llama-bench.cpp 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. static std::vector<int> parse_int_range(const std::string & s) {
  181. // first[-last[(+|*)step]]
  182. std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
  183. std::smatch match;
  184. std::string::const_iterator search_start(s.cbegin());
  185. std::vector<int> result;
  186. while (std::regex_search(search_start, s.cend(), match, range_regex)) {
  187. int first = std::stoi(match[1]);
  188. int last = match[2].matched ? std::stoi(match[2]) : first;
  189. char op = match[3].matched ? match[3].str()[0] : '+';
  190. int step = match[4].matched ? std::stoi(match[4]) : 1;
  191. for (int i = first; i <= last;) {
  192. result.push_back(i);
  193. int prev_i = i;
  194. if (op == '+') {
  195. i += step;
  196. } else if (op == '*') {
  197. i *= step;
  198. } else {
  199. throw std::invalid_argument("invalid range format");
  200. }
  201. if (i <= prev_i) {
  202. throw std::invalid_argument("invalid range");
  203. }
  204. }
  205. search_start = match.suffix().first;
  206. }
  207. if (search_start != s.cend()) {
  208. throw std::invalid_argument("invalid range format");
  209. }
  210. return result;
  211. }
  212. struct cmd_params {
  213. std::vector<std::string> model;
  214. std::vector<int> n_prompt;
  215. std::vector<int> n_gen;
  216. std::vector<std::pair<int, int>> n_pg;
  217. std::vector<int> n_depth;
  218. std::vector<int> n_batch;
  219. std::vector<int> n_ubatch;
  220. std::vector<ggml_type> type_k;
  221. std::vector<ggml_type> type_v;
  222. std::vector<float> defrag_thold;
  223. std::vector<int> n_threads;
  224. std::vector<std::string> cpu_mask;
  225. std::vector<bool> cpu_strict;
  226. std::vector<int> poll;
  227. std::vector<int> n_gpu_layers;
  228. std::vector<std::string> rpc_servers;
  229. std::vector<llama_split_mode> split_mode;
  230. std::vector<int> main_gpu;
  231. std::vector<bool> no_kv_offload;
  232. std::vector<bool> flash_attn;
  233. std::vector<std::vector<float>> tensor_split;
  234. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  235. std::vector<bool> use_mmap;
  236. std::vector<bool> embeddings;
  237. std::vector<bool> no_op_offload;
  238. ggml_numa_strategy numa;
  239. int reps;
  240. ggml_sched_priority prio;
  241. int delay;
  242. bool verbose;
  243. bool progress;
  244. output_formats output_format;
  245. output_formats output_format_stderr;
  246. };
  247. static const cmd_params cmd_params_defaults = {
  248. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  249. /* n_prompt */ { 512 },
  250. /* n_gen */ { 128 },
  251. /* n_pg */ {},
  252. /* n_depth */ { 0 },
  253. /* n_batch */ { 2048 },
  254. /* n_ubatch */ { 512 },
  255. /* type_k */ { GGML_TYPE_F16 },
  256. /* type_v */ { GGML_TYPE_F16 },
  257. /* defrag_thold */ { -1.0f },
  258. /* n_threads */ { cpu_get_num_math() },
  259. /* cpu_mask */ { "0x0" },
  260. /* cpu_strict */ { false },
  261. /* poll */ { 50 },
  262. /* n_gpu_layers */ { 99 },
  263. /* rpc_servers */ { "" },
  264. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  265. /* main_gpu */ { 0 },
  266. /* no_kv_offload */ { false },
  267. /* flash_attn */ { false },
  268. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  269. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
  270. /* use_mmap */ { true },
  271. /* embeddings */ { false },
  272. /* no_op_offload */ { false },
  273. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  274. /* reps */ 5,
  275. /* prio */ GGML_SCHED_PRIO_NORMAL,
  276. /* delay */ 0,
  277. /* verbose */ false,
  278. /* progress */ false,
  279. /* output_format */ MARKDOWN,
  280. /* output_format_stderr */ NONE,
  281. };
  282. static void print_usage(int /* argc */, char ** argv) {
  283. printf("usage: %s [options]\n", argv[0]);
  284. printf("\n");
  285. printf("options:\n");
  286. printf(" -h, --help\n");
  287. printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
  288. printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
  289. cmd_params_defaults.reps);
  290. printf(" --prio <0|1|2|3> process/thread priority (default: %d)\n",
  291. cmd_params_defaults.prio);
  292. printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
  293. cmd_params_defaults.delay);
  294. printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
  295. output_format_str(cmd_params_defaults.output_format));
  296. printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
  297. output_format_str(cmd_params_defaults.output_format_stderr));
  298. printf(" -v, --verbose verbose output\n");
  299. printf(" --progress print test progress indicators\n");
  300. printf("\n");
  301. printf("test parameters:\n");
  302. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  303. printf(" -p, --n-prompt <n> (default: %s)\n",
  304. join(cmd_params_defaults.n_prompt, ",").c_str());
  305. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  306. printf(" -pg <pp,tg> (default: %s)\n",
  307. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  308. printf(" -d, --n-depth <n> (default: %s)\n",
  309. join(cmd_params_defaults.n_depth, ",").c_str());
  310. printf(" -b, --batch-size <n> (default: %s)\n",
  311. join(cmd_params_defaults.n_batch, ",").c_str());
  312. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  313. join(cmd_params_defaults.n_ubatch, ",").c_str());
  314. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  315. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  316. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  317. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  318. printf(" -dt, --defrag-thold <f> (default: %s)\n",
  319. join(cmd_params_defaults.defrag_thold, ",").c_str());
  320. printf(" -t, --threads <n> (default: %s)\n",
  321. join(cmd_params_defaults.n_threads, ",").c_str());
  322. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  323. join(cmd_params_defaults.cpu_mask, ",").c_str());
  324. printf(" --cpu-strict <0|1> (default: %s)\n",
  325. join(cmd_params_defaults.cpu_strict, ",").c_str());
  326. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  327. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  328. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  329. if (llama_supports_rpc()) {
  330. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  331. join(cmd_params_defaults.rpc_servers, ",").c_str());
  332. }
  333. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  334. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  335. printf(" -mg, --main-gpu <i> (default: %s)\n",
  336. join(cmd_params_defaults.main_gpu, ",").c_str());
  337. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  338. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  339. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  340. join(cmd_params_defaults.flash_attn, ",").c_str());
  341. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  342. join(cmd_params_defaults.use_mmap, ",").c_str());
  343. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  344. join(cmd_params_defaults.embeddings, ",").c_str());
  345. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  346. printf(" -ot --override-tensors <tensor name pattern>=<buffer type>;...\n");
  347. printf(" (default: disabled)\n");
  348. printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
  349. printf("\n");
  350. printf(
