out-of-vocabulary) rows in token_embd
  3365. if "embed_tokens.weight" in name:
  3366. vocab = self._create_vocab_sentencepiece()
  3367. tokens = vocab[0]
  3368. data_torch = data_torch[:len(tokens)]
  3369. # ref code in Gemma3RMSNorm
  3370. # output = output * (1.0 + self.weight.float())
  3371. if name.endswith("norm.weight"):
  3372. data_torch = data_torch + 1
  3373. return [(self.map_tensor_name(name), data_torch)]
  3374. @ModelBase.register("Gemma3ForConditionalGeneration")
  3375. class Gemma3VisionModel(MmprojModel):
  3376. def set_gguf_parameters(self):
  3377. super().set_gguf_parameters()
  3378. hparams = self.hparams
  3379. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3380. # default values below are taken from HF tranformers code
  3381. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3382. self.gguf_writer.add_vision_use_gelu(True)
  3383. # calculate proj_scale_factor (used by tinygemma3 test model)
  3384. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3385. n_per_side = int(image_seq_length ** 0.5)
  3386. image_size = self.hparams["image_size"]
  3387. patch_size = self.hparams["patch_size"]
  3388. proj_scale_factor = (image_size // patch_size) // n_per_side
  3389. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3390. # we only need to write this if it's not the default value
  3391. # in this case, we are converting a test model
  3392. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3393. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3394. del bid, new_name, n_dims # unused
  3395. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3396. if "input_projection" in name:
  3397. return gguf.GGMLQuantizationType.F16
  3398. if ".embeddings." in name:
  3399. return gguf.GGMLQuantizationType.F32
  3400. return False
  3401. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3402. del bid # unused
  3403. if "vision_model.head." in name:
  3404. return [] # skip redundant tensors for tinygemma3
  3405. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3406. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3407. # process vision tensors
  3408. name = name.replace("_weight", ".weight")
  3409. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3410. # the other norm values are part of SigLIP model, and they are already correct
  3411. # ref code: Gemma3RMSNorm
  3412. if "soft_emb_norm.weight" in name:
  3413. logger.info(f"Correcting norm value for '{name}'")
  3414. data_torch = data_torch + 1
  3415. return [(self.map_tensor_name(name), data_torch)]
  3416. return [] # skip other tensors
  3417. @ModelBase.register("Starcoder2ForCausalLM")
  3418. class StarCoder2Model(TextModel):
  3419. model_arch = gguf.MODEL_ARCH.STARCODER2
  3420. @ModelBase.register("Rwkv6ForCausalLM")
  3421. class Rwkv6Model(TextModel):
  3422. model_arch = gguf.MODEL_ARCH.RWKV6
  3423. def set_vocab(self):
  3424. self._set_vocab_rwkv_world()
  3425. def set_gguf_parameters(self):
  3426. block_count = self.hparams["num_hidden_layers"]
  3427. head_size = self.hparams["head_size"]
  3428. hidden_size = self.hparams["hidden_size"]
  3429. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3430. rescale_every_n_layers = self.hparams["rescale_every"]
  3431. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3432. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3433. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3434. # RWKV isn't context limited
  3435. self.gguf_writer.add_context_length(1048576)
  3436. self.gguf_writer.add_embedding_length(hidden_size)
  3437. self.gguf_writer.add_block_count(block_count)
  3438. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3439. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3440. self.gguf_writer.add_wkv_head_size(head_size)
  3441. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3442. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3443. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3444. self.gguf_writer.add_file_type(self.ftype)
  3445. # required by llama.cpp, unused
  3446. self.gguf_writer.add_head_count(0)
  3447. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3449. new_name = self.map_tensor_name(name)
  3450. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3451. new_name += ".weight"
  3452. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3453. data_torch = data_torch.transpose(0, 1)
  3454. if new_name.endswith("time_mix_w2.weight"):
  3455. data_torch = data_torch.permute(0, 2, 1)
  3456. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3457. data_torch = data_torch.squeeze()
  3458. try:
  3459. rescale_every_n_layers = self.hparams["rescale_every"]
  3460. if rescale_every_n_layers > 0:
  3461. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3462. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3463. except KeyError:
  3464. pass
  3465. # concat time_mix_lerp weights to reduce some cpu overhead
  3466. # also reduces the number of tensors in the model
  3467. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3468. try:
  3469. self.lerp_weights[bid][new_name] = data_torch
  3470. except KeyError:
  3471. self.lerp_weights[bid] = {new_name: data_torch}
  3472. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3473. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3474. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3475. yield (new_name, data)
  3476. return
  3477. yield (new_name, data_torch)
  3478. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3479. class RWKV6Qwen2Model(Rwkv6Model):
  3480. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3481. def set_vocab(self):
  3482. try:
  3483. self._set_vocab_sentencepiece()
  3484. except FileNotFoundError:
  3485. self._set_vocab_gpt2()
  3486. def set_gguf_parameters(self):
  3487. block_count = self.hparams["num_hidden_layers"]
  3488. num_attention_heads = self.hparams["num_attention_heads"]
  3489. num_key_value_heads = self.hparams["num_key_value_heads"]
  3490. hidden_size = self.hparams["hidden_size"]
  3491. head_size = hidden_size // num_attention_heads
  3492. rms_norm_eps = self.hparams["rms_norm_eps"]
  3493. intermediate_size = self.hparams["intermediate_size"]
  3494. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3495. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3496. # RWKV isn't context limited
  3497. self.gguf_writer.add_context_length(1048576)
  3498. self.gguf_writer.add_embedding_length(hidden_size)
  3499. self.gguf_writer.add_block_count(block_count)
  3500. self.gguf_writer.add_wkv_head_size(head_size)
  3501. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3502. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3503. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3504. self.gguf_writer.add_file_type(self.ftype)
  3505. # special parameters for time_mixing in RWKV6QWEN2
  3506. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3507. self.gguf_writer.add_token_shift_count(1)
  3508. # RWKV6QWEN2 use grouped key/value like GQA
  3509. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3510. # required by llama.cpp, unused
  3511. self.gguf_writer.add_head_count(0)
  3512. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3513. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3514. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3515. data = data.view(5, -1, data.shape[-1])
  3516. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3517. # permute them here to avoid code changes
  3518. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3519. if "w2" in new_name:
  3520. data = data.view(5, -1, data.shape[-1])
  3521. yield (new_name, data)
  3522. continue
  3523. yield (new_name, data)
  3524. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3525. class Rwkv7Model(TextModel):
  3526. model_arch = gguf.MODEL_ARCH.RWKV7
  3527. def set_vocab(self):
  3528. self._set_vocab_rwkv_world()
  3529. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3530. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3531. def set_gguf_parameters(self):
  3532. block_count = self.hparams["num_hidden_layers"]
  3533. try:
  3534. head_size = self.hparams["head_size"]
  3535. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3536. except KeyError:
  3537. head_size = self.hparams["head_dim"]
  3538. layer_norm_eps = self.hparams["norm_eps"]
  3539. hidden_size = self.hparams["hidden_size"]
  3540. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3541. # ICLR: In-Context-Learning-Rate
  3542. try:
  3543. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3544. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3545. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3546. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3547. except KeyError:
  3548. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3549. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3550. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3551. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3552. # RWKV isn't context limited
  3553. self.gguf_writer.add_context_length(1048576)
  3554. self.gguf_writer.add_embedding_length(hidden_size)
  3555. self.gguf_writer.add_block_count(block_count)
  3556. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3557. self.gguf_writer.add_wkv_head_size(head_size)
