llama.h 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  34. #define LLAMA_SESSION_VERSION 4
  35. #ifdef __cplusplus
  36. extern "C" {
  37. #endif
  38. //
  39. // C interface
  40. //
  41. // TODO: show sample usage
  42. //
  43. struct llama_model;
  44. struct llama_context;
  45. typedef int32_t llama_pos;
  46. typedef int32_t llama_token;
  47. typedef int32_t llama_seq_id;
  48. enum llama_vocab_type {
  49. LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
  50. LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
  51. LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
  52. };
  53. enum llama_token_type {
  54. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  55. LLAMA_TOKEN_TYPE_NORMAL = 1,
  56. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  57. LLAMA_TOKEN_TYPE_CONTROL = 3,
  58. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  59. LLAMA_TOKEN_TYPE_UNUSED = 5,
  60. LLAMA_TOKEN_TYPE_BYTE = 6,
  61. };
  62. // model file types
  63. enum llama_ftype {
  64. LLAMA_FTYPE_ALL_F32 = 0,
  65. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  66. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  67. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  68. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  69. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  70. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  71. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  72. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  73. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  74. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  77. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  78. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  79. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  80. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  89. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  90. };
  91. enum llama_rope_scaling_type {
  92. LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
  93. LLAMA_ROPE_SCALING_NONE = 0,
  94. LLAMA_ROPE_SCALING_LINEAR = 1,
  95. LLAMA_ROPE_SCALING_YARN = 2,
  96. LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
  97. };
  98. enum llama_pooling_type {
  99. LLAMA_POOLING_NONE = 0,
  100. LLAMA_POOLING_MEAN = 1,
  101. LLAMA_POOLING_CLS = 2,
  102. };
  103. enum llama_split_mode {
  104. LLAMA_SPLIT_NONE = 0, // single GPU
  105. LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
  106. LLAMA_SPLIT_ROW = 2, // split rows across GPUs
  107. };
  108. typedef struct llama_token_data {
  109. llama_token id; // token id
  110. float logit; // log-odds of the token
  111. float p; // probability of the token
  112. } llama_token_data;
  113. typedef struct llama_token_data_array {
  114. llama_token_data * data;
  115. size_t size;
  116. bool sorted;
  117. } llama_token_data_array;
  118. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  119. // Input data for llama_decode
  120. // A llama_batch object can contain input about one or many sequences
  121. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  122. //
  123. // - token : the token ids of the input (used when embd is NULL)
  124. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  125. // - pos : the positions of the respective token in the sequence
  126. // - seq_id : the sequence to which the respective token belongs
  127. // - logits : if zero, the logits for the respective token will not be output
  128. //
  129. typedef struct llama_batch {
  130. int32_t n_tokens;
  131. llama_token * token;
  132. float * embd;
  133. llama_pos * pos;
  134. int32_t * n_seq_id;
  135. llama_seq_id ** seq_id;
  136. int8_t * logits;
  137. // NOTE: helpers for smooth API transition - can be deprecated in the future
  138. // for future-proof code, use the above fields instead and ignore everything below
  139. //
  140. // pos[i] = all_pos_0 + i*all_pos_1
  141. //
  142. llama_pos all_pos_0; // used if pos == NULL
  143. llama_pos all_pos_1; // used if pos == NULL
  144. llama_seq_id all_seq_id; // used if seq_id == NULL
  145. } llama_batch;
  146. enum llama_model_kv_override_type {
  147. LLAMA_KV_OVERRIDE_INT,
  148. LLAMA_KV_OVERRIDE_FLOAT,
  149. LLAMA_KV_OVERRIDE_BOOL,
  150. };
  151. struct llama_model_kv_override {
  152. char key[128];
  153. enum llama_model_kv_override_type tag;
  154. union {
  155. int64_t int_value;
  156. double float_value;
  157. bool bool_value;
  158. };
  159. };
  160. struct llama_model_params {
  161. int32_t n_gpu_layers; // number of layers to store in VRAM
  162. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  163. // main_gpu interpretation depends on split_mode:
  164. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  165. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  166. // LLAMA_SPLIT_LAYER: ignored
  167. int32_t main_gpu;
  168. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  169. const float * tensor_split;
  170. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  171. // If the provided progress_callback returns true, model loading continues.
  172. // If it returns false, model loading is immediately aborted.