  351. "Multiple values can be given for each parameter by separating them with ','\n"
  352. "or by specifying the parameter multiple times. Ranges can be given as\n"
  353. "'first-last' or 'first-last+step' or 'first-last*mult'.\n");
  354. }
  355. static ggml_type ggml_type_from_name(const std::string & s) {
  356. if (s == "f16") {
  357. return GGML_TYPE_F16;
  358. }
  359. if (s == "bf16") {
  360. return GGML_TYPE_BF16;
  361. }
  362. if (s == "q8_0") {
  363. return GGML_TYPE_Q8_0;
  364. }
  365. if (s == "q4_0") {
  366. return GGML_TYPE_Q4_0;
  367. }
  368. if (s == "q4_1") {
  369. return GGML_TYPE_Q4_1;
  370. }
  371. if (s == "q5_0") {
  372. return GGML_TYPE_Q5_0;
  373. }
  374. if (s == "q5_1") {
  375. return GGML_TYPE_Q5_1;
  376. }
  377. if (s == "iq4_nl") {
  378. return GGML_TYPE_IQ4_NL;
  379. }
  380. return GGML_TYPE_COUNT;
  381. }
  382. static cmd_params parse_cmd_params(int argc, char ** argv) {
  383. cmd_params params;
  384. std::string arg;
  385. bool invalid_param = false;
  386. const std::string arg_prefix = "--";
  387. const char split_delim = ',';
  388. params.verbose = cmd_params_defaults.verbose;
  389. params.output_format = cmd_params_defaults.output_format;
  390. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  391. params.reps = cmd_params_defaults.reps;
  392. params.numa = cmd_params_defaults.numa;
  393. params.prio = cmd_params_defaults.prio;
  394. params.delay = cmd_params_defaults.delay;
  395. params.progress = cmd_params_defaults.progress;
  396. for (int i = 1; i < argc; i++) {
  397. arg = argv[i];
  398. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  399. std::replace(arg.begin(), arg.end(), '_', '-');
  400. }
  401. try {
  402. if (arg == "-h" || arg == "--help") {
  403. print_usage(argc, argv);
  404. exit(0);
  405. } else if (arg == "-m" || arg == "--model") {
  406. if (++i >= argc) {
  407. invalid_param = true;
  408. break;
  409. }
  410. auto p = string_split<std::string>(argv[i], split_delim);
  411. params.model.insert(params.model.end(), p.begin(), p.end());
  412. } else if (arg == "-p" || arg == "--n-prompt") {
  413. if (++i >= argc) {
  414. invalid_param = true;
  415. break;
  416. }
  417. auto p = parse_int_range(argv[i]);
  418. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  419. } else if (arg == "-n" || arg == "--n-gen") {
  420. if (++i >= argc) {
  421. invalid_param = true;
  422. break;
  423. }
  424. auto p = parse_int_range(argv[i]);
  425. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  426. } else if (arg == "-pg") {
  427. if (++i >= argc) {
  428. invalid_param = true;
  429. break;
  430. }
  431. auto p = string_split<std::string>(argv[i], ',');
  432. if (p.size() != 2) {
  433. invalid_param = true;
  434. break;
  435. }
  436. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  437. } else if (arg == "-d" || arg == "--n-depth") {
  438. if (++i >= argc) {
  439. invalid_param = true;
  440. break;
  441. }
  442. auto p = parse_int_range(argv[i]);
  443. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  444. } else if (arg == "-b" || arg == "--batch-size") {
  445. if (++i >= argc) {
  446. invalid_param = true;
  447. break;
  448. }
  449. auto p = parse_int_range(argv[i]);
  450. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  451. } else if (arg == "-ub" || arg == "--ubatch-size") {
  452. if (++i >= argc) {
  453. invalid_param = true;
  454. break;
  455. }
  456. auto p = parse_int_range(argv[i]);
  457. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  458. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  459. if (++i >= argc) {
  460. invalid_param = true;
  461. break;
  462. }
  463. auto p = string_split<std::string>(argv[i], split_delim);
  464. std::vector<ggml_type> types;
  465. for (const auto & t : p) {
  466. ggml_type gt = ggml_type_from_name(t);
  467. if (gt == GGML_TYPE_COUNT) {
  468. invalid_param = true;
  469. break;
  470. }
  471. types.push_back(gt);
  472. }
  473. if (invalid_param) {
  474. break;
  475. }
  476. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  477. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  478. if (++i >= argc) {
  479. invalid_param = true;
  480. break;
  481. }
  482. auto p = string_split<std::string>(argv[i], split_delim);
  483. std::vector<ggml_type> types;
  484. for (const auto & t : p) {
  485. ggml_type gt = ggml_type_from_name(t);
  486. if (gt == GGML_TYPE_COUNT) {
  487. invalid_param = true;
  488. break;
  489. }
  490. types.push_back(gt);
  491. }
  492. if (invalid_param) {
  493. break;
  494. }
  495. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  496. } else if (arg == "-dt" || arg == "--defrag-thold") {
  497. if (++i >= argc) {
  498. invalid_param = true;
  499. break;
  500. }
  501. auto p = string_split<float>(argv[i], split_delim);
  502. params.defrag_thold.insert(params.defrag_thold.end(), p.begin(), p.end());
  503. } else if (arg == "-t" || arg == "--threads") {
  504. if (++i >= argc) {
  505. invalid_param = true;
  506. break;
  507. }
  508. auto p = parse_int_range(argv[i]);
  509. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  510. } else if (arg == "-C" || arg == "--cpu-mask") {
  511. if (++i >= argc) {
  512. invalid_param = true;
  513. break;
  514. }
  515. auto p = string_split<std::string>(argv[i], split_delim);
  516. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  517. } else if (arg == "--cpu-strict") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. break;
  521. }
  522. auto p = string_split<bool>(argv[i], split_delim);
  523. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  524. } else if (arg == "--poll") {
  525. if (++i >= argc) {
  526. invalid_param = true;
  527. break;
  528. }
  529. auto p = parse_int_range(argv[i]);
  530. params.poll.insert(params.poll.end(), p.begin(), p.end());
  531. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  532. if (++i >= argc) {
  533. invalid_param = true;
  534. break;
  535. }
  536. auto p = parse_int_range(argv[i]);
  537. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  538. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  539. if (++i >= argc) {
  540. invalid_param = true;
  541. break;
  542. }
  543. params.rpc_servers.push_back(argv[i]);
  544. } else if (arg == "-sm" || arg == "--split-mode") {
  545. if (++i >= argc) {
  546. invalid_param = true;
  547. break;
  548. }
  549. auto p = string_split<std::string>(argv[i], split_delim);
  550. std::vector<llama_split_mode> modes;
  551. for (const auto & m : p) {
  552. llama_split_mode mode;
  553. if (m == "none") {
  554. mode = LLAMA_SPLIT_MODE_NONE;
  555. } else if (m == "layer") {
  556. mode = LLAMA_SPLIT_MODE_LAYER;
  557. } else if (m == "row") {
  558. mode = LLAMA_SPLIT_MODE_ROW;
  559. } else {
  560. invalid_param = true;
  561. break;
  562. }
  563. modes.push_back(mode);
  564. }
  565. if (invalid_param) {
  566. break;
  567. }
  568. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  569. } else if (arg == "-mg" || arg == "--main-gpu") {
  570. if (++i >= argc) {
  571. invalid_param = true;
  572. break;
  573. }
  574. params.main_gpu = parse_int_range(argv[i]);
  575. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  576. if (++i >= argc) {
  577. invalid_param = true;
  578. break;
  579. }
  580. auto p = string_split<bool>(argv[i], split_delim);
  581. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  582. } else if (arg == "--numa") {
