| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148 |
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <chrono>
- #include <cinttypes>
- #include <clocale>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <iterator>
- #include <map>
- #include <numeric>
- #include <regex>
- #include <sstream>
- #include <string>
- #include <vector>
- #include "ggml.h"
- #include "llama.h"
- #include "common.h"
- #include "ggml-cuda.h"
- // utils
- static uint64_t get_time_ns() {
- using clock = std::chrono::high_resolution_clock;
- return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
- }
- template<class T>
- static std::string join(const std::vector<T> & values, const std::string & delim) {
- std::ostringstream str;
- for (size_t i = 0; i < values.size(); i++) {
- str << values[i];
- if (i < values.size() - 1) {
- str << delim;
- }
- }
- return str.str();
- }
- template<class T>
- static std::vector<T> split(const std::string & str, char delim) {
- std::vector<T> values;
- std::istringstream str_stream(str);
- std::string token;
- while (std::getline(str_stream, token, delim)) {
- T value;
- std::istringstream token_stream(token);
- token_stream >> value;
- values.push_back(value);
- }
- return values;
- }
- template<typename T, typename F>
- static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
- std::vector<std::string> str_values;
- std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
- return str_values;
- }
- template<typename T>
- static T avg(const std::vector<T> & v) {
- if (v.empty()) {
- return 0;
- }
- T sum = std::accumulate(v.begin(), v.end(), T(0));
- return sum / (T)v.size();
- }
- template<typename T>
- static T stdev(const std::vector<T> & v) {
- if (v.size() <= 1) {
- return 0;
- }
- T mean = avg(v);
- T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
- T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
- return stdev;
- }
- static std::string get_cpu_info() {
- std::string id;
- #ifdef __linux__
- FILE * f = fopen("/proc/cpuinfo", "r");
- if (f) {
- char buf[1024];
- while (fgets(buf, sizeof(buf), f)) {
- if (strncmp(buf, "model name", 10) == 0) {
- char * p = strchr(buf, ':');
- if (p) {
- p++;
- while (std::isspace(*p)) {
- p++;
- }
- while (std::isspace(p[strlen(p) - 1])) {
- p[strlen(p) - 1] = '\0';
- }
- id = p;
- break;
- }
- }
- }
- }
- #endif
- // TODO: other platforms
- return id;
- }
- static std::string get_gpu_info() {
- std::string id;
- #ifdef GGML_USE_CUBLAS
- int count = ggml_cuda_get_device_count();
- for (int i = 0; i < count; i++) {
- char buf[128];
- ggml_cuda_get_device_description(i, buf, sizeof(buf));
- id += buf;
- if (i < count - 1) {
- id += "/";
- }
- }
- #endif
- // TODO: other backends
- return id;
- }
- // command line params
- enum output_formats {CSV, JSON, MARKDOWN, SQL};
- struct cmd_params {
- std::vector<std::string> model;
- std::vector<int> n_prompt;
- std::vector<int> n_gen;
- std::vector<int> n_batch;
- std::vector<ggml_type> type_k;
- std::vector<ggml_type> type_v;
- std::vector<int> n_threads;
- std::vector<int> n_gpu_layers;
- std::vector<int> main_gpu;
- std::vector<bool> mul_mat_q;
- std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
- int reps;
- bool verbose;
- output_formats output_format;
- };
- static const cmd_params cmd_params_defaults = {
- /* model */ {"models/7B/ggml-model-q4_0.gguf"},
- /* n_prompt */ {512},
- /* n_gen */ {128},
- /* n_batch */ {512},
- /* type_k */ {GGML_TYPE_F16},
- /* type_v */ {GGML_TYPE_F16},
- /* n_threads */ {get_num_physical_cores()},
- /* n_gpu_layers */ {99},
- /* main_gpu */ {0},
- /* mul_mat_q */ {true},
- /* tensor_split */ {{}},
- /* reps */ 5,
- /* verbose */ false,
- /* output_format */ MARKDOWN
- };
- static void print_usage(int /* argc */, char ** argv) {
- printf("usage: %s [options]\n", argv[0]);
- printf("\n");
- printf("options:\n");
- printf(" -h, --help\n");
- printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
- printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
- printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
- printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
- printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
- printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
- printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
- printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
- printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
- printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
- printf(" -ts, --tensor_split <ts0/ts1/..> \n");
- printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
- printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
- printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
- printf("\n");
- printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
- }
- static ggml_type ggml_type_from_name(const std::string & s) {
- if (s == "f16") {
- return GGML_TYPE_F16;
- }
- if (s == "q8_0") {
- return GGML_TYPE_Q8_0;
- }
- if (s == "q4_0") {
- return GGML_TYPE_Q4_0;
- }
- if (s == "q4_1") {
- return GGML_TYPE_Q4_1;
- }
- if (s == "q5_0") {
- return GGML_TYPE_Q5_0;
- }
- if (s == "q5_1") {
- return GGML_TYPE_Q5_1;
- }
- return GGML_TYPE_COUNT;
- }
- static cmd_params parse_cmd_params(int argc, char ** argv) {
- cmd_params params;
- std::string arg;
- bool invalid_param = false;
- const std::string arg_prefix = "--";
- const char split_delim = ',';
- params.verbose = cmd_params_defaults.verbose;
- params.output_format = cmd_params_defaults.output_format;
- params.reps = cmd_params_defaults.reps;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg == "-h" || arg == "--help") {
- print_usage(argc, argv);
- exit(0);
- } else if (arg == "-m" || arg == "--model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<std::string>(argv[i], split_delim);
- params.model.insert(params.model.end(), p.begin(), p.end());
- } else if (arg == "-p" || arg == "--n-prompt") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
- } else if (arg == "-n" || arg == "--n-gen") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
- } else if (arg == "-b" || arg == "--batch-size") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
- } else if (arg == "-ctk" || arg == "--cache-type-k") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<std::string>(argv[i], split_delim);
- std::vector<ggml_type> types;
- for (const auto & t : p) {
- ggml_type gt = ggml_type_from_name(t);
- if (gt == GGML_TYPE_COUNT) {
- invalid_param = true;
- break;
- }
- types.push_back(gt);
- }
- params.type_k.insert(params.type_k.end(), types.begin(), types.end());
- } else if (arg == "-ctv" || arg == "--cache-type-v") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<std::string>(argv[i], split_delim);
- std::vector<ggml_type> types;
- for (const auto & t : p) {
- ggml_type gt = ggml_type_from_name(t);
- if (gt == GGML_TYPE_COUNT) {
- invalid_param = true;
- break;
- }
- types.push_back(gt);
- }
- params.type_v.insert(params.type_v.end(), types.begin(), types.end());
- } else if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
- } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<int>(argv[i], split_delim);
- params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
- } else if (arg == "-mg" || arg == "--main-gpu") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.main_gpu = split<int>(argv[i], split_delim);
- } else if (arg == "-mmq" || arg == "--mul-mat-q") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- auto p = split<bool>(argv[i], split_delim);
- params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
- } else if (arg == "-ts" || arg == "--tensor-split") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- for (auto ts : split<std::string>(argv[i], split_delim)) {
- // split string by ; and /
- const std::regex regex{R"([;/]+)"};
- std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
- std::array<float, LLAMA_MAX_DEVICES> tensor_split;
- for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
- if (i < split_arg.size()) {
- tensor_split[i] = std::stof(split_arg[i]);
- } else {
- tensor_split[i] = 0.0f;
- }
- }
- params.tensor_split.push_back(tensor_split);
- }
- } else if (arg == "-r" || arg == "--repetitions") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.reps = std::stoi(argv[i]);
- } else if (arg == "-o" || arg == "--output") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- if (argv[i] == std::string("csv")) {
- params.output_format = CSV;
- } else if (argv[i] == std::string("json")) {
- params.output_format = JSON;
- } else if (argv[i] == std::string("md")) {
- params.output_format = MARKDOWN;
- } else if (argv[i] == std::string("sql")) {
- params.output_format = SQL;
- } else {
- invalid_param = true;
- break;
- }
- } else if (arg == "-v" || arg == "--verbose") {
- params.verbose = true;
- } else {
- invalid_param = true;
- break;
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- print_usage(argc, argv);
- exit(1);
- }
- // set defaults
- if (params.model.empty()) { params.model = cmd_params_defaults.model; }
- if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
- if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
- if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
- if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
- if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
- if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
- if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
- if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
