tensor_mapping.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "transformer.token_embeddings", # openelm
  24. "shared", # t5
  25. ),
  26. # Token type embeddings
  27. MODEL_TENSOR.TOKEN_TYPES: (
  28. "embeddings.token_type_embeddings", # bert nomic-bert
  29. ),
  30. # Normalization of token embeddings
  31. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  32. "word_embeddings_layernorm", # bloom
  33. "embeddings.LayerNorm", # bert
  34. "emb_ln", # nomic-bert
  35. "transformer.norm", # openelm
  36. ),
  37. # Position embeddings
  38. MODEL_TENSOR.POS_EMBD: (
  39. "transformer.wpe", # gpt2
  40. "embeddings.position_embeddings", # bert
  41. "wpe", # gpt2
  42. ),
  43. # Output
  44. MODEL_TENSOR.OUTPUT: (
  45. "embed_out", # gptneox
  46. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
  47. "output", # llama-pth bloom internlm2
  48. "word_embeddings_for_head", # persimmon
  49. "lm_head.linear", # phi2
  50. ),
  51. # Output norm
  52. MODEL_TENSOR.OUTPUT_NORM: (
  53. "gpt_neox.final_layer_norm", # gptneox
  54. "transformer.ln_f", # gpt2 gpt-j falcon jais
  55. "model.norm", # llama-hf baichuan internlm2
  56. "norm", # llama-pth
  57. "transformer.norm_f", # mpt dbrx
  58. "ln_f", # refact bloom qwen gpt2
  59. "language_model.encoder.final_layernorm", # persimmon
  60. "model.final_layernorm", # persimmon
  61. "lm_head.ln", # phi2
  62. "model.norm_f", # mamba-qbert
  63. "backbone.norm_f", # mamba
  64. "transformer.rms_norm", # Grok
  65. "transformer.norm", # openelm
  66. ),
  67. # Rope frequencies
  68. MODEL_TENSOR.ROPE_FREQS: (
  69. "rope.freqs", # llama-pth
  70. ),
  71. }
  72. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  73. # Attention norm
  74. MODEL_TENSOR.ATTN_NORM: (
  75. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  76. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
  77. "transformer.blocks.{bid}.norm_1", # mpt
  78. "transformer.h.{bid}.input_layernorm", # falcon7b
  79. "h.{bid}.input_layernorm", # bloom
  80. "transformer.h.{bid}.ln_mlp", # falcon40b
  81. "model.layers.{bid}.input_layernorm", # llama-hf
  82. "layers.{bid}.attention_norm", # llama-pth
  83. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  84. "model.layers.{bid}.ln1", # yi
  85. "h.{bid}.ln_1", # gpt2
  86. "transformer.h.{bid}.ln", # phi2
  87. "model.layers.layers.{bid}.norm", # plamo
  88. "model.layers.{bid}.attention_norm", # internlm2
  89. "model.layers.{bid}.norm", # mamba-qbert
  90. "backbone.layers.{bid}.norm", # mamba
  91. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  92. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  93. "transformer.layers.{bid}.attn_norm", # openelm
  94. ),
  95. # Attention norm 2
  96. MODEL_TENSOR.ATTN_NORM_2: (
  97. "transformer.h.{bid}.ln_attn", # falcon40b
  98. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  99. ),
  100. # Attention query-key-value
  101. MODEL_TENSOR.ATTN_QKV: (
  102. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  103. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  104. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  105. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  106. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  107. "h.{bid}.self_attention.query_key_value", # bloom
  108. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  109. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  110. "h.{bid}.attn.c_attn", # gpt2
  111. "transformer.h.{bid}.mixer.Wqkv", # phi2
  112. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  113. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  114. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  115. ),
  116. # Attention query
  117. MODEL_TENSOR.ATTN_Q: (
  118. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  119. "layers.{bid}.attention.wq", # llama-pth
  120. "encoder.layer.{bid}.attention.self.query", # bert
  121. "transformer.h.{bid}.attn.q_proj", # gpt-j
  122. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  123. "model.layers.{bid}.attention.wq", # internlm2
  124. "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
  125. ),
  126. # Attention key
  127. MODEL_TENSOR.ATTN_K: (
  128. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  129. "layers.{bid}.attention.wk", # llama-pth
  130. "encoder.layer.{bid}.attention.self.key", # bert
  131. "transformer.h.{bid}.attn.k_proj", # gpt-j
  132. "transformer.h.{bid}.attn.k", # refact
  133. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  134. "model.layers.{bid}.attention.wk", # internlm2
  135. "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
  136. ),
  137. # Attention value
  138. MODEL_TENSOR.ATTN_V: (
  139. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  140. "layers.{bid}.attention.wv", # llama-pth
  141. "encoder.layer.{bid}.attention.self.value", # bert
  142. "transformer.h.{bid}.attn.v_proj", # gpt-j
  143. "transformer.h.{bid}.attn.v", # refact
  144. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  145. "model.layers.{bid}.attention.wv", # internlm2
  146. "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
  147. ),
  148. # Attention output
  149. MODEL_TENSOR.ATTN_OUT: (
  150. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  151. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  152. "transformer.blocks.{bid}.attn.out_proj", # mpt
  153. "transformer.h.{bid}.self_attention.dense", # falcon