  583. if (++i >= argc) {
  584. invalid_param = true;
  585. break;
  586. }
  587. std::string value(argv[i]);
  588. if (value == "distribute" || value == "") {
  589. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  590. } else if (value == "isolate") {
  591. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  592. } else if (value == "numactl") {
  593. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  594. } else {
  595. invalid_param = true;
  596. break;
  597. }
  598. } else if (arg == "-fa" || arg == "--flash-attn") {
  599. if (++i >= argc) {
  600. invalid_param = true;
  601. break;
  602. }
  603. auto p = string_split<bool>(argv[i], split_delim);
  604. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  605. } else if (arg == "-mmp" || arg == "--mmap") {
  606. if (++i >= argc) {
  607. invalid_param = true;
  608. break;
  609. }
  610. auto p = string_split<bool>(argv[i], split_delim);
  611. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  612. } else if (arg == "-embd" || arg == "--embeddings") {
  613. if (++i >= argc) {
  614. invalid_param = true;
  615. break;
  616. }
  617. auto p = string_split<bool>(argv[i], split_delim);
  618. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  619. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  620. if (++i >= argc) {
  621. invalid_param = true;
  622. break;
  623. }
  624. auto p = string_split<bool>(argv[i], split_delim);
  625. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  626. } else if (arg == "-ts" || arg == "--tensor-split") {
  627. if (++i >= argc) {
  628. invalid_param = true;
  629. break;
  630. }
  631. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  632. // split string by ; and /
  633. const std::regex regex{ R"([;/]+)" };
  634. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  635. std::vector<std::string> split_arg{ it, {} };
  636. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  637. std::vector<float> tensor_split(llama_max_devices());
  638. for (size_t i = 0; i < llama_max_devices(); ++i) {
  639. if (i < split_arg.size()) {
  640. tensor_split[i] = std::stof(split_arg[i]);
  641. } else {
  642. tensor_split[i] = 0.0f;
  643. }
  644. }
  645. params.tensor_split.push_back(tensor_split);
  646. }
  647. } else if (arg == "-ot" || arg == "--override-tensor") {
  648. if (++i >= argc) {
  649. invalid_param = true;
  650. break;
  651. }
  652. auto * value = argv[i];
  653. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  654. if (buft_list.empty()) {
  655. // enumerate all the devices and add their buffer types to the list
  656. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  657. auto * dev = ggml_backend_dev_get(i);
  658. auto * buft = ggml_backend_dev_buffer_type(dev);
  659. if (buft) {
  660. buft_list[ggml_backend_buft_name(buft)] = buft;
  661. }
  662. }
  663. }
  664. auto override_group_span_len = std::strcspn(value, ",");
  665. bool last_group = false;
  666. do {
  667. if (override_group_span_len == 0) {
  668. // Adds an empty override-tensors for an empty span
  669. params.tensor_buft_overrides.push_back({{}});
  670. if (value[override_group_span_len] == '\0') {
  671. value = &value[override_group_span_len];
  672. last_group = true;
  673. } else {
  674. value = &value[override_group_span_len + 1];
  675. override_group_span_len = std::strcspn(value, ",");
  676. }
  677. continue;
  678. }
  679. // Stamps null terminators into the argv
  680. // value for this option to avoid the
  681. // memory leak present in the implementation
  682. // over in arg.cpp. Acceptable because we
  683. // only parse these args once in this program.
  684. auto * override_group = value;
  685. if (value[override_group_span_len] == '\0') {
  686. value = &value[override_group_span_len];
  687. last_group = true;
  688. } else {
  689. value[override_group_span_len] = '\0';
  690. value = &value[override_group_span_len + 1];
  691. }
  692. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  693. auto override_span_len = std::strcspn(override_group, ";");
  694. while (override_span_len > 0) {
  695. auto * override = override_group;
  696. if (override_group[override_span_len] != '\0') {
  697. override_group[override_span_len] = '\0';
  698. override_group = &override_group[override_span_len + 1];
  699. } else {
  700. override_group = &override_group[override_span_len];
  701. }
  702. auto tensor_name_span_len = std::strcspn(override, "=");
  703. if (tensor_name_span_len >= override_span_len) {
  704. invalid_param = true;
  705. break;
  706. }
  707. override[tensor_name_span_len] = '\0';
  708. auto * tensor_name = override;
  709. auto * buffer_type = &override[tensor_name_span_len + 1];
  710. if (buft_list.find(buffer_type) == buft_list.end()) {
  711. printf("error: unrecognized buffer type '%s'\n", buffer_type);
  712. printf("Available buffer types:\n");
  713. for (const auto & it : buft_list) {
  714. printf(" %s\n", ggml_backend_buft_name(it.second));
  715. }
  716. invalid_param = true;
  717. break;
  718. }
  719. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  720. override_span_len = std::strcspn(override_group, ";");
  721. }
  722. if (invalid_param) {
  723. break;
  724. }
  725. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  726. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  727. override_group_span_len = std::strcspn(value, ",");
  728. } while (!last_group);
  729. } else if (arg == "-r" || arg == "--repetitions") {
  730. if (++i >= argc) {
  731. invalid_param = true;
  732. break;
  733. }
  734. params.reps = std::stoi(argv[i]);
  735. } else if (arg == "--prio") {
  736. if (++i >= argc) {
  737. invalid_param = true;
  738. break;
  739. }
  740. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  741. } else if (arg == "--delay") {
  742. if (++i >= argc) {
  743. invalid_param = true;
  744. break;
  745. }
  746. params.delay = std::stoi(argv[i]);
  747. } else if (arg == "-o" || arg == "--output") {
  748. if (++i >= argc) {
  749. invalid_param = true;
  750. break;
  751. }
  752. invalid_param = !output_format_from_str(argv[i], params.output_format);
  753. } else if (arg == "-oe" || arg == "--output-err") {
  754. if (++i >= argc) {
  755. invalid_param = true;
  756. break;
  757. }
  758. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  759. } else if (arg == "-v" || arg == "--verbose") {
  760. params.verbose = true;
  761. } else if (arg == "--progress") {
  762. params.progress = true;
  763. } else {
  764. invalid_param = true;
  765. break;
  766. }
  767. } catch (const std::exception & e) {
  768. fprintf(stderr, "error: %s\n", e.what());
  769. invalid_param = true;
  770. break;
  771. }
  772. }
  773. if (invalid_param) {
  774. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  775. print_usage(argc, argv);
  776. exit(1);
  777. }
  778. // set defaults
  779. if (params.model.empty()) {
  780. params.model = cmd_params_defaults.model;
  781. }
  782. if (params.n_prompt.empty()) {
  783. params.n_prompt = cmd_params_defaults.n_prompt;
  784. }
  785. if (params.n_gen.empty()) {
  786. params.n_gen = cmd_params_defaults.n_gen;
  787. }
  788. if (params.n_pg.empty()) {
  789. params.n_pg = cmd_params_defaults.n_pg;
  790. }
  791. if (params.n_depth.empty()) {
  792. params.n_depth = cmd_params_defaults.n_depth;
  793. }
