server-task.cpp 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641
  1. #include "server-common.h"
  2. #include "server-task.h"
  3. #include "common.h"
  4. #include "llama.h"
  5. #include "chat.h"
  6. #include "sampling.h"
  7. #include "json-schema-to-grammar.h"
  8. using json = nlohmann::ordered_json;
  9. //
  10. // task_params
  11. //
  12. json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
  13. json data = json::array();
  14. for (const auto & lb : logit_bias) {
  15. data.push_back(json{
  16. {"bias", lb.bias},
  17. {"token", lb.token},
  18. });
  19. }
  20. return data;
  21. }
  22. json task_params::to_json(bool only_metrics) const {
  23. std::vector<std::string> samplers;
  24. samplers.reserve(sampling.samplers.size());
  25. for (const auto & sampler : sampling.samplers) {
  26. samplers.emplace_back(common_sampler_type_to_str(sampler));
  27. }
  28. json lora = json::array();
  29. for (auto & it : this->lora) {
  30. lora.push_back({{"id", it.first}, {"scale", it.second}});
  31. }
  32. if (only_metrics) {
  33. return json {
  34. {"seed", sampling.seed},
  35. {"temperature", sampling.temp},
  36. {"dynatemp_range", sampling.dynatemp_range},
  37. {"dynatemp_exponent", sampling.dynatemp_exponent},
  38. {"top_k", sampling.top_k},
  39. {"top_p", sampling.top_p},
  40. {"min_p", sampling.min_p},
  41. {"top_n_sigma", sampling.top_n_sigma},
  42. {"xtc_probability", sampling.xtc_probability},
  43. {"xtc_threshold", sampling.xtc_threshold},
  44. {"typical_p", sampling.typ_p},
  45. {"repeat_last_n", sampling.penalty_last_n},
  46. {"repeat_penalty", sampling.penalty_repeat},
  47. {"presence_penalty", sampling.penalty_present},
  48. {"frequency_penalty", sampling.penalty_freq},
  49. {"dry_multiplier", sampling.dry_multiplier},
  50. {"dry_base", sampling.dry_base},
  51. {"dry_allowed_length", sampling.dry_allowed_length},
  52. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  53. {"mirostat", sampling.mirostat},
  54. {"mirostat_tau", sampling.mirostat_tau},
  55. {"mirostat_eta", sampling.mirostat_eta},
  56. {"max_tokens", n_predict},
  57. {"n_predict", n_predict}, // TODO: deduplicate?
  58. {"n_keep", n_keep},
  59. {"n_discard", n_discard},
  60. {"ignore_eos", sampling.ignore_eos},
  61. {"stream", stream},
  62. {"n_probs", sampling.n_probs},
  63. {"min_keep", sampling.min_keep},
  64. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  65. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  66. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  67. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  68. {"samplers", samplers},
  69. {"speculative.n_max", speculative.n_max},
  70. {"speculative.n_min", speculative.n_min},
  71. {"speculative.p_min", speculative.p_min},
  72. {"timings_per_token", timings_per_token},
  73. {"post_sampling_probs", post_sampling_probs},
  74. {"backend_sampling", sampling.backend_sampling},
  75. {"lora", lora},
  76. };
  77. }
  78. auto grammar_triggers = json::array();
  79. for (const auto & trigger : sampling.grammar_triggers) {
  80. server_grammar_trigger ct(trigger);
  81. grammar_triggers.push_back(ct.to_json());
  82. }
  83. return json {
  84. {"seed", sampling.seed},
  85. {"temperature", sampling.temp},
  86. {"dynatemp_range", sampling.dynatemp_range},
  87. {"dynatemp_exponent", sampling.dynatemp_exponent},
  88. {"top_k", sampling.top_k},
  89. {"top_p", sampling.top_p},
  90. {"min_p", sampling.min_p},
  91. {"top_n_sigma", sampling.top_n_sigma},
  92. {"xtc_probability", sampling.xtc_probability},
  93. {"xtc_threshold", sampling.xtc_threshold},
  94. {"typical_p", sampling.typ_p},
  95. {"repeat_last_n", sampling.penalty_last_n},
  96. {"repeat_penalty", sampling.penalty_repeat},
  97. {"presence_penalty", sampling.penalty_present},
  98. {"frequency_penalty", sampling.penalty_freq},
  99. {"dry_multiplier", sampling.dry_multiplier},
  100. {"dry_base", sampling.dry_base},
  101. {"dry_allowed_length", sampling.dry_allowed_length},
  102. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  103. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  104. {"mirostat", sampling.mirostat},
  105. {"mirostat_tau", sampling.mirostat_tau},
  106. {"mirostat_eta", sampling.mirostat_eta},
  107. {"stop", antiprompt},
  108. {"max_tokens", n_predict},
  109. {"n_predict", n_predict}, // TODO: deduplicate?
