llama-bench.cpp 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include <thread>
  20. #include "ggml.h"
  21. #include "llama.h"
  22. #include "common.h"
  23. #ifdef _WIN32
  24. #define WIN32_LEAN_AND_MEAN
  25. #ifndef NOMINMAX
  26. # define NOMINMAX
  27. #endif
  28. #include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. template<class T>
  36. static std::string join(const std::vector<T> & values, const std::string & delim) {
  37. std::ostringstream str;
  38. for (size_t i = 0; i < values.size(); i++) {
  39. str << values[i];
  40. if (i < values.size() - 1) {
  41. str << delim;
  42. }
  43. }
  44. return str.str();
  45. }
  46. template<typename T, typename F>
  47. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  48. std::vector<std::string> str_values;
  49. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  50. return str_values;
  51. }
  52. template<typename T>
  53. static T avg(const std::vector<T> & v) {
  54. if (v.empty()) {
  55. return 0;
  56. }
  57. T sum = std::accumulate(v.begin(), v.end(), T(0));
  58. return sum / (T)v.size();
  59. }
  60. template<typename T>
  61. static T stdev(const std::vector<T> & v) {
  62. if (v.size() <= 1) {
  63. return 0;
  64. }
  65. T mean = avg(v);
  66. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  67. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  68. return stdev;
  69. }
  70. static std::string get_cpu_info() {
  71. std::vector<std::string> cpu_list;
  72. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  73. auto * dev = ggml_backend_dev_get(i);
  74. auto dev_type = ggml_backend_dev_type(dev);
  75. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  76. cpu_list.push_back(ggml_backend_dev_description(dev));
  77. }
  78. }
  79. return join(cpu_list, ", ");
  80. }
  81. static std::string get_gpu_info() {
  82. std::vector<std::string> gpu_list;
  83. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  84. auto * dev = ggml_backend_dev_get(i);
  85. auto dev_type = ggml_backend_dev_type(dev);
  86. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  87. gpu_list.push_back(ggml_backend_dev_description(dev));
  88. }
  89. }
  90. return join(gpu_list, ", ");
  91. }
  92. // command line params
  93. enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
  94. static const char * output_format_str(output_formats format) {
  95. switch (format) {
  96. case NONE: return "none";
  97. case CSV: return "csv";
  98. case JSON: return "json";
  99. case JSONL: return "jsonl";
  100. case MARKDOWN: return "md";
  101. case SQL: return "sql";
  102. default: GGML_ABORT("invalid output format");
  103. }
  104. }
  105. static bool output_format_from_str(const std::string & s, output_formats & format) {
  106. if (s == "none") {
  107. format = NONE;
  108. } else if (s == "csv") {
  109. format = CSV;
  110. } else if (s == "json") {
  111. format = JSON;
  112. } else if (s == "jsonl") {
  113. format = JSONL;
  114. } else if (s == "md") {
  115. format = MARKDOWN;
  116. } else if (s == "sql") {
  117. format = SQL;
  118. } else {
  119. return false;
  120. }
  121. return true;
  122. }
  123. static const char * split_mode_str(llama_split_mode mode) {
  124. switch (mode) {
  125. case LLAMA_SPLIT_MODE_NONE: return "none";
  126. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  127. case LLAMA_SPLIT_MODE_ROW: return "row";
  128. default: GGML_ABORT("invalid split mode");
  129. }
  130. }
  131. static std::string pair_str(const std::pair<int, int> & p) {
  132. static char buf[32];
  133. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  134. return buf;
  135. }
  136. struct cmd_params {
  137. std::vector<std::string> model;
  138. std::vector<int> n_prompt;
  139. std::vector<int> n_gen;
  140. std::vector<std::pair<int, int>> n_pg;
  141. std::vector<int> n_batch;
  142. std::vector<int> n_ubatch;
  143. std::vector<ggml_type> type_k;
  144. std::vector<ggml_type> type_v;
  145. std::vector<int> n_threads;
  146. std::vector<std::string> cpu_mask;
  147. std::vector<bool> cpu_strict;
  148. std::vector<int> poll;
  149. std::vector<int> n_gpu_layers;
  150. std::vector<std::string> rpc_servers;
  151. std::vector<llama_split_mode> split_mode;
  152. std::vector<int> main_gpu;
  153. std::vector<bool> no_kv_offload;
  154. std::vector<bool> flash_attn;
  155. std::vector<std::vector<float>> tensor_split;
  156. std::vector<bool> use_mmap;
  157. std::vector<bool> embeddings;
  158. ggml_numa_strategy numa;
  159. int reps;
  160. ggml_sched_priority prio;
  161. int delay;
  162. bool verbose;
  163. bool progress;
  164. output_formats output_format;
  165. output_formats output_format_stderr;
  166. };
  167. static const cmd_params cmd_params_defaults = {
  168. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  169. /* n_prompt */ {512},
  170. /* n_gen */ {128},
  171. /* n_pg */ {},
  172. /* n_batch */ {2048},
  173. /* n_ubatch */ {512},
  174. /* type_k */ {GGML_TYPE_F16},
  175. /* type_v */ {GGML_TYPE_F16},
  176. /* n_threads */ {cpu_get_num_math()},
  177. /* cpu_mask */ {"0x0"},
  178. /* cpu_strict */ {false},
  179. /* poll */ {50},
  180. /* n_gpu_layers */ {99},
  181. /* rpc_servers */ {""},
  182. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  183. /* main_gpu */ {0},
  184. /* no_kv_offload */ {false},
  185. /* flash_attn */ {false},
  186. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  187. /* use_mmap */ {true},
  188. /* embeddings */ {false},
  189. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  190. /* reps */ 5,
  191. /* prio */ GGML_SCHED_PRIO_NORMAL,
  192. /* delay */ 0,
  193. /* verbose */ false,
  194. /* progress */ false,
  195. /* output_format */ MARKDOWN,
  196. /* output_format_stderr */ NONE,
  197. };
  198. static void print_usage(int /* argc */, char ** argv) {
  199. printf("usage: %s [options]\n", argv[0]);
  200. printf("\n");
  201. printf("options:\n");
