llama-bench.cpp 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. // utils
  23. static uint64_t get_time_ns() {
  24. using clock = std::chrono::high_resolution_clock;
  25. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  26. }
  27. template<class T>
  28. static std::string join(const std::vector<T> & values, const std::string & delim) {
  29. std::ostringstream str;
  30. for (size_t i = 0; i < values.size(); i++) {
  31. str << values[i];
  32. if (i < values.size() - 1) {
  33. str << delim;
  34. }
  35. }
  36. return str.str();
  37. }
  38. template<class T>
  39. static std::vector<T> split(const std::string & str, char delim) {
  40. std::vector<T> values;
  41. std::istringstream str_stream(str);
  42. std::string token;
  43. while (std::getline(str_stream, token, delim)) {
  44. T value;
  45. std::istringstream token_stream(token);
  46. token_stream >> value;
  47. values.push_back(value);
  48. }
  49. return values;
  50. }
  51. template<typename T, typename F>
  52. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  53. std::vector<std::string> str_values;
  54. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  55. return str_values;
  56. }
  57. template<typename T>
  58. static T avg(const std::vector<T> & v) {
  59. if (v.empty()) {
  60. return 0;
  61. }
  62. T sum = std::accumulate(v.begin(), v.end(), T(0));
  63. return sum / (T)v.size();
  64. }
  65. template<typename T>
  66. static T stdev(const std::vector<T> & v) {
  67. if (v.size() <= 1) {
  68. return 0;
  69. }
  70. T mean = avg(v);
  71. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  72. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  73. return stdev;
  74. }
  75. static std::string get_cpu_info() {
  76. std::string id;
  77. #ifdef __linux__
  78. FILE * f = fopen("/proc/cpuinfo", "r");
  79. if (f) {
  80. char buf[1024];
  81. while (fgets(buf, sizeof(buf), f)) {
  82. if (strncmp(buf, "model name", 10) == 0) {
  83. char * p = strchr(buf, ':');
  84. if (p) {
  85. p++;
  86. while (std::isspace(*p)) {
  87. p++;
  88. }
  89. while (std::isspace(p[strlen(p) - 1])) {
  90. p[strlen(p) - 1] = '\0';
  91. }
  92. id = p;
  93. break;
  94. }
  95. }
  96. }
  97. }
  98. #endif
  99. // TODO: other platforms
  100. return id;
  101. }
  102. static std::string get_gpu_info() {
  103. std::string id;
  104. #ifdef GGML_USE_CUBLAS
  105. int count = ggml_cuda_get_device_count();
  106. for (int i = 0; i < count; i++) {
  107. char buf[128];
  108. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  109. id += buf;
  110. if (i < count - 1) {
  111. id += "/";
  112. }
  113. }
  114. #endif
  115. // TODO: other backends
  116. return id;
  117. }
  118. // command line params
  119. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  120. struct cmd_params {
  121. std::vector<std::string> model;
  122. std::vector<int> n_prompt;
  123. std::vector<int> n_gen;
  124. std::vector<int> n_batch;
  125. std::vector<ggml_type> type_k;
  126. std::vector<ggml_type> type_v;
  127. std::vector<int> n_threads;
  128. std::vector<int> n_gpu_layers;
  129. std::vector<int> main_gpu;
  130. std::vector<bool> mul_mat_q;
  131. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  132. int reps;
  133. bool verbose;
  134. output_formats output_format;
  135. };
  136. static const cmd_params cmd_params_defaults = {
  137. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  138. /* n_prompt */ {512},
  139. /* n_gen */ {128},
  140. /* n_batch */ {512},
  141. /* type_k */ {GGML_TYPE_F16},
  142. /* type_v */ {GGML_TYPE_F16},
  143. /* n_threads */ {get_num_physical_cores()},
  144. /* n_gpu_layers */ {99},
  145. /* main_gpu */ {0},
  146. /* mul_mat_q */ {true},
  147. /* tensor_split */ {{}},
  148. /* reps */ 5,
  149. /* verbose */ false,
  150. /* output_format */ MARKDOWN
  151. };
  152. static void print_usage(int /* argc */, char ** argv) {
  153. printf("usage: %s [options]\n", argv[0]);
  154. printf("\n");
  155. printf("options:\n");
  156. printf(" -h, --help\n");