- if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
- if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
- return params;
- }
- struct cmd_params_instance {
- std::string model;
- int n_prompt;
- int n_gen;
- int n_batch;
- ggml_type type_k;
- ggml_type type_v;
- int n_threads;
- int n_gpu_layers;
- int main_gpu;
- bool mul_mat_q;
- std::array<float, LLAMA_MAX_DEVICES> tensor_split;
- llama_model_params to_llama_mparams() const {
- llama_model_params mparams = llama_model_default_params();
- mparams.n_gpu_layers = n_gpu_layers;
- mparams.main_gpu = main_gpu;
- mparams.tensor_split = tensor_split.data();
- return mparams;
- }
- bool equal_mparams(const cmd_params_instance & other) const {
- return model == other.model &&
- n_gpu_layers == other.n_gpu_layers &&
- main_gpu == other.main_gpu &&
- tensor_split == other.tensor_split;
- }
- llama_context_params to_llama_cparams() const {
- llama_context_params cparams = llama_context_default_params();
- cparams.n_ctx = n_prompt + n_gen;
- cparams.n_batch = n_batch;
- cparams.type_k = type_k;
- cparams.type_v = type_v;
- cparams.mul_mat_q = mul_mat_q;
- return cparams;
- }
- };
- static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
- std::vector<cmd_params_instance> instances;
- for (const auto & m : params.model)
- for (const auto & nl : params.n_gpu_layers)
- for (const auto & mg : params.main_gpu)
- for (const auto & ts : params.tensor_split)
- for (const auto & nb : params.n_batch)
- for (const auto & tk : params.type_k)
- for (const auto & tv : params.type_v)
- for (const auto & mmq : params.mul_mat_q)
- for (const auto & nt : params.n_threads) {
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ n_prompt,
- /* .n_gen = */ n_gen,
- /* .n_batch = */ nb,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .n_gpu_layers = */ nl,
- /* .main_gpu = */ mg,
- /* .mul_mat_q = */ mmq,
- /* .tensor_split = */ ts,
- };
- instances.push_back(instance);
- }
- return instances;
- }
- static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
- std::vector<cmd_params_instance> instances;
- #if 1
- // this ordering minimizes the number of times that each model needs to be reloaded
- for (const auto & m : params.model)
- for (const auto & nl : params.n_gpu_layers)
- for (const auto & mg : params.main_gpu)
- for (const auto & ts : params.tensor_split)
- for (const auto & nb : params.n_batch)
- for (const auto & tk : params.type_k)
- for (const auto & tv : params.type_v)
- for (const auto & mmq : params.mul_mat_q)
- for (const auto & nt : params.n_threads) {
- for (const auto & n_prompt : params.n_prompt) {
- if (n_prompt == 0) {
- continue;
- }
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ n_prompt,
- /* .n_gen = */ 0,
- /* .n_batch = */ nb,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .n_gpu_layers = */ nl,
- /* .main_gpu = */ mg,
- /* .mul_mat_q = */ mmq,
- /* .tensor_split = */ ts,
- };
- instances.push_back(instance);
- }
- for (const auto & n_gen : params.n_gen) {
- if (n_gen == 0) {
- continue;
- }
- cmd_params_instance instance = {
- /* .model = */ m,
- /* .n_prompt = */ 0,
- /* .n_gen = */ n_gen,
- /* .n_batch = */ nb,
- /* .type_k = */ tk,
- /* .type_v = */ tv,
- /* .n_threads = */ nt,
- /* .n_gpu_layers = */ nl,
- /* .main_gpu = */ mg,
- /* .mul_mat_q = */ mmq,
- /* .tensor_split = */ ts,
- };
- instances.push_back(instance);
- }
- }
- #else
- // this ordering separates the prompt and generation tests
- for (const auto & n_prompt : params.n_prompt) {
- if (n_prompt == 0) {
- continue;
- }
- auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
- instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
- }
- for (const auto & n_gen : params.n_gen) {
- if (n_gen == 0) {
- continue;
- }
- auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
- instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
- }
- #endif
- return instances;
- }
- struct test {
- static const std::string build_commit;
- static const int build_number;
- static const bool cuda;
- static const bool opencl;
- static const bool metal;
- static const bool gpu_blas;
- static const bool blas;
- static const std::string cpu_info;
- static const std::string gpu_info;
- std::string model_filename;
- std::string model_type;
- uint64_t model_size;
- uint64_t model_n_params;
- int n_batch;
- int n_threads;
- ggml_type type_k;
- ggml_type type_v;
- int n_gpu_layers;
- int main_gpu;
- bool mul_mat_q;
- std::array<float, LLAMA_MAX_DEVICES> tensor_split;
- int n_prompt;
- int n_gen;
- std::string test_time;
- std::vector<uint64_t> samples_ns;
- test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
- model_filename = inst.model;
- char buf[128];
- llama_model_desc(lmodel, buf, sizeof(buf));
- model_type = buf;
