oai.hpp 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. #pragma once
  2. #include <string>
  3. #include <vector>
  4. #include <set>
  5. #include <mutex>
  6. #include <condition_variable>
  7. #include <unordered_map>
  8. #include "json.hpp"
  9. #include "utils.hpp"
  10. #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
  11. using json = nlohmann::json;
  12. inline static json oaicompat_completion_params_parse(
  13. const json &body, /* openai api json semantics */
  14. const std::string &chat_template)
  15. {
  16. json llama_params;
  17. std::string formatted_prompt = chat_template == "chatml"
  18. ? format_chatml(body["messages"]) // OpenAI 'messages' to chatml (with <|im_start|>,...)
  19. : format_llama2(body["messages"]); // OpenAI 'messages' to llama2 (with [INST],...)
  20. llama_params["__oaicompat"] = true;
  21. // Map OpenAI parameters to llama.cpp parameters
  22. //
  23. // For parameters that are defined by the OpenAI documentation (e.g.
  24. // temperature), we explicitly specify OpenAI's intended default; we
  25. // need to do that because sometimes OpenAI disagrees with llama.cpp
  26. //
  27. // https://platform.openai.com/docs/api-reference/chat/create
  28. llama_sampling_params default_sparams;
  29. llama_params["model"] = json_value(body, "model", std::string("unknown"));
  30. llama_params["prompt"] = formatted_prompt;
  31. llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
  32. llama_params["temperature"] = json_value(body, "temperature", 0.0);
  33. llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
  34. llama_params["top_p"] = json_value(body, "top_p", 1.0);
  35. llama_params["n_predict"] = json_value(body, "max_tokens", -1);
  36. llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
  37. llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
  38. llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
  39. llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
  40. llama_params["stream"] = json_value(body, "stream", false);
  41. llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
  42. llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
  43. llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
  44. llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
  45. llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
  46. llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
  47. llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
  48. llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
  49. if (body.count("grammar") != 0) {
  50. llama_params["grammar"] = json_value(body, "grammar", json::object());
  51. }
  52. // Handle 'stop' field
  53. if (body.contains("stop") && body["stop"].is_string()) {
  54. llama_params["stop"] = json::array({body["stop"].get<std::string>()});
  55. } else {
  56. llama_params["stop"] = json_value(body, "stop", json::array());
  57. }
  58. // Ensure there is ChatML-specific end sequence among stop words
  59. llama_params["stop"].push_back("<|im_end|>");
  60. return llama_params;
  61. }
  62. inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
  63. {
  64. json result = response.result_json;
  65. bool stopped_word = result.count("stopped_word") != 0;
  66. bool stopped_eos = json_value(result, "stopped_eos", false);
  67. int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
  68. int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
  69. std::string content = json_value(result, "content", std::string(""));
  70. std::string finish_reason = "length";
  71. if (stopped_word || stopped_eos) {
  72. finish_reason = "stop";
  73. }
  74. json choices =
  75. streaming ? json::array({json{{"finish_reason", finish_reason},
  76. {"index", 0},
  77. {"delta", json::object()}}})
  78. : json::array({json{{"finish_reason", finish_reason},
  79. {"index", 0},
  80. {"message", json{{"content", content},
  81. {"role", "assistant"}}}}});
  82. std::time_t t = std::time(0);
  83. json res =
  84. json{{"choices", choices},
  85. {"created", t},
  86. {"model",
  87. json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  88. {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
  89. {"usage",
  90. json{{"completion_tokens", num_tokens_predicted},
  91. {"prompt_tokens", num_prompt_tokens},
  92. {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
  93. {"id", gen_chatcmplid()}};
  94. if (server_verbose) {
  95. res["__verbose"] = result;
  96. }
  97. if (result.contains("completion_probabilities")) {
  98. res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
  99. }
  100. return res;
  101. }
  102. // return value is vector as there is one case where we might need to generate two responses
  103. inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
  104. json result = response.result_json;
  105. if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
  106. return std::vector<json>({response.result_json});
  107. }
  108. bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
  109. std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  110. bool stopped_word = json_value(result, "stopped_word", false);
  111. bool stopped_eos = json_value(result, "stopped_eos", false);
  112. bool stopped_limit = json_value(result, "stopped_limit", false);
  113. std::string content = json_value(result, "content", std::string(""));
  114. std::string finish_reason;
  115. if (stopped_word || stopped_eos) {
  116. finish_reason = "stop";
  117. }
  118. if (stopped_limit) {
  119. finish_reason = "length";
  120. }
  121. std::time_t t = std::time(0);
  122. json choices;
  123. if (!finish_reason.empty()) {
  124. choices = json::array({json{{"finish_reason", finish_reason},
  125. {"index", 0},
  126. {"delta", json::object()}}});
  127. } else {
  128. if (first) {
  129. if (content.empty()) {
  130. choices = json::array({json{{"finish_reason", nullptr},
  131. {"index", 0},
  132. {"delta", json{{"role", "assistant"}}}}});
  133. } else {
  134. // We have to send this as two updates to conform to openai behavior
  135. json initial_ret = json{{"choices", json::array({json{
  136. {"finish_reason", nullptr},
  137. {"index", 0},
  138. {"delta", json{
  139. {"role", "assistant"}
  140. }}}})},
  141. {"created", t},
  142. {"id", gen_chatcmplid()},
  143. {"model", modelname},
  144. {"object", "chat.completion.chunk"}};
  145. json second_ret = json{
  146. {"choices", json::array({json{{"finish_reason", nullptr},
  147. {"index", 0},
  148. {"delta", json{
  149. {"content", content}}}
  150. }})},
  151. {"created", t},
  152. {"id", gen_chatcmplid()},
  153. {"model", modelname},
  154. {"object", "chat.completion.chunk"}};
  155. return std::vector<json>({initial_ret, second_ret});
  156. }
  157. } else {
  158. // Some idiosyncrasy in task processing logic makes several trailing calls
  159. // with empty content, we ignore these at the calee site.
  160. if (content.empty()) {
  161. return std::vector<json>({json::object()});
  162. }
  163. choices = json::array({json{
  164. {"finish_reason", nullptr},
  165. {"index", 0},
  166. {"delta",
  167. json{
  168. {"content", content},
  169. }},
  170. }});
  171. }
  172. }
  173. json ret = json{{"choices", choices},
  174. {"created", t},
  175. {"id", gen_chatcmplid()},
  176. {"model", modelname},
  177. {"object", "chat.completion.chunk"}};
  178. return std::vector<json>({ret});
  179. }
  180. inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
  181. {
  182. json res =
  183. json{
  184. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  185. {"object", "list"},
  186. {"usage",
  187. json{{"prompt_tokens", 0},
  188. {"total_tokens", 0}}},
  189. {"data", embeddings}
  190. };
  191. return res;
  192. }