  794. if (params.n_batch.empty()) {
  795. params.n_batch = cmd_params_defaults.n_batch;
  796. }
  797. if (params.n_ubatch.empty()) {
  798. params.n_ubatch = cmd_params_defaults.n_ubatch;
  799. }
  800. if (params.type_k.empty()) {
  801. params.type_k = cmd_params_defaults.type_k;
  802. }
  803. if (params.type_v.empty()) {
  804. params.type_v = cmd_params_defaults.type_v;
  805. }
  806. if (params.defrag_thold.empty()) {
  807. params.defrag_thold = cmd_params_defaults.defrag_thold;
  808. }
  809. if (params.n_gpu_layers.empty()) {
  810. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  811. }
  812. if (params.rpc_servers.empty()) {
  813. params.rpc_servers = cmd_params_defaults.rpc_servers;
  814. }
  815. if (params.split_mode.empty()) {
  816. params.split_mode = cmd_params_defaults.split_mode;
  817. }
  818. if (params.main_gpu.empty()) {
  819. params.main_gpu = cmd_params_defaults.main_gpu;
  820. }
  821. if (params.no_kv_offload.empty()) {
  822. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  823. }
  824. if (params.flash_attn.empty()) {
  825. params.flash_attn = cmd_params_defaults.flash_attn;
  826. }
  827. if (params.tensor_split.empty()) {
  828. params.tensor_split = cmd_params_defaults.tensor_split;
  829. }
  830. if (params.tensor_buft_overrides.empty()) {
  831. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  832. }
  833. if (params.use_mmap.empty()) {
  834. params.use_mmap = cmd_params_defaults.use_mmap;
  835. }
  836. if (params.embeddings.empty()) {
  837. params.embeddings = cmd_params_defaults.embeddings;
  838. }
  839. if (params.no_op_offload.empty()) {
  840. params.no_op_offload = cmd_params_defaults.no_op_offload;
  841. }
  842. if (params.n_threads.empty()) {
  843. params.n_threads = cmd_params_defaults.n_threads;
  844. }
  845. if (params.cpu_mask.empty()) {
  846. params.cpu_mask = cmd_params_defaults.cpu_mask;
  847. }
  848. if (params.cpu_strict.empty()) {
  849. params.cpu_strict = cmd_params_defaults.cpu_strict;
  850. }
  851. if (params.poll.empty()) {
  852. params.poll = cmd_params_defaults.poll;
  853. }
  854. return params;
  855. }
  856. struct cmd_params_instance {
  857. std::string model;
  858. int n_prompt;
  859. int n_gen;
  860. int n_depth;
  861. int n_batch;
  862. int n_ubatch;
  863. ggml_type type_k;
  864. ggml_type type_v;
  865. float defrag_thold;
  866. int n_threads;
  867. std::string cpu_mask;
  868. bool cpu_strict;
  869. int poll;
  870. int n_gpu_layers;
  871. std::string rpc_servers_str;
  872. llama_split_mode split_mode;
  873. int main_gpu;
  874. bool no_kv_offload;
  875. bool flash_attn;
  876. std::vector<float> tensor_split;
  877. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  878. bool use_mmap;
  879. bool embeddings;
  880. bool no_op_offload;
  881. llama_model_params to_llama_mparams() const {
  882. llama_model_params mparams = llama_model_default_params();
  883. mparams.n_gpu_layers = n_gpu_layers;
  884. if (!rpc_servers_str.empty()) {
  885. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  886. // add RPC devices
  887. if (!rpc_servers.empty()) {
  888. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  889. if (!rpc_reg) {
  890. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  891. exit(1);
  892. }
  893. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  894. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  895. if (!ggml_backend_rpc_add_device_fn) {
  896. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  897. exit(1);
  898. }
  899. static std::vector<ggml_backend_dev_t> devices;
  900. devices.clear();
  901. for (const std::string & server : rpc_servers) {
  902. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  903. if (dev) {
  904. devices.push_back(dev);
  905. } else {
  906. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  907. exit(1);
  908. }
  909. }
  910. devices.push_back(nullptr);
  911. mparams.devices = devices.data();
  912. }
  913. }
  914. mparams.split_mode = split_mode;
  915. mparams.main_gpu = main_gpu;
  916. mparams.tensor_split = tensor_split.data();
  917. mparams.use_mmap = use_mmap;
  918. if (tensor_buft_overrides.empty()) {
  919. mparams.tensor_buft_overrides = nullptr;
  920. } else {
  921. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
  922. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  923. }
  924. return mparams;
  925. }
  926. bool equal_mparams(const cmd_params_instance & other) const {
  927. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
  928. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  929. tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  930. }
  931. llama_context_params to_llama_cparams() const {
  932. llama_context_params cparams = llama_context_default_params();
  933. cparams.n_ctx = n_prompt + n_gen + n_depth;
  934. cparams.n_batch = n_batch;
  935. cparams.n_ubatch = n_ubatch;
  936. cparams.type_k = type_k;
  937. cparams.type_v = type_v;
  938. cparams.defrag_thold = defrag_thold;
  939. cparams.offload_kqv = !no_kv_offload;
  940. cparams.flash_attn = flash_attn;
  941. cparams.embeddings = embeddings;
  942. cparams.op_offload = !no_op_offload;
  943. cparams.swa_full = false;
  944. return cparams;
  945. }
  946. };
  947. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  948. std::vector<cmd_params_instance> instances;
  949. // this ordering minimizes the number of times that each model needs to be reloaded
  950. // clang-format off
  951. for (const auto & m : params.model)
  952. for (const auto & nl : params.n_gpu_layers)
  953. for (const auto & rpc : params.rpc_servers)
  954. for (const auto & sm : params.split_mode)
  955. for (const auto & mg : params.main_gpu)
  956. for (const auto & ts : params.tensor_split)
  957. for (const auto & ot : params.tensor_buft_overrides)
  958. for (const auto & mmp : params.use_mmap)
  959. for (const auto & embd : params.embeddings)
  960. for (const auto & nopo : params.no_op_offload)
  961. for (const auto & nb : params.n_batch)
  962. for (const auto & nub : params.n_ubatch)
  963. for (const auto & tk : params.type_k)
  964. for (const auto & tv : params.type_v)
  965. for (const auto & defrag_thold : params.defrag_thold)
  966. for (const auto & nkvo : params.no_kv_offload)
  967. for (const auto & fa : params.flash_attn)
  968. for (const auto & nt : params.n_threads)
  969. for (const auto & cm : params.cpu_mask)
  970. for (const auto & cs : params.cpu_strict)
  971. for (const auto & nd : params.n_depth)
  972. for (const auto & pl : params.poll) {
  973. for (const auto & n_prompt : params.n_prompt) {
  974. if (n_prompt == 0) {
  975. continue;
  976. }
  977. cmd_params_instance instance = {
  978. /* .model = */ m,
  979. /* .n_prompt = */ n_prompt,
  980. /* .n_gen = */ 0,
  981. /* .n_depth = */ nd,
  982. /* .n_batch = */ nb,
  983. /* .n_ubatch = */ nub,
  984. /* .type_k = */ tk,
  985. /* .type_v = */ tv,
  986. /* .defrag_thold = */ defrag_thold,
  987. /* .n_threads = */ nt,
  988. /* .cpu_mask = */ cm,
  989. /* .cpu_strict = */ cs,
  990. /* .poll = */ pl,
  991. /* .n_gpu_layers = */ nl,
  992. /* .rpc_servers = */ rpc,
  993. /* .split_mode = */ sm,
  994. /* .main_gpu = */ mg,
  995. /* .no_kv_offload= */ nkvo,
  996. /* .flash_attn = */ fa,
  997. /* .tensor_split = */ ts,
  998. /* .tensor_buft_overrides = */ ot,
  999. /* .use_mmap = */ mmp,