  202. printf(" -h, --help\n");
  203. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  204. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  205. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  206. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  207. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  208. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  209. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  210. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  211. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  212. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
  213. printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
  214. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  215. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  216. if (llama_supports_rpc()) {
  217. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  218. }
  219. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  220. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  221. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  222. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  223. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  224. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  225. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  226. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  227. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  228. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  229. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  230. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  231. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  232. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  233. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  234. printf("\n");
  235. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  236. }
  237. static ggml_type ggml_type_from_name(const std::string & s) {
  238. if (s == "f16") {
  239. return GGML_TYPE_F16;
  240. }
  241. if (s == "bf16") {
  242. return GGML_TYPE_BF16;
  243. }
  244. if (s == "q8_0") {
  245. return GGML_TYPE_Q8_0;
  246. }
  247. if (s == "q4_0") {
  248. return GGML_TYPE_Q4_0;
  249. }
  250. if (s == "q4_1") {
  251. return GGML_TYPE_Q4_1;
  252. }
  253. if (s == "q5_0") {
  254. return GGML_TYPE_Q5_0;
  255. }
  256. if (s == "q5_1") {
  257. return GGML_TYPE_Q5_1;
  258. }
  259. if (s == "iq4_nl") {
  260. return GGML_TYPE_IQ4_NL;
  261. }
  262. return GGML_TYPE_COUNT;
  263. }
  264. static cmd_params parse_cmd_params(int argc, char ** argv) {
  265. cmd_params params;
  266. std::string arg;
  267. bool invalid_param = false;
  268. const std::string arg_prefix = "--";
  269. const char split_delim = ',';
  270. params.verbose = cmd_params_defaults.verbose;
  271. params.output_format = cmd_params_defaults.output_format;
  272. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  273. params.reps = cmd_params_defaults.reps;
  274. params.numa = cmd_params_defaults.numa;
  275. params.prio = cmd_params_defaults.prio;
  276. params.delay = cmd_params_defaults.delay;
  277. params.progress = cmd_params_defaults.progress;
  278. for (int i = 1; i < argc; i++) {
  279. arg = argv[i];
  280. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  281. std::replace(arg.begin(), arg.end(), '_', '-');
  282. }
  283. if (arg == "-h" || arg == "--help") {
  284. print_usage(argc, argv);
  285. exit(0);
  286. } else if (arg == "-m" || arg == "--model") {
  287. if (++i >= argc) {
  288. invalid_param = true;
  289. break;
  290. }
  291. auto p = string_split<std::string>(argv[i], split_delim);
  292. params.model.insert(params.model.end(), p.begin(), p.end());
  293. } else if (arg == "-p" || arg == "--n-prompt") {
  294. if (++i >= argc) {
  295. invalid_param = true;
  296. break;
  297. }
  298. auto p = string_split<int>(argv[i], split_delim);
  299. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  300. } else if (arg == "-n" || arg == "--n-gen") {
  301. if (++i >= argc) {
  302. invalid_param = true;
  303. break;
  304. }
  305. auto p = string_split<int>(argv[i], split_delim);
  306. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  307. } else if (arg == "-pg") {
  308. if (++i >= argc) {
  309. invalid_param = true;
  310. break;
  311. }
  312. auto p = string_split<std::string>(argv[i], ',');
  313. if (p.size() != 2) {
  314. invalid_param = true;
  315. break;
  316. }
  317. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  318. } else if (arg == "-b" || arg == "--batch-size") {
  319. if (++i >= argc) {
  320. invalid_param = true;
  321. break;
  322. }
  323. auto p = string_split<int>(argv[i], split_delim);
  324. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  325. } else if (arg == "-ub" || arg == "--ubatch-size") {
  326. if (++i >= argc) {
  327. invalid_param = true;
  328. break;
  329. }
  330. auto p = string_split<int>(argv[i], split_delim);
  331. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  332. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  333. if (++i >= argc) {
  334. invalid_param = true;
  335. break;
  336. }
  337. auto p = string_split<std::string>(argv[i], split_delim);
  338. std::vector<ggml_type> types;
  339. for (const auto & t : p) {
  340. ggml_type gt = ggml_type_from_name(t);
  341. if (gt == GGML_TYPE_COUNT) {
  342. invalid_param = true;
  343. break;
  344. }
  345. types.push_back(gt);
  346. }
  347. if (invalid_param) {
  348. break;
  349. }
  350. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  351. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  352. if (++i >= argc) {
  353. invalid_param = true;
  354. break;
  355. }
  356. auto p = string_split<std::string>(argv[i], split_delim);
  357. std::vector<ggml_type> types;
  358. for (const auto & t : p) {
  359. ggml_type gt = ggml_type_from_name(t);
  360. if (gt == GGML_TYPE_COUNT) {
  361. invalid_param = true;
  362. break;
  363. }