  3558. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3559. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3560. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3561. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3562. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3563. self.gguf_writer.add_file_type(self.ftype)
  3564. # required by llama.cpp, unused
  3565. self.gguf_writer.add_head_count(0)
  3566. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3567. lora_needs_transpose: bool = True
  3568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3569. # unify tensor names here to make life easier
  3570. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3571. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3572. name = name.replace("time_mixer.", "")
  3573. # lora layer names in fla-hub's impl
  3574. if "_lora.lora" in name:
  3575. self.lora_needs_transpose = False
  3576. name = name.replace("_lora.lora.0.weight", "1.weight")
  3577. name = name.replace("_lora.lora.2.weight", "2.weight")
  3578. name = name.replace("_lora.lora.2.bias", "0.weight")
  3579. name = name.replace("feed_forward_norm", "ln2")
  3580. name = name.replace("g_norm", "ln_x")
  3581. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3582. # some models have dummy v0/v1/v2 on first layer while others don't
  3583. # ignore them all since they are not used
  3584. return
  3585. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3586. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3587. if bid is not None and "attention.x_" in name:
  3588. if "attention.x_x" in name:
  3589. # already concatenated
  3590. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3591. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3592. yield (new_name, data)
  3593. else:
  3594. try:
  3595. self.lerp_weights[bid][name] = data_torch
  3596. except KeyError:
  3597. self.lerp_weights[bid] = {name: data_torch}
  3598. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3599. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3600. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3601. yield (new_name, data)
  3602. return
  3603. else:
  3604. data_torch = data_torch.squeeze()
  3605. new_name = self.map_tensor_name(name)
  3606. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3607. new_name += ".weight"
  3608. if self.lora_needs_transpose and any(
  3609. new_name.endswith(t) for t in [
  3610. "time_mix_w1.weight", "time_mix_w2.weight",
  3611. "time_mix_a1.weight", "time_mix_a2.weight",
  3612. "time_mix_v1.weight", "time_mix_v2.weight",
  3613. "time_mix_g1.weight", "time_mix_g2.weight",
  3614. ]
  3615. ):
  3616. data_torch = data_torch.transpose(0, 1)
  3617. if 'r_k' in new_name:
  3618. data_torch = data_torch.flatten()
  3619. if bid == 0 and "time_mix_a" in new_name:
  3620. # dummy v0/v1/v2 on first layer
  3621. # easist way to make llama happy
  3622. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3623. yield (new_name, data_torch)
  3624. @ModelBase.register("RwkvHybridForCausalLM")
  3625. class ARwkv7Model(Rwkv7Model):
  3626. model_arch = gguf.MODEL_ARCH.ARWKV7
  3627. def set_vocab(self):
  3628. try:
  3629. self._set_vocab_sentencepiece()
  3630. except FileNotFoundError:
  3631. self._set_vocab_gpt2()
  3632. def set_gguf_parameters(self):
  3633. block_count = self.hparams["num_hidden_layers"]
  3634. hidden_size = self.hparams["hidden_size"]
  3635. head_size = self.hparams["head_size"]
  3636. rms_norm_eps = self.hparams["rms_norm_eps"]
  3637. intermediate_size = self.hparams["intermediate_size"]
  3638. wkv_has_gate = self.hparams["wkv_has_gate"]
  3639. assert self.hparams["wkv_version"] == 7
  3640. # ICLR: In-Context-Learning-Rate
  3641. lora_rank_decay = 64
  3642. lora_rank_iclr = 64
  3643. lora_rank_value_residual_mix = 32
  3644. lora_rank_gate = 128 if wkv_has_gate else 0
  3645. # RWKV isn't context limited
  3646. self.gguf_writer.add_context_length(1048576)
  3647. self.gguf_writer.add_embedding_length(hidden_size)
  3648. self.gguf_writer.add_block_count(block_count)
  3649. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3650. self.gguf_writer.add_wkv_head_size(head_size)
  3651. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3652. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3653. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3654. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3655. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3656. self.gguf_writer.add_file_type(self.ftype)
  3657. self.gguf_writer.add_token_shift_count(1)
  3658. # required by llama.cpp, unused
  3659. self.gguf_writer.add_head_count(0)
  3660. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3661. class MambaModel(TextModel):
  3662. model_arch = gguf.MODEL_ARCH.MAMBA
  3663. def set_vocab(self):
  3664. vocab_size = self.hparams["vocab_size"]
  3665. # Round vocab size to next multiple of 8
  3666. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3667. # pad using ceiling division
  3668. # ref: https://stackoverflow.com/a/17511341/22827863
  3669. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3670. self.hparams["vocab_size"] = vocab_size
  3671. if (self.dir_model / "tokenizer.json").is_file():
  3672. self._set_vocab_gpt2()
  3673. elif (self.dir_model / "tokenizer.model").is_file():
  3674. self._set_vocab_sentencepiece()
  3675. else:
  3676. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3677. self._set_vocab_builtin("gpt-neox", vocab_size)
  3678. def set_gguf_parameters(self):
  3679. d_model = self.find_hparam(["hidden_size", "d_model"])
  3680. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3681. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3682. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3683. # ceiling division
  3684. # ref: https://stackoverflow.com/a/17511341/22827863
  3685. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3686. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3687. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3688. use_dt_b_c_norm = False
  3689. # For falconmamba we do apply RMS norm on B / DT and C layers
  3690. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3691. use_dt_b_c_norm = True
  3692. # Fail early for models which don't have a block expansion factor of 2
  3693. assert d_inner == 2 * d_model
  3694. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3695. self.gguf_writer.add_embedding_length(d_model)
  3696. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3697. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3698. self.gguf_writer.add_block_count(self.block_count)
  3699. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3700. self.gguf_writer.add_ssm_inner_size(d_inner)
  3701. self.gguf_writer.add_ssm_state_size(d_state)
  3702. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3703. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3704. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3705. self.gguf_writer.add_file_type(self.ftype)
  3706. _tok_embd = None
  3707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3708. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3709. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3710. new_name = self.map_tensor_name(name)
  3711. if name.endswith(".A_log"):
  3712. logger.debug("A_log --> A ==> " + new_name)
  3713. data_torch = -torch.exp(data_torch)
  3714. # [4 1 8192 1] -> [4 8192 1 1]
  3715. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3716. data_torch = data_torch.squeeze()
  3717. # assuming token_embd.weight is seen before output.weight
  3718. if self._tok_embd is not None and new_name == output_name:
  3719. if torch.equal(self._tok_embd, data_torch):
  3720. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3721. return []
  3722. elif new_name == tok_embd_name:
  3723. self._tok_embd = data_torch
  3724. return [(new_name, data_torch)]
  3725. @ModelBase.register("CohereForCausalLM")
  3726. class CommandR2Model(TextModel):
  3727. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3728. def __init__(self, *args, **kwargs):
  3729. super().__init__(*args, **kwargs)
  3730. # max_position_embeddings = 8192 in config.json but model was actually
  3731. # trained on 128k context length
  3732. # aya-23 models don't have model_max_length specified
  3733. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3734. def set_gguf_parameters(self):
  3735. super().set_gguf_parameters()
  3736. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3737. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3738. @ModelBase.register("Cohere2ForCausalLM")
  3739. class Cohere2Model(TextModel):
  3740. model_arch = gguf.MODEL_ARCH.COHERE2
  3741. def set_gguf_parameters(self):
  3742. super().set_gguf_parameters()
  3743. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3744. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3745. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3746. rotary_pct = self.hparams["rotary_pct"]
  3747. hidden_size = self.hparams["hidden_size"]
  3748. num_attention_heads = self.hparams["num_attention_heads"]
  3749. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3750. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3751. @ModelBase.register("OlmoForCausalLM")
  3752. @ModelBase.register("OLMoForCausalLM")
  3753. class OlmoModel(TextModel):