  1000. /* .embeddings = */ embd,
  1001. /* .no_op_offload= */ nopo,
  1002. };
  1003. instances.push_back(instance);
  1004. }
  1005. for (const auto & n_gen : params.n_gen) {
  1006. if (n_gen == 0) {
  1007. continue;
  1008. }
  1009. cmd_params_instance instance = {
  1010. /* .model = */ m,
  1011. /* .n_prompt = */ 0,
  1012. /* .n_gen = */ n_gen,
  1013. /* .n_depth = */ nd,
  1014. /* .n_batch = */ nb,
  1015. /* .n_ubatch = */ nub,
  1016. /* .type_k = */ tk,
  1017. /* .type_v = */ tv,
  1018. /* .defrag_thold = */ defrag_thold,
  1019. /* .n_threads = */ nt,
  1020. /* .cpu_mask = */ cm,
  1021. /* .cpu_strict = */ cs,
  1022. /* .poll = */ pl,
  1023. /* .n_gpu_layers = */ nl,
  1024. /* .rpc_servers = */ rpc,
  1025. /* .split_mode = */ sm,
  1026. /* .main_gpu = */ mg,
  1027. /* .no_kv_offload= */ nkvo,
  1028. /* .flash_attn = */ fa,
  1029. /* .tensor_split = */ ts,
  1030. /* .tensor_buft_overrides = */ ot,
  1031. /* .use_mmap = */ mmp,
  1032. /* .embeddings = */ embd,
  1033. /* .no_op_offload= */ nopo,
  1034. };
  1035. instances.push_back(instance);
  1036. }
  1037. for (const auto & n_pg : params.n_pg) {
  1038. if (n_pg.first == 0 && n_pg.second == 0) {
  1039. continue;
  1040. }
  1041. cmd_params_instance instance = {
  1042. /* .model = */ m,
  1043. /* .n_prompt = */ n_pg.first,
  1044. /* .n_gen = */ n_pg.second,
  1045. /* .n_depth = */ nd,
  1046. /* .n_batch = */ nb,
  1047. /* .n_ubatch = */ nub,
  1048. /* .type_k = */ tk,
  1049. /* .type_v = */ tv,
  1050. /* .defrag_thold = */ defrag_thold,
  1051. /* .n_threads = */ nt,
  1052. /* .cpu_mask = */ cm,
  1053. /* .cpu_strict = */ cs,
  1054. /* .poll = */ pl,
  1055. /* .n_gpu_layers = */ nl,
  1056. /* .rpc_servers = */ rpc,
  1057. /* .split_mode = */ sm,
  1058. /* .main_gpu = */ mg,
  1059. /* .no_kv_offload= */ nkvo,
  1060. /* .flash_attn = */ fa,
  1061. /* .tensor_split = */ ts,
  1062. /* .tensor_buft_overrides = */ ot,
  1063. /* .use_mmap = */ mmp,
  1064. /* .embeddings = */ embd,
  1065. /* .no_op_offload= */ nopo,
  1066. };
  1067. instances.push_back(instance);
  1068. }
  1069. }
  1070. // clang-format on
  1071. return instances;
  1072. }
  1073. struct test {
  1074. static const std::string build_commit;
  1075. static const int build_number;
  1076. const std::string cpu_info;
  1077. const std::string gpu_info;
  1078. std::string model_filename;
  1079. std::string model_type;
  1080. uint64_t model_size;
  1081. uint64_t model_n_params;
  1082. int n_batch;
  1083. int n_ubatch;
  1084. int n_threads;
  1085. std::string cpu_mask;
  1086. bool cpu_strict;
  1087. int poll;
  1088. ggml_type type_k;
  1089. ggml_type type_v;
  1090. float defrag_thold;
  1091. int n_gpu_layers;
  1092. llama_split_mode split_mode;
  1093. int main_gpu;
  1094. bool no_kv_offload;
  1095. bool flash_attn;
  1096. std::vector<float> tensor_split;
  1097. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1098. bool use_mmap;
  1099. bool embeddings;
  1100. bool no_op_offload;
  1101. int n_prompt;
  1102. int n_gen;
  1103. int n_depth;
  1104. std::string test_time;
  1105. std::vector<uint64_t> samples_ns;
  1106. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1107. cpu_info(get_cpu_info()),
  1108. gpu_info(get_gpu_info()) {
  1109. model_filename = inst.model;
  1110. char buf[128];
  1111. llama_model_desc(lmodel, buf, sizeof(buf));
  1112. model_type = buf;
  1113. model_size = llama_model_size(lmodel);
  1114. model_n_params = llama_model_n_params(lmodel);
  1115. n_batch = inst.n_batch;
  1116. n_ubatch = inst.n_ubatch;
  1117. n_threads = inst.n_threads;
  1118. cpu_mask = inst.cpu_mask;
  1119. cpu_strict = inst.cpu_strict;
  1120. poll = inst.poll;
  1121. type_k = inst.type_k;
  1122. type_v = inst.type_v;
  1123. defrag_thold = inst.defrag_thold;
  1124. n_gpu_layers = inst.n_gpu_layers;
  1125. split_mode = inst.split_mode;
  1126. main_gpu = inst.main_gpu;
  1127. no_kv_offload = inst.no_kv_offload;
  1128. flash_attn = inst.flash_attn;
  1129. tensor_split = inst.tensor_split;
  1130. tensor_buft_overrides = inst.tensor_buft_overrides;
  1131. use_mmap = inst.use_mmap;
  1132. embeddings = inst.embeddings;
  1133. no_op_offload = inst.no_op_offload;
  1134. n_prompt = inst.n_prompt;
  1135. n_gen = inst.n_gen;
  1136. n_depth = inst.n_depth;
  1137. // RFC 3339 date-time format
  1138. time_t t = time(NULL);
  1139. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1140. test_time = buf;
  1141. (void) ctx;
  1142. }
  1143. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1144. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1145. std::vector<double> get_ts() const {
  1146. int n_tokens = n_prompt + n_gen;
  1147. std::vector<double> ts;
  1148. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1149. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1150. return ts;
  1151. }
  1152. double avg_ts() const { return ::avg(get_ts()); }
  1153. double stdev_ts() const { return ::stdev(get_ts()); }
  1154. static std::string get_backend() {
  1155. std::vector<std::string> backends;
  1156. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1157. auto * reg = ggml_backend_reg_get(i);
  1158. std::string name = ggml_backend_reg_name(reg);
  1159. if (name != "CPU") {
  1160. backends.push_back(ggml_backend_reg_name(reg));
  1161. }
  1162. }
  1163. return backends.empty() ? "CPU" : join(backends, ",");
  1164. }
  1165. static const std::vector<std::string> & get_fields() {
  1166. static const std::vector<std::string> fields = {
  1167. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  1168. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  1169. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  1170. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1171. "defrag_thold",
  1172. "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth", "test_time",
  1173. "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
  1174. };
  1175. return fields;
  1176. }
  1177. enum field_type { STRING, BOOL, INT, FLOAT };
  1178. static field_type get_field_type(const std::string & field) {
  1179. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1180. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1181. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" ||
  1182. field == "avg_ns" || field == "stddev_ns" || field == "no_op_offload") {
  1183. return INT;
  1184. }
  1185. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1186. field == "use_mmap" || field == "embeddings") {
  1187. return BOOL;
  1188. }
  1189. if (field == "avg_ts" || field == "stddev_ts" || field == "defrag_thold") {
  1190. return FLOAT;
  1191. }
  1192. return STRING;
  1193. }
  1194. std::vector<std::string> get_values() const {
  1195. std::string tensor_split_str;
  1196. std::string tensor_buft_overrides_str;
  1197. int max_nonzero = 0;
  1198. for (size_t i = 0; i < llama_max_devices(); i++) {
  1199. if (tensor_split[i] > 0) {
  1200. max_nonzero = i;
  1201. }
  1202. }
  1203. for (int i = 0; i <= max_nonzero; i++) {
  1204. char buf[32];
  1205. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1206. tensor_split_str += buf;
  1207. if (i < max_nonzero) {
  1208. tensor_split_str += "/";
  1209. }
  1210. }
  1211. if (tensor_buft_overrides.size() == 1) {
  1212. // Last element of tensor_buft_overrides is always a null pattern
  1213. // so if it is only one element long, it must be a null pattern.