  157. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  158. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  159. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  160. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  161. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  162. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  163. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  164. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  165. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  166. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  167. printf(" -ts, --tensor_split <ts0/ts1/..> \n");
  168. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  169. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
  170. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  171. printf("\n");
  172. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  173. }
  174. static ggml_type ggml_type_from_name(const std::string & s) {
  175. if (s == "f16") {
  176. return GGML_TYPE_F16;
  177. }
  178. if (s == "q8_0") {
  179. return GGML_TYPE_Q8_0;
  180. }
  181. if (s == "q4_0") {
  182. return GGML_TYPE_Q4_0;
  183. }
  184. if (s == "q4_1") {
  185. return GGML_TYPE_Q4_1;
  186. }
  187. if (s == "q5_0") {
  188. return GGML_TYPE_Q5_0;
  189. }
  190. if (s == "q5_1") {
  191. return GGML_TYPE_Q5_1;
  192. }
  193. return GGML_TYPE_COUNT;
  194. }
  195. static cmd_params parse_cmd_params(int argc, char ** argv) {
  196. cmd_params params;
  197. std::string arg;
  198. bool invalid_param = false;
  199. const std::string arg_prefix = "--";
  200. const char split_delim = ',';
  201. params.verbose = cmd_params_defaults.verbose;
  202. params.output_format = cmd_params_defaults.output_format;
  203. params.reps = cmd_params_defaults.reps;
  204. for (int i = 1; i < argc; i++) {
  205. arg = argv[i];
  206. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  207. std::replace(arg.begin(), arg.end(), '_', '-');
  208. }
  209. if (arg == "-h" || arg == "--help") {
  210. print_usage(argc, argv);
  211. exit(0);
  212. } else if (arg == "-m" || arg == "--model") {
  213. if (++i >= argc) {
  214. invalid_param = true;
  215. break;
  216. }
  217. auto p = split<std::string>(argv[i], split_delim);
  218. params.model.insert(params.model.end(), p.begin(), p.end());
  219. } else if (arg == "-p" || arg == "--n-prompt") {
  220. if (++i >= argc) {
  221. invalid_param = true;
  222. break;
  223. }
  224. auto p = split<int>(argv[i], split_delim);
  225. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  226. } else if (arg == "-n" || arg == "--n-gen") {
  227. if (++i >= argc) {
  228. invalid_param = true;
  229. break;
  230. }
  231. auto p = split<int>(argv[i], split_delim);
  232. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  233. } else if (arg == "-b" || arg == "--batch-size") {
  234. if (++i >= argc) {
  235. invalid_param = true;
  236. break;
  237. }
  238. auto p = split<int>(argv[i], split_delim);
  239. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  240. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  241. if (++i >= argc) {
  242. invalid_param = true;
  243. break;
  244. }
  245. auto p = split<std::string>(argv[i], split_delim);
  246. std::vector<ggml_type> types;
  247. for (const auto & t : p) {
  248. ggml_type gt = ggml_type_from_name(t);
  249. if (gt == GGML_TYPE_COUNT) {
  250. invalid_param = true;
  251. break;
  252. }
  253. types.push_back(gt);
  254. }
  255. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  256. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  257. if (++i >= argc) {
  258. invalid_param = true;
  259. break;
  260. }
  261. auto p = split<std::string>(argv[i], split_delim);
  262. std::vector<ggml_type> types;
  263. for (const auto & t : p) {
  264. ggml_type gt = ggml_type_from_name(t);
  265. if (gt == GGML_TYPE_COUNT) {
  266. invalid_param = true;
  267. break;
  268. }
  269. types.push_back(gt);
  270. }
  271. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  272. } else if (arg == "-t" || arg == "--threads") {
  273. if (++i >= argc) {
  274. invalid_param = true;
  275. break;
  276. }
  277. auto p = split<int>(argv[i], split_delim);
  278. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  279. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  280. if (++i >= argc) {
