ggml.h 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdint.h>
  203. #include <stddef.h>
  204. #include <stdbool.h>
  205. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  206. #define GGML_FILE_VERSION 1
  207. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  208. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  209. #define GGML_MAX_DIMS 4
  210. #define GGML_MAX_PARAMS 1024
  211. #define GGML_MAX_CONTEXTS 64
  212. #define GGML_MAX_SRC 6
  213. #define GGML_MAX_NAME 64
  214. #define GGML_MAX_OP_PARAMS 64
  215. #define GGML_DEFAULT_N_THREADS 4
  216. #define GGML_DEFAULT_GRAPH_SIZE 2048
  217. #if UINTPTR_MAX == 0xFFFFFFFF
  218. #define GGML_MEM_ALIGN 4
  219. #else
  220. #define GGML_MEM_ALIGN 16
  221. #endif
  222. #define GGML_EXIT_SUCCESS 0
  223. #define GGML_EXIT_ABORTED 1
  224. #define GGUF_MAGIC "GGUF"
  225. #define GGUF_VERSION 3
  226. #define GGUF_DEFAULT_ALIGNMENT 32
  227. #define GGML_UNUSED(x) (void)(x)
  228. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  229. #define GGML_ASSERT(x) \
  230. do { \
  231. if (!(x)) { \
  232. fflush(stdout); \
  233. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  234. ggml_print_backtrace(); \
  235. abort(); \
  236. } \
  237. } while (0)
  238. #ifndef NDEBUG
  239. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  240. #elif defined(__GNUC__)
  241. #define GGML_UNREACHABLE() __builtin_unreachable()
  242. #else
  243. #define GGML_UNREACHABLE() ((void) 0)
  244. #endif
  245. // used to copy the number of elements and stride in bytes of tensors into local variables.
  246. // main purpose is to reduce code duplication and improve readability.
  247. //
  248. // example:
  249. //
  250. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  251. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  252. //
  253. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  254. const type prefix##0 = (pointer)->array[0]; \
  255. GGML_UNUSED(prefix##0);
  256. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  257. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  258. const type prefix##1 = (pointer)->array[1]; \
  259. GGML_UNUSED(prefix##1);
  260. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  261. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  262. const type prefix##2 = (pointer)->array[2]; \
  263. GGML_UNUSED(prefix##2);
  264. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  265. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  266. const type prefix##3 = (pointer)->array[3]; \
  267. GGML_UNUSED(prefix##3);
  268. #ifdef __cplusplus
  269. extern "C" {
  270. #endif
  271. #if defined(__ARM_NEON) && defined(__CUDACC__)
  272. typedef half ggml_fp16_t;
  273. #elif defined(__ARM_NEON)
  274. typedef __fp16 ggml_fp16_t;
  275. #else
  276. typedef uint16_t ggml_fp16_t;
  277. #endif
  278. // convert FP16 <-> FP32
  279. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  280. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  281. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  282. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  283. struct ggml_object;
  284. struct ggml_context;
  285. enum ggml_type {
  286. GGML_TYPE_F32 = 0,
  287. GGML_TYPE_F16 = 1,
  288. GGML_TYPE_Q4_0 = 2,
  289. GGML_TYPE_Q4_1 = 3,
  290. // GGML_TYPE_Q4_2 = 4, support has been removed
  291. // GGML_TYPE_Q4_3 (5) support has been removed
  292. GGML_TYPE_Q5_0 = 6,
  293. GGML_TYPE_Q5_1 = 7,
  294. GGML_TYPE_Q8_0 = 8,
  295. GGML_TYPE_Q8_1 = 9,
  296. // k-quantizations
  297. GGML_TYPE_Q2_K = 10,
  298. GGML_TYPE_Q3_K = 11,
  299. GGML_TYPE_Q4_K = 12,
  300. GGML_TYPE_Q5_K = 13,
  301. GGML_TYPE_Q6_K = 14,
  302. GGML_TYPE_Q8_K = 15,
  303. GGML_TYPE_I8,
  304. GGML_TYPE_I16,
  305. GGML_TYPE_I32,
  306. GGML_TYPE_COUNT,
  307. };
  308. enum ggml_backend_type {
  309. GGML_BACKEND_CPU = 0,
  310. GGML_BACKEND_GPU = 10,
  311. GGML_BACKEND_GPU_SPLIT = 20,
  312. };
  313. // model file types
  314. enum ggml_ftype {
  315. GGML_FTYPE_UNKNOWN = -1,
  316. GGML_FTYPE_ALL_F32 = 0,
  317. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  318. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  319. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  320. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  321. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  322. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  323. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  324. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  325. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  326. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  327. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  328. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  329. };
  330. // available tensor operations:
  331. enum ggml_op {
  332. GGML_OP_NONE = 0,
  333. GGML_OP_DUP,
  334. GGML_OP_ADD,
  335. GGML_OP_ADD1,
  336. GGML_OP_ACC,
  337. GGML_OP_SUB,
  338. GGML_OP_MUL,
  339. GGML_OP_DIV,
  340. GGML_OP_SQR,
  341. GGML_OP_SQRT,
  342. GGML_OP_LOG,
  343. GGML_OP_SUM,
  344. GGML_OP_SUM_ROWS,
  345. GGML_OP_MEAN,
  346. GGML_OP_ARGMAX,
  347. GGML_OP_REPEAT,
  348. GGML_OP_REPEAT_BACK,
  349. GGML_OP_CONCAT,
  350. GGML_OP_SILU_BACK,
  351. GGML_OP_NORM, // normalize
  352. GGML_OP_RMS_NORM,
  353. GGML_OP_RMS_NORM_BACK,
  354. GGML_OP_GROUP_NORM,
  355. GGML_OP_MUL_MAT,
  356. GGML_OP_OUT_PROD,
  357. GGML_OP_SCALE,
  358. GGML_OP_SET,
  359. GGML_OP_CPY,
  360. GGML_OP_CONT,
  361. GGML_OP_RESHAPE,
  362. GGML_OP_VIEW,
  363. GGML_OP_PERMUTE,
  364. GGML_OP_TRANSPOSE,
  365. GGML_OP_GET_ROWS,
  366. GGML_OP_GET_ROWS_BACK,
  367. GGML_OP_DIAG,
  368. GGML_OP_DIAG_MASK_INF,
  369. GGML_OP_DIAG_MASK_ZERO,
  370. GGML_OP_SOFT_MAX,
  371. GGML_OP_SOFT_MAX_BACK,
  372. GGML_OP_ROPE,
  373. GGML_OP_ROPE_BACK,
  374. GGML_OP_ALIBI,
  375. GGML_OP_CLAMP,
  376. GGML_OP_CONV_TRANSPOSE_1D,
  377. GGML_OP_IM2COL,
  378. GGML_OP_CONV_TRANSPOSE_2D,
  379. GGML_OP_POOL_1D,
  380. GGML_OP_POOL_2D,
  381. GGML_OP_UPSCALE, // nearest interpolate
  382. GGML_OP_FLASH_ATTN,
  383. GGML_OP_FLASH_FF,
  384. GGML_OP_FLASH_ATTN_BACK,
  385. GGML_OP_WIN_PART,
  386. GGML_OP_WIN_UNPART,
  387. GGML_OP_GET_REL_POS,
  388. GGML_OP_ADD_REL_POS,
  389. GGML_OP_UNARY,
  390. GGML_OP_MAP_UNARY,
  391. GGML_OP_MAP_BINARY,
  392. GGML_OP_MAP_CUSTOM1_F32,
  393. GGML_OP_MAP_CUSTOM2_F32,
  394. GGML_OP_MAP_CUSTOM3_F32,
  395. GGML_OP_MAP_CUSTOM1,
  396. GGML_OP_MAP_CUSTOM2,
  397. GGML_OP_MAP_CUSTOM3,
  398. GGML_OP_CROSS_ENTROPY_LOSS,
  399. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  400. GGML_OP_COUNT,
  401. };
  402. enum ggml_unary_op {
  403. GGML_UNARY_OP_ABS,
  404. GGML_UNARY_OP_SGN,
  405. GGML_UNARY_OP_NEG,
  406. GGML_UNARY_OP_STEP,
  407. GGML_UNARY_OP_TANH,
  408. GGML_UNARY_OP_ELU,
  409. GGML_UNARY_OP_RELU,
  410. GGML_UNARY_OP_GELU,
  411. GGML_UNARY_OP_GELU_QUICK,
  412. GGML_UNARY_OP_SILU,
  413. GGML_UNARY_OP_LEAKY
  414. };
  415. enum ggml_object_type {
  416. GGML_OBJECT_TENSOR,
  417. GGML_OBJECT_GRAPH,
  418. GGML_OBJECT_WORK_BUFFER
  419. };
  420. enum ggml_log_level {
  421. GGML_LOG_LEVEL_ERROR = 2,
  422. GGML_LOG_LEVEL_WARN = 3,
  423. GGML_LOG_LEVEL_INFO = 4
  424. };
  425. // ggml object
  426. struct ggml_object {
  427. size_t offs;
  428. size_t size;