  173. llama_progress_callback progress_callback;
  174. // context pointer passed to the progress callback
  175. void * progress_callback_user_data;
  176. // override key-value pairs of the model meta data
  177. const struct llama_model_kv_override * kv_overrides;
  178. // Keep the booleans together to avoid misalignment during copy-by-value.
  179. bool vocab_only; // only load the vocabulary, no weights
  180. bool use_mmap; // use mmap if possible
  181. bool use_mlock; // force system to keep model in RAM
  182. };
  183. struct llama_context_params {
  184. uint32_t seed; // RNG seed, -1 for random
  185. uint32_t n_ctx; // text context, 0 = from model
  186. uint32_t n_batch; // prompt processing maximum batch size
  187. uint32_t n_threads; // number of threads to use for generation
  188. uint32_t n_threads_batch; // number of threads to use for batch processing
  189. int32_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  190. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  191. float rope_freq_base; // RoPE base frequency, 0 = from model
  192. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  193. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  194. float yarn_attn_factor; // YaRN magnitude scaling factor
  195. float yarn_beta_fast; // YaRN low correction dim
  196. float yarn_beta_slow; // YaRN high correction dim
  197. uint32_t yarn_orig_ctx; // YaRN original context size
  198. ggml_backend_sched_eval_callback cb_eval;
  199. void * cb_eval_user_data;
  200. enum ggml_type type_k; // data type for K cache
  201. enum ggml_type type_v; // data type for V cache
  202. // Keep the booleans together to avoid misalignment during copy-by-value.
  203. bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
  204. bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  205. bool embedding; // embedding mode only
  206. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  207. bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
  208. };
  209. // model quantization parameters
  210. typedef struct llama_model_quantize_params {
  211. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  212. enum llama_ftype ftype; // quantize to this llama_ftype
  213. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  214. bool quantize_output_tensor; // quantize output.weight
  215. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  216. bool pure; // disable k-quant mixtures and quantize all tensors to the same type
  217. void * imatrix; // pointer to importance matrix data
  218. } llama_model_quantize_params;
  219. // grammar types
  220. struct llama_grammar;
  221. // grammar element type
  222. enum llama_gretype {
  223. // end of rule definition
  224. LLAMA_GRETYPE_END = 0,
  225. // start of alternate definition for rule
  226. LLAMA_GRETYPE_ALT = 1,
  227. // non-terminal element: reference to rule
  228. LLAMA_GRETYPE_RULE_REF = 2,
  229. // terminal element: character (code point)
  230. LLAMA_GRETYPE_CHAR = 3,
  231. // inverse char(s) ([^a], [^a-b] [^abc])
  232. LLAMA_GRETYPE_CHAR_NOT = 4,
  233. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  234. // be an inclusive range ([a-z])
  235. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  236. // modifies a preceding LLAMA_GRETYPE_CHAR or
  237. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  238. LLAMA_GRETYPE_CHAR_ALT = 6,
  239. };
  240. typedef struct llama_grammar_element {
  241. enum llama_gretype type;
  242. uint32_t value; // Unicode code point or rule ID
  243. } llama_grammar_element;
  244. // performance timing information
  245. struct llama_timings {
  246. double t_start_ms;
  247. double t_end_ms;
  248. double t_load_ms;
  249. double t_sample_ms;
  250. double t_p_eval_ms;
  251. double t_eval_ms;
  252. int32_t n_sample;
  253. int32_t n_p_eval;
  254. int32_t n_eval;
  255. };
  256. // Helpers for getting default parameters
  257. LLAMA_API struct llama_model_params llama_model_default_params(void);
  258. LLAMA_API struct llama_context_params llama_context_default_params(void);
  259. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  260. // Initialize the llama + ggml backend
  261. // If numa is true, use NUMA optimizations
  262. // Call once at the start of the program
  263. LLAMA_API void llama_backend_init(void);
  264. //optional:
  265. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  266. // Call once at the end of the program - currently only used for MPI
  267. LLAMA_API void llama_backend_free(void);
  268. LLAMA_API struct llama_model * llama_load_model_from_file(
  269. const char * path_model,
  270. struct llama_model_params params);
  271. LLAMA_API void llama_free_model(struct llama_model * model);
