test-backend-ops.cpp 158 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <algorithm>
  18. #include <array>
  19. #include <cfloat>
  20. #include <cstdint>
  21. #include <cstring>
  22. #include <cinttypes>
  23. #include <memory>
  24. #include <random>
  25. #include <stdio.h>
  26. #include <stdlib.h>
  27. #include <string>
  28. #include <thread>
  29. #include <future>
  30. #include <vector>
  31. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  32. size_t nels = ggml_nelements(tensor);
  33. std::vector<float> data(nels);
  34. {
  35. // parallel initialization
  36. static const size_t n_threads = std::thread::hardware_concurrency();
  37. // static RNG initialization (revisit if n_threads stops being constant)
  38. static std::vector<std::default_random_engine> generators = []() {
  39. std::random_device rd;
  40. std::vector<std::default_random_engine> vec;
  41. vec.reserve(n_threads);
  42. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  43. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  44. return vec;
  45. }();
  46. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  47. std::uniform_real_distribution<float> distribution(min, max);
  48. auto & gen = generators[ith];
  49. for (size_t i = start; i < end; i++) {
  50. data[i] = distribution(gen);
  51. }
  52. };
  53. std::vector<std::future<void>> tasks;
  54. tasks.reserve(n_threads);
  55. for (size_t i = 0; i < n_threads; i++) {
  56. size_t start = i*nels/n_threads;
  57. size_t end = (i+1)*nels/n_threads;
  58. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  59. }
  60. for (auto & t : tasks) {
  61. t.get();
  62. }
  63. }
  64. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  65. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  66. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  67. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  68. // dummy importance matrix
  69. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  70. const float * im = imatrix.data();
  71. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  72. // when the imatrix is optional, we want to test both quantization with and without imatrix
  73. // use one of the random numbers to decide
  74. if (data[0] > 0.5f*(min + max)) {
  75. im = nullptr;
  76. }
  77. }
  78. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  79. {
  80. // parallel quantization by block
  81. size_t blck_size = ggml_blck_size(tensor->type);
  82. size_t n_blocks = nels / blck_size;
  83. auto quantize_thread = [&](size_t start, size_t end) {
  84. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  85. start * blck_size, end - start, blck_size, im);
  86. };
  87. const size_t min_blocks_per_thread = 1;
  88. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  89. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  90. std::vector<std::future<void>> tasks;
  91. tasks.reserve(n_threads);
  92. for (size_t i = 0; i < n_threads; i++) {
  93. size_t start = i*n_blocks/n_threads;
  94. size_t end = (i+1)*n_blocks/n_threads;
  95. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  96. }
  97. for (auto & t : tasks) {
  98. t.get();
  99. }
  100. }
  101. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  102. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  103. // This is going to create some weird integers though.
  104. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  105. } else if (tensor->type == GGML_TYPE_I64) {
  106. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  107. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  108. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  109. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  110. } else {
  111. GGML_ABORT("fatal error");
  112. }
  113. }
  114. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  115. std::vector<float> tv;
  116. tv.reserve(ggml_nelements(t));
  117. std::vector<uint8_t> buf(ggml_nbytes(t));
  118. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  119. const auto * tt = ggml_get_type_traits(t->type);
  120. size_t bs = ggml_blck_size(t->type);
  121. std::vector<float> vq(ggml_blck_size(t->type));
  122. bool quantized = ggml_is_quantized(t->type);
  123. // access elements by index to avoid gaps in views
  124. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  125. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  126. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  127. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  128. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  129. if (t->type == GGML_TYPE_F16) {
  130. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  131. } else if (t->type == GGML_TYPE_BF16) {
  132. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_F32) {
  134. tv.push_back(*(float *) &buf[i]);
  135. } else if (t->type == GGML_TYPE_I64) {
  136. tv.push_back((float)*(int64_t *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I32) {
  138. tv.push_back((float)*(int32_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I16) {
  140. tv.push_back((float)*(int16_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I8) {
  142. tv.push_back((float)*(int8_t *) &buf[i]);
  143. } else if (quantized) {
  144. tt->to_float(&buf[i], vq.data(), bs);
  145. tv.insert(tv.end(), vq.begin(), vq.end());
  146. } else {
  147. GGML_ABORT("fatal error");
  148. }
  149. }
  150. }
  151. }
  152. }
  153. return tv;
  154. }
  155. // normalized mean squared error = mse(a, b) / mse(a, 0)
  156. static double nmse(const float * a, const float * b, size_t n) {
  157. double mse_a_b = 0.0;
  158. double mse_a_0 = 0.0;
  159. for (size_t i = 0; i < n; i++) {
  160. float a_i = a[i];
  161. float b_i = b[i];
  162. mse_a_b += (a_i - b_i) * (a_i - b_i);
  163. mse_a_0 += a_i * a_i;
  164. }
  165. return mse_a_b / mse_a_0;
  166. }
  167. // maximum absolute asymmetry between a and b
  168. // asymmetry: (a - b) / (a + b)
  169. // This is more stable than relative error if one of the values fluctuates towards zero.
  170. // n: number of values to compare.
  171. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  172. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  173. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  174. double sum = 0.0f;
  175. size_t nvalid = 0;
  176. for (size_t i = 0; i < n; i++) {
  177. if (!expected_vals.empty()) {
  178. bool matches_any = false;
  179. for (const float & ev : expected_vals) {
  180. if (fabsf(a[i] - ev) < 1e-3f) {
  181. matches_any = true;
  182. break;
  183. }
  184. }
  185. if (!matches_any) {
  186. continue;
  187. }
  188. }
  189. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  190. sum += fabsf(asymm);
  191. nvalid++;
  192. }
  193. return sum/nvalid;
  194. }
  195. // utils for printing the variables of the test cases
  196. template<typename T>
  197. static std::string var_to_str(const T & x) {
  198. return std::to_string(x);
  199. }
  200. template<typename T, size_t N>
  201. static std::string var_to_str(const T (&x)[N]) {
  202. std::string s = "[";
  203. for (size_t i = 0; i < N; i++) {
  204. if (i > 0) {
  205. s += ",";
  206. }
  207. s += var_to_str(x[i]);
  208. }
  209. s += "]";
  210. return s;
  211. }
  212. template<typename T, size_t N>
  213. static std::string var_to_str(const std::array<T, N> & x) {
  214. std::string s = "[";
  215. for (size_t i = 0; i < N; i++) {
  216. if (i > 0) {
  217. s += ",";
  218. }
  219. s += var_to_str(x[i]);
  220. }
  221. s += "]";
  222. return s;
  223. }
  224. static std::string var_to_str(ggml_type type) {
  225. return ggml_type_name(type);
  226. }
  227. static std::string var_to_str(ggml_op_pool pool) {
  228. switch (pool) {
  229. case GGML_OP_POOL_AVG: return "avg";
  230. case GGML_OP_POOL_MAX: return "max";
  231. default: return std::to_string(pool);
  232. }
  233. }
  234. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  235. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  236. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  237. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  238. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  239. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  240. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  241. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  242. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  243. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  244. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  245. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  246. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  247. #ifdef GGML_USE_SYCL
  248. static bool inline _isinf(float f) {
  249. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  250. }
  251. #else
  252. static bool inline _isinf(float f) { return std::isinf(f); }
  253. #endif
  254. // accept FLT_MAX as infinity
  255. static bool isinf_or_max(float f) {
  256. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  257. }
  258. static bool ggml_is_view_op(enum ggml_op op) {
  259. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  260. }
  261. enum test_mode {
  262. MODE_TEST,
  263. MODE_PERF,
  264. MODE_GRAD,
  265. };
  266. struct test_case {
  267. virtual ~test_case() {}
  268. virtual std::string op_desc(ggml_tensor * t) {
  269. return ggml_op_desc(t);
  270. }
  271. virtual std::string vars() {
  272. return "";
  273. }
  274. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  275. virtual double max_nmse_err() {
  276. return 1e-7;
  277. }
  278. virtual double max_maa_err() {
  279. return 1e-4;
  280. }
  281. virtual float grad_eps() {
  282. return 1e-1f;
  283. }
  284. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  285. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  286. virtual bool grad_precise() {
  287. return false;
  288. }
  289. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  290. virtual int64_t grad_nmax() {
  291. return 10000;
  292. }
  293. // No effect if empty.