- model_size = llama_model_size(lmodel);
- model_n_params = llama_model_n_params(lmodel);
- n_batch = inst.n_batch;
- n_threads = inst.n_threads;
- type_k = inst.type_k;
- type_v = inst.type_v;
- n_gpu_layers = inst.n_gpu_layers;
- main_gpu = inst.main_gpu;
- mul_mat_q = inst.mul_mat_q;
- tensor_split = inst.tensor_split;
- n_prompt = inst.n_prompt;
- n_gen = inst.n_gen;
- // RFC 3339 date-time format
- time_t t = time(NULL);
- std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
- test_time = buf;
- (void) ctx;
- }
- uint64_t avg_ns() const {
- return ::avg(samples_ns);
- }
- uint64_t stdev_ns() const {
- return ::stdev(samples_ns);
- }
- std::vector<double> get_ts() const {
- int n_tokens = n_prompt + n_gen;
- std::vector<double> ts;
- std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
- return ts;
- }
- double avg_ts() const {
- return ::avg(get_ts());
- }
- double stdev_ts() const {
- return ::stdev(get_ts());
- }
- static std::string get_backend() {
- if (cuda) {
- return GGML_CUDA_NAME;
- }
- if (opencl) {
- return "OpenCL";
- }
- if (metal) {
- return "Metal";
- }
- if (gpu_blas) {
- return "GPU BLAS";
- }
- if (blas) {
- return "BLAS";
- }
- return "CPU";
- }
- static const std::vector<std::string> & get_fields() {
- static const std::vector<std::string> fields = {
- "build_commit", "build_number",
- "cuda", "opencl", "metal", "gpu_blas", "blas",
- "cpu_info", "gpu_info",
- "model_filename", "model_type", "model_size", "model_n_params",
- "n_batch", "n_threads", "type_k", "type_v",
- "n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
- "n_prompt", "n_gen", "test_time",
- "avg_ns", "stddev_ns",
- "avg_ts", "stddev_ts"
- };
- return fields;
- }
- enum field_type {STRING, BOOL, INT, FLOAT};
- static field_type get_field_type(const std::string & field) {
- if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
- field == "model_size" || field == "model_n_params" ||
- field == "n_gpu_layers" || field == "main_gpu" ||
- field == "n_prompt" || field == "n_gen" ||
- field == "avg_ns" || field == "stddev_ns") {
- return INT;
- }
- if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
- field == "f16_kv" || field == "mul_mat_q") {
- return BOOL;
- }
- if (field == "avg_ts" || field == "stddev_ts") {
- return FLOAT;
- }
- return STRING;
- }
- std::vector<std::string> get_values() const {
- std::string tensor_split_str;
- int max_nonzero = 0;
- for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
- if (tensor_split[i] > 0) {
- max_nonzero = i;
- }
- }
- for (int i = 0; i <= max_nonzero; i++) {
- char buf[32];
- snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
- tensor_split_str += buf;
- if (i < max_nonzero) {
- tensor_split_str += "/";
- }
- }
- std::vector<std::string> values = {
- build_commit, std::to_string(build_number),
- std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
- cpu_info, gpu_info,
- model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
- std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
- std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
- std::to_string(n_prompt), std::to_string(n_gen), test_time,
- std::to_string(avg_ns()), std::to_string(stdev_ns()),
- std::to_string(avg_ts()), std::to_string(stdev_ts())
- };
- return values;
- }
- std::map<std::string, std::string> get_map() const {
- std::map<std::string, std::string> map;
- auto fields = get_fields();
- auto values = get_values();
- std::transform(fields.begin(), fields.end(), values.begin(),
- std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
- return map;
- }
- };
- const std::string test::build_commit = LLAMA_COMMIT;
- const int test::build_number = LLAMA_BUILD_NUMBER;
- const bool test::cuda = !!ggml_cpu_has_cublas();
- const bool test::opencl = !!ggml_cpu_has_clblast();
- const bool test::metal = !!ggml_cpu_has_metal();
- const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
- const bool test::blas = !!ggml_cpu_has_blas();
- const std::string test::cpu_info = get_cpu_info();
- const std::string test::gpu_info = get_gpu_info();
- struct printer {
- virtual ~printer() {}
- FILE * fout;
- virtual void print_header(const cmd_params & params) { (void) params; }
- virtual void print_test(const test & t) = 0;
- virtual void print_footer() { }
- };
- struct csv_printer : public printer {
- static std::string escape_csv(const std::string & field) {
- std::string escaped = "\"";
- for (auto c : field) {
- if (c == '"') {
- escaped += "\"";
- }
- escaped += c;
- }
- escaped += "\"";
- return escaped;
- }
- void print_header(const cmd_params & params) override {
- std::vector<std::string> fields = test::get_fields();
- fprintf(fout, "%s\n", join(fields, ",").c_str());
- (void) params;
- }
- void print_test(const test & t) override {