  281. invalid_param = true;
  282. break;
  283. }
  284. auto p = split<int>(argv[i], split_delim);
  285. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  286. } else if (arg == "-mg" || arg == "--main-gpu") {
  287. if (++i >= argc) {
  288. invalid_param = true;
  289. break;
  290. }
  291. params.main_gpu = split<int>(argv[i], split_delim);
  292. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  293. if (++i >= argc) {
  294. invalid_param = true;
  295. break;
  296. }
  297. auto p = split<bool>(argv[i], split_delim);
  298. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  299. } else if (arg == "-ts" || arg == "--tensor-split") {
  300. if (++i >= argc) {
  301. invalid_param = true;
  302. break;
  303. }
  304. for (auto ts : split<std::string>(argv[i], split_delim)) {
  305. // split string by ; and /
  306. const std::regex regex{R"([;/]+)"};
  307. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  308. std::vector<std::string> split_arg{it, {}};
  309. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  310. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  311. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  312. if (i < split_arg.size()) {
  313. tensor_split[i] = std::stof(split_arg[i]);
  314. } else {
  315. tensor_split[i] = 0.0f;
  316. }
  317. }
  318. params.tensor_split.push_back(tensor_split);
  319. }
  320. } else if (arg == "-r" || arg == "--repetitions") {
  321. if (++i >= argc) {
  322. invalid_param = true;
  323. break;
  324. }
  325. params.reps = std::stoi(argv[i]);
  326. } else if (arg == "-o" || arg == "--output") {
  327. if (++i >= argc) {
  328. invalid_param = true;
  329. break;
  330. }
  331. if (argv[i] == std::string("csv")) {
  332. params.output_format = CSV;
  333. } else if (argv[i] == std::string("json")) {
  334. params.output_format = JSON;
  335. } else if (argv[i] == std::string("md")) {
  336. params.output_format = MARKDOWN;
  337. } else if (argv[i] == std::string("sql")) {
  338. params.output_format = SQL;
  339. } else {
  340. invalid_param = true;
  341. break;
  342. }
  343. } else if (arg == "-v" || arg == "--verbose") {
  344. params.verbose = true;
  345. } else {
  346. invalid_param = true;
  347. break;
  348. }
  349. }
  350. if (invalid_param) {
  351. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  352. print_usage(argc, argv);
  353. exit(1);
  354. }
  355. // set defaults
  356. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  357. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  358. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  359. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  360. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  361. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  362. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  363. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  364. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  365. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  366. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  367. return params;
  368. }
  369. struct cmd_params_instance {
  370. std::string model;
  371. int n_prompt;
  372. int n_gen;
  373. int n_batch;
  374. ggml_type type_k;
  375. ggml_type type_v;
  376. int n_threads;
  377. int n_gpu_layers;
  378. int main_gpu;
  379. bool mul_mat_q;
  380. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  381. llama_model_params to_llama_mparams() const {
  382. llama_model_params mparams = llama_model_default_params();
  383. mparams.n_gpu_layers = n_gpu_layers;
  384. mparams.main_gpu = main_gpu;
  385. mparams.tensor_split = tensor_split.data();
  386. return mparams;
  387. }
  388. bool equal_mparams(const cmd_params_instance & other) const {
  389. return model == other.model &&
  390. n_gpu_layers == other.n_gpu_layers &&
  391. main_gpu == other.main_gpu &&
  392. tensor_split == other.tensor_split;
  393. }
  394. llama_context_params to_llama_cparams() const {
  395. llama_context_params cparams = llama_context_default_params();
  396. cparams.n_ctx = n_prompt + n_gen;
  397. cparams.n_batch = n_batch;
  398. cparams.type_k = type_k;
