convert_hf_to_gguf.py 187 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. import math
  17. import numpy as np
  18. import torch
  19. if TYPE_CHECKING:
  20. from torch import Tensor
  21. if 'NO_LOCAL_GGUF' not in os.environ:
  22. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  23. import gguf
  24. logger = logging.getLogger("hf-to-gguf")
  25. ###### MODEL DEFINITIONS ######
  26. class SentencePieceTokenTypes(IntEnum):
  27. NORMAL = 1
  28. UNKNOWN = 2
  29. CONTROL = 3
  30. USER_DEFINED = 4
  31. UNUSED = 5
  32. BYTE = 6
  33. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  34. class Model:
  35. _model_classes: dict[str, type[Model]] = {}
  36. dir_model: Path
  37. ftype: gguf.LlamaFileType
  38. fname_out: Path
  39. is_big_endian: bool
  40. endianess: gguf.GGUFEndian
  41. use_temp_file: bool
  42. lazy: bool
  43. part_names: list[str]
  44. is_safetensors: bool
  45. hparams: dict[str, Any]
  46. block_count: int
  47. tensor_map: gguf.TensorNameMap
  48. tensor_names: set[str] | None
  49. gguf_writer: gguf.GGUFWriter
  50. model_name: str | None
  51. metadata_override: Path | None
  52. dir_model_card: Path
  53. is_lora: bool
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. if len(self.part_names) > 1:
  112. self.tensor_names = set()
  113. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  114. index_name += ".index.json"
  115. logger.info(f"gguf: loading model weight map from '{index_name}'")
  116. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  117. index: dict[str, Any] = json.load(f)
  118. weight_map = index.get("weight_map")
  119. if weight_map is None or not isinstance(weight_map, dict):
  120. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  121. self.tensor_names.update(weight_map.keys())
  122. else:
  123. self.tensor_names = tensor_names_from_parts
  124. for part_name in self.part_names:
  125. logger.info(f"gguf: loading model part '{part_name}'")
  126. ctx: ContextManager[Any]
  127. if self.is_safetensors:
  128. from safetensors import safe_open
  129. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  130. else:
  131. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  132. with ctx as model_part:
  133. tensor_names_from_parts.update(model_part.keys())
  134. for name in model_part.keys():
  135. if self.is_safetensors:
  136. if self.lazy:
  137. data = model_part.get_slice(name)
  138. data = LazyTorchTensor.from_safetensors_slice(data)
  139. else:
  140. data = model_part.get_tensor(name)
  141. else:
  142. data = model_part[name]
  143. if self.lazy:
  144. data = LazyTorchTensor.from_eager(data)
  145. yield name, data
  146. # only verify tensor name presence; it doesn't matter if they are not in the right files
  147. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  148. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  149. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  150. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  151. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  152. name: str = gguf.TENSOR_NAMES[key]
  153. if "{bid}" in name:
  154. assert bid is not None
  155. name = name.format(bid=bid)
  156. return name + suffix
  157. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  158. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  159. return False
  160. key_name: str = gguf.TENSOR_NAMES[key]
  161. if "{bid}" in key_name:
  162. if bid is None:
  163. return False
  164. key_name = key_name.format(bid=bid)
  165. else:
  166. if bid is not None:
  167. return False
  168. return name == (key_name + suffix)
  169. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  170. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  171. if new_name is None:
  172. raise ValueError(f"Can not map tensor {name!r}")
  173. return new_name
  174. def set_gguf_parameters(self):
  175. self.gguf_writer.add_block_count(self.block_count)
  176. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  177. self.gguf_writer.add_context_length(n_ctx)
  178. logger.info(f"gguf: context length = {n_ctx}")
  179. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  180. self.gguf_writer.add_embedding_length(n_embd)
  181. logger.info(f"gguf: embedding length = {n_embd}")
  182. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  183. self.gguf_writer.add_feed_forward_length(n_ff)
  184. logger.info(f"gguf: feed forward length = {n_ff}")
  185. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  186. self.gguf_writer.add_head_count(n_head)
  187. logger.info(f"gguf: head count = {n_head}")
  188. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  189. self.gguf_writer.add_head_count_kv(n_head_kv)
  190. logger.info(f"gguf: key-value head count = {n_head_kv}")
  191. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  192. self.gguf_writer.add_rope_freq_base(rope_theta)
  193. logger.info(f"gguf: rope theta = {rope_theta}")
  194. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  195. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  196. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  197. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  198. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  199. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  200. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  201. self.gguf_writer.add_expert_count(n_experts)
  202. logger.info(f"gguf: expert count = {n_experts}")
  203. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  204. self.gguf_writer.add_expert_used_count(n_experts_used)
  205. logger.info(f"gguf: experts used count = {n_experts_used}")
  206. if (head_dim := self.hparams.get("head_dim")) is not None:
  207. self.gguf_writer.add_key_length(head_dim)
  208. self.gguf_writer.add_value_length(head_dim)
  209. self.gguf_writer.add_file_type(self.ftype)
  210. logger.info(f"gguf: file type = {self.ftype}")
  211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  212. del bid # unused
  213. return [(self.map_tensor_name(name), data_torch)]
  214. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  215. del name, new_name, bid, n_dims # unused
  216. return False
  217. def prepare_tensors(self):
  218. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  219. for name, data_torch in self.get_tensors():
  220. # we don't need these
  221. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  222. continue
  223. old_dtype = data_torch.dtype
  224. # convert any unsupported data types to float32
  225. if data_torch.dtype not in (torch.float16, torch.float32):
  226. data_torch = data_torch.to(torch.float32)
  227. # use the first number-like part of the tensor name as the block id
  228. bid = None
  229. for part in name.split("."):
  230. if part.isdecimal():
  231. bid = int(part)
  232. break
  233. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  234. data: np.ndarray # type hint
  235. n_dims = len(data.shape)
  236. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  237. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  238. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  239. data_qtype = gguf.GGMLQuantizationType.F32
  240. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  241. # Some tensor types are always in float32
  242. if data_qtype is False and (
  243. any(
  244. self.match_model_tensor_name(new_name, key, bid)
  245. for key in (
  246. gguf.MODEL_TENSOR.FFN_GATE_INP,
  247. gguf.MODEL_TENSOR.POS_EMBD,
  248. gguf.MODEL_TENSOR.TOKEN_TYPES,
  249. gguf.MODEL_TENSOR.SSM_CONV1D,
  250. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  251. gguf.MODEL_TENSOR.TIME_MIX_W1,
  252. gguf.MODEL_TENSOR.TIME_MIX_W2,
  253. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  255. )
  256. )
  257. or not new_name.endswith(".weight")
  258. ):
  259. data_qtype = gguf.GGMLQuantizationType.F32
  260. if data_qtype is False and any(
  261. self.match_model_tensor_name(new_name, key, bid)
  262. for key in (
  263. gguf.MODEL_TENSOR.TOKEN_EMBD,
  264. gguf.MODEL_TENSOR.OUTPUT,
  265. )
  266. ):
  267. if self.ftype in (
  268. gguf.LlamaFileType.MOSTLY_TQ1_0,
  269. gguf.LlamaFileType.MOSTLY_TQ2_0,
  270. ):
  271. # TODO: use Q4_K and Q6_K
  272. data_qtype = gguf.GGMLQuantizationType.F16
  273. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  274. if isinstance(data_qtype, bool):
  275. if self.ftype == gguf.LlamaFileType.ALL_F32:
  276. data_qtype = gguf.GGMLQuantizationType.F32
  277. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  278. data_qtype = gguf.GGMLQuantizationType.F16
  279. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  280. data_qtype = gguf.GGMLQuantizationType.BF16
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  282. data_qtype = gguf.GGMLQuantizationType.Q8_0
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  284. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  286. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  287. else:
  288. raise ValueError(f"Unknown file type: {self.ftype.name}")
  289. try:
  290. data = gguf.quants.quantize(data, data_qtype)
  291. except gguf.QuantError as e:
  292. logger.warning("%s, %s", e, "falling back to F16")
  293. data_qtype = gguf.GGMLQuantizationType.F16
  294. data = gguf.quants.quantize(data, data_qtype)
  295. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  296. # reverse shape to make it similar to the internal ggml dimension order
  297. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  298. # n_dims is implicit in the shape
  299. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  300. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  301. def set_type(self):
  302. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  303. def prepare_metadata(self, vocab_only: bool):
  304. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  305. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  306. # Fallback to model directory name if metadata name is still missing
  307. if self.metadata.name is None:
  308. self.metadata.name = self.dir_model.name
  309. # Generate parameter weight class (useful for leader boards) if not yet determined
  310. if self.metadata.size_label is None and total_params > 0:
  311. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  312. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  313. output_type: str = self.ftype.name.partition("_")[2]
  314. # Filename Output
  315. if self.fname_out.is_dir():
  316. # Generate default filename based on model specification and available metadata
  317. if not vocab_only:
  318. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  319. else:
  320. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  321. # Use the default filename
  322. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  323. else:
  324. # Output path is a custom defined templated filename
  325. # Note: `not is_dir()` is used because `.is_file()` will not detect
  326. # file template strings as it doesn't actually exist as a file
  327. # Process templated file name with the output ftype, useful with the "auto" ftype
  328. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  329. self.set_type()
  330. logger.info("Set meta model")
  331. self.metadata.set_gguf_meta_model(self.gguf_writer)
  332. logger.info("Set model parameters")
  333. self.set_gguf_parameters()
  334. logger.info("Set model tokenizer")
  335. self.set_vocab()
  336. logger.info("Set model quantization version")
  337. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  338. def write(self):
  339. self.prepare_tensors()
  340. self.prepare_metadata(vocab_only=False)
  341. self.gguf_writer.write_header_to_file(path=self.fname_out)
  342. self.gguf_writer.write_kv_data_to_file()
  343. self.gguf_writer.write_tensors_to_file(progress=True)
  344. self.gguf_writer.close()
  345. def write_vocab(self):
  346. if len(self.gguf_writer.tensors) != 1:
  347. raise ValueError('Splitting the vocabulary is not supported')
  348. self.prepare_metadata(vocab_only=True)
  349. self.gguf_writer.write_header_to_file(path=self.fname_out)
  350. self.gguf_writer.write_kv_data_to_file()
  351. self.gguf_writer.close()
  352. @staticmethod
  353. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  354. part_names: list[str] = []
  355. for filename in os.listdir(dir_model):
  356. if filename.startswith(prefix) and filename.endswith(suffix):
  357. part_names.append(filename)
  358. part_names.sort()
  359. return part_names
  360. @staticmethod
  361. def load_hparams(dir_model: Path):
  362. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  363. return json.load(f)
  364. @classmethod
  365. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  366. assert names
  367. def func(modelcls: AnyModel) -> AnyModel:
  368. for name in names:
  369. cls._model_classes[name] = modelcls
  370. return modelcls
  371. return func
  372. @classmethod
  373. def from_model_architecture(cls, arch: str) -> type[Model]:
  374. try:
  375. return cls._model_classes[arch]
  376. except KeyError:
  377. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  378. def does_token_look_special(self, token: str | bytes) -> bool:
  379. if isinstance(token, (bytes, bytearray)):
  380. token_text = token.decode(encoding="utf-8")
  381. elif isinstance(token, memoryview):
  382. token_text = token.tobytes().decode(encoding="utf-8")
  383. else:
  384. token_text = token
  385. # Some models mark some added tokens which ought to be control tokens as not special.
  386. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  387. seems_special = token_text in (
  388. "<pad>", # deepseek-coder
  389. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  390. )
  391. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  392. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  393. # TODO: should these be marked as UNUSED instead? (maybe not)
  394. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  395. return seems_special
  396. # used for GPT-2 BPE and WordPiece vocabs
  397. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  398. tokens: list[str] = []
  399. toktypes: list[int] = []
  400. from transformers import AutoTokenizer
  401. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  402. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  403. assert max(tokenizer.vocab.values()) < vocab_size
  404. tokpre = self.get_vocab_base_pre(tokenizer)
  405. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  406. added_vocab = tokenizer.get_added_vocab()
  407. for i in range(vocab_size):
  408. if i not in reverse_vocab:
  409. tokens.append(f"[PAD{i}]")
  410. toktypes.append(gguf.TokenType.UNUSED)
  411. else:
  412. token: str = reverse_vocab[i]
  413. if token in added_vocab:
  414. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  415. toktypes.append(gguf.TokenType.CONTROL)
  416. else:
  417. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  418. toktypes.append(gguf.TokenType.USER_DEFINED)
  419. else:
  420. toktypes.append(gguf.TokenType.NORMAL)
  421. tokens.append(token)
  422. return tokens, toktypes, tokpre
  423. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  424. # do not modify it manually!
  425. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  426. # Marker: Start get_vocab_base_pre
  427. def get_vocab_base_pre(self, tokenizer) -> str:
  428. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  429. # is specific for the BPE pre-tokenizer used by the model
  430. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  431. # use in llama.cpp to implement the same pre-tokenizer
  432. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  433. chktok = tokenizer.encode(chktxt)
  434. chkhsh = sha256(str(chktok).encode()).hexdigest()
  435. logger.debug(f"chktok: {chktok}")
  436. logger.debug(f"chkhsh: {chkhsh}")
  437. res = None
  438. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  439. # or pull the latest version of the model from Huggingface
  440. # don't edit the hashes manually!