  429. struct ggml_object * next;
  430. enum ggml_object_type type;
  431. char padding[4];
  432. };
  433. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  434. // n-dimensional tensor
  435. struct ggml_tensor {
  436. enum ggml_type type;
  437. enum ggml_backend_type backend;
  438. struct ggml_backend_buffer * buffer;
  439. int n_dims;
  440. int64_t ne[GGML_MAX_DIMS]; // number of elements
  441. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  442. // nb[0] = ggml_type_size(type)
  443. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  444. // nb[i] = nb[i-1] * ne[i-1]
  445. // compute data
  446. enum ggml_op op;
  447. // op params - allocated as int32_t for alignment
  448. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  449. bool is_param;
  450. struct ggml_tensor * grad;
  451. struct ggml_tensor * src[GGML_MAX_SRC];
  452. // performance
  453. int perf_runs;
  454. int64_t perf_cycles;
  455. int64_t perf_time_us;
  456. struct ggml_tensor * view_src;
  457. size_t view_offs;
  458. void * data;
  459. char name[GGML_MAX_NAME];
  460. void * extra; // extra things e.g. for ggml-cuda.cu
  461. char padding[12];
  462. };
  463. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  464. // the compute plan that needs to be prepared for ggml_graph_compute()
  465. // since https://github.com/ggerganov/ggml/issues/287
  466. struct ggml_cplan {
  467. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  468. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  469. int n_threads;
  470. // abort ggml_graph_compute when true
  471. bool (*abort_callback)(void * data);
  472. void * abort_callback_data;
  473. };
  474. enum ggml_cgraph_eval_order {
  475. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  476. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  477. GGML_CGRAPH_EVAL_ORDER_COUNT
  478. };
  479. struct ggml_hash_set {
  480. size_t size;
  481. struct ggml_tensor ** keys;
  482. };
  483. // computation graph
  484. struct ggml_cgraph {
  485. int size;
  486. int n_nodes;
  487. int n_leafs;
  488. struct ggml_tensor ** nodes;
  489. struct ggml_tensor ** grads;
  490. struct ggml_tensor ** leafs;
  491. struct ggml_hash_set visited_hash_table;
  492. enum ggml_cgraph_eval_order order;
  493. // performance
  494. int perf_runs;
  495. int64_t perf_cycles;
  496. int64_t perf_time_us;
  497. };
  498. // scratch buffer
  499. struct ggml_scratch {
  500. size_t offs;
  501. size_t size;
  502. void * data;
  503. };
  504. struct ggml_init_params {
  505. // memory pool
  506. size_t mem_size; // bytes
  507. void * mem_buffer; // if NULL, memory will be allocated internally
  508. bool no_alloc; // don't allocate memory for the tensor data
  509. };
  510. // compute types
  511. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  512. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  513. enum ggml_task_type {
  514. GGML_TASK_INIT = 0,
  515. GGML_TASK_COMPUTE,
  516. GGML_TASK_FINALIZE,
  517. };
  518. struct ggml_compute_params {
  519. enum ggml_task_type type;
  520. // ith = thread index, nth = number of threads
  521. int ith, nth;
  522. // work buffer for all threads
  523. size_t wsize;
  524. void * wdata;
  525. };
  526. // misc
  527. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  528. GGML_API int64_t ggml_time_ms(void);
  529. GGML_API int64_t ggml_time_us(void);
  530. GGML_API int64_t ggml_cycles(void);
  531. GGML_API int64_t ggml_cycles_per_ms(void);
  532. GGML_API void ggml_print_backtrace(void);
  533. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  534. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  535. GGML_API void ggml_print_object (const struct ggml_object * obj);
  536. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  537. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  538. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  539. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  540. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  541. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  542. GGML_API int ggml_blck_size (enum ggml_type type);
  543. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  544. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  545. GGML_API const char * ggml_type_name(enum ggml_type type);
  546. GGML_API const char * ggml_op_name (enum ggml_op op);
  547. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  548. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  549. GGML_API bool ggml_is_quantized(enum ggml_type type);
  550. // TODO: temporary until model loading of ggml examples is refactored
  551. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  552. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  553. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  554. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  555. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  556. // use this to compute the memory overhead of a tensor
  557. GGML_API size_t ggml_tensor_overhead(void);
  558. // main
  559. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  560. GGML_API void ggml_free(struct ggml_context * ctx);
  561. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  562. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  563. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  564. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  565. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  566. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  567. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  568. GGML_API struct ggml_tensor * ggml_new_tensor(
  569. struct ggml_context * ctx,
  570. enum ggml_type type,
  571. int n_dims,
  572. const int64_t *ne);
  573. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  574. struct ggml_context * ctx,
  575. enum ggml_type type,
  576. int64_t ne0);
  577. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  578. struct ggml_context * ctx,
  579. enum ggml_type type,
  580. int64_t ne0,
  581. int64_t ne1);
  582. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  583. struct ggml_context * ctx,
  584. enum ggml_type type,
  585. int64_t ne0,
  586. int64_t ne1,
  587. int64_t ne2);
  588. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  589. struct ggml_context * ctx,
  590. enum ggml_type type,
  591. int64_t ne0,
  592. int64_t ne1,
  593. int64_t ne2,
  594. int64_t ne3);
  595. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  596. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  597. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  598. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  599. // Context tensor enumeration and lookup
  600. GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
  601. GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
  602. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  603. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  604. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  605. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  606. // Converts a flat index into coordinates