  364. types.push_back(gt);
  365. }
  366. if (invalid_param) {
  367. break;
  368. }
  369. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  370. } else if (arg == "-t" || arg == "--threads") {
  371. if (++i >= argc) {
  372. invalid_param = true;
  373. break;
  374. }
  375. auto p = string_split<int>(argv[i], split_delim);
  376. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  377. } else if (arg == "-C" || arg == "--cpu-mask") {
  378. if (++i >= argc) {
  379. invalid_param = true;
  380. break;
  381. }
  382. auto p = string_split<std::string>(argv[i], split_delim);
  383. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  384. } else if (arg == "--cpu-strict") {
  385. if (++i >= argc) {
  386. invalid_param = true;
  387. break;
  388. }
  389. auto p = string_split<bool>(argv[i], split_delim);
  390. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  391. } else if (arg == "--poll") {
  392. if (++i >= argc) {
  393. invalid_param = true;
  394. break;
  395. }
  396. auto p = string_split<int>(argv[i], split_delim);
  397. params.poll.insert(params.poll.end(), p.begin(), p.end());
  398. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  399. if (++i >= argc) {
  400. invalid_param = true;
  401. break;
  402. }
  403. auto p = string_split<int>(argv[i], split_delim);
  404. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  405. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  406. if (++i >= argc) {
  407. invalid_param = true;
  408. break;
  409. }
  410. params.rpc_servers.push_back(argv[i]);
  411. } else if (arg == "-sm" || arg == "--split-mode") {
  412. if (++i >= argc) {
  413. invalid_param = true;
  414. break;
  415. }
  416. auto p = string_split<std::string>(argv[i], split_delim);
  417. std::vector<llama_split_mode> modes;
  418. for (const auto & m : p) {
  419. llama_split_mode mode;
  420. if (m == "none") {
  421. mode = LLAMA_SPLIT_MODE_NONE;
  422. } else if (m == "layer") {
  423. mode = LLAMA_SPLIT_MODE_LAYER;
  424. } else if (m == "row") {
  425. mode = LLAMA_SPLIT_MODE_ROW;
  426. } else {
  427. invalid_param = true;
  428. break;
  429. }
  430. modes.push_back(mode);
  431. }
  432. if (invalid_param) {
  433. break;
  434. }
  435. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  436. } else if (arg == "-mg" || arg == "--main-gpu") {
  437. if (++i >= argc) {
  438. invalid_param = true;
  439. break;
  440. }
  441. params.main_gpu = string_split<int>(argv[i], split_delim);
  442. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  443. if (++i >= argc) {
  444. invalid_param = true;
  445. break;
  446. }
  447. auto p = string_split<bool>(argv[i], split_delim);
  448. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  449. } else if (arg == "--numa") {
  450. if (++i >= argc) {
  451. invalid_param = true;
  452. break;
  453. } else {
  454. std::string value(argv[i]);
  455. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  456. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  457. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  458. else { invalid_param = true; break; }
  459. }
  460. } else if (arg == "-fa" || arg == "--flash-attn") {
  461. if (++i >= argc) {
  462. invalid_param = true;
  463. break;
  464. }
  465. auto p = string_split<bool>(argv[i], split_delim);
  466. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  467. } else if (arg == "-mmp" || arg == "--mmap") {
  468. if (++i >= argc) {
  469. invalid_param = true;
  470. break;
  471. }
  472. auto p = string_split<bool>(argv[i], split_delim);
  473. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  474. } else if (arg == "-embd" || arg == "--embeddings") {
  475. if (++i >= argc) {
  476. invalid_param = true;
  477. break;
  478. }
  479. auto p = string_split<bool>(argv[i], split_delim);
  480. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  481. } else if (arg == "-ts" || arg == "--tensor-split") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. break;
  485. }
  486. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  487. // split string by ; and /
  488. const std::regex regex{R"([;/]+)"};
  489. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  490. std::vector<std::string> split_arg{it, {}};
  491. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  492. std::vector<float> tensor_split(llama_max_devices());
  493. for (size_t i = 0; i < llama_max_devices(); ++i) {
  494. if (i < split_arg.size()) {
  495. tensor_split[i] = std::stof(split_arg[i]);
  496. } else {
  497. tensor_split[i] = 0.0f;
  498. }
  499. }
  500. params.tensor_split.push_back(tensor_split);
  501. }
  502. } else if (arg == "-r" || arg == "--repetitions") {
  503. if (++i >= argc) {
  504. invalid_param = true;
  505. break;
  506. }
  507. params.reps = std::stoi(argv[i]);
  508. } else if (arg == "--prio") {
  509. if (++i >= argc) {
  510. invalid_param = true;
  511. break;
  512. }
  513. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  514. } else if (arg == "--delay") {
  515. if (++i >= argc) {
  516. invalid_param = true;
  517. break;
  518. }
  519. params.delay = std::stoi(argv[i]);
  520. } else if (arg == "-o" || arg == "--output") {
  521. if (++i >= argc) {
  522. invalid_param = true;
  523. break;
  524. }
  525. invalid_param = !output_format_from_str(argv[i], params.output_format);
  526. } else if (arg == "-oe" || arg == "--output-err") {
  527. if (++i >= argc) {
  528. invalid_param = true;
  529. break;
  530. }
  531. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  532. } else if (arg == "-v" || arg == "--verbose") {
  533. params.verbose = true;
  534. } else if (arg == "--progress") {
  535. params.progress = true;
  536. } else {
  537. invalid_param = true;
  538. break;
  539. }
  540. }
  541. if (invalid_param) {
  542. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  543. print_usage(argc, argv);
  544. exit(1);
  545. }
  546. // set defaults