  272. LLAMA_API struct llama_context * llama_new_context_with_model(
  273. struct llama_model * model,
  274. struct llama_context_params params);
  275. // Frees all allocated memory
  276. LLAMA_API void llama_free(struct llama_context * ctx);
  277. LLAMA_API int64_t llama_time_us(void);
  278. LLAMA_API size_t llama_max_devices(void);
  279. LLAMA_API bool llama_supports_mmap (void);
  280. LLAMA_API bool llama_supports_mlock (void);
  281. LLAMA_API bool llama_supports_gpu_offload(void);
  282. LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
  283. LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
  284. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  285. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  286. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  287. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  288. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  289. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  290. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  291. // Get the model's RoPE frequency scaling factor
  292. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  293. // Functions to access the model's GGUF metadata scalar values
  294. // - The functions return the length of the string on success, or -1 on failure
  295. // - The output string is always null-terminated and cleared on failure
  296. // - GGUF array values are not supported by these functions
  297. // Get metadata value as a string by key name
  298. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  299. // Get the number of metadata key/value pairs
  300. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  301. // Get metadata key name by index
  302. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  303. // Get metadata value as a string by index
  304. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  305. // Get a string describing the model type
  306. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  307. // Returns the total size of all the tensors in the model in bytes
  308. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  309. // Returns the total number of parameters in the model
  310. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  311. // Get a llama model tensor
  312. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  313. // Returns 0 on success
  314. LLAMA_API uint32_t llama_model_quantize(
  315. const char * fname_inp,
  316. const char * fname_out,
  317. const llama_model_quantize_params * params);
  318. // Apply a LoRA adapter to a loaded model
  319. // path_base_model is the path to a higher quality model to use as a base for
  320. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  321. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  322. // will be applied on top of the previous one
  323. // Returns 0 on success
  324. LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
  325. struct llama_context * ctx,
  326. const char * path_lora,
  327. float scale,
  328. const char * path_base_model,
  329. int32_t n_threads),
  330. "use llama_model_apply_lora_from_file instead");
  331. LLAMA_API int32_t llama_model_apply_lora_from_file(
  332. const struct llama_model * model,
  333. const char * path_lora,
  334. float scale,
  335. const char * path_base_model,
  336. int32_t n_threads);
  337. //
  338. // KV cache
  339. //
  340. // Information associated with an individual cell in the KV cache view.
  341. struct llama_kv_cache_view_cell {
  342. // The position for this cell. Takes KV cache shifts into account.
  343. // May be negative if the cell is not populated.
  344. llama_pos pos;
  345. };
  346. // An updateable view of the KV cache.
  347. struct llama_kv_cache_view {
  348. // Number of KV cache cells. This will be the same as the context size.
  349. int32_t n_cells;
  350. // Maximum number of sequences that can exist in a cell. It's not an error
  351. // if there are more sequences in a cell than this value, however they will
  352. // not be visible in the view cells_sequences.
  353. int32_t n_max_seq;
  354. // Number of tokens in the cache. For example, if there are two populated
  355. // cells, the first with 1 sequence id in it and the second with 2 sequence
  356. // ids then you'll have 3 tokens.
  357. int32_t token_count;
  358. // Number of populated cache cells.
  359. int32_t used_cells;
  360. // Maximum contiguous empty slots in the cache.
  361. int32_t max_contiguous;
  362. // Index to the start of the max_contiguous slot range. Can be negative
  363. // when cache is full.
  364. int32_t max_contiguous_idx;
  365. // Information for an individual cell.
  366. struct llama_kv_cache_view_cell * cells;
  367. // The sequences for each cell. There will be n_max_seq items per cell.