  110. {"n_keep", n_keep},
  111. {"n_discard", n_discard},
  112. {"ignore_eos", sampling.ignore_eos},
  113. {"stream", stream},
  114. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  115. {"n_probs", sampling.n_probs},
  116. {"min_keep", sampling.min_keep},
  117. {"grammar", sampling.grammar},
  118. {"grammar_lazy", sampling.grammar_lazy},
  119. {"grammar_triggers", grammar_triggers},
  120. {"preserved_tokens", sampling.preserved_tokens},
  121. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  122. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  123. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  124. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  125. {"samplers", samplers},
  126. {"speculative.n_max", speculative.n_max},
  127. {"speculative.n_min", speculative.n_min},
  128. {"speculative.p_min", speculative.p_min},
  129. {"timings_per_token", timings_per_token},
  130. {"post_sampling_probs", post_sampling_probs},
  131. {"backend_sampling", sampling.backend_sampling},
  132. {"lora", lora},
  133. };
  134. }
  135. //
  136. // server_task
  137. //
  138. task_params server_task::params_from_json_cmpl(
  139. const llama_vocab * vocab,
  140. const common_params & params_base,
  141. const int n_ctx_slot,
  142. const json & data) {
  143. task_params params;
  144. // Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
  145. task_params defaults;
  146. defaults.sampling = params_base.sampling;
  147. defaults.speculative = params_base.speculative;
  148. defaults.n_keep = params_base.n_keep;
  149. defaults.n_predict = params_base.n_predict;
  150. defaults.n_cache_reuse = params_base.n_cache_reuse;
  151. defaults.cache_prompt = params_base.cache_prompt;
  152. defaults.antiprompt = params_base.antiprompt;
  153. // enabling this will output extra debug information in the HTTP responses from the server
  154. params.verbose = params_base.verbosity > 9;
  155. params.timings_per_token = json_value(data, "timings_per_token", false);
  156. params.stream = json_value(data, "stream", false);
  157. auto stream_opt = json_value(data, "stream_options", json::object());
  158. params.include_usage = json_value(stream_opt, "include_usage", false);
  159. params.cache_prompt = json_value(data, "cache_prompt", defaults.cache_prompt);
  160. params.return_tokens = json_value(data, "return_tokens", false);
  161. params.return_progress = json_value(data, "return_progress", false);
  162. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  163. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  164. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  165. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  166. params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
  167. params.n_cache_reuse = json_value(data, "n_cache_reuse", defaults.n_cache_reuse);
  168. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  169. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  170. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  171. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  172. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  173. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  174. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  175. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  176. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  177. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  178. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  179. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  180. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  181. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  182. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  183. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  184. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  185. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  186. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  187. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  188. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  189. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  190. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  191. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  192. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  193. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  194. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  195. params.sampling.backend_sampling = json_value(data, "backend_sampling", defaults.sampling.backend_sampling);
  196. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  197. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  198. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  199. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  200. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  201. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  202. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  203. // Use OpenAI API logprobs only if n_probs wasn't provided
  204. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  205. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  206. }
  207. if (data.contains("lora")) {
  208. if (data.at("lora").is_array()) {
  209. params.lora = parse_lora_request(data.at("lora"));
  210. } else {
  211. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  212. }
  213. } else {
  214. params.lora = {};
  215. }
  216. // TODO: add more sanity checks for the input parameters
  217. if (params.sampling.penalty_last_n < -1) {
  218. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  219. }
  220. if (params.sampling.dry_penalty_last_n < -1) {
  221. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  222. }
  223. if (params.sampling.penalty_last_n == -1) {
  224. // note: should be the slot's context and not the full context, but it's ok
  225. params.sampling.penalty_last_n = n_ctx_slot;
  226. }
  227. if (params.sampling.dry_penalty_last_n == -1) {
  228. params.sampling.dry_penalty_last_n = n_ctx_slot;
  229. }
  230. if (params.sampling.dry_base < 1.0f) {
  231. params.sampling.dry_base = defaults.sampling.dry_base;
  232. }
  233. // sequence breakers for DRY
  234. {
  235. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  236. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  237. if (data.contains("dry_sequence_breakers")) {
  238. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  239. if (params.sampling.dry_sequence_breakers.empty()) {
  240. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  241. }
  242. }
  243. }
  244. // process "json_schema" and "grammar"
  245. if (data.contains("json_schema") && !data.contains("grammar")) {