  1214. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1215. tensor_buft_overrides_str += "none";
  1216. } else {
  1217. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1218. // Last element of tensor_buft_overrides is always a null pattern
  1219. if (tensor_buft_overrides[i].pattern == nullptr) {
  1220. tensor_buft_overrides_str += "none";
  1221. } else {
  1222. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1223. tensor_buft_overrides_str += "=";
  1224. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1225. }
  1226. if (i + 2 < tensor_buft_overrides.size()) {
  1227. tensor_buft_overrides_str += ";";
  1228. }
  1229. }
  1230. }
  1231. std::vector<std::string> values = { build_commit,
  1232. std::to_string(build_number),
  1233. cpu_info,
  1234. gpu_info,
  1235. get_backend(),
  1236. model_filename,
  1237. model_type,
  1238. std::to_string(model_size),
  1239. std::to_string(model_n_params),
  1240. std::to_string(n_batch),
  1241. std::to_string(n_ubatch),
  1242. std::to_string(n_threads),
  1243. cpu_mask,
  1244. std::to_string(cpu_strict),
  1245. std::to_string(poll),
  1246. ggml_type_name(type_k),
  1247. ggml_type_name(type_v),
  1248. std::to_string(n_gpu_layers),
  1249. split_mode_str(split_mode),
  1250. std::to_string(main_gpu),
  1251. std::to_string(no_kv_offload),
  1252. std::to_string(flash_attn),
  1253. tensor_split_str,
  1254. tensor_buft_overrides_str,
  1255. std::to_string(defrag_thold),
  1256. std::to_string(use_mmap),
  1257. std::to_string(embeddings),
  1258. std::to_string(no_op_offload),
  1259. std::to_string(n_prompt),
  1260. std::to_string(n_gen),
  1261. std::to_string(n_depth),
  1262. test_time,
  1263. std::to_string(avg_ns()),
  1264. std::to_string(stdev_ns()),
  1265. std::to_string(avg_ts()),
  1266. std::to_string(stdev_ts()) };
  1267. return values;
  1268. }
  1269. std::map<std::string, std::string> get_map() const {
  1270. std::map<std::string, std::string> map;
  1271. auto fields = get_fields();
  1272. auto values = get_values();
  1273. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1274. std::make_pair<const std::string &, const std::string &>);
  1275. return map;
  1276. }
  1277. };
  1278. const std::string test::build_commit = LLAMA_COMMIT;
  1279. const int test::build_number = LLAMA_BUILD_NUMBER;
  1280. struct printer {
  1281. virtual ~printer() {}
  1282. FILE * fout;
  1283. virtual void print_header(const cmd_params & params) { (void) params; }
  1284. virtual void print_test(const test & t) = 0;
  1285. virtual void print_footer() {}
  1286. };
  1287. struct csv_printer : public printer {
  1288. static std::string escape_csv(const std::string & field) {
  1289. std::string escaped = "\"";
  1290. for (auto c : field) {
  1291. if (c == '"') {
  1292. escaped += "\"";
  1293. }
  1294. escaped += c;
  1295. }
  1296. escaped += "\"";
  1297. return escaped;
  1298. }
  1299. void print_header(const cmd_params & params) override {
  1300. std::vector<std::string> fields = test::get_fields();
  1301. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1302. (void) params;
  1303. }
  1304. void print_test(const test & t) override {
  1305. std::vector<std::string> values = t.get_values();
  1306. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1307. fprintf(fout, "%s\n", join(values, ",").c_str());
  1308. }
  1309. };
  1310. static std::string escape_json(const std::string & value) {
  1311. std::string escaped;
  1312. for (auto c : value) {
  1313. if (c == '"') {
  1314. escaped += "\\\"";
  1315. } else if (c == '\\') {
  1316. escaped += "\\\\";
  1317. } else if (c <= 0x1f) {
  1318. char buf[8];
  1319. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1320. escaped += buf;
  1321. } else {
  1322. escaped += c;
  1323. }
  1324. }
  1325. return escaped;
  1326. }
  1327. static std::string format_json_value(const std::string & field, const std::string & value) {
  1328. switch (test::get_field_type(field)) {
  1329. case test::STRING:
  1330. return "\"" + escape_json(value) + "\"";
  1331. case test::BOOL:
  1332. return value == "0" ? "false" : "true";
  1333. default:
  1334. return value;
  1335. }
  1336. }
  1337. struct json_printer : public printer {
  1338. bool first = true;
  1339. void print_header(const cmd_params & params) override {
  1340. fprintf(fout, "[\n");
  1341. (void) params;
  1342. }
  1343. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1344. assert(fields.size() == values.size());
  1345. for (size_t i = 0; i < fields.size(); i++) {
  1346. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1347. format_json_value(fields.at(i), values.at(i)).c_str());
  1348. }
  1349. }
  1350. void print_test(const test & t) override {
  1351. if (first) {
  1352. first = false;
  1353. } else {
  1354. fprintf(fout, ",\n");
  1355. }
  1356. fprintf(fout, " {\n");
  1357. print_fields(test::get_fields(), t.get_values());
  1358. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1359. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1360. fprintf(fout, " }");
  1361. fflush(fout);
  1362. }
  1363. void print_footer() override { fprintf(fout, "\n]\n"); }
  1364. };
  1365. struct jsonl_printer : public printer {
  1366. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1367. assert(fields.size() == values.size());
  1368. for (size_t i = 0; i < fields.size(); i++) {
  1369. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1370. }
  1371. }
  1372. void print_test(const test & t) override {
  1373. fprintf(fout, "{");
  1374. print_fields(test::get_fields(), t.get_values());
  1375. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1376. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1377. fprintf(fout, "}\n");
  1378. fflush(fout);
  1379. }
  1380. };
  1381. struct markdown_printer : public printer {
  1382. std::vector<std::string> fields;
  1383. static int get_field_width(const std::string & field) {
  1384. if (field == "model") {
  1385. return -30;
  1386. }
  1387. if (field == "t/s") {
  1388. return 20;
  1389. }
  1390. if (field == "size" || field == "params") {
  1391. return 10;
  1392. }
  1393. if (field == "n_gpu_layers") {
  1394. return 3;
  1395. }
  1396. if (field == "n_threads") {
  1397. return 7;
  1398. }
  1399. if (field == "n_batch") {
  1400. return 7;
  1401. }
  1402. if (field == "n_ubatch") {
  1403. return 8;
  1404. }
  1405. if (field == "type_k" || field == "type_v") {
  1406. return 6;
  1407. }
  1408. if (field == "split_mode") {
  1409. return 5;
  1410. }
  1411. if (field == "flash_attn") {
  1412. return 2;
  1413. }
  1414. if (field == "use_mmap") {
  1415. return 4;
  1416. }
  1417. if (field == "test") {
  1418. return 15;
  1419. }
  1420. if (field == "no_op_offload") {
  1421. return 4;
  1422. }
  1423. int width = std::max((int) field.length(), 10);
  1424. if (test::get_field_type(field) == test::STRING) {
  1425. return -width;
  1426. }
  1427. return width;
  1428. }
  1429. static std::string get_field_display_name(const std::string & field) {
  1430. if (field == "n_gpu_layers") {
  1431. return "ngl";
  1432. }
  1433. if (field == "split_mode") {
  1434. return "sm";
  1435. }
  1436. if (field == "n_threads") {
  1437. return "threads";
  1438. }
  1439. if (field == "no_kv_offload") {
  1440. return "nkvo";
  1441. }
  1442. if (field == "flash_attn") {