  154. "h.{bid}.self_attention.dense", # bloom
  155. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  156. "layers.{bid}.attention.wo", # llama-pth
  157. "encoder.layer.{bid}.attention.output.dense", # bert
  158. "transformer.h.{bid}.attn.out_proj", # gpt-j
  159. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  160. "model.layers.{bid}.self_attn.dense", # persimmon
  161. "h.{bid}.attn.c_proj", # gpt2
  162. "transformer.h.{bid}.mixer.out_proj", # phi2
  163. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  164. "model.layers.{bid}.attention.wo", # internlm2
  165. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  166. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  167. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  168. "transformer.layers.{bid}.attn.out_proj", # openelm
  169. ),
  170. # Attention output norm
  171. MODEL_TENSOR.ATTN_OUT_NORM: (
  172. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  173. "encoder.layers.{bid}.norm1", # nomic-bert
  174. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  175. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  176. ),
  177. MODEL_TENSOR.ATTN_POST_NORM: (
  178. "model.layers.{bid}.post_attention_layernorm", # gemma2
  179. ),
  180. # Rotary embeddings
  181. MODEL_TENSOR.ATTN_ROT_EMBD: (
  182. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  183. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  184. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  185. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  186. ),
  187. # Feed-forward norm
  188. MODEL_TENSOR.FFN_NORM: (
  189. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  190. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
  191. "h.{bid}.post_attention_layernorm", # bloom
  192. "transformer.blocks.{bid}.norm_2", # mpt
  193. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  194. "layers.{bid}.ffn_norm", # llama-pth
  195. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  196. "model.layers.{bid}.ln2", # yi
  197. "h.{bid}.ln_2", # gpt2
  198. "model.layers.{bid}.ffn_norm", # internlm2
  199. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  200. "transformer.layers.{bid}.ffn_norm", # openelm
  201. ),
  202. # Post feed-forward norm
  203. MODEL_TENSOR.FFN_PRE_NORM: (
  204. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  205. ),
  206. # Post feed-forward norm
  207. MODEL_TENSOR.FFN_POST_NORM: (
  208. "model.layers.{bid}.post_feedforward_layernorm", # gemma2
  209. ),
  210. MODEL_TENSOR.FFN_GATE_INP: (
  211. "layers.{bid}.feed_forward.gate", # mixtral
  212. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  213. "model.layers.{bid}.mlp.gate", # qwen2moe
  214. "transformer.decoder_layer.{bid}.router", # Grok
  215. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  216. ),
  217. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  218. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  219. ),
  220. # Feed-forward up
  221. MODEL_TENSOR.FFN_UP: (
  222. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  223. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  224. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  225. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  226. "h.{bid}.mlp.dense_h_to_4h", # bloom
  227. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  228. "layers.{bid}.feed_forward.w3", # llama-pth
  229. "encoder.layer.{bid}.intermediate.dense", # bert
  230. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  231. "transformer.h.{bid}.mlp.linear_3", # refact
  232. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  233. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  234. "transformer.h.{bid}.mlp.w1", # qwen
  235. "h.{bid}.mlp.c_fc", # gpt2
  236. "transformer.h.{bid}.mlp.fc1", # phi2
  237. "model.layers.{bid}.mlp.fc1", # phi2
  238. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  239. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  240. "model.layers.{bid}.feed_forward.w3", # internlm2
  241. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  242. "model.layers.{bid}.mlp.c_fc", # starcoder2
  243. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  244. "model.layers.{bid}.residual_mlp.w3", # arctic
  245. ),
  246. MODEL_TENSOR.FFN_UP_EXP: (
  247. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  248. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  249. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  250. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
  251. ),
  252. MODEL_TENSOR.FFN_UP_SHEXP: (
  253. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  254. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
  255. ),
  256. # AWQ-activation gate
  257. MODEL_TENSOR.FFN_ACT: (
  258. "transformer.blocks.{bid}.ffn.act", # mpt
  259. ),
  260. # Feed-forward gate
  261. MODEL_TENSOR.FFN_GATE: (
  262. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  263. "layers.{bid}.feed_forward.w1", # llama-pth
  264. "transformer.h.{bid}.mlp.w2", # qwen
  265. "transformer.h.{bid}.mlp.c_fc2", # jais
  266. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  267. "model.layers.{bid}.feed_forward.w1", # internlm2
  268. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  269. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  270. "transformer.h.{bid}.mlp.linear_1", # refact