  246. try {
  247. auto schema = json_value(data, "json_schema", json::object());
  248. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  249. params.sampling.grammar = json_schema_to_grammar(schema);
  250. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  251. } catch (const std::exception & e) {
  252. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  253. }
  254. } else {
  255. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  256. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  257. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  258. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  259. }
  260. {
  261. auto it = data.find("chat_format");
  262. if (it != data.end()) {
  263. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  264. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  265. } else {
  266. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  267. }
  268. common_reasoning_format reasoning_format = params_base.reasoning_format;
  269. if (data.contains("reasoning_format")) {
  270. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  271. }
  272. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  273. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  274. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  275. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  276. if (data.contains("chat_parser")) {
  277. params.oaicompat_chat_syntax.parser.load(data.at("chat_parser").get<std::string>());
  278. }
  279. }
  280. {
  281. const auto preserved_tokens = data.find("preserved_tokens");
  282. if (preserved_tokens != data.end()) {
  283. for (const auto & t : *preserved_tokens) {
  284. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  285. if (ids.size() == 1) {
  286. SRV_DBG("Preserved token: %d\n", ids[0]);
  287. params.sampling.preserved_tokens.insert(ids[0]);
  288. } else {
  289. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  290. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  291. }
  292. }
  293. }
  294. const auto grammar_triggers = data.find("grammar_triggers");
  295. if (grammar_triggers != data.end()) {
  296. for (const auto & t : *grammar_triggers) {
  297. server_grammar_trigger ct(t);
  298. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  299. const auto & word = ct.value.value;
  300. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  301. if (ids.size() == 1) {
  302. auto token = ids[0];
  303. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  304. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  305. }
  306. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  307. common_grammar_trigger trigger;
  308. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  309. trigger.value = word;
  310. trigger.token = token;
  311. params.sampling.grammar_triggers.push_back(std::move(trigger));
  312. } else {
  313. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  314. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  315. }
  316. } else {
  317. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  318. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  319. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  320. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  321. } else {
  322. throw std::runtime_error("Unknown grammar trigger type");
  323. }
  324. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  325. }
  326. }
  327. }
  328. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  329. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  330. }
  331. }
  332. {
  333. params.sampling.logit_bias.clear();
  334. const auto & logit_bias = data.find("logit_bias");
  335. if (logit_bias != data.end() && logit_bias->is_array()) {
  336. const int n_vocab = llama_vocab_n_tokens(vocab);
  337. for (const auto & el : *logit_bias) {
  338. // TODO: we may want to throw errors here, in case "el" is incorrect
  339. if (el.is_array() && el.size() == 2) {
  340. float bias;
  341. if (el[1].is_number()) {
  342. bias = el[1].get<float>();
  343. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  344. bias = -INFINITY;
  345. } else {
  346. continue;
  347. }
  348. if (el[0].is_number_integer()) {
  349. llama_token tok = el[0].get<llama_token>();
  350. if (tok >= 0 && tok < n_vocab) {
  351. params.sampling.logit_bias.push_back({tok, bias});
  352. }
  353. } else if (el[0].is_string()) {
  354. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  355. for (auto tok : toks) {
  356. params.sampling.logit_bias.push_back({tok, bias});
  357. }
  358. }
  359. }
  360. }
  361. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  362. const int n_vocab = llama_vocab_n_tokens(vocab);
  363. for (const auto & el : logit_bias->items()) {
  364. float bias;
  365. const auto & key = el.key();
  366. const auto & value = el.value();
  367. if (value.is_number()) {
  368. bias = value.get<float>();
  369. } else if (value.is_boolean() && !value.get<bool>()) {
  370. bias = -INFINITY;
  371. } else {
  372. continue;
  373. }
  374. char *end;
  375. llama_token tok = strtol(key.c_str(), &end, 10);
  376. if (*end == 0) {
  377. if (tok >= 0 && tok < n_vocab) {
  378. params.sampling.logit_bias.push_back({tok, bias});
  379. }
  380. } else {
  381. auto toks = common_tokenize(vocab, key, false);
  382. for (auto tok : toks) {
  383. params.sampling.logit_bias.push_back({tok, bias});
  384. }
  385. }
  386. }
  387. }
  388. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  389. if (params.sampling.ignore_eos) {
  390. params.sampling.logit_bias.insert(
  391. params.sampling.logit_bias.end(),
  392. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  393. }
  394. }
  395. {
  396. params.antiprompt.clear();
  397. const auto & stop = data.find("stop");
  398. if (stop != data.end() && stop->is_array()) {
  399. for (const auto & word : *stop) {
  400. if (!word.empty()) {
  401. params.antiprompt.push_back(word);
  402. }
  403. }
  404. }
  405. // set reverse prompt from cli args if not set in the request
  406. if (params.antiprompt.empty()) {
  407. params.antiprompt = defaults.antiprompt;
  408. }
  409. }
  410. {
  411. const auto samplers = data.find("samplers");
  412. if (samplers != data.end()) {
  413. if (samplers->is_array()) {
  414. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  415. } else if (samplers->is_string()){
  416. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  417. }
  418. } else {
  419. params.sampling.samplers = defaults.sampling.samplers;
  420. }
  421. }
  422. if (params.n_cmpl > params_base.n_parallel) {
  423. throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