  441. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  442. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  443. res = "llama-bpe"
  444. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  445. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  446. res = "deepseek-llm"
  447. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  448. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  449. res = "deepseek-coder"
  450. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  451. # ref: https://huggingface.co/tiiuae/falcon-7b
  452. res = "falcon"
  453. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  454. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  455. res = "bert-bge"
  456. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  457. # ref: https://huggingface.co/mosaicml/mpt-7b
  458. res = "mpt"
  459. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  460. # ref: https://huggingface.co/bigcode/starcoder2-3b
  461. res = "starcoder"
  462. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  463. # ref: https://huggingface.co/openai-community/gpt2
  464. res = "gpt-2"
  465. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  466. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  467. res = "stablelm2"
  468. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  469. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  470. res = "refact"
  471. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  472. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  473. res = "command-r"
  474. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  475. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  476. res = "qwen2"
  477. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  478. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  479. res = "olmo"
  480. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  481. # ref: https://huggingface.co/databricks/dbrx-base
  482. res = "dbrx"
  483. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  484. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  485. res = "jina-v2-en"
  486. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  487. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  488. res = "jina-v2-es"
  489. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  490. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  491. res = "jina-v2-de"
  492. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  493. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  494. res = "smaug-bpe"
  495. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  496. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  497. res = "poro-chat"
  498. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  499. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  500. res = "jina-v2-code"
  501. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  502. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  503. res = "chatglm-bpe"
  504. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  505. # ref: https://huggingface.co/LumiOpen/Viking-7B
  506. res = "viking"
  507. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  508. # ref: https://huggingface.co/core42/jais-13b
  509. res = "jais"
  510. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  511. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  512. res = "codeshell"
  513. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  514. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  515. res = "tekken"
  516. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  517. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  518. res = "smollm"
  519. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  520. # ref: https://huggingface.co/bigscience/bloom
  521. res = "bloom"
  522. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  523. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  524. res = "gpt3-finnish"
  525. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  526. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  527. res = "exaone"
  528. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  529. # ref: https://huggingface.co/microsoft/phi-2
  530. res = "phi-2"
  531. if res is None:
  532. logger.warning("\n")
  533. logger.warning("**************************************************************************************")
  534. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  535. logger.warning("** There are 2 possible reasons for this:")
  536. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  537. logger.warning("** - the pre-tokenization config has changed upstream")
  538. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  539. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  540. logger.warning("**")
  541. logger.warning(f"** chkhsh: {chkhsh}")
  542. logger.warning("**************************************************************************************")
  543. logger.warning("\n")
  544. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  545. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  546. logger.debug(f"chkhsh: {chkhsh}")
  547. return res
  548. # Marker: End get_vocab_base_pre
  549. def _set_vocab_gpt2(self) -> None:
  550. tokens, toktypes, tokpre = self.get_vocab_base()
  551. self.gguf_writer.add_tokenizer_model("gpt2")
  552. self.gguf_writer.add_tokenizer_pre(tokpre)
  553. self.gguf_writer.add_token_list(tokens)
  554. self.gguf_writer.add_token_types(toktypes)
  555. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  556. special_vocab.add_to_gguf(self.gguf_writer)
  557. def _set_vocab_qwen(self):
  558. dir_model = self.dir_model
  559. hparams = self.hparams
  560. tokens: list[str] = []
  561. toktypes: list[int] = []
  562. from transformers import AutoTokenizer
  563. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  564. vocab_size = hparams["vocab_size"]
  565. assert max(tokenizer.get_vocab().values()) < vocab_size
  566. tokpre = self.get_vocab_base_pre(tokenizer)
  567. merges = []
  568. vocab = {}
  569. mergeable_ranks = tokenizer.mergeable_ranks
  570. for token, rank in mergeable_ranks.items():
  571. vocab[QwenModel.token_bytes_to_string(token)] = rank
  572. if len(token) == 1:
  573. continue
  574. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  575. assert len(merged) == 2
  576. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  577. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  578. added_vocab = tokenizer.special_tokens
  579. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  580. for i in range(vocab_size):
  581. if i not in reverse_vocab:
  582. tokens.append(f"[PAD{i}]")
  583. toktypes.append(gguf.TokenType.UNUSED)
  584. elif reverse_vocab[i] in added_vocab:
  585. tokens.append(reverse_vocab[i])
  586. toktypes.append(gguf.TokenType.CONTROL)
  587. else:
  588. tokens.append(reverse_vocab[i])
  589. toktypes.append(gguf.TokenType.NORMAL)
  590. self.gguf_writer.add_tokenizer_model("gpt2")
  591. self.gguf_writer.add_tokenizer_pre(tokpre)
  592. self.gguf_writer.add_token_list(tokens)
  593. self.gguf_writer.add_token_types(toktypes)
  594. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  595. special_vocab.merges = merges
  596. # only add special tokens when they were not already loaded from config.json
  597. if len(special_vocab.special_token_ids) == 0:
  598. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  599. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  600. # this one is usually not in config.json anyway
  601. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  602. special_vocab.add_to_gguf(self.gguf_writer)
  603. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  604. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  605. self.gguf_writer.add_tokenizer_model("llama")
  606. self.gguf_writer.add_tokenizer_pre("default")
  607. self.gguf_writer.add_token_list(tokens)
  608. self.gguf_writer.add_token_scores(scores)
  609. self.gguf_writer.add_token_types(toktypes)
  610. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  611. special_vocab.add_to_gguf(self.gguf_writer)
  612. def _create_vocab_sentencepiece(self):
  613. from sentencepiece import SentencePieceProcessor
  614. tokenizer_path = self.dir_model / 'tokenizer.model'
  615. if not tokenizer_path.is_file():
  616. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  617. tokenizer = SentencePieceProcessor()
  618. tokenizer.LoadFromFile(str(tokenizer_path))
  619. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  620. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  621. scores: list[float] = [-10000.0] * vocab_size
  622. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  623. for token_id in range(tokenizer.vocab_size()):
  624. piece = tokenizer.IdToPiece(token_id)
  625. text = piece.encode("utf-8")
  626. score = tokenizer.GetScore(token_id)
  627. toktype = SentencePieceTokenTypes.NORMAL
  628. if tokenizer.IsUnknown(token_id):
  629. toktype = SentencePieceTokenTypes.UNKNOWN
  630. elif tokenizer.IsControl(token_id):
  631. toktype = SentencePieceTokenTypes.CONTROL
  632. elif tokenizer.IsUnused(token_id):
  633. toktype = SentencePieceTokenTypes.UNUSED
  634. elif tokenizer.IsByte(token_id):
  635. toktype = SentencePieceTokenTypes.BYTE
  636. tokens[token_id] = text
  637. scores[token_id] = score
  638. toktypes[token_id] = toktype
  639. added_tokens_file = self.dir_model / 'added_tokens.json'
  640. if added_tokens_file.is_file():
  641. with open(added_tokens_file, "r", encoding="utf-8") as f:
  642. added_tokens_json = json.load(f)
  643. for key in added_tokens_json:
  644. token_id = added_tokens_json[key]
  645. if token_id >= vocab_size:
  646. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  647. continue
  648. tokens[token_id] = key.encode("utf-8")
  649. scores[token_id] = -1000.0
  650. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  651. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  652. if tokenizer_config_file.is_file():
  653. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  654. tokenizer_config_json = json.load(f)
  655. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  656. for token_id, token_data in added_tokens_decoder.items():
  657. token_id = int(token_id)
  658. token: str = token_data["content"]
  659. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  660. if tokens[token_id] != token.encode("utf-8"):
  661. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  662. if token_data.get("special") or self.does_token_look_special(token):
  663. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  664. else:
  665. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  666. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  667. scores[token_id] = -1000.0
  668. tokens[token_id] = token.encode("utf-8")
  669. if vocab_size > len(tokens):
  670. pad_count = vocab_size - len(tokens)
  671. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  672. for i in range(1, pad_count + 1):
  673. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  674. scores.append(-1000.0)
  675. toktypes.append(SentencePieceTokenTypes.UNUSED)
  676. return tokens, scores, toktypes
  677. def _set_vocab_llama_hf(self):
  678. vocab = gguf.LlamaHfVocab(self.dir_model)
  679. tokens = []
  680. scores = []
  681. toktypes = []
  682. for text, score, toktype in vocab.all_tokens():
  683. tokens.append(text)
  684. scores.append(score)
  685. toktypes.append(toktype)
  686. assert len(tokens) == vocab.vocab_size
  687. self.gguf_writer.add_tokenizer_model("llama")
  688. self.gguf_writer.add_tokenizer_pre("default")
  689. self.gguf_writer.add_token_list(tokens)
  690. self.gguf_writer.add_token_scores(scores)
  691. self.gguf_writer.add_token_types(toktypes)
  692. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  693. special_vocab.add_to_gguf(self.gguf_writer)
  694. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  695. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  696. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  697. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  698. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  699. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  700. assert field # tokenizer model
  701. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  702. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  703. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  704. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  705. assert field # token list
  706. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  707. if model_name == "llama-spm":
  708. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  709. assert field # token scores
  710. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  711. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  712. assert field # token types
  713. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  714. if model_name != "llama-spm":
  715. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  716. assert field # token merges
  717. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  718. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  719. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  720. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  721. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  722. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  723. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  724. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  725. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  726. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  727. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  728. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  729. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  730. @Model.register("GPTNeoXForCausalLM")
  731. class GPTNeoXModel(Model):
  732. model_arch = gguf.MODEL_ARCH.GPTNEOX
  733. def set_gguf_parameters(self):
  734. block_count = self.hparams["num_hidden_layers"]
  735. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  736. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  737. self.gguf_writer.add_block_count(block_count)
  738. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  739. self.gguf_writer.add_rope_dimension_count(
  740. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  741. )
  742. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  743. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  744. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  746. del bid # unused
  747. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  748. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  749. tensors: list[tuple[str, Tensor]] = []
  750. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  751. # Map bloom-style qkv_linear to gpt-style qkv_linear
  752. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  753. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  754. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  755. data_torch = torch.cat(
  756. (
  757. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  758. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  759. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  760. ),
  761. dim=0,
  762. )
  763. logger.info("re-format attention.linear_qkv.weight")
  764. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  765. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  766. data_torch = torch.cat(
  767. (
  768. qkv_bias[:, 0, :].reshape((n_embed,)),
  769. qkv_bias[:, 1, :].reshape((n_embed,)),
  770. qkv_bias[:, 2, :].reshape((n_embed,)),
  771. ),
  772. dim=0,
  773. )
  774. logger.info("re-format attention.linear_qkv.bias")
  775. tensors.append((self.map_tensor_name(name), data_torch))
  776. return tensors
  777. @Model.register("BloomForCausalLM", "BloomModel")
  778. class BloomModel(Model):
  779. model_arch = gguf.MODEL_ARCH.BLOOM
  780. def set_gguf_parameters(self):
  781. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  782. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  783. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  784. self.gguf_writer.add_embedding_length(n_embed)
  785. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  786. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  787. self.gguf_writer.add_head_count(n_head)
  788. self.gguf_writer.add_head_count_kv(n_head)
  789. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  790. self.gguf_writer.add_file_type(self.ftype)
  791. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  792. del bid # unused
  793. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  794. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  795. name = re.sub(r'transformer\.', '', name)
  796. tensors: list[tuple[str, Tensor]] = []
  797. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  798. # Map bloom-style qkv_linear to gpt-style qkv_linear
  799. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  800. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  801. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  802. data_torch = torch.cat(
  803. (
  804. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  805. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  806. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  807. ),
  808. dim=0,
  809. )
  810. logger.info("re-format attention.linear_qkv.weight")
  811. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  812. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  813. data_torch = torch.cat(
  814. (
  815. qkv_bias[:, 0, :].reshape((n_embed,)),
  816. qkv_bias[:, 1, :].reshape((n_embed,)),
  817. qkv_bias[:, 2, :].reshape((n_embed,)),
  818. ),
  819. dim=0,
  820. )
  821. logger.info("re-format attention.linear_qkv.bias")
  822. tensors.append((self.map_tensor_name(name), data_torch))
  823. if name == "word_embeddings.weight":
  824. assert self.tensor_names is not None
  825. # TODO: tie them at runtime, don't duplicate in the model file
  826. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  827. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  828. return tensors
  829. @Model.register("MPTForCausalLM")
  830. class MPTModel(Model):
  831. model_arch = gguf.MODEL_ARCH.MPT
  832. def set_vocab(self):
  833. try:
  834. self._set_vocab_gpt2()
  835. except Exception:
  836. # Fallback for SEA-LION model
  837. self._set_vocab_sentencepiece()
  838. self.gguf_writer.add_add_bos_token(False)
  839. self.gguf_writer.add_pad_token_id(3)
  840. self.gguf_writer.add_eos_token_id(1)
  841. self.gguf_writer.add_unk_token_id(0)
  842. def set_gguf_parameters(self):
  843. block_count = self.hparams["n_layers"]
  844. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  845. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  846. self.gguf_writer.add_block_count(block_count)
  847. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  848. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  849. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  850. self.gguf_writer.add_head_count_kv(kv_n_heads)
  851. self.gguf_writer.add_layer_norm_eps(1e-5)
  852. if self.hparams["attn_config"]["clip_qkv"] is not None:
  853. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  854. if self.hparams["attn_config"]["alibi"]:
  855. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  856. else:
  857. self.gguf_writer.add_max_alibi_bias(0.0)
  858. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  859. del bid # unused
  860. if "scales" in name:
  861. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  862. new_name = new_name.replace("scales", "act.scales")
  863. else:
  864. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  865. return [(new_name, data_torch)]
  866. @Model.register("OrionForCausalLM")
  867. class OrionModel(Model):
  868. model_arch = gguf.MODEL_ARCH.ORION
  869. def set_vocab(self):
  870. self._set_vocab_sentencepiece()
  871. def set_gguf_parameters(self):
  872. block_count = self.hparams["num_hidden_layers"]
  873. head_count = self.hparams["num_attention_heads"]
  874. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  875. ctx_length = 0
  876. if "max_sequence_length" in self.hparams:
  877. ctx_length = self.hparams["max_sequence_length"]
  878. elif "max_position_embeddings" in self.hparams:
  879. ctx_length = self.hparams["max_position_embeddings"]
  880. elif "model_max_length" in self.hparams:
  881. ctx_length = self.hparams["model_max_length"]
  882. else:
  883. raise ValueError("gguf: can not find ctx length parameter.")
  884. self.gguf_writer.add_file_type(self.ftype)
  885. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  886. self.gguf_writer.add_context_length(ctx_length)
  887. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  888. self.gguf_writer.add_block_count(block_count)
  889. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  890. self.gguf_writer.add_head_count(head_count)
  891. self.gguf_writer.add_head_count_kv(head_count_kv)
  892. # note: config provides rms norm but it is actually layer norm
  893. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  894. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  895. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  896. class BaichuanModel(Model):
  897. model_arch = gguf.MODEL_ARCH.BAICHUAN
  898. def set_vocab(self):
  899. self._set_vocab_sentencepiece()
  900. def set_gguf_parameters(self):
  901. block_count = self.hparams["num_hidden_layers"]
  902. head_count = self.hparams["num_attention_heads"]
  903. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  904. ctx_length = 0
  905. if "max_sequence_length" in self.hparams:
  906. ctx_length = self.hparams["max_sequence_length"]
  907. elif "max_position_embeddings" in self.hparams:
  908. ctx_length = self.hparams["max_position_embeddings"]
  909. elif "model_max_length" in self.hparams:
  910. ctx_length = self.hparams["model_max_length"]
  911. else:
  912. raise ValueError("gguf: can not find ctx length parameter.")
  913. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  914. self.gguf_writer.add_context_length(ctx_length)
  915. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  916. self.gguf_writer.add_block_count(block_count)
  917. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  918. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  919. self.gguf_writer.add_head_count(head_count)
  920. self.gguf_writer.add_head_count_kv(head_count_kv)
  921. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  922. self.gguf_writer.add_file_type(self.ftype)
  923. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  924. if self.hparams["rope_scaling"].get("type") == "linear":
  925. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  926. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  928. head_count = self.hparams["num_attention_heads"]
  929. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  930. tensors: list[tuple[str, Tensor]] = []
  931. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  932. logger.info(f"Unpacking and permuting layer {bid}")
  933. tensors = [
  934. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  935. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  936. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  937. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  938. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  939. self._reverse_hf_part(data_torch, 2)),
  940. ]
  941. else:
  942. tensors = [(self.map_tensor_name(name), data_torch)]
  943. return tensors
  944. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  945. if n_kv_head is not None and n_head != n_kv_head:
  946. n_head //= n_kv_head
  947. return (
  948. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  949. .swapaxes(1, 2)
  950. .reshape(weights.shape)
  951. )
  952. def _reverse_hf_permute_part(
  953. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  954. ) -> Tensor:
  955. r = weights.shape[0] // 3
  956. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  957. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  958. r = weights.shape[0] // 3
  959. return weights[r * n_part:r * n_part + r, ...]