  294. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  295. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  296. virtual std::vector<float> grad_expect() {
  297. return {};
  298. }
  299. virtual void initialize_tensors(ggml_context * ctx) {
  300. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  301. init_tensor_uniform(t);
  302. }
  303. }
  304. virtual size_t op_size(ggml_tensor * t) {
  305. size_t size = ggml_nbytes(t);
  306. // add source tensors
  307. for (int i = 0; i < GGML_MAX_SRC; i++) {
  308. if (t->src[i] != NULL) {
  309. size += ggml_nbytes(t->src[i]);
  310. }
  311. }
  312. return size;
  313. }
  314. virtual uint64_t op_flops(ggml_tensor * t) {
  315. GGML_UNUSED(t);
  316. return 0;
  317. }
  318. ggml_cgraph * gf = nullptr;
  319. ggml_cgraph * gb = nullptr;
  320. static const int sentinel_size = 1024;
  321. test_mode mode;
  322. std::vector<ggml_tensor *> sentinels;
  323. void add_sentinel(ggml_context * ctx) {
  324. if (mode == MODE_PERF || mode == MODE_GRAD) {
  325. return;
  326. }
  327. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  328. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  329. sentinels.push_back(sentinel);
  330. }
  331. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  332. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  333. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  334. add_sentinel(ctx);
  335. return t;
  336. }
  337. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  338. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  339. add_sentinel(ctx);
  340. return t;
  341. }
  342. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  343. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  344. add_sentinel(ctx);
  345. return t;
  346. }
  347. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  348. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  349. add_sentinel(ctx);
  350. return t;
  351. }
  352. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  353. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  354. add_sentinel(ctx);
  355. return t;
  356. }
  357. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  358. mode = MODE_TEST;
  359. ggml_init_params params = {
  360. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  361. /* .mem_base = */ NULL,
  362. /* .no_alloc = */ true,
  363. };
  364. ggml_context * ctx = ggml_init(params);
  365. GGML_ASSERT(ctx);
  366. gf = ggml_new_graph(ctx);
  367. // pre-graph sentinel
  368. add_sentinel(ctx);
  369. ggml_tensor * out = build_graph(ctx);
  370. if (op_name != nullptr && op_desc(out) != op_name) {
  371. //printf(" %s: skipping\n", op_desc(out).c_str());
  372. ggml_free(ctx);
  373. return true;
  374. }
  375. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  376. fflush(stdout);
  377. // check if the backends support the ops
  378. bool supported = true;
  379. for (ggml_backend_t backend : {backend1, backend2}) {
  380. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  381. if (!ggml_backend_supports_op(backend, t)) {
  382. printf("not supported [%s] ", ggml_backend_name(backend));
  383. supported = false;
  384. break;
  385. }
  386. }
  387. }
  388. if (!supported) {
  389. printf("\n");
  390. ggml_free(ctx);
  391. return true;
  392. }
  393. // post-graph sentinel
  394. add_sentinel(ctx);
  395. // allocate
  396. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  397. if (buf == NULL) {
  398. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  399. ggml_free(ctx);
  400. return false;
  401. }
  402. // build graph
  403. ggml_build_forward_expand(gf, out);
  404. // add sentinels as graph nodes so that they are checked in the callback
  405. for (ggml_tensor * sentinel : sentinels) {
  406. ggml_graph_add_node(gf, sentinel);
  407. }
  408. // randomize tensors
  409. initialize_tensors(ctx);
  410. // compare
  411. struct callback_userdata {
  412. bool ok;
  413. double max_err;
  414. ggml_backend_t backend1;
  415. ggml_backend_t backend2;
  416. };
  417. callback_userdata ud {
  418. true,
  419. max_nmse_err(),
  420. backend1,
  421. backend2
  422. };
  423. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  424. callback_userdata * ud = (callback_userdata *) user_data;
  425. const char * bn1 = ggml_backend_name(ud->backend1);
  426. const char * bn2 = ggml_backend_name(ud->backend2);
  427. if (t1->op == GGML_OP_NONE) {
  428. // sentinels must be unchanged
  429. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  430. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  431. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  432. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  433. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  434. printf("sentinel mismatch: %s ", t1->name);
  435. ud->ok = false;
  436. return true;
  437. }
  438. }
  439. std::vector<float> f1 = tensor_to_float(t1);
  440. std::vector<float> f2 = tensor_to_float(t2);
  441. for (size_t i = 0; i < f1.size(); i++) {
  442. // check for nans
  443. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  444. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  445. ud->ok = false;
  446. return true;
  447. }
  448. // check for infs: both must be inf of the same sign, or both must be finite
  449. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  450. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  451. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  452. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  453. ud->ok = false;
  454. return true;
  455. }
  456. } else {
  457. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  458. ud->ok = false;
  459. return true;
  460. }
  461. }
  462. }
  463. double err = nmse(f1.data(), f2.data(), f1.size());
  464. if (err > ud->max_err) {
  465. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  466. //for (int i = 0; i < (int) f1.size(); i++) {
  467. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  468. //}
  469. //printf("\n");
  470. //exit(1);
  471. ud->ok = false;
  472. }
  473. return true;
  474. GGML_UNUSED(index);
  475. };
  476. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  477. if (!cmp_ok) {
  478. printf("compare failed ");
  479. }
  480. ggml_backend_buffer_free(buf);
  481. ggml_free(ctx);
  482. if (ud.ok && cmp_ok) {
  483. printf("\033[1;32mOK\033[0m\n");
  484. return true;
  485. }
  486. printf("\033[1;31mFAIL\033[0m\n");
  487. return false;
  488. }
  489. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  490. mode = MODE_PERF;
  491. static const size_t graph_nodes = 8192;
  492. ggml_init_params params = {
  493. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  494. /* .mem_base = */ NULL,
  495. /* .no_alloc = */ true,
  496. };
  497. ggml_context * ctx = ggml_init(params);
  498. GGML_ASSERT(ctx);
  499. ggml_tensor * out = build_graph(ctx);
  500. if (op_name != nullptr && op_desc(out) != op_name) {
  501. //printf(" %s: skipping\n", op_desc(out).c_str());
  502. ggml_free(ctx);
  503. return true;
  504. }
  505. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  506. fflush(stdout);
  507. // check if backends support op
  508. if (!ggml_backend_supports_op(backend, out)) {
  509. printf("not supported\n");
  510. ggml_free(ctx);
  511. return true;
  512. }
  513. // align while also leaving some margin for variations in parameters
  514. int align = 8;
  515. int last = (len + align - 1) / align * align;
  516. if (last - len < 5) {
  517. last += align;
  518. }
  519. printf("%*s", last - len, "");
  520. // allocate
  521. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  522. if (buf == NULL) {
  523. printf("failed to allocate tensors\n");
  524. ggml_free(ctx);
  525. return false;
  526. }
  527. // randomize tensors
  528. initialize_tensors(ctx);
  529. // build graph
  530. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  531. ggml_build_forward_expand(gf, out);
  532. // warmup run
  533. ggml_backend_graph_compute(backend, gf);
  534. // determine number of runs
  535. int n_runs;
  536. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  537. if (op_flops(out) > 0) {
  538. // based on flops
  539. const uint64_t GFLOP = 1000 * 1000 * 1000;
  540. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  541. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  542. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  543. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  544. } else {
  545. // based on memory size
  546. const size_t GB = 1ULL << 30;
  547. const size_t target_size_cpu = 8 * GB;
  548. const size_t target_size_gpu = 32 * GB;
  549. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  550. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  551. }
  552. // duplicate the op
  553. for (int i = 1; i < n_runs; i++) {
  554. ggml_graph_add_node(gf, out);
  555. }
  556. // calculate memory
  557. size_t mem = n_runs * op_size(out);
  558. auto tensor_op_size = [](ggml_tensor * t) {
  559. size_t size = ggml_nbytes(t);
  560. // add source tensors
  561. for (int i = 0; i < GGML_MAX_SRC; i++) {
  562. if (t->src[i] != NULL) {
  563. size += ggml_nbytes(t->src[i]);
  564. }
  565. }
  566. return size;
  567. };
  568. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  569. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  570. continue;
  571. }
  572. mem += tensor_op_size(ggml_graph_node(gf, i));
  573. }
  574. // run
  575. int64_t total_time_us = 0;
  576. int64_t total_mem = 0;
  577. int total_runs = 0;
  578. do {
  579. int64_t start_time = ggml_time_us();
  580. ggml_backend_graph_compute(backend, gf);
  581. int64_t end_time = ggml_time_us();
  582. total_time_us += end_time - start_time;
  583. total_mem += mem;
  584. total_runs += n_runs;
  585. } while (total_time_us < 1000*1000); // run for at least 1 second
  586. printf(" %8d runs - %8.2f us/run - ",
  587. total_runs,
  588. (double)total_time_us / total_runs);
  589. if (op_flops(out) > 0) {
  590. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  591. auto format_flops = [](double flops) -> std::string {
  592. char buf[256];
  593. if (flops >= 1e12) {
  594. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  595. } else if (flops >= 1e9) {
  596. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  597. } else if (flops >= 1e6) {
  598. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  599. } else {
  600. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  601. }
  602. return buf;
  603. };
  604. printf("%s/run - \033[1;34m%sS\033[0m",
  605. format_flops(op_flops(out)).c_str(),
  606. format_flops(flops_per_sec).c_str());
  607. } else {
  608. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  609. op_size(out) / 1024,
  610. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  611. }
  612. printf("\n");
  613. ggml_backend_buffer_free(buf);
  614. ggml_free(ctx);
  615. return true;
  616. }
  617. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  618. mode = MODE_GRAD;
  619. const std::vector<float> expect = grad_expect();
  620. ggml_init_params params = {
  621. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  622. /* .mem_base = */ NULL,
  623. /* .no_alloc = */ true,
  624. };
  625. ggml_context * ctx = ggml_init(params);
  626. GGML_ASSERT(ctx);
  627. gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
  628. gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
  629. ggml_tensor * out = build_graph(ctx);
  630. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  631. //printf(" %s: skipping\n", op_desc(out).c_str());
  632. ggml_free(ctx);
  633. return true;
  634. }
  635. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  636. fflush(stdout);
  637. if (out->type != GGML_TYPE_F32) {
  638. ggml_free(ctx);
  639. printf("not supported [%s->type != FP32]\n", out->name);
  640. return true;
  641. }
  642. // check if the backend supports the ops
  643. bool supported = true;
  644. bool any_params = false;
  645. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  646. if (!ggml_backend_supports_op(backend, t)) {
  647. printf("not supported [%s] ", ggml_backend_name(backend));
  648. supported = false;
  649. break;
  650. }
  651. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  652. any_params = true;
  653. if (t->type != GGML_TYPE_F32) {
  654. printf("not supported [%s->type != FP32] ", t->name);
  655. supported = false;
  656. break;
  657. }
  658. }
  659. }
  660. if (!any_params) {
  661. printf("not supported [%s] \n", op_desc(out).c_str());
  662. supported = false;
  663. }
  664. if (!supported) {
  665. printf("\n");
  666. ggml_free(ctx);
  667. return true;
  668. }
  669. int64_t ngrads = 0;
  670. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  671. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  672. ngrads += ggml_nelements(t);
  673. }
  674. }
  675. if (ngrads > grad_nmax()) {
  676. printf("skipping large tensors for speed \n");
  677. ggml_free(ctx);
  678. return true;
  679. }
  680. if (!ggml_is_scalar(out)) {
  681. out = ggml_sum(ctx, out);
  682. ggml_set_name(out, "sum_of_out");
  683. }
  684. ggml_set_loss(out);
  685. ggml_build_forward_expand(gf, out);
  686. ggml_graph_cpy(gf, gb);
  687. ggml_build_backward_expand(ctx, ctx, gb, false);
  688. if (expect.size() != 1 || expect[0] != 0.0f) {
  689. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  690. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  691. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  692. }
  693. }
  694. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  695. if (!ggml_backend_supports_op(backend, t)) {
  696. printf("not supported [%s] ", ggml_backend_name(backend));
  697. supported = false;
  698. break;
  699. }
  700. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  701. printf("not supported [%s->type != FP32] ", t->name);
  702. supported = false;
  703. break;
  704. }
  705. }
  706. if (!supported) {
  707. printf("\n");
  708. ggml_free(ctx);
  709. return true;
  710. }
  711. // allocate
  712. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  713. if (buf == NULL) {
  714. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  715. ggml_free(ctx);
  716. return false;
  717. }
  718. initialize_tensors(ctx); // Randomizes all tensors (including gradients).