  424. }
  425. return params;
  426. }
  427. //
  428. // result_timings
  429. //
  430. json result_timings::to_json() const {
  431. json base = {
  432. {"cache_n", cache_n},
  433. {"prompt_n", prompt_n},
  434. {"prompt_ms", prompt_ms},
  435. {"prompt_per_token_ms", prompt_per_token_ms},
  436. {"prompt_per_second", prompt_per_second},
  437. {"predicted_n", predicted_n},
  438. {"predicted_ms", predicted_ms},
  439. {"predicted_per_token_ms", predicted_per_token_ms},
  440. {"predicted_per_second", predicted_per_second},
  441. };
  442. if (draft_n > 0) {
  443. base["draft_n"] = draft_n;
  444. base["draft_n_accepted"] = draft_n_accepted;
  445. }
  446. return base;
  447. }
  448. //
  449. // result_prompt_progress
  450. //
  451. json result_prompt_progress::to_json() const {
  452. return json {
  453. {"total", total},
  454. {"cache", cache},
  455. {"processed", processed},
  456. {"time_ms", time_ms},
  457. };
  458. }
  459. static inline std::string stop_type_to_str(stop_type type) {
  460. switch (type) {
  461. case STOP_TYPE_EOS: return "eos";
  462. case STOP_TYPE_WORD: return "word";
  463. case STOP_TYPE_LIMIT: return "limit";
  464. default: return "none";
  465. }
  466. }
  467. //
  468. // completion_token_output
  469. //
  470. json completion_token_output::to_json(bool post_sampling_probs) const {
  471. json probs_for_token = json::array();
  472. for (const auto & p : probs) {
  473. std::string txt(p.txt);
  474. txt.resize(validate_utf8(txt));
  475. probs_for_token.push_back(json {
  476. {"id", p.tok},
  477. {"token", txt},
  478. {"bytes", str_to_bytes(p.txt)},
  479. {
  480. post_sampling_probs ? "prob" : "logprob",
  481. post_sampling_probs ? p.prob : logarithm(p.prob)
  482. },
  483. });
  484. }
  485. return probs_for_token;
  486. }
  487. json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  488. json out = json::array();
  489. for (const auto & p : probs) {
  490. std::string txt(p.text_to_send);
  491. txt.resize(validate_utf8(txt));
  492. out.push_back(json {
  493. {"id", p.tok},
  494. {"token", txt},
  495. {"bytes", str_to_bytes(p.text_to_send)},
  496. {
  497. post_sampling_probs ? "prob" : "logprob",
  498. post_sampling_probs ? p.prob : logarithm(p.prob)
  499. },
  500. {
  501. post_sampling_probs ? "top_probs" : "top_logprobs",
  502. p.to_json(post_sampling_probs)
  503. },
  504. });
  505. }
  506. return out;
  507. }
  508. float completion_token_output::logarithm(float x) {
  509. // nlohmann::json converts -inf to null, so we need to prevent that
  510. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  511. }
  512. std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
  513. std::vector<unsigned char> bytes;
  514. for (unsigned char c : str) {
  515. bytes.push_back(c);
  516. }
  517. return bytes;
  518. }
  519. //
  520. // server_task_result_cmpl_final
  521. //
  522. json server_task_result_cmpl_final::to_json() {
  523. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  524. switch (res_type) {
  525. case TASK_RESPONSE_TYPE_NONE:
  526. return to_json_non_oaicompat();
  527. case TASK_RESPONSE_TYPE_OAI_CMPL:
  528. return to_json_oaicompat();
  529. case TASK_RESPONSE_TYPE_OAI_CHAT:
  530. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  531. case TASK_RESPONSE_TYPE_ANTHROPIC:
  532. return stream ? to_json_anthropic_stream() : to_json_anthropic();
  533. default:
  534. GGML_ASSERT(false && "Invalid task_response_type");
  535. }
  536. }
  537. json server_task_result_cmpl_final::to_json_non_oaicompat() {
  538. json res = json {
  539. {"index", index},
  540. {"content", content},
  541. {"tokens", tokens},
  542. {"id_slot", id_slot},
  543. {"stop", true},
  544. {"model", oaicompat_model},
  545. {"tokens_predicted", n_decoded},
  546. {"tokens_evaluated", n_prompt_tokens},
  547. {"generation_settings", generation_params.to_json()},
  548. {"prompt", prompt},
  549. {"has_new_line", has_new_line},
  550. {"truncated", truncated},
  551. {"stop_type", stop_type_to_str(stop)},
  552. {"stopping_word", stopping_word},
  553. {"tokens_cached", n_tokens_cached},
  554. {"timings", timings.to_json()},
  555. };
  556. if (!stream && !probs_output.empty()) {
  557. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  558. }
  559. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  560. }
  561. json server_task_result_cmpl_final::to_json_oaicompat() {
  562. std::time_t t = std::time(0);
  563. json logprobs = json(nullptr); // OAI default to null
  564. if (!stream && probs_output.size() > 0) {
  565. logprobs = json{
  566. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  567. };
  568. }
  569. json finish_reason = "length";
  570. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  571. finish_reason = "stop";
  572. }
  573. json res = json {
  574. {"choices", json::array({
  575. json{
  576. {"text", content},
  577. {"index", index},
  578. {"logprobs", logprobs},
  579. {"finish_reason", finish_reason},
  580. }
  581. })},
  582. {"created", t},
  583. {"model", oaicompat_model},
  584. {"system_fingerprint", build_info},
  585. {"object", "text_completion"},
  586. {"usage", json {
  587. {"completion_tokens", n_decoded},
  588. {"prompt_tokens", n_prompt_tokens},
  589. {"total_tokens", n_decoded + n_prompt_tokens}
  590. }},
  591. {"id", oaicompat_cmpl_id}
  592. };
  593. // extra fields for debugging purposes
  594. if (verbose) {
  595. res["__verbose"] = to_json_non_oaicompat();
  596. }
  597. if (timings.prompt_n >= 0) {
  598. res.push_back({"timings", timings.to_json()});
  599. }
  600. return res;
  601. }
  602. json server_task_result_cmpl_final::to_json_oaicompat_chat() {
  603. std::string finish_reason = "length";
  604. common_chat_msg msg;
  605. if (!oaicompat_msg.empty()) {
  606. msg = oaicompat_msg;
  607. } else {
  608. msg.role = "assistant";
  609. msg.content = content;
  610. }
  611. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  612. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  613. }
  614. json choice {
  615. {"finish_reason", finish_reason},
  616. {"index", index},
  617. {"message", msg.to_json_oaicompat<json>()},
  618. };
  619. if (!stream && probs_output.size() > 0) {
  620. choice["logprobs"] = json{
  621. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  622. };
  623. }
  624. std::time_t t = std::time(0);
  625. json res = json {
  626. {"choices", json::array({choice})},
  627. {"created", t},
  628. {"model", oaicompat_model},
  629. {"system_fingerprint", build_info},
  630. {"object", "chat.completion"},
  631. {"usage", json {
  632. {"completion_tokens", n_decoded},