- std::vector<std::string> values = t.get_values();
- std::transform(values.begin(), values.end(), values.begin(), escape_csv);
- fprintf(fout, "%s\n", join(values, ",").c_str());
- }
- };
- struct json_printer : public printer {
- bool first = true;
- static std::string escape_json(const std::string & value) {
- std::string escaped;
- for (auto c : value) {
- if (c == '"') {
- escaped += "\\\"";
- } else if (c == '\\') {
- escaped += "\\\\";
- } else if (c <= 0x1f) {
- char buf[8];
- snprintf(buf, sizeof(buf), "\\u%04x", c);
- escaped += buf;
- } else {
- escaped += c;
- }
- }
- return escaped;
- }
- static std::string format_value(const std::string & field, const std::string & value) {
- switch (test::get_field_type(field)) {
- case test::STRING:
- return "\"" + escape_json(value) + "\"";
- case test::BOOL:
- return value == "0" ? "false" : "true";
- default:
- return value;
- }
- }
- void print_header(const cmd_params & params) override {
- fprintf(fout, "[\n");
- (void) params;
- }
- void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
- assert(fields.size() == values.size());
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
- }
- }
- void print_test(const test & t) override {
- if (first) {
- first = false;
- } else {
- fprintf(fout, ",\n");
- }
- fprintf(fout, " {\n");
- print_fields(test::get_fields(), t.get_values());
- fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
- fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
- fprintf(fout, " }");
- fflush(fout);
- }
- void print_footer() override {
- fprintf(fout, "\n]\n");
- }
- };
- struct markdown_printer : public printer {
- std::vector<std::string> fields;
- static int get_field_width(const std::string & field) {
- if (field == "model") {
- return -30;
- }
- if (field == "t/s") {
- return 16;
- }
- if (field == "size" || field == "params") {
- return 10;
- }
- if (field == "n_gpu_layers") {
- return 3;
- }
- int width = std::max((int)field.length(), 10);
- if (test::get_field_type(field) == test::STRING) {
- return -width;
- }
- return width;
- }
- static std::string get_field_display_name(const std::string & field) {
- if (field == "n_gpu_layers") {
- return "ngl";
- }
- if (field == "n_threads") {
- return "threads";
- }
- if (field == "mul_mat_q") {
- return "mmq";
- }
- if (field == "tensor_split") {
- return "ts";
- }
- return field;
- }
- void print_header(const cmd_params & params) override {
- // select fields to print
- fields.push_back("model");
- fields.push_back("size");
- fields.push_back("params");
- fields.push_back("backend");
- bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
- if (!is_cpu_backend) {
- fields.push_back("n_gpu_layers");
- }
- if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
- fields.push_back("n_threads");
- }
- if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
- fields.push_back("n_batch");
- }
- if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
- fields.push_back("type_k");
- }
- if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
- fields.push_back("type_v");
- }
- if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
- fields.push_back("main_gpu");
- }
- if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
- fields.push_back("mul_mat_q");
- }
- if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
- fields.push_back("tensor_split");
- }
- fields.push_back("test");
- fields.push_back("t/s");
- fprintf(fout, "|");
- for (const auto & field : fields) {
- fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
- }
- fprintf(fout, "\n");
- fprintf(fout, "|");
- for (const auto & field : fields) {
- int width = get_field_width(field);
- fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
- }
- fprintf(fout, "\n");
- }
- void print_test(const test & t) override {
- std::map<std::string, std::string> vmap = t.get_map();
- fprintf(fout, "|");
- for (const auto & field : fields) {
- std::string value;
- char buf[128];
- if (field == "model") {
- value = t.model_type;
- } else if (field == "size") {
- if (t.model_size < 1024*1024*1024) {
- snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
- } else {
- snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
- }
- value = buf;
- } else if (field == "params") {
- if (t.model_n_params < 1000*1000*1000) {
- snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
- } else {
- snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
- }
- value = buf;
- } else if (field == "backend") {
- value = test::get_backend();
- } else if (field == "test") {
- if (t.n_prompt > 0 && t.n_gen == 0) {
- snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
- } else if (t.n_gen > 0 && t.n_prompt == 0) {
- snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
- } else {