  547. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  548. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  549. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  550. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  551. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  552. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  553. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  554. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  555. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  556. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  557. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  558. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  559. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  560. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  561. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  562. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  563. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  564. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  565. if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
  566. if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
  567. if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
  568. return params;
  569. }
  570. struct cmd_params_instance {
  571. std::string model;
  572. int n_prompt;
  573. int n_gen;
  574. int n_batch;
  575. int n_ubatch;
  576. ggml_type type_k;
  577. ggml_type type_v;
  578. int n_threads;
  579. std::string cpu_mask;
  580. bool cpu_strict;
  581. int poll;
  582. int n_gpu_layers;
  583. std::string rpc_servers;
  584. llama_split_mode split_mode;
  585. int main_gpu;
  586. bool no_kv_offload;
  587. bool flash_attn;
  588. std::vector<float> tensor_split;
  589. bool use_mmap;
  590. bool embeddings;
  591. llama_model_params to_llama_mparams() const {
  592. llama_model_params mparams = llama_model_default_params();
  593. mparams.n_gpu_layers = n_gpu_layers;
  594. if (!rpc_servers.empty()) {
  595. mparams.rpc_servers = rpc_servers.c_str();
  596. }
  597. mparams.split_mode = split_mode;
  598. mparams.main_gpu = main_gpu;
  599. mparams.tensor_split = tensor_split.data();
  600. mparams.use_mmap = use_mmap;
  601. return mparams;
  602. }
  603. bool equal_mparams(const cmd_params_instance & other) const {
  604. return model == other.model &&
  605. n_gpu_layers == other.n_gpu_layers &&
  606. rpc_servers == other.rpc_servers &&
  607. split_mode == other.split_mode &&
  608. main_gpu == other.main_gpu &&
  609. use_mmap == other.use_mmap &&
  610. tensor_split == other.tensor_split;
  611. }
  612. llama_context_params to_llama_cparams() const {
  613. llama_context_params cparams = llama_context_default_params();
  614. cparams.n_ctx = n_prompt + n_gen;
  615. cparams.n_batch = n_batch;
  616. cparams.n_ubatch = n_ubatch;
  617. cparams.type_k = type_k;
  618. cparams.type_v = type_v;
  619. cparams.offload_kqv = !no_kv_offload;
  620. cparams.flash_attn = flash_attn;
  621. cparams.embeddings = embeddings;
  622. return cparams;
  623. }
  624. };
  625. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  626. std::vector<cmd_params_instance> instances;
  627. // this ordering minimizes the number of times that each model needs to be reloaded
  628. for (const auto & m : params.model)
  629. for (const auto & nl : params.n_gpu_layers)
  630. for (const auto & rpc : params.rpc_servers)
  631. for (const auto & sm : params.split_mode)
  632. for (const auto & mg : params.main_gpu)
  633. for (const auto & ts : params.tensor_split)
  634. for (const auto & mmp : params.use_mmap)
  635. for (const auto & embd : params.embeddings)
  636. for (const auto & nb : params.n_batch)
  637. for (const auto & nub : params.n_ubatch)
  638. for (const auto & tk : params.type_k)
  639. for (const auto & tv : params.type_v)
  640. for (const auto & nkvo : params.no_kv_offload)
  641. for (const auto & fa : params.flash_attn)
  642. for (const auto & nt : params.n_threads)
  643. for (const auto & cm : params.cpu_mask)
  644. for (const auto & cs : params.cpu_strict)
  645. for (const auto & pl : params.poll) {
  646. for (const auto & n_prompt : params.n_prompt) {
  647. if (n_prompt == 0) {
  648. continue;
  649. }
  650. cmd_params_instance instance = {
  651. /* .model = */ m,
  652. /* .n_prompt = */ n_prompt,
  653. /* .n_gen = */ 0,
  654. /* .n_batch = */ nb,
  655. /* .n_ubatch = */ nub,
  656. /* .type_k = */ tk,
  657. /* .type_v = */ tv,
  658. /* .n_threads = */ nt,
  659. /* .cpu_mask = */ cm,
  660. /* .cpu_strict = */ cs,
  661. /* .poll = */ pl,
  662. /* .n_gpu_layers = */ nl,
  663. /* .rpc_servers = */ rpc,
  664. /* .split_mode = */ sm,
  665. /* .main_gpu = */ mg,
  666. /* .no_kv_offload= */ nkvo,
  667. /* .flash_attn = */ fa,
  668. /* .tensor_split = */ ts,
  669. /* .use_mmap = */ mmp,
  670. /* .embeddings = */ embd,
  671. };
  672. instances.push_back(instance);
  673. }
  674. for (const auto & n_gen : params.n_gen) {
  675. if (n_gen == 0) {
  676. continue;
  677. }
  678. cmd_params_instance instance = {
  679. /* .model = */ m,
  680. /* .n_prompt = */ 0,
  681. /* .n_gen = */ n_gen,
  682. /* .n_batch = */ nb,
  683. /* .n_ubatch = */ nub,
  684. /* .type_k = */ tk,
  685. /* .type_v = */ tv,
  686. /* .n_threads = */ nt,
  687. /* .cpu_mask = */ cm,
  688. /* .cpu_strict = */ cs,
  689. /* .poll = */ pl,
  690. /* .n_gpu_layers = */ nl,
  691. /* .rpc_servers = */ rpc,
  692. /* .split_mode = */ sm,
  693. /* .main_gpu = */ mg,
  694. /* .no_kv_offload= */ nkvo,
  695. /* .flash_attn = */ fa,
  696. /* .tensor_split = */ ts,
  697. /* .use_mmap = */ mmp,
  698. /* .embeddings = */ embd,
  699. };
  700. instances.push_back(instance);
  701. }
  702. for (const auto & n_pg : params.n_pg) {
  703. if (n_pg.first == 0 && n_pg.second == 0) {
  704. continue;
  705. }
  706. cmd_params_instance instance = {
  707. /* .model = */ m,
  708. /* .n_prompt = */ n_pg.first,