  271. "model.layers.{bid}.residual_mlp.w1", # arctic
  272. ),
  273. MODEL_TENSOR.FFN_GATE_EXP: (
  274. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  275. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  276. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  277. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
  278. ),
  279. MODEL_TENSOR.FFN_GATE_SHEXP: (
  280. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  281. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
  282. ),
  283. # Feed-forward down
  284. MODEL_TENSOR.FFN_DOWN: (
  285. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  286. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  287. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  288. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  289. "h.{bid}.mlp.dense_4h_to_h", # bloom
  290. "model.layers.{bid}.mlp.down_proj", # llama-hf
  291. "layers.{bid}.feed_forward.w2", # llama-pth
  292. "encoder.layer.{bid}.output.dense", # bert
  293. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  294. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  295. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  296. "h.{bid}.mlp.c_proj", # gpt2
  297. "transformer.h.{bid}.mlp.fc2", # phi2
  298. "model.layers.{bid}.mlp.fc2", # phi2
  299. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  300. "model.layers.{bid}.feed_forward.w2", # internlm2
  301. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  302. "model.layers.{bid}.mlp.c_proj", # starcoder2
  303. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  304. "transformer.layers.{bid}.ffn.proj_2", # openelm
  305. "model.layers.{bid}.residual_mlp.w2", # arctic
  306. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  307. ),
  308. MODEL_TENSOR.FFN_DOWN_EXP: (
  309. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  310. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  311. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  312. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
  313. ),
  314. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  315. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  316. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
  317. ),
  318. MODEL_TENSOR.ATTN_Q_NORM: (
  319. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  320. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  321. "model.layers.{bid}.self_attn.q_norm", # cohere
  322. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  323. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  324. "transformer.layers.{bid}.attn.q_norm", # openelm
  325. ),
  326. MODEL_TENSOR.ATTN_K_NORM: (
  327. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  328. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  329. "model.layers.{bid}.self_attn.k_norm", # cohere
  330. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  331. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  332. "transformer.layers.{bid}.attn.k_norm", # openelm
  333. ),
  334. MODEL_TENSOR.ROPE_FREQS: (
  335. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  336. ),
  337. MODEL_TENSOR.LAYER_OUT_NORM: (
  338. "encoder.layer.{bid}.output.LayerNorm", # bert
  339. "encoder.layers.{bid}.norm2", # nomic-bert
  340. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  341. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  342. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  343. ),
  344. MODEL_TENSOR.SSM_IN: (
  345. "model.layers.{bid}.in_proj",
  346. "backbone.layers.{bid}.mixer.in_proj",
  347. ),
  348. MODEL_TENSOR.SSM_CONV1D: (
  349. "model.layers.{bid}.conv1d",
  350. "backbone.layers.{bid}.mixer.conv1d",
  351. ),
  352. MODEL_TENSOR.SSM_X: (
  353. "model.layers.{bid}.x_proj",
  354. "backbone.layers.{bid}.mixer.x_proj",
  355. ),
  356. MODEL_TENSOR.SSM_DT: (
  357. "model.layers.{bid}.dt_proj",
  358. "backbone.layers.{bid}.mixer.dt_proj",
  359. ),
  360. MODEL_TENSOR.SSM_A: (
  361. "model.layers.{bid}.A_log",
  362. "backbone.layers.{bid}.mixer.A_log",
  363. ),
  364. MODEL_TENSOR.SSM_D: (
  365. "model.layers.{bid}.D",
  366. "backbone.layers.{bid}.mixer.D",
  367. ),
  368. MODEL_TENSOR.SSM_OUT: (
  369. "model.layers.{bid}.out_proj",
  370. "backbone.layers.{bid}.mixer.out_proj",
  371. ),
  372. MODEL_TENSOR.ATTN_Q_A: (
  373. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  374. ),
  375. MODEL_TENSOR.ATTN_Q_B: (
  376. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  377. ),
  378. MODEL_TENSOR.ATTN_KV_A_MQA: (
  379. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  380. ),
  381. MODEL_TENSOR.ATTN_KV_B: (
  382. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  383. ),
  384. MODEL_TENSOR.ATTN_Q_A_NORM: (
  385. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  386. ),
  387. MODEL_TENSOR.ATTN_KV_A_NORM: (
  388. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  389. ),
  390. MODEL_TENSOR.ATTN_SUB_NORM: (
  391. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  392. ),
  393. MODEL_TENSOR.FFN_SUB_NORM: (
  394. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  395. ),
  396. MODEL_TENSOR.DEC_ATTN_NORM: (
  397. "decoder.block.{bid}.layer.0.layer_norm", # t5
  398. ),
  399. MODEL_TENSOR.DEC_ATTN_Q: (
  400. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  401. ),
  402. MODEL_TENSOR.DEC_ATTN_K: (