  3754. model_arch = gguf.MODEL_ARCH.OLMO
  3755. def set_gguf_parameters(self):
  3756. super().set_gguf_parameters()
  3757. self.gguf_writer.add_layer_norm_eps(1e-5)
  3758. clip_qkv = self.hparams.get("clip_qkv")
  3759. if clip_qkv is not None:
  3760. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3761. # Same as super class, but permuting q_proj, k_proj
  3762. # Copied from: LlamaModel
  3763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3764. del bid # unused
  3765. n_head = self.hparams["num_attention_heads"]
  3766. n_kv_head = self.hparams.get("num_key_value_heads")
  3767. if name.endswith("q_proj.weight"):
  3768. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3769. if name.endswith("k_proj.weight"):
  3770. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3771. return [(self.map_tensor_name(name), data_torch)]
  3772. @ModelBase.register("Olmo2ForCausalLM")
  3773. class Olmo2Model(TextModel):
  3774. model_arch = gguf.MODEL_ARCH.OLMO2
  3775. @ModelBase.register("OlmoeForCausalLM")
  3776. class OlmoeModel(TextModel):
  3777. model_arch = gguf.MODEL_ARCH.OLMOE
  3778. def set_gguf_parameters(self):
  3779. super().set_gguf_parameters()
  3780. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3781. if (n_experts := self.hparams.get("num_experts")) is not None:
  3782. self.gguf_writer.add_expert_count(n_experts)
  3783. _experts: list[dict[str, Tensor]] | None = None
  3784. # Copied from: Qwen2MoeModel
  3785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3786. # process the experts separately
  3787. if name.find("experts") != -1:
  3788. n_experts = self.hparams["num_experts"]
  3789. assert bid is not None
  3790. if self._experts is None:
  3791. self._experts = [{} for _ in range(self.block_count)]
  3792. self._experts[bid][name] = data_torch
  3793. if len(self._experts[bid]) >= n_experts * 3:
  3794. tensors: list[tuple[str, Tensor]] = []
  3795. # merge the experts into a single 3d tensor
  3796. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3797. datas: list[Tensor] = []
  3798. for xid in range(n_experts):
  3799. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3800. datas.append(self._experts[bid][ename])
  3801. del self._experts[bid][ename]
  3802. data_torch = torch.stack(datas, dim=0)
  3803. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3804. new_name = self.map_tensor_name(merged_name)
  3805. tensors.append((new_name, data_torch))
  3806. return tensors
  3807. else:
  3808. return []
  3809. return [(self.map_tensor_name(name), data_torch)]
  3810. # Copied from: Qwen2MoeModel
  3811. def prepare_tensors(self):
  3812. super().prepare_tensors()
  3813. if self._experts is not None:
  3814. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3815. experts = [k for d in self._experts for k in d.keys()]
  3816. if len(experts) > 0:
  3817. raise ValueError(f"Unprocessed experts: {experts}")
  3818. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3819. class JinaBertV2Model(BertModel):
  3820. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3821. def __init__(self, *args, **kwargs):
  3822. super().__init__(*args, **kwargs)
  3823. self.intermediate_size = self.hparams["intermediate_size"]
  3824. def get_tensors(self):
  3825. for name, data in super().get_tensors():
  3826. if 'gated_layer' in name:
  3827. d1 = data[:self.intermediate_size, :]
  3828. name1 = name.replace('gated_layers', 'gated_layers_w')
  3829. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3830. d2 = data[self.intermediate_size:, :]
  3831. name2 = name.replace('gated_layers', 'gated_layers_v')
  3832. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3833. yield name1, d1
  3834. yield name2, d2
  3835. continue
  3836. yield name, data
  3837. def set_vocab(self):
  3838. tokenizer_class = 'BertTokenizer'
  3839. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3840. tokenizer_class = json.load(f)['tokenizer_class']
  3841. if tokenizer_class == 'BertTokenizer':
  3842. super().set_vocab()
  3843. elif tokenizer_class == 'RobertaTokenizer':
  3844. self._set_vocab_gpt2()
  3845. self.gguf_writer.add_token_type_count(2)
  3846. else:
  3847. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3848. self.gguf_writer.add_add_bos_token(True)
  3849. self.gguf_writer.add_add_eos_token(True)
  3850. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3851. # if name starts with "bert.", remove the prefix
  3852. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3853. if name.startswith("bert."):
  3854. name = name[5:]
  3855. return super().modify_tensors(data_torch, name, bid)
  3856. @ModelBase.register("OpenELMForCausalLM")
  3857. class OpenELMModel(TextModel):
  3858. model_arch = gguf.MODEL_ARCH.OPENELM
  3859. @staticmethod
  3860. def _make_divisible(v: float | int, divisor: int) -> int:
  3861. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3862. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3863. # Make sure that round down does not go down by more than 10%.
  3864. if new_v < 0.9 * v:
  3865. new_v += divisor
  3866. return new_v
  3867. def __init__(self, *args, **kwargs):
  3868. super().__init__(*args, **kwargs)
  3869. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3870. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3871. self._n_embd: int = self.hparams["model_dim"]
  3872. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3873. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3874. self._ffn_dims: list[int] = [
  3875. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3876. for multiplier in ffn_multipliers
  3877. ]
  3878. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3879. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3880. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3881. def set_vocab(self):
  3882. try:
  3883. self._set_vocab_sentencepiece()
  3884. except FileNotFoundError:
  3885. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3886. def set_gguf_parameters(self):
  3887. n_embd = self._n_embd
  3888. head_dim = self.hparams["head_dim"]
  3889. rot_pct = 1.0
  3890. assert self.block_count == len(self._num_kv_heads)
  3891. assert self.block_count == len(self._num_query_heads)
  3892. assert self.block_count == len(self._ffn_dims)
  3893. self.gguf_writer.add_block_count(self.block_count)
  3894. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3895. self.gguf_writer.add_embedding_length(n_embd)
  3896. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3897. self.gguf_writer.add_head_count(self._num_query_heads)
  3898. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3899. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3900. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3901. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3902. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3903. self.gguf_writer.add_key_length(head_dim)
  3904. self.gguf_writer.add_value_length(head_dim)
  3905. self.gguf_writer.add_file_type(self.ftype)
  3906. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3907. if "n_layers" in keys:
  3908. return self.hparams["num_transformer_layers"]
  3909. return super().find_hparam(keys, optional)
  3910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3911. # split ff
  3912. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3913. ff_dim = self._ffn_dims[bid]
  3914. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3915. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3916. return
  3917. yield (self.map_tensor_name(name), data_torch)
  3918. @ModelBase.register("ArcticForCausalLM")
  3919. class ArcticModel(TextModel):
  3920. model_arch = gguf.MODEL_ARCH.ARCTIC
  3921. def set_vocab(self):
  3922. # The reason for using a custom implementation here is that the
  3923. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3924. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3925. from sentencepiece import SentencePieceProcessor
  3926. tokenizer_path = self.dir_model / 'tokenizer.model'
  3927. if not tokenizer_path.is_file():
  3928. logger.error(f'Error: Missing {tokenizer_path}')
  3929. sys.exit(1)
  3930. # Read the whole vocabulary from the tokenizer.model file
  3931. tokenizer = SentencePieceProcessor()
  3932. tokenizer.LoadFromFile(str(tokenizer_path))
  3933. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3934. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3935. scores: list[float] = [-10000.0] * vocab_size
  3936. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3937. for token_id in range(tokenizer.vocab_size()):
  3938. piece = tokenizer.IdToPiece(token_id)
  3939. text = piece.encode("utf-8")
  3940. score = tokenizer.GetScore(token_id)
  3941. toktype = SentencePieceTokenTypes.NORMAL
  3942. if tokenizer.IsUnknown(token_id):
  3943. toktype = SentencePieceTokenTypes.UNKNOWN
  3944. elif tokenizer.IsControl(token_id):
  3945. toktype = SentencePieceTokenTypes.CONTROL
  3946. elif tokenizer.IsUnused(token_id):
  3947. toktype = SentencePieceTokenTypes.UNUSED
  3948. elif tokenizer.IsByte(token_id):
  3949. toktype = SentencePieceTokenTypes.BYTE
  3950. tokens[token_id] = text
  3951. scores[token_id] = score
  3952. toktypes[token_id] = toktype
  3953. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3954. # of information about added/redefined tokens and modify them accordingly.