  719. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  720. ggml_backend_graph_compute(backend, gf);
  721. ggml_backend_graph_compute(backend, gb);
  722. bool ok = true;
  723. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  724. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  725. continue;
  726. }
  727. const char * bn = ggml_backend_name(backend);
  728. const int64_t ne = ggml_nelements(t);
  729. std::vector<float> ga;
  730. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  731. if (grad) {
  732. ga = tensor_to_float(grad);
  733. } else {
  734. ga.resize(ne); // default value is 0.0f
  735. }
  736. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  737. // check for nans
  738. if (!std::isfinite(ga[i])) {
  739. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  740. ok = false;
  741. break;
  742. }
  743. }
  744. if (!ok) {
  745. break;
  746. }
  747. std::vector<float> gn(ne); // gradient numeric
  748. GGML_ASSERT(ga.size() == gn.size());
  749. std::vector<float> x0 = tensor_to_float(t); // original t data
  750. GGML_ASSERT(ggml_is_scalar(out));
  751. GGML_ASSERT(out->type == GGML_TYPE_F32);
  752. const float eps = grad_eps();
  753. for (int64_t i = 0; i < ne; ++i) {
  754. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  755. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  756. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  757. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  758. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  759. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  760. ggml_backend_graph_compute(backend, gf);
  761. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  762. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  763. ggml_backend_graph_compute(backend, gf);
  764. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  765. if (grad_precise()) {
  766. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  767. ggml_backend_graph_compute(backend, gf);
  768. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  769. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  770. ggml_backend_graph_compute(backend, gf);
  771. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  772. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  773. } else {
  774. gn[i] = (fu - fd) / (2.0f*eps);
  775. }
  776. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  777. }
  778. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  779. if (err > max_maa_err()) {
  780. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  781. ok = false;
  782. break;
  783. }
  784. if (!ok) {
  785. break;
  786. }
  787. }
  788. if (!ok) {
  789. printf("compare failed ");
  790. }
  791. ggml_backend_buffer_free(buf);
  792. ggml_free(ctx);
  793. if (ok) {
  794. printf("\033[1;32mOK\033[0m\n");
  795. return true;
  796. }
  797. printf("\033[1;31mFAIL\033[0m\n");
  798. return false;
  799. }
  800. };
  801. // ###################################
  802. // ## Section 2: GGML Op Defintions ##
  803. // ###################################
  804. // The following is an example showing the bare minimum for creating a test for a GGML op.
  805. // GGML_OP_EXAMPLE
  806. struct test_example : public test_case {
  807. // Always define these 2 or variants thereof:
  808. const ggml_type type; // The type of the input tensors.
  809. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  810. // For some ops it's necessary to define multiple types or shapes for the inputs.
  811. // Or they may need additional parameters.
  812. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  813. // In most cases these are just the properties of the struct that you defined above.
  814. // This is needed for info prints.
  815. std::string vars() override {
  816. return VARS_TO_STR2(type, ne);
  817. }
  818. // Define a constructor for the struct.
  819. // In most cases it will be sufficient to have the same arguments as the struct has properties
  820. // and just use initializer lists.
  821. test_example(ggml_type type = GGML_TYPE_F32,
  822. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  823. : type(type), ne(ne) {}
  824. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  825. ggml_tensor * build_graph(ggml_context * ctx) override {
  826. // Step 1: create input tensors that don't depend on any other tensors:
  827. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  828. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  829. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  830. ggml_set_name(b, "b");
  831. // Step 2: use the op that you want to test in the GGML compute graph.
  832. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  833. ggml_set_name(out, "out");
  834. // Step 3: return the output tensor.
  835. return out;
  836. }
  837. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  838. // immediately after you create the tensors.
  839. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  840. };
  841. // GGML_OP_UNARY
  842. struct test_unary : public test_case {
  843. const ggml_unary_op op;
  844. const ggml_type type;
  845. const std::array<int64_t, 4> ne_a;
  846. int v; // view (1 : non-contiguous a)
  847. std::string vars() override {
  848. return VARS_TO_STR3(type, ne_a, v);
  849. }
  850. test_unary(ggml_unary_op op,
  851. ggml_type type = GGML_TYPE_F32,
  852. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  853. int v = 0)
  854. : op(op), type(type), ne_a(ne_a), v(v) {}
  855. ggml_tensor * build_graph(ggml_context * ctx) override {
  856. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  857. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  858. ggml_tensor * a;
  859. if (v & 1) {
  860. auto ne = ne_a; ne[0] *= 3;
  861. a = ggml_new_tensor(ctx, type, 4, ne.data());
  862. if (grad_supported) {
  863. ggml_set_param(ctx, a);
  864. }
  865. ggml_set_name(a, "a");
  866. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  867. ggml_set_name(a, "view_of_a");
  868. } else {
  869. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  870. if (grad_supported) {
  871. ggml_set_param(ctx, a);
  872. }
  873. ggml_set_name(a, "a");
  874. }
  875. ggml_tensor * out = ggml_unary(ctx, a, op);
  876. ggml_set_name(out, "out");
  877. return out;
  878. }
  879. void initialize_tensors(ggml_context * ctx) override {
  880. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  881. // test extended range of values to check for NaNs in GELU
  882. init_tensor_uniform(t, -150.f, 150.f);
  883. }
  884. }
  885. float grad_eps() override {
  886. return 15.0f;
  887. }
  888. std::vector<float> grad_expect() override {
  889. if (op == GGML_UNARY_OP_ABS) {
  890. return {-1.0f, 1.0f};
  891. }
  892. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  893. return {0.0f};
  894. }
  895. if (op == GGML_UNARY_OP_RELU) {
  896. return {0.0f, 1.0f};
  897. }
  898. return {};
  899. }
  900. };
  901. // GGML_OP_GET_ROWS
  902. struct test_get_rows : public test_case {
  903. const ggml_type type;
  904. const int n; // cols
  905. const int m; // rows
  906. const int r; // rows to get
  907. const int b; // batch size
  908. const bool v; // view (non-contiguous src1)
  909. std::string vars() override {
  910. return VARS_TO_STR6(type, n, m, r, b, v);
  911. }
  912. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  913. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  914. ggml_tensor * build_graph(ggml_context * ctx) override {
  915. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  916. ggml_set_name(in, "in");
  917. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  918. ggml_set_name(rows, "rows");
  919. if (v) {
  920. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  921. ggml_set_name(rows, "view_of_rows");
  922. }
  923. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  924. if (grad_supported) {
  925. ggml_set_param(ctx, in);
  926. // rows is a constant input -> no gradients
  927. }
  928. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  929. ggml_set_name(out, "out");
  930. return out;
  931. }
  932. void initialize_tensors(ggml_context * ctx) override {
  933. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  934. if (t->type == GGML_TYPE_I32) {
  935. if (ggml_is_view_op(t->op)) { continue; }
  936. // rows
  937. std::vector<int> data(r*b);
  938. for (int i = 0; i < r*b; i++) {
  939. data[i] = rand() % m;
  940. }
  941. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  942. } else {
  943. init_tensor_uniform(t);
  944. }
  945. }
  946. }
  947. };
  948. // GGML_OP_GET_ROWS_BACK
  949. struct test_get_rows_back : public test_case {
  950. const ggml_type type;
  951. const int n; // cols
  952. const int m; // rows
  953. const int r; // rows to get
  954. const int b; // batch size
  955. const bool v; // view (non-contiguous src1)
  956. std::string vars() override {
  957. return VARS_TO_STR6(type, n, m, r, b, v);
  958. }
  959. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  960. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  961. ggml_tensor * build_graph(ggml_context * ctx) override {
  962. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  963. ggml_set_name(in_forward, "in_forward");
  964. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  965. ggml_set_name(rows, "rows");
  966. if (v) {
  967. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  968. ggml_set_name(rows, "view_of_rows");
  969. }
  970. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  971. ggml_set_name(grad, "grad");
  972. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  973. ggml_set_name(out, "out");
  974. return out;
  975. }
  976. void initialize_tensors(ggml_context * ctx) override {