  607. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  608. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  609. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  610. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  611. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  612. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  613. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  614. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  615. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  616. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  617. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  618. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  619. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  620. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  621. GGML_ATTRIBUTE_FORMAT(2, 3)
  622. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  623. //
  624. // operations on tensors with backpropagation
  625. //
  626. GGML_API struct ggml_tensor * ggml_dup(
  627. struct ggml_context * ctx,
  628. struct ggml_tensor * a);
  629. // in-place, returns view(a)
  630. GGML_API struct ggml_tensor * ggml_dup_inplace(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a);
  633. GGML_API struct ggml_tensor * ggml_add(
  634. struct ggml_context * ctx,
  635. struct ggml_tensor * a,
  636. struct ggml_tensor * b);
  637. GGML_API struct ggml_tensor * ggml_add_inplace(
  638. struct ggml_context * ctx,
  639. struct ggml_tensor * a,
  640. struct ggml_tensor * b);
  641. GGML_API struct ggml_tensor * ggml_add_cast(
  642. struct ggml_context * ctx,
  643. struct ggml_tensor * a,
  644. struct ggml_tensor * b,
  645. enum ggml_type type);
  646. GGML_API struct ggml_tensor * ggml_add1(
  647. struct ggml_context * ctx,
  648. struct ggml_tensor * a,
  649. struct ggml_tensor * b);
  650. GGML_API struct ggml_tensor * ggml_add1_inplace(
  651. struct ggml_context * ctx,
  652. struct ggml_tensor * a,
  653. struct ggml_tensor * b);
  654. GGML_API struct ggml_tensor * ggml_acc(
  655. struct ggml_context * ctx,
  656. struct ggml_tensor * a,
  657. struct ggml_tensor * b,
  658. size_t nb1,
  659. size_t nb2,
  660. size_t nb3,
  661. size_t offset);
  662. GGML_API struct ggml_tensor * ggml_acc_inplace(
  663. struct ggml_context * ctx,
  664. struct ggml_tensor * a,
  665. struct ggml_tensor * b,
  666. size_t nb1,
  667. size_t nb2,
  668. size_t nb3,
  669. size_t offset);
  670. GGML_API struct ggml_tensor * ggml_sub(
  671. struct ggml_context * ctx,
  672. struct ggml_tensor * a,
  673. struct ggml_tensor * b);
  674. GGML_API struct ggml_tensor * ggml_sub_inplace(
  675. struct ggml_context * ctx,
  676. struct ggml_tensor * a,
  677. struct ggml_tensor * b);
  678. GGML_API struct ggml_tensor * ggml_mul(
  679. struct ggml_context * ctx,
  680. struct ggml_tensor * a,
  681. struct ggml_tensor * b);
  682. GGML_API struct ggml_tensor * ggml_mul_inplace(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a,
  685. struct ggml_tensor * b);
  686. GGML_API struct ggml_tensor * ggml_div(
  687. struct ggml_context * ctx,
  688. struct ggml_tensor * a,
  689. struct ggml_tensor * b);
  690. GGML_API struct ggml_tensor * ggml_div_inplace(
  691. struct ggml_context * ctx,
  692. struct ggml_tensor * a,
  693. struct ggml_tensor * b);
  694. GGML_API struct ggml_tensor * ggml_sqr(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a);
  697. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  698. struct ggml_context * ctx,
  699. struct ggml_tensor * a);
  700. GGML_API struct ggml_tensor * ggml_sqrt(
  701. struct ggml_context * ctx,
  702. struct ggml_tensor * a);
  703. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  704. struct ggml_context * ctx,
  705. struct ggml_tensor * a);
  706. GGML_API struct ggml_tensor * ggml_log(
  707. struct ggml_context * ctx,
  708. struct ggml_tensor * a);
  709. GGML_API struct ggml_tensor * ggml_log_inplace(
  710. struct ggml_context * ctx,
  711. struct ggml_tensor * a);
  712. // return scalar
  713. GGML_API struct ggml_tensor * ggml_sum(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a);
  716. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  717. GGML_API struct ggml_tensor * ggml_sum_rows(
  718. struct ggml_context * ctx,
  719. struct ggml_tensor * a);
  720. // mean along rows
  721. GGML_API struct ggml_tensor * ggml_mean(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a);
  724. // argmax along rows
  725. GGML_API struct ggml_tensor * ggml_argmax(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a);
  728. // if a is the same shape as b, and a is not parameter, return a
  729. // otherwise, return a new tensor: repeat(a) to fit in b
  730. GGML_API struct ggml_tensor * ggml_repeat(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a,
  733. struct ggml_tensor * b);
  734. // sums repetitions in a into shape of b
  735. GGML_API struct ggml_tensor * ggml_repeat_back(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. struct ggml_tensor * b);
  739. // concat a and b on dim 2
  740. // used in stable-diffusion
  741. GGML_API struct ggml_tensor * ggml_concat(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a,
  744. struct ggml_tensor * b);
  745. GGML_API struct ggml_tensor * ggml_abs(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a);
  748. GGML_API struct ggml_tensor * ggml_abs_inplace(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a);
  751. GGML_API struct ggml_tensor * ggml_sgn(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a);
  754. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a);
  757. GGML_API struct ggml_tensor * ggml_neg(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a);
  760. GGML_API struct ggml_tensor * ggml_neg_inplace(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a);
  763. GGML_API struct ggml_tensor * ggml_step(
  764. struct ggml_context * ctx,
  765. struct ggml_tensor * a);
  766. GGML_API struct ggml_tensor * ggml_step_inplace(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a);
  769. GGML_API struct ggml_tensor * ggml_tanh(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a);
  772. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a);
  775. GGML_API struct ggml_tensor * ggml_elu(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a);
  778. GGML_API struct ggml_tensor * ggml_elu_inplace(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a);
  781. GGML_API struct ggml_tensor * ggml_relu(
  782. struct ggml_context * ctx,
  783. struct ggml_tensor * a);
  784. GGML_API struct ggml_tensor * ggml_leaky(
  785. struct ggml_context * ctx,
  786. struct ggml_tensor * a);
  787. GGML_API struct ggml_tensor * ggml_relu_inplace(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a);
  790. // TODO: double-check this computation is correct
  791. GGML_API struct ggml_tensor * ggml_gelu(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a);
  794. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a);
  797. GGML_API struct ggml_tensor * ggml_gelu_quick(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a);
  800. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a);
  803. GGML_API struct ggml_tensor * ggml_silu(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a);
  806. GGML_API struct ggml_tensor * ggml_silu_inplace(
  807. struct ggml_context * ctx,
  808. struct ggml_tensor * a);
  809. // a - x
  810. // b - dy
  811. GGML_API struct ggml_tensor * ggml_silu_back(
