| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- /* eslint-disable no-irregular-whitespace */
- // Math Formulas Content
- export const MATH_FORMULAS_MD = String.raw`
- # Mathematical Formulas and Expressions
- This document demonstrates various mathematical notation and formulas that can be rendered using LaTeX syntax in markdown.
- ## Basic Arithmetic
- ### Addition and Summation
- $$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
- ## Algebra
- ### Quadratic Formula
- The solutions to $ax^2 + bx + c = 0$ are:
- $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
- ### Binomial Theorem
- $$(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$$
- ## Calculus
- ### Derivatives
- The derivative of $f(x) = x^n$ is:
- $$f'(x) = nx^{n-1}$$
- ### Integration
- $$\int_a^b f(x) \, dx = F(b) - F(a)$$
- ### Fundamental Theorem of Calculus
- $$\frac{d}{dx} \int_a^x f(t) \, dt = f(x)$$
- ## Linear Algebra
- ### Matrix Multiplication
- If $A$ is an $m \times n$ matrix and $B$ is an $n \times p$ matrix, then:
- $$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$
- ### Eigenvalues and Eigenvectors
- For a square matrix $A$, if $Av = \lambda v$ for some non-zero vector $v$, then:
- - $\lambda$ is an eigenvalue
- - $v$ is an eigenvector
- ## Statistics and Probability
- ### Normal Distribution
- The probability density function is:
- $$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
- ### Bayes' Theorem
- $$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
- ### Central Limit Theorem
- For large $n$, the sample mean $\bar{X}$ is approximately:
- $$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
- ## Trigonometry
- ### Pythagorean Identity
- $$\sin^2\theta + \cos^2\theta = 1$$
- ### Euler's Formula
- $$e^{i\theta} = \cos\theta + i\sin\theta$$
- ### Taylor Series for Sine
- $$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
- ## Complex Analysis
- ### Complex Numbers
- A complex number can be written as:
- $$z = a + bi = r e^{i\theta}$$
- where $r = |z| = \sqrt{a^2 + b^2}$ and $\theta = \arg(z)$
- ### Cauchy-Riemann Equations
- For a function $f(z) = u(x,y) + iv(x,y)$ to be analytic:
- $$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
- ## Differential Equations
- ### First-order Linear ODE
- $$\frac{dy}{dx} + P(x)y = Q(x)$$
- Solution: $y = e^{-\int P(x)dx}\left[\int Q(x)e^{\int P(x)dx}dx + C\right]$
- ### Heat Equation
- $$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$
- ## Number Theory
- ### Prime Number Theorem
- $$\pi(x) \sim \frac{x}{\ln x}$$
- where $\pi(x)$ is the number of primes less than or equal to $x$.
- ### Fermat's Last Theorem
- For $n > 2$, there are no positive integers $a$, $b$, and $c$ such that:
- $$a^n + b^n = c^n$$
- ## Set Theory
- ### De Morgan's Laws
- $$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
- $$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
- ## Advanced Topics
- ### Riemann Zeta Function
- $$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}$$
- ### Maxwell's Equations
- $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
- $$\nabla \cdot \mathbf{B} = 0$$
- $$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
- $$\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t}$$
- ### Schrödinger Equation
- $$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)$$
- ## Inline Math Examples
- Here are some inline mathematical expressions:
- - The golden ratio: $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$
- - Euler's number: $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$
- - Pi: $\pi = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$
- - Square root of 2: $\sqrt{2} = 1.41421356...$
- ## Fractions and Radicals
- Complex fraction: $\frac{\frac{a}{b} + \frac{c}{d}}{\frac{e}{f} - \frac{g}{h}}$
- Nested radicals: $\sqrt{2 + \sqrt{3 + \sqrt{4 + \sqrt{5}}}}$
- ## Summations and Products
- ### Geometric Series
- $$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \quad \text{for } |r| < 1$$
- ### Product Notation
- $$n! = \prod_{k=1}^{n} k$$
- ### Double Summation
- $$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$$
- ## Limits
- $$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
- $$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$$
- ## Further Bracket Styles and Amounts
- - \( \mathrm{GL}_2(\mathbb{F}_7) \): Group of invertible matrices with entries in \(\mathbb{F}_7\).
- - Some kernel of \(\mathrm{SL}_2(\mathbb{F}_7)\):
- \[
- \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} = \{\pm I\}
- \]
- - Algebra:
- \[
- x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a}
- \]
- - $100 and $12.99 are amounts, not LaTeX.
- - I have $10, $3.99 and $x + y$ and $100x$. The amount is $2,000.
- - Emma buys 2 cupcakes for $3 each and 1 cookie for $1.50. How much money does she spend in total?
- - Maria has $20. She buys a notebook for $4.75 and a pack of pencils for $3.25. How much change does she receive?
- - 1 kg の質量は
- \[
- E = (1\ \text{kg}) \times (3.0 \times 10^8\ \text{m/s})^2 \approx 9.0 \times 10^{16}\ \text{J}
- \]
- というエネルギーに相当します。これは約 21 百万トンの TNT が爆発したときのエネルギーに匹敵します。
- - Algebra: \[
- x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a}
- \]
- - Algebraic topology, Homotopy Groups of $\mathbb{S}^3$:
- $$\pi_n(\mathbb{S}^3) = \begin{cases}
- \mathbb{Z} & n = 3 \\
- 0 & n > 3, n \neq 4 \\
- \mathbb{Z}_2 & n = 4 \\
- \end{cases}$$
- - Spacer preceded by backslash:
- \[
- \boxed{
- \begin{aligned}
- N_{\text{att}}^{\text{(MHA)}} &=
- h \bigl[\, d_{\text{model}}\;d_{k} + d_{\text{model}}\;d_{v}\, \bigr] && (\text{Q,K,V の重み})\\
- &\quad+ h(d_{k}+d_{k}+d_{v}) && (\text{バイアス Q,K,V)}\\[4pt]
- &\quad+ (h d_{v})\, d_{\text{model}} && (\text{出力射影 }W^{O})\\
- &\quad+ d_{\text{model}} && (\text{バイアス }b^{O})
- \end{aligned}}
- \]
- ## Formulas in a Table
- | Area | Expression | Comment |
- |------|------------|---------|
- | **Algebra** | \[
- x = \frac{-b \pm \sqrt{\,b^{2}-4ac\,}}{2a}
- \] | Quadratic formula |
- | | \[
- (a+b)^{n} = \sum_{k=0}^{n}\binom{n}{k}\,a^{\,n-k}\,b^{\,k}
- \] | Binomial theorem |
- | | \(\displaystyle \prod_{k=1}^{n}k = n! \) | Factorial definition |
- | **Geometry** | \( \mathbf{a}\cdot \mathbf{b} = \|\mathbf{a}\|\,\|\mathbf{b}\|\,\cos\theta \) | Dot product & angle |
- ## No math (but chemical)
- Balanced chemical reaction with states:
- \[
- \ce{2H2(g) + O2(g) -> 2H2O(l)}
- \]
- The standard enthalpy change for the reaction is: $\Delta H^\circ = \pu{-572 kJ mol^{-1}}$.
- ---
- *This document showcases various mathematical notation and formulas that can be rendered in markdown using LaTeX syntax.*
- `;
|