  633. {"prompt_tokens", n_prompt_tokens},
  634. {"total_tokens", n_decoded + n_prompt_tokens}
  635. }},
  636. {"id", oaicompat_cmpl_id}
  637. };
  638. // extra fields for debugging purposes
  639. if (verbose) {
  640. res["__verbose"] = to_json_non_oaicompat();
  641. }
  642. if (timings.prompt_n >= 0) {
  643. res.push_back({"timings", timings.to_json()});
  644. }
  645. return res;
  646. }
  647. common_chat_msg task_result_state::update_chat_msg(
  648. const std::string & text_added,
  649. bool is_partial,
  650. std::vector<common_chat_msg_diff> & diffs) {
  651. generated_text += text_added;
  652. auto msg_prv_copy = chat_msg;
  653. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  654. auto new_msg = common_chat_parse(
  655. generated_text,
  656. is_partial,
  657. oaicompat_chat_syntax);
  658. if (!new_msg.empty()) {
  659. new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
  660. chat_msg = new_msg;
  661. diffs = common_chat_msg_diff::compute_diffs(msg_prv_copy, new_msg.empty() ? msg_prv_copy : new_msg);
  662. }
  663. return chat_msg;
  664. }
  665. json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
  666. std::time_t t = std::time(0);
  667. std::string finish_reason = "length";
  668. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  669. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  670. }
  671. json deltas = json::array();
  672. for (const auto & diff : oaicompat_msg_diffs) {
  673. deltas.push_back({
  674. {"choices", json::array({
  675. json {
  676. {"finish_reason", nullptr},
  677. {"index", 0},
  678. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  679. },
  680. })},
  681. {"created", t},
  682. {"id", oaicompat_cmpl_id},
  683. {"model", oaicompat_model},
  684. {"system_fingerprint", build_info},
  685. {"object", "chat.completion.chunk"},
  686. });
  687. }
  688. deltas.push_back({
  689. {"choices", json::array({
  690. json {
  691. {"finish_reason", finish_reason},
  692. {"index", 0},
  693. {"delta", json::object()},
  694. },
  695. })},
  696. {"created", t},
  697. {"id", oaicompat_cmpl_id},
  698. {"model", oaicompat_model},
  699. {"system_fingerprint", build_info},
  700. {"object", "chat.completion.chunk"},
  701. });
  702. if (include_usage) {
  703. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  704. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  705. deltas.push_back({
  706. {"choices", json::array()},
  707. {"created", t},
  708. {"id", oaicompat_cmpl_id},
  709. {"model", oaicompat_model},
  710. {"system_fingerprint", build_info},
  711. {"object", "chat.completion.chunk"},
  712. {"usage", json {
  713. {"completion_tokens", n_decoded},
  714. {"prompt_tokens", n_prompt_tokens},
  715. {"total_tokens", n_decoded + n_prompt_tokens},
  716. }},
  717. });
  718. }
  719. if (timings.prompt_n >= 0) {
  720. deltas.back().push_back({"timings", timings.to_json()});
  721. }
  722. // extra fields for debugging purposes
  723. if (verbose && !deltas.empty()) {
  724. deltas.front()["__verbose"] = to_json_non_oaicompat();
  725. }
  726. return deltas;
  727. }
  728. json server_task_result_cmpl_final::to_json_anthropic() {
  729. std::string stop_reason = "max_tokens";
  730. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  731. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  732. }
  733. json content_blocks = json::array();
  734. common_chat_msg msg;
  735. if (!oaicompat_msg.empty()) {
  736. msg = oaicompat_msg;
  737. } else {
  738. msg.role = "assistant";
  739. msg.content = content;
  740. }
  741. // thinking block comes first (Anthropic extended thinking format)
  742. if (!msg.reasoning_content.empty()) {
  743. content_blocks.push_back({
  744. {"type", "thinking"},
  745. {"thinking", msg.reasoning_content},
  746. {"signature", ""} // empty signature for local models (no cryptographic verification)
  747. });
  748. }
  749. if (!msg.content.empty()) {
  750. content_blocks.push_back({
  751. {"type", "text"},
  752. {"text", msg.content}
  753. });
  754. }
  755. for (const auto & tool_call : msg.tool_calls) {
  756. json tool_use_block = {
  757. {"type", "tool_use"},
  758. {"id", tool_call.id},
  759. {"name", tool_call.name}
  760. };
  761. try {
  762. tool_use_block["input"] = json::parse(tool_call.arguments);
  763. } catch (const std::exception &) {
  764. tool_use_block["input"] = json::object();
  765. }
  766. content_blocks.push_back(tool_use_block);
  767. }
  768. json res = {
  769. {"id", oaicompat_cmpl_id},
  770. {"type", "message"},
  771. {"role", "assistant"},
  772. {"content", content_blocks},
  773. {"model", oaicompat_model},
  774. {"stop_reason", stop_reason},
  775. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
  776. {"usage", {
  777. {"input_tokens", n_prompt_tokens},
  778. {"output_tokens", n_decoded}
  779. }}
  780. };
  781. return res;
  782. }
  783. json server_task_result_cmpl_final::to_json_anthropic_stream() {
  784. json events = json::array();
  785. std::string stop_reason = "max_tokens";
  786. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  787. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  788. }
  789. bool has_thinking = !oaicompat_msg.reasoning_content.empty();
  790. bool has_text = !oaicompat_msg.content.empty();
  791. size_t num_tool_calls = oaicompat_msg.tool_calls.size();
  792. // content block indices: thinking (0) -> text (0 or 1) -> tool_use (n+)
  793. size_t thinking_block_index = 0;
  794. size_t text_block_index = has_thinking ? 1 : 0;
  795. bool thinking_block_started = false;
  796. bool text_block_started = false;
  797. std::unordered_set<size_t> tool_calls_started;
  798. for (const auto & diff : oaicompat_msg_diffs) {
  799. // handle thinking/reasoning content
  800. if (!diff.reasoning_content_delta.empty()) {
  801. if (!thinking_block_started) {
  802. events.push_back({
  803. {"event", "content_block_start"},
  804. {"data", {
  805. {"type", "content_block_start"},
  806. {"index", thinking_block_index},
  807. {"content_block", {
  808. {"type", "thinking"},
  809. {"thinking", ""}
  810. }}
  811. }}
  812. });
  813. thinking_block_started = true;
  814. }
  815. events.push_back({
  816. {"event", "content_block_delta"},
  817. {"data", {
  818. {"type", "content_block_delta"},
  819. {"index", thinking_block_index},
  820. {"delta", {
  821. {"type", "thinking_delta"},
  822. {"thinking", diff.reasoning_content_delta}
  823. }}
  824. }}
  825. });
  826. }
  827. // handle regular text content
  828. if (!diff.content_delta.empty()) {
  829. if (!text_block_started) {
  830. events.push_back({
  831. {"event", "content_block_start"},