  812. struct ggml_context * ctx,
  813. struct ggml_tensor * a,
  814. struct ggml_tensor * b);
  815. // normalize along rows
  816. GGML_API struct ggml_tensor * ggml_norm(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a,
  819. float eps);
  820. GGML_API struct ggml_tensor * ggml_norm_inplace(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. float eps);
  824. GGML_API struct ggml_tensor * ggml_rms_norm(
  825. struct ggml_context * ctx,
  826. struct ggml_tensor * a,
  827. float eps);
  828. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a,
  831. float eps);
  832. // group normalize along ne0*ne1*n_groups
  833. // used in stable-diffusion
  834. // TODO: eps is hardcoded to 1e-6 for now
  835. GGML_API struct ggml_tensor * ggml_group_norm(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a,
  838. int n_groups);
  839. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a,
  842. int n_groups);
  843. // a - x
  844. // b - dy
  845. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a,
  848. struct ggml_tensor * b,
  849. float eps);
  850. // A: k columns, n rows => [ne03, ne02, n, k]
  851. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  852. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  853. GGML_API struct ggml_tensor * ggml_mul_mat(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a,
  856. struct ggml_tensor * b);
  857. // A: m columns, n rows,
  858. // B: p columns, n rows,
  859. // result is m columns, p rows
  860. GGML_API struct ggml_tensor * ggml_out_prod(
  861. struct ggml_context * ctx,
  862. struct ggml_tensor * a,
  863. struct ggml_tensor * b);
  864. //
  865. // operations on tensors without backpropagation
  866. //
  867. GGML_API struct ggml_tensor * ggml_scale(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a,
  870. struct ggml_tensor * b);
  871. // in-place, returns view(a)
  872. GGML_API struct ggml_tensor * ggml_scale_inplace(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a,
  875. struct ggml_tensor * b);
  876. // b -> view(a,offset,nb1,nb2,3), return modified a
  877. GGML_API struct ggml_tensor * ggml_set(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a,
  880. struct ggml_tensor * b,
  881. size_t nb1,
  882. size_t nb2,
  883. size_t nb3,
  884. size_t offset);
  885. // b -> view(a,offset,nb1,nb2,3), return view(a)
  886. GGML_API struct ggml_tensor * ggml_set_inplace(
  887. struct ggml_context * ctx,
  888. struct ggml_tensor * a,
  889. struct ggml_tensor * b,
  890. size_t nb1,
  891. size_t nb2,
  892. size_t nb3,
  893. size_t offset);
  894. GGML_API struct ggml_tensor * ggml_set_1d(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a,
  897. struct ggml_tensor * b,
  898. size_t offset);
  899. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a,
  902. struct ggml_tensor * b,
  903. size_t offset);
  904. // b -> view(a,offset,nb1,nb2,3), return modified a
  905. GGML_API struct ggml_tensor * ggml_set_2d(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a,
  908. struct ggml_tensor * b,
  909. size_t nb1,
  910. size_t offset);
  911. // b -> view(a,offset,nb1,nb2,3), return view(a)
  912. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a,
  915. struct ggml_tensor * b,
  916. size_t nb1,
  917. size_t offset);
  918. // a -> b, return view(b)
  919. GGML_API struct ggml_tensor * ggml_cpy(
  920. struct ggml_context * ctx,
  921. struct ggml_tensor * a,
  922. struct ggml_tensor * b);
  923. // a -> b, in-place, return view(b)
  924. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a,
  927. struct ggml_tensor * b);
  928. // make contiguous
  929. GGML_API struct ggml_tensor * ggml_cont(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a);
  932. // make contiguous, in-place
  933. GGML_API struct ggml_tensor * ggml_cont_inplace(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a);
  936. // make contiguous, with new shape
  937. GGML_API struct ggml_tensor * ggml_cont_1d(
  938. struct ggml_context * ctx,
  939. struct ggml_tensor * a,
  940. int64_t ne0);
  941. GGML_API struct ggml_tensor * ggml_cont_2d(
  942. struct ggml_context * ctx,
  943. struct ggml_tensor * a,
  944. int64_t ne0,
  945. int64_t ne1);
  946. GGML_API struct ggml_tensor * ggml_cont_3d(
  947. struct ggml_context * ctx,
  948. struct ggml_tensor * a,
  949. int64_t ne0,
  950. int64_t ne1,
  951. int64_t ne2);
  952. GGML_API struct ggml_tensor * ggml_cont_4d(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a,
  955. int64_t ne0,
  956. int64_t ne1,
  957. int64_t ne2,
  958. int64_t ne3);
  959. // return view(a), b specifies the new shape
  960. // TODO: when we start computing gradient, make a copy instead of view
  961. GGML_API struct ggml_tensor * ggml_reshape(
  962. struct ggml_context * ctx,
  963. struct ggml_tensor * a,
  964. struct ggml_tensor * b);
  965. // return view(a)
  966. // TODO: when we start computing gradient, make a copy instead of view
  967. GGML_API struct ggml_tensor * ggml_reshape_1d(
  968. struct ggml_context * ctx,
  969. struct ggml_tensor * a,
  970. int64_t ne0);
  971. GGML_API struct ggml_tensor * ggml_reshape_2d(
  972. struct ggml_context * ctx,
  973. struct ggml_tensor * a,
  974. int64_t ne0,
  975. int64_t ne1);
  976. // return view(a)
  977. // TODO: when we start computing gradient, make a copy instead of view
  978. GGML_API struct ggml_tensor * ggml_reshape_3d(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a,
  981. int64_t ne0,
  982. int64_t ne1,
  983. int64_t ne2);
  984. GGML_API struct ggml_tensor * ggml_reshape_4d(
  985. struct ggml_context * ctx,
  986. struct ggml_tensor * a,
  987. int64_t ne0,
  988. int64_t ne1,
  989. int64_t ne2,
  990. int64_t ne3);
  991. // offset in bytes
  992. GGML_API struct ggml_tensor * ggml_view_1d(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a,
  995. int64_t ne0,
  996. size_t offset);
  997. GGML_API struct ggml_tensor * ggml_view_2d(
  998. struct ggml_context * ctx,
  999. struct ggml_tensor * a,
  1000. int64_t ne0,
  1001. int64_t ne1,
  1002. size_t nb1, // row stride in bytes
  1003. size_t offset);
  1004. GGML_API struct ggml_tensor * ggml_view_3d(
  1005. struct ggml_context * ctx,
  1006. struct ggml_tensor * a,
  1007. int64_t ne0,
  1008. int64_t ne1,
  1009. int64_t ne2,
  1010. size_t nb1, // row stride in bytes
  1011. size_t nb2, // slice stride in bytes
  1012. size_t offset);
  1013. GGML_API struct ggml_tensor * ggml_view_4d(
  1014. struct ggml_context * ctx,
  1015. struct ggml_tensor * a,
  1016. int64_t ne0,
  1017. int64_t ne1,
  1018. int64_t ne2,
  1019. int64_t ne3,
  1020. size_t nb1, // row stride in bytes
  1021. size_t nb2, // slice stride in bytes
  1022. size_t nb3,
  1023. size_t offset);
  1024. GGML_API struct ggml_tensor * ggml_permute(
  1025. struct ggml_context * ctx,
  1026. struct ggml_tensor * a,
  1027. int axis0,
  1028. int axis1,
  1029. int axis2,
  1030. int axis3);
  1031. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1032. GGML_API struct ggml_tensor * ggml_transpose(
  1033. struct ggml_context * ctx,
  1034. struct ggml_tensor * a);
  1035. GGML_API struct ggml_tensor * ggml_get_rows(
  1036. struct ggml_context * ctx,
  1037. struct ggml_tensor * a,
  1038. struct ggml_tensor * b);
  1039. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1040. struct ggml_context * ctx,