  709. /* .n_gen = */ n_pg.second,
  710. /* .n_batch = */ nb,
  711. /* .n_ubatch = */ nub,
  712. /* .type_k = */ tk,
  713. /* .type_v = */ tv,
  714. /* .n_threads = */ nt,
  715. /* .cpu_mask = */ cm,
  716. /* .cpu_strict = */ cs,
  717. /* .poll = */ pl,
  718. /* .n_gpu_layers = */ nl,
  719. /* .rpc_servers = */ rpc,
  720. /* .split_mode = */ sm,
  721. /* .main_gpu = */ mg,
  722. /* .no_kv_offload= */ nkvo,
  723. /* .flash_attn = */ fa,
  724. /* .tensor_split = */ ts,
  725. /* .use_mmap = */ mmp,
  726. /* .embeddings = */ embd,
  727. };
  728. instances.push_back(instance);
  729. }
  730. }
  731. return instances;
  732. }
  733. struct test {
  734. static const std::string build_commit;
  735. static const int build_number;
  736. static const std::string cpu_info;
  737. static const std::string gpu_info;
  738. std::string model_filename;
  739. std::string model_type;
  740. uint64_t model_size;
  741. uint64_t model_n_params;
  742. int n_batch;
  743. int n_ubatch;
  744. int n_threads;
  745. std::string cpu_mask;
  746. bool cpu_strict;
  747. int poll;
  748. ggml_type type_k;
  749. ggml_type type_v;
  750. int n_gpu_layers;
  751. llama_split_mode split_mode;
  752. int main_gpu;
  753. bool no_kv_offload;
  754. bool flash_attn;
  755. std::vector<float> tensor_split;
  756. bool use_mmap;
  757. bool embeddings;
  758. int n_prompt;
  759. int n_gen;
  760. std::string test_time;
  761. std::vector<uint64_t> samples_ns;
  762. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  763. model_filename = inst.model;
  764. char buf[128];
  765. llama_model_desc(lmodel, buf, sizeof(buf));
  766. model_type = buf;
  767. model_size = llama_model_size(lmodel);
  768. model_n_params = llama_model_n_params(lmodel);
  769. n_batch = inst.n_batch;
  770. n_ubatch = inst.n_ubatch;
  771. n_threads = inst.n_threads;
  772. cpu_mask = inst.cpu_mask;
  773. cpu_strict = inst.cpu_strict;
  774. poll = inst.poll;
  775. type_k = inst.type_k;
  776. type_v = inst.type_v;
  777. n_gpu_layers = inst.n_gpu_layers;
  778. split_mode = inst.split_mode;
  779. main_gpu = inst.main_gpu;
  780. no_kv_offload = inst.no_kv_offload;
  781. flash_attn = inst.flash_attn;
  782. tensor_split = inst.tensor_split;
  783. use_mmap = inst.use_mmap;
  784. embeddings = inst.embeddings;
  785. n_prompt = inst.n_prompt;
  786. n_gen = inst.n_gen;
  787. // RFC 3339 date-time format
  788. time_t t = time(NULL);
  789. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  790. test_time = buf;
  791. (void) ctx;
  792. }
  793. uint64_t avg_ns() const {
  794. return ::avg(samples_ns);
  795. }
  796. uint64_t stdev_ns() const {
  797. return ::stdev(samples_ns);
  798. }
  799. std::vector<double> get_ts() const {
  800. int n_tokens = n_prompt + n_gen;
  801. std::vector<double> ts;
  802. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  803. return ts;
  804. }
  805. double avg_ts() const {
  806. return ::avg(get_ts());
  807. }
  808. double stdev_ts() const {
  809. return ::stdev(get_ts());
  810. }
  811. static std::string get_backend() {
  812. std::vector<std::string> backends;
  813. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  814. auto * reg = ggml_backend_reg_get(i);
  815. std::string name = ggml_backend_reg_name(reg);
  816. if (name != "CPU") {
  817. backends.push_back(ggml_backend_reg_name(reg));
  818. }
  819. }
  820. return backends.empty() ? "CPU" : join(backends, ",");
  821. }
  822. static const std::vector<std::string> & get_fields() {
  823. static const std::vector<std::string> fields = {
  824. "build_commit", "build_number",
  825. "cpu_info", "gpu_info", "backends",
  826. "model_filename", "model_type", "model_size", "model_n_params",
  827. "n_batch", "n_ubatch",
  828. "n_threads", "cpu_mask", "cpu_strict", "poll",
  829. "type_k", "type_v",
  830. "n_gpu_layers", "split_mode",
  831. "main_gpu", "no_kv_offload", "flash_attn",
  832. "tensor_split", "use_mmap", "embeddings",
  833. "n_prompt", "n_gen", "test_time",
  834. "avg_ns", "stddev_ns",
  835. "avg_ts", "stddev_ts",
  836. };
  837. return fields;
  838. }
  839. enum field_type {STRING, BOOL, INT, FLOAT};
  840. static field_type get_field_type(const std::string & field) {
  841. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  842. field == "n_threads" || field == "poll" ||
  843. field == "model_size" || field == "model_n_params" ||
  844. field == "n_gpu_layers" || field == "main_gpu" ||
  845. field == "n_prompt" || field == "n_gen" ||
  846. field == "avg_ns" || field == "stddev_ns") {
  847. return INT;
  848. }
  849. if (field == "f16_kv" || field == "no_kv_offload" ||
  850. field == "cpu_strict" ||
  851. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  852. return BOOL;
  853. }
  854. if (field == "avg_ts" || field == "stddev_ts") {
  855. return FLOAT;
  856. }
  857. return STRING;
  858. }
  859. std::vector<std::string> get_values() const {
  860. std::string tensor_split_str;
  861. int max_nonzero = 0;
  862. for (size_t i = 0; i < llama_max_devices(); i++) {
  863. if (tensor_split[i] > 0) {
  864. max_nonzero = i;
  865. }
  866. }
  867. for (int i = 0; i <= max_nonzero; i++) {
  868. char buf[32];
  869. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  870. tensor_split_str += buf;
  871. if (i < max_nonzero) {
  872. tensor_split_str += "/";
  873. }
  874. }
  875. std::vector<std::string> values = {
  876. build_commit, std::to_string(build_number),
  877. cpu_info, gpu_info, get_backend(),
  878. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  879. std::to_string(n_batch), std::to_string(n_ubatch),
  880. std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
  881. ggml_type_name(type_k), ggml_type_name(type_v),
  882. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  883. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  884. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  885. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  886. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  887. std::to_string(avg_ts()), std::to_string(stdev_ts())