  960. @Model.register("XverseForCausalLM")
  961. class XverseModel(Model):
  962. model_arch = gguf.MODEL_ARCH.XVERSE
  963. def set_vocab(self):
  964. assert (self.dir_model / "tokenizer.json").is_file()
  965. dir_model = self.dir_model
  966. hparams = self.hparams
  967. tokens: list[bytes] = []
  968. toktypes: list[int] = []
  969. from transformers import AutoTokenizer
  970. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  971. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  972. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  973. # because vocab_size is the count of items, and indexes start at 0.
  974. max_vocab_index = max(tokenizer.get_vocab().values())
  975. if max_vocab_index >= vocab_size:
  976. raise ValueError("Vocabulary size exceeds expected maximum size.")
  977. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  978. added_vocab = tokenizer.get_added_vocab()
  979. for token_id in range(vocab_size):
  980. token_text = reverse_vocab[token_id].encode('utf-8')
  981. # replace "\x00" to string with length > 0
  982. if token_text == b"\x00":
  983. toktype = gguf.TokenType.BYTE # special
  984. token_text = f"<{token_text}>".encode('utf-8')
  985. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  986. toktype = gguf.TokenType.BYTE # special
  987. elif reverse_vocab[token_id] in added_vocab:
  988. if tokenizer.added_tokens_decoder[token_id].special:
  989. toktype = gguf.TokenType.CONTROL
  990. else:
  991. toktype = gguf.TokenType.USER_DEFINED
  992. else:
  993. toktype = gguf.TokenType.NORMAL
  994. tokens.append(token_text)
  995. toktypes.append(toktype)
  996. self.gguf_writer.add_tokenizer_model("llama")
  997. self.gguf_writer.add_tokenizer_pre("default")
  998. self.gguf_writer.add_token_list(tokens)
  999. self.gguf_writer.add_token_types(toktypes)
  1000. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1001. special_vocab.add_to_gguf(self.gguf_writer)
  1002. def set_gguf_parameters(self):
  1003. block_count = self.hparams["num_hidden_layers"]
  1004. head_count = self.hparams["num_attention_heads"]
  1005. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1006. ctx_length = 0
  1007. if "max_sequence_length" in self.hparams:
  1008. ctx_length = self.hparams["max_sequence_length"]
  1009. elif "max_position_embeddings" in self.hparams:
  1010. ctx_length = self.hparams["max_position_embeddings"]
  1011. elif "model_max_length" in self.hparams:
  1012. ctx_length = self.hparams["model_max_length"]
  1013. else:
  1014. raise ValueError("gguf: can not find ctx length parameter.")
  1015. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1016. self.gguf_writer.add_context_length(ctx_length)
  1017. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1018. self.gguf_writer.add_block_count(block_count)
  1019. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1020. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1021. self.gguf_writer.add_head_count(head_count)
  1022. self.gguf_writer.add_head_count_kv(head_count_kv)
  1023. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1024. self.gguf_writer.add_file_type(self.ftype)
  1025. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1026. if self.hparams["rope_scaling"].get("type") == "linear":
  1027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1028. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1030. del bid # unused
  1031. head_count = self.hparams["num_attention_heads"]
  1032. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1033. # HF models permute some of the tensors, so we need to undo that
  1034. if name.endswith("q_proj.weight"):
  1035. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1036. if name.endswith("k_proj.weight"):
  1037. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1038. return [(self.map_tensor_name(name), data_torch)]
  1039. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1040. if n_kv_head is not None and n_head != n_kv_head:
  1041. n_head //= n_kv_head
  1042. return (
  1043. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1044. .swapaxes(1, 2)
  1045. .reshape(weights.shape)
  1046. )
  1047. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1048. class FalconModel(Model):
  1049. model_arch = gguf.MODEL_ARCH.FALCON
  1050. def set_gguf_parameters(self):
  1051. block_count = self.hparams.get("num_hidden_layers")
  1052. if block_count is None:
  1053. block_count = self.hparams["n_layer"] # old name
  1054. n_head = self.hparams.get("num_attention_heads")
  1055. if n_head is None:
  1056. n_head = self.hparams["n_head"] # old name
  1057. n_head_kv = self.hparams.get("num_kv_heads")
  1058. if n_head_kv is None:
  1059. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1060. self.gguf_writer.add_context_length(2048) # not in config.json
  1061. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1062. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1063. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1064. self.gguf_writer.add_block_count(block_count)
  1065. self.gguf_writer.add_head_count(n_head)
  1066. self.gguf_writer.add_head_count_kv(n_head_kv)
  1067. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1068. self.gguf_writer.add_file_type(self.ftype)
  1069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1070. del bid # unused
  1071. # QKV tensor transform
  1072. # The original query_key_value tensor contains n_head_kv "kv groups",
  1073. # each consisting of n_head/n_head_kv query weights followed by one key
  1074. # and one value weight (shared by all query heads in the kv group).
  1075. # This layout makes it a big pain to work with in GGML.
  1076. # So we rearrange them here,, so that we have n_head query weights
  1077. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1078. # in contiguous fashion.
  1079. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1080. if "query_key_value" in name:
  1081. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1082. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1083. head_dim = self.hparams["hidden_size"] // n_head
  1084. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1085. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1086. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1087. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1088. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1089. return [(self.map_tensor_name(name), data_torch)]
  1090. @Model.register("GPTBigCodeForCausalLM")
  1091. class StarCoderModel(Model):
  1092. model_arch = gguf.MODEL_ARCH.STARCODER
  1093. def set_gguf_parameters(self):
  1094. block_count = self.hparams["n_layer"]
  1095. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1096. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1097. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1098. self.gguf_writer.add_block_count(block_count)
  1099. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1100. self.gguf_writer.add_head_count_kv(1)
  1101. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1102. self.gguf_writer.add_file_type(self.ftype)
  1103. @Model.register("GPTRefactForCausalLM")
  1104. class RefactModel(Model):
  1105. model_arch = gguf.MODEL_ARCH.REFACT
  1106. def set_vocab(self):
  1107. super().set_vocab()
  1108. # TODO: how to determine special FIM tokens automatically?
  1109. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1110. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1111. special_vocab._set_special_token("prefix", 1)
  1112. special_vocab._set_special_token("suffix", 3)
  1113. special_vocab._set_special_token("middle", 2)
  1114. special_vocab.chat_template = None # do not add it twice
  1115. special_vocab.add_to_gguf(self.gguf_writer)
  1116. def set_gguf_parameters(self):
  1117. hidden_dim = self.hparams["n_embd"]
  1118. inner_dim = 4 * hidden_dim
  1119. hidden_dim = int(2 * inner_dim / 3)
  1120. multiple_of = 256
  1121. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1122. block_count = self.hparams["n_layer"]
  1123. # refact uses Alibi. So this is from config.json which might be used by training.
  1124. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1125. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1126. self.gguf_writer.add_feed_forward_length(ff_dim)
  1127. self.gguf_writer.add_block_count(block_count)
  1128. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1129. self.gguf_writer.add_head_count_kv(1)
  1130. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1131. self.gguf_writer.add_file_type(self.ftype)
  1132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1133. hidden_dim = self.hparams["n_embd"]
  1134. inner_dim = 4 * hidden_dim
  1135. hidden_dim = int(2 * inner_dim / 3)
  1136. multiple_of = 256
  1137. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1138. n_head = self.hparams["n_head"]
  1139. n_head_kv = 1
  1140. head_dim = self.hparams["n_embd"] // n_head
  1141. tensors: list[tuple[str, Tensor]] = []
  1142. if bid is not None:
  1143. if name == f"transformer.h.{bid}.attn.kv.weight":
  1144. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1145. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1146. elif name == f"transformer.h.{bid}.attn.q.weight":
  1147. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1148. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1149. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1150. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1151. if len(tensors) == 0:
  1152. tensors.append((self.map_tensor_name(name), data_torch))
  1153. return tensors
  1154. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1155. class StableLMModel(Model):
  1156. model_arch = gguf.MODEL_ARCH.STABLELM
  1157. def set_vocab(self):
  1158. if (self.dir_model / "tokenizer.json").is_file():
  1159. self._set_vocab_gpt2()
  1160. else:
  1161. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1162. self._set_vocab_qwen()
  1163. def set_gguf_parameters(self):
  1164. hparams = self.hparams
  1165. block_count = hparams["num_hidden_layers"]
  1166. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1167. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1168. self.gguf_writer.add_block_count(block_count)
  1169. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1170. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1171. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1172. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1173. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1174. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1175. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1176. self.gguf_writer.add_file_type(self.ftype)
  1177. _q_norms: list[dict[str, Tensor]] | None = None
  1178. _k_norms: list[dict[str, Tensor]] | None = None
  1179. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1180. n_head = self.hparams["num_attention_heads"]
  1181. n_kv_head = self.hparams["num_key_value_heads"]
  1182. if name.find("q_layernorm.norms") != -1:
  1183. assert bid is not None
  1184. if self._q_norms is None:
  1185. self._q_norms = [{} for _ in range(self.block_count)]
  1186. self._q_norms[bid][name] = data_torch
  1187. if len(self._q_norms[bid]) >= n_head:
  1188. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1189. else:
  1190. return []
  1191. if name.find("k_layernorm.norms") != -1:
  1192. assert bid is not None
  1193. if self._k_norms is None:
  1194. self._k_norms = [{} for _ in range(self.block_count)]
  1195. self._k_norms[bid][name] = data_torch
  1196. if len(self._k_norms[bid]) >= n_kv_head:
  1197. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1198. else:
  1199. return []
  1200. return [(self.map_tensor_name(name), data_torch)]
  1201. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1202. datas: list[Tensor] = []
  1203. # extract the norms in order
  1204. for xid in range(n_head):
  1205. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1206. datas.append(norms[ename])
  1207. del norms[ename]
  1208. data_torch = torch.stack(datas, dim=0)
  1209. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1210. new_name = self.map_tensor_name(merged_name)
  1211. return [(new_name, data_torch)]
  1212. def prepare_tensors(self):
  1213. super().prepare_tensors()
  1214. if self._q_norms is not None or self._k_norms is not None:
  1215. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1216. norms = (
  1217. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1218. ) + (
  1219. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1220. )
  1221. if len(norms) > 0:
  1222. raise ValueError(f"Unprocessed norms: {norms}")
  1223. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1224. class LlamaModel(Model):
  1225. model_arch = gguf.MODEL_ARCH.LLAMA
  1226. def set_vocab(self):
  1227. try:
  1228. self._set_vocab_sentencepiece()
  1229. except FileNotFoundError:
  1230. try:
  1231. self._set_vocab_llama_hf()
  1232. except (FileNotFoundError, TypeError):
  1233. # Llama 3
  1234. self._set_vocab_gpt2()
  1235. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1236. if self.hparams.get("vocab_size", 32000) == 32016:
  1237. special_vocab = gguf.SpecialVocab(
  1238. self.dir_model, load_merges=False,
  1239. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1240. )
  1241. special_vocab._set_special_token("prefix", 32007)
  1242. special_vocab._set_special_token("suffix", 32008)
  1243. special_vocab._set_special_token("middle", 32009)
  1244. special_vocab._set_special_token("eot", 32010)
  1245. special_vocab.add_to_gguf(self.gguf_writer)
  1246. def set_gguf_parameters(self):
  1247. super().set_gguf_parameters()
  1248. hparams = self.hparams
  1249. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1250. if "head_dim" in hparams:
  1251. rope_dim = hparams["head_dim"]
  1252. else:
  1253. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1254. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1255. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1256. if self.hparams["rope_scaling"].get("type") == "linear":
  1257. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1258. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1259. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1260. if tokenizer_config_file.is_file():
  1261. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1262. tokenizer_config_json = json.load(f)
  1263. if "add_prefix_space" in tokenizer_config_json:
  1264. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1265. # Apply to granite small models only
  1266. if self.hparams.get("vocab_size", 32000) == 49152:
  1267. self.gguf_writer.add_add_bos_token(False)
  1268. @staticmethod
  1269. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1270. if n_head_kv is not None and n_head != n_head_kv:
  1271. n_head = n_head_kv
  1272. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1273. .swapaxes(1, 2)
  1274. .reshape(weights.shape))
  1275. _experts: list[dict[str, Tensor]] | None = None
  1276. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1277. n_head = self.hparams["num_attention_heads"]
  1278. n_kv_head = self.hparams.get("num_key_value_heads")
  1279. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1280. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1281. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1282. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1283. # process the experts separately
  1284. if name.find("block_sparse_moe.experts") != -1:
  1285. n_experts = self.hparams["num_local_experts"]
  1286. assert bid is not None
  1287. if self._experts is None:
  1288. self._experts = [{} for _ in range(self.block_count)]
  1289. self._experts[bid][name] = data_torch
  1290. if len(self._experts[bid]) >= n_experts * 3:
  1291. tensors: list[tuple[str, Tensor]] = []
  1292. # merge the experts into a single 3d tensor
  1293. for wid in ["w1", "w2", "w3"]:
  1294. datas: list[Tensor] = []
  1295. for xid in range(n_experts):
  1296. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1297. datas.append(self._experts[bid][ename])
  1298. del self._experts[bid][ename]
  1299. data_torch = torch.stack(datas, dim=0)
  1300. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1301. new_name = self.map_tensor_name(merged_name)
  1302. tensors.append((new_name, data_torch))
  1303. return tensors
  1304. else:
  1305. return []
  1306. return [(self.map_tensor_name(name), data_torch)]
  1307. def prepare_tensors(self):
  1308. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1309. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1310. base = self.hparams.get("rope_theta", 10000.0)
  1311. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1312. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1313. factor = rope_scaling.get("factor", 8.0)
  1314. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1315. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1316. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1317. low_freq_wavelen = old_context_len / low_freq_factor
  1318. high_freq_wavelen = old_context_len / high_freq_factor
  1319. assert low_freq_wavelen != high_freq_wavelen
  1320. rope_factors = []
  1321. for freq in freqs:
  1322. wavelen = 2 * math.pi / freq
  1323. if wavelen < high_freq_wavelen:
  1324. rope_factors.append(1)
  1325. elif wavelen > low_freq_wavelen:
  1326. rope_factors.append(factor)
  1327. else:
  1328. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1329. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1330. if not self.is_lora:
  1331. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1332. super().prepare_tensors()
  1333. if self._experts is not None:
  1334. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1335. experts = [k for d in self._experts for k in d.keys()]
  1336. if len(experts) > 0:
  1337. raise ValueError(f"Unprocessed experts: {experts}")
  1338. @Model.register("BitnetForCausalLM")
  1339. class BitnetModel(Model):
  1340. model_arch = gguf.MODEL_ARCH.BITNET
  1341. def set_vocab(self):
  1342. self._set_vocab_sentencepiece()
  1343. def set_gguf_parameters(self):
  1344. super().set_gguf_parameters()
  1345. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1346. self.gguf_writer.add_rope_scaling_factor(1.0)
  1347. def weight_quant(self, weight: Tensor) -> Tensor:
  1348. dtype = weight.dtype
  1349. weight = weight.float()
  1350. scale = weight.abs().mean().clamp(min=1e-5)
  1351. iscale = 1 / scale
  1352. # TODO: multiply by the scale directly instead of inverting it twice
  1353. # (this is also unnecessarily doubly inverted upstream)
  1354. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1355. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1356. return result.type(dtype)
  1357. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1358. new_name = self.map_tensor_name(name)
  1359. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1360. gguf.MODEL_TENSOR.ATTN_Q,
  1361. gguf.MODEL_TENSOR.ATTN_K,
  1362. gguf.MODEL_TENSOR.ATTN_V,
  1363. gguf.MODEL_TENSOR.ATTN_OUT,
  1364. gguf.MODEL_TENSOR.FFN_UP,
  1365. gguf.MODEL_TENSOR.FFN_DOWN,
  1366. gguf.MODEL_TENSOR.FFN_GATE,
  1367. ]):
  1368. # transform weight into 1/0/-1 (in fp32)
  1369. data_torch = self.weight_quant(data_torch)
  1370. yield (new_name, data_torch)
  1371. @Model.register("GrokForCausalLM")
  1372. class GrokModel(Model):
  1373. model_arch = gguf.MODEL_ARCH.GROK
  1374. def set_vocab(self):
  1375. self._set_vocab_sentencepiece()
  1376. def __init__(self, *args, **kwargs):
  1377. super().__init__(*args, **kwargs)
  1378. def set_gguf_parameters(self):
  1379. super().set_gguf_parameters()
  1380. _experts: list[dict[str, Tensor]] | None = None
  1381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1382. # process the experts separately
  1383. if name.find(".moe.") != -1:
  1384. n_experts = self.hparams["num_local_experts"]
  1385. assert bid is not None
  1386. if self._experts is None:
  1387. self._experts = [{} for _ in range(self.block_count)]
  1388. self._experts[bid][name] = data_torch
  1389. if len(self._experts[bid]) >= n_experts * 3:
  1390. tensors: list[tuple[str, Tensor]] = []
  1391. # merge the experts into a single 3d tensor
  1392. for wid in ["linear", "linear_1", "linear_v"]:
  1393. datas: list[Tensor] = []
  1394. for xid in range(n_experts):