  399. cparams.type_v = type_v;
  400. cparams.mul_mat_q = mul_mat_q;
  401. return cparams;
  402. }
  403. };
  404. static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
  405. std::vector<cmd_params_instance> instances;
  406. for (const auto & m : params.model)
  407. for (const auto & nl : params.n_gpu_layers)
  408. for (const auto & mg : params.main_gpu)
  409. for (const auto & ts : params.tensor_split)
  410. for (const auto & nb : params.n_batch)
  411. for (const auto & tk : params.type_k)
  412. for (const auto & tv : params.type_v)
  413. for (const auto & mmq : params.mul_mat_q)
  414. for (const auto & nt : params.n_threads) {
  415. cmd_params_instance instance = {
  416. /* .model = */ m,
  417. /* .n_prompt = */ n_prompt,
  418. /* .n_gen = */ n_gen,
  419. /* .n_batch = */ nb,
  420. /* .type_k = */ tk,
  421. /* .type_v = */ tv,
  422. /* .n_threads = */ nt,
  423. /* .n_gpu_layers = */ nl,
  424. /* .main_gpu = */ mg,
  425. /* .mul_mat_q = */ mmq,
  426. /* .tensor_split = */ ts,
  427. };
  428. instances.push_back(instance);
  429. }
  430. return instances;
  431. }
  432. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  433. std::vector<cmd_params_instance> instances;
  434. #if 1
  435. // this ordering minimizes the number of times that each model needs to be reloaded
  436. for (const auto & m : params.model)
  437. for (const auto & nl : params.n_gpu_layers)
  438. for (const auto & mg : params.main_gpu)
  439. for (const auto & ts : params.tensor_split)
  440. for (const auto & nb : params.n_batch)
  441. for (const auto & tk : params.type_k)
  442. for (const auto & tv : params.type_v)
  443. for (const auto & mmq : params.mul_mat_q)
  444. for (const auto & nt : params.n_threads) {
  445. for (const auto & n_prompt : params.n_prompt) {
  446. if (n_prompt == 0) {
  447. continue;
  448. }
  449. cmd_params_instance instance = {
  450. /* .model = */ m,
  451. /* .n_prompt = */ n_prompt,
  452. /* .n_gen = */ 0,
  453. /* .n_batch = */ nb,
  454. /* .type_k = */ tk,
  455. /* .type_v = */ tv,
  456. /* .n_threads = */ nt,
  457. /* .n_gpu_layers = */ nl,
  458. /* .main_gpu = */ mg,
  459. /* .mul_mat_q = */ mmq,
  460. /* .tensor_split = */ ts,
  461. };
  462. instances.push_back(instance);
  463. }
  464. for (const auto & n_gen : params.n_gen) {
  465. if (n_gen == 0) {
  466. continue;
  467. }
  468. cmd_params_instance instance = {
  469. /* .model = */ m,
  470. /* .n_prompt = */ 0,
  471. /* .n_gen = */ n_gen,
  472. /* .n_batch = */ nb,
  473. /* .type_k = */ tk,
  474. /* .type_v = */ tv,
  475. /* .n_threads = */ nt,
  476. /* .n_gpu_layers = */ nl,
  477. /* .main_gpu = */ mg,
  478. /* .mul_mat_q = */ mmq,
  479. /* .tensor_split = */ ts,
  480. };
  481. instances.push_back(instance);
  482. }
  483. }
  484. #else
  485. // this ordering separates the prompt and generation tests
  486. for (const auto & n_prompt : params.n_prompt) {
  487. if (n_prompt == 0) {
  488. continue;
  489. }
  490. auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
  491. instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
  492. }
  493. for (const auto & n_gen : params.n_gen) {
  494. if (n_gen == 0) {
  495. continue;
  496. }
  497. auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
  498. instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
  499. }
  500. #endif
  501. return instances;
  502. }
  503. struct test {
  504. static const std::string build_commit;
  505. static const int build_number;
  506. static const bool cuda;
  507. static const bool opencl;
  508. static const bool metal;
  509. static const bool gpu_blas;
  510. static const bool blas;
  511. static const std::string cpu_info;
  512. static const std::string gpu_info;
  513. std::string model_filename;
  514. std::string model_type;
  515. uint64_t model_size;
  516. uint64_t model_n_params;
  517. int n_batch;
  518. int n_threads;
  519. ggml_type type_k;
  520. ggml_type type_v;
  521. int n_gpu_layers;
  522. int main_gpu;
  523. bool mul_mat_q;
  524. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  525. int n_prompt;
  526. int n_gen;
  527. std::string test_time;
  528. std::vector<uint64_t> samples_ns;