  977. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  978. if (t->type == GGML_TYPE_I32) {
  979. if (ggml_is_view_op(t->op)) { continue; }
  980. // rows
  981. std::vector<int> data(r*b);
  982. for (int i = 0; i < r*b; i++) {
  983. data[i] = rand() % m;
  984. }
  985. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  986. } else {
  987. init_tensor_uniform(t);
  988. }
  989. }
  990. }
  991. };
  992. // GGML_OP_ARGMAX
  993. struct test_argmax : public test_case {
  994. const ggml_type type;
  995. const std::array<int64_t, 4> ne;
  996. std::string vars() override {
  997. return VARS_TO_STR2(type, ne);
  998. }
  999. test_argmax(ggml_type type = GGML_TYPE_F32,
  1000. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1001. : type(type), ne(ne) {}
  1002. ggml_tensor * build_graph(ggml_context * ctx) override {
  1003. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1004. ggml_set_name(a, "a");
  1005. ggml_tensor * out = ggml_argmax(ctx, a);
  1006. ggml_set_name(out, "out");
  1007. return out;
  1008. }
  1009. void initialize_tensors(ggml_context * ctx) override {
  1010. std::random_device rd;
  1011. std::default_random_engine rng(rd());
  1012. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1013. if (t->type == GGML_TYPE_F32) {
  1014. // initialize with unique values to avoid ties
  1015. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1016. std::vector<float> data(t->ne[0]);
  1017. for (int i = 0; i < t->ne[0]; i++) {
  1018. data[i] = i;
  1019. }
  1020. std::shuffle(data.begin(), data.end(), rng);
  1021. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1022. }
  1023. } else {
  1024. init_tensor_uniform(t);
  1025. }
  1026. }
  1027. }
  1028. double max_nmse_err() override {
  1029. return 0.0;
  1030. }
  1031. };
  1032. // GGML_OP_COUNT_EQUAL
  1033. struct test_count_equal : public test_case {
  1034. const ggml_type type;
  1035. const std::array<int64_t, 4> ne;
  1036. std::string vars() override {
  1037. return VARS_TO_STR2(type, ne);
  1038. }
  1039. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1040. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1041. : type(type), ne(ne) {}
  1042. ggml_tensor * build_graph(ggml_context * ctx) override {
  1043. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1044. ggml_set_name(a, "a");
  1045. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1046. ggml_set_name(a_argmax, "a_argmax");
  1047. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1048. ggml_set_name(b, "b");
  1049. ggml_tensor * b_argmax = ggml_argmax(ctx, a);
  1050. ggml_set_name(b_argmax, "b_argmax");
  1051. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1052. ggml_set_name(out, "out");
  1053. return out;
  1054. }
  1055. double max_nmse_err() override {
  1056. return 0.0;
  1057. }
  1058. };
  1059. // GGML_OP_REPEAT
  1060. struct test_repeat : public test_case {
  1061. const ggml_type type;
  1062. const std::array<int64_t, 4> ne;
  1063. const std::array<int, 4> nr;
  1064. std::string vars() override {
  1065. return VARS_TO_STR3(type, ne, nr);
  1066. }
  1067. size_t op_size(ggml_tensor * t) override {
  1068. return ggml_nbytes(t) * 2;
  1069. }
  1070. test_repeat(ggml_type type = GGML_TYPE_F32,
  1071. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1072. std::array<int, 4> nr = {2, 2, 2, 2})
  1073. : type(type), ne(ne), nr(nr) {}
  1074. ggml_tensor * build_graph(ggml_context * ctx) override {
  1075. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1076. ggml_set_name(target, "target");
  1077. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1078. ggml_set_param(ctx, src);
  1079. ggml_set_name(src, "src");
  1080. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1081. ggml_set_name(out, "out");
  1082. return out;
  1083. }
  1084. };
  1085. // GGML_OP_DUP
  1086. struct test_dup : public test_case {
  1087. const ggml_type type;
  1088. const std::array<int64_t, 4> ne;
  1089. const std::array<int64_t, 4> permute;
  1090. bool _use_permute;
  1091. std::string vars() override {
  1092. std::string v = VARS_TO_STR2(type, ne);
  1093. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1094. return v;
  1095. }
  1096. test_dup(ggml_type type = GGML_TYPE_F32,
  1097. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1098. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1099. : type(type), ne(ne), permute(permute),
  1100. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1101. ggml_tensor * build_graph(ggml_context * ctx) override {
  1102. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1103. ggml_set_param(ctx, src);
  1104. ggml_set_name(src, "src");
  1105. if (_use_permute) {
  1106. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1107. ggml_set_name(src, "src_permuted");
  1108. }
  1109. ggml_tensor * out = ggml_dup(ctx, src);
  1110. ggml_set_name(out, "out");
  1111. return out;
  1112. }
  1113. };
  1114. // GGML_OP_SET
  1115. struct test_set : public test_case {
  1116. const ggml_type type_src;
  1117. const ggml_type type_dst;
  1118. const std::array<int64_t, 4> ne;
  1119. const int dim;
  1120. std::string vars() override {
  1121. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1122. }
  1123. size_t op_size(ggml_tensor * t) override {
  1124. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1125. }
  1126. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1127. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1128. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1129. ggml_tensor * build_graph(ggml_context * ctx) override {
  1130. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1131. ggml_set_param(ctx, src);
  1132. ggml_set_name(src, "src");
  1133. auto ne_dst = ne;
  1134. for (int i = 0; i < dim; ++i) {
  1135. ne_dst[i] *= 2;
  1136. }
  1137. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1138. ggml_set_param(ctx, dst);
  1139. ggml_set_name(dst, "dst");
  1140. size_t offset = 0;
  1141. for (int i = 0; i < dim; ++i) {
  1142. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1143. }
  1144. ggml_tensor * out = ggml_set(ctx, dst, src,
  1145. // The backward pass requires setting a contiguous region:
  1146. src->nb[1], src->nb[2], src->nb[3], offset);
  1147. ggml_set_name(out, "out");
  1148. return out;
  1149. }
  1150. };
  1151. // GGML_OP_CPY
  1152. struct test_cpy : public test_case {
  1153. const ggml_type type_src;
  1154. const ggml_type type_dst;
  1155. const std::array<int64_t, 4> ne;
  1156. const std::array<int64_t, 4> permute;
  1157. bool _src_use_permute;
  1158. std::string vars() override {
  1159. return VARS_TO_STR4(type_src, type_dst, ne, permute);
  1160. }
  1161. double max_nmse_err() override {
  1162. return 1e-6;
  1163. }
  1164. size_t op_size(ggml_tensor * t) override {
  1165. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1166. }
  1167. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1168. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1169. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1170. : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
  1171. _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1172. ggml_tensor * build_graph(ggml_context * ctx) override {
  1173. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1174. ggml_set_param(ctx, src);
  1175. ggml_set_name(src, "src");
  1176. if (_src_use_permute) {
  1177. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1178. ggml_set_name(src, "src_permuted");
  1179. }
  1180. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1181. ggml_set_name(dst, "dst");
  1182. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1183. ggml_set_name(out, "out");
  1184. return out;
  1185. }
  1186. };
  1187. // GGML_OP_CONT
  1188. struct test_cont : public test_case {
  1189. const ggml_type type;
  1190. const std::array<int64_t, 4> ne;
  1191. std::string vars() override {
  1192. return VARS_TO_STR2(type, ne);
  1193. }
  1194. test_cont(ggml_type type = GGML_TYPE_F32,
  1195. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1196. : type(type), ne(ne) {}
  1197. ggml_tensor * build_graph(ggml_context * ctx) override {
  1198. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1199. ggml_set_param(ctx, src);
  1200. ggml_set_name(src, "src");
  1201. src = ggml_transpose(ctx, src);
  1202. ggml_set_name(src, "src_transposed");
  1203. ggml_tensor * out = ggml_cont(ctx, src);
  1204. ggml_set_name(out, "out");
  1205. return out;
  1206. }
  1207. };
  1208. // GGML_OP_ADD
  1209. // GGML_OP_MUL
  1210. // GGML_OP_DIV
  1211. struct test_bin_bcast : public test_case {
  1212. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1213. op_t op;
  1214. const ggml_type type;
  1215. const std::array<int64_t, 4> ne;
  1216. const std::array<int, 4> nr;
  1217. std::string vars() override {
  1218. return VARS_TO_STR3(type, ne, nr);
  1219. }
  1220. size_t op_size(ggml_tensor * t) override {
  1221. return ggml_nbytes(t) * 3;
  1222. }
  1223. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1224. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1225. std::array<int, 4> nr = {1, 2, 1, 1})
  1226. : op(op), type(type), ne(ne), nr(nr) {}
  1227. ggml_tensor * build_graph(ggml_context * ctx) override {
  1228. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1229. ggml_set_name(a, "a");
  1230. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1231. ggml_set_name(b, "b");
  1232. // The backward pass supports broadcasting only for GGML_ADD:
  1233. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1234. if (grad_supported) {
  1235. ggml_set_param(ctx, a);
  1236. ggml_set_param(ctx, b);
  1237. }
  1238. ggml_tensor * out = op(ctx, a, b);
  1239. ggml_set_name(out, "out");
  1240. return out;
  1241. }