  1395. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1396. datas.append(self._experts[bid][ename])
  1397. del self._experts[bid][ename]
  1398. data_torch = torch.stack(datas, dim=0)
  1399. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1400. new_name = self.map_tensor_name(merged_name)
  1401. tensors.append((new_name, data_torch))
  1402. return tensors
  1403. else:
  1404. return []
  1405. return [(self.map_tensor_name(name), data_torch)]
  1406. @Model.register("DbrxForCausalLM")
  1407. class DbrxModel(Model):
  1408. model_arch = gguf.MODEL_ARCH.DBRX
  1409. def set_gguf_parameters(self):
  1410. ffn_config = self.hparams["ffn_config"]
  1411. attn_config = self.hparams["attn_config"]
  1412. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1413. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1414. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1415. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1416. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1417. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1418. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1419. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1420. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1421. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1422. self.gguf_writer.add_layer_norm_eps(1e-5)
  1423. self.gguf_writer.add_file_type(self.ftype)
  1424. logger.info(f"gguf: file type = {self.ftype}")
  1425. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1426. del bid # unused
  1427. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1428. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1429. n_embd = self.hparams["d_model"]
  1430. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1431. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1432. # But llama.cpp moe graph works differently
  1433. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1434. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1435. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1436. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1437. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1438. experts = False
  1439. for exp_tensor_name in exp_tensor_names.keys():
  1440. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1441. experts = True
  1442. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1443. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1444. data_torch = data_torch.permute(*permute_tensor)
  1445. break
  1446. # map tensor names
  1447. # In MoE models the ffn tensors are typically most of the model weights,
  1448. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1449. # Every other model has the weight names ending in .weight,
  1450. # let's assume that is the convention which is not the case for dbrx:
  1451. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1452. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1453. return [(new_name, data_torch)]
  1454. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1455. del name, new_name, bid # unused
  1456. return n_dims > 1
  1457. @Model.register("MiniCPMForCausalLM")
  1458. class MiniCPMModel(Model):
  1459. model_arch = gguf.MODEL_ARCH.MINICPM
  1460. def set_gguf_parameters(self):
  1461. block_count = self.hparams["num_hidden_layers"]
  1462. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1463. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1464. self.gguf_writer.add_block_count(block_count)
  1465. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1466. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1467. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1468. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1469. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1470. self.gguf_writer.add_file_type(self.ftype)
  1471. def set_vocab(self):
  1472. self._set_vocab_llama_hf()
  1473. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1474. if n_kv_head is not None and n_head != n_kv_head:
  1475. n_head //= n_kv_head
  1476. return (
  1477. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1478. .swapaxes(1, 2)
  1479. .reshape(weights.shape)
  1480. )
  1481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1482. del bid # unused
  1483. n_head = self.hparams["num_attention_heads"]
  1484. n_kv_head = self.hparams.get("num_key_value_heads")
  1485. # HF models permute some of the tensors, so we need to undo that
  1486. if name.endswith(("q_proj.weight")):
  1487. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1488. if name.endswith(("k_proj.weight")):
  1489. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1490. return [(self.map_tensor_name(name), data_torch)]
  1491. @Model.register("QWenLMHeadModel")
  1492. class QwenModel(Model):
  1493. model_arch = gguf.MODEL_ARCH.QWEN
  1494. @staticmethod
  1495. def token_bytes_to_string(b):
  1496. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1497. byte_encoder = bytes_to_unicode()
  1498. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1499. @staticmethod
  1500. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1501. parts = [bytes([b]) for b in token]
  1502. while True:
  1503. min_idx = None
  1504. min_rank = None
  1505. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1506. rank = mergeable_ranks.get(pair[0] + pair[1])
  1507. if rank is not None and (min_rank is None or rank < min_rank):
  1508. min_idx = i
  1509. min_rank = rank
  1510. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1511. break
  1512. assert min_idx is not None
  1513. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1514. return parts
  1515. def set_vocab(self):
  1516. self._set_vocab_qwen()
  1517. def set_gguf_parameters(self):
  1518. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1519. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1520. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1521. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1522. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1523. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1524. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1525. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1526. self.gguf_writer.add_file_type(self.ftype)
  1527. @Model.register("Qwen2ForCausalLM")
  1528. class Qwen2Model(Model):
  1529. model_arch = gguf.MODEL_ARCH.QWEN2
  1530. def set_vocab(self):
  1531. try:
  1532. self._set_vocab_sentencepiece()
  1533. except FileNotFoundError:
  1534. self._set_vocab_gpt2()
  1535. @Model.register("Qwen2MoeForCausalLM")
  1536. class Qwen2MoeModel(Model):
  1537. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1538. def set_gguf_parameters(self):
  1539. super().set_gguf_parameters()
  1540. if (n_experts := self.hparams.get("num_experts")) is not None:
  1541. self.gguf_writer.add_expert_count(n_experts)
  1542. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1543. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1544. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1545. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1546. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1547. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1548. _experts: list[dict[str, Tensor]] | None = None
  1549. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1550. # process the experts separately
  1551. if name.find("experts") != -1:
  1552. n_experts = self.hparams["num_experts"]
  1553. assert bid is not None
  1554. if self._experts is None:
  1555. self._experts = [{} for _ in range(self.block_count)]
  1556. self._experts[bid][name] = data_torch
  1557. if len(self._experts[bid]) >= n_experts * 3:
  1558. tensors: list[tuple[str, Tensor]] = []
  1559. # merge the experts into a single 3d tensor
  1560. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1561. datas: list[Tensor] = []
  1562. for xid in range(n_experts):
  1563. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1564. datas.append(self._experts[bid][ename])
  1565. del self._experts[bid][ename]
  1566. data_torch = torch.stack(datas, dim=0)
  1567. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1568. new_name = self.map_tensor_name(merged_name)
  1569. tensors.append((new_name, data_torch))
  1570. return tensors
  1571. else:
  1572. return []
  1573. return [(self.map_tensor_name(name), data_torch)]
  1574. def prepare_tensors(self):
  1575. super().prepare_tensors()
  1576. if self._experts is not None:
  1577. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1578. experts = [k for d in self._experts for k in d.keys()]
  1579. if len(experts) > 0:
  1580. raise ValueError(f"Unprocessed experts: {experts}")
  1581. @Model.register("GPT2LMHeadModel")
  1582. class GPT2Model(Model):
  1583. model_arch = gguf.MODEL_ARCH.GPT2
  1584. def set_gguf_parameters(self):
  1585. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1586. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1587. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1588. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1589. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1590. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1591. self.gguf_writer.add_file_type(self.ftype)
  1592. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1593. del bid # unused
  1594. tensors: list[tuple[str, Tensor]] = []
  1595. # we don't need these
  1596. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1597. return tensors
  1598. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1599. data_torch = data_torch.transpose(1, 0)
  1600. new_name = self.map_tensor_name(name)
  1601. tensors.append((new_name, data_torch))
  1602. # note: GPT2 output is tied to (same as) wte in original model
  1603. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1604. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1605. return tensors
  1606. @Model.register("PhiForCausalLM")
  1607. class Phi2Model(Model):
  1608. model_arch = gguf.MODEL_ARCH.PHI2
  1609. def set_gguf_parameters(self):
  1610. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1611. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1612. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1613. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1614. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1615. self.gguf_writer.add_embedding_length(n_embd)
  1616. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1617. self.gguf_writer.add_block_count(block_count)
  1618. self.gguf_writer.add_head_count(n_head)
  1619. self.gguf_writer.add_head_count_kv(n_head)
  1620. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1621. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1622. self.gguf_writer.add_file_type(self.ftype)
  1623. self.gguf_writer.add_add_bos_token(False)
  1624. @Model.register("Phi3ForCausalLM")
  1625. class Phi3MiniModel(Model):
  1626. model_arch = gguf.MODEL_ARCH.PHI3
  1627. def set_vocab(self):
  1628. from sentencepiece import SentencePieceProcessor
  1629. tokenizer_path = self.dir_model / 'tokenizer.model'
  1630. if not tokenizer_path.is_file():
  1631. raise ValueError(f'Error: Missing {tokenizer_path}')
  1632. tokenizer = SentencePieceProcessor()
  1633. tokenizer.LoadFromFile(str(tokenizer_path))
  1634. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1635. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1636. scores: list[float] = [-10000.0] * vocab_size
  1637. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1638. for token_id in range(tokenizer.vocab_size()):
  1639. piece = tokenizer.IdToPiece(token_id)
  1640. text = piece.encode("utf-8")
  1641. score = tokenizer.GetScore(token_id)
  1642. toktype = SentencePieceTokenTypes.NORMAL
  1643. if tokenizer.IsUnknown(token_id):
  1644. toktype = SentencePieceTokenTypes.UNKNOWN
  1645. elif tokenizer.IsControl(token_id):
  1646. toktype = SentencePieceTokenTypes.CONTROL
  1647. elif tokenizer.IsUnused(token_id):
  1648. toktype = SentencePieceTokenTypes.UNUSED
  1649. elif tokenizer.IsByte(token_id):
  1650. toktype = SentencePieceTokenTypes.BYTE
  1651. tokens[token_id] = text
  1652. scores[token_id] = score
  1653. toktypes[token_id] = toktype
  1654. added_tokens_file = self.dir_model / 'added_tokens.json'
  1655. if added_tokens_file.is_file():
  1656. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1657. added_tokens_json = json.load(f)
  1658. for key in added_tokens_json:
  1659. token_id = added_tokens_json[key]
  1660. if token_id >= vocab_size:
  1661. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1662. continue
  1663. tokens[token_id] = key.encode("utf-8")
  1664. scores[token_id] = -1000.0
  1665. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1666. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1667. if tokenizer_config_file.is_file():
  1668. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1669. tokenizer_config_json = json.load(f)
  1670. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1671. for token_id, foken_data in added_tokens_decoder.items():
  1672. token_id = int(token_id)
  1673. token = foken_data["content"].encode("utf-8")
  1674. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1675. if tokens[token_id] != token:
  1676. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1677. tokens[token_id] = token
  1678. scores[token_id] = -1000.0
  1679. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1680. if foken_data.get("special"):
  1681. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1682. tokenizer_file = self.dir_model / 'tokenizer.json'
  1683. if tokenizer_file.is_file():
  1684. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1685. tokenizer_json = json.load(f)
  1686. added_tokens = tokenizer_json.get("added_tokens", [])
  1687. for foken_data in added_tokens:
  1688. token_id = int(foken_data["id"])
  1689. token = foken_data["content"].encode("utf-8")
  1690. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1691. if tokens[token_id] != token:
  1692. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1693. tokens[token_id] = token
  1694. scores[token_id] = -1000.0
  1695. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1696. if foken_data.get("special"):
  1697. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1698. self.gguf_writer.add_tokenizer_model("llama")
  1699. self.gguf_writer.add_tokenizer_pre("default")
  1700. self.gguf_writer.add_token_list(tokens)
  1701. self.gguf_writer.add_token_scores(scores)
  1702. self.gguf_writer.add_token_types(toktypes)
  1703. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1704. special_vocab.add_to_gguf(self.gguf_writer)
  1705. def set_gguf_parameters(self):
  1706. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1707. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1708. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1709. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1710. rms_eps = self.find_hparam(["rms_norm_eps"])
  1711. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1712. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1713. rope_dims = n_embd // n_head
  1714. self.gguf_writer.add_context_length(max_pos_embds)
  1715. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1716. self.gguf_writer.add_embedding_length(n_embd)
  1717. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1718. self.gguf_writer.add_block_count(block_count)
  1719. self.gguf_writer.add_head_count(n_head)
  1720. self.gguf_writer.add_head_count_kv(n_head_kv)
  1721. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1722. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1723. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1724. self.gguf_writer.add_file_type(self.ftype)
  1725. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1726. # write rope scaling for long context (128k) model
  1727. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1728. if rope_scaling is None:
  1729. return
  1730. scale = max_pos_embds / orig_max_pos_embds
  1731. rope_scaling_type = rope_scaling.get('type', '').lower()
  1732. if len(rope_scaling_type) == 0:
  1733. raise KeyError('Missing the required key rope_scaling.type')
  1734. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1735. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1736. elif rope_scaling_type == 'yarn':
  1737. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1738. else:
  1739. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1740. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1741. long_factors = rope_scaling.get('long_factor', None)
  1742. short_factors = rope_scaling.get('short_factor', None)
  1743. if long_factors is None or short_factors is None:
  1744. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1745. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1746. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1747. if not self.is_lora:
  1748. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1749. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1750. @Model.register("PlamoForCausalLM")
  1751. class PlamoModel(Model):
  1752. model_arch = gguf.MODEL_ARCH.PLAMO
  1753. def set_vocab(self):
  1754. self._set_vocab_sentencepiece()
  1755. def set_gguf_parameters(self):
  1756. hparams = self.hparams
  1757. block_count = hparams["num_hidden_layers"]
  1758. self.gguf_writer.add_context_length(4096) # not in config.json
  1759. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1760. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1761. self.gguf_writer.add_block_count(block_count)
  1762. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1763. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1764. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1765. self.gguf_writer.add_file_type(self.ftype)
  1766. def shuffle_attn_q_weight(self, data_torch):
  1767. assert data_torch.size() == (5120, 5120)
  1768. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1769. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1770. data_torch = torch.reshape(data_torch, (5120, 5120))
  1771. return data_torch
  1772. def shuffle_attn_output_weight(self, data_torch):
  1773. assert data_torch.size() == (5120, 5120)
  1774. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1775. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1776. data_torch = torch.reshape(data_torch, (5120, 5120))
  1777. return data_torch
  1778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1779. del bid # unused
  1780. new_name = self.map_tensor_name(name)
  1781. # shuffle for broadcasting of gqa in ggml_mul_mat
  1782. if new_name.endswith("attn_q.weight"):
  1783. data_torch = self.shuffle_attn_q_weight(data_torch)
  1784. elif new_name.endswith("attn_output.weight"):
  1785. data_torch = self.shuffle_attn_output_weight(data_torch)
  1786. return [(new_name, data_torch)]
  1787. @Model.register("CodeShellForCausalLM")
  1788. class CodeShellModel(Model):
  1789. model_arch = gguf.MODEL_ARCH.CODESHELL
  1790. def set_gguf_parameters(self):
  1791. block_count = self.hparams["n_layer"]
  1792. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1793. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1794. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1795. self.gguf_writer.add_block_count(block_count)
  1796. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1797. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1798. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1799. self.gguf_writer.add_file_type(self.ftype)
  1800. self.gguf_writer.add_rope_freq_base(10000.0)
  1801. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1802. self.gguf_writer.add_rope_scaling_factor(1.0)
  1803. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1804. del bid # unused
  1805. new_name = self.map_tensor_name(name)
  1806. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1807. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1808. assert self.tensor_names is not None
  1809. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1810. # copy tok_embd.weight to output.weight
  1811. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1812. return tensors
  1813. @Model.register("InternLM2ForCausalLM")
  1814. class InternLM2Model(Model):
  1815. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1816. def set_vocab(self):
  1817. # (TODO): Is there a better way?
