constants.py 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. VERSION = "general.version"
  22. URL = "general.url"
  23. DESCRIPTION = "general.description"
  24. LICENSE = "general.license"
  25. SOURCE_URL = "general.source.url"
  26. SOURCE_HF_REPO = "general.source.huggingface.repository"
  27. FILE_TYPE = "general.file_type"
  28. class LLM:
  29. VOCAB_SIZE = "{arch}.vocab_size"
  30. CONTEXT_LENGTH = "{arch}.context_length"
  31. EMBEDDING_LENGTH = "{arch}.embedding_length"
  32. BLOCK_COUNT = "{arch}.block_count"
  33. LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
  34. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  35. EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
  36. EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
  37. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  38. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  39. EXPERT_COUNT = "{arch}.expert_count"
  40. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  41. EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
  42. EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
  43. POOLING_TYPE = "{arch}.pooling_type"
  44. LOGIT_SCALE = "{arch}.logit_scale"
  45. DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
  46. ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
  47. FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
  48. class Attention:
  49. HEAD_COUNT = "{arch}.attention.head_count"
  50. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  51. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  52. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  53. KEY_LENGTH = "{arch}.attention.key_length"
  54. VALUE_LENGTH = "{arch}.attention.value_length"
  55. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  56. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  57. CAUSAL = "{arch}.attention.causal"
  58. Q_LORA_RANK = "{arch}.attention.q_lora_rank"
  59. KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
  60. REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
  61. SLIDING_WINDOW = "{arch}.attention.sliding_window"
  62. class Rope:
  63. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  64. FREQ_BASE = "{arch}.rope.freq_base"
  65. SCALING_TYPE = "{arch}.rope.scaling.type"
  66. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  67. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  68. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  69. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  70. SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
  71. class Split:
  72. LLM_KV_SPLIT_NO = "split.no"
  73. LLM_KV_SPLIT_COUNT = "split.count"
  74. LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
  75. class SSM:
  76. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  77. INNER_SIZE = "{arch}.ssm.inner_size"
  78. STATE_SIZE = "{arch}.ssm.state_size"
  79. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  80. class Tokenizer:
  81. MODEL = "tokenizer.ggml.model"
  82. PRE = "tokenizer.ggml.pre"
  83. LIST = "tokenizer.ggml.tokens"
  84. TOKEN_TYPE = "tokenizer.ggml.token_type"
  85. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  86. SCORES = "tokenizer.ggml.scores"
  87. MERGES = "tokenizer.ggml.merges"
  88. BOS_ID = "tokenizer.ggml.bos_token_id"
  89. EOS_ID = "tokenizer.ggml.eos_token_id"
  90. UNK_ID = "tokenizer.ggml.unknown_token_id"
  91. SEP_ID = "tokenizer.ggml.seperator_token_id"
  92. PAD_ID = "tokenizer.ggml.padding_token_id"
  93. CLS_ID = "tokenizer.ggml.cls_token_id"
  94. MASK_ID = "tokenizer.ggml.mask_token_id"
  95. ADD_BOS = "tokenizer.ggml.add_bos_token"
  96. ADD_EOS = "tokenizer.ggml.add_eos_token"
  97. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  98. REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
  99. PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
  100. HF_JSON = "tokenizer.huggingface.json"
  101. RWKV = "tokenizer.rwkv.world"
  102. CHAT_TEMPLATE = "tokenizer.chat_template"
  103. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  104. CHAT_TEMPLATES = "tokenizer.chat_templates"
  105. # FIM/Infill special tokens constants
  106. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  107. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  108. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  109. EOT_ID = "tokenizer.ggml.eot_token_id"
  110. #
  111. # recommended mapping of model tensor names for storage in gguf
  112. #
  113. class MODEL_ARCH(IntEnum):
  114. LLAMA = auto()
  115. FALCON = auto()
  116. BAICHUAN = auto()
  117. GROK = auto()
  118. GPT2 = auto()
  119. GPTJ = auto()
  120. GPTNEOX = auto()
  121. MPT = auto()
  122. STARCODER = auto()
  123. REFACT = auto()
  124. BERT = auto()
  125. NOMIC_BERT = auto()
  126. JINA_BERT_V2 = auto()
  127. BLOOM = auto()
  128. STABLELM = auto()
  129. QWEN = auto()
  130. QWEN2 = auto()
  131. QWEN2MOE = auto()
  132. PHI2 = auto()
  133. PHI3 = auto()
  134. PLAMO = auto()
  135. CODESHELL = auto()
  136. ORION = auto()
  137. INTERNLM2 = auto()
  138. MINICPM = auto()
  139. GEMMA = auto()
  140. GEMMA2 = auto()
  141. STARCODER2 = auto()
  142. MAMBA = auto()
  143. XVERSE = auto()
  144. COMMAND_R = auto()