  1443. return "fa";
  1444. }
  1445. if (field == "use_mmap") {
  1446. return "mmap";
  1447. }
  1448. if (field == "embeddings") {
  1449. return "embd";
  1450. }
  1451. if (field == "no_op_offload") {
  1452. return "nopo";
  1453. }
  1454. if (field == "tensor_split") {
  1455. return "ts";
  1456. }
  1457. if (field == "tensor_buft_overrides") {
  1458. return "ot";
  1459. }
  1460. return field;
  1461. }
  1462. void print_header(const cmd_params & params) override {
  1463. // select fields to print
  1464. fields.emplace_back("model");
  1465. fields.emplace_back("size");
  1466. fields.emplace_back("params");
  1467. fields.emplace_back("backend");
  1468. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1469. test::get_backend().find("BLAS") != std::string::npos;
  1470. if (!is_cpu_backend) {
  1471. fields.emplace_back("n_gpu_layers");
  1472. }
  1473. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1474. fields.emplace_back("n_threads");
  1475. }
  1476. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1477. fields.emplace_back("cpu_mask");
  1478. }
  1479. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1480. fields.emplace_back("cpu_strict");
  1481. }
  1482. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1483. fields.emplace_back("poll");
  1484. }
  1485. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1486. fields.emplace_back("n_batch");
  1487. }
  1488. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1489. fields.emplace_back("n_ubatch");
  1490. }
  1491. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1492. fields.emplace_back("type_k");
  1493. }
  1494. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1495. fields.emplace_back("type_v");
  1496. }
  1497. if (params.defrag_thold.size() > 1 || params.defrag_thold != cmd_params_defaults.defrag_thold) {
  1498. fields.emplace_back("defrag_thold");
  1499. }
  1500. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1501. fields.emplace_back("main_gpu");
  1502. }
  1503. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1504. fields.emplace_back("split_mode");
  1505. }
  1506. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1507. fields.emplace_back("no_kv_offload");
  1508. }
  1509. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1510. fields.emplace_back("flash_attn");
  1511. }
  1512. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1513. fields.emplace_back("tensor_split");
  1514. }
  1515. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1516. fields.emplace_back("tensor_buft_overrides");
  1517. }
  1518. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1519. fields.emplace_back("use_mmap");
  1520. }
  1521. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1522. fields.emplace_back("embeddings");
  1523. }
  1524. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1525. fields.emplace_back("no_op_offload");
  1526. }
  1527. fields.emplace_back("test");
  1528. fields.emplace_back("t/s");
  1529. fprintf(fout, "|");
  1530. for (const auto & field : fields) {
  1531. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1532. }
  1533. fprintf(fout, "\n");
  1534. fprintf(fout, "|");
  1535. for (const auto & field : fields) {
  1536. int width = get_field_width(field);
  1537. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1538. }
  1539. fprintf(fout, "\n");
  1540. }
  1541. void print_test(const test & t) override {
  1542. std::map<std::string, std::string> vmap = t.get_map();
  1543. fprintf(fout, "|");
  1544. for (const auto & field : fields) {
  1545. std::string value;
  1546. char buf[128];
  1547. if (field == "model") {
  1548. value = t.model_type;
  1549. } else if (field == "size") {
  1550. if (t.model_size < 1024 * 1024 * 1024) {
  1551. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1552. } else {
  1553. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1554. }
  1555. value = buf;
  1556. } else if (field == "params") {
  1557. if (t.model_n_params < 1000 * 1000 * 1000) {
  1558. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1559. } else {
  1560. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1561. }
  1562. value = buf;
  1563. } else if (field == "backend") {
  1564. value = test::get_backend();
  1565. } else if (field == "test") {
  1566. if (t.n_prompt > 0 && t.n_gen == 0) {
  1567. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1568. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1569. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1570. } else {
  1571. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1572. }
  1573. if (t.n_depth > 0) {
  1574. int len = strlen(buf);
  1575. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1576. }
  1577. value = buf;
  1578. } else if (field == "t/s") {
  1579. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1580. value = buf;
  1581. } else if (vmap.find(field) != vmap.end()) {
  1582. value = vmap.at(field);
  1583. } else {
  1584. assert(false);
  1585. exit(1);
  1586. }
  1587. int width = get_field_width(field);
  1588. if (field == "t/s") {
  1589. // HACK: the utf-8 character is 2 bytes
  1590. width += 1;
  1591. }
  1592. fprintf(fout, " %*s |", width, value.c_str());
  1593. }
  1594. fprintf(fout, "\n");
  1595. }
  1596. void print_footer() override {
  1597. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1598. }
  1599. };
  1600. struct sql_printer : public printer {
  1601. static std::string get_sql_field_type(const std::string & field) {
  1602. switch (test::get_field_type(field)) {
  1603. case test::STRING:
  1604. return "TEXT";
  1605. case test::BOOL:
  1606. case test::INT:
  1607. return "INTEGER";
  1608. case test::FLOAT:
  1609. return "REAL";
  1610. default:
  1611. assert(false);
  1612. exit(1);
  1613. }
  1614. }
  1615. void print_header(const cmd_params & params) override {
  1616. std::vector<std::string> fields = test::get_fields();
  1617. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1618. for (size_t i = 0; i < fields.size(); i++) {
  1619. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1620. i < fields.size() - 1 ? "," : "");
  1621. }
  1622. fprintf(fout, ");\n");
  1623. fprintf(fout, "\n");
  1624. (void) params;
  1625. }
  1626. void print_test(const test & t) override {
  1627. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1628. fprintf(fout, "VALUES (");
  1629. std::vector<std::string> values = t.get_values();
  1630. for (size_t i = 0; i < values.size(); i++) {
  1631. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1632. }
  1633. fprintf(fout, ");\n");
  1634. }
  1635. };
  1636. static bool test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1637. llama_set_n_threads(ctx, n_threads, n_threads);
  1638. const llama_model * model = llama_get_model(ctx);
  1639. const llama_vocab * vocab = llama_model_get_vocab(model);
  1640. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1641. std::vector<llama_token> tokens(n_batch);
  1642. int n_processed = 0;
  1643. while (n_processed < n_prompt) {
  1644. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1645. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1646. for (int i = 1; i < n_tokens; i++) {
  1647. tokens[i] = std::rand() % n_vocab;
  1648. }
  1649. int res = llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1650. if (res != 0) {
  1651. fprintf(stderr, "%s: failed to decode prompt batch, res = %d\n", __func__, res);
  1652. return false;
  1653. }
  1654. n_processed += n_tokens;
  1655. }
  1656. llama_synchronize(ctx);
  1657. return true;
  1658. }
  1659. static bool test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1660. llama_set_n_threads(ctx, n_threads, n_threads);
  1661. const llama_model * model = llama_get_model(ctx);
  1662. const llama_vocab * vocab = llama_model_get_vocab(model);
  1663. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1664. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1665. for (int i = 0; i < n_gen; i++) {
  1666. int res = llama_decode(ctx, llama_batch_get_one(&token, 1));
  1667. if (res != 0) {
  1668. fprintf(stderr, "%s: failed to decode generation batch, res = %d\n", __func__, res);
  1669. return false;
  1670. }
  1671. llama_synchronize(ctx);
  1672. token = std::rand() % n_vocab;
  1673. }
  1674. return true;
  1675. }
  1676. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1677. (void) level;
  1678. (void) text;
  1679. (void) user_data;
  1680. }
  1681. static std::unique_ptr<printer> create_printer(output_formats format) {
  1682. switch (format) {
  1683. case NONE:
  1684. return nullptr;
  1685. case CSV:
  1686. return std::unique_ptr<printer>(new csv_printer());
  1687. case JSON:
  1688. return std::unique_ptr<printer>(new json_printer());
  1689. case JSONL:
  1690. return std::unique_ptr<printer>(new jsonl_printer());
  1691. case MARKDOWN:
  1692. return std::unique_ptr<printer>(new markdown_printer());
  1693. case SQL:
  1694. return std::unique_ptr<printer>(new sql_printer());
  1695. }
  1696. GGML_ABORT("fatal error");
  1697. }
  1698. int main(int argc, char ** argv) {
  1699. // try to set locale for unicode characters in markdown
  1700. setlocale(LC_CTYPE, ".UTF-8");
  1701. #if !defined(NDEBUG)
  1702. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1703. #endif
  1704. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1705. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1706. #endif
  1707. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1708. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1709. #endif
  1710. // initialize backends
  1711. ggml_backend_load_all();
  1712. cmd_params params = parse_cmd_params(argc, argv);
  1713. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1714. if (!cpu_dev) {
  1715. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1716. return 1;
  1717. }
  1718. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1719. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1720. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1721. // initialize llama.cpp
  1722. if (!params.verbose) {
  1723. llama_log_set(llama_null_log_callback, NULL);
  1724. }
  1725. llama_backend_init();
  1726. llama_numa_init(params.numa);
  1727. set_process_priority(params.prio);
  1728. // initialize printer
  1729. std::unique_ptr<printer> p = create_printer(params.output_format);
  1730. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1731. if (p) {
  1732. p->fout = stdout;
  1733. p->print_header(params);
  1734. }
  1735. if (p_err) {
  1736. p_err->fout = stderr;
  1737. p_err->print_header(params);
  1738. }
  1739. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1740. llama_model * lmodel = nullptr;
  1741. const cmd_params_instance * prev_inst = nullptr;
  1742. int params_idx = 0;
  1743. auto params_count = params_instances.size();
  1744. for (const auto & inst : params_instances) {
  1745. params_idx++;
  1746. if (params.progress) {
  1747. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1748. }
  1749. // keep the same model between tests when possible
  1750. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1751. if (lmodel) {
  1752. llama_model_free(lmodel);
  1753. }
  1754. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1755. if (lmodel == NULL) {
  1756. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1757. return 1;
  1758. }
  1759. prev_inst = &inst;
  1760. }
  1761. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1762. if (ctx == NULL) {
  1763. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1764. llama_model_free(lmodel);
  1765. return 1;
  1766. }
  1767. test t(inst, lmodel, ctx);
  1768. llama_kv_self_clear(ctx);
  1769. // cool off before the test
  1770. if (params.delay) {
  1771. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1772. }
  1773. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1774. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1775. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1776. exit(1);
  1777. }
  1778. tpp.strict_cpu = t.cpu_strict;
  1779. tpp.poll = t.poll;
  1780. tpp.prio = params.prio;
  1781. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1782. if (!threadpool) {
  1783. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1784. exit(1);
  1785. }
  1786. llama_attach_threadpool(ctx, threadpool, NULL);
  1787. // warmup run
  1788. if (t.n_prompt > 0) {
  1789. if (params.progress) {
  1790. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1791. }
  1792. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1793. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1794. if (!res) {
  1795. fprintf(stderr, "%s: error: failed to run prompt warmup\n", __func__);
  1796. exit(1);
  1797. }
  1798. }
  1799. if (t.n_gen > 0) {
  1800. if (params.progress) {
  1801. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1802. }
  1803. bool res = test_gen(ctx, 1, t.n_threads);
  1804. if (!res) {
  1805. fprintf(stderr, "%s: error: failed to run gen warmup\n", __func__);
  1806. exit(1);
  1807. }
  1808. }
  1809. for (int i = 0; i < params.reps; i++) {
  1810. llama_kv_self_clear(ctx);
  1811. if (t.n_depth > 0) {
  1812. if (params.progress) {
  1813. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1814. i + 1, params.reps);
  1815. }
  1816. bool res = test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1817. if (!res) {
  1818. fprintf(stderr, "%s: error: failed to run depth\n", __func__);
  1819. exit(1);
  1820. }
  1821. }
  1822. uint64_t t_start = get_time_ns();
  1823. if (t.n_prompt > 0) {
  1824. if (params.progress) {
  1825. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1826. i + 1, params.reps);
  1827. }
  1828. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1829. if (!res) {
  1830. fprintf(stderr, "%s: error: failed to run prompt\n", __func__);
  1831. exit(1);
  1832. }
  1833. }
  1834. if (t.n_gen > 0) {
  1835. if (params.progress) {
  1836. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1837. i + 1, params.reps);
  1838. }
  1839. bool res = test_gen(ctx, t.n_gen, t.n_threads);
  1840. if (!res) {
  1841. fprintf(stderr, "%s: error: failed to run gen\n", __func__);
  1842. exit(1);
  1843. }
  1844. }
  1845. uint64_t t_ns = get_time_ns() - t_start;
  1846. t.samples_ns.push_back(t_ns);
  1847. }
  1848. if (p) {
  1849. p->print_test(t);
  1850. fflush(p->fout);
  1851. }
  1852. if (p_err) {
  1853. p_err->print_test(t);
  1854. fflush(p_err->fout);
  1855. }
  1856. llama_perf_context_print(ctx);
  1857. llama_free(ctx);
  1858. ggml_threadpool_free_fn(threadpool);
  1859. }
  1860. llama_model_free(lmodel);
  1861. if (p) {
  1862. p->print_footer();
  1863. }
  1864. if (p_err) {
  1865. p_err->print_footer();
  1866. }
  1867. llama_backend_free();
  1868. return 0;
  1869. }