  1242. void initialize_tensors(ggml_context * ctx) override {
  1243. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1244. if (op == ggml_mul || op == ggml_div) {
  1245. // MUL and DIV have numerical issues around zero:
  1246. init_tensor_uniform(t, 0.9f, 1.1f);
  1247. } else {
  1248. init_tensor_uniform(t);
  1249. }
  1250. }
  1251. }
  1252. float grad_eps() override {
  1253. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1254. }
  1255. bool grad_precise() override {
  1256. return op == ggml_div;
  1257. }
  1258. double max_maa_err() override {
  1259. return op == ggml_add ? 1e-4 : 1e-3;
  1260. }
  1261. };
  1262. // GGML_OP_ADD1
  1263. struct test_add1 : public test_case {
  1264. const ggml_type type;
  1265. const std::array<int64_t, 4> ne;
  1266. std::string vars() override {
  1267. return VARS_TO_STR2(type, ne);
  1268. }
  1269. test_add1(ggml_type type = GGML_TYPE_F32,
  1270. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1271. : type(type), ne(ne) {}
  1272. ggml_tensor * build_graph(ggml_context * ctx) override {
  1273. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1274. ggml_set_param(ctx, a);
  1275. ggml_set_name(a, "a");
  1276. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1277. // ggml_set_param(ctx, b); // TODO: implement
  1278. ggml_set_name(b, "b");
  1279. ggml_tensor * out = ggml_add1(ctx, a, b);
  1280. ggml_set_name(out, "out");
  1281. return out;
  1282. }
  1283. float grad_eps() override {
  1284. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1285. }
  1286. };
  1287. // GGML_OP_SCALE
  1288. struct test_scale : public test_case {
  1289. const ggml_type type;
  1290. const std::array<int64_t, 4> ne;
  1291. float scale;
  1292. std::string vars() override {
  1293. return VARS_TO_STR3(type, ne, scale);
  1294. }
  1295. test_scale(ggml_type type = GGML_TYPE_F32,
  1296. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1297. float scale = 2.0f)
  1298. : type(type), ne(ne), scale(scale) {}
  1299. ggml_tensor * build_graph(ggml_context * ctx) override {
  1300. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1301. ggml_set_param(ctx, a);
  1302. ggml_set_name(a, "a");
  1303. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1304. ggml_set_name(out, "out");
  1305. return out;
  1306. }
  1307. };
  1308. // GGML_OP_SILU_BACK
  1309. struct test_silu_back : public test_case {
  1310. const ggml_type type;
  1311. const std::array<int64_t, 4> ne;
  1312. float eps;
  1313. std::string vars() override {
  1314. return VARS_TO_STR3(type, ne, eps);
  1315. }
  1316. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1317. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1318. float eps = 1e-6f)
  1319. : type(type), ne(ne), eps(eps) {}
  1320. ggml_tensor * build_graph(ggml_context * ctx) override {
  1321. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1322. ggml_set_name(a, "a");
  1323. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1324. ggml_set_name(grad, "grad");
  1325. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1326. ggml_set_name(out, "out");
  1327. return out;
  1328. }
  1329. bool grad_precise() override {
  1330. return true;
  1331. }
  1332. };
  1333. // GGML_OP_NORM
  1334. struct test_norm : public test_case {
  1335. const ggml_type type;
  1336. const std::array<int64_t, 4> ne;
  1337. float eps;
  1338. std::string vars() override {
  1339. return VARS_TO_STR3(type, ne, eps);
  1340. }
  1341. test_norm(ggml_type type = GGML_TYPE_F32,
  1342. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1343. float eps = 1e-6f)
  1344. : type(type), ne(ne), eps(eps) {}
  1345. ggml_tensor * build_graph(ggml_context * ctx) override {
  1346. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1347. ggml_set_name(a, "a");
  1348. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1349. ggml_set_name(out, "out");
  1350. return out;
  1351. }
  1352. };
  1353. // GGML_OP_RMS_NORM
  1354. struct test_rms_norm : public test_case {
  1355. const ggml_type type;
  1356. const std::array<int64_t, 4> ne;
  1357. float eps;
  1358. std::string vars() override {
  1359. return VARS_TO_STR3(type, ne, eps);
  1360. }
  1361. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1362. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1363. float eps = 1e-6f)
  1364. : type(type), ne(ne), eps(eps) {}
  1365. ggml_tensor * build_graph(ggml_context * ctx) override {
  1366. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1367. ggml_set_param(ctx, a);
  1368. ggml_set_name(a, "a");
  1369. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1370. ggml_set_name(out, "out");
  1371. return out;
  1372. }
  1373. void initialize_tensors(ggml_context * ctx) override {
  1374. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1375. init_tensor_uniform(t, -10.f, 10.f);
  1376. }
  1377. }
  1378. float grad_eps() override {
  1379. return 1.0f;
  1380. }
  1381. bool grad_precise() override {
  1382. return true;
  1383. }
  1384. };
  1385. // GGML_OP_RMS_NORM_BACK
  1386. struct test_rms_norm_back : public test_case {
  1387. const ggml_type type;
  1388. const std::array<int64_t, 4> ne;
  1389. float eps;
  1390. std::string vars() override {
  1391. return VARS_TO_STR3(type, ne, eps);
  1392. }
  1393. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1394. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1395. float eps = 1e-6f)
  1396. : type(type), ne(ne), eps(eps) {}
  1397. ggml_tensor * build_graph(ggml_context * ctx) override {
  1398. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1399. ggml_set_name(a, "a");
  1400. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1401. ggml_set_name(b, "b");
  1402. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1403. ggml_set_name(out, "out");
  1404. return out;
  1405. }
  1406. void initialize_tensors(ggml_context * ctx) override {
  1407. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1408. init_tensor_uniform(t, -10.f, 10.f);
  1409. }
  1410. }
  1411. };
  1412. // GGML_OP_SSM_CONV
  1413. struct test_ssm_conv : public test_case {
  1414. const ggml_type type;
  1415. const std::array<int64_t, 4> ne_a;
  1416. const std::array<int64_t, 4> ne_b;
  1417. std::string vars() override {
  1418. return VARS_TO_STR3(type, ne_a, ne_b);
  1419. }
  1420. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1421. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1422. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1423. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1424. ggml_tensor * build_graph(ggml_context * ctx) override {
  1425. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1426. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1427. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1428. return out;
  1429. }
  1430. };
  1431. // GGML_OP_SSM_SCAN
  1432. struct test_ssm_scan : public test_case {
  1433. const ggml_type type;
  1434. const int64_t d_state;
  1435. const int64_t d_inner;
  1436. const int64_t n_seq_tokens;
  1437. const int64_t n_seqs;
  1438. std::string vars() override {
  1439. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1440. }
  1441. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1442. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1443. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1444. ggml_tensor * build_graph(ggml_context * ctx) override {
  1445. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1446. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1447. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1448. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1449. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1450. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1451. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1452. return out;
  1453. }
  1454. };
  1455. // GGML_OP_RWKV_WKV6
  1456. struct test_rwkv_wkv6 : public test_case {
  1457. const ggml_type type;
  1458. const int64_t head_count;
  1459. const int64_t head_size;
  1460. const int64_t n_seq_tokens;
  1461. const int64_t n_seqs;
  1462. std::string vars() override {
  1463. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1464. }
  1465. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1466. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1467. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1468. ggml_tensor * build_graph(ggml_context * ctx) override {
  1469. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1470. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1471. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1472. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1473. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1474. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1475. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1476. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1477. return out;
  1478. }
  1479. };
  1480. // GGML_OP_GATED_LINEAR_ATTN
  1481. struct test_gla : public test_case {
  1482. const ggml_type type;
  1483. const int64_t head_count;
  1484. const int64_t head_size;
  1485. const int64_t n_seq_tokens;
  1486. const int64_t n_seqs;
  1487. std::string vars() override {
  1488. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1489. }
  1490. test_gla(ggml_type type = GGML_TYPE_F32,
  1491. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1492. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1493. ggml_tensor * build_graph(ggml_context * ctx) override {
  1494. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1495. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1496. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1497. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1498. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1499. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1500. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1501. return out;