  145. DBRX = auto()
  146. OLMO = auto()
  147. OPENELM = auto()
  148. ARCTIC = auto()
  149. DEEPSEEK2 = auto()
  150. BITNET = auto()
  151. T5 = auto()
  152. JAIS = auto()
  153. class MODEL_TENSOR(IntEnum):
  154. TOKEN_EMBD = auto()
  155. TOKEN_EMBD_NORM = auto()
  156. TOKEN_TYPES = auto()
  157. POS_EMBD = auto()
  158. OUTPUT = auto()
  159. OUTPUT_NORM = auto()
  160. ROPE_FREQS = auto()
  161. ROPE_FACTORS_LONG = auto()
  162. ROPE_FACTORS_SHORT = auto()
  163. ATTN_Q = auto()
  164. ATTN_K = auto()
  165. ATTN_V = auto()
  166. ATTN_QKV = auto()
  167. ATTN_OUT = auto()
  168. ATTN_NORM = auto()
  169. ATTN_NORM_2 = auto()
  170. ATTN_OUT_NORM = auto()
  171. ATTN_POST_NORM = auto()
  172. ATTN_ROT_EMBD = auto()
  173. FFN_GATE_INP = auto()
  174. FFN_GATE_INP_SHEXP = auto()
  175. FFN_NORM = auto()
  176. FFN_PRE_NORM = auto()
  177. FFN_POST_NORM = auto()
  178. FFN_GATE = auto()
  179. FFN_DOWN = auto()
  180. FFN_UP = auto()
  181. FFN_ACT = auto()
  182. FFN_NORM_EXP = auto()
  183. FFN_GATE_EXP = auto()
  184. FFN_DOWN_EXP = auto()
  185. FFN_UP_EXP = auto()
  186. FFN_GATE_SHEXP = auto()
  187. FFN_DOWN_SHEXP = auto()
  188. FFN_UP_SHEXP = auto()
  189. ATTN_Q_NORM = auto()
  190. ATTN_K_NORM = auto()
  191. LAYER_OUT_NORM = auto()
  192. SSM_IN = auto()
  193. SSM_CONV1D = auto()
  194. SSM_X = auto()
  195. SSM_DT = auto()
  196. SSM_A = auto()
  197. SSM_D = auto()
  198. SSM_OUT = auto()
  199. ATTN_Q_A = auto()
  200. ATTN_Q_B = auto()
  201. ATTN_KV_A_MQA = auto()
  202. ATTN_KV_B = auto()
  203. ATTN_Q_A_NORM = auto()
  204. ATTN_KV_A_NORM = auto()
  205. FFN_SUB_NORM = auto()
  206. ATTN_SUB_NORM = auto()
  207. DEC_ATTN_NORM = auto()
  208. DEC_ATTN_Q = auto()
  209. DEC_ATTN_K = auto()
  210. DEC_ATTN_V = auto()
  211. DEC_ATTN_OUT = auto()
  212. DEC_ATTN_REL_B = auto()
  213. DEC_CROSS_ATTN_NORM = auto()
  214. DEC_CROSS_ATTN_Q = auto()
  215. DEC_CROSS_ATTN_K = auto()
  216. DEC_CROSS_ATTN_V = auto()
  217. DEC_CROSS_ATTN_OUT = auto()
  218. DEC_CROSS_ATTN_REL_B = auto()
  219. DEC_FFN_NORM = auto()
  220. DEC_FFN_GATE = auto()
  221. DEC_FFN_DOWN = auto()
  222. DEC_FFN_UP = auto()
  223. DEC_OUTPUT_NORM = auto()
  224. ENC_ATTN_NORM = auto()
  225. ENC_ATTN_Q = auto()
  226. ENC_ATTN_K = auto()
  227. ENC_ATTN_V = auto()
  228. ENC_ATTN_OUT = auto()
  229. ENC_ATTN_REL_B = auto()
  230. ENC_FFN_NORM = auto()
  231. ENC_FFN_GATE = auto()
  232. ENC_FFN_DOWN = auto()
  233. ENC_FFN_UP = auto()
  234. ENC_OUTPUT_NORM = auto()
  235. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  236. MODEL_ARCH.LLAMA: "llama",
  237. MODEL_ARCH.FALCON: "falcon",
  238. MODEL_ARCH.BAICHUAN: "baichuan",
  239. MODEL_ARCH.GROK: "grok",
  240. MODEL_ARCH.GPT2: "gpt2",
  241. MODEL_ARCH.GPTJ: "gptj",
  242. MODEL_ARCH.GPTNEOX: "gptneox",
  243. MODEL_ARCH.MPT: "mpt",
  244. MODEL_ARCH.STARCODER: "starcoder",
  245. MODEL_ARCH.REFACT: "refact",
  246. MODEL_ARCH.BERT: "bert",
  247. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  248. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  249. MODEL_ARCH.BLOOM: "bloom",
  250. MODEL_ARCH.STABLELM: "stablelm",
  251. MODEL_ARCH.QWEN: "qwen",
  252. MODEL_ARCH.QWEN2: "qwen2",
  253. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  254. MODEL_ARCH.PHI2: "phi2",
  255. MODEL_ARCH.PHI3: "phi3",
  256. MODEL_ARCH.PLAMO: "plamo",
  257. MODEL_ARCH.CODESHELL: "codeshell",
  258. MODEL_ARCH.ORION: "orion",
  259. MODEL_ARCH.INTERNLM2: "internlm2",
  260. MODEL_ARCH.MINICPM: "minicpm",
  261. MODEL_ARCH.GEMMA: "gemma",
  262. MODEL_ARCH.GEMMA2: "gemma2",
  263. MODEL_ARCH.STARCODER2: "starcoder2",
  264. MODEL_ARCH.MAMBA: "mamba",
  265. MODEL_ARCH.XVERSE: "xverse",
  266. MODEL_ARCH.COMMAND_R: "command-r",
  267. MODEL_ARCH.DBRX: "dbrx",
  268. MODEL_ARCH.OLMO: "olmo",
  269. MODEL_ARCH.OPENELM: "openelm",
  270. MODEL_ARCH.ARCTIC: "arctic",
  271. MODEL_ARCH.DEEPSEEK2: "deepseek2",
  272. MODEL_ARCH.BITNET: "bitnet",
  273. MODEL_ARCH.T5: "t5",
  274. MODEL_ARCH.JAIS: "jais",
  275. }
  276. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  277. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  278. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  279. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  280. MODEL_TENSOR.POS_EMBD: "position_embd",
  281. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  282. MODEL_TENSOR.OUTPUT: "output",
  283. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  284. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  285. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  286. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  287. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  288. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  289. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  290. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  291. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  292. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  293. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  294. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  295. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  296. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  297. MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