  529. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  530. model_filename = inst.model;
  531. char buf[128];
  532. llama_model_desc(lmodel, buf, sizeof(buf));
  533. model_type = buf;
  534. model_size = llama_model_size(lmodel);
  535. model_n_params = llama_model_n_params(lmodel);
  536. n_batch = inst.n_batch;
  537. n_threads = inst.n_threads;
  538. type_k = inst.type_k;
  539. type_v = inst.type_v;
  540. n_gpu_layers = inst.n_gpu_layers;
  541. main_gpu = inst.main_gpu;
  542. mul_mat_q = inst.mul_mat_q;
  543. tensor_split = inst.tensor_split;
  544. n_prompt = inst.n_prompt;
  545. n_gen = inst.n_gen;
  546. // RFC 3339 date-time format
  547. time_t t = time(NULL);
  548. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  549. test_time = buf;
  550. (void) ctx;
  551. }
  552. uint64_t avg_ns() const {
  553. return ::avg(samples_ns);
  554. }
  555. uint64_t stdev_ns() const {
  556. return ::stdev(samples_ns);
  557. }
  558. std::vector<double> get_ts() const {
  559. int n_tokens = n_prompt + n_gen;
  560. std::vector<double> ts;
  561. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  562. return ts;
  563. }
  564. double avg_ts() const {
  565. return ::avg(get_ts());
  566. }
  567. double stdev_ts() const {
  568. return ::stdev(get_ts());
  569. }
  570. static std::string get_backend() {
  571. if (cuda) {
  572. return GGML_CUDA_NAME;
  573. }
  574. if (opencl) {
  575. return "OpenCL";
  576. }
  577. if (metal) {
  578. return "Metal";
  579. }
  580. if (gpu_blas) {
  581. return "GPU BLAS";
  582. }
  583. if (blas) {
  584. return "BLAS";
  585. }
  586. return "CPU";
  587. }
  588. static const std::vector<std::string> & get_fields() {
  589. static const std::vector<std::string> fields = {
  590. "build_commit", "build_number",
  591. "cuda", "opencl", "metal", "gpu_blas", "blas",
  592. "cpu_info", "gpu_info",
  593. "model_filename", "model_type", "model_size", "model_n_params",
  594. "n_batch", "n_threads", "type_k", "type_v",
  595. "n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
  596. "n_prompt", "n_gen", "test_time",
  597. "avg_ns", "stddev_ns",
  598. "avg_ts", "stddev_ts"
  599. };
  600. return fields;
  601. }
  602. enum field_type {STRING, BOOL, INT, FLOAT};
  603. static field_type get_field_type(const std::string & field) {
  604. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  605. field == "model_size" || field == "model_n_params" ||
  606. field == "n_gpu_layers" || field == "main_gpu" ||
  607. field == "n_prompt" || field == "n_gen" ||
  608. field == "avg_ns" || field == "stddev_ns") {
  609. return INT;
  610. }
  611. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  612. field == "f16_kv" || field == "mul_mat_q") {
  613. return BOOL;
  614. }
  615. if (field == "avg_ts" || field == "stddev_ts") {
  616. return FLOAT;
  617. }
  618. return STRING;
  619. }
  620. std::vector<std::string> get_values() const {
  621. std::string tensor_split_str;
  622. int max_nonzero = 0;
  623. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  624. if (tensor_split[i] > 0) {
  625. max_nonzero = i;
  626. }
  627. }
  628. for (int i = 0; i <= max_nonzero; i++) {
  629. char buf[32];
  630. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  631. tensor_split_str += buf;
  632. if (i < max_nonzero) {
  633. tensor_split_str += "/";
  634. }
  635. }
  636. std::vector<std::string> values = {
  637. build_commit, std::to_string(build_number),
  638. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  639. cpu_info, gpu_info,
  640. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  641. std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  642. std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
  643. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  644. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  645. std::to_string(avg_ts()), std::to_string(stdev_ts())
  646. };
  647. return values;
  648. }
  649. std::map<std::string, std::string> get_map() const {
  650. std::map<std::string, std::string> map;
  651. auto fields = get_fields();
  652. auto values = get_values();
  653. std::transform(fields.begin(), fields.end(), values.begin(),