  403. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  404. ),
  405. MODEL_TENSOR.DEC_ATTN_V: (
  406. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  407. ),
  408. MODEL_TENSOR.DEC_ATTN_OUT: (
  409. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  410. ),
  411. MODEL_TENSOR.DEC_ATTN_REL_B: (
  412. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  413. ),
  414. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  415. "decoder.block.{bid}.layer.1.layer_norm", # t5
  416. ),
  417. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  418. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  419. ),
  420. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  421. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  422. ),
  423. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  424. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  425. ),
  426. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  427. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  428. ),
  429. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  430. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  431. ),
  432. MODEL_TENSOR.DEC_FFN_NORM: (
  433. "decoder.block.{bid}.layer.2.layer_norm", # t5
  434. ),
  435. MODEL_TENSOR.DEC_FFN_GATE: (
  436. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  437. ),
  438. MODEL_TENSOR.DEC_FFN_UP: (
  439. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  440. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  441. ),
  442. MODEL_TENSOR.DEC_FFN_DOWN: (
  443. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  444. ),
  445. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  446. "decoder.final_layer_norm", # t5
  447. ),
  448. MODEL_TENSOR.ENC_ATTN_NORM: (
  449. "encoder.block.{bid}.layer.0.layer_norm", # t5
  450. ),
  451. MODEL_TENSOR.ENC_ATTN_Q: (
  452. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  453. ),
  454. MODEL_TENSOR.ENC_ATTN_K: (
  455. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  456. ),
  457. MODEL_TENSOR.ENC_ATTN_V: (
  458. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  459. ),
  460. MODEL_TENSOR.ENC_ATTN_OUT: (
  461. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  462. ),
  463. MODEL_TENSOR.ENC_ATTN_REL_B: (
  464. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  465. ),
  466. MODEL_TENSOR.ENC_FFN_NORM: (
  467. "encoder.block.{bid}.layer.1.layer_norm", # t5
  468. ),
  469. MODEL_TENSOR.ENC_FFN_GATE: (
  470. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  471. ),
  472. MODEL_TENSOR.ENC_FFN_UP: (
  473. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  474. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  475. ),
  476. MODEL_TENSOR.ENC_FFN_DOWN: (
  477. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  478. ),
  479. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  480. "encoder.final_layer_norm", # t5
  481. ),
  482. }
  483. # architecture-specific block mappings
  484. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  485. MODEL_ARCH.ARCTIC: {
  486. MODEL_TENSOR.FFN_NORM: (
  487. "model.layers.{bid}.residual_layernorm",
  488. ),
  489. MODEL_TENSOR.FFN_NORM_EXP: (
  490. "model.layers.{bid}.post_attention_layernorm",
  491. ),
  492. },
  493. }
  494. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  495. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  496. self.mapping = {}
  497. for tensor, keys in self.mappings_cfg.items():
  498. if tensor not in MODEL_TENSORS[arch]:
  499. continue
  500. tensor_name = TENSOR_NAMES[tensor]
  501. self.mapping[tensor_name] = (tensor, tensor_name)
  502. for key in keys:
  503. self.mapping[key] = (tensor, tensor_name)
  504. if arch in self.arch_block_mappings_cfg:
  505. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  506. for bid in range(n_blocks):
  507. for tensor, keys in self.block_mappings_cfg.items():
  508. if tensor not in MODEL_TENSORS[arch]:
  509. continue
  510. # TODO: make this configurable
  511. n_experts = 160
  512. for xid in range(n_experts):
  513. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  514. self.mapping[tensor_name] = (tensor, tensor_name)
  515. for key in keys:
  516. key = key.format(bid = bid, xid = xid)
  517. self.mapping[key] = (tensor, tensor_name)
  518. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  519. result = self.mapping.get(key)
  520. if result is not None:
  521. return result
  522. for suffix in try_suffixes:
  523. if key.endswith(suffix):
  524. result = self.mapping.get(key[:-len(suffix)])
  525. if result is not None:
  526. return result[0], result[1] + suffix
  527. return None
  528. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  529. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  530. if result is None:
  531. return None
  532. return result[1]
  533. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  534. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  535. if result is None:
  536. return None
  537. return result[0]
  538. def __getitem__(self, key: str) -> str:
  539. try:
  540. return self.mapping[key][1]
  541. except KeyError:
  542. raise KeyError(key)
  543. def __contains__(self, key: str) -> bool:
  544. return key in self.mapping
  545. def __repr__(self) -> str:
  546. return repr(self.mapping)
  547. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  548. return TensorNameMap(arch, n_blocks)