  1502. }
  1503. };
  1504. // GGML_OP_MUL_MAT
  1505. struct test_mul_mat : public test_case {
  1506. const ggml_type type_a;
  1507. const ggml_type type_b;
  1508. const int64_t m;
  1509. const int64_t n;
  1510. const int64_t k;
  1511. const std::array<int64_t, 2> bs; // dims 3 and 4
  1512. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1513. const std::array<int64_t, 4> per; // permutation of dimensions
  1514. std::string vars() override {
  1515. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
  1516. }
  1517. double max_nmse_err() override {
  1518. return 5e-4;
  1519. }
  1520. uint64_t op_flops(ggml_tensor * t) override {
  1521. GGML_UNUSED(t);
  1522. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1523. }
  1524. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1525. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1526. std::array<int64_t, 2> bs = {10, 10},
  1527. std::array<int64_t, 2> nr = {2, 2},
  1528. std::array<int64_t, 4> per = {0, 1, 2, 3})
  1529. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
  1530. ggml_tensor * build_graph(ggml_context * ctx) override {
  1531. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1532. ggml_tensor * a;
  1533. ggml_tensor * b;
  1534. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1535. if (npermuted > 0) {
  1536. GGML_ASSERT(npermuted == 2);
  1537. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1538. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1539. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1540. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1541. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1542. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1543. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1544. ggml_set_param(ctx, a);
  1545. ggml_set_param(ctx, b);
  1546. ggml_set_name(a, "a");
  1547. ggml_set_name(b, "b");
  1548. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1549. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1550. ggml_set_name(a, "a_permuted");
  1551. ggml_set_name(b, "b_permuted");
  1552. } else {
  1553. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1554. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1555. ggml_set_param(ctx, a);
  1556. ggml_set_param(ctx, b);
  1557. ggml_set_name(a, "a");
  1558. ggml_set_name(b, "b");
  1559. }
  1560. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1561. ggml_set_name(out, "out");
  1562. return out;
  1563. }
  1564. };
  1565. // GGML_OP_MUL_MAT_ID
  1566. struct test_mul_mat_id : public test_case {
  1567. const ggml_type type_a;
  1568. const ggml_type type_b;
  1569. const int n_mats;
  1570. const int n_used;
  1571. const bool b; // brodcast b matrix
  1572. const int64_t m;
  1573. const int64_t n;
  1574. const int64_t k;
  1575. std::string vars() override {
  1576. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1577. }
  1578. double max_nmse_err() override {
  1579. return 5e-4;
  1580. }
  1581. uint64_t op_flops(ggml_tensor * t) override {
  1582. GGML_UNUSED(t);
  1583. return 2 * m * k * n * n_used;
  1584. }
  1585. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1586. int n_mats = 8, int n_used = 2, bool b = false,
  1587. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1588. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1589. m(m), n(n), k(k) {
  1590. GGML_ASSERT(n_used <= n_mats);
  1591. }
  1592. ggml_tensor * build_graph(ggml_context * ctx) override {
  1593. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1594. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1595. ggml_set_name(as, "as");
  1596. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1597. ggml_set_name(ids, "ids");
  1598. if (n_used != n_mats) {
  1599. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1600. ggml_set_name(ids, "view_of_ids");
  1601. }
  1602. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1603. ggml_set_name(b, "b");
  1604. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1605. ggml_set_name(out, "out");
  1606. return out;
  1607. }
  1608. void initialize_tensors(ggml_context * ctx) override {
  1609. std::random_device rd;
  1610. std::default_random_engine rng(rd());
  1611. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1612. if (t->type == GGML_TYPE_I32) {
  1613. if (ggml_is_view_op(t->op)) { continue; }
  1614. // ids
  1615. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1616. std::vector<int32_t> data(t->ne[0]);
  1617. for (int i = 0; i < t->ne[0]; i++) {
  1618. data[i] = i % n_mats;
  1619. }
  1620. std::shuffle(data.begin(), data.end(), rng);
  1621. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1622. }
  1623. } else {
  1624. init_tensor_uniform(t);
  1625. }
  1626. }
  1627. }
  1628. };
  1629. // GGML_OP_OUT_PROD
  1630. struct test_out_prod : public test_case {
  1631. const ggml_type type_a;
  1632. const ggml_type type_b;
  1633. const int64_t m;
  1634. const int64_t n;
  1635. const int64_t k;
  1636. const std::array<int64_t, 2> bs; // dims 3 and 4
  1637. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1638. const bool trans_b;
  1639. std::string vars() override {
  1640. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1641. }
  1642. double max_nmse_err() override {
  1643. return 5e-4;
  1644. }
  1645. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1646. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1647. std::array<int64_t, 2> bs = {10, 10},
  1648. std::array<int64_t, 2> nr = {2, 2},
  1649. bool trans_b = false)
  1650. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1651. ggml_tensor * build_graph(ggml_context * ctx) override {
  1652. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1653. ggml_set_name(a, "a");
  1654. ggml_tensor * b;
  1655. if (trans_b) {
  1656. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1657. b = ggml_transpose(ctx, b);
  1658. } else {
  1659. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1660. }
  1661. ggml_set_name(b, "b");
  1662. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1663. ggml_set_name(out, "out");
  1664. return out;
  1665. }
  1666. };
  1667. // GGML_OP_SQR
  1668. struct test_sqr : public test_case {
  1669. const ggml_type type;
  1670. const std::array<int64_t, 4> ne;
  1671. std::string vars() override {
  1672. return VARS_TO_STR2(type, ne);
  1673. }
  1674. test_sqr(ggml_type type = GGML_TYPE_F32,
  1675. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1676. : type(type), ne(ne) {}
  1677. ggml_tensor * build_graph(ggml_context * ctx) override {
  1678. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1679. ggml_set_param(ctx, a);
  1680. ggml_set_name(a, "a");
  1681. ggml_tensor * out = ggml_sqr(ctx, a);
  1682. ggml_set_name(out, "out");
  1683. return out;
  1684. }
  1685. float grad_eps() override {
  1686. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1687. }
  1688. };
  1689. // GGML_OP_SQRT
  1690. struct test_sqrt : public test_case {
  1691. const ggml_type type;
  1692. const std::array<int64_t, 4> ne;
  1693. std::string vars() override {
  1694. return VARS_TO_STR2(type, ne);
  1695. }
  1696. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1697. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1698. : type(type), ne(ne) {}
  1699. ggml_tensor * build_graph(ggml_context * ctx) override {
  1700. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1701. ggml_set_param(ctx, a);
  1702. ggml_set_name(a, "a");
  1703. ggml_tensor * out = ggml_sqrt(ctx, a);
  1704. ggml_set_name(out, "out");
  1705. return out;
  1706. }
  1707. void initialize_tensors(ggml_context * ctx) override {
  1708. // fill with positive values
  1709. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1710. init_tensor_uniform(t, 50.0f, 100.0f);
  1711. }
  1712. }
  1713. float grad_eps() override {
  1714. return 20.0f;
  1715. }
  1716. bool grad_precise() override {
  1717. return true;
  1718. }
  1719. };
  1720. // GGML_OP_LOG
  1721. struct test_log : public test_case {
  1722. const ggml_type type;
  1723. const std::array<int64_t, 4> ne;
  1724. std::string vars() override {
  1725. return VARS_TO_STR2(type, ne);
  1726. }
  1727. test_log(ggml_type type = GGML_TYPE_F32,
  1728. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1729. : type(type), ne(ne) {}
  1730. ggml_tensor * build_graph(ggml_context * ctx) override {
  1731. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1732. ggml_set_param(ctx, a);
  1733. ggml_set_name(a, "a");
  1734. ggml_tensor * out = ggml_log(ctx, a);
  1735. ggml_set_name(out, "out");
  1736. return out;
  1737. }
  1738. void initialize_tensors(ggml_context * ctx) override {
  1739. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1740. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1741. init_tensor_uniform(t, 0.9f, 1.1f);
  1742. }
  1743. }
  1744. bool grad_precise() override {
  1745. return true;
  1746. }
  1747. };
  1748. // GGML_OP_SIN
  1749. struct test_sin : public test_case {
  1750. const ggml_type type;
  1751. const std::array<int64_t, 4> ne;
  1752. std::string vars() override {
  1753. return VARS_TO_STR2(type, ne);
  1754. }
  1755. test_sin(ggml_type type = GGML_TYPE_F32,
  1756. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1757. : type(type), ne(ne) {}
  1758. ggml_tensor * build_graph(ggml_context * ctx) override {
  1759. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1760. ggml_set_param(ctx, a);
  1761. ggml_set_name(a, "a");
  1762. ggml_tensor * out = ggml_sin(ctx, a);
  1763. ggml_set_name(out, "out");
  1764. return out;
  1765. }
  1766. void initialize_tensors(ggml_context * ctx) override {