  654. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  655. return map;
  656. }
  657. };
  658. const std::string test::build_commit = LLAMA_COMMIT;
  659. const int test::build_number = LLAMA_BUILD_NUMBER;
  660. const bool test::cuda = !!ggml_cpu_has_cublas();
  661. const bool test::opencl = !!ggml_cpu_has_clblast();
  662. const bool test::metal = !!ggml_cpu_has_metal();
  663. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  664. const bool test::blas = !!ggml_cpu_has_blas();
  665. const std::string test::cpu_info = get_cpu_info();
  666. const std::string test::gpu_info = get_gpu_info();
  667. struct printer {
  668. virtual ~printer() {}
  669. FILE * fout;
  670. virtual void print_header(const cmd_params & params) { (void) params; }
  671. virtual void print_test(const test & t) = 0;
  672. virtual void print_footer() { }
  673. };
  674. struct csv_printer : public printer {
  675. static std::string escape_csv(const std::string & field) {
  676. std::string escaped = "\"";
  677. for (auto c : field) {
  678. if (c == '"') {
  679. escaped += "\"";
  680. }
  681. escaped += c;
  682. }
  683. escaped += "\"";
  684. return escaped;
  685. }
  686. void print_header(const cmd_params & params) override {
  687. std::vector<std::string> fields = test::get_fields();
  688. fprintf(fout, "%s\n", join(fields, ",").c_str());
  689. (void) params;
  690. }
  691. void print_test(const test & t) override {
  692. std::vector<std::string> values = t.get_values();
  693. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  694. fprintf(fout, "%s\n", join(values, ",").c_str());
  695. }
  696. };
  697. struct json_printer : public printer {
  698. bool first = true;
  699. static std::string escape_json(const std::string & value) {
  700. std::string escaped;
  701. for (auto c : value) {
  702. if (c == '"') {
  703. escaped += "\\\"";
  704. } else if (c == '\\') {
  705. escaped += "\\\\";
  706. } else if (c <= 0x1f) {
  707. char buf[8];
  708. snprintf(buf, sizeof(buf), "\\u%04x", c);
  709. escaped += buf;
  710. } else {
  711. escaped += c;
  712. }
  713. }
  714. return escaped;
  715. }
  716. static std::string format_value(const std::string & field, const std::string & value) {
  717. switch (test::get_field_type(field)) {
  718. case test::STRING:
  719. return "\"" + escape_json(value) + "\"";
  720. case test::BOOL:
  721. return value == "0" ? "false" : "true";
  722. default:
  723. return value;
  724. }
  725. }
  726. void print_header(const cmd_params & params) override {
  727. fprintf(fout, "[\n");
  728. (void) params;
  729. }
  730. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  731. assert(fields.size() == values.size());
  732. for (size_t i = 0; i < fields.size(); i++) {
  733. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  734. }
  735. }
  736. void print_test(const test & t) override {
  737. if (first) {
  738. first = false;
  739. } else {
  740. fprintf(fout, ",\n");
  741. }
  742. fprintf(fout, " {\n");
  743. print_fields(test::get_fields(), t.get_values());
  744. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  745. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  746. fprintf(fout, " }");
  747. fflush(fout);
  748. }
  749. void print_footer() override {
  750. fprintf(fout, "\n]\n");
  751. }
  752. };
  753. struct markdown_printer : public printer {
  754. std::vector<std::string> fields;
  755. static int get_field_width(const std::string & field) {
  756. if (field == "model") {
  757. return -30;
  758. }
  759. if (field == "t/s") {
  760. return 16;
  761. }
  762. if (field == "size" || field == "params") {
  763. return 10;
  764. }
  765. if (field == "n_gpu_layers") {
  766. return 3;
  767. }
  768. int width = std::max((int)field.length(), 10);
  769. if (test::get_field_type(field) == test::STRING) {
  770. return -width;
  771. }
  772. return width;
  773. }
  774. static std::string get_field_display_name(const std::string & field) {
  775. if (field == "n_gpu_layers") {
  776. return "ngl";
  777. }
  778. if (field == "n_threads") {
  779. return "threads";
  780. }
  781. if (field == "mul_mat_q") {
  782. return "mmq";
  783. }