  888. };
  889. return values;
  890. }
  891. std::map<std::string, std::string> get_map() const {
  892. std::map<std::string, std::string> map;
  893. auto fields = get_fields();
  894. auto values = get_values();
  895. std::transform(fields.begin(), fields.end(), values.begin(),
  896. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  897. return map;
  898. }
  899. };
  900. const std::string test::build_commit = LLAMA_COMMIT;
  901. const int test::build_number = LLAMA_BUILD_NUMBER;
  902. const std::string test::cpu_info = get_cpu_info();
  903. const std::string test::gpu_info = get_gpu_info();
  904. struct printer {
  905. virtual ~printer() {}
  906. FILE * fout;
  907. virtual void print_header(const cmd_params & params) { (void) params; }
  908. virtual void print_test(const test & t) = 0;
  909. virtual void print_footer() { }
  910. };
  911. struct csv_printer : public printer {
  912. static std::string escape_csv(const std::string & field) {
  913. std::string escaped = "\"";
  914. for (auto c : field) {
  915. if (c == '"') {
  916. escaped += "\"";
  917. }
  918. escaped += c;
  919. }
  920. escaped += "\"";
  921. return escaped;
  922. }
  923. void print_header(const cmd_params & params) override {
  924. std::vector<std::string> fields = test::get_fields();
  925. fprintf(fout, "%s\n", join(fields, ",").c_str());
  926. (void) params;
  927. }
  928. void print_test(const test & t) override {
  929. std::vector<std::string> values = t.get_values();
  930. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  931. fprintf(fout, "%s\n", join(values, ",").c_str());
  932. }
  933. };
  934. static std::string escape_json(const std::string & value) {
  935. std::string escaped;
  936. for (auto c : value) {
  937. if (c == '"') {
  938. escaped += "\\\"";
  939. } else if (c == '\\') {
  940. escaped += "\\\\";
  941. } else if (c <= 0x1f) {
  942. char buf[8];
  943. snprintf(buf, sizeof(buf), "\\u%04x", c);
  944. escaped += buf;
  945. } else {
  946. escaped += c;
  947. }
  948. }
  949. return escaped;
  950. }
  951. static std::string format_json_value(const std::string & field, const std::string & value) {
  952. switch (test::get_field_type(field)) {
  953. case test::STRING:
  954. return "\"" + escape_json(value) + "\"";
  955. case test::BOOL:
  956. return value == "0" ? "false" : "true";
  957. default:
  958. return value;
  959. }
  960. }
  961. struct json_printer : public printer {
  962. bool first = true;
  963. void print_header(const cmd_params & params) override {
  964. fprintf(fout, "[\n");
  965. (void) params;
  966. }
  967. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  968. assert(fields.size() == values.size());
  969. for (size_t i = 0; i < fields.size(); i++) {
  970. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  971. }
  972. }
  973. void print_test(const test & t) override {
  974. if (first) {
  975. first = false;
  976. } else {
  977. fprintf(fout, ",\n");
  978. }
  979. fprintf(fout, " {\n");
  980. print_fields(test::get_fields(), t.get_values());
  981. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  982. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  983. fprintf(fout, " }");
  984. fflush(fout);
  985. }
  986. void print_footer() override {
  987. fprintf(fout, "\n]\n");
  988. }
  989. };
  990. struct jsonl_printer : public printer {
  991. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  992. assert(fields.size() == values.size());
  993. for (size_t i = 0; i < fields.size(); i++) {
  994. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  995. }
  996. }
  997. void print_test(const test & t) override {
  998. fprintf(fout, "{");
  999. print_fields(test::get_fields(), t.get_values());
  1000. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1001. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1002. fprintf(fout, "}\n");
  1003. fflush(fout);
  1004. }
  1005. };
  1006. struct markdown_printer : public printer {
  1007. std::vector<std::string> fields;
  1008. static int get_field_width(const std::string & field) {
  1009. if (field == "model") {
  1010. return -30;
  1011. }
  1012. if (field == "t/s") {
  1013. return 20;
  1014. }
  1015. if (field == "size" || field == "params") {
  1016. return 10;
  1017. }
  1018. if (field == "n_gpu_layers") {
  1019. return 3;
  1020. }
  1021. if (field == "n_threads") {
  1022. return 7;
  1023. }
  1024. if (field == "n_batch") {
  1025. return 7;
  1026. }
  1027. if (field == "n_ubatch") {
  1028. return 8;
  1029. }
  1030. if (field == "type_k" || field == "type_v") {
  1031. return 6;
  1032. }
  1033. if (field == "split_mode") {
  1034. return 5;
  1035. }
  1036. if (field == "flash_attn") {
  1037. return 2;
  1038. }
  1039. if (field == "use_mmap") {
  1040. return 4;
  1041. }
  1042. if (field == "test") {
  1043. return 13;
  1044. }
  1045. int width = std::max((int)field.length(), 10);
  1046. if (test::get_field_type(field) == test::STRING) {
  1047. return -width;
  1048. }
  1049. return width;
  1050. }
  1051. static std::string get_field_display_name(const std::string & field) {
  1052. if (field == "n_gpu_layers") {
  1053. return "ngl";
  1054. }
  1055. if (field == "split_mode") {
  1056. return "sm";
  1057. }
  1058. if (field == "n_threads") {
  1059. return "threads";
  1060. }
  1061. if (field == "no_kv_offload") {
  1062. return "nkvo";
  1063. }
  1064. if (field == "flash_attn") {
  1065. return "fa";
  1066. }
  1067. if (field == "use_mmap") {
  1068. return "mmap";
  1069. }
  1070. if (field == "embeddings") {
  1071. return "embd";
  1072. }
  1073. if (field == "tensor_split") {
  1074. return "ts";
  1075. }
  1076. return field;
  1077. }
  1078. void print_header(const cmd_params & params) override {