  1818. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1819. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1820. # recognized as an empty string in C++.
  1821. from sentencepiece import SentencePieceProcessor
  1822. from sentencepiece import sentencepiece_model_pb2 as model
  1823. tokenizer_path = self.dir_model / 'tokenizer.model'
  1824. tokens: list[bytes] = []
  1825. scores: list[float] = []
  1826. toktypes: list[int] = []
  1827. if not tokenizer_path.is_file():
  1828. logger.error(f'Error: Missing {tokenizer_path}')
  1829. sys.exit(1)
  1830. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1831. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1832. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1833. tokenizer = SentencePieceProcessor()
  1834. tokenizer.LoadFromFile(str(tokenizer_path))
  1835. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1836. for token_id in range(vocab_size):
  1837. piece = tokenizer.IdToPiece(token_id)
  1838. text = piece.encode("utf-8")
  1839. score = tokenizer.GetScore(token_id)
  1840. if text == b"\x00":
  1841. # (TODO): fixme
  1842. # Hack here and replace the \x00 characters.
  1843. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1844. text = "🐉".encode("utf-8")
  1845. toktype = SentencePieceTokenTypes.NORMAL
  1846. if tokenizer.IsUnknown(token_id):
  1847. toktype = SentencePieceTokenTypes.UNKNOWN
  1848. elif tokenizer.IsControl(token_id):
  1849. toktype = SentencePieceTokenTypes.CONTROL
  1850. elif tokenizer.IsUnused(token_id):
  1851. toktype = SentencePieceTokenTypes.UNUSED
  1852. elif tokenizer.IsByte(token_id):
  1853. toktype = SentencePieceTokenTypes.BYTE
  1854. # take care of ununsed raw token
  1855. if piece.startswith('[UNUSED'):
  1856. toktype = SentencePieceTokenTypes.UNUSED
  1857. tokens.append(text)
  1858. scores.append(score)
  1859. toktypes.append(toktype)
  1860. added_tokens_file = self.dir_model / 'added_tokens.json'
  1861. if added_tokens_file.is_file():
  1862. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1863. added_tokens_json = json.load(f)
  1864. for key in added_tokens_json:
  1865. tokens.append(key.encode("utf-8"))
  1866. scores.append(-1000.0)
  1867. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1868. chat_eos_token = '<|im_end|>'
  1869. chat_eos_token_id = None
  1870. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1871. if tokenizer_config_file.is_file():
  1872. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1873. tokenizer_config_json = json.load(f)
  1874. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1875. for token_id, foken_data in added_tokens_decoder.items():
  1876. token_id = int(token_id)
  1877. token = foken_data["content"]
  1878. if token == chat_eos_token:
  1879. chat_eos_token_id = token_id
  1880. token = token.encode("utf-8")
  1881. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1882. if tokens[token_id] != token:
  1883. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1884. tokens[token_id] = token
  1885. scores[token_id] = -1000.0
  1886. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1887. if foken_data.get("special"):
  1888. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1889. tokenizer_file = self.dir_model / 'tokenizer.json'
  1890. if tokenizer_file.is_file():
  1891. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1892. tokenizer_json = json.load(f)
  1893. added_tokens = tokenizer_json.get("added_tokens", [])
  1894. for foken_data in added_tokens:
  1895. token_id = int(foken_data["id"])
  1896. token = foken_data["content"]
  1897. if token == chat_eos_token:
  1898. chat_eos_token_id = token_id
  1899. token = token.encode("utf-8")
  1900. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1901. if tokens[token_id] != token:
  1902. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1903. tokens[token_id] = token
  1904. scores[token_id] = -1000.0
  1905. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1906. if foken_data.get("special"):
  1907. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1908. self.gguf_writer.add_tokenizer_model("llama")
  1909. self.gguf_writer.add_tokenizer_pre("default")
  1910. self.gguf_writer.add_token_list(tokens)
  1911. self.gguf_writer.add_token_scores(scores)
  1912. self.gguf_writer.add_token_types(toktypes)
  1913. self.gguf_writer.add_add_space_prefix(add_prefix)
  1914. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1915. old_eos = special_vocab.special_token_ids["eos"]
  1916. if chat_eos_token_id is not None:
  1917. # For the chat model, we replace the eos with '<|im_end|>'.
  1918. # TODO: this is a hack, should be fixed
  1919. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1920. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1921. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1922. " in chat mode so that the conversation can end normally.")
  1923. special_vocab.add_to_gguf(self.gguf_writer)
  1924. def set_gguf_parameters(self):
  1925. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1926. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1927. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1928. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1929. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1930. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1931. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1932. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1933. self.gguf_writer.add_file_type(self.ftype)
  1934. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1935. if self.hparams["rope_scaling"].get("type") == "linear":
  1936. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1937. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1938. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1939. num_heads = self.hparams["num_attention_heads"]
  1940. num_kv_heads = self.hparams["num_key_value_heads"]
  1941. n_embd = self.hparams["hidden_size"]
  1942. q_per_kv = num_heads // num_kv_heads
  1943. head_dim = n_embd // num_heads
  1944. num_groups = num_heads // q_per_kv
  1945. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1946. qkv = data_torch
  1947. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1948. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1949. # The model weights of q and k equire additional reshape.
  1950. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1951. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1952. v = v.reshape((-1, v.shape[-1]))
  1953. return [
  1954. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1955. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1956. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1957. ]
  1958. else:
  1959. return [(self.map_tensor_name(name), data_torch)]
  1960. @Model.register("BertModel", "CamembertModel")
  1961. class BertModel(Model):
  1962. model_arch = gguf.MODEL_ARCH.BERT
  1963. def __init__(self, *args, **kwargs):
  1964. super().__init__(*args, **kwargs)
  1965. self.vocab_size = None
  1966. def set_gguf_parameters(self):
  1967. super().set_gguf_parameters()
  1968. self.gguf_writer.add_causal_attention(False)
  1969. # get pooling path
  1970. pooling_path = None
  1971. module_path = self.dir_model / "modules.json"
  1972. if module_path.is_file():
  1973. with open(module_path, encoding="utf-8") as f:
  1974. modules = json.load(f)
  1975. for mod in modules:
  1976. if mod["type"] == "sentence_transformers.models.Pooling":
  1977. pooling_path = mod["path"]
  1978. break
  1979. # get pooling type
  1980. if pooling_path is not None:
  1981. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1982. pooling = json.load(f)
  1983. if pooling["pooling_mode_mean_tokens"]:
  1984. pooling_type = gguf.PoolingType.MEAN
  1985. elif pooling["pooling_mode_cls_token"]:
  1986. pooling_type = gguf.PoolingType.CLS
  1987. else:
  1988. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1989. self.gguf_writer.add_pooling_type(pooling_type)
  1990. def set_vocab(self):
  1991. tokens, toktypes, tokpre = self.get_vocab_base()
  1992. self.vocab_size = len(tokens)
  1993. # we need this to validate the size of the token_type embeddings
  1994. # though currently we are passing all zeros to the token_type embeddings
  1995. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1996. # convert to phantom space vocab
  1997. def phantom(tok):
  1998. if tok.startswith("[") and tok.endswith("]"):
  1999. return tok
  2000. if tok.startswith("##"):
  2001. return tok[2:]
  2002. return "\u2581" + tok
  2003. tokens = list(map(phantom, tokens))
  2004. # add vocab to gguf
  2005. self.gguf_writer.add_tokenizer_model("bert")
  2006. self.gguf_writer.add_tokenizer_pre(tokpre)
  2007. self.gguf_writer.add_token_list(tokens)
  2008. self.gguf_writer.add_token_types(toktypes)
  2009. # handle special tokens
  2010. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2011. special_vocab.add_to_gguf(self.gguf_writer)
  2012. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2013. del bid # unused
  2014. # we are only using BERT for embeddings so we don't need the pooling layer
  2015. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2016. return [] # we don't need these
  2017. return [(self.map_tensor_name(name), data_torch)]
  2018. @Model.register("NomicBertModel")
  2019. class NomicBertModel(BertModel):
  2020. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2021. def __init__(self, *args, **kwargs):
  2022. super().__init__(*args, **kwargs)
  2023. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2024. self.hparams["n_ctx"] = 2048
  2025. # SwigLU activation
  2026. assert self.hparams["activation_function"] == "swiglu"
  2027. # this doesn't do anything in the HF version
  2028. assert self.hparams["causal"] is False
  2029. # no bias tensors
  2030. assert self.hparams["qkv_proj_bias"] is False
  2031. assert self.hparams["mlp_fc1_bias"] is False
  2032. assert self.hparams["mlp_fc2_bias"] is False
  2033. # norm at end of layer
  2034. assert self.hparams["prenorm"] is False
  2035. # standard RoPE
  2036. assert self.hparams["rotary_emb_fraction"] == 1.0
  2037. assert self.hparams["rotary_emb_interleaved"] is False
  2038. assert self.hparams["rotary_emb_scale_base"] is None
  2039. def set_gguf_parameters(self):
  2040. super().set_gguf_parameters()
  2041. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2042. @Model.register("XLMRobertaModel")
  2043. class XLMRobertaModel(BertModel):
  2044. model_arch = gguf.MODEL_ARCH.BERT
  2045. def __init__(self, *args, **kwargs):
  2046. super().__init__(*args, **kwargs)
  2047. # we need the pad_token_id to know how to chop down position_embd matrix
  2048. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2049. self._position_offset = 1 + pad_token_id
  2050. if "max_position_embeddings" in self.hparams:
  2051. self.hparams["max_position_embeddings"] -= self._position_offset
  2052. else:
  2053. self._position_offset = None
  2054. def set_vocab(self):
  2055. # to avoid TypeError: Descriptors cannot be created directly
  2056. # exception when importing sentencepiece_model_pb2
  2057. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2058. from sentencepiece import SentencePieceProcessor
  2059. from sentencepiece import sentencepiece_model_pb2 as model
  2060. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2061. if not tokenizer_path.is_file():
  2062. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2063. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2064. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2065. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2066. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2067. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2068. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2069. tokenizer = SentencePieceProcessor()
  2070. tokenizer.LoadFromFile(str(tokenizer_path))
  2071. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2072. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2073. scores: list[float] = [-10000.0] * vocab_size
  2074. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2075. for token_id in range(tokenizer.vocab_size()):
  2076. piece = tokenizer.IdToPiece(token_id)
  2077. text = piece.encode("utf-8")
  2078. score = tokenizer.GetScore(token_id)
  2079. toktype = SentencePieceTokenTypes.NORMAL
  2080. if tokenizer.IsUnknown(token_id):
  2081. toktype = SentencePieceTokenTypes.UNKNOWN
  2082. elif tokenizer.IsControl(token_id):
  2083. toktype = SentencePieceTokenTypes.CONTROL
  2084. elif tokenizer.IsUnused(token_id):
  2085. toktype = SentencePieceTokenTypes.UNUSED
  2086. elif tokenizer.IsByte(token_id):
  2087. toktype = SentencePieceTokenTypes.BYTE
  2088. tokens[token_id] = text
  2089. scores[token_id] = score
  2090. toktypes[token_id] = toktype
  2091. if vocab_size > len(tokens):
  2092. pad_count = vocab_size - len(tokens)
  2093. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2094. for i in range(1, pad_count + 1):
  2095. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2096. scores.append(-1000.0)
  2097. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2098. # realign tokens (see HF tokenizer code)
  2099. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2100. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2101. toktypes = [
  2102. SentencePieceTokenTypes.CONTROL,
  2103. SentencePieceTokenTypes.CONTROL,
  2104. SentencePieceTokenTypes.CONTROL,
  2105. SentencePieceTokenTypes.UNKNOWN,
  2106. ] + toktypes[3:-1]
  2107. self.gguf_writer.add_tokenizer_model("t5")
  2108. self.gguf_writer.add_tokenizer_pre("default")
  2109. self.gguf_writer.add_token_list(tokens)
  2110. self.gguf_writer.add_token_scores(scores)
  2111. self.gguf_writer.add_token_types(toktypes)
  2112. self.gguf_writer.add_add_space_prefix(add_prefix)
  2113. self.gguf_writer.add_token_type_count(1)
  2114. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2115. if precompiled_charsmap:
  2116. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2117. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2118. special_vocab.add_to_gguf(self.gguf_writer)
  2119. self.gguf_writer.add_add_bos_token(True)
  2120. self.gguf_writer.add_add_eos_token(True)
  2121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2122. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2123. if name == "embeddings.position_embeddings.weight":
  2124. if self._position_offset is not None:
  2125. data_torch = data_torch[self._position_offset:,:]
  2126. return super().modify_tensors(data_torch, name, bid)
  2127. @Model.register("GemmaForCausalLM")
  2128. class GemmaModel(Model):
  2129. model_arch = gguf.MODEL_ARCH.GEMMA
  2130. def set_vocab(self):
  2131. self._set_vocab_sentencepiece()
  2132. # TODO: these special tokens should be exported only for the CodeGemma family
  2133. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2134. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2135. special_vocab._set_special_token("prefix", 67)
  2136. special_vocab._set_special_token("suffix", 69)
  2137. special_vocab._set_special_token("middle", 68)
  2138. special_vocab._set_special_token("fsep", 70)
  2139. special_vocab._set_special_token("eot", 107)
  2140. special_vocab.chat_template = None # do not add it twice
  2141. special_vocab.add_to_gguf(self.gguf_writer)
  2142. self.gguf_writer.add_add_space_prefix(False)
  2143. def set_gguf_parameters(self):
  2144. hparams = self.hparams
  2145. block_count = hparams["num_hidden_layers"]
  2146. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2147. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2148. self.gguf_writer.add_block_count(block_count)
  2149. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2150. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2151. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2152. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2153. self.gguf_writer.add_key_length(hparams["head_dim"])
  2154. self.gguf_writer.add_value_length(hparams["head_dim"])
  2155. self.gguf_writer.add_file_type(self.ftype)
  2156. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2157. del bid # unused
  2158. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2159. # To prevent errors, skip loading lm_head.weight.