  298. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  299. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  300. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  301. MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
  302. MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
  303. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  304. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  305. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  306. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  307. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  308. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  309. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  310. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  311. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  312. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  313. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  314. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  315. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  316. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  317. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  318. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  319. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  320. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  321. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  322. MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
  323. MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
  324. MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
  325. MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
  326. MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
  327. MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
  328. MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
  329. MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
  330. MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
  331. MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
  332. MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
  333. MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
  334. MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
  335. MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
  336. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
  337. MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
  338. MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
  339. MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
  340. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
  341. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
  342. MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
  343. MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
  344. MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
  345. MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
  346. MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
  347. MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
  348. MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
  349. MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
  350. MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
  351. MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
  352. MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
  353. MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
  354. MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
  355. MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
  356. MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
  357. MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
  358. }
  359. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  360. MODEL_ARCH.LLAMA: [
  361. MODEL_TENSOR.TOKEN_EMBD,
  362. MODEL_TENSOR.OUTPUT_NORM,
  363. MODEL_TENSOR.OUTPUT,
  364. MODEL_TENSOR.ROPE_FREQS,
  365. MODEL_TENSOR.ATTN_NORM,
  366. MODEL_TENSOR.ATTN_Q,
  367. MODEL_TENSOR.ATTN_K,
  368. MODEL_TENSOR.ATTN_V,
  369. MODEL_TENSOR.ATTN_OUT,
  370. MODEL_TENSOR.ATTN_ROT_EMBD,
  371. MODEL_TENSOR.FFN_GATE_INP,
  372. MODEL_TENSOR.FFN_NORM,
  373. MODEL_TENSOR.FFN_GATE,
  374. MODEL_TENSOR.FFN_DOWN,
  375. MODEL_TENSOR.FFN_UP,
  376. MODEL_TENSOR.FFN_GATE_EXP,
  377. MODEL_TENSOR.FFN_DOWN_EXP,
  378. MODEL_TENSOR.FFN_UP_EXP,
  379. ],
  380. MODEL_ARCH.GROK: [
  381. MODEL_TENSOR.TOKEN_EMBD,
  382. MODEL_TENSOR.OUTPUT_NORM,
  383. MODEL_TENSOR.OUTPUT,
  384. MODEL_TENSOR.ROPE_FREQS,
  385. MODEL_TENSOR.ATTN_NORM,
  386. MODEL_TENSOR.ATTN_Q,
  387. MODEL_TENSOR.ATTN_K,
  388. MODEL_TENSOR.ATTN_V,
  389. MODEL_TENSOR.ATTN_OUT,
  390. MODEL_TENSOR.ATTN_ROT_EMBD,
  391. MODEL_TENSOR.ATTN_OUT_NORM,
  392. MODEL_TENSOR.FFN_GATE_INP,
  393. MODEL_TENSOR.FFN_NORM,
  394. MODEL_TENSOR.FFN_GATE,
  395. MODEL_TENSOR.FFN_DOWN,
  396. MODEL_TENSOR.FFN_UP,
  397. MODEL_TENSOR.FFN_GATE_EXP,
  398. MODEL_TENSOR.FFN_DOWN_EXP,
  399. MODEL_TENSOR.FFN_UP_EXP,
  400. MODEL_TENSOR.LAYER_OUT_NORM,
  401. ],
  402. MODEL_ARCH.GPTNEOX: [
  403. MODEL_TENSOR.TOKEN_EMBD,
  404. MODEL_TENSOR.OUTPUT_NORM,
  405. MODEL_TENSOR.OUTPUT,
  406. MODEL_TENSOR.ATTN_NORM,