  832. {"data", {
  833. {"type", "content_block_start"},
  834. {"index", text_block_index},
  835. {"content_block", {
  836. {"type", "text"},
  837. {"text", ""}
  838. }}
  839. }}
  840. });
  841. text_block_started = true;
  842. }
  843. events.push_back({
  844. {"event", "content_block_delta"},
  845. {"data", {
  846. {"type", "content_block_delta"},
  847. {"index", text_block_index},
  848. {"delta", {
  849. {"type", "text_delta"},
  850. {"text", diff.content_delta}
  851. }}
  852. }}
  853. });
  854. }
  855. // handle tool calls
  856. if (diff.tool_call_index != std::string::npos) {
  857. size_t content_block_index = (has_thinking ? 1 : 0) + (has_text ? 1 : 0) + diff.tool_call_index;
  858. if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
  859. const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
  860. events.push_back({
  861. {"event", "content_block_start"},
  862. {"data", {
  863. {"type", "content_block_start"},
  864. {"index", content_block_index},
  865. {"content_block", {
  866. {"type", "tool_use"},
  867. {"id", full_tool_call.id},
  868. {"name", full_tool_call.name}
  869. }}
  870. }}
  871. });
  872. tool_calls_started.insert(diff.tool_call_index);
  873. }
  874. if (!diff.tool_call_delta.arguments.empty()) {
  875. events.push_back({
  876. {"event", "content_block_delta"},
  877. {"data", {
  878. {"type", "content_block_delta"},
  879. {"index", content_block_index},
  880. {"delta", {
  881. {"type", "input_json_delta"},
  882. {"partial_json", diff.tool_call_delta.arguments}
  883. }}
  884. }}
  885. });
  886. }
  887. }
  888. }
  889. // close content blocks in order
  890. if (has_thinking) {
  891. // Anthropic API requires a signature_delta before closing thinking blocks
  892. // We use an empty signature since we can't generate a cryptographic signature for local models
  893. events.push_back({
  894. {"event", "content_block_delta"},
  895. {"data", {
  896. {"type", "content_block_delta"},
  897. {"index", thinking_block_index},
  898. {"delta", {
  899. {"type", "signature_delta"},
  900. {"signature", ""}
  901. }}
  902. }}
  903. });
  904. events.push_back({
  905. {"event", "content_block_stop"},
  906. {"data", {
  907. {"type", "content_block_stop"},
  908. {"index", thinking_block_index}
  909. }}
  910. });
  911. }
  912. if (has_text) {
  913. events.push_back({
  914. {"event", "content_block_stop"},
  915. {"data", {
  916. {"type", "content_block_stop"},
  917. {"index", text_block_index}
  918. }}
  919. });
  920. }
  921. for (size_t i = 0; i < num_tool_calls; i++) {
  922. size_t content_block_index = (has_thinking ? 1 : 0) + (has_text ? 1 : 0) + i;
  923. events.push_back({
  924. {"event", "content_block_stop"},
  925. {"data", {
  926. {"type", "content_block_stop"},
  927. {"index", content_block_index}
  928. }}
  929. });
  930. }
  931. events.push_back({
  932. {"event", "message_delta"},
  933. {"data", {
  934. {"type", "message_delta"},
  935. {"delta", {
  936. {"stop_reason", stop_reason},
  937. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
  938. }},
  939. {"usage", {
  940. {"output_tokens", n_decoded}
  941. }}
  942. }}
  943. });
  944. events.push_back({
  945. {"event", "message_stop"},
  946. {"data", {
  947. {"type", "message_stop"}
  948. }}
  949. });
  950. return events;
  951. }
  952. //
  953. // server_task_result_cmpl_partial
  954. //
  955. json server_task_result_cmpl_partial::to_json() {
  956. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  957. switch (res_type) {
  958. case TASK_RESPONSE_TYPE_NONE:
  959. return to_json_non_oaicompat();
  960. case TASK_RESPONSE_TYPE_OAI_CMPL:
  961. return to_json_oaicompat();
  962. case TASK_RESPONSE_TYPE_OAI_CHAT:
  963. return to_json_oaicompat_chat();
  964. case TASK_RESPONSE_TYPE_ANTHROPIC:
  965. return to_json_anthropic();
  966. default:
  967. GGML_ASSERT(false && "Invalid task_response_type");
  968. }
  969. }
  970. json server_task_result_cmpl_partial::to_json_non_oaicompat() {
  971. // non-OAI-compat JSON
  972. json res = json {
  973. {"index", index},
  974. {"content", content},
  975. {"tokens", tokens},
  976. {"stop", false},
  977. {"id_slot", id_slot},
  978. {"tokens_predicted", n_decoded},
  979. {"tokens_evaluated", n_prompt_tokens},
  980. };
  981. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  982. if (timings.prompt_n > 0) {
  983. res.push_back({"timings", timings.to_json()});
  984. }
  985. if (is_progress) {
  986. res.push_back({"prompt_progress", progress.to_json()});
  987. }
  988. if (!prob_output.probs.empty()) {
  989. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  990. }
  991. return res;
  992. }
  993. json server_task_result_cmpl_partial::to_json_oaicompat() {
  994. std::time_t t = std::time(0);
  995. json logprobs = json(nullptr); // OAI default to null
  996. if (prob_output.probs.size() > 0) {
  997. logprobs = json{
  998. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  999. };
  1000. }
  1001. json res = json {
  1002. {"choices", json::array({
  1003. json{
  1004. {"text", content},
  1005. {"index", index},
  1006. {"logprobs", logprobs},
  1007. {"finish_reason", nullptr},
  1008. }
  1009. })},
  1010. {"created", t},
  1011. {"model", oaicompat_model},
  1012. {"system_fingerprint", build_info},
  1013. {"object", "text_completion"},
  1014. {"id", oaicompat_cmpl_id}
  1015. };
  1016. // extra fields for debugging purposes
  1017. if (verbose) {
  1018. res["__verbose"] = to_json_non_oaicompat();
  1019. }
  1020. if (timings.prompt_n >= 0) {
  1021. res.push_back({"timings", timings.to_json()});
  1022. }
  1023. if (is_progress) {
  1024. res.push_back({"prompt_progress", progress.to_json()});
  1025. }
  1026. return res;
  1027. }
  1028. json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
  1029. bool first = n_decoded == 1;
  1030. std::time_t t = std::time(0);
  1031. json choices;
  1032. std::vector<json> deltas;
  1033. auto add_delta = [&](const json & delta) {
  1034. deltas.push_back({
  1035. {"choices", json::array({
  1036. json {
  1037. {"finish_reason", nullptr},
  1038. {"index", index},
  1039. {"delta", delta},
  1040. },
  1041. })},
  1042. {"created", t},
  1043. {"id", oaicompat_cmpl_id},
  1044. {"model", oaicompat_model},
  1045. {"system_fingerprint", build_info},
  1046. {"object", "chat.completion.chunk"},
  1047. });
  1048. };
  1049. // We have to send an initial update to conform to openai behavior
  1050. if (first || is_progress) {
  1051. add_delta({
  1052. {"role", "assistant"},
  1053. {"content", nullptr},
  1054. });
  1055. }
  1056. for (const auto & diff : oaicompat_msg_diffs) {