  3955. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3956. if tokenizer_config_file.is_file():
  3957. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3958. tokenizer_config_json = json.load(f)
  3959. if "added_tokens_decoder" in tokenizer_config_json:
  3960. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3961. for token_id, token_json in added_tokens_decoder.items():
  3962. token_id = int(token_id)
  3963. if token_id >= vocab_size:
  3964. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3965. continue
  3966. token_content = token_json["content"]
  3967. token_type = SentencePieceTokenTypes.USER_DEFINED
  3968. token_score = -10000.0
  3969. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3970. # Set the score to 0.0 as in the original tokenizer.model
  3971. if ("special" in token_json) and token_json["special"]:
  3972. if token_content == tokenizer_config_json["unk_token"]:
  3973. token_type = SentencePieceTokenTypes.UNKNOWN
  3974. else:
  3975. token_type = SentencePieceTokenTypes.CONTROL
  3976. token_score = 0.0
  3977. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3978. tokens[token_id] = token_content.encode("utf-8")
  3979. toktypes[token_id] = token_type
  3980. scores[token_id] = token_score
  3981. self.gguf_writer.add_tokenizer_model("llama")
  3982. self.gguf_writer.add_tokenizer_pre("default")
  3983. self.gguf_writer.add_token_list(tokens)
  3984. self.gguf_writer.add_token_scores(scores)
  3985. self.gguf_writer.add_token_types(toktypes)
  3986. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3987. special_vocab.add_to_gguf(self.gguf_writer)
  3988. def set_gguf_parameters(self):
  3989. super().set_gguf_parameters()
  3990. hparams = self.hparams
  3991. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3992. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3993. _experts: list[dict[str, Tensor]] | None = None
  3994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3995. n_head = self.hparams["num_attention_heads"]
  3996. n_kv_head = self.hparams.get("num_key_value_heads")
  3997. if name.endswith("q_proj.weight"):
  3998. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3999. if name.endswith("k_proj.weight"):
  4000. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4001. # process the experts separately
  4002. if name.find("block_sparse_moe.experts") != -1:
  4003. n_experts = self.hparams["num_local_experts"]
  4004. assert bid is not None
  4005. if self._experts is None:
  4006. self._experts = [{} for _ in range(self.block_count)]
  4007. self._experts[bid][name] = data_torch
  4008. if len(self._experts[bid]) >= n_experts * 3:
  4009. tensors: list[tuple[str, Tensor]] = []
  4010. # merge the experts into a single 3d tensor
  4011. for wid in ["w1", "w2", "w3"]:
  4012. datas: list[Tensor] = []
  4013. for xid in range(n_experts):
  4014. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4015. datas.append(self._experts[bid][ename])
  4016. del self._experts[bid][ename]
  4017. data_torch = torch.stack(datas, dim=0)
  4018. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4019. new_name = self.map_tensor_name(merged_name)
  4020. tensors.append((new_name, data_torch))
  4021. return tensors
  4022. else:
  4023. return []
  4024. return [(self.map_tensor_name(name), data_torch)]
  4025. def prepare_tensors(self):
  4026. super().prepare_tensors()
  4027. if self._experts is not None:
  4028. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4029. experts = [k for d in self._experts for k in d.keys()]
  4030. if len(experts) > 0:
  4031. raise ValueError(f"Unprocessed experts: {experts}")
  4032. @ModelBase.register("DeepseekForCausalLM")
  4033. class DeepseekModel(TextModel):
  4034. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4035. def set_vocab(self):
  4036. try:
  4037. self._set_vocab_sentencepiece()
  4038. except FileNotFoundError:
  4039. self._set_vocab_gpt2()
  4040. def set_gguf_parameters(self):
  4041. super().set_gguf_parameters()
  4042. hparams = self.hparams
  4043. if "head_dim" in hparams:
  4044. rope_dim = hparams["head_dim"]
  4045. else:
  4046. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4047. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4048. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4049. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4050. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4051. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4052. self.gguf_writer.add_expert_weights_scale(1.0)
  4053. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4054. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4055. _experts: list[dict[str, Tensor]] | None = None
  4056. @staticmethod
  4057. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4058. if n_head_kv is not None and n_head != n_head_kv:
  4059. n_head = n_head_kv
  4060. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4061. .swapaxes(1, 2)
  4062. .reshape(weights.shape))
  4063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4064. n_head = self.hparams["num_attention_heads"]
  4065. n_kv_head = self.hparams.get("num_key_value_heads")
  4066. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4067. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4068. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4069. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4070. # process the experts separately
  4071. if name.find("mlp.experts") != -1:
  4072. n_experts = self.hparams["n_routed_experts"]
  4073. assert bid is not None
  4074. if self._experts is None:
  4075. self._experts = [{} for _ in range(self.block_count)]
  4076. self._experts[bid][name] = data_torch
  4077. if len(self._experts[bid]) >= n_experts * 3:
  4078. tensors: list[tuple[str, Tensor]] = []
  4079. # merge the experts into a single 3d tensor
  4080. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4081. datas: list[Tensor] = []
  4082. for xid in range(n_experts):
  4083. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4084. datas.append(self._experts[bid][ename])
  4085. del self._experts[bid][ename]
  4086. data_torch = torch.stack(datas, dim=0)
  4087. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4088. new_name = self.map_tensor_name(merged_name)
  4089. tensors.append((new_name, data_torch))
  4090. return tensors
  4091. else:
  4092. return []
  4093. return [(self.map_tensor_name(name), data_torch)]
  4094. def prepare_tensors(self):
  4095. super().prepare_tensors()
  4096. if self._experts is not None:
  4097. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4098. experts = [k for d in self._experts for k in d.keys()]
  4099. if len(experts) > 0:
  4100. raise ValueError(f"Unprocessed experts: {experts}")
  4101. @ModelBase.register("DeepseekV2ForCausalLM")
  4102. @ModelBase.register("DeepseekV3ForCausalLM")
  4103. class DeepseekV2Model(TextModel):
  4104. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4105. def set_vocab(self):
  4106. self._set_vocab_gpt2()
  4107. def set_gguf_parameters(self):
  4108. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4109. self.hparams["num_key_value_heads"] = 1
  4110. super().set_gguf_parameters()
  4111. hparams = self.hparams
  4112. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4113. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4114. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4115. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4116. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4117. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4118. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4119. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4120. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4121. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4122. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4123. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4124. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4125. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4126. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4127. if hparams["scoring_func"] == "sigmoid":
  4128. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4129. elif hparams["scoring_func"] == "softmax":
  4130. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4131. else:
  4132. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4133. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4134. rope_scaling = self.hparams.get("rope_scaling") or {}
  4135. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4136. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4137. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4138. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4139. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4140. _experts: list[dict[str, Tensor]] | None = None
  4141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4142. # rename e_score_correction_bias tensors
  4143. if name.endswith("e_score_correction_bias"):
  4144. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4145. # skip Multi-Token Prediction (MTP) layers
  4146. block_count = self.hparams["num_hidden_layers"]
  4147. match = re.match(r"model.layers.(\d+)", name)
  4148. if match and int(match.group(1)) >= block_count:
  4149. return []
  4150. # process the experts separately
  4151. if name.find("mlp.experts") != -1:
  4152. n_experts = self.hparams["n_routed_experts"]
  4153. assert bid is not None
  4154. if self._experts is None:
  4155. self._experts = [{} for _ in range(self.block_count)]
  4156. self._experts[bid][name] = data_torch
  4157. if len(self._experts[bid]) >= n_experts * 3:
  4158. tensors: list[tuple[str, Tensor]] = []
  4159. # merge the experts into a single 3d tensor
  4160. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4161. datas: list[Tensor] = []
  4162. for xid in range(n_experts):
  4163. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4164. datas.append(self._experts[bid][ename])
  4165. del self._experts[bid][ename]
  4166. data_torch = torch.stack(datas, dim=0)
  4167. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4168. new_name = self.map_tensor_name(merged_name)
  4169. tensors.append((new_name, data_torch))
  4170. return tensors
  4171. else:
  4172. return []
  4173. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4174. if name.endswith("kv_b_proj.weight"):
  4175. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4176. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4177. n_head_kv = self.hparams["num_key_value_heads"]
  4178. v_head_dim = self.hparams["v_head_dim"]
  4179. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4180. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4181. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4182. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4183. k_b = k_b.transpose(1, 2)
  4184. return [
  4185. (self.map_tensor_name(name_kb), k_b),
  4186. (self.map_tensor_name(name_vb), v_b)
  4187. ]
  4188. return [(self.map_tensor_name(name), data_torch)]
  4189. def prepare_tensors(self):
  4190. super().prepare_tensors()
  4191. if self._experts is not None:
  4192. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4193. experts = [k for d in self._experts for k in d.keys()]
  4194. if len(experts) > 0:
  4195. raise ValueError(f"Unprocessed experts: {experts}")
  4196. @ModelBase.register("PLMForCausalLM")
  4197. class PLMModel(TextModel):
  4198. model_arch = gguf.MODEL_ARCH.PLM
  4199. def set_vocab(self):
  4200. self._set_vocab_gpt2()
  4201. def set_gguf_parameters(self):
  4202. super().set_gguf_parameters()
  4203. hparams = self.hparams
  4204. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4205. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4206. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4207. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4208. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4210. return [(self.map_tensor_name(name), data_torch)]
  4211. def prepare_tensors(self):
  4212. super().prepare_tensors()
  4213. @ModelBase.register("T5WithLMHeadModel")
  4214. @ModelBase.register("T5ForConditionalGeneration")
  4215. @ModelBase.register("MT5ForConditionalGeneration")
  4216. @ModelBase.register("UMT5ForConditionalGeneration")
  4217. class T5Model(TextModel):
  4218. model_arch = gguf.MODEL_ARCH.T5
  4219. def __init__(self, *args, **kwargs):
  4220. super().__init__(*args, **kwargs)
  4221. self.shared_token_embeddings_found = False
  4222. def set_vocab(self):
  4223. # to avoid TypeError: Descriptors cannot be created directly
  4224. # exception when importing sentencepiece_model_pb2
  4225. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4226. from sentencepiece import SentencePieceProcessor
  4227. from sentencepiece import sentencepiece_model_pb2 as model
  4228. tokenizer_path = self.dir_model / 'tokenizer.model'
  4229. # many older models use spiece.model tokenizer model filename
  4230. if not tokenizer_path.is_file():
  4231. tokenizer_path = self.dir_model / 'spiece.model'
  4232. if not tokenizer_path.is_file():
  4233. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4234. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4235. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4236. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4237. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4238. # assure the tokenizer model file name is correct
  4239. assert tokenizer_path.name == 'tokenizer.model'
  4240. return self._set_vocab_sentencepiece()
  4241. else:
  4242. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4243. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4244. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4245. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4246. tokenizer = SentencePieceProcessor()
  4247. tokenizer.LoadFromFile(str(tokenizer_path))
  4248. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4249. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4250. scores: list[float] = [-10000.0] * vocab_size
  4251. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4252. for token_id in range(tokenizer.vocab_size()):
  4253. piece = tokenizer.IdToPiece(token_id)
  4254. text = piece.encode("utf-8")
  4255. score = tokenizer.GetScore(token_id)
  4256. toktype = SentencePieceTokenTypes.NORMAL
  4257. if tokenizer.IsUnknown(token_id):
  4258. toktype = SentencePieceTokenTypes.UNKNOWN
  4259. elif tokenizer.IsControl(token_id):
  4260. toktype = SentencePieceTokenTypes.CONTROL
  4261. elif tokenizer.IsUnused(token_id):
  4262. toktype = SentencePieceTokenTypes.UNUSED
  4263. elif tokenizer.IsByte(token_id):
  4264. toktype = SentencePieceTokenTypes.BYTE
  4265. tokens[token_id] = text
  4266. scores[token_id] = score
  4267. toktypes[token_id] = toktype
  4268. added_tokens_file = self.dir_model / 'added_tokens.json'
  4269. if added_tokens_file.is_file():
  4270. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4271. added_tokens_json = json.load(f)
  4272. for key in added_tokens_json:
  4273. token_id = added_tokens_json[key]
  4274. if token_id >= vocab_size:
  4275. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4276. continue
  4277. tokens[token_id] = key.encode("utf-8")
  4278. scores[token_id] = -1000.0
  4279. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4280. if vocab_size > len(tokens):
  4281. pad_count = vocab_size - len(tokens)
  4282. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4283. for i in range(1, pad_count + 1):
  4284. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4285. scores.append(-1000.0)
  4286. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4287. self.gguf_writer.add_tokenizer_model("t5")
  4288. self.gguf_writer.add_tokenizer_pre("default")
  4289. self.gguf_writer.add_token_list(tokens)
  4290. self.gguf_writer.add_token_scores(scores)
  4291. self.gguf_writer.add_token_types(toktypes)
  4292. self.gguf_writer.add_add_space_prefix(add_prefix)
  4293. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4294. if precompiled_charsmap:
  4295. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4296. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4297. special_vocab.add_to_gguf(self.gguf_writer)
  4298. self.gguf_writer.add_add_bos_token(False)
  4299. self.gguf_writer.add_add_eos_token(True)
  4300. def set_gguf_parameters(self):
  4301. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4302. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4303. n_ctx = 512
  4304. self.gguf_writer.add_context_length(n_ctx)
  4305. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4306. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4307. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4308. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4309. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4310. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4311. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4312. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4313. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4314. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4315. self.gguf_writer.add_file_type(self.ftype)
  4316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4317. del bid # unused
  4318. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4319. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4320. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4321. # and decoder and ignore the remaining ones.