  784. if (field == "tensor_split") {
  785. return "ts";
  786. }
  787. return field;
  788. }
  789. void print_header(const cmd_params & params) override {
  790. // select fields to print
  791. fields.push_back("model");
  792. fields.push_back("size");
  793. fields.push_back("params");
  794. fields.push_back("backend");
  795. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  796. if (!is_cpu_backend) {
  797. fields.push_back("n_gpu_layers");
  798. }
  799. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  800. fields.push_back("n_threads");
  801. }
  802. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  803. fields.push_back("n_batch");
  804. }
  805. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  806. fields.push_back("type_k");
  807. }
  808. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  809. fields.push_back("type_v");
  810. }
  811. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  812. fields.push_back("main_gpu");
  813. }
  814. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  815. fields.push_back("mul_mat_q");
  816. }
  817. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  818. fields.push_back("tensor_split");
  819. }
  820. fields.push_back("test");
  821. fields.push_back("t/s");
  822. fprintf(fout, "|");
  823. for (const auto & field : fields) {
  824. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  825. }
  826. fprintf(fout, "\n");
  827. fprintf(fout, "|");
  828. for (const auto & field : fields) {
  829. int width = get_field_width(field);
  830. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  831. }
  832. fprintf(fout, "\n");
  833. }
  834. void print_test(const test & t) override {
  835. std::map<std::string, std::string> vmap = t.get_map();
  836. fprintf(fout, "|");
  837. for (const auto & field : fields) {
  838. std::string value;
  839. char buf[128];
  840. if (field == "model") {
  841. value = t.model_type;
  842. } else if (field == "size") {
  843. if (t.model_size < 1024*1024*1024) {
  844. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  845. } else {
  846. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  847. }
  848. value = buf;
  849. } else if (field == "params") {
  850. if (t.model_n_params < 1000*1000*1000) {
  851. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  852. } else {
  853. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  854. }
  855. value = buf;
  856. } else if (field == "backend") {
  857. value = test::get_backend();
  858. } else if (field == "test") {
  859. if (t.n_prompt > 0 && t.n_gen == 0) {
  860. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  861. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  862. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  863. } else {
  864. assert(false);
  865. exit(1);
  866. }
  867. value = buf;
  868. } else if (field == "t/s") {
  869. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  870. value = buf;
  871. } else if (vmap.find(field) != vmap.end()) {
  872. value = vmap.at(field);
  873. } else {
  874. assert(false);
  875. exit(1);
  876. }
  877. int width = get_field_width(field);
  878. if (field == "t/s") {
  879. // HACK: the utf-8 character is 2 bytes
  880. width += 1;
  881. }
  882. fprintf(fout, " %*s |", width, value.c_str());
  883. }
  884. fprintf(fout, "\n");
  885. }
  886. void print_footer() override {
  887. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  888. }
  889. };
  890. struct sql_printer : public printer {
  891. static std::string get_sql_field_type(const std::string & field) {
  892. switch (test::get_field_type(field)) {
  893. case test::STRING:
  894. return "TEXT";
  895. case test::BOOL:
  896. case test::INT:
  897. return "INTEGER";
  898. case test::FLOAT:
  899. return "REAL";
  900. default:
  901. assert(false);
  902. exit(1);
  903. }
  904. }
  905. void print_header(const cmd_params & params) override {
  906. std::vector<std::string> fields = test::get_fields();
  907. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  908. for (size_t i = 0; i < fields.size(); i++) {
  909. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  910. }
  911. fprintf(fout, ");\n");
  912. fprintf(fout, "\n");