  368. llama_seq_id * cells_sequences;
  369. };
  370. // Create an empty KV cache view. (use only for debugging purposes)
  371. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
  372. // Free a KV cache view. (use only for debugging purposes)
  373. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  374. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  375. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  376. // Returns the number of tokens in the KV cache (slow, use only for debug)
  377. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  378. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  379. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  380. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  381. // Clear the KV cache
  382. LLAMA_API void llama_kv_cache_clear(
  383. struct llama_context * ctx);
  384. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  385. // seq_id < 0 : match any sequence
  386. // p0 < 0 : [0, p1]
  387. // p1 < 0 : [p0, inf)
  388. LLAMA_API void llama_kv_cache_seq_rm(
  389. struct llama_context * ctx,
  390. llama_seq_id seq_id,
  391. llama_pos p0,
  392. llama_pos p1);
  393. // Copy all tokens that belong to the specified sequence to another sequence
  394. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  395. // p0 < 0 : [0, p1]
  396. // p1 < 0 : [p0, inf)
  397. LLAMA_API void llama_kv_cache_seq_cp(
  398. struct llama_context * ctx,
  399. llama_seq_id seq_id_src,
  400. llama_seq_id seq_id_dst,
  401. llama_pos p0,
  402. llama_pos p1);
  403. // Removes all tokens that do not belong to the specified sequence
  404. LLAMA_API void llama_kv_cache_seq_keep(
  405. struct llama_context * ctx,
  406. llama_seq_id seq_id);
  407. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  408. // If the KV cache is RoPEd, the KV data is updated accordingly
  409. // p0 < 0 : [0, p1]
  410. // p1 < 0 : [p0, inf)
  411. LLAMA_API void llama_kv_cache_seq_shift(
  412. struct llama_context * ctx,
  413. llama_seq_id seq_id,
  414. llama_pos p0,
  415. llama_pos p1,
  416. llama_pos delta);
  417. // Integer division of the positions by factor of `d > 1`
  418. // If the KV cache is RoPEd, the KV data is updated accordingly
  419. // p0 < 0 : [0, p1]
  420. // p1 < 0 : [p0, inf)
  421. LLAMA_API void llama_kv_cache_seq_div(
  422. struct llama_context * ctx,
  423. llama_seq_id seq_id,
  424. llama_pos p0,
  425. llama_pos p1,
  426. int d);
  427. //
  428. // State / sessions
  429. //
  430. // Returns the maximum size in bytes of the state (rng, logits, embedding
  431. // and kv_cache) - will often be smaller after compacting tokens
  432. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  433. // Copies the state to the specified destination address.
  434. // Destination needs to have allocated enough memory.
  435. // Returns the number of bytes copied
  436. LLAMA_API size_t llama_copy_state_data(
  437. struct llama_context * ctx,
  438. uint8_t * dst);
  439. // Set the state reading from the specified address
  440. // Returns the number of bytes read
  441. LLAMA_API size_t llama_set_state_data(
  442. struct llama_context * ctx,
  443. uint8_t * src);
  444. // Save/load session file
  445. LLAMA_API bool llama_load_session_file(
  446. struct llama_context * ctx,
  447. const char * path_session,
  448. llama_token * tokens_out,
  449. size_t n_token_capacity,
  450. size_t * n_token_count_out);
  451. LLAMA_API bool llama_save_session_file(
  452. struct llama_context * ctx,
  453. const char * path_session,
  454. const llama_token * tokens,
  455. size_t n_token_count);
  456. //
  457. // Decoding
  458. //
  459. // Run the llama inference to obtain the logits and probabilities for the next token(s).
  460. // tokens + n_tokens is the provided batch of new tokens to process
  461. // n_past is the number of tokens to use from previous eval calls
  462. // Returns 0 on success
  463. // DEPRECATED: use llama_decode() instead
  464. LLAMA_API DEPRECATED(int llama_eval(
  465. struct llama_context * ctx,
  466. llama_token * tokens,
  467. int32_t n_tokens,
  468. int32_t n_past),
  469. "use llama_decode() instead");
  470. // Same as llama_eval, but use float matrix input directly.
  471. // DEPRECATED: use llama_decode() instead
  472. LLAMA_API DEPRECATED(int llama_eval_embd(
  473. struct llama_context * ctx,
  474. float * embd,
  475. int32_t n_tokens,
  476. int32_t n_past),
  477. "use llama_decode() instead");
  478. // Return batch for single sequence of tokens starting at pos_0
  479. //
  480. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  481. //
  482. LLAMA_API struct llama_batch llama_batch_get_one(
  483. llama_token * tokens,
  484. int32_t n_tokens,
  485. llama_pos pos_0,
  486. llama_seq_id seq_id);
  487. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  488. // Each token can be assigned up to n_seq_max sequence ids
  489. // The batch has to be freed with llama_batch_free()
  490. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  491. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  492. // The rest of the llama_batch members are allocated with size n_tokens
  493. // All members are left uninitialized
  494. LLAMA_API struct llama_batch llama_batch_init(
  495. int32_t n_tokens,
  496. int32_t embd,
  497. int32_t n_seq_max);
  498. // Frees a batch of tokens allocated with llama_batch_init()
  499. LLAMA_API void llama_batch_free(struct llama_batch batch);
  500. // Positive return values does not mean a fatal error, but rather a warning.