  407. MODEL_TENSOR.ATTN_QKV,
  408. MODEL_TENSOR.ATTN_OUT,
  409. MODEL_TENSOR.FFN_NORM,
  410. MODEL_TENSOR.FFN_DOWN,
  411. MODEL_TENSOR.FFN_UP,
  412. ],
  413. MODEL_ARCH.FALCON: [
  414. MODEL_TENSOR.TOKEN_EMBD,
  415. MODEL_TENSOR.OUTPUT_NORM,
  416. MODEL_TENSOR.OUTPUT,
  417. MODEL_TENSOR.ATTN_NORM,
  418. MODEL_TENSOR.ATTN_NORM_2,
  419. MODEL_TENSOR.ATTN_QKV,
  420. MODEL_TENSOR.ATTN_OUT,
  421. MODEL_TENSOR.FFN_DOWN,
  422. MODEL_TENSOR.FFN_UP,
  423. ],
  424. MODEL_ARCH.BAICHUAN: [
  425. MODEL_TENSOR.TOKEN_EMBD,
  426. MODEL_TENSOR.OUTPUT_NORM,
  427. MODEL_TENSOR.OUTPUT,
  428. MODEL_TENSOR.ROPE_FREQS,
  429. MODEL_TENSOR.ATTN_NORM,
  430. MODEL_TENSOR.ATTN_Q,
  431. MODEL_TENSOR.ATTN_K,
  432. MODEL_TENSOR.ATTN_V,
  433. MODEL_TENSOR.ATTN_OUT,
  434. MODEL_TENSOR.ATTN_ROT_EMBD,
  435. MODEL_TENSOR.FFN_NORM,
  436. MODEL_TENSOR.FFN_GATE,
  437. MODEL_TENSOR.FFN_DOWN,
  438. MODEL_TENSOR.FFN_UP,
  439. ],
  440. MODEL_ARCH.STARCODER: [
  441. MODEL_TENSOR.TOKEN_EMBD,
  442. MODEL_TENSOR.POS_EMBD,
  443. MODEL_TENSOR.OUTPUT_NORM,
  444. MODEL_TENSOR.OUTPUT,
  445. MODEL_TENSOR.ATTN_NORM,
  446. MODEL_TENSOR.ATTN_QKV,
  447. MODEL_TENSOR.ATTN_OUT,
  448. MODEL_TENSOR.FFN_NORM,
  449. MODEL_TENSOR.FFN_DOWN,
  450. MODEL_TENSOR.FFN_UP,
  451. ],
  452. MODEL_ARCH.BERT: [
  453. MODEL_TENSOR.TOKEN_EMBD,
  454. MODEL_TENSOR.TOKEN_EMBD_NORM,
  455. MODEL_TENSOR.TOKEN_TYPES,
  456. MODEL_TENSOR.POS_EMBD,
  457. MODEL_TENSOR.OUTPUT_NORM,
  458. MODEL_TENSOR.ATTN_OUT_NORM,
  459. MODEL_TENSOR.ATTN_Q,
  460. MODEL_TENSOR.ATTN_K,
  461. MODEL_TENSOR.ATTN_V,
  462. MODEL_TENSOR.ATTN_OUT,
  463. MODEL_TENSOR.FFN_DOWN,
  464. MODEL_TENSOR.FFN_UP,
  465. MODEL_TENSOR.LAYER_OUT_NORM,
  466. ],
  467. MODEL_ARCH.NOMIC_BERT: [
  468. MODEL_TENSOR.TOKEN_EMBD,
  469. MODEL_TENSOR.TOKEN_EMBD_NORM,
  470. MODEL_TENSOR.TOKEN_TYPES,
  471. MODEL_TENSOR.POS_EMBD,
  472. MODEL_TENSOR.OUTPUT_NORM,
  473. MODEL_TENSOR.ATTN_OUT_NORM,
  474. MODEL_TENSOR.ATTN_QKV,
  475. MODEL_TENSOR.ATTN_OUT,
  476. MODEL_TENSOR.FFN_GATE,
  477. MODEL_TENSOR.FFN_DOWN,
  478. MODEL_TENSOR.FFN_UP,
  479. MODEL_TENSOR.LAYER_OUT_NORM,
  480. ],
  481. MODEL_ARCH.JINA_BERT_V2: [
  482. MODEL_TENSOR.TOKEN_EMBD,
  483. MODEL_TENSOR.TOKEN_EMBD_NORM,
  484. MODEL_TENSOR.TOKEN_TYPES,
  485. MODEL_TENSOR.ATTN_NORM_2,
  486. MODEL_TENSOR.ATTN_OUT_NORM,
  487. MODEL_TENSOR.ATTN_Q,
  488. MODEL_TENSOR.ATTN_Q_NORM,
  489. MODEL_TENSOR.ATTN_K,
  490. MODEL_TENSOR.ATTN_K_NORM,
  491. MODEL_TENSOR.ATTN_V,
  492. MODEL_TENSOR.ATTN_OUT,
  493. MODEL_TENSOR.FFN_UP,
  494. MODEL_TENSOR.FFN_GATE,
  495. MODEL_TENSOR.FFN_DOWN,
  496. MODEL_TENSOR.LAYER_OUT_NORM,
  497. ],
  498. MODEL_ARCH.MPT: [
  499. MODEL_TENSOR.TOKEN_EMBD,
  500. MODEL_TENSOR.OUTPUT_NORM,
  501. MODEL_TENSOR.OUTPUT,
  502. MODEL_TENSOR.ATTN_NORM,
  503. MODEL_TENSOR.ATTN_QKV,
  504. MODEL_TENSOR.ATTN_OUT,
  505. MODEL_TENSOR.FFN_NORM,
  506. MODEL_TENSOR.FFN_DOWN,
  507. MODEL_TENSOR.FFN_UP,
  508. MODEL_TENSOR.FFN_ACT,
  509. MODEL_TENSOR.ATTN_Q_NORM,
  510. MODEL_TENSOR.ATTN_K_NORM,
  511. MODEL_TENSOR.POS_EMBD,
  512. ],
  513. MODEL_ARCH.GPTJ: [
  514. MODEL_TENSOR.TOKEN_EMBD,
  515. MODEL_TENSOR.OUTPUT_NORM,
  516. MODEL_TENSOR.OUTPUT,
  517. MODEL_TENSOR.ATTN_NORM,
  518. MODEL_TENSOR.ATTN_Q,
  519. MODEL_TENSOR.ATTN_K,
  520. MODEL_TENSOR.ATTN_V,
  521. MODEL_TENSOR.ATTN_OUT,
  522. MODEL_TENSOR.FFN_DOWN,
  523. MODEL_TENSOR.FFN_UP,
  524. ],
  525. MODEL_ARCH.REFACT: [
  526. MODEL_TENSOR.TOKEN_EMBD,
  527. MODEL_TENSOR.OUTPUT_NORM,
  528. MODEL_TENSOR.OUTPUT,
  529. MODEL_TENSOR.ATTN_NORM,
  530. MODEL_TENSOR.ATTN_Q,
  531. MODEL_TENSOR.ATTN_K,
  532. MODEL_TENSOR.ATTN_V,
  533. MODEL_TENSOR.ATTN_OUT,
  534. MODEL_TENSOR.FFN_NORM,
  535. MODEL_TENSOR.FFN_GATE,
  536. MODEL_TENSOR.FFN_DOWN,
  537. MODEL_TENSOR.FFN_UP,
  538. ],
  539. MODEL_ARCH.BLOOM: [
  540. MODEL_TENSOR.TOKEN_EMBD,
  541. MODEL_TENSOR.TOKEN_EMBD_NORM,
  542. MODEL_TENSOR.OUTPUT_NORM,
  543. MODEL_TENSOR.OUTPUT,
  544. MODEL_TENSOR.ATTN_NORM,
  545. MODEL_TENSOR.ATTN_QKV,
  546. MODEL_TENSOR.ATTN_OUT,
  547. MODEL_TENSOR.FFN_NORM,
  548. MODEL_TENSOR.FFN_DOWN,
  549. MODEL_TENSOR.FFN_UP,
  550. ],
  551. MODEL_ARCH.STABLELM: [
  552. MODEL_TENSOR.TOKEN_EMBD,
  553. MODEL_TENSOR.OUTPUT_NORM,
  554. MODEL_TENSOR.OUTPUT,
  555. MODEL_TENSOR.ROPE_FREQS,
  556. MODEL_TENSOR.ATTN_NORM,
  557. MODEL_TENSOR.ATTN_Q,
  558. MODEL_TENSOR.ATTN_K,
  559. MODEL_TENSOR.ATTN_V,
  560. MODEL_TENSOR.ATTN_OUT,
  561. MODEL_TENSOR.FFN_NORM,
  562. MODEL_TENSOR.FFN_GATE,
  563. MODEL_TENSOR.FFN_DOWN,
  564. MODEL_TENSOR.FFN_UP,
  565. MODEL_TENSOR.ATTN_Q_NORM,
  566. MODEL_TENSOR.ATTN_K_NORM,
  567. ],
  568. MODEL_ARCH.QWEN: [
  569. MODEL_TENSOR.TOKEN_EMBD,
  570. MODEL_TENSOR.OUTPUT_NORM,
  571. MODEL_TENSOR.OUTPUT,
  572. MODEL_TENSOR.ROPE_FREQS,
  573. MODEL_TENSOR.ATTN_NORM,
  574. MODEL_TENSOR.ATTN_QKV,
  575. MODEL_TENSOR.ATTN_OUT,
  576. MODEL_TENSOR.ATTN_ROT_EMBD,
  577. MODEL_TENSOR.FFN_NORM,
  578. MODEL_TENSOR.FFN_GATE,
  579. MODEL_TENSOR.FFN_DOWN,
  580. MODEL_TENSOR.FFN_UP,
  581. ],
  582. MODEL_ARCH.QWEN2: [
  583. MODEL_TENSOR.TOKEN_EMBD,
  584. MODEL_TENSOR.OUTPUT_NORM,
  585. MODEL_TENSOR.OUTPUT,
  586. MODEL_TENSOR.ATTN_NORM,