  4322. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4323. if not self.shared_token_embeddings_found:
  4324. name = "shared.weight"
  4325. self.shared_token_embeddings_found = True
  4326. else:
  4327. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4328. return []
  4329. return [(self.map_tensor_name(name), data_torch)]
  4330. @ModelBase.register("T5EncoderModel")
  4331. class T5EncoderModel(TextModel):
  4332. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4333. def __init__(self, *args, **kwargs):
  4334. super().__init__(*args, **kwargs)
  4335. self.shared_token_embeddings_found = False
  4336. def set_vocab(self):
  4337. # to avoid TypeError: Descriptors cannot be created directly
  4338. # exception when importing sentencepiece_model_pb2
  4339. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4340. from sentencepiece import SentencePieceProcessor
  4341. from sentencepiece import sentencepiece_model_pb2 as model
  4342. tokenizer_path = self.dir_model / 'tokenizer.model'
  4343. # many older models use spiece.model tokenizer model filename
  4344. if not tokenizer_path.is_file():
  4345. tokenizer_path = self.dir_model / 'spiece.model'
  4346. if not tokenizer_path.is_file():
  4347. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4348. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4349. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4350. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4351. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4352. # assure the tokenizer model file name is correct
  4353. assert tokenizer_path.name == 'tokenizer.model'
  4354. return self._set_vocab_sentencepiece()
  4355. else:
  4356. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4357. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4358. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4359. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4360. tokenizer = SentencePieceProcessor()
  4361. tokenizer.LoadFromFile(str(tokenizer_path))
  4362. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4363. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4364. scores: list[float] = [-10000.0] * vocab_size
  4365. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4366. for token_id in range(tokenizer.vocab_size()):
  4367. piece = tokenizer.IdToPiece(token_id)
  4368. text = piece.encode("utf-8")
  4369. score = tokenizer.GetScore(token_id)
  4370. toktype = SentencePieceTokenTypes.NORMAL
  4371. if tokenizer.IsUnknown(token_id):
  4372. toktype = SentencePieceTokenTypes.UNKNOWN
  4373. elif tokenizer.IsControl(token_id):
  4374. toktype = SentencePieceTokenTypes.CONTROL
  4375. elif tokenizer.IsUnused(token_id):
  4376. toktype = SentencePieceTokenTypes.UNUSED
  4377. elif tokenizer.IsByte(token_id):
  4378. toktype = SentencePieceTokenTypes.BYTE
  4379. tokens[token_id] = text
  4380. scores[token_id] = score
  4381. toktypes[token_id] = toktype
  4382. added_tokens_file = self.dir_model / 'added_tokens.json'
  4383. if added_tokens_file.is_file():
  4384. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4385. added_tokens_json = json.load(f)
  4386. for key in added_tokens_json:
  4387. token_id = added_tokens_json[key]
  4388. if token_id >= vocab_size:
  4389. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4390. continue
  4391. tokens[token_id] = key.encode("utf-8")
  4392. scores[token_id] = -1000.0
  4393. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4394. if vocab_size > len(tokens):
  4395. pad_count = vocab_size - len(tokens)
  4396. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4397. for i in range(1, pad_count + 1):
  4398. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4399. scores.append(-1000.0)
  4400. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4401. self.gguf_writer.add_tokenizer_model("t5")
  4402. self.gguf_writer.add_tokenizer_pre("default")
  4403. self.gguf_writer.add_token_list(tokens)
  4404. self.gguf_writer.add_token_scores(scores)
  4405. self.gguf_writer.add_token_types(toktypes)
  4406. self.gguf_writer.add_add_space_prefix(add_prefix)
  4407. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4408. if precompiled_charsmap:
  4409. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4410. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4411. special_vocab.add_to_gguf(self.gguf_writer)
  4412. self.gguf_writer.add_add_bos_token(False)
  4413. self.gguf_writer.add_add_eos_token(True)
  4414. def set_gguf_parameters(self):
  4415. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4416. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4417. n_ctx = 512
  4418. self.gguf_writer.add_context_length(n_ctx)
  4419. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4420. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4421. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4422. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4423. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4424. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4425. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4426. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4427. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4428. self.gguf_writer.add_file_type(self.ftype)
  4429. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4430. del bid # unused
  4431. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4432. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4433. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4434. # and decoder and ignore the remaining ones.