  2160. if name == "lm_head.weight":
  2161. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2162. return []
  2163. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2164. if name.endswith("norm.weight"):
  2165. data_torch = data_torch + 1
  2166. return [(self.map_tensor_name(name), data_torch)]
  2167. @Model.register("Gemma2ForCausalLM")
  2168. class Gemma2Model(Model):
  2169. model_arch = gguf.MODEL_ARCH.GEMMA2
  2170. def set_vocab(self):
  2171. self._set_vocab_sentencepiece()
  2172. self.gguf_writer.add_add_space_prefix(False)
  2173. def set_gguf_parameters(self):
  2174. hparams = self.hparams
  2175. block_count = hparams["num_hidden_layers"]
  2176. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2177. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2178. self.gguf_writer.add_block_count(block_count)
  2179. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2180. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2181. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2182. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2183. self.gguf_writer.add_key_length(hparams["head_dim"])
  2184. self.gguf_writer.add_value_length(hparams["head_dim"])
  2185. self.gguf_writer.add_file_type(self.ftype)
  2186. self.gguf_writer.add_attn_logit_softcapping(
  2187. self.hparams["attn_logit_softcapping"]
  2188. )
  2189. self.gguf_writer.add_final_logit_softcapping(
  2190. self.hparams["final_logit_softcapping"]
  2191. )
  2192. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2194. del bid # unused
  2195. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2196. # To prevent errors, skip loading lm_head.weight.
  2197. if name == "lm_head.weight":
  2198. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2199. return []
  2200. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2201. if name.endswith("norm.weight"):
  2202. data_torch = data_torch + 1
  2203. return [(self.map_tensor_name(name), data_torch)]
  2204. @Model.register("Starcoder2ForCausalLM")
  2205. class StarCoder2Model(Model):
  2206. model_arch = gguf.MODEL_ARCH.STARCODER2
  2207. @Model.register("Rwkv6ForCausalLM")
  2208. class Rwkv6Model(Model):
  2209. model_arch = gguf.MODEL_ARCH.RWKV6
  2210. def set_vocab(self):
  2211. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2212. vocab_size = self.hparams.get("vocab_size", 65536)
  2213. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2214. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2215. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2216. lines = f.readlines()
  2217. for line in lines:
  2218. parts = line.split(' ')
  2219. assert len(parts) >= 3
  2220. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2221. token = token.encode("utf-8") if isinstance(token, str) else token
  2222. assert isinstance(token, bytes)
  2223. assert len(token) == token_len
  2224. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2225. tokens.append(token_text.encode("utf-8"))
  2226. toktypes.append(gguf.TokenType.NORMAL)
  2227. remainder = vocab_size - len(tokens)
  2228. assert remainder >= 0
  2229. for i in range(len(tokens), vocab_size):
  2230. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2231. toktypes.append(gguf.TokenType.UNUSED)
  2232. self.gguf_writer.add_tokenizer_model("rwkv")
  2233. self.gguf_writer.add_token_list(tokens)
  2234. self.gguf_writer.add_token_types(toktypes)
  2235. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2236. special_vocab.add_to_gguf(self.gguf_writer)
  2237. def set_gguf_parameters(self):
  2238. block_count = self.hparams["num_hidden_layers"]
  2239. head_size = self.hparams["head_size"]
  2240. hidden_size = self.hparams["hidden_size"]
  2241. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2242. rescale_every_n_layers = self.hparams["rescale_every"]
  2243. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2244. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2245. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2246. # RWKV isn't context limited
  2247. self.gguf_writer.add_context_length(1048576)
  2248. self.gguf_writer.add_embedding_length(hidden_size)
  2249. self.gguf_writer.add_block_count(block_count)
  2250. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2251. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2252. self.gguf_writer.add_wkv_head_size(head_size)
  2253. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2254. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2255. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2256. self.gguf_writer.add_file_type(self.ftype)
  2257. # required by llama.cpp, unused
  2258. self.gguf_writer.add_head_count(0)
  2259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2260. new_name = self.map_tensor_name(name)
  2261. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2262. new_name += ".weight"
  2263. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2264. data_torch = data_torch.transpose(0, 1)
  2265. if new_name.endswith("time_mix_w2.weight"):
  2266. data_torch = data_torch.permute(0, 2, 1)
  2267. rescale_every_n_layers = self.hparams["rescale_every"]
  2268. if rescale_every_n_layers > 0:
  2269. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2270. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2271. yield (new_name, data_torch)
  2272. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2273. class MambaModel(Model):
  2274. model_arch = gguf.MODEL_ARCH.MAMBA
  2275. def set_vocab(self):
  2276. vocab_size = self.hparams["vocab_size"]
  2277. # Round vocab size to next multiple of 8
  2278. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2279. # pad using ceiling division
  2280. # ref: https://stackoverflow.com/a/17511341/22827863
  2281. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2282. self.hparams["vocab_size"] = vocab_size
  2283. if (self.dir_model / "tokenizer.json").is_file():
  2284. self._set_vocab_gpt2()
  2285. elif (self.dir_model / "tokenizer.model").is_file():
  2286. self._set_vocab_sentencepiece()
  2287. else:
  2288. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2289. self._set_vocab_builtin("gpt-neox", vocab_size)
  2290. def set_gguf_parameters(self):
  2291. d_model = self.find_hparam(["hidden_size", "d_model"])
  2292. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2293. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2294. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2295. # ceiling division
  2296. # ref: https://stackoverflow.com/a/17511341/22827863
  2297. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2298. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2299. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2300. use_dt_b_c_norm = False
  2301. # For falconmamba we do apply RMS norm on B / DT and C layers
  2302. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2303. use_dt_b_c_norm = True
  2304. # Fail early for models which don't have a block expansion factor of 2
  2305. assert d_inner == 2 * d_model
  2306. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2307. self.gguf_writer.add_embedding_length(d_model)
  2308. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2309. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2310. self.gguf_writer.add_block_count(self.block_count)
  2311. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2312. self.gguf_writer.add_ssm_inner_size(d_inner)
  2313. self.gguf_writer.add_ssm_state_size(d_state)
  2314. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2315. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2316. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2317. self.gguf_writer.add_file_type(self.ftype)
  2318. _tok_embd = None
  2319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2320. del bid # unused
  2321. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2322. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2323. new_name = self.map_tensor_name(name)
  2324. if name.endswith(".A_log"):
  2325. logger.debug("A_log --> A ==> " + new_name)
  2326. data_torch = -torch.exp(data_torch)
  2327. # assuming token_embd.weight is seen before output.weight
  2328. if self._tok_embd is not None and new_name == output_name:
  2329. if torch.equal(self._tok_embd, data_torch):
  2330. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2331. return []
  2332. elif new_name == tok_embd_name:
  2333. self._tok_embd = data_torch
  2334. return [(new_name, data_torch)]
  2335. @Model.register("CohereForCausalLM")
  2336. class CommandR2Model(Model):
  2337. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2338. def __init__(self, *args, **kwargs):
  2339. super().__init__(*args, **kwargs)
  2340. # max_position_embeddings = 8192 in config.json but model was actually
  2341. # trained on 128k context length
  2342. # aya-23 models don't have model_max_length specified
  2343. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2344. def set_gguf_parameters(self):
  2345. super().set_gguf_parameters()
  2346. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2347. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2348. @Model.register("OlmoForCausalLM")
  2349. @Model.register("OLMoForCausalLM")
  2350. class OlmoModel(Model):
  2351. model_arch = gguf.MODEL_ARCH.OLMO
  2352. def set_gguf_parameters(self):
  2353. super().set_gguf_parameters()
  2354. self.gguf_writer.add_layer_norm_eps(1e-5)
  2355. clip_qkv = self.hparams.get("clip_qkv")
  2356. if clip_qkv is not None:
  2357. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2358. # Same as super class, but permuting q_proj, k_proj
  2359. # Copied from: LlamaModel
  2360. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2361. del bid # unused
  2362. n_head = self.hparams["num_attention_heads"]
  2363. n_kv_head = self.hparams.get("num_key_value_heads")
  2364. if name.endswith("q_proj.weight"):
  2365. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2366. if name.endswith("k_proj.weight"):
  2367. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2368. return [(self.map_tensor_name(name), data_torch)]
  2369. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2370. class JinaBertV2Model(BertModel):
  2371. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2372. def __init__(self, *args, **kwargs):
  2373. super().__init__(*args, **kwargs)
  2374. self.intermediate_size = self.hparams["intermediate_size"]
  2375. def get_tensors(self):
  2376. for name, data in super().get_tensors():
  2377. if 'gated_layer' in name:
  2378. d1 = data[:self.intermediate_size, :]
  2379. name1 = name.replace('gated_layers', 'gated_layers_w')
  2380. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2381. d2 = data[self.intermediate_size:, :]
  2382. name2 = name.replace('gated_layers', 'gated_layers_v')
  2383. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2384. yield name1, d1
  2385. yield name2, d2
  2386. continue
  2387. yield name, data
  2388. def set_vocab(self):
  2389. tokenizer_class = 'BertTokenizer'
  2390. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2391. tokenizer_class = json.load(f)['tokenizer_class']
  2392. if tokenizer_class == 'BertTokenizer':
  2393. super().set_vocab()
  2394. elif tokenizer_class == 'RobertaTokenizer':
  2395. self._set_vocab_gpt2()
  2396. self.gguf_writer.add_token_type_count(2)
  2397. else:
  2398. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2399. self.gguf_writer.add_add_bos_token(True)
  2400. self.gguf_writer.add_add_eos_token(True)
  2401. @Model.register("OpenELMForCausalLM")
  2402. class OpenELMModel(Model):
  2403. model_arch = gguf.MODEL_ARCH.OPENELM
  2404. @staticmethod
  2405. def _make_divisible(v: float | int, divisor: int) -> int:
  2406. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2407. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2408. # Make sure that round down does not go down by more than 10%.
  2409. if new_v < 0.9 * v:
  2410. new_v += divisor
  2411. return new_v
  2412. def __init__(self, *args, **kwargs):
  2413. super().__init__(*args, **kwargs)
  2414. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2415. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2416. self._n_embd: int = self.hparams["model_dim"]
  2417. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2418. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2419. self._ffn_dims: list[int] = [
  2420. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2421. for multiplier in ffn_multipliers
  2422. ]
  2423. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2424. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2425. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2426. def set_vocab(self):
  2427. try:
  2428. self._set_vocab_sentencepiece()
  2429. except FileNotFoundError:
  2430. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2431. def set_gguf_parameters(self):
  2432. n_embd = self._n_embd
  2433. head_dim = self.hparams["head_dim"]
  2434. rot_pct = 1.0
  2435. assert self.block_count == len(self._num_kv_heads)
  2436. assert self.block_count == len(self._num_query_heads)
  2437. assert self.block_count == len(self._ffn_dims)
  2438. self.gguf_writer.add_block_count(self.block_count)
  2439. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2440. self.gguf_writer.add_embedding_length(n_embd)
  2441. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2442. self.gguf_writer.add_head_count(self._num_query_heads)
  2443. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2444. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2445. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2446. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2447. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2448. self.gguf_writer.add_key_length(head_dim)
  2449. self.gguf_writer.add_value_length(head_dim)
  2450. self.gguf_writer.add_file_type(self.ftype)
  2451. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2452. if "n_layers" in keys:
  2453. return self.hparams["num_transformer_layers"]
  2454. return super().find_hparam(keys, optional)
  2455. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2456. # split ff
  2457. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2458. ff_dim = self._ffn_dims[bid]
  2459. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2460. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2461. return
  2462. yield (self.map_tensor_name(name), data_torch)
  2463. @Model.register("ArcticForCausalLM")
  2464. class ArcticModel(Model):
  2465. model_arch = gguf.MODEL_ARCH.ARCTIC
  2466. def set_vocab(self):
  2467. # The reason for using a custom implementation here is that the
  2468. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2469. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2470. from sentencepiece import SentencePieceProcessor
  2471. tokenizer_path = self.dir_model / 'tokenizer.model'
  2472. if not tokenizer_path.is_file():
  2473. logger.error(f'Error: Missing {tokenizer_path}')
  2474. sys.exit(1)
  2475. # Read the whole vocabulary from the tokenizer.model file
  2476. tokenizer = SentencePieceProcessor()
  2477. tokenizer.LoadFromFile(str(tokenizer_path))
  2478. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2479. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2480. scores: list[float] = [-10000.0] * vocab_size
  2481. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2482. for token_id in range(tokenizer.vocab_size()):
  2483. piece = tokenizer.IdToPiece(token_id)
  2484. text = piece.encode("utf-8")
  2485. score = tokenizer.GetScore(token_id)
  2486. toktype = SentencePieceTokenTypes.NORMAL
  2487. if tokenizer.IsUnknown(token_id):
  2488. toktype = SentencePieceTokenTypes.UNKNOWN
  2489. elif tokenizer.IsControl(token_id):
  2490. toktype = SentencePieceTokenTypes.CONTROL
  2491. elif tokenizer.IsUnused(token_id):
  2492. toktype = SentencePieceTokenTypes.UNUSED
  2493. elif tokenizer.IsByte(token_id):
  2494. toktype = SentencePieceTokenTypes.BYTE
  2495. tokens[token_id] = text
  2496. scores[token_id] = score
  2497. toktypes[token_id] = toktype
  2498. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2499. # of information about added/redefined tokens and modify them accordingly.