  587. MODEL_TENSOR.ATTN_Q,
  588. MODEL_TENSOR.ATTN_K,
  589. MODEL_TENSOR.ATTN_V,
  590. MODEL_TENSOR.ATTN_OUT,
  591. MODEL_TENSOR.FFN_NORM,
  592. MODEL_TENSOR.FFN_GATE,
  593. MODEL_TENSOR.FFN_DOWN,
  594. MODEL_TENSOR.FFN_UP,
  595. ],
  596. MODEL_ARCH.QWEN2MOE: [
  597. MODEL_TENSOR.TOKEN_EMBD,
  598. MODEL_TENSOR.OUTPUT_NORM,
  599. MODEL_TENSOR.OUTPUT,
  600. MODEL_TENSOR.ATTN_NORM,
  601. MODEL_TENSOR.ATTN_Q,
  602. MODEL_TENSOR.ATTN_K,
  603. MODEL_TENSOR.ATTN_V,
  604. MODEL_TENSOR.ATTN_OUT,
  605. MODEL_TENSOR.FFN_NORM,
  606. MODEL_TENSOR.FFN_GATE_INP,
  607. MODEL_TENSOR.FFN_GATE_EXP,
  608. MODEL_TENSOR.FFN_DOWN_EXP,
  609. MODEL_TENSOR.FFN_UP_EXP,
  610. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  611. MODEL_TENSOR.FFN_GATE_SHEXP,
  612. MODEL_TENSOR.FFN_DOWN_SHEXP,
  613. MODEL_TENSOR.FFN_UP_SHEXP,
  614. ],
  615. MODEL_ARCH.PLAMO: [
  616. MODEL_TENSOR.TOKEN_EMBD,
  617. MODEL_TENSOR.OUTPUT_NORM,
  618. MODEL_TENSOR.OUTPUT,
  619. MODEL_TENSOR.ROPE_FREQS,
  620. MODEL_TENSOR.ATTN_NORM,
  621. MODEL_TENSOR.ATTN_Q,
  622. MODEL_TENSOR.ATTN_K,
  623. MODEL_TENSOR.ATTN_V,
  624. MODEL_TENSOR.ATTN_OUT,
  625. MODEL_TENSOR.ATTN_ROT_EMBD,
  626. MODEL_TENSOR.FFN_GATE,
  627. MODEL_TENSOR.FFN_DOWN,
  628. MODEL_TENSOR.FFN_UP,
  629. ],
  630. MODEL_ARCH.GPT2: [
  631. MODEL_TENSOR.TOKEN_EMBD,
  632. MODEL_TENSOR.POS_EMBD,
  633. MODEL_TENSOR.OUTPUT_NORM,
  634. MODEL_TENSOR.OUTPUT,
  635. MODEL_TENSOR.ATTN_NORM,
  636. MODEL_TENSOR.ATTN_QKV,
  637. MODEL_TENSOR.ATTN_OUT,
  638. MODEL_TENSOR.FFN_NORM,
  639. MODEL_TENSOR.FFN_DOWN,
  640. MODEL_TENSOR.FFN_UP,
  641. ],
  642. MODEL_ARCH.PHI2: [
  643. MODEL_TENSOR.TOKEN_EMBD,
  644. MODEL_TENSOR.OUTPUT_NORM,
  645. MODEL_TENSOR.OUTPUT,
  646. MODEL_TENSOR.ATTN_NORM,
  647. MODEL_TENSOR.ATTN_QKV,
  648. MODEL_TENSOR.ATTN_Q,
  649. MODEL_TENSOR.ATTN_K,
  650. MODEL_TENSOR.ATTN_V,
  651. MODEL_TENSOR.ATTN_OUT,
  652. MODEL_TENSOR.FFN_NORM,
  653. MODEL_TENSOR.FFN_DOWN,
  654. MODEL_TENSOR.FFN_UP,
  655. ],
  656. MODEL_ARCH.PHI3: [
  657. MODEL_TENSOR.TOKEN_EMBD,
  658. MODEL_TENSOR.OUTPUT_NORM,
  659. MODEL_TENSOR.OUTPUT,
  660. MODEL_TENSOR.ATTN_NORM,
  661. MODEL_TENSOR.ATTN_QKV,
  662. MODEL_TENSOR.ATTN_Q,
  663. MODEL_TENSOR.ATTN_K,
  664. MODEL_TENSOR.ATTN_V,
  665. MODEL_TENSOR.ATTN_OUT,
  666. MODEL_TENSOR.FFN_NORM,
  667. MODEL_TENSOR.FFN_DOWN,
  668. MODEL_TENSOR.FFN_UP,
  669. ],
  670. MODEL_ARCH.CODESHELL: [
  671. MODEL_TENSOR.TOKEN_EMBD,
  672. MODEL_TENSOR.POS_EMBD,
  673. MODEL_TENSOR.OUTPUT_NORM,
  674. MODEL_TENSOR.OUTPUT,
  675. MODEL_TENSOR.ATTN_NORM,
  676. MODEL_TENSOR.ATTN_QKV,
  677. MODEL_TENSOR.ATTN_OUT,
  678. MODEL_TENSOR.ATTN_ROT_EMBD,
  679. MODEL_TENSOR.FFN_NORM,
  680. MODEL_TENSOR.FFN_DOWN,
  681. MODEL_TENSOR.FFN_UP,
  682. ],
  683. MODEL_ARCH.ORION: [
  684. MODEL_TENSOR.TOKEN_EMBD,
  685. MODEL_TENSOR.OUTPUT_NORM,
  686. MODEL_TENSOR.OUTPUT,
  687. MODEL_TENSOR.ROPE_FREQS,
  688. MODEL_TENSOR.ATTN_NORM,
  689. MODEL_TENSOR.ATTN_Q,
  690. MODEL_TENSOR.ATTN_K,
  691. MODEL_TENSOR.ATTN_V,
  692. MODEL_TENSOR.ATTN_OUT,
  693. MODEL_TENSOR.ATTN_ROT_EMBD,
  694. MODEL_TENSOR.FFN_NORM,
  695. MODEL_TENSOR.FFN_GATE,
  696. MODEL_TENSOR.FFN_DOWN,
  697. MODEL_TENSOR.FFN_UP,
  698. ],
  699. MODEL_ARCH.INTERNLM2: [
  700. MODEL_TENSOR.TOKEN_EMBD,
  701. MODEL_TENSOR.OUTPUT_NORM,
  702. MODEL_TENSOR.OUTPUT,
  703. MODEL_TENSOR.ATTN_NORM,
  704. MODEL_TENSOR.ATTN_Q,
  705. MODEL_TENSOR.ATTN_K,
  706. MODEL_TENSOR.ATTN_V,
  707. MODEL_TENSOR.ATTN_OUT,
  708. MODEL_TENSOR.ATTN_ROT_EMBD,
  709. MODEL_TENSOR.FFN_NORM,
  710. MODEL_TENSOR.FFN_GATE,
  711. MODEL_TENSOR.FFN_DOWN,
  712. MODEL_TENSOR.FFN_UP,
  713. ],
  714. MODEL_ARCH.MINICPM: [
  715. MODEL_TENSOR.TOKEN_EMBD,
  716. MODEL_TENSOR.OUTPUT,
  717. MODEL_TENSOR.OUTPUT_NORM,
  718. MODEL_TENSOR.ROPE_FREQS,
  719. MODEL_TENSOR.ATTN_NORM,
  720. MODEL_TENSOR.ATTN_Q,
  721. MODEL_TENSOR.ATTN_K,
  722. MODEL_TENSOR.ATTN_V,
  723. MODEL_TENSOR.ATTN_OUT,
  724. MODEL_TENSOR.ATTN_ROT_EMBD,
  725. MODEL_TENSOR.FFN_GATE_INP,
  726. MODEL_TENSOR.FFN_NORM,
  727. MODEL_TENSOR.FFN_GATE,
  728. MODEL_TENSOR.FFN_DOWN,
  729. MODEL_TENSOR.FFN_UP,
  730. MODEL_TENSOR.FFN_GATE_EXP,
  731. MODEL_TENSOR.FFN_DOWN_EXP,
  732. MODEL_TENSOR.FFN_UP_EXP,
  733. ],
  734. MODEL_ARCH.GEMMA: [
  735. MODEL_TENSOR.TOKEN_EMBD,
  736. MODEL_TENSOR.OUTPUT_NORM,
  737. MODEL_TENSOR.ATTN_NORM,
  738. MODEL_TENSOR.ATTN_Q,
  739. MODEL_TENSOR.ATTN_K,
  740. MODEL_TENSOR.ATTN_V,
  741. MODEL_TENSOR.ATTN_OUT,
  742. MODEL_TENSOR.FFN_GATE,
  743. MODEL_TENSOR.FFN_DOWN,
  744. MODEL_TENSOR.FFN_UP,
  745. MODEL_TENSOR.FFN_NORM,
  746. ],
  747. MODEL_ARCH.GEMMA2: [
  748. MODEL_TENSOR.TOKEN_EMBD,
  749. MODEL_TENSOR.OUTPUT_NORM,
  750. MODEL_TENSOR.ATTN_Q,
  751. MODEL_TENSOR.ATTN_K,
  752. MODEL_TENSOR.ATTN_V,
  753. MODEL_TENSOR.ATTN_OUT,
  754. MODEL_TENSOR.FFN_GATE,
  755. MODEL_TENSOR.FFN_DOWN,
  756. MODEL_TENSOR.FFN_UP,
  757. MODEL_TENSOR.ATTN_NORM,
  758. MODEL_TENSOR.ATTN_POST_NORM,
  759. MODEL_TENSOR.FFN_PRE_NORM,
  760. MODEL_TENSOR.FFN_POST_NORM,
  761. ],
  762. MODEL_ARCH.STARCODER2: [
  763. MODEL_TENSOR.TOKEN_EMBD,
  764. MODEL_TENSOR.OUTPUT_NORM,
  765. MODEL_TENSOR.OUTPUT,
  766. MODEL_TENSOR.ROPE_FREQS,