  913. (void) params;
  914. }
  915. void print_test(const test & t) override {
  916. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  917. fprintf(fout, "VALUES (");
  918. std::vector<std::string> values = t.get_values();
  919. for (size_t i = 0; i < values.size(); i++) {
  920. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  921. }
  922. fprintf(fout, ");\n");
  923. }
  924. };
  925. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  926. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  927. int n_processed = 0;
  928. llama_set_n_threads(ctx, n_threads, n_threads);
  929. while (n_processed < n_prompt) {
  930. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  931. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  932. n_processed += n_tokens;
  933. }
  934. }
  935. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  936. llama_token token = llama_token_bos(llama_get_model(ctx));
  937. llama_set_n_threads(ctx, n_threads, n_threads);
  938. for (int i = 0; i < n_gen; i++) {
  939. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  940. }
  941. }
  942. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  943. (void) level;
  944. (void) text;
  945. (void) user_data;
  946. }
  947. int main(int argc, char ** argv) {
  948. // try to set locale for unicode characters in markdown
  949. setlocale(LC_CTYPE, ".UTF-8");
  950. #if !defined(NDEBUG)
  951. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  952. #endif
  953. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  954. fprintf(stderr, "warning: debug build, performance may be affected\n");
  955. #endif
  956. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  957. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  958. #endif
  959. cmd_params params = parse_cmd_params(argc, argv);
  960. // initialize llama.cpp
  961. if (!params.verbose) {
  962. llama_log_set(llama_null_log_callback, NULL);
  963. }
  964. bool numa = false;
  965. llama_backend_init(numa);
  966. // initialize printer
  967. std::unique_ptr<printer> p;
  968. switch (params.output_format) {
  969. case CSV:
  970. p.reset(new csv_printer());
  971. break;
  972. case JSON:
  973. p.reset(new json_printer());
  974. break;
  975. case MARKDOWN:
  976. p.reset(new markdown_printer());
  977. break;
  978. case SQL:
  979. p.reset(new sql_printer());
  980. break;
  981. default:
  982. assert(false);
  983. exit(1);
  984. }
  985. p->fout = stdout;
  986. p->print_header(params);
  987. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  988. llama_model * lmodel = nullptr;
  989. const cmd_params_instance * prev_inst = nullptr;
  990. for (const auto & inst : params_instances) {
  991. // keep the same model between tests when possible
  992. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  993. if (lmodel) {
  994. llama_free_model(lmodel);
  995. }
  996. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  997. if (lmodel == NULL) {
  998. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  999. return 1;
  1000. }
  1001. prev_inst = &inst;
  1002. }
  1003. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1004. if (ctx == NULL) {
  1005. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1006. llama_free_model(lmodel);
  1007. return 1;
  1008. }
  1009. test t(inst, lmodel, ctx);
  1010. llama_kv_cache_clear(ctx);
  1011. // warmup run
  1012. if (t.n_prompt > 0) {
  1013. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  1014. }
  1015. if (t.n_gen > 0) {
  1016. test_gen(ctx, 1, 0, t.n_threads);
  1017. }
  1018. for (int i = 0; i < params.reps; i++) {
  1019. llama_kv_cache_clear(ctx);
  1020. uint64_t t_start = get_time_ns();
  1021. if (t.n_prompt > 0) {
  1022. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1023. }
  1024. if (t.n_gen > 0) {
  1025. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1026. }
  1027. uint64_t t_ns = get_time_ns() - t_start;
  1028. t.samples_ns.push_back(t_ns);
  1029. }
  1030. p->print_test(t);
  1031. llama_print_timings(ctx);
  1032. llama_free(ctx);
  1033. }
  1034. llama_free_model(lmodel);
  1035. p->print_footer();
  1036. llama_backend_free();
  1037. return 0;
  1038. }