  2500. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2501. if tokenizer_config_file.is_file():
  2502. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2503. tokenizer_config_json = json.load(f)
  2504. if "added_tokens_decoder" in tokenizer_config_json:
  2505. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2506. for token_id, token_json in added_tokens_decoder.items():
  2507. token_id = int(token_id)
  2508. if token_id >= vocab_size:
  2509. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2510. continue
  2511. token_content = token_json["content"]
  2512. token_type = SentencePieceTokenTypes.USER_DEFINED
  2513. token_score = -10000.0
  2514. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2515. # Set the score to 0.0 as in the original tokenizer.model
  2516. if ("special" in token_json) and token_json["special"]:
  2517. if token_content == tokenizer_config_json["unk_token"]:
  2518. token_type = SentencePieceTokenTypes.UNKNOWN
  2519. else:
  2520. token_type = SentencePieceTokenTypes.CONTROL
  2521. token_score = 0.0
  2522. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2523. tokens[token_id] = token_content.encode("utf-8")
  2524. toktypes[token_id] = token_type
  2525. scores[token_id] = token_score
  2526. self.gguf_writer.add_tokenizer_model("llama")
  2527. self.gguf_writer.add_tokenizer_pre("default")
  2528. self.gguf_writer.add_token_list(tokens)
  2529. self.gguf_writer.add_token_scores(scores)
  2530. self.gguf_writer.add_token_types(toktypes)
  2531. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2532. special_vocab.add_to_gguf(self.gguf_writer)
  2533. def set_gguf_parameters(self):
  2534. super().set_gguf_parameters()
  2535. hparams = self.hparams
  2536. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2537. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2538. _experts: list[dict[str, Tensor]] | None = None
  2539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2540. n_head = self.hparams["num_attention_heads"]
  2541. n_kv_head = self.hparams.get("num_key_value_heads")
  2542. if name.endswith("q_proj.weight"):
  2543. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2544. if name.endswith("k_proj.weight"):
  2545. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2546. # process the experts separately
  2547. if name.find("block_sparse_moe.experts") != -1:
  2548. n_experts = self.hparams["num_local_experts"]
  2549. assert bid is not None
  2550. if self._experts is None:
  2551. self._experts = [{} for _ in range(self.block_count)]
  2552. self._experts[bid][name] = data_torch
  2553. if len(self._experts[bid]) >= n_experts * 3:
  2554. tensors: list[tuple[str, Tensor]] = []
  2555. # merge the experts into a single 3d tensor
  2556. for wid in ["w1", "w2", "w3"]:
  2557. datas: list[Tensor] = []
  2558. for xid in range(n_experts):
  2559. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2560. datas.append(self._experts[bid][ename])
  2561. del self._experts[bid][ename]
  2562. data_torch = torch.stack(datas, dim=0)
  2563. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2564. new_name = self.map_tensor_name(merged_name)
  2565. tensors.append((new_name, data_torch))
  2566. return tensors
  2567. else:
  2568. return []
  2569. return [(self.map_tensor_name(name), data_torch)]
  2570. def prepare_tensors(self):
  2571. super().prepare_tensors()
  2572. if self._experts is not None:
  2573. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2574. experts = [k for d in self._experts for k in d.keys()]
  2575. if len(experts) > 0:
  2576. raise ValueError(f"Unprocessed experts: {experts}")
  2577. @Model.register("DeepseekV2ForCausalLM")
  2578. class DeepseekV2Model(Model):
  2579. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2580. def set_vocab(self):
  2581. self._set_vocab_gpt2()
  2582. def set_gguf_parameters(self):
  2583. super().set_gguf_parameters()
  2584. hparams = self.hparams
  2585. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2586. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2587. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2588. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2589. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2590. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2591. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2592. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2593. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2594. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2595. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2596. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2597. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2598. if self.hparams["rope_scaling"].get("type") == "yarn":
  2599. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2600. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2601. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2602. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2603. _experts: list[dict[str, Tensor]] | None = None
  2604. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2605. # process the experts separately
  2606. if name.find("mlp.experts") != -1:
  2607. n_experts = self.hparams["n_routed_experts"]
  2608. assert bid is not None
  2609. if self._experts is None:
  2610. self._experts = [{} for _ in range(self.block_count)]
  2611. self._experts[bid][name] = data_torch
  2612. if len(self._experts[bid]) >= n_experts * 3:
  2613. tensors: list[tuple[str, Tensor]] = []
  2614. # merge the experts into a single 3d tensor
  2615. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2616. datas: list[Tensor] = []
  2617. for xid in range(n_experts):
  2618. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2619. datas.append(self._experts[bid][ename])
  2620. del self._experts[bid][ename]
  2621. data_torch = torch.stack(datas, dim=0)
  2622. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2623. new_name = self.map_tensor_name(merged_name)
  2624. tensors.append((new_name, data_torch))
  2625. return tensors
  2626. else:
  2627. return []
  2628. return [(self.map_tensor_name(name), data_torch)]
  2629. def prepare_tensors(self):
  2630. super().prepare_tensors()
  2631. if self._experts is not None:
  2632. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2633. experts = [k for d in self._experts for k in d.keys()]
  2634. if len(experts) > 0:
  2635. raise ValueError(f"Unprocessed experts: {experts}")
  2636. @Model.register("T5WithLMHeadModel")
  2637. @Model.register("T5ForConditionalGeneration")
  2638. @Model.register("MT5ForConditionalGeneration")
  2639. @Model.register("UMT5ForConditionalGeneration")
  2640. class T5Model(Model):
  2641. model_arch = gguf.MODEL_ARCH.T5
  2642. def __init__(self, *args, **kwargs):
  2643. super().__init__(*args, **kwargs)
  2644. self.shared_token_embeddings_found = False
  2645. def set_vocab(self):
  2646. # to avoid TypeError: Descriptors cannot be created directly
  2647. # exception when importing sentencepiece_model_pb2
  2648. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2649. from sentencepiece import SentencePieceProcessor
  2650. from sentencepiece import sentencepiece_model_pb2 as model
  2651. tokenizer_path = self.dir_model / 'tokenizer.model'
  2652. # many older models use spiece.model tokenizer model filename
  2653. if not tokenizer_path.is_file():
  2654. tokenizer_path = self.dir_model / 'spiece.model'
  2655. if not tokenizer_path.is_file():
  2656. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2657. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2658. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2659. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2660. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2661. # assure the tokenizer model file name is correct
  2662. assert tokenizer_path.name == 'tokenizer.model'
  2663. return self._set_vocab_sentencepiece()
  2664. else:
  2665. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2666. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2667. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2668. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2669. tokenizer = SentencePieceProcessor()
  2670. tokenizer.LoadFromFile(str(tokenizer_path))
  2671. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2672. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2673. scores: list[float] = [-10000.0] * vocab_size
  2674. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2675. for token_id in range(tokenizer.vocab_size()):
  2676. piece = tokenizer.IdToPiece(token_id)
  2677. text = piece.encode("utf-8")
  2678. score = tokenizer.GetScore(token_id)
  2679. toktype = SentencePieceTokenTypes.NORMAL
  2680. if tokenizer.IsUnknown(token_id):
  2681. toktype = SentencePieceTokenTypes.UNKNOWN
  2682. elif tokenizer.IsControl(token_id):
  2683. toktype = SentencePieceTokenTypes.CONTROL
  2684. elif tokenizer.IsUnused(token_id):
  2685. toktype = SentencePieceTokenTypes.UNUSED
  2686. elif tokenizer.IsByte(token_id):
  2687. toktype = SentencePieceTokenTypes.BYTE
  2688. tokens[token_id] = text
  2689. scores[token_id] = score
  2690. toktypes[token_id] = toktype
  2691. added_tokens_file = self.dir_model / 'added_tokens.json'
  2692. if added_tokens_file.is_file():
  2693. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2694. added_tokens_json = json.load(f)
  2695. for key in added_tokens_json:
  2696. token_id = added_tokens_json[key]
  2697. if token_id >= vocab_size:
  2698. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2699. continue
  2700. tokens[token_id] = key.encode("utf-8")
  2701. scores[token_id] = -1000.0
  2702. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2703. if vocab_size > len(tokens):
  2704. pad_count = vocab_size - len(tokens)
  2705. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2706. for i in range(1, pad_count + 1):
  2707. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2708. scores.append(-1000.0)
  2709. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2710. self.gguf_writer.add_tokenizer_model("t5")
  2711. self.gguf_writer.add_tokenizer_pre("default")
  2712. self.gguf_writer.add_token_list(tokens)
  2713. self.gguf_writer.add_token_scores(scores)
  2714. self.gguf_writer.add_token_types(toktypes)
  2715. self.gguf_writer.add_add_space_prefix(add_prefix)
  2716. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2717. if precompiled_charsmap:
  2718. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2719. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2720. special_vocab.add_to_gguf(self.gguf_writer)
  2721. self.gguf_writer.add_add_bos_token(False)
  2722. self.gguf_writer.add_add_eos_token(True)
  2723. def set_gguf_parameters(self):
  2724. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2725. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2726. n_ctx = 512
  2727. self.gguf_writer.add_context_length(n_ctx)
  2728. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2729. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2730. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2731. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2732. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2733. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2734. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2735. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2736. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2737. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2738. self.gguf_writer.add_file_type(self.ftype)
  2739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2740. del bid # unused
  2741. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2742. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2743. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2744. # and decoder and ignore the remaining ones.
  2745. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2746. if not self.shared_token_embeddings_found:
  2747. name = "shared.weight"
  2748. self.shared_token_embeddings_found = True
  2749. else:
  2750. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2751. return []
  2752. return [(self.map_tensor_name(name), data_torch)]
  2753. @Model.register("T5EncoderModel")
  2754. class T5EncoderModel(Model):
  2755. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2756. def __init__(self, *args, **kwargs):
  2757. super().__init__(*args, **kwargs)
  2758. self.shared_token_embeddings_found = False
  2759. def set_vocab(self):
  2760. # to avoid TypeError: Descriptors cannot be created directly
  2761. # exception when importing sentencepiece_model_pb2
  2762. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2763. from sentencepiece import SentencePieceProcessor
  2764. from sentencepiece import sentencepiece_model_pb2 as model
  2765. tokenizer_path = self.dir_model / 'tokenizer.model'
  2766. # many older models use spiece.model tokenizer model filename
  2767. if not tokenizer_path.is_file():
  2768. tokenizer_path = self.dir_model / 'spiece.model'
  2769. if not tokenizer_path.is_file():
  2770. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2771. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2772. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2773. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2774. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2775. # assure the tokenizer model file name is correct
  2776. assert tokenizer_path.name == 'tokenizer.model'
  2777. return self._set_vocab_sentencepiece()
  2778. else:
  2779. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2780. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2781. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2782. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2783. tokenizer = SentencePieceProcessor()
  2784. tokenizer.LoadFromFile(str(tokenizer_path))
  2785. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2786. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2787. scores: list[float] = [-10000.0] * vocab_size
  2788. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2789. for token_id in range(tokenizer.vocab_size()):
  2790. piece = tokenizer.IdToPiece(token_id)
  2791. text = piece.encode("utf-8")
  2792. score = tokenizer.GetScore(token_id)
  2793. toktype = SentencePieceTokenTypes.NORMAL
  2794. if tokenizer.IsUnknown(token_id):
  2795. toktype = SentencePieceTokenTypes.UNKNOWN
  2796. elif tokenizer.IsControl(token_id):
  2797. toktype = SentencePieceTokenTypes.CONTROL
  2798. elif tokenizer.IsUnused(token_id):
  2799. toktype = SentencePieceTokenTypes.UNUSED
  2800. elif tokenizer.IsByte(token_id):
  2801. toktype = SentencePieceTokenTypes.BYTE
  2802. tokens[token_id] = text
  2803. scores[token_id] = score
  2804. toktypes[token_id] = toktype
  2805. added_tokens_file = self.dir_model / 'added_tokens.json'
  2806. if added_tokens_file.is_file():
  2807. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2808. added_tokens_json = json.load(f)
  2809. for key in added_tokens_json:
  2810. token_id = added_tokens_json[key]
  2811. if token_id >= vocab_size:
  2812. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2813. continue
  2814. tokens[token_id] = key.encode("utf-8")
  2815. scores[token_id] = -1000.0
  2816. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2817. if vocab_size > len(tokens):
  2818. pad_count = vocab_size - len(tokens)
  2819. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2820. for i in range(1, pad_count + 1):
  2821. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2822. scores.append(-1000.0)
  2823. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2824. self.gguf_writer.add_tokenizer_model("t5")
  2825. self.gguf_writer.add_tokenizer_pre("default")
  2826. self.gguf_writer.add_token_list(tokens)
  2827. self.gguf_writer.add_token_scores(scores)
  2828. self.gguf_writer.add_token_types(toktypes)
  2829. self.gguf_writer.add_add_space_prefix(add_prefix)
  2830. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2831. if precompiled_charsmap:
  2832. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2833. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2834. special_vocab.add_to_gguf(self.gguf_writer)
  2835. self.gguf_writer.add_add_bos_token(False)
  2836. self.gguf_writer.add_add_eos_token(True)
  2837. def set_gguf_parameters(self):
  2838. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2839. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2840. n_ctx = 512
  2841. self.gguf_writer.add_context_length(n_ctx)
  2842. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2843. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2844. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2845. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2846. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2847. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2848. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2849. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2850. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2851. self.gguf_writer.add_file_type(self.ftype)
  2852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2853. del bid # unused
  2854. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2855. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2856. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2857. # and decoder and ignore the remaining ones.
  2858. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2859. if not self.shared_token_embeddings_found:
  2860. name = "shared.weight"
  2861. self.shared_token_embeddings_found = True
  2862. else:
  2863. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2864. return []
  2865. return [(self.map_tensor_name(name), data_torch)]
  2866. @Model.register("JAISLMHeadModel")
  2867. class JaisModel(Model):
  2868. model_arch = gguf.MODEL_ARCH.JAIS
  2869. def __init__(self, *args, **kwargs):
  2870. super().__init__(*args, **kwargs)
  2871. # SwigLU activation
  2872. assert self.hparams["activation_function"] == "swiglu"
  2873. # ALiBi position embedding
  2874. assert self.hparams["position_embedding_type"] == "alibi"
  2875. # Embeddings scale
  2876. self.embeddings_scale = 1.0
  2877. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2878. self.output_is_wte = False
  2879. if 'mup_embeddings_scale' in self.hparams:
  2880. self.output_is_wte = True # Hack (?)