  767. MODEL_TENSOR.ATTN_NORM,
  768. MODEL_TENSOR.ATTN_Q,
  769. MODEL_TENSOR.ATTN_K,
  770. MODEL_TENSOR.ATTN_V,
  771. MODEL_TENSOR.ATTN_OUT,
  772. MODEL_TENSOR.ATTN_ROT_EMBD,
  773. MODEL_TENSOR.FFN_NORM,
  774. MODEL_TENSOR.FFN_DOWN,
  775. MODEL_TENSOR.FFN_UP,
  776. ],
  777. MODEL_ARCH.MAMBA: [
  778. MODEL_TENSOR.TOKEN_EMBD,
  779. MODEL_TENSOR.OUTPUT_NORM,
  780. MODEL_TENSOR.OUTPUT,
  781. MODEL_TENSOR.ATTN_NORM,
  782. MODEL_TENSOR.SSM_IN,
  783. MODEL_TENSOR.SSM_CONV1D,
  784. MODEL_TENSOR.SSM_X,
  785. MODEL_TENSOR.SSM_DT,
  786. MODEL_TENSOR.SSM_A,
  787. MODEL_TENSOR.SSM_D,
  788. MODEL_TENSOR.SSM_OUT,
  789. ],
  790. MODEL_ARCH.XVERSE: [
  791. MODEL_TENSOR.TOKEN_EMBD,
  792. MODEL_TENSOR.OUTPUT_NORM,
  793. MODEL_TENSOR.OUTPUT,
  794. MODEL_TENSOR.ROPE_FREQS,
  795. MODEL_TENSOR.ATTN_NORM,
  796. MODEL_TENSOR.ATTN_Q,
  797. MODEL_TENSOR.ATTN_K,
  798. MODEL_TENSOR.ATTN_V,
  799. MODEL_TENSOR.ATTN_OUT,
  800. MODEL_TENSOR.ATTN_ROT_EMBD,
  801. MODEL_TENSOR.FFN_NORM,
  802. MODEL_TENSOR.FFN_GATE,
  803. MODEL_TENSOR.FFN_DOWN,
  804. MODEL_TENSOR.FFN_UP,
  805. ],
  806. MODEL_ARCH.COMMAND_R: [
  807. MODEL_TENSOR.TOKEN_EMBD,
  808. MODEL_TENSOR.OUTPUT_NORM,
  809. MODEL_TENSOR.ATTN_NORM,
  810. MODEL_TENSOR.ATTN_Q,
  811. MODEL_TENSOR.ATTN_K,
  812. MODEL_TENSOR.ATTN_V,
  813. MODEL_TENSOR.ATTN_OUT,
  814. MODEL_TENSOR.FFN_GATE,
  815. MODEL_TENSOR.FFN_DOWN,
  816. MODEL_TENSOR.FFN_UP,
  817. MODEL_TENSOR.ATTN_K_NORM,
  818. MODEL_TENSOR.ATTN_Q_NORM,
  819. ],
  820. MODEL_ARCH.DBRX: [
  821. MODEL_TENSOR.TOKEN_EMBD,
  822. MODEL_TENSOR.OUTPUT_NORM,
  823. MODEL_TENSOR.OUTPUT,
  824. MODEL_TENSOR.ATTN_NORM,
  825. MODEL_TENSOR.ATTN_QKV,
  826. MODEL_TENSOR.ATTN_OUT,
  827. MODEL_TENSOR.ATTN_OUT_NORM,
  828. MODEL_TENSOR.FFN_GATE_INP,
  829. MODEL_TENSOR.FFN_GATE_EXP,
  830. MODEL_TENSOR.FFN_DOWN_EXP,
  831. MODEL_TENSOR.FFN_UP_EXP,
  832. ],
  833. MODEL_ARCH.OLMO: [
  834. MODEL_TENSOR.TOKEN_EMBD,
  835. MODEL_TENSOR.OUTPUT,
  836. MODEL_TENSOR.ATTN_Q,
  837. MODEL_TENSOR.ATTN_K,
  838. MODEL_TENSOR.ATTN_V,
  839. MODEL_TENSOR.ATTN_OUT,
  840. MODEL_TENSOR.FFN_GATE,
  841. MODEL_TENSOR.FFN_DOWN,
  842. MODEL_TENSOR.FFN_UP,
  843. ],
  844. MODEL_ARCH.OPENELM: [
  845. MODEL_TENSOR.TOKEN_EMBD,
  846. MODEL_TENSOR.OUTPUT_NORM,
  847. MODEL_TENSOR.ATTN_NORM,
  848. MODEL_TENSOR.ATTN_QKV,
  849. MODEL_TENSOR.ATTN_Q_NORM,
  850. MODEL_TENSOR.ATTN_K_NORM,
  851. MODEL_TENSOR.ATTN_OUT,
  852. MODEL_TENSOR.FFN_NORM,
  853. MODEL_TENSOR.FFN_GATE,
  854. MODEL_TENSOR.FFN_DOWN,
  855. MODEL_TENSOR.FFN_UP,
  856. ],
  857. MODEL_ARCH.ARCTIC: [
  858. MODEL_TENSOR.TOKEN_EMBD,
  859. MODEL_TENSOR.OUTPUT_NORM,
  860. MODEL_TENSOR.OUTPUT,
  861. MODEL_TENSOR.ROPE_FREQS,
  862. MODEL_TENSOR.ATTN_NORM,
  863. MODEL_TENSOR.ATTN_Q,
  864. MODEL_TENSOR.ATTN_K,
  865. MODEL_TENSOR.ATTN_V,
  866. MODEL_TENSOR.ATTN_OUT,
  867. MODEL_TENSOR.ATTN_ROT_EMBD,
  868. MODEL_TENSOR.FFN_GATE_INP,
  869. MODEL_TENSOR.FFN_NORM,
  870. MODEL_TENSOR.FFN_GATE,
  871. MODEL_TENSOR.FFN_DOWN,
  872. MODEL_TENSOR.FFN_UP,
  873. MODEL_TENSOR.FFN_NORM_EXP,
  874. MODEL_TENSOR.FFN_GATE_EXP,
  875. MODEL_TENSOR.FFN_DOWN_EXP,
  876. MODEL_TENSOR.FFN_UP_EXP,
  877. ],
  878. MODEL_ARCH.DEEPSEEK2: [
  879. MODEL_TENSOR.TOKEN_EMBD,
  880. MODEL_TENSOR.OUTPUT_NORM,
  881. MODEL_TENSOR.OUTPUT,
  882. MODEL_TENSOR.ROPE_FREQS,
  883. MODEL_TENSOR.ATTN_NORM,
  884. MODEL_TENSOR.ATTN_Q,
  885. MODEL_TENSOR.ATTN_Q_A,
  886. MODEL_TENSOR.ATTN_Q_B,
  887. MODEL_TENSOR.ATTN_KV_A_MQA,
  888. MODEL_TENSOR.ATTN_KV_B,
  889. MODEL_TENSOR.ATTN_Q_A_NORM,
  890. MODEL_TENSOR.ATTN_KV_A_NORM,
  891. MODEL_TENSOR.ATTN_OUT,
  892. MODEL_TENSOR.ATTN_ROT_EMBD,
  893. MODEL_TENSOR.FFN_GATE_INP,
  894. MODEL_TENSOR.FFN_NORM,
  895. MODEL_TENSOR.FFN_GATE,
  896. MODEL_TENSOR.FFN_DOWN,
  897. MODEL_TENSOR.FFN_UP,
  898. MODEL_TENSOR.FFN_GATE_EXP,
  899. MODEL_TENSOR.FFN_DOWN_EXP,
  900. MODEL_TENSOR.FFN_UP_EXP,
  901. MODEL_TENSOR.FFN_GATE_SHEXP,
  902. MODEL_TENSOR.FFN_DOWN_SHEXP,
  903. MODEL_TENSOR.FFN_UP_SHEXP,
  904. ],
  905. MODEL_ARCH.BITNET: [
  906. MODEL_TENSOR.ATTN_Q,
  907. MODEL_TENSOR.ATTN_K,
  908. MODEL_TENSOR.ATTN_V,
  909. MODEL_TENSOR.TOKEN_EMBD,
  910. MODEL_TENSOR.OUTPUT_NORM,
  911. MODEL_TENSOR.ATTN_NORM,
  912. MODEL_TENSOR.ATTN_OUT,
  913. MODEL_TENSOR.FFN_NORM,
  914. MODEL_TENSOR.FFN_GATE,
  915. MODEL_TENSOR.FFN_DOWN,
  916. MODEL_TENSOR.FFN_UP,
  917. MODEL_TENSOR.ATTN_SUB_NORM,
  918. MODEL_TENSOR.FFN_SUB_NORM,
  919. ],
  920. MODEL_ARCH.T5: [
  921. MODEL_TENSOR.TOKEN_EMBD,
  922. MODEL_TENSOR.OUTPUT,
  923. MODEL_TENSOR.DEC_ATTN_NORM,
  924. MODEL_TENSOR.DEC_ATTN_Q,
  925. MODEL_TENSOR.DEC_ATTN_K,
  926. MODEL_TENSOR.DEC_ATTN_V,
  927. MODEL_TENSOR.DEC_ATTN_OUT,
  928. MODEL_TENSOR.DEC_ATTN_REL_B,
  929. MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
  930. MODEL_TENSOR.DEC_CROSS_ATTN_Q,
  931. MODEL_TENSOR.DEC_CROSS_ATTN_K,
  932. MODEL_TENSOR.DEC_CROSS_ATTN_V,
  933. MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
  934. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
  935. MODEL_TENSOR.DEC_FFN_NORM,
  936. MODEL_TENSOR.DEC_FFN_GATE,
  937. MODEL_TENSOR.DEC_FFN_DOWN,
  938. MODEL_TENSOR.DEC_FFN_UP,