  4435. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4436. if not self.shared_token_embeddings_found:
  4437. name = "shared.weight"
  4438. self.shared_token_embeddings_found = True
  4439. else:
  4440. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4441. return []
  4442. return [(self.map_tensor_name(name), data_torch)]
  4443. @ModelBase.register("JAISLMHeadModel")
  4444. class JaisModel(TextModel):
  4445. model_arch = gguf.MODEL_ARCH.JAIS
  4446. def __init__(self, *args, **kwargs):
  4447. super().__init__(*args, **kwargs)
  4448. # SwigLU activation
  4449. assert self.hparams["activation_function"] == "swiglu"
  4450. # ALiBi position embedding
  4451. assert self.hparams["position_embedding_type"] == "alibi"
  4452. # Embeddings scale
  4453. self.embeddings_scale = 1.0
  4454. if 'mup_embeddings_scale' in self.hparams:
  4455. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4456. elif 'embeddings_scale' in self.hparams:
  4457. self.embeddings_scale = self.hparams['embeddings_scale']
  4458. else:
  4459. assert False
  4460. self.width_scale = 1.0
  4461. if 'mup_output_alpha' in self.hparams:
  4462. assert 'mup_width_scale' in self.hparams
  4463. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4464. elif 'width_scale' in self.hparams:
  4465. self.width_scale = self.hparams['width_scale']
  4466. else:
  4467. assert False
  4468. self.max_alibi_bias = 8.0
  4469. def set_vocab(self):
  4470. self._set_vocab_gpt2()
  4471. def set_gguf_parameters(self):
  4472. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4473. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4474. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4475. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4476. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4477. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4478. self.gguf_writer.add_file_type(self.ftype)
  4479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4480. del bid # unused
  4481. tensors: list[tuple[str, Tensor]] = []
  4482. # we don't need these
  4483. if name.endswith((".attn.bias")):
  4484. return tensors
  4485. if name.endswith(("relative_pe.slopes")):
  4486. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4487. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4488. # but Jais's PyTorch model simply precalculates the slope values and places them
  4489. # in relative_pes.slopes
  4490. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4491. first_val = float(data_torch[0].item())
  4492. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4493. return tensors
  4494. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4495. data_torch = data_torch.transpose(1, 0)
  4496. new_name = self.map_tensor_name(name)
  4497. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4498. tensors.append((new_name, data_torch * self.embeddings_scale))
  4499. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4500. tensors.append((new_name, data_torch * self.width_scale))
  4501. else:
  4502. tensors.append((new_name, data_torch))
  4503. return tensors
  4504. def prepare_tensors(self):
  4505. super().prepare_tensors()
  4506. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4507. @ModelBase.register("Glm4ForCausalLM")
  4508. class Glm4Model(TextModel):
  4509. model_arch = gguf.MODEL_ARCH.GLM4
  4510. def set_vocab(self):
  4511. from transformers import AutoTokenizer
  4512. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4513. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4514. tokens, toktypes, tokpre = self.get_vocab_base()
  4515. self.gguf_writer.add_tokenizer_model("gpt2")
  4516. self.gguf_writer.add_tokenizer_pre(tokpre)
  4517. self.gguf_writer.add_token_list(tokens)
  4518. self.gguf_writer.add_token_types(toktypes)
  4519. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4520. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4521. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4522. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4523. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4524. special_vocab.add_to_gguf(self.gguf_writer)
  4525. def set_gguf_parameters(self):
  4526. super().set_gguf_parameters()
  4527. rope_dim = self.hparams["head_dim"]
  4528. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4529. rope_scaling = self.hparams.get("rope_scaling") or {}
  4530. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4531. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4532. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4533. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4534. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4535. class ChatGLMModel(TextModel):
  4536. model_arch = gguf.MODEL_ARCH.CHATGLM
  4537. def set_vocab_chatglm3(self):
  4538. dir_model = self.dir_model
  4539. hparams = self.hparams
  4540. tokens: list[bytes] = []
  4541. toktypes: list[int] = []
  4542. scores: list[float] = []
  4543. from transformers import AutoTokenizer
  4544. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4545. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4546. assert max(tokenizer.get_vocab().values()) < vocab_size
  4547. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4548. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4549. for token_id in range(vocab_size):
  4550. piece = tokenizer._convert_id_to_token(token_id)
  4551. if token_id == 0:
  4552. piece = "<unk>"
  4553. elif token_id == 1:
  4554. piece = "<bos>"
  4555. elif token_id == 2:
  4556. piece = "<eos>"
  4557. text = piece.encode("utf-8")
  4558. score = 0.0
  4559. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4560. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4561. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4562. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4563. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4564. if piece in special_tokens:
  4565. toktype = SentencePieceTokenTypes.CONTROL
  4566. elif len(piece) == 0:
  4567. text = f"[PAD{token_id}]".encode("utf-8")
  4568. toktype = SentencePieceTokenTypes.UNUSED
  4569. else:
  4570. toktype = SentencePieceTokenTypes.USER_DEFINED
  4571. tokens.append(text)
  4572. scores.append(score)
  4573. toktypes.append(toktype)
  4574. continue
  4575. toktype = SentencePieceTokenTypes.NORMAL
  4576. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4577. toktype = SentencePieceTokenTypes.UNKNOWN
  4578. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4579. toktype = SentencePieceTokenTypes.CONTROL
  4580. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4581. toktype = SentencePieceTokenTypes.UNUSED
  4582. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4583. toktype = SentencePieceTokenTypes.BYTE
  4584. tokens.append(text)
  4585. scores.append(score)
  4586. toktypes.append(toktype)
  4587. self.gguf_writer.add_tokenizer_model("llama")
  4588. # glm3 needs prefix and suffix formatted as:
  4589. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4590. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4591. self.gguf_writer.add_token_list(tokens)
  4592. self.gguf_writer.add_token_scores(scores)
  4593. self.gguf_writer.add_token_types(toktypes)
  4594. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4595. special_vocab.add_to_gguf(self.gguf_writer)
  4596. @staticmethod
  4597. def token_bytes_to_string(b):
  4598. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4599. byte_encoder = bytes_to_unicode()
  4600. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4601. @staticmethod
  4602. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4603. parts = [bytes([b]) for b in token]
  4604. while True:
  4605. min_idx = None
  4606. min_rank = None
  4607. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4608. rank = mergeable_ranks.get(pair[0] + pair[1])
  4609. if rank is not None and (min_rank is None or rank < min_rank):
  4610. min_idx = i
  4611. min_rank = rank
  4612. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4613. break
  4614. assert min_idx is not None
  4615. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4616. return parts
  4617. def set_vocab(self):
  4618. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4619. self.set_vocab_chatglm3()
  4620. return
  4621. dir_model = self.dir_model
  4622. hparams = self.hparams
  4623. tokens: list[str] = []
  4624. toktypes: list[int] = []
  4625. from transformers import AutoTokenizer
  4626. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4627. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4628. assert max(tokenizer.get_vocab().values()) < vocab_size
  4629. tokens, toktypes, tokpre = self.get_vocab_base()
  4630. self.gguf_writer.add_tokenizer_model("gpt2")
  4631. self.gguf_writer.add_tokenizer_pre(tokpre)
  4632. self.gguf_writer.add_token_list(tokens)
  4633. self.gguf_writer.add_token_types(toktypes)
  4634. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4635. # only add special tokens when they were not already loaded from config.json
  4636. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4637. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4638. # this one is usually not in config.json anyway
  4639. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4640. special_vocab.add_to_gguf(self.gguf_writer)
  4641. def set_gguf_parameters(self):
  4642. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4643. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4644. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4645. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4646. self.gguf_writer.add_embedding_length(n_embed)
  4647. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4648. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4649. self.gguf_writer.add_head_count(n_head)
  4650. self.gguf_writer.add_head_count_kv(n_head_kv)
  4651. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4652. self.gguf_writer.add_file_type(self.ftype)
  4653. if "attention_dim" in self.hparams:
  4654. rope_dim = self.hparams["attention_dim"]
  4655. else:
  4656. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4657. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4658. self.gguf_writer.add_add_bos_token(False)
  4659. rope_freq = 10000
  4660. if "rope_ratio" in self.hparams:
  4661. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4662. self.gguf_writer.add_rope_freq_base(rope_freq)
  4663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4664. del bid # unused
  4665. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4666. return []
  4667. name = name.removeprefix("transformer.")