  2881. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2882. elif 'embeddings_scale' in self.hparams:
  2883. self.embeddings_scale = self.hparams['embeddings_scale']
  2884. else:
  2885. assert False
  2886. self.width_scale = 1.0
  2887. if 'mup_output_alpha' in self.hparams:
  2888. assert 'mup_width_scale' in self.hparams
  2889. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2890. elif 'width_scale' in self.hparams:
  2891. self.width_scale = self.hparams['width_scale']
  2892. else:
  2893. assert False
  2894. self.max_alibi_bias = 8.0
  2895. def set_vocab(self):
  2896. self._set_vocab_gpt2()
  2897. def set_gguf_parameters(self):
  2898. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2899. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2900. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2901. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2902. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2903. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2904. self.gguf_writer.add_file_type(self.ftype)
  2905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2906. del bid # unused
  2907. tensors: list[tuple[str, Tensor]] = []
  2908. # we don't need these
  2909. if name.endswith((".attn.bias")):
  2910. return tensors
  2911. if name.endswith(("relative_pe.slopes")):
  2912. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2913. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2914. # but Jais's PyTorch model simply precalculates the slope values and places them
  2915. # in relative_pes.slopes
  2916. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2917. first_val = float(data_torch[0].item())
  2918. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2919. return tensors
  2920. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2921. data_torch = data_torch.transpose(1, 0)
  2922. new_name = self.map_tensor_name(name)
  2923. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2924. tensors.append((new_name, data_torch * self.embeddings_scale))
  2925. if self.output_is_wte:
  2926. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2927. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2928. assert not self.output_is_wte
  2929. tensors.append((new_name, data_torch * self.width_scale))
  2930. else:
  2931. tensors.append((new_name, data_torch))
  2932. return tensors
  2933. def prepare_tensors(self):
  2934. super().prepare_tensors()
  2935. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2936. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2937. class ChatGLMModel(Model):
  2938. model_arch = gguf.MODEL_ARCH.CHATGLM
  2939. def set_vocab_chatglm3(self):
  2940. dir_model = self.dir_model
  2941. hparams = self.hparams
  2942. tokens: list[bytes] = []
  2943. toktypes: list[int] = []
  2944. scores: list[float] = []
  2945. from transformers import AutoTokenizer
  2946. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2947. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2948. assert max(tokenizer.get_vocab().values()) < vocab_size
  2949. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2950. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2951. for token_id in range(vocab_size):
  2952. piece = tokenizer._convert_id_to_token(token_id)
  2953. if token_id == 0:
  2954. piece = "<unk>"
  2955. elif token_id == 1:
  2956. piece = "<bos>"
  2957. elif token_id == 2:
  2958. piece = "<eos>"
  2959. text = piece.encode("utf-8")
  2960. score = 0.0
  2961. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2962. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2963. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2964. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2965. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2966. if piece in special_tokens:
  2967. toktype = SentencePieceTokenTypes.CONTROL
  2968. elif len(piece) == 0:
  2969. text = f"[PAD{token_id}]".encode("utf-8")
  2970. toktype = SentencePieceTokenTypes.UNUSED
  2971. else:
  2972. toktype = SentencePieceTokenTypes.USER_DEFINED
  2973. tokens.append(text)
  2974. scores.append(score)
  2975. toktypes.append(toktype)
  2976. continue
  2977. toktype = SentencePieceTokenTypes.NORMAL
  2978. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2979. toktype = SentencePieceTokenTypes.UNKNOWN
  2980. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2981. toktype = SentencePieceTokenTypes.CONTROL
  2982. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2983. toktype = SentencePieceTokenTypes.UNUSED
  2984. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2985. toktype = SentencePieceTokenTypes.BYTE
  2986. tokens.append(text)
  2987. scores.append(score)
  2988. toktypes.append(toktype)
  2989. self.gguf_writer.add_tokenizer_model("llama")
  2990. # glm3 needs prefix and suffix formatted as:
  2991. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2992. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2993. self.gguf_writer.add_token_list(tokens)
  2994. self.gguf_writer.add_token_scores(scores)
  2995. self.gguf_writer.add_token_types(toktypes)
  2996. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2997. special_vocab.add_to_gguf(self.gguf_writer)
  2998. @staticmethod
  2999. def token_bytes_to_string(b):
  3000. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3001. byte_encoder = bytes_to_unicode()
  3002. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3003. @staticmethod
  3004. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3005. parts = [bytes([b]) for b in token]
  3006. while True:
  3007. min_idx = None
  3008. min_rank = None
  3009. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3010. rank = mergeable_ranks.get(pair[0] + pair[1])
  3011. if rank is not None and (min_rank is None or rank < min_rank):
  3012. min_idx = i
  3013. min_rank = rank
  3014. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3015. break
  3016. assert min_idx is not None
  3017. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3018. return parts
  3019. def set_vocab(self):
  3020. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3021. self.set_vocab_chatglm3()
  3022. return
  3023. dir_model = self.dir_model
  3024. hparams = self.hparams
  3025. tokens: list[str] = []
  3026. toktypes: list[int] = []
  3027. from transformers import AutoTokenizer
  3028. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3029. vocab_size = hparams["padded_vocab_size"]
  3030. assert max(tokenizer.get_vocab().values()) < vocab_size
  3031. tokpre = self.get_vocab_base_pre(tokenizer)
  3032. merges = []
  3033. vocab = {}
  3034. mergeable_ranks = tokenizer.mergeable_ranks
  3035. for token, rank in mergeable_ranks.items():
  3036. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3037. if len(token) == 1:
  3038. continue
  3039. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3040. assert len(merged) >= 2 and len(merged) <= 7
  3041. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3042. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3043. added_vocab = tokenizer.get_added_vocab()
  3044. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3045. for i in range(vocab_size):
  3046. if i not in reverse_vocab:
  3047. tokens.append(f"[PAD{i}]")
  3048. toktypes.append(gguf.TokenType.UNUSED)
  3049. elif reverse_vocab[i] in added_vocab:
  3050. tokens.append(reverse_vocab[i])
  3051. if tokenizer.added_tokens_decoder[i].special:
  3052. toktypes.append(gguf.TokenType.CONTROL)
  3053. else:
  3054. toktypes.append(gguf.TokenType.USER_DEFINED)
  3055. else:
  3056. tokens.append(reverse_vocab[i])
  3057. toktypes.append(gguf.TokenType.NORMAL)
  3058. self.gguf_writer.add_tokenizer_model("gpt2")
  3059. self.gguf_writer.add_tokenizer_pre(tokpre)
  3060. self.gguf_writer.add_token_list(tokens)
  3061. self.gguf_writer.add_token_types(toktypes)
  3062. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3063. special_vocab.merges = merges
  3064. # only add special tokens when they were not already loaded from config.json
  3065. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3066. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3067. # this one is usually not in config.json anyway
  3068. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3069. special_vocab.add_to_gguf(self.gguf_writer)
  3070. def set_gguf_parameters(self):
  3071. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3072. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3073. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3074. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3075. self.gguf_writer.add_embedding_length(n_embed)
  3076. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3077. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3078. self.gguf_writer.add_head_count(n_head)
  3079. self.gguf_writer.add_head_count_kv(n_head_kv)
  3080. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3081. self.gguf_writer.add_file_type(self.ftype)
  3082. self.gguf_writer.add_rope_dimension_count(64)
  3083. self.gguf_writer.add_add_bos_token(False)
  3084. rope_freq = 10000
  3085. if "rope_ratio" in self.hparams:
  3086. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3087. self.gguf_writer.add_rope_freq_base(rope_freq)
  3088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3089. del bid # unused
  3090. if name.endswith(".rotary_pos_emb.inv_freq"):
  3091. return []
  3092. name = name.removeprefix("transformer.")
  3093. return [(self.map_tensor_name(name), data_torch)]
  3094. @Model.register("NemotronForCausalLM")
  3095. class NemotronModel(Model):
  3096. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3097. def set_vocab(self):
  3098. self._set_vocab_sentencepiece()
  3099. self.gguf_writer.add_pad_token_id(0)
  3100. self.gguf_writer.add_unk_token_id(1)
  3101. def set_gguf_parameters(self):
  3102. super().set_gguf_parameters()
  3103. hparams = self.hparams
  3104. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3105. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3106. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3107. # * Partial RoPE
  3108. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3109. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3110. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3111. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3112. # * RopeScaling for Nemotron
  3113. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3114. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3115. else:
  3116. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3117. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3119. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3120. # model.layers.{l}.input_layernorm.weight
  3121. # model.layers.{l}.post_attention_layernorm.weight
  3122. # model.norm.weight
  3123. if name.endswith("norm.weight"):
  3124. data_torch = data_torch + 1
  3125. return [(self.map_tensor_name(name), data_torch)]
  3126. @Model.register("ExaoneForCausalLM")
  3127. class ExaoneModel(Model):
  3128. model_arch = gguf.MODEL_ARCH.EXAONE
  3129. def set_gguf_parameters(self):
  3130. hparams = self.hparams
  3131. assert (hparams["activation_function"] == "silu")
  3132. max_position_embeddings = hparams["max_position_embeddings"]
  3133. embed_dim = hparams["hidden_size"]
  3134. num_heads = hparams["num_attention_heads"]
  3135. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3136. layer_norm_eps = hparams["layer_norm_epsilon"]
  3137. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3138. num_layers = hparams["num_layers"]
  3139. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3140. # attention_dropout_rate = hparams["attention_dropout"]
  3141. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3142. # embed_dropout_rate = hparams["embed_dropout"]
  3143. self.gguf_writer.add_embedding_length(embed_dim)
  3144. self.gguf_writer.add_head_count(num_heads)
  3145. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3146. self.gguf_writer.add_context_length(max_position_embeddings)
  3147. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3148. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3149. self.gguf_writer.add_block_count(num_layers)
  3150. self.gguf_writer.add_file_type(self.ftype)
  3151. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3152. self.gguf_writer.add_rope_freq_base(rope_theta)
  3153. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3154. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3155. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3156. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3157. if hparams["rope_scaling"].get("type") == "linear":
  3158. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3159. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3160. def prepare_tensors(self):
  3161. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3162. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3163. base = self.hparams.get("rope_theta", 10000.0)
  3164. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3165. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3166. factor = rope_scaling.get("factor", 8.0)
  3167. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3168. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3169. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3170. low_freq_wavelen = old_context_len / low_freq_factor
  3171. high_freq_wavelen = old_context_len / high_freq_factor
  3172. assert low_freq_wavelen != high_freq_wavelen
  3173. rope_factors = []
  3174. for freq in freqs:
  3175. wavelen = 2 * math.pi / freq
  3176. if wavelen < high_freq_wavelen:
  3177. rope_factors.append(1)
  3178. elif wavelen > low_freq_wavelen:
  3179. rope_factors.append(factor)
  3180. else:
  3181. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3182. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3183. if not self.is_lora:
  3184. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3185. super().prepare_tensors()
  3186. ###### CONVERSION LOGIC ######
  3187. # tree of lazy tensors
  3188. class LazyTorchTensor(gguf.LazyBase):
  3189. _tensor_type = torch.Tensor
  3190. # to keep the type-checker happy
  3191. dtype: torch.dtype
  3192. shape: torch.Size
  3193. # only used when converting a torch.Tensor to a np.ndarray
  3194. _dtype_map: dict[torch.dtype, type] = {
  3195. torch.float16: np.float16,
  3196. torch.float32: np.float32,
  3197. }
  3198. # used for safetensors slices
  3199. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3200. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3201. _dtype_str_map: dict[str, torch.dtype] = {
  3202. "F64": torch.float64,
  3203. "F32": torch.float32,
  3204. "BF16": torch.bfloat16,
  3205. "F16": torch.float16,
  3206. # "U64": torch.uint64,
  3207. "I64": torch.int64,
  3208. # "U32": torch.uint32,
  3209. "I32": torch.int32,
  3210. # "U16": torch.uint16,
  3211. "I16": torch.int16,
  3212. "U8": torch.uint8,
  3213. "I8": torch.int8,
  3214. "BOOL": torch.bool,
  3215. "F8_E4M3": torch.float8_e4m3fn,
  3216. "F8_E5M2": torch.float8_e5m2,
  3217. }
  3218. def numpy(self) -> gguf.LazyNumpyTensor:
  3219. dtype = self._dtype_map[self.dtype]
  3220. return gguf.LazyNumpyTensor(
  3221. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3222. args=(self,),
  3223. func=(lambda s: s.numpy())
  3224. )
  3225. @classmethod
  3226. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3227. return torch.empty(size=shape, dtype=dtype, device="meta")
  3228. @classmethod
  3229. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3230. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3231. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3232. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3233. return cast(torch.Tensor, lazy)
  3234. @classmethod
  3235. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3236. del types # unused
  3237. if kwargs is None:
  3238. kwargs = {}
  3239. if func is torch.Tensor.numpy:
  3240. return args[0].numpy()
  3241. return cls._wrap_fn(func)(*args, **kwargs)
  3242. def parse_args() -> argparse.Namespace:
  3243. parser = argparse.ArgumentParser(
  3244. description="Convert a huggingface model to a GGML compatible file")
  3245. parser.add_argument(
  3246. "--vocab-only", action="store_true",
  3247. help="extract only the vocab",
  3248. )
  3249. parser.add_argument(
  3250. "--outfile", type=Path,
  3251. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3252. )
  3253. parser.add_argument(
  3254. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3255. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3256. )
  3257. parser.add_argument(
  3258. "--bigendian", action="store_true",
  3259. help="model is executed on big endian machine",
  3260. )
  3261. parser.add_argument(
  3262. "model", type=Path,
  3263. help="directory containing model file",
  3264. )
  3265. parser.add_argument(
  3266. "--use-temp-file", action="store_true",
  3267. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3268. )
  3269. parser.add_argument(
  3270. "--no-lazy", action="store_true",
  3271. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3272. )
  3273. parser.add_argument(
  3274. "--model-name", type=str, default=None,
  3275. help="name of the model",
  3276. )
  3277. parser.add_argument(
  3278. "--verbose", action="store_true",
  3279. help="increase output verbosity",
  3280. )
  3281. parser.add_argument(
  3282. "--split-max-tensors", type=int, default=0,
  3283. help="max tensors in each split",
  3284. )
  3285. parser.add_argument(
  3286. "--split-max-size", type=str, default="0",
  3287. help="max size per split N(M|G)",
  3288. )
  3289. parser.add_argument(
  3290. "--dry-run", action="store_true",
  3291. help="only print out a split plan and exit, without writing any new files",
  3292. )
  3293. parser.add_argument(
  3294. "--no-tensor-first-split", action="store_true",
  3295. help="do not add tensors to the first split (disabled by default)"
  3296. )
  3297. parser.add_argument(
  3298. "--metadata", type=Path,
  3299. help="Specify the path for an authorship metadata override file"
  3300. )
  3301. return parser.parse_args()
  3302. def split_str_to_n_bytes(split_str: str) -> int:
  3303. if split_str.endswith("K"):
  3304. n = int(split_str[:-1]) * 1000
  3305. elif split_str.endswith("M"):
  3306. n = int(split_str[:-1]) * 1000 * 1000
  3307. elif split_str.endswith("G"):
  3308. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3309. elif split_str.isnumeric():
  3310. n = int(split_str)
  3311. else:
  3312. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3313. if n < 0:
  3314. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3315. return n
  3316. def main() -> None:
  3317. args = parse_args()
  3318. if args.verbose:
  3319. logging.basicConfig(level=logging.DEBUG)
  3320. else:
  3321. logging.basicConfig(level=logging.INFO)
  3322. dir_model = args.model
  3323. if not dir_model.is_dir():
  3324. logger.error(f'Error: {args.model} is not a directory')
  3325. sys.exit(1)
  3326. ftype_map: dict[str, gguf.LlamaFileType] = {
  3327. "f32": gguf.LlamaFileType.ALL_F32,
  3328. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3329. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3330. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3331. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3332. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3333. "auto": gguf.LlamaFileType.GUESSED,
  3334. }
  3335. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3336. if args.use_temp_file and is_split:
  3337. logger.error("Error: Cannot use temp file when splitting")
  3338. sys.exit(1)
  3339. if args.outfile is not None:
  3340. fname_out = args.outfile
  3341. else:
  3342. fname_out = dir_model
  3343. logger.info(f"Loading model: {dir_model.name}")
  3344. hparams = Model.load_hparams(dir_model)
  3345. with torch.inference_mode():
  3346. output_type = ftype_map[args.outtype]
  3347. model_architecture = hparams["architectures"][0]
  3348. try:
  3349. model_class = Model.from_model_architecture(model_architecture)
  3350. except NotImplementedError:
  3351. logger.error(f"Model {model_architecture} is not supported")
  3352. sys.exit(1)
  3353. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3354. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3355. eager=args.no_lazy,
  3356. metadata_override=args.metadata, model_name=args.model_name,
  3357. split_max_tensors=args.split_max_tensors,
  3358. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3359. small_first_shard=args.no_tensor_first_split)
  3360. if args.vocab_only:
  3361. logger.info("Exporting model vocab...")
  3362. model_instance.write_vocab()
  3363. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3364. else:
  3365. logger.info("Exporting model...")
  3366. model_instance.write()
  3367. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3368. logger.info(f"Model successfully exported to {out_path}")
  3369. if __name__ == '__main__':
  3370. main()