  501. // 0 - success
  502. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  503. // < 0 - error
  504. LLAMA_API int32_t llama_decode(
  505. struct llama_context * ctx,
  506. struct llama_batch batch);
  507. // Set the number of threads used for decoding
  508. // n_threads is the number of threads used for generation (single token)
  509. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  510. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  511. // Token logits obtained from the last call to llama_eval()
  512. // The logits for the last token are stored in the last row
  513. // Logits for which llama_batch.logits[i] == 0 are undefined
  514. // Rows: n_tokens provided with llama_batch
  515. // Cols: n_vocab
  516. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  517. // Logits for the ith token. Equivalent to:
  518. // llama_get_logits(ctx) + i*n_vocab
  519. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  520. // Get the embeddings for the input
  521. // shape: [n_embd] (1-dimensional)
  522. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  523. // Get the embeddings for the ith sequence
  524. // llama_get_embeddings(ctx) + i*n_embd
  525. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  526. //
  527. // Vocab
  528. //
  529. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  530. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  531. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  532. // Special tokens
  533. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  534. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  535. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  536. // Returns -1 if unknown, 1 for true or 0 for false.
  537. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  538. // Returns -1 if unknown, 1 for true or 0 for false.
  539. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  540. // codellama infill tokens
  541. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  542. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  543. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  544. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  545. //
  546. // Tokenization
  547. //
  548. /// @details Convert the provided text into tokens.
  549. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  550. /// @return Returns the number of tokens on success, no more than n_max_tokens
  551. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  552. /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
  553. /// Does not insert a leading space.
  554. LLAMA_API int32_t llama_tokenize(
  555. const struct llama_model * model,
  556. const char * text,
  557. int32_t text_len,
  558. llama_token * tokens,
  559. int32_t n_max_tokens,
  560. bool add_bos,
  561. bool special);
  562. // Token Id -> Piece.
  563. // Uses the vocabulary in the provided context.
  564. // Does not write null terminator to the buffer.
  565. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  566. LLAMA_API int32_t llama_token_to_piece(
  567. const struct llama_model * model,
  568. llama_token token,
  569. char * buf,
  570. int32_t length);
  571. //
  572. // Grammar
  573. //
  574. LLAMA_API struct llama_grammar * llama_grammar_init(
  575. const llama_grammar_element ** rules,
  576. size_t n_rules,
  577. size_t start_rule_index);
  578. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  579. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  580. //
  581. // Sampling functions
  582. //
  583. // Sets the current rng seed.
  584. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  585. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  586. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  587. LLAMA_API void llama_sample_repetition_penalties(
  588. struct llama_context * ctx,
  589. llama_token_data_array * candidates,
  590. const llama_token * last_tokens,
  591. size_t penalty_last_n,
  592. float penalty_repeat,
  593. float penalty_freq,
  594. float penalty_present);
  595. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  596. /// @param logits Logits extracted from the original generation context.