  1057. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  1058. }
  1059. if (!deltas.empty()) {
  1060. auto & last_json = deltas[deltas.size() - 1];
  1061. GGML_ASSERT(last_json.at("choices").size() >= 1);
  1062. if (prob_output.probs.size() > 0) {
  1063. last_json.at("choices").at(0)["logprobs"] = json {
  1064. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  1065. };
  1066. }
  1067. if (timings.prompt_n >= 0) {
  1068. last_json.push_back({"timings", timings.to_json()});
  1069. }
  1070. if (is_progress) {
  1071. last_json.push_back({"prompt_progress", progress.to_json()});
  1072. }
  1073. }
  1074. return deltas;
  1075. }
  1076. //
  1077. // server_task_result_embd
  1078. //
  1079. json server_task_result_embd::to_json() {
  1080. return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
  1081. ? to_json_oaicompat()
  1082. : to_json_non_oaicompat();
  1083. }
  1084. json server_task_result_embd::to_json_non_oaicompat() {
  1085. return json {
  1086. {"index", index},
  1087. {"embedding", embedding},
  1088. };
  1089. }
  1090. json server_task_result_embd::to_json_oaicompat() {
  1091. return json {
  1092. {"index", index},
  1093. {"embedding", embedding[0]},
  1094. {"tokens_evaluated", n_tokens},
  1095. };
  1096. }
  1097. //
  1098. // server_task_result_rerank
  1099. //
  1100. json server_task_result_rerank::to_json() {
  1101. return json {
  1102. {"index", index},
  1103. {"score", score},
  1104. {"tokens_evaluated", n_tokens},
  1105. };
  1106. }
  1107. json server_task_result_cmpl_partial::to_json_anthropic() {
  1108. json events = json::array();
  1109. bool first = (n_decoded == 1);
  1110. // use member variables to track block state across streaming calls
  1111. // (anthropic_thinking_block_started, anthropic_text_block_started)
  1112. if (first) {
  1113. events.push_back({
  1114. {"event", "message_start"},
  1115. {"data", {
  1116. {"type", "message_start"},
  1117. {"message", {
  1118. {"id", oaicompat_cmpl_id},
  1119. {"type", "message"},
  1120. {"role", "assistant"},
  1121. {"content", json::array()},
  1122. {"model", oaicompat_model},
  1123. {"stop_reason", nullptr},
  1124. {"stop_sequence", nullptr},
  1125. {"usage", {
  1126. {"input_tokens", n_prompt_tokens},
  1127. {"output_tokens", 0}
  1128. }}
  1129. }}
  1130. }}
  1131. });
  1132. }
  1133. // content block indices: thinking (0) -> text (0 or 1) -> tool_use (n+)
  1134. size_t thinking_block_index = 0;
  1135. // use anthropic_has_reasoning (set in update()) to know if ANY reasoning was generated
  1136. size_t text_block_index = anthropic_has_reasoning ? 1 : 0;
  1137. // use local copies of streaming state (copied from task_result_state in update())
  1138. // these reflect the state BEFORE this chunk was processed
  1139. bool thinking_started = anthropic_thinking_block_started;
  1140. bool text_started = anthropic_text_block_started;
  1141. for (const auto & diff : oaicompat_msg_diffs) {
  1142. // handle thinking/reasoning content
  1143. if (!diff.reasoning_content_delta.empty()) {
  1144. if (!thinking_started) {
  1145. events.push_back({
  1146. {"event", "content_block_start"},
  1147. {"data", {
  1148. {"type", "content_block_start"},
  1149. {"index", thinking_block_index},
  1150. {"content_block", {
  1151. {"type", "thinking"},
  1152. {"thinking", ""}
  1153. }}
  1154. }}
  1155. });
  1156. thinking_started = true;
  1157. }
  1158. events.push_back({
  1159. {"event", "content_block_delta"},
  1160. {"data", {
  1161. {"type", "content_block_delta"},
  1162. {"index", thinking_block_index},
  1163. {"delta", {
  1164. {"type", "thinking_delta"},
  1165. {"thinking", diff.reasoning_content_delta}
  1166. }}
  1167. }}
  1168. });
  1169. }
  1170. // handle regular text content
  1171. if (!diff.content_delta.empty()) {
  1172. if (!text_started) {
  1173. events.push_back({
  1174. {"event", "content_block_start"},
  1175. {"data", {
  1176. {"type", "content_block_start"},
  1177. {"index", text_block_index},
  1178. {"content_block", {
  1179. {"type", "text"},
  1180. {"text", ""}
  1181. }}
  1182. }}
  1183. });
  1184. text_started = true;
  1185. }
  1186. events.push_back({
  1187. {"event", "content_block_delta"},
  1188. {"data", {
  1189. {"type", "content_block_delta"},
  1190. {"index", text_block_index},
  1191. {"delta", {
  1192. {"type", "text_delta"},
  1193. {"text", diff.content_delta}
  1194. }}
  1195. }}
  1196. });
  1197. }
  1198. // handle tool calls
  1199. if (diff.tool_call_index != std::string::npos) {
  1200. // use anthropic_has_reasoning for thinking block count (persists across calls)
  1201. size_t content_block_index = (anthropic_has_reasoning ? 1 : 0) + (text_started ? 1 : 0) + diff.tool_call_index;
  1202. if (!diff.tool_call_delta.name.empty()) {
  1203. events.push_back({
  1204. {"event", "content_block_start"},
  1205. {"data", {
  1206. {"type", "content_block_start"},
  1207. {"index", content_block_index},
  1208. {"content_block", {
  1209. {"type", "tool_use"},
  1210. {"id", diff.tool_call_delta.id},
  1211. {"name", diff.tool_call_delta.name}
  1212. }}
  1213. }}
  1214. });
  1215. }
  1216. if (!diff.tool_call_delta.arguments.empty()) {
  1217. events.push_back({
  1218. {"event", "content_block_delta"},
  1219. {"data", {
  1220. {"type", "content_block_delta"},
  1221. {"index", content_block_index},
  1222. {"delta", {
  1223. {"type", "input_json_delta"},
  1224. {"partial_json", diff.tool_call_delta.arguments}
  1225. }}
  1226. }}
  1227. });
  1228. }
  1229. }
  1230. }
  1231. return events;
  1232. }
  1233. //
  1234. // server_task_result_error
  1235. //
  1236. json server_task_result_error::to_json() {
  1237. json res = format_error_response(err_msg, err_type);
  1238. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1239. res["n_prompt_tokens"] = n_prompt_tokens;
  1240. res["n_ctx"] = n_ctx;
  1241. }
  1242. return res;
  1243. }
  1244. //
  1245. // server_task_result_metrics
  1246. //
  1247. json server_task_result_metrics::to_json() {
  1248. return json {
  1249. { "idle", n_idle_slots },
  1250. { "processing", n_processing_slots },
  1251. { "deferred", n_tasks_deferred },
  1252. { "t_start", t_start },
  1253. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1254. { "t_tokens_generation_total", t_tokens_generation_total },
  1255. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1256. { "t_prompt_processing_total", t_prompt_processing_total },
  1257. { "n_tokens_max", n_tokens_max },
  1258. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1259. { "t_prompt_processing", t_prompt_processing },