  939. MODEL_TENSOR.DEC_OUTPUT_NORM,
  940. MODEL_TENSOR.ENC_ATTN_NORM,
  941. MODEL_TENSOR.ENC_ATTN_Q,
  942. MODEL_TENSOR.ENC_ATTN_K,
  943. MODEL_TENSOR.ENC_ATTN_V,
  944. MODEL_TENSOR.ENC_ATTN_OUT,
  945. MODEL_TENSOR.ENC_ATTN_REL_B,
  946. MODEL_TENSOR.ENC_FFN_NORM,
  947. MODEL_TENSOR.ENC_FFN_GATE,
  948. MODEL_TENSOR.ENC_FFN_DOWN,
  949. MODEL_TENSOR.ENC_FFN_UP,
  950. MODEL_TENSOR.ENC_OUTPUT_NORM,
  951. ],
  952. MODEL_ARCH.JAIS: [
  953. MODEL_TENSOR.TOKEN_EMBD,
  954. MODEL_TENSOR.OUTPUT_NORM,
  955. MODEL_TENSOR.OUTPUT,
  956. MODEL_TENSOR.ATTN_NORM,
  957. MODEL_TENSOR.ATTN_QKV,
  958. MODEL_TENSOR.ATTN_OUT,
  959. MODEL_TENSOR.FFN_NORM,
  960. MODEL_TENSOR.FFN_DOWN,
  961. MODEL_TENSOR.FFN_GATE,
  962. MODEL_TENSOR.FFN_UP,
  963. ],
  964. # TODO
  965. }
  966. # tensors that will not be serialized
  967. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  968. MODEL_ARCH.LLAMA: [
  969. MODEL_TENSOR.ROPE_FREQS,
  970. MODEL_TENSOR.ATTN_ROT_EMBD,
  971. ],
  972. MODEL_ARCH.BAICHUAN: [
  973. MODEL_TENSOR.ROPE_FREQS,
  974. MODEL_TENSOR.ATTN_ROT_EMBD,
  975. ],
  976. MODEL_ARCH.QWEN: [
  977. MODEL_TENSOR.ROPE_FREQS,
  978. MODEL_TENSOR.ATTN_ROT_EMBD,
  979. ],
  980. MODEL_ARCH.CODESHELL: [
  981. MODEL_TENSOR.ROPE_FREQS,
  982. MODEL_TENSOR.ATTN_ROT_EMBD,
  983. ],
  984. MODEL_ARCH.ORION: [
  985. MODEL_TENSOR.ROPE_FREQS,
  986. MODEL_TENSOR.ATTN_ROT_EMBD,
  987. ],
  988. MODEL_ARCH.STARCODER2: [
  989. MODEL_TENSOR.ROPE_FREQS,
  990. MODEL_TENSOR.ATTN_ROT_EMBD,
  991. ],
  992. MODEL_ARCH.XVERSE: [
  993. MODEL_TENSOR.ROPE_FREQS,
  994. MODEL_TENSOR.ATTN_ROT_EMBD,
  995. ],
  996. MODEL_ARCH.DEEPSEEK2: [
  997. MODEL_TENSOR.ROPE_FREQS,
  998. MODEL_TENSOR.ATTN_ROT_EMBD,
  999. ],
  1000. }
  1001. #
  1002. # types
  1003. #
  1004. class TokenType(IntEnum):
  1005. NORMAL = 1
  1006. UNKNOWN = 2
  1007. CONTROL = 3
  1008. USER_DEFINED = 4
  1009. UNUSED = 5
  1010. BYTE = 6
  1011. class RopeScalingType(Enum):
  1012. NONE = 'none'
  1013. LINEAR = 'linear'
  1014. YARN = 'yarn'
  1015. class PoolingType(IntEnum):
  1016. NONE = 0
  1017. MEAN = 1
  1018. CLS = 2
  1019. class GGMLQuantizationType(IntEnum):
  1020. F32 = 0
  1021. F16 = 1
  1022. Q4_0 = 2
  1023. Q4_1 = 3
  1024. Q5_0 = 6
  1025. Q5_1 = 7
  1026. Q8_0 = 8
  1027. Q8_1 = 9
  1028. Q2_K = 10
  1029. Q3_K = 11
  1030. Q4_K = 12
  1031. Q5_K = 13
  1032. Q6_K = 14
  1033. Q8_K = 15
  1034. IQ2_XXS = 16
  1035. IQ2_XS = 17
  1036. IQ3_XXS = 18
  1037. IQ1_S = 19
  1038. IQ4_NL = 20
  1039. IQ3_S = 21
  1040. IQ2_S = 22
  1041. IQ4_XS = 23
  1042. I8 = 24
  1043. I16 = 25
  1044. I32 = 26
  1045. I64 = 27
  1046. F64 = 28
  1047. IQ1_M = 29
  1048. BF16 = 30
  1049. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  1050. # from llama_ftype in llama.h
  1051. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  1052. class LlamaFileType(IntEnum):
  1053. ALL_F32 = 0
  1054. MOSTLY_F16 = 1 # except 1d tensors
  1055. MOSTLY_Q4_0 = 2 # except 1d tensors
  1056. MOSTLY_Q4_1 = 3 # except 1d tensors
  1057. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  1058. # MOSTLY_Q4_2 = 5 # support has been removed
  1059. # MOSTLY_Q4_3 = 6 # support has been removed
  1060. MOSTLY_Q8_0 = 7 # except 1d tensors
  1061. MOSTLY_Q5_0 = 8 # except 1d tensors
  1062. MOSTLY_Q5_1 = 9 # except 1d tensors
  1063. MOSTLY_Q2_K = 10 # except 1d tensors
  1064. MOSTLY_Q3_K_S = 11 # except 1d tensors
  1065. MOSTLY_Q3_K_M = 12 # except 1d tensors
  1066. MOSTLY_Q3_K_L = 13 # except 1d tensors
  1067. MOSTLY_Q4_K_S = 14 # except 1d tensors
  1068. MOSTLY_Q4_K_M = 15 # except 1d tensors
  1069. MOSTLY_Q5_K_S = 16 # except 1d tensors
  1070. MOSTLY_Q5_K_M = 17 # except 1d tensors
  1071. MOSTLY_Q6_K = 18 # except 1d tensors
  1072. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  1073. MOSTLY_IQ2_XS = 20 # except 1d tensors
  1074. MOSTLY_Q2_K_S = 21 # except 1d tensors
  1075. MOSTLY_IQ3_XS = 22 # except 1d tensors
  1076. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  1077. MOSTLY_IQ1_S = 24 # except 1d tensors
  1078. MOSTLY_IQ4_NL = 25 # except 1d tensors
  1079. MOSTLY_IQ3_S = 26 # except 1d tensors
  1080. MOSTLY_IQ3_M = 27 # except 1d tensors
  1081. MOSTLY_IQ2_S = 28 # except 1d tensors
  1082. MOSTLY_IQ2_M = 29 # except 1d tensors
  1083. MOSTLY_IQ4_XS = 30 # except 1d tensors
  1084. MOSTLY_IQ1_M = 31 # except 1d tensors
  1085. MOSTLY_BF16 = 32 # except 1d tensors
  1086. GUESSED = 1024 # not specified in the model file
  1087. class GGUFEndian(IntEnum):
  1088. LITTLE = 0
  1089. BIG = 1
  1090. class GGUFValueType(IntEnum):
  1091. UINT8 = 0
  1092. INT8 = 1
  1093. UINT16 = 2
  1094. INT16 = 3
  1095. UINT32 = 4
  1096. INT32 = 5
  1097. FLOAT32 = 6
  1098. BOOL = 7
  1099. STRING = 8
  1100. ARRAY = 9
  1101. UINT64 = 10
  1102. INT64 = 11
  1103. FLOAT64 = 12
  1104. @staticmethod
  1105. def get_type(val: Any) -> GGUFValueType:
  1106. if isinstance(val, (str, bytes, bytearray)):
  1107. return GGUFValueType.STRING
  1108. elif isinstance(val, list):
  1109. return GGUFValueType.ARRAY
  1110. elif isinstance(val, float):
  1111. return GGUFValueType.FLOAT32
  1112. elif isinstance(val, bool):
  1113. return GGUFValueType.BOOL