  1079. // select fields to print
  1080. fields.emplace_back("model");
  1081. fields.emplace_back("size");
  1082. fields.emplace_back("params");
  1083. fields.emplace_back("backend");
  1084. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1085. test::get_backend().find("BLAS") != std::string::npos;
  1086. if (!is_cpu_backend) {
  1087. fields.emplace_back("n_gpu_layers");
  1088. }
  1089. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1090. fields.emplace_back("n_threads");
  1091. }
  1092. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1093. fields.emplace_back("cpu_mask");
  1094. }
  1095. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1096. fields.emplace_back("cpu_strict");
  1097. }
  1098. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1099. fields.emplace_back("poll");
  1100. }
  1101. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1102. fields.emplace_back("n_batch");
  1103. }
  1104. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1105. fields.emplace_back("n_ubatch");
  1106. }
  1107. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1108. fields.emplace_back("type_k");
  1109. }
  1110. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1111. fields.emplace_back("type_v");
  1112. }
  1113. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1114. fields.emplace_back("main_gpu");
  1115. }
  1116. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1117. fields.emplace_back("split_mode");
  1118. }
  1119. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1120. fields.emplace_back("no_kv_offload");
  1121. }
  1122. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1123. fields.emplace_back("flash_attn");
  1124. }
  1125. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1126. fields.emplace_back("tensor_split");
  1127. }
  1128. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1129. fields.emplace_back("use_mmap");
  1130. }
  1131. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1132. fields.emplace_back("embeddings");
  1133. }
  1134. fields.emplace_back("test");
  1135. fields.emplace_back("t/s");
  1136. fprintf(fout, "|");
  1137. for (const auto & field : fields) {
  1138. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1139. }
  1140. fprintf(fout, "\n");
  1141. fprintf(fout, "|");
  1142. for (const auto & field : fields) {
  1143. int width = get_field_width(field);
  1144. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1145. }
  1146. fprintf(fout, "\n");
  1147. }
  1148. void print_test(const test & t) override {
  1149. std::map<std::string, std::string> vmap = t.get_map();
  1150. fprintf(fout, "|");
  1151. for (const auto & field : fields) {
  1152. std::string value;
  1153. char buf[128];
  1154. if (field == "model") {
  1155. value = t.model_type;
  1156. } else if (field == "size") {
  1157. if (t.model_size < 1024*1024*1024) {
  1158. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1159. } else {
  1160. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1161. }
  1162. value = buf;
  1163. } else if (field == "params") {
  1164. if (t.model_n_params < 1000*1000*1000) {
  1165. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1166. } else {
  1167. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1168. }
  1169. value = buf;
  1170. } else if (field == "backend") {
  1171. value = test::get_backend();
  1172. } else if (field == "test") {
  1173. if (t.n_prompt > 0 && t.n_gen == 0) {
  1174. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1175. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1176. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1177. } else {
  1178. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1179. }
  1180. value = buf;
  1181. } else if (field == "t/s") {
  1182. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1183. value = buf;
  1184. } else if (vmap.find(field) != vmap.end()) {
  1185. value = vmap.at(field);
  1186. } else {
  1187. assert(false);
  1188. exit(1);
  1189. }
  1190. int width = get_field_width(field);
  1191. if (field == "t/s") {
  1192. // HACK: the utf-8 character is 2 bytes
  1193. width += 1;
  1194. }
  1195. fprintf(fout, " %*s |", width, value.c_str());
  1196. }
  1197. fprintf(fout, "\n");
  1198. }
  1199. void print_footer() override {
  1200. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1201. }
  1202. };
  1203. struct sql_printer : public printer {
  1204. static std::string get_sql_field_type(const std::string & field) {
  1205. switch (test::get_field_type(field)) {
  1206. case test::STRING:
  1207. return "TEXT";
  1208. case test::BOOL:
  1209. case test::INT:
  1210. return "INTEGER";
  1211. case test::FLOAT:
  1212. return "REAL";
  1213. default:
  1214. assert(false);
  1215. exit(1);
  1216. }
  1217. }
  1218. void print_header(const cmd_params & params) override {
  1219. std::vector<std::string> fields = test::get_fields();
  1220. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1221. for (size_t i = 0; i < fields.size(); i++) {
  1222. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1223. }
  1224. fprintf(fout, ");\n");
  1225. fprintf(fout, "\n");
  1226. (void) params;
  1227. }
  1228. void print_test(const test & t) override {
  1229. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1230. fprintf(fout, "VALUES (");
  1231. std::vector<std::string> values = t.get_values();
  1232. for (size_t i = 0; i < values.size(); i++) {
  1233. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1234. }
  1235. fprintf(fout, ");\n");
  1236. }
  1237. };
  1238. static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1239. llama_set_n_threads(ctx, n_threads, n_threads);
  1240. const llama_model * model = llama_get_model(ctx);
  1241. const int32_t n_vocab = llama_n_vocab(model);
  1242. std::vector<llama_token> tokens(n_batch);
  1243. int n_processed = 0;
  1244. while (n_processed < n_prompt) {