  1041. struct ggml_tensor * a,
  1042. struct ggml_tensor * b,
  1043. struct ggml_tensor * c);
  1044. GGML_API struct ggml_tensor * ggml_diag(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a);
  1047. // set elements above the diagonal to -INF
  1048. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1049. struct ggml_context * ctx,
  1050. struct ggml_tensor * a,
  1051. int n_past);
  1052. // in-place, returns view(a)
  1053. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1054. struct ggml_context * ctx,
  1055. struct ggml_tensor * a,
  1056. int n_past);
  1057. // set elements above the diagonal to 0
  1058. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1059. struct ggml_context * ctx,
  1060. struct ggml_tensor * a,
  1061. int n_past);
  1062. // in-place, returns view(a)
  1063. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1064. struct ggml_context * ctx,
  1065. struct ggml_tensor * a,
  1066. int n_past);
  1067. GGML_API struct ggml_tensor * ggml_soft_max(
  1068. struct ggml_context * ctx,
  1069. struct ggml_tensor * a);
  1070. // in-place, returns view(a)
  1071. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1072. struct ggml_context * ctx,
  1073. struct ggml_tensor * a);
  1074. // fused soft_max(a*scale + mask)
  1075. // mask is optional
  1076. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1077. struct ggml_context * ctx,
  1078. struct ggml_tensor * a,
  1079. struct ggml_tensor * mask,
  1080. float scale);
  1081. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. struct ggml_tensor * b);
  1085. // in-place, returns view(a)
  1086. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1087. struct ggml_context * ctx,
  1088. struct ggml_tensor * a,
  1089. struct ggml_tensor * b);
  1090. // rotary position embedding
  1091. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1092. // if mode & 2 == 1, GPT-NeoX style
  1093. // if mode & 4 == 1, ChatGLM style
  1094. //
  1095. // b is an int32 vector with size a->ne[2], it contains the positions
  1096. GGML_API struct ggml_tensor * ggml_rope(
  1097. struct ggml_context * ctx,
  1098. struct ggml_tensor * a,
  1099. struct ggml_tensor * b,
  1100. int n_dims,
  1101. int mode,
  1102. int n_ctx);
  1103. // in-place, returns view(a)
  1104. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1105. struct ggml_context * ctx,
  1106. struct ggml_tensor * a,
  1107. struct ggml_tensor * b,
  1108. int n_dims,
  1109. int mode,
  1110. int n_ctx);
  1111. // custom RoPE
  1112. GGML_API struct ggml_tensor * ggml_rope_custom(
  1113. struct ggml_context * ctx,
  1114. struct ggml_tensor * a,
  1115. struct ggml_tensor * b,
  1116. int n_dims,
  1117. int mode,
  1118. int n_ctx,
  1119. int n_orig_ctx,
  1120. float freq_base,
  1121. float freq_scale,
  1122. float ext_factor,
  1123. float attn_factor,
  1124. float beta_fast,
  1125. float beta_slow);
  1126. // in-place, returns view(a)
  1127. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a,
  1130. struct ggml_tensor * b,
  1131. int n_dims,
  1132. int mode,
  1133. int n_ctx,
  1134. int n_orig_ctx,
  1135. float freq_base,
  1136. float freq_scale,
  1137. float ext_factor,
  1138. float attn_factor,
  1139. float beta_fast,
  1140. float beta_slow);
  1141. // compute correction dims for YaRN RoPE scaling
  1142. void ggml_rope_yarn_corr_dims(
  1143. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1144. // xPos RoPE, in-place, returns view(a)
  1145. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. struct ggml_tensor * b,
  1149. int n_dims,
  1150. float base,
  1151. bool down);
  1152. // rotary position embedding backward, i.e compute dx from dy
  1153. // a - dy
  1154. GGML_API struct ggml_tensor * ggml_rope_back(
  1155. struct ggml_context * ctx,
  1156. struct ggml_tensor * a,
  1157. struct ggml_tensor * b,
  1158. int n_dims,
  1159. int mode,
  1160. int n_ctx,
  1161. int n_orig_ctx,
  1162. float freq_base,
  1163. float freq_scale,
  1164. float ext_factor,
  1165. float attn_factor,
  1166. float beta_fast,
  1167. float beta_slow,
  1168. float xpos_base,
  1169. bool xpos_down);
  1170. // alibi position embedding
  1171. // in-place, returns view(a)
  1172. GGML_API struct ggml_tensor * ggml_alibi(
  1173. struct ggml_context * ctx,
  1174. struct ggml_tensor * a,
  1175. int n_past,
  1176. int n_head,
  1177. float bias_max);
  1178. // clamp
  1179. // in-place, returns view(a)
  1180. GGML_API struct ggml_tensor * ggml_clamp(
  1181. struct ggml_context * ctx,
  1182. struct ggml_tensor * a,
  1183. float min,
  1184. float max);
  1185. GGML_API struct ggml_tensor * ggml_im2col(
  1186. struct ggml_context * ctx,
  1187. struct ggml_tensor * a,
  1188. struct ggml_tensor * b,
  1189. int s0,
  1190. int s1,
  1191. int p0,
  1192. int p1,
  1193. int d0,
  1194. int d1,
  1195. bool is_2D);
  1196. GGML_API struct ggml_tensor * ggml_conv_1d(
  1197. struct ggml_context * ctx,
  1198. struct ggml_tensor * a,
  1199. struct ggml_tensor * b,
  1200. int s0, // stride
  1201. int p0, // padding
  1202. int d0); // dilation
  1203. // conv_1d with padding = half
  1204. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1205. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1206. struct ggml_context * ctx,
  1207. struct ggml_tensor * a,
  1208. struct ggml_tensor * b,
  1209. int s,
  1210. int d);
  1211. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1212. struct ggml_context * ctx,
  1213. struct ggml_tensor * a,
  1214. struct ggml_tensor * b,
  1215. int s0,
  1216. int p0,
  1217. int d0);
  1218. GGML_API struct ggml_tensor * ggml_conv_2d(
  1219. struct ggml_context * ctx,
  1220. struct ggml_tensor * a,
  1221. struct ggml_tensor * b,
  1222. int s0,
  1223. int s1,
  1224. int p0,
  1225. int p1,
  1226. int d0,
  1227. int d1);
  1228. // kernel size is a->ne[0] x a->ne[1]
  1229. // stride is equal to kernel size
  1230. // padding is zero
  1231. // example:
  1232. // a: 16 16 3 768
  1233. // b: 1024 1024 3 1
  1234. // res: 64 64 768 1
  1235. // used in sam
  1236. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1237. struct ggml_context * ctx,
  1238. struct ggml_tensor * a,
  1239. struct ggml_tensor * b);
  1240. // kernel size is a->ne[0] x a->ne[1]
  1241. // stride is 1
  1242. // padding is half
  1243. // example:
  1244. // a: 3 3 256 256
  1245. // b: 64 64 256 1
  1246. // res: 64 64 256 1
  1247. // used in sam
  1248. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1249. struct ggml_context * ctx,
  1250. struct ggml_tensor * a,
  1251. struct ggml_tensor * b);
  1252. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1253. struct ggml_context * ctx,
  1254. struct ggml_tensor * a,
  1255. struct ggml_tensor * b,
  1256. int stride);
  1257. enum ggml_op_pool {
  1258. GGML_OP_POOL_MAX,
  1259. GGML_OP_POOL_AVG,
  1260. GGML_OP_POOL_COUNT,
  1261. };
  1262. GGML_API struct ggml_tensor * ggml_pool_1d(
  1263. struct ggml_context * ctx,
  1264. struct ggml_tensor * a,
  1265. enum ggml_op_pool op,
  1266. int k0, // kernel size
  1267. int s0, // stride
  1268. int p0); // padding
  1269. // the result will have 2*p0 padding for the first dimension
  1270. // and 2*p1 padding for the second dimension