  1260. { "n_tokens_predicted", n_tokens_predicted },
  1261. { "t_tokens_generation", t_tokens_generation },
  1262. { "n_decode_total", n_decode_total },
  1263. { "n_busy_slots_total", n_busy_slots_total },
  1264. { "slots", slots_data },
  1265. };
  1266. }
  1267. //
  1268. // server_task_result_slot_save_load
  1269. //
  1270. json server_task_result_slot_save_load::to_json() {
  1271. if (is_save) {
  1272. return json {
  1273. { "id_slot", id_slot },
  1274. { "filename", filename },
  1275. { "n_saved", n_tokens },
  1276. { "n_written", n_bytes },
  1277. { "timings", {
  1278. { "save_ms", t_ms }
  1279. }},
  1280. };
  1281. }
  1282. return json {
  1283. { "id_slot", id_slot },
  1284. { "filename", filename },
  1285. { "n_restored", n_tokens },
  1286. { "n_read", n_bytes },
  1287. { "timings", {
  1288. { "restore_ms", t_ms }
  1289. }},
  1290. };
  1291. }
  1292. //
  1293. // server_task_result_slot_erase
  1294. //
  1295. json server_task_result_slot_erase::to_json() {
  1296. return json {
  1297. { "id_slot", id_slot },
  1298. { "n_erased", n_erased },
  1299. };
  1300. }
  1301. //
  1302. // server_task_result_get_lora
  1303. //
  1304. json server_task_result_get_lora::to_json() {
  1305. json result = json::array();
  1306. for (size_t i = 0; i < loras.size(); ++i) {
  1307. auto & lora = loras[i];
  1308. json entry = {
  1309. {"id", i},
  1310. {"path", lora.info.path},
  1311. {"scale", lora.info.scale},
  1312. {"task_name", lora.info.task_name},
  1313. {"prompt_prefix", lora.info.prompt_prefix},
  1314. };
  1315. if (!lora.alora_invocation_tokens.empty()) {
  1316. entry["alora_invocation_string"] = lora.alora_invocation_string;
  1317. entry["alora_invocation_tokens"] = lora.alora_invocation_tokens;
  1318. }
  1319. result.push_back(std::move(entry));
  1320. }
  1321. return result;
  1322. }
  1323. //
  1324. // server_task_result_apply_lora
  1325. //
  1326. json server_task_result_apply_lora::to_json() {
  1327. return json {{ "success", true }};
  1328. }
  1329. //
  1330. // server_prompt_cache
  1331. //
  1332. size_t server_prompt_cache::size() const {
  1333. size_t res = 0;
  1334. for (const auto & state : states) {
  1335. res += state.size();
  1336. }
  1337. return res;
  1338. }
  1339. size_t server_prompt_cache::n_tokens() const {
  1340. size_t res = 0;
  1341. for (const auto & state : states) {
  1342. res += state.n_tokens();
  1343. }
  1344. return res;
  1345. }
  1346. server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
  1347. // first check if the current state is contained fully in the cache
  1348. for (auto it = states.begin(); it != states.end(); ++it) {
  1349. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  1350. if (cur_lcp_len == (int) prompt.tokens.size()) {
  1351. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  1352. return nullptr;
  1353. }
  1354. }
  1355. // next, remove any cached prompts that are fully contained in the current prompt
  1356. for (auto it = states.begin(); it != states.end();) {
  1357. const int len = it->tokens.get_common_prefix(prompt.tokens);
  1358. if (len == (int) it->tokens.size()) {
  1359. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  1360. it = states.erase(it);
  1361. } else {
  1362. ++it;
  1363. }
  1364. }
  1365. std::vector<uint8_t> state_data;
  1366. // check if we can allocate enough memory for the new state
  1367. try {
  1368. state_data.resize(state_size);
  1369. } catch (const std::bad_alloc & e) {
  1370. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  1371. limit_size = std::max<size_t>(1, 0.4*size());
  1372. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  1373. update();
  1374. return nullptr;
  1375. }
  1376. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  1377. auto & cur = states.emplace_back();
  1378. cur = {
  1379. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  1380. /*.data =*/ std::move(state_data),
  1381. /*.checkpoints =*/ prompt.checkpoints,
  1382. };
  1383. return &cur;
  1384. }
  1385. bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  1386. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  1387. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  1388. float sim_best = float(lcp_best) / tokens_new.size();
  1389. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1390. auto it_best = states.end();
  1391. // find the most similar cached prompt, that would also preserve the most context
  1392. for (auto it = states.begin(); it != states.end(); ++it) {
  1393. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  1394. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  1395. const float sim_cur = float(lcp_cur) / tokens_new.size();
  1396. // don't trash large prompts
  1397. if (f_keep_cur < 0.25f) {
  1398. continue;
  1399. }
  1400. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  1401. f_keep_best = f_keep_cur;
  1402. sim_best = sim_cur;
  1403. it_best = it;
  1404. }
  1405. }
  1406. if (it_best != states.end()) {
  1407. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1408. const size_t size = it_best->data.size();
  1409. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1410. if (n != size) {
  1411. SRV_WRN("failed to restore state with size %zu\n", size);
  1412. return false;
  1413. }
  1414. it_best->data.clear();
  1415. it_best->data.shrink_to_fit();
  1416. prompt = std::move(*it_best);
  1417. states.erase(it_best);
  1418. }
  1419. return true;
  1420. }
  1421. void server_prompt_cache::update() {
  1422. if (limit_size > 0) {
  1423. // always keep at least one state, regardless of the limits
  1424. while (states.size() > 1 && size() > limit_size) {
  1425. if (states.empty()) {
  1426. break;
  1427. }
  1428. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1429. states.pop_front();
  1430. }
  1431. }
  1432. // average size per token
  1433. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1434. // dynamically increase the token limit if it can fit in the memory limit
  1435. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1436. if (limit_tokens > 0) {
  1437. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1438. if (states.empty()) {
  1439. break;
  1440. }
  1441. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1442. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1443. states.pop_front();
  1444. }
  1445. }
  1446. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1447. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1448. for (const auto & state : states) {
  1449. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1450. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1451. }
  1452. }