  4668. return [(self.map_tensor_name(name), data_torch)]
  4669. @ModelBase.register("NemotronForCausalLM")
  4670. class NemotronModel(TextModel):
  4671. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4672. def set_vocab(self):
  4673. self._set_vocab_sentencepiece()
  4674. self.gguf_writer.add_pad_token_id(0)
  4675. self.gguf_writer.add_unk_token_id(1)
  4676. def set_gguf_parameters(self):
  4677. super().set_gguf_parameters()
  4678. hparams = self.hparams
  4679. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4680. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4681. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4682. # * Partial RoPE
  4683. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4684. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4685. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4686. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4687. # * RopeScaling for Nemotron
  4688. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4689. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4690. else:
  4691. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4692. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4693. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4694. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4695. # model.layers.{l}.input_layernorm.weight
  4696. # model.layers.{l}.post_attention_layernorm.weight
  4697. # model.norm.weight
  4698. if name.endswith("norm.weight"):
  4699. data_torch = data_torch + 1
  4700. return [(self.map_tensor_name(name), data_torch)]
  4701. @ModelBase.register("ExaoneForCausalLM")
  4702. class ExaoneModel(TextModel):
  4703. model_arch = gguf.MODEL_ARCH.EXAONE
  4704. def set_gguf_parameters(self):
  4705. hparams = self.hparams
  4706. assert (hparams["activation_function"] == "silu")
  4707. max_position_embeddings = hparams["max_position_embeddings"]
  4708. embed_dim = hparams["hidden_size"]
  4709. num_heads = hparams["num_attention_heads"]
  4710. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4711. layer_norm_eps = hparams["layer_norm_epsilon"]
  4712. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4713. num_layers = hparams["num_layers"]
  4714. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4715. # attention_dropout_rate = hparams["attention_dropout"]
  4716. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4717. # embed_dropout_rate = hparams["embed_dropout"]
  4718. self.gguf_writer.add_embedding_length(embed_dim)
  4719. self.gguf_writer.add_head_count(num_heads)
  4720. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4721. self.gguf_writer.add_context_length(max_position_embeddings)
  4722. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4723. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4724. self.gguf_writer.add_block_count(num_layers)
  4725. self.gguf_writer.add_file_type(self.ftype)
  4726. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4727. self.gguf_writer.add_rope_freq_base(rope_theta)
  4728. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4729. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4730. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4731. rope_scaling = self.hparams.get("rope_scaling") or {}
  4732. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4733. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4734. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4735. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4736. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4737. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4738. base = self.hparams.get("rope_theta", 10000.0)
  4739. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4740. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4741. factor = rope_scaling.get("factor", 8.0)
  4742. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4743. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4744. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4745. low_freq_wavelen = old_context_len / low_freq_factor
  4746. high_freq_wavelen = old_context_len / high_freq_factor
  4747. assert low_freq_wavelen != high_freq_wavelen
  4748. rope_factors = []
  4749. for freq in freqs:
  4750. wavelen = 2 * math.pi / freq
  4751. if wavelen < high_freq_wavelen:
  4752. rope_factors.append(1)
  4753. elif wavelen > low_freq_wavelen:
  4754. rope_factors.append(factor)
  4755. else:
  4756. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4757. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4758. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4759. @ModelBase.register("GraniteForCausalLM")
  4760. class GraniteModel(LlamaModel):
  4761. """Conversion for IBM's GraniteForCausalLM"""
  4762. model_arch = gguf.MODEL_ARCH.GRANITE
  4763. def set_gguf_parameters(self):
  4764. """Granite uses standard llama parameters with the following differences:
  4765. - No head_dim support
  4766. - New multiplier params:
  4767. - attention_scale
  4768. - embedding_scale
  4769. - residual_scale
  4770. - logits_scaling
  4771. """
  4772. if head_dim := self.hparams.pop("head_dim", None):
  4773. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4774. super().set_gguf_parameters()
  4775. # NOTE: Convert _multiplier params to _scale params for naming
  4776. # consistency
  4777. if attention_scale := self.hparams.get("attention_multiplier"):
  4778. self.gguf_writer.add_attention_scale(attention_scale)
  4779. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4780. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4781. self.gguf_writer.add_embedding_scale(embedding_scale)
  4782. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4783. if residual_scale := self.hparams.get("residual_multiplier"):
  4784. self.gguf_writer.add_residual_scale(residual_scale)
  4785. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4786. if logits_scale := self.hparams.get("logits_scaling"):
  4787. self.gguf_writer.add_logit_scale(logits_scale)
  4788. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4789. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  4790. class GraniteMoeModel(GraniteModel):
  4791. """Conversion for IBM's GraniteMoeForCausalLM"""
  4792. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4793. def set_gguf_parameters(self):
  4794. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  4795. - shared_intermediate_size
  4796. """
  4797. super().set_gguf_parameters()
  4798. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  4799. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  4800. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  4801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4802. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4803. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4804. the hidden size that is then split during forward. To keep compatibility
  4805. with existing mixtral support, we pull them apart here.
  4806. """
  4807. if name.endswith("block_sparse_moe.input_linear.weight"):
  4808. ffn_dim = self.hparams["intermediate_size"]
  4809. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4810. gate, up = data_torch.split(ffn_dim, dim=-2)
  4811. return [
  4812. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4813. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4814. ]
  4815. if name.endswith("shared_mlp.input_linear.weight"):
  4816. ffn_dim = self.hparams["shared_intermediate_size"]
  4817. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  4818. gate, up = data_torch.split(ffn_dim, dim=-2)
  4819. return [
  4820. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  4821. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  4822. ]
  4823. return super().modify_tensors(data_torch, name, bid)
  4824. @ModelBase.register("BailingMoeForCausalLM")
  4825. class BailingMoeModel(TextModel):
  4826. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4827. def set_vocab(self):
  4828. self._set_vocab_gpt2()
  4829. def set_gguf_parameters(self):
  4830. super().set_gguf_parameters()
  4831. hparams = self.hparams
  4832. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4833. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4834. rope_scaling = self.hparams.get("rope_scaling") or {}
  4835. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4836. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4837. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4838. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4839. else:
  4840. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4841. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4842. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4843. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4844. self.gguf_writer.add_expert_weights_scale(1.0)
  4845. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4846. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4847. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4848. _experts: list[dict[str, Tensor]] | None = None
  4849. @staticmethod
  4850. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4851. if n_head_kv is not None and n_head != n_head_kv:
  4852. n_head = n_head_kv
  4853. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4854. .swapaxes(1, 2)
  4855. .reshape(weights.shape))
  4856. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4857. n_head = self.hparams["num_attention_heads"]
  4858. n_kv_head = self.hparams.get("num_key_value_heads")
  4859. n_embd = self.hparams["hidden_size"]
  4860. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4861. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4862. if name.endswith("attention.dense.weight"):
  4863. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4864. elif name.endswith("query_key_value.weight"):
  4865. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4866. return [
  4867. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4868. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4869. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4870. ]
  4871. elif name.find("mlp.experts") != -1:
  4872. n_experts = self.hparams["num_experts"]
  4873. assert bid is not None
  4874. tensors: list[tuple[str, Tensor]] = []
  4875. if self._experts is None:
  4876. self._experts = [{} for _ in range(self.block_count)]
  4877. self._experts[bid][name] = data_torch
  4878. if len(self._experts[bid]) >= n_experts * 3:
  4879. # merge the experts into a single 3d tensor
  4880. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4881. datas: list[Tensor] = []
  4882. for xid in range(n_experts):
  4883. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4884. datas.append(self._experts[bid][ename])
  4885. del self._experts[bid][ename]
  4886. data_torch = torch.stack(datas, dim=0)
  4887. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4888. new_name = self.map_tensor_name(merged_name)
  4889. tensors.append((new_name, data_torch))
  4890. return tensors
  4891. new_name = self.map_tensor_name(name)
  4892. if new_name == output_name and self.hparams.get("norm_head"):
  4893. data_torch = data_torch.float()
  4894. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4895. return [(new_name, data_torch)]
  4896. def prepare_tensors(self):
  4897. super().prepare_tensors()
  4898. if self._experts is not None:
  4899. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4900. experts = [k for d in self._experts for k in d.keys()]
  4901. if len(experts) > 0:
  4902. raise ValueError(f"Unprocessed experts: {experts}")
  4903. @ModelBase.register("ChameleonForConditionalGeneration")
  4904. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4905. class ChameleonModel(TextModel):
  4906. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4907. def set_gguf_parameters(self):
  4908. super().set_gguf_parameters()
  4909. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4910. def set_vocab(self):
  4911. self._set_vocab_gpt2()
  4912. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4913. # ignore image tokenizer for now
  4914. # TODO: remove this once image support is implemented for Chameleon
  4915. if name.startswith("model.vqmodel"):
  4916. return []
  4917. n_head = self.hparams["num_attention_heads"]
  4918. n_kv_head = self.hparams.get("num_key_value_heads")
  4919. hidden_dim = self.hparams.get("hidden_size")