  1271. GGML_API struct ggml_tensor * ggml_pool_2d(
  1272. struct ggml_context * ctx,
  1273. struct ggml_tensor * a,
  1274. enum ggml_op_pool op,
  1275. int k0,
  1276. int k1,
  1277. int s0,
  1278. int s1,
  1279. float p0,
  1280. float p1);
  1281. // nearest interpolate
  1282. // used in stable-diffusion
  1283. GGML_API struct ggml_tensor * ggml_upscale(
  1284. struct ggml_context * ctx,
  1285. struct ggml_tensor * a,
  1286. int scale_factor);
  1287. GGML_API struct ggml_tensor * ggml_flash_attn(
  1288. struct ggml_context * ctx,
  1289. struct ggml_tensor * q,
  1290. struct ggml_tensor * k,
  1291. struct ggml_tensor * v,
  1292. bool masked);
  1293. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1294. struct ggml_context * ctx,
  1295. struct ggml_tensor * q,
  1296. struct ggml_tensor * k,
  1297. struct ggml_tensor * v,
  1298. struct ggml_tensor * d,
  1299. bool masked);
  1300. GGML_API struct ggml_tensor * ggml_flash_ff(
  1301. struct ggml_context * ctx,
  1302. struct ggml_tensor * a,
  1303. struct ggml_tensor * b0,
  1304. struct ggml_tensor * b1,
  1305. struct ggml_tensor * c0,
  1306. struct ggml_tensor * c1);
  1307. // partition into non-overlapping windows with padding if needed
  1308. // example:
  1309. // a: 768 64 64 1
  1310. // w: 14
  1311. // res: 768 14 14 25
  1312. // used in sam
  1313. GGML_API struct ggml_tensor * ggml_win_part(
  1314. struct ggml_context * ctx,
  1315. struct ggml_tensor * a,
  1316. int w);
  1317. // reverse of ggml_win_part
  1318. // used in sam
  1319. GGML_API struct ggml_tensor * ggml_win_unpart(
  1320. struct ggml_context * ctx,
  1321. struct ggml_tensor * a,
  1322. int w0,
  1323. int h0,
  1324. int w);
  1325. GGML_API struct ggml_tensor * ggml_unary(
  1326. struct ggml_context * ctx,
  1327. struct ggml_tensor * a,
  1328. enum ggml_unary_op op);
  1329. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1330. struct ggml_context * ctx,
  1331. struct ggml_tensor * a,
  1332. enum ggml_unary_op op);
  1333. // used in sam
  1334. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1335. struct ggml_context * ctx,
  1336. struct ggml_tensor * a,
  1337. int qh,
  1338. int kh);
  1339. // used in sam
  1340. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1341. struct ggml_context * ctx,
  1342. struct ggml_tensor * a,
  1343. struct ggml_tensor * pw,
  1344. struct ggml_tensor * ph);
  1345. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1346. struct ggml_context * ctx,
  1347. struct ggml_tensor * a,
  1348. struct ggml_tensor * pw,
  1349. struct ggml_tensor * ph);
  1350. // custom operators
  1351. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1352. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1353. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1354. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1355. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1356. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1357. struct ggml_context * ctx,
  1358. struct ggml_tensor * a,
  1359. ggml_unary_op_f32_t fun),
  1360. "use ggml_map_custom1 instead");
  1361. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1362. struct ggml_context * ctx,
  1363. struct ggml_tensor * a,
  1364. ggml_unary_op_f32_t fun),
  1365. "use ggml_map_custom1_inplace instead");
  1366. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1367. struct ggml_context * ctx,
  1368. struct ggml_tensor * a,
  1369. struct ggml_tensor * b,
  1370. ggml_binary_op_f32_t fun),
  1371. "use ggml_map_custom2 instead");
  1372. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1373. struct ggml_context * ctx,
  1374. struct ggml_tensor * a,
  1375. struct ggml_tensor * b,
  1376. ggml_binary_op_f32_t fun),
  1377. "use ggml_map_custom2_inplace instead");
  1378. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1379. struct ggml_context * ctx,
  1380. struct ggml_tensor * a,
  1381. ggml_custom1_op_f32_t fun),
  1382. "use ggml_map_custom1 instead");
  1383. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1384. struct ggml_context * ctx,
  1385. struct ggml_tensor * a,
  1386. ggml_custom1_op_f32_t fun),
  1387. "use ggml_map_custom1_inplace instead");
  1388. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1389. struct ggml_context * ctx,
  1390. struct ggml_tensor * a,
  1391. struct ggml_tensor * b,
  1392. ggml_custom2_op_f32_t fun),
  1393. "use ggml_map_custom2 instead");
  1394. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1395. struct ggml_context * ctx,
  1396. struct ggml_tensor * a,
  1397. struct ggml_tensor * b,
  1398. ggml_custom2_op_f32_t fun),
  1399. "use ggml_map_custom2_inplace instead");
  1400. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1401. struct ggml_context * ctx,
  1402. struct ggml_tensor * a,
  1403. struct ggml_tensor * b,
  1404. struct ggml_tensor * c,
  1405. ggml_custom3_op_f32_t fun),
  1406. "use ggml_map_custom3 instead");
  1407. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1408. struct ggml_context * ctx,
  1409. struct ggml_tensor * a,
  1410. struct ggml_tensor * b,
  1411. struct ggml_tensor * c,
  1412. ggml_custom3_op_f32_t fun),
  1413. "use ggml_map_custom3_inplace instead");
  1414. // custom operators v2
  1415. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1416. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1417. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1418. #define GGML_N_TASKS_MAX -1
  1419. GGML_API struct ggml_tensor * ggml_map_custom1(
  1420. struct ggml_context * ctx,
  1421. struct ggml_tensor * a,
  1422. ggml_custom1_op_t fun,
  1423. int n_tasks,
  1424. void * userdata);
  1425. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1426. struct ggml_context * ctx,
  1427. struct ggml_tensor * a,
  1428. ggml_custom1_op_t fun,
  1429. int n_tasks,
  1430. void * userdata);
  1431. GGML_API struct ggml_tensor * ggml_map_custom2(
  1432. struct ggml_context * ctx,
  1433. struct ggml_tensor * a,
  1434. struct ggml_tensor * b,
  1435. ggml_custom2_op_t fun,
  1436. int n_tasks,
  1437. void * userdata);
  1438. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1439. struct ggml_context * ctx,
  1440. struct ggml_tensor * a,
  1441. struct ggml_tensor * b,
  1442. ggml_custom2_op_t fun,
  1443. int n_tasks,
  1444. void * userdata);
  1445. GGML_API struct ggml_tensor * ggml_map_custom3(
  1446. struct ggml_context * ctx,
  1447. struct ggml_tensor * a,
  1448. struct ggml_tensor * b,
  1449. struct ggml_tensor * c,
  1450. ggml_custom3_op_t fun,
  1451. int n_tasks,
  1452. void * userdata);
  1453. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1454. struct ggml_context * ctx,
  1455. struct ggml_tensor * a,
  1456. struct ggml_tensor * b,
  1457. struct ggml_tensor * c,
  1458. ggml_custom3_op_t fun,
  1459. int n_tasks,
  1460. void * userdata);
  1461. // loss function
  1462. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1463. struct ggml_context * ctx,
  1464. struct ggml_tensor * a,
  1465. struct ggml_tensor * b);
  1466. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1467. struct ggml_context * ctx,
  1468. struct ggml_tensor * a,
  1469. struct ggml_tensor * b,
  1470. struct ggml_tensor * c);
  1471. //
  1472. // automatic differentiation
  1473. //
  1474. GGML_API void ggml_set_param(