  1767. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1768. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1769. }
  1770. }
  1771. double max_maa_err() override {
  1772. return 1e-3;
  1773. }
  1774. float grad_eps() override {
  1775. return 0.2f;
  1776. }
  1777. bool grad_precise() override {
  1778. return true;
  1779. }
  1780. };
  1781. // GGML_OP_COS
  1782. struct test_cos : public test_case {
  1783. const ggml_type type;
  1784. const std::array<int64_t, 4> ne;
  1785. std::string vars() override {
  1786. return VARS_TO_STR2(type, ne);
  1787. }
  1788. test_cos(ggml_type type = GGML_TYPE_F32,
  1789. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1790. : type(type), ne(ne) {}
  1791. ggml_tensor * build_graph(ggml_context * ctx) override {
  1792. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1793. ggml_set_param(ctx, a);
  1794. ggml_set_name(a, "a");
  1795. ggml_tensor * out = ggml_cos(ctx, a);
  1796. ggml_set_name(out, "out");
  1797. return out;
  1798. }
  1799. void initialize_tensors(ggml_context * ctx) override {
  1800. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1801. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1802. }
  1803. }
  1804. double max_maa_err() override {
  1805. return 1e-3;
  1806. }
  1807. float grad_eps() override {
  1808. return 0.2f;
  1809. }
  1810. bool grad_precise() override {
  1811. return true;
  1812. }
  1813. };
  1814. // GGML_OP_CLAMP
  1815. struct test_clamp : public test_case {
  1816. const ggml_type type;
  1817. const std::array<int64_t, 4> ne;
  1818. float min;
  1819. float max;
  1820. std::string vars() override {
  1821. return VARS_TO_STR4(type, ne, min, max);
  1822. }
  1823. test_clamp(ggml_type type = GGML_TYPE_F32,
  1824. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1825. float min = -0.5f, float max = 0.5f)
  1826. : type(type), ne(ne), min(min), max(max) {}
  1827. ggml_tensor * build_graph(ggml_context * ctx) override {
  1828. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1829. ggml_set_name(a, "a");
  1830. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1831. ggml_set_name(out, "out");
  1832. return out;
  1833. }
  1834. float grad_eps() override {
  1835. return 1e-2f;
  1836. }
  1837. std::vector<float> grad_expect() override {
  1838. return {0.0f, 1.0f};
  1839. }
  1840. };
  1841. // GGML_OP_DIAG_MASK_INF
  1842. struct test_diag_mask_inf : public test_case {
  1843. const ggml_type type;
  1844. const std::array<int64_t, 4> ne;
  1845. const int n_past;
  1846. std::string vars() override {
  1847. return VARS_TO_STR3(type, ne, n_past);
  1848. }
  1849. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1850. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1851. int n_past = 5)
  1852. : type(type), ne(ne), n_past(n_past) {}
  1853. ggml_tensor * build_graph(ggml_context * ctx) override {
  1854. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1855. ggml_set_param(ctx, a);
  1856. ggml_set_name(a, "a");
  1857. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  1858. ggml_set_name(out, "out");
  1859. return out;
  1860. }
  1861. };
  1862. // GGML_OP_SOFT_MAX
  1863. struct test_soft_max : public test_case {
  1864. const ggml_type type;
  1865. const std::array<int64_t, 4> ne;
  1866. const bool mask;
  1867. const float scale;
  1868. const float max_bias;
  1869. std::string vars() override {
  1870. return VARS_TO_STR5(type, ne, mask, scale, max_bias);
  1871. }
  1872. // the 1024 test with bias occasionally fails:
  1873. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  1874. virtual double max_nmse_err() override {
  1875. return 1e-6;
  1876. }
  1877. test_soft_max(ggml_type type = GGML_TYPE_F32,
  1878. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1879. bool mask = false,
  1880. float scale = 1.0f,
  1881. float max_bias = 0.0f)
  1882. : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
  1883. ggml_tensor * build_graph(ggml_context * ctx) override {
  1884. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1885. ggml_set_param(ctx, a);
  1886. ggml_set_name(a, "a");
  1887. ggml_tensor * mask = nullptr;
  1888. if (this->mask) {
  1889. mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
  1890. ggml_set_name(mask, "mask");
  1891. }
  1892. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  1893. ggml_set_name(out, "out");
  1894. return out;
  1895. }
  1896. bool grad_precise() override {
  1897. return true;
  1898. }
  1899. };
  1900. // GGML_OP_SOFT_MAX_BACK
  1901. struct test_soft_max_back : public test_case {
  1902. const ggml_type type;
  1903. const std::array<int64_t, 4> ne;
  1904. const float scale;
  1905. const float max_bias;
  1906. std::string vars() override {
  1907. return VARS_TO_STR4(type, ne, scale, max_bias);
  1908. }
  1909. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  1910. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1911. float scale = 1.0f,
  1912. float max_bias = 0.0f)
  1913. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  1914. ggml_tensor * build_graph(ggml_context * ctx) override {
  1915. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1916. ggml_set_name(a, "a");
  1917. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1918. ggml_set_name(a, "a");
  1919. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  1920. ggml_set_name(out, "out");
  1921. return out;
  1922. }
  1923. };
  1924. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  1925. struct test_rope : public test_case {
  1926. const ggml_type type;
  1927. const std::array<int64_t, 4> ne_a;
  1928. int n_dims;
  1929. int mode;
  1930. int n_ctx; // used to generate positions
  1931. float fs; // freq_scale
  1932. float ef; // ext_factor
  1933. float af; // attn_factor
  1934. bool ff;
  1935. int v; // view (1 : non-contiguous a)
  1936. bool forward;
  1937. std::string vars() override {
  1938. // forward can be inferred from the op, does not need to be printed
  1939. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  1940. }
  1941. test_rope(ggml_type type = GGML_TYPE_F32,
  1942. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  1943. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  1944. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  1945. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  1946. ggml_tensor * build_graph(ggml_context * ctx) override {
  1947. ggml_tensor * a;
  1948. if (v & 1) {
  1949. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  1950. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1951. if (forward) {
  1952. ggml_set_param(ctx, a);
  1953. }
  1954. ggml_set_name(a, "a");
  1955. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1956. ggml_set_name(a, "view_of_a");
  1957. } else {
  1958. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1959. if (forward) {
  1960. ggml_set_param(ctx, a);
  1961. }
  1962. ggml_set_name(a, "a");
  1963. }
  1964. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  1965. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  1966. ggml_tensor * pos;
  1967. if (is_mrope || is_vision) {
  1968. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  1969. } else {
  1970. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  1971. }
  1972. ggml_set_name(pos, "pos");
  1973. ggml_tensor * freq = nullptr;
  1974. if (ff) {
  1975. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  1976. ggml_set_name(freq, "freq");
  1977. }
  1978. ggml_tensor * out;
  1979. if (is_mrope) {
  1980. if (is_vision) {
  1981. GGML_ASSERT(n_dims/4 > 0);
  1982. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  1983. if (forward) {
  1984. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  1985. } else {
  1986. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  1987. }
  1988. } else {
  1989. GGML_ASSERT(n_dims/3 > 0);
  1990. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  1991. if (forward) {
  1992. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  1993. } else {
  1994. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  1995. }
  1996. }
  1997. } else {
  1998. if (forward) {
  1999. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2000. } else {
  2001. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2002. }
  2003. }
  2004. ggml_set_name(out, "out");
  2005. return out;
  2006. }
  2007. void initialize_tensors(ggml_context * ctx) override {
  2008. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2009. if (t->type == GGML_TYPE_I32) {
  2010. // pos
  2011. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2012. std::vector<int> data(num_pos_ids);
  2013. for (int i = 0; i < num_pos_ids; i++) {
  2014. data[i] = rand() % n_ctx;
  2015. }
  2016. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2017. } else {
  2018. if (t->ne[0] == n_dims/2) {
  2019. // frequency factors in the range [0.9f, 1.1f]
  2020. init_tensor_uniform(t, 0.9f, 1.1f);
  2021. } else {
  2022. init_tensor_uniform(t);
  2023. }
  2024. }
  2025. }
  2026. }
  2027. double max_maa_err() override {
  2028. return 1e-3;
  2029. }
  2030. bool grad_precise() override {
  2031. return true;
  2032. }
  2033. };
  2034. // GGML_OP_POOL2D
  2035. struct test_pool2d : public test_case {
  2036. enum ggml_op_pool pool_type;
  2037. const ggml_type type_input;
  2038. const std::array<int64_t, 4> ne_input;
  2039. // kernel size
  2040. const int k0;
  2041. const int k1;
  2042. // stride
  2043. const int s0;
  2044. const int s1;
  2045. // padding
  2046. const int p0;
  2047. const int p1;
  2048. std::string vars() override {
  2049. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2050. }
  2051. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2052. ggml_type type_input = GGML_TYPE_F32,