  4920. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4921. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4922. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4923. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4924. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4925. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4926. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4927. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4928. return [(self.map_tensor_name(name), data_torch)]
  4929. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4930. @staticmethod
  4931. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4932. head_dim = hidden_dim // n_heads
  4933. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4934. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4935. return data_torch
  4936. @ModelBase.register("UltravoxModel")
  4937. class UltravoxModel(TextModel):
  4938. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  4939. def __init__(self, *args, **kwargs):
  4940. super().__init__(*args, **kwargs)
  4941. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  4942. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  4943. class WhisperEncoderModel(MmprojModel):
  4944. has_vision_encoder = False # no vision encoder
  4945. has_audio_encoder = True
  4946. def __init__(self, *args, **kwargs):
  4947. super().__init__(*args, **kwargs)
  4948. self.hparams["hidden_size"] = self.hparams["d_model"]
  4949. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  4950. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  4951. def set_gguf_parameters(self):
  4952. super().set_gguf_parameters()
  4953. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  4954. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  4955. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  4956. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4957. del bid, new_name, n_dims # unused
  4958. if ".conv" in name and ".weight" in name:
  4959. return gguf.GGMLQuantizationType.F16
  4960. return False
  4961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4962. del bid # unused
  4963. if name.startswith("language_model."):
  4964. # skip language model tensors
  4965. return []
  4966. # prevent clash naming with vision tensors
  4967. if name.startswith("multi_modal_projector"):
  4968. name = "audio." + name
  4969. if "conv1.bias" in name or "conv2.bias" in name:
  4970. # transpose conv1 and conv2 bias
  4971. data_torch = data_torch.unsqueeze(-1)
  4972. return [(self.map_tensor_name(name), data_torch)]
  4973. @ModelBase.register("UltravoxModel")
  4974. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  4975. has_vision_encoder = False # no vision encoder
  4976. has_audio_encoder = True
  4977. def set_gguf_parameters(self):
  4978. super().set_gguf_parameters()
  4979. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  4980. ###### CONVERSION LOGIC ######
  4981. # tree of lazy tensors
  4982. class LazyTorchTensor(gguf.LazyBase):
  4983. _tensor_type = torch.Tensor
  4984. # to keep the type-checker happy
  4985. dtype: torch.dtype
  4986. shape: torch.Size
  4987. # only used when converting a torch.Tensor to a np.ndarray
  4988. _dtype_map: dict[torch.dtype, type] = {
  4989. torch.float16: np.float16,
  4990. torch.float32: np.float32,
  4991. }
  4992. # used for safetensors slices
  4993. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4994. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4995. _dtype_str_map: dict[str, torch.dtype] = {
  4996. "F64": torch.float64,
  4997. "F32": torch.float32,
  4998. "BF16": torch.bfloat16,
  4999. "F16": torch.float16,
  5000. # "U64": torch.uint64,
  5001. "I64": torch.int64,
  5002. # "U32": torch.uint32,
  5003. "I32": torch.int32,
  5004. # "U16": torch.uint16,
  5005. "I16": torch.int16,
  5006. "U8": torch.uint8,
  5007. "I8": torch.int8,
  5008. "BOOL": torch.bool,
  5009. "F8_E4M3": torch.float8_e4m3fn,
  5010. "F8_E5M2": torch.float8_e5m2,
  5011. }
  5012. def numpy(self) -> gguf.LazyNumpyTensor:
  5013. dtype = self._dtype_map[self.dtype]
  5014. return gguf.LazyNumpyTensor(
  5015. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  5016. args=(self,),
  5017. func=(lambda s: s.numpy())
  5018. )
  5019. @classmethod
  5020. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  5021. return torch.empty(size=shape, dtype=dtype, device="meta")
  5022. @classmethod
  5023. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  5024. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  5025. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  5026. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  5027. return cast(torch.Tensor, lazy)
  5028. @classmethod
  5029. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  5030. dtype = cls._dtype_str_map[remote_tensor.dtype]
  5031. shape = remote_tensor.shape
  5032. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  5033. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  5034. return cast(torch.Tensor, lazy)
  5035. @classmethod
  5036. def __torch_function__(cls, func, types, args=(), kwargs=None):
  5037. del types # unused
  5038. if kwargs is None:
  5039. kwargs = {}
  5040. if func is torch.Tensor.numpy:
  5041. return args[0].numpy()
  5042. return cls._wrap_fn(func)(*args, **kwargs)
  5043. def parse_args() -> argparse.Namespace:
  5044. parser = argparse.ArgumentParser(
  5045. description="Convert a huggingface model to a GGML compatible file")
  5046. parser.add_argument(
  5047. "--vocab-only", action="store_true",
  5048. help="extract only the vocab",
  5049. )
  5050. parser.add_argument(
  5051. "--outfile", type=Path,
  5052. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  5053. )
  5054. parser.add_argument(
  5055. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  5056. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  5057. )
  5058. parser.add_argument(
  5059. "--bigendian", action="store_true",
  5060. help="model is executed on big endian machine",
  5061. )
  5062. parser.add_argument(
  5063. "model", type=Path,
  5064. help="directory containing model file",
  5065. nargs="?",
  5066. )
  5067. parser.add_argument(
  5068. "--use-temp-file", action="store_true",
  5069. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  5070. )
  5071. parser.add_argument(
  5072. "--no-lazy", action="store_true",
  5073. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  5074. )
  5075. parser.add_argument(
  5076. "--model-name", type=str, default=None,
  5077. help="name of the model",
  5078. )
  5079. parser.add_argument(
  5080. "--verbose", action="store_true",
  5081. help="increase output verbosity",
  5082. )
  5083. parser.add_argument(
  5084. "--split-max-tensors", type=int, default=0,
  5085. help="max tensors in each split",
  5086. )
  5087. parser.add_argument(
  5088. "--split-max-size", type=str, default="0",
  5089. help="max size per split N(M|G)",
  5090. )
  5091. parser.add_argument(
  5092. "--dry-run", action="store_true",
  5093. help="only print out a split plan and exit, without writing any new files",
  5094. )
  5095. parser.add_argument(
  5096. "--no-tensor-first-split", action="store_true",
  5097. help="do not add tensors to the first split (disabled by default)"
  5098. )
  5099. parser.add_argument(
  5100. "--metadata", type=Path,
  5101. help="Specify the path for an authorship metadata override file"
  5102. )
  5103. parser.add_argument(
  5104. "--print-supported-models", action="store_true",
  5105. help="Print the supported models"
  5106. )
  5107. parser.add_argument(
  5108. "--remote", action="store_true",
  5109. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5110. )
  5111. parser.add_argument(
  5112. "--mmproj", action="store_true",
  5113. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5114. )
  5115. args = parser.parse_args()
  5116. if not args.print_supported_models and args.model is None:
  5117. parser.error("the following arguments are required: model")
  5118. return args
  5119. def split_str_to_n_bytes(split_str: str) -> int:
  5120. if split_str.endswith("K"):
  5121. n = int(split_str[:-1]) * 1000
  5122. elif split_str.endswith("M"):
  5123. n = int(split_str[:-1]) * 1000 * 1000
  5124. elif split_str.endswith("G"):
  5125. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5126. elif split_str.isnumeric():
  5127. n = int(split_str)
  5128. else:
  5129. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5130. if n < 0:
  5131. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5132. return n
  5133. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5134. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5135. # maybe we should fallback to text model's arch in that case, since not many models have both
  5136. text_config = hparams.get("text_config", {})
  5137. vision_config = hparams.get("vision_config", {})
  5138. arch = hparams["architectures"][0]
  5139. # if "architectures" is found in the sub-config, use that instead
  5140. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5141. arch = text_config["architectures"][0]
  5142. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5143. arch = vision_config["architectures"][0]
  5144. return arch
  5145. def main() -> None:
  5146. args = parse_args()
  5147. if args.print_supported_models:
  5148. logger.error("Supported models:")
  5149. ModelBase.print_registered_models()
  5150. sys.exit(0)
  5151. if args.verbose:
  5152. logging.basicConfig(level=logging.DEBUG)
  5153. else:
  5154. logging.basicConfig(level=logging.INFO)
  5155. dir_model = args.model
  5156. if args.remote:
  5157. from huggingface_hub import snapshot_download
  5158. local_dir = snapshot_download(
  5159. repo_id=str(dir_model),
  5160. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5161. dir_model = Path(local_dir)
  5162. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5163. if not dir_model.is_dir():
  5164. logger.error(f'Error: {args.model} is not a directory')
  5165. sys.exit(1)
  5166. ftype_map: dict[str, gguf.LlamaFileType] = {
  5167. "f32": gguf.LlamaFileType.ALL_F32,
  5168. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5169. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5170. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5171. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5172. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5173. "auto": gguf.LlamaFileType.GUESSED,
  5174. }
  5175. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5176. if args.use_temp_file and is_split:
  5177. logger.error("Error: Cannot use temp file when splitting")
  5178. sys.exit(1)
  5179. if args.outfile is not None:
  5180. fname_out = args.outfile
  5181. elif args.remote:
  5182. # if remote, use the model ID as the output file name
  5183. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  5184. else:
  5185. fname_out = dir_model
  5186. logger.info(f"Loading model: {dir_model.name}")
  5187. if args.mmproj:
  5188. if "mmproj" not in fname_out.name:
  5189. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5190. with torch.inference_mode():
  5191. output_type = ftype_map[args.outtype]
  5192. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5193. hparams = ModelBase.load_hparams(dir_model)
  5194. model_architecture = get_model_architecture(hparams, model_type)
  5195. logger.info(f"Model architecture: {model_architecture}")
  5196. try:
  5197. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5198. except NotImplementedError:
  5199. logger.error(f"Model {model_architecture} is not supported")
  5200. sys.exit(1)
  5201. model_instance = model_class(dir_model, output_type, fname_out,
  5202. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5203. eager=args.no_lazy,
  5204. metadata_override=args.metadata, model_name=args.model_name,
  5205. split_max_tensors=args.split_max_tensors,
  5206. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5207. small_first_shard=args.no_tensor_first_split,
  5208. remote_hf_model_id=str(args.model) if args.remote else None)
  5209. if args.vocab_only:
  5210. logger.info("Exporting model vocab...")
  5211. model_instance.write_vocab()
  5212. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5213. else:
  5214. logger.info("Exporting model...")
  5215. model_instance.write()
  5216. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5217. logger.info(f"Model successfully exported to {out_path}")
  5218. if __name__ == '__main__':
  5219. main()