  1475. struct ggml_context * ctx,
  1476. struct ggml_tensor * tensor);
  1477. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1478. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1479. // graph allocation in a context
  1480. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1481. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1482. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1483. GGML_API struct ggml_cgraph * ggml_graph_view (struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i0, int i1);
  1484. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1485. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1486. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1487. GGML_API size_t ggml_graph_overhead(void);
  1488. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1489. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1490. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1491. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1492. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1493. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1494. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1495. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1496. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1497. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1498. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1499. // print info and performance information for the graph
  1500. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1501. // dump the graph into a file using the dot format
  1502. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1503. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1504. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1505. // but without the second forward pass nodes.
  1506. GGML_API void ggml_build_backward_gradient_checkpointing(
  1507. struct ggml_context * ctx,
  1508. struct ggml_cgraph * gf,
  1509. struct ggml_cgraph * gb,
  1510. struct ggml_cgraph * gb_tmp,
  1511. struct ggml_tensor * * checkpoints,
  1512. int n_checkpoints);
  1513. //
  1514. // optimization
  1515. //
  1516. // optimization methods
  1517. enum ggml_opt_type {
  1518. GGML_OPT_ADAM,
  1519. GGML_OPT_LBFGS,
  1520. };
  1521. // linesearch methods
  1522. enum ggml_linesearch {
  1523. GGML_LINESEARCH_DEFAULT = 1,
  1524. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1525. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1526. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1527. };
  1528. // optimization return values
  1529. enum ggml_opt_result {
  1530. GGML_OPT_OK = 0,
  1531. GGML_OPT_DID_NOT_CONVERGE,
  1532. GGML_OPT_NO_CONTEXT,
  1533. GGML_OPT_INVALID_WOLFE,
  1534. GGML_OPT_FAIL,
  1535. GGML_OPT_CANCEL,
  1536. GGML_LINESEARCH_FAIL = -128,
  1537. GGML_LINESEARCH_MINIMUM_STEP,
  1538. GGML_LINESEARCH_MAXIMUM_STEP,
  1539. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1540. GGML_LINESEARCH_INVALID_PARAMETERS,
  1541. };
  1542. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1543. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1544. // optimization parameters
  1545. //
  1546. // see ggml.c (ggml_opt_default_params) for default values
  1547. //
  1548. struct ggml_opt_params {
  1549. enum ggml_opt_type type;
  1550. size_t graph_size;
  1551. int n_threads;
  1552. // delta-based convergence test
  1553. //
  1554. // if past == 0 - disabled
  1555. // if past > 0:
  1556. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1557. //
  1558. int past;
  1559. float delta;
  1560. // maximum number of iterations without improvement
  1561. //
  1562. // if 0 - disabled
  1563. // if > 0:
  1564. // assume convergence if no cost improvement in this number of iterations
  1565. //
  1566. int max_no_improvement;
  1567. bool print_forward_graph;
  1568. bool print_backward_graph;
  1569. int n_gradient_accumulation;
  1570. // ADAM parameters
  1571. struct {
  1572. int n_iter;
  1573. float sched; // schedule multiplier (fixed, decay or warmup)
  1574. float decay; // weight decay for AdamW, use 0.0f to disable
  1575. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1576. float alpha; // learning rate
  1577. float beta1;
  1578. float beta2;
  1579. float eps; // epsilon for numerical stability
  1580. float eps_f; // epsilon for convergence test
  1581. float eps_g; // epsilon for convergence test
  1582. float gclip; // gradient clipping
  1583. } adam;
  1584. // LBFGS parameters
  1585. struct {
  1586. int m; // number of corrections to approximate the inv. Hessian
  1587. int n_iter;
  1588. int max_linesearch;
  1589. float eps; // convergence tolerance
  1590. float ftol; // line search tolerance
  1591. float wolfe;
  1592. float min_step;
  1593. float max_step;
  1594. enum ggml_linesearch linesearch;
  1595. } lbfgs;
  1596. };
  1597. struct ggml_opt_context {
  1598. struct ggml_context * ctx;
  1599. struct ggml_opt_params params;
  1600. int iter;
  1601. int64_t nx; // number of parameter elements
  1602. bool just_initialized;
  1603. float loss_before;
  1604. float loss_after;
  1605. struct {
  1606. struct ggml_tensor * g; // current gradient
  1607. struct ggml_tensor * m; // first moment
  1608. struct ggml_tensor * v; // second moment
  1609. struct ggml_tensor * pf; // past function values
  1610. float fx_best;
  1611. float fx_prev;
  1612. int n_no_improvement;
  1613. } adam;
  1614. struct {
  1615. struct ggml_tensor * x; // current parameters
  1616. struct ggml_tensor * xp; // previous parameters
  1617. struct ggml_tensor * g; // current gradient
  1618. struct ggml_tensor * gp; // previous gradient
  1619. struct ggml_tensor * d; // search direction
  1620. struct ggml_tensor * pf; // past function values
  1621. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1622. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1623. struct ggml_tensor * lms; // the L-BFGS memory s
  1624. struct ggml_tensor * lmy; // the L-BFGS memory y
  1625. float fx_best;
  1626. float step;
  1627. int j;
  1628. int k;
  1629. int end;
  1630. int n_no_improvement;
  1631. } lbfgs;
  1632. };
  1633. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1634. // optimize the function defined by the tensor f
  1635. GGML_API enum ggml_opt_result ggml_opt(
  1636. struct ggml_context * ctx,
  1637. struct ggml_opt_params params,
  1638. struct ggml_tensor * f);
  1639. // initialize optimizer context
  1640. GGML_API void ggml_opt_init(
  1641. struct ggml_context * ctx,
  1642. struct ggml_opt_context * opt,
  1643. struct ggml_opt_params params,
  1644. int64_t nx);
  1645. // continue optimizing the function defined by the tensor f
  1646. GGML_API enum ggml_opt_result ggml_opt_resume(
  1647. struct ggml_context * ctx,
  1648. struct ggml_opt_context * opt,
  1649. struct ggml_tensor * f);
  1650. // continue optimizing the function defined by the tensor f
  1651. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1652. struct ggml_context * ctx,
  1653. struct ggml_opt_context * opt,
  1654. struct ggml_tensor * f,
  1655. struct ggml_cgraph * gf,
  1656. struct ggml_cgraph * gb,
  1657. ggml_opt_callback callback,
  1658. void * callback_data);
  1659. //
  1660. // quantization
  1661. //
  1662. // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