  1114. elif isinstance(val, int):
  1115. return GGUFValueType.INT32
  1116. # TODO: need help with 64-bit types in Python
  1117. else:
  1118. raise ValueError(f"Unknown type: {type(val)}")
  1119. # Items here are (block size, type size)
  1120. QK_K = 256
  1121. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  1122. GGMLQuantizationType.F32: (1, 4),
  1123. GGMLQuantizationType.F16: (1, 2),
  1124. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  1125. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  1126. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  1127. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  1128. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  1129. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  1130. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  1131. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  1132. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  1133. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  1134. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  1135. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  1136. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  1137. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  1138. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  1139. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  1140. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  1141. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  1142. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  1143. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  1144. GGMLQuantizationType.I8: (1, 1),
  1145. GGMLQuantizationType.I16: (1, 2),
  1146. GGMLQuantizationType.I32: (1, 4),
  1147. GGMLQuantizationType.I64: (1, 8),
  1148. GGMLQuantizationType.F64: (1, 8),
  1149. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  1150. GGMLQuantizationType.BF16: (1, 2),
  1151. }
  1152. # Aliases for backward compatibility.
  1153. # general
  1154. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  1155. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  1156. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  1157. KEY_GENERAL_NAME = Keys.General.NAME
  1158. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  1159. KEY_GENERAL_URL = Keys.General.URL
  1160. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  1161. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  1162. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  1163. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  1164. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  1165. # LLM
  1166. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  1167. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  1168. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  1169. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  1170. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  1171. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  1172. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  1173. # attention
  1174. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  1175. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  1176. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  1177. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  1178. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  1179. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  1180. # RoPE
  1181. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  1182. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  1183. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  1184. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  1185. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  1186. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  1187. # SSM
  1188. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  1189. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  1190. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  1191. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  1192. # tokenization
  1193. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  1194. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  1195. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  1196. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  1197. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  1198. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  1199. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  1200. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  1201. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  1202. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  1203. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  1204. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  1205. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  1206. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  1207. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  1208. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  1209. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  1210. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  1211. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID