| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- // thread safety test
- // - Loads a copy of the same model on each GPU, plus a copy on the CPU
- // - Creates n_parallel (--parallel) contexts per model
- // - Runs inference in parallel on each context
- #include <thread>
- #include <vector>
- #include <atomic>
- #include "llama.h"
- #include "arg.h"
- #include "common.h"
- #include "log.h"
- #include "sampling.h"
- int main(int argc, char ** argv) {
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
- return 1;
- }
- common_init();
- llama_backend_init();
- llama_numa_init(params.numa);
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- //llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
- // if (level == GGML_LOG_LEVEL_ERROR) {
- // common_log_add(common_log_main(), level, "%s", text);
- // }
- //}, NULL);
- auto cparams = common_context_params_to_llama(params);
- // each context has a single sequence
- cparams.n_seq_max = 1;
- int dev_count = ggml_backend_dev_count();
- int gpu_dev_count = 0;
- for (int i = 0; i < dev_count; ++i) {
- auto * dev = ggml_backend_dev_get(i);
- if (dev && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
- gpu_dev_count++;
- }
- }
- const int num_models = gpu_dev_count + 1 + 1; // GPUs + 1 CPU model + 1 layer split
- //const int num_models = std::max(1, gpu_dev_count);
- const int num_contexts = std::max(1, params.n_parallel);
- std::vector<llama_model_ptr> models;
- std::vector<std::thread> threads;
- std::atomic<bool> failed = false;
- for (int m = 0; m < num_models; ++m) {
- auto mparams = common_model_params_to_llama(params);
- if (m < gpu_dev_count) {
- mparams.split_mode = LLAMA_SPLIT_MODE_NONE;
- mparams.main_gpu = m;
- } else if (m == gpu_dev_count) {
- mparams.split_mode = LLAMA_SPLIT_MODE_NONE;
- mparams.main_gpu = -1; // CPU model
- } else {
- mparams.split_mode = LLAMA_SPLIT_MODE_LAYER;;
- }
- llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
- if (model == NULL) {
- LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
- return 1;
- }
- models.emplace_back(model);
- }
- for (int m = 0; m < num_models; ++m) {
- auto * model = models[m].get();
- for (int c = 0; c < num_contexts; ++c) {
- threads.emplace_back([&, m, c, model]() {
- LOG_INF("Creating context %d/%d for model %d/%d\n", c + 1, num_contexts, m + 1, num_models);
- llama_context_ptr ctx { llama_init_from_model(model, cparams) };
- if (ctx == NULL) {
- LOG_ERR("failed to create context\n");
- failed.store(true);
- return;
- }
- std::unique_ptr<common_sampler, decltype(&common_sampler_free)> sampler { common_sampler_init(model, params.sampling), common_sampler_free };
- if (sampler == NULL) {
- LOG_ERR("failed to create sampler\n");
- failed.store(true);
- return;
- }
- llama_batch batch = {};
- {
- auto prompt = common_tokenize(ctx.get(), params.prompt, true);
- if (prompt.empty()) {
- LOG_ERR("failed to tokenize prompt\n");
- failed.store(true);
- return;
- }
- batch = llama_batch_get_one(prompt.data(), prompt.size());
- if (llama_decode(ctx.get(), batch)) {
- LOG_ERR("failed to decode prompt\n");
- failed.store(true);
- return;
- }
- }
- const auto * vocab = llama_model_get_vocab(model);
- std::string result = params.prompt;
- for (int i = 0; i < params.n_predict; i++) {
- llama_token token;
- if (batch.n_tokens > 0) {
- token = common_sampler_sample(sampler.get(), ctx.get(), batch.n_tokens - 1);
- } else {
- token = llama_vocab_bos(vocab);
- }
- result += common_token_to_piece(ctx.get(), token);
- if (llama_vocab_is_eog(vocab, token)) {
- break;
- }
- batch = llama_batch_get_one(&token, 1);
- if (llama_decode(ctx.get(), batch)) {
- LOG_ERR("Model %d/%d, Context %d/%d: failed to decode\n", m + 1, num_models, c + 1, num_contexts);
- failed.store(true);
- return;
- }
- }
- LOG_INF("Model %d/%d, Context %d/%d: %s\n\n", m + 1, num_models, c + 1, num_contexts, result.c_str());
- });
- }
- }
- for (auto & thread : threads) {
- thread.join();
- }
- if (failed) {
- LOG_ERR("One or more threads failed.\n");
- return 1;
- }
- LOG_INF("All threads finished without errors.\n");
- return 0;
- }
|