  1663. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1664. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1665. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1666. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1667. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1668. GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1669. GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1670. GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1671. GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1672. GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1673. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1674. //
  1675. // gguf
  1676. //
  1677. enum gguf_type {
  1678. GGUF_TYPE_UINT8 = 0,
  1679. GGUF_TYPE_INT8 = 1,
  1680. GGUF_TYPE_UINT16 = 2,
  1681. GGUF_TYPE_INT16 = 3,
  1682. GGUF_TYPE_UINT32 = 4,
  1683. GGUF_TYPE_INT32 = 5,
  1684. GGUF_TYPE_FLOAT32 = 6,
  1685. GGUF_TYPE_BOOL = 7,
  1686. GGUF_TYPE_STRING = 8,
  1687. GGUF_TYPE_ARRAY = 9,
  1688. GGUF_TYPE_UINT64 = 10,
  1689. GGUF_TYPE_INT64 = 11,
  1690. GGUF_TYPE_FLOAT64 = 12,
  1691. GGUF_TYPE_COUNT, // marks the end of the enum
  1692. };
  1693. struct gguf_context;
  1694. struct gguf_init_params {
  1695. bool no_alloc;
  1696. // if not NULL, create a ggml_context and allocate the tensor data in it
  1697. struct ggml_context ** ctx;
  1698. };
  1699. GGML_API struct gguf_context * gguf_init_empty(void);
  1700. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1701. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1702. GGML_API void gguf_free(struct gguf_context * ctx);
  1703. GGML_API const char * gguf_type_name(enum gguf_type type);
  1704. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1705. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1706. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1707. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1708. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1709. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1710. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1711. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1712. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1713. // will abort if the wrong type is used for the key
  1714. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1715. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1716. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1717. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1718. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1719. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1720. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1721. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1722. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1723. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1724. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1725. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1726. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1727. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1728. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1729. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1730. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1731. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1732. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1733. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1734. // overrides existing values or adds a new one
  1735. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1736. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1737. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1738. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1739. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1740. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1741. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1742. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1743. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1744. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1745. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1746. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1747. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1748. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1749. // set or add KV pairs from another context
  1750. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1751. // manage tensor info
  1752. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1753. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1754. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1755. // writing gguf files can be done in 2 ways:
  1756. //
  1757. // - write the entire gguf_context to a binary file in a single pass:
  1758. //
  1759. // gguf_write_to_file(ctx, fname);
  1760. //
  1761. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1762. //
  1763. // FILE * f = fopen(fname, "wb");
  1764. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1765. // fwrite(f, ...);
  1766. // void * data = gguf_meta_get_meta_data(ctx);
  1767. // fseek(f, 0, SEEK_SET);
  1768. // fwrite(f, data, gguf_get_meta_size(ctx));
  1769. // free(data);
  1770. // fclose(f);
  1771. //
  1772. // write the entire context to a binary file
  1773. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1774. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1775. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1776. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1777. //
  1778. // system info
  1779. //
  1780. GGML_API int ggml_cpu_has_avx (void);
  1781. GGML_API int ggml_cpu_has_avx2 (void);
  1782. GGML_API int ggml_cpu_has_avx512 (void);
  1783. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1784. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1785. GGML_API int ggml_cpu_has_fma (void);
  1786. GGML_API int ggml_cpu_has_neon (void);
  1787. GGML_API int ggml_cpu_has_arm_fma (void);
  1788. GGML_API int ggml_cpu_has_metal (void);
  1789. GGML_API int ggml_cpu_has_f16c (void);
  1790. GGML_API int ggml_cpu_has_fp16_va (void);
  1791. GGML_API int ggml_cpu_has_wasm_simd (void);
  1792. GGML_API int ggml_cpu_has_blas (void);
  1793. GGML_API int ggml_cpu_has_cublas (void);
  1794. GGML_API int ggml_cpu_has_clblast (void);
  1795. GGML_API int ggml_cpu_has_gpublas (void);
  1796. GGML_API int ggml_cpu_has_sse3 (void);
  1797. GGML_API int ggml_cpu_has_ssse3 (void);
  1798. GGML_API int ggml_cpu_has_vsx (void);
  1799. //
  1800. // Internal types and functions exposed for tests and benchmarks
  1801. //
  1802. #ifdef __cplusplus
  1803. // restrict not standard in C++
  1804. #define GGML_RESTRICT
  1805. #else
  1806. #define GGML_RESTRICT restrict
  1807. #endif
  1808. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1809. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1810. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1811. typedef struct {
  1812. const char * type_name;
  1813. int blck_size;
  1814. size_t type_size;
  1815. bool is_quantized;
  1816. ggml_to_float_t to_float;
  1817. ggml_from_float_t from_float;
  1818. ggml_from_float_t from_float_reference;
  1819. ggml_vec_dot_t vec_dot;
  1820. enum ggml_type vec_dot_type;
  1821. } ggml_type_traits_t;
  1822. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1823. #ifdef __cplusplus
  1824. }
  1825. #endif