  1245. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1246. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1247. for (int i = 1; i < n_tokens; i++) {
  1248. tokens[i] = std::rand() % n_vocab;
  1249. }
  1250. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1251. n_processed += n_tokens;
  1252. }
  1253. llama_synchronize(ctx);
  1254. }
  1255. static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1256. llama_set_n_threads(ctx, n_threads, n_threads);
  1257. const llama_model * model = llama_get_model(ctx);
  1258. const int32_t n_vocab = llama_n_vocab(model);
  1259. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1260. for (int i = 0; i < n_gen; i++) {
  1261. llama_decode(ctx, llama_batch_get_one(&token, 1));
  1262. llama_synchronize(ctx);
  1263. token = std::rand() % n_vocab;
  1264. }
  1265. }
  1266. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1267. (void) level;
  1268. (void) text;
  1269. (void) user_data;
  1270. }
  1271. static std::unique_ptr<printer> create_printer(output_formats format) {
  1272. switch (format) {
  1273. case NONE:
  1274. return nullptr;
  1275. case CSV:
  1276. return std::unique_ptr<printer>(new csv_printer());
  1277. case JSON:
  1278. return std::unique_ptr<printer>(new json_printer());
  1279. case JSONL:
  1280. return std::unique_ptr<printer>(new jsonl_printer());
  1281. case MARKDOWN:
  1282. return std::unique_ptr<printer>(new markdown_printer());
  1283. case SQL:
  1284. return std::unique_ptr<printer>(new sql_printer());
  1285. }
  1286. GGML_ABORT("fatal error");
  1287. }
  1288. int main(int argc, char ** argv) {
  1289. // try to set locale for unicode characters in markdown
  1290. setlocale(LC_CTYPE, ".UTF-8");
  1291. #if !defined(NDEBUG)
  1292. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1293. #endif
  1294. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1295. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1296. #endif
  1297. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1298. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1299. #endif
  1300. cmd_params params = parse_cmd_params(argc, argv);
  1301. // initialize llama.cpp
  1302. if (!params.verbose) {
  1303. llama_log_set(llama_null_log_callback, NULL);
  1304. }
  1305. llama_backend_init();
  1306. llama_numa_init(params.numa);
  1307. set_process_priority(params.prio);
  1308. // initialize printer
  1309. std::unique_ptr<printer> p = create_printer(params.output_format);
  1310. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1311. if (p) {
  1312. p->fout = stdout;
  1313. p->print_header(params);
  1314. }
  1315. if (p_err) {
  1316. p_err->fout = stderr;
  1317. p_err->print_header(params);
  1318. }
  1319. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1320. llama_model * lmodel = nullptr;
  1321. const cmd_params_instance * prev_inst = nullptr;
  1322. int params_idx = 0;
  1323. auto params_count = params_instances.size();
  1324. for (const auto & inst : params_instances) {
  1325. params_idx ++;
  1326. if (params.progress) {
  1327. fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
  1328. }
  1329. // keep the same model between tests when possible
  1330. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1331. if (lmodel) {
  1332. llama_free_model(lmodel);
  1333. }
  1334. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1335. if (lmodel == NULL) {
  1336. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1337. return 1;
  1338. }
  1339. prev_inst = &inst;
  1340. }
  1341. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1342. if (ctx == NULL) {
  1343. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1344. llama_free_model(lmodel);
  1345. return 1;
  1346. }
  1347. test t(inst, lmodel, ctx);
  1348. llama_kv_cache_clear(ctx);
  1349. // cool off before the test
  1350. if (params.delay) {
  1351. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1352. }
  1353. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1354. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1355. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1356. exit(1);
  1357. }
  1358. tpp.strict_cpu = t.cpu_strict;
  1359. tpp.poll = t.poll;
  1360. tpp.prio = params.prio;
  1361. struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
  1362. if (!threadpool) {
  1363. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1364. exit(1);
  1365. }
  1366. llama_attach_threadpool(ctx, threadpool, NULL);
  1367. // warmup run
  1368. if (t.n_prompt > 0) {
  1369. if (params.progress) {
  1370. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
  1371. }
  1372. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1373. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1374. }
  1375. if (t.n_gen > 0) {
  1376. if (params.progress) {
  1377. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
  1378. }
  1379. test_gen(ctx, 1, t.n_threads);
  1380. }
  1381. for (int i = 0; i < params.reps; i++) {
  1382. llama_kv_cache_clear(ctx);
  1383. uint64_t t_start = get_time_ns();
  1384. if (t.n_prompt > 0) {
  1385. if (params.progress) {
  1386. fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1387. }
  1388. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1389. }
  1390. if (t.n_gen > 0) {
  1391. if (params.progress) {
  1392. fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1393. }
  1394. test_gen(ctx, t.n_gen, t.n_threads);
  1395. }
  1396. uint64_t t_ns = get_time_ns() - t_start;
  1397. t.samples_ns.push_back(t_ns);
  1398. }
  1399. if (p) {
  1400. p->print_test(t);
  1401. fflush(p->fout);
  1402. }
  1403. if (p_err) {
  1404. p_err->print_test(t);
  1405. fflush(p_err->fout);
  1406. }
  1407. llama_perf_context_print(ctx);
  1408. llama_free(ctx);
  1409. ggml_threadpool_free(threadpool);
  1410. }
  1411. llama_free_model(lmodel);
  1412. if (p) {
  1413. p->print_footer();
  1414. }
  1415. if (p_err) {
  1416. p_err->print_footer();
  1417. }
  1418. llama_backend_free();
  1419. return 0;
  1420. }