  597. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  598. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  599. LLAMA_API void llama_sample_apply_guidance(
  600. struct llama_context * ctx,
  601. float * logits,
  602. float * logits_guidance,
  603. float scale);
  604. LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
  605. struct llama_context * ctx,
  606. llama_token_data_array * candidates,
  607. struct llama_context * guidance_ctx,
  608. float scale),
  609. "use llama_sample_apply_guidance() instead");
  610. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  611. LLAMA_API void llama_sample_softmax(
  612. struct llama_context * ctx,
  613. llama_token_data_array * candidates);
  614. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  615. LLAMA_API void llama_sample_top_k(
  616. struct llama_context * ctx,
  617. llama_token_data_array * candidates,
  618. int32_t k,
  619. size_t min_keep);
  620. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  621. LLAMA_API void llama_sample_top_p(
  622. struct llama_context * ctx,
  623. llama_token_data_array * candidates,
  624. float p,
  625. size_t min_keep);
  626. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  627. LLAMA_API void llama_sample_min_p(
  628. struct llama_context * ctx,
  629. llama_token_data_array * candidates,
  630. float p,
  631. size_t min_keep);
  632. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  633. LLAMA_API void llama_sample_tail_free(
  634. struct llama_context * ctx,
  635. llama_token_data_array * candidates,
  636. float z,
  637. size_t min_keep);
  638. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  639. LLAMA_API void llama_sample_typical(
  640. struct llama_context * ctx,
  641. llama_token_data_array * candidates,
  642. float p,
  643. size_t min_keep);
  644. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  645. LLAMA_API void llama_sample_entropy(
  646. struct llama_context * ctx,
  647. llama_token_data_array * candidates_p,
  648. float min_temp,
  649. float max_temp,
  650. float exponent_val);
  651. LLAMA_API void llama_sample_temp(
  652. struct llama_context * ctx,
  653. llama_token_data_array * candidates,
  654. float temp);
  655. LLAMA_API DEPRECATED(void llama_sample_temperature(
  656. struct llama_context * ctx,
  657. llama_token_data_array * candidates,
  658. float temp),
  659. "use llama_sample_temp instead");
  660. /// @details Apply constraints from grammar
  661. LLAMA_API void llama_sample_grammar(
  662. struct llama_context * ctx,
  663. llama_token_data_array * candidates,
  664. const struct llama_grammar * grammar);
  665. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  666. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  667. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  668. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  669. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  670. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  671. LLAMA_API llama_token llama_sample_token_mirostat(
  672. struct llama_context * ctx,
  673. llama_token_data_array * candidates,
  674. float tau,
  675. float eta,
  676. int32_t m,
  677. float * mu);
  678. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  679. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  680. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  681. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  682. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  683. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  684. struct llama_context * ctx,
  685. llama_token_data_array * candidates,
  686. float tau,
  687. float eta,
  688. float * mu);
  689. /// @details Selects the token with the highest probability.
  690. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  691. LLAMA_API llama_token llama_sample_token_greedy(
  692. struct llama_context * ctx,
  693. llama_token_data_array * candidates);
  694. /// @details Randomly selects a token from the candidates based on their probabilities.
  695. LLAMA_API llama_token llama_sample_token(
  696. struct llama_context * ctx,
  697. llama_token_data_array * candidates);
  698. /// @details Accepts the sampled token into the grammar
  699. LLAMA_API void llama_grammar_accept_token(
  700. struct llama_context * ctx,
  701. struct llama_grammar * grammar,
  702. llama_token token);
  703. //
  704. // Beam search
  705. //
  706. struct llama_beam_view {
  707. const llama_token * tokens;
  708. size_t n_tokens;
  709. float p; // Cumulative beam probability (renormalized relative to all beams)
  710. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  711. };
  712. // Passed to beam_search_callback function.
  713. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  714. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  715. // These pointers are valid only during the synchronous callback, so should not be saved.
  716. struct llama_beams_state {
  717. struct llama_beam_view * beam_views;
  718. size_t n_beams; // Number of elements in beam_views[].
  719. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  720. bool last_call; // True iff this is the last callback invocation.
  721. };
  722. // Type of pointer to the beam_search_callback function.
  723. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  724. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  725. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  726. /// @details Deterministically returns entire sentence constructed by a beam search.
  727. /// @param ctx Pointer to the llama_context.
  728. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  729. /// @param callback_data A pointer that is simply passed back to callback.
  730. /// @param n_beams Number of beams to use.
  731. /// @param n_past Number of tokens already evaluated.
  732. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  733. LLAMA_API void llama_beam_search(
  734. struct llama_context * ctx,
  735. llama_beam_search_callback_fn_t callback,
  736. void * callback_data,
  737. size_t n_beams,
  738. int32_t n_past,
  739. int32_t n_predict);
  740. // Performance information
  741. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  742. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  743. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  744. // Print system information
  745. LLAMA_API const char * llama_print_system_info(void);
  746. // Set callback for all future logging events.
  747. // If this is not called, or NULL is supplied, everything is output on stderr.
  748. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  749. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  750. #ifdef __cplusplus
  751. }
  752. #endif
  753. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  754. #ifdef LLAMA_API_INTERNAL
  755. #include <vector>
  756. #include <string>
  757. struct ggml_tensor;
  758. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  759. struct llama_context * ctx
  760. );
  761. #endif // LLAMA_API_INTERNAL
  762. #endif // LLAMA_H