- assert(false);
- exit(1);
- }
- value = buf;
- } else if (field == "t/s") {
- snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
- value = buf;
- } else if (vmap.find(field) != vmap.end()) {
- value = vmap.at(field);
- } else {
- assert(false);
- exit(1);
- }
- int width = get_field_width(field);
- if (field == "t/s") {
- // HACK: the utf-8 character is 2 bytes
- width += 1;
- }
- fprintf(fout, " %*s |", width, value.c_str());
- }
- fprintf(fout, "\n");
- }
- void print_footer() override {
- fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
- }
- };
- struct sql_printer : public printer {
- static std::string get_sql_field_type(const std::string & field) {
- switch (test::get_field_type(field)) {
- case test::STRING:
- return "TEXT";
- case test::BOOL:
- case test::INT:
- return "INTEGER";
- case test::FLOAT:
- return "REAL";
- default:
- assert(false);
- exit(1);
- }
- }
- void print_header(const cmd_params & params) override {
- std::vector<std::string> fields = test::get_fields();
- fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
- }
- fprintf(fout, ");\n");
- fprintf(fout, "\n");
- (void) params;
- }
- void print_test(const test & t) override {
- fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
- fprintf(fout, "VALUES (");
- std::vector<std::string> values = t.get_values();
- for (size_t i = 0; i < values.size(); i++) {
- fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
- }
- fprintf(fout, ");\n");
- }
- };
- static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
- std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
- int n_processed = 0;
- llama_set_n_threads(ctx, n_threads, n_threads);
- while (n_processed < n_prompt) {
- int n_tokens = std::min(n_prompt - n_processed, n_batch);
- llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
- n_processed += n_tokens;
- }
- }
- static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
- llama_token token = llama_token_bos(llama_get_model(ctx));
- llama_set_n_threads(ctx, n_threads, n_threads);
- for (int i = 0; i < n_gen; i++) {
- llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
- }
- }
- static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) text;
- (void) user_data;
- }
- int main(int argc, char ** argv) {
- // try to set locale for unicode characters in markdown
- setlocale(LC_CTYPE, ".UTF-8");
- #if !defined(NDEBUG)
- fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
- #endif
- #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
- fprintf(stderr, "warning: debug build, performance may be affected\n");
- #endif
- #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
- fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
- #endif
- cmd_params params = parse_cmd_params(argc, argv);
- // initialize llama.cpp
- if (!params.verbose) {
- llama_log_set(llama_null_log_callback, NULL);
- }
- bool numa = false;
- llama_backend_init(numa);
- // initialize printer
- std::unique_ptr<printer> p;
- switch (params.output_format) {
- case CSV:
- p.reset(new csv_printer());
- break;
- case JSON:
- p.reset(new json_printer());
- break;
- case MARKDOWN:
- p.reset(new markdown_printer());
- break;
- case SQL:
- p.reset(new sql_printer());
- break;
- default:
- assert(false);
- exit(1);
- }
- p->fout = stdout;
- p->print_header(params);
- std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
- llama_model * lmodel = nullptr;
- const cmd_params_instance * prev_inst = nullptr;
- for (const auto & inst : params_instances) {
- // keep the same model between tests when possible
- if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
- if (lmodel) {
- llama_free_model(lmodel);
- }
- lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
- if (lmodel == NULL) {
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
- return 1;
- }
- prev_inst = &inst;
- }
- llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
- if (ctx == NULL) {
- fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
- llama_free_model(lmodel);
- return 1;
- }
- test t(inst, lmodel, ctx);
- llama_kv_cache_clear(ctx);
- // warmup run
- if (t.n_prompt > 0) {
- test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
- }
- if (t.n_gen > 0) {
- test_gen(ctx, 1, 0, t.n_threads);
- }
- for (int i = 0; i < params.reps; i++) {
- llama_kv_cache_clear(ctx);
- uint64_t t_start = get_time_ns();
- if (t.n_prompt > 0) {
- test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
- }
- if (t.n_gen > 0) {
- test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
- }
- uint64_t t_ns = get_time_ns() - t_start;
- t.samples_ns.push_back(t_ns);
- }
- p->print_test(t);
- llama_print_timings(ctx);
- llama_free(ctx);
- }
- llama_free_model(lmodel);
- p->print_footer();
- llama_backend_free();
- return 0;
- }
|