  2053. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2054. int k0 = 3, int k1 = 3,
  2055. int s0 = 1, int s1 = 1,
  2056. int p0 = 1, int p1 = 1)
  2057. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2058. ggml_tensor * build_graph(ggml_context * ctx) override {
  2059. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2060. ggml_set_param(ctx, input);
  2061. ggml_set_name(input, "input");
  2062. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2063. ggml_set_name(out, "out");
  2064. return out;
  2065. }
  2066. };
  2067. // GGML_OP_CONV_TRANSPOSE_1D
  2068. struct test_conv_transpose_1d : public test_case {
  2069. const std::array<int64_t, 4> ne_input;
  2070. const std::array<int64_t, 4> ne_kernel;
  2071. const int s0; // stride
  2072. const int p0; // padding
  2073. const int d0; // dilation
  2074. std::string vars() override {
  2075. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2076. }
  2077. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2078. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2079. int s0 = 1, int p0 = 0, int d0 = 1)
  2080. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2081. ggml_tensor * build_graph(ggml_context * ctx) override {
  2082. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2083. ggml_set_name(input, "input");
  2084. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2085. ggml_set_name(kernel, "kernel");
  2086. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2087. ggml_set_name(out, "out");
  2088. return out;
  2089. }
  2090. };
  2091. // GGML_OP_IM2COL
  2092. struct test_im2col : public test_case {
  2093. const ggml_type type_input;
  2094. const ggml_type type_kernel;
  2095. const ggml_type dst_type;
  2096. const std::array<int64_t, 4> ne_input;
  2097. const std::array<int64_t, 4> ne_kernel;
  2098. // stride
  2099. const int s0;
  2100. const int s1;
  2101. // padding
  2102. const int p0;
  2103. const int p1;
  2104. // dilation
  2105. const int d0;
  2106. const int d1;
  2107. // mode
  2108. const bool is_2D;
  2109. std::string vars() override {
  2110. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2111. }
  2112. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2113. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2114. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2115. int s0 = 1, int s1 = 1,
  2116. int p0 = 1, int p1 = 1,
  2117. int d0 = 1, int d1 = 1,
  2118. bool is_2D = true)
  2119. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2120. ggml_tensor * build_graph(ggml_context * ctx) override {
  2121. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2122. ggml_set_param(ctx, input);
  2123. ggml_set_name(input, "input");
  2124. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2125. ggml_set_name(kernel, "kernel");
  2126. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2127. ggml_set_name(out, "out");
  2128. return out;
  2129. }
  2130. };
  2131. // GGML_OP_CONCAT
  2132. struct test_concat : public test_case {
  2133. const ggml_type type;
  2134. const std::array<int64_t, 4> ne_a;
  2135. const int64_t ne_b_d;
  2136. const int dim;
  2137. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2138. std::string vars() override {
  2139. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2140. }
  2141. test_concat(ggml_type type = GGML_TYPE_F32,
  2142. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2143. int64_t ne_b_d = 5,
  2144. int dim = 2, int v = 0)
  2145. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2146. ggml_tensor * build_graph(ggml_context * ctx) override {
  2147. auto ne_b = ne_a;
  2148. ne_b[dim] = ne_b_d;
  2149. ggml_tensor * a;
  2150. if (v & 1) {
  2151. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2152. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2153. ggml_set_name(a, "a");
  2154. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2155. ggml_set_name(a, "view_of_a");
  2156. } else {
  2157. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2158. ggml_set_name(a, "a");
  2159. }
  2160. ggml_tensor * b;
  2161. if (v & 2) {
  2162. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2163. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2164. ggml_set_name(b, "b");
  2165. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2166. ggml_set_name(b, "view_of_b");
  2167. } else {
  2168. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2169. ggml_set_name(b, "b");
  2170. }
  2171. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2172. ggml_set_name(out, "out");
  2173. return out;
  2174. }
  2175. };
  2176. // GGML_OP_ARGSORT
  2177. struct test_argsort : public test_case {
  2178. const ggml_type type;
  2179. const std::array<int64_t, 4> ne;
  2180. ggml_sort_order order;
  2181. std::string vars() override {
  2182. return VARS_TO_STR3(type, ne, order);
  2183. }
  2184. test_argsort(ggml_type type = GGML_TYPE_F32,
  2185. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2186. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2187. : type(type), ne(ne), order(order) {}
  2188. ggml_tensor * build_graph(ggml_context * ctx) override {
  2189. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2190. ggml_set_name(a, "a");
  2191. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2192. ggml_set_name(out, "out");
  2193. return out;
  2194. }
  2195. void initialize_tensors(ggml_context * ctx) override {
  2196. std::random_device rd;
  2197. std::default_random_engine rng(rd());
  2198. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2199. if (t->type == GGML_TYPE_I32) {
  2200. // indices
  2201. std::vector<int> data(ggml_nelements(t));
  2202. for (int i = 0; i < ggml_nelements(t); i++) {
  2203. data[i] = rand();
  2204. }
  2205. std::shuffle(data.begin(), data.end(), rng);
  2206. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2207. } else if (t->type == GGML_TYPE_F32) {
  2208. // initialize with unique values to avoid ties
  2209. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2210. std::vector<float> data(t->ne[0]);
  2211. for (int i = 0; i < t->ne[0]; i++) {
  2212. data[i] = i;
  2213. }
  2214. std::shuffle(data.begin(), data.end(), rng);
  2215. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2216. }
  2217. } else {
  2218. GGML_ABORT("fatal error");
  2219. }
  2220. }
  2221. }
  2222. };
  2223. // GGML_OP_SUM
  2224. struct test_sum : public test_case {
  2225. const ggml_type type;
  2226. const std::array<int64_t, 4> ne;
  2227. std::string vars() override {
  2228. return VARS_TO_STR2(type, ne);
  2229. }
  2230. test_sum(ggml_type type = GGML_TYPE_F32,
  2231. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2232. : type(type), ne(ne) {}
  2233. ggml_tensor * build_graph(ggml_context * ctx) override {
  2234. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2235. ggml_set_param(ctx, a);
  2236. ggml_set_name(a, "a");
  2237. ggml_tensor * out = ggml_sum(ctx, a);
  2238. ggml_set_name(out, "out");
  2239. return out;
  2240. }
  2241. float grad_eps() override {
  2242. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2243. }
  2244. };
  2245. // GGML_OP_SUM_ROWS
  2246. struct test_sum_rows : public test_case {
  2247. const ggml_type type;
  2248. const std::array<int64_t, 4> ne;
  2249. std::string vars() override {
  2250. return VARS_TO_STR2(type, ne);
  2251. }
  2252. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2253. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2254. : type(type), ne(ne) {}
  2255. ggml_tensor * build_graph(ggml_context * ctx) override {
  2256. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2257. ggml_set_param(ctx, a);
  2258. ggml_set_name(a, "a");
  2259. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2260. ggml_set_name(out, "out");
  2261. return out;
  2262. }
  2263. };
  2264. // GGML_OP_MEAN
  2265. struct test_mean : public test_case {
  2266. const ggml_type type;
  2267. const std::array<int64_t, 4> ne;
  2268. std::string vars() override {
  2269. return VARS_TO_STR2(type, ne);
  2270. }
  2271. test_mean(ggml_type type = GGML_TYPE_F32,
  2272. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2273. : type(type), ne(ne) {}
  2274. ggml_tensor * build_graph(ggml_context * ctx) override {
  2275. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2276. ggml_set_param(ctx, a);
  2277. ggml_set_name(a, "a");
  2278. ggml_tensor * out = ggml_mean(ctx, a);
  2279. ggml_set_name(out, "out");
  2280. return out;
  2281. }
  2282. float grad_eps() override {
  2283. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2284. }
  2285. };
  2286. // GGML_OP_UPSCALE
  2287. struct test_upscale : public test_case {
  2288. const ggml_type type;
  2289. const std::array<int64_t, 4> ne;
  2290. const int32_t scale_factor;
  2291. const bool transpose;
  2292. std::string vars() override {
  2293. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  2294. }
  2295. test_upscale(ggml_type type = GGML_TYPE_F32,
  2296. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2297. int32_t scale_factor = 2, bool transpose = false)
  2298. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  2299. ggml_tensor * build_graph(ggml_context * ctx) override {
  2300. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2301. ggml_set_name(a, "a");
  2302. if (transpose) {
  2303. a = ggml_transpose(ctx, a);
  2304. ggml_set_name(a, "a_transposed");
  2305. }
  2306. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  2307. ggml_set_name(out, "out");
  2308. return out;
  2309. }
  2310. };
  2311. // GGML_OP_UPSCALE (ext)
  2312. struct test_upscale_ext : public test_case {
  2313. const ggml_type type;
  2314. const std::array<int64_t, 4> ne;
  2315. const std::array<int64_t, 4> ne_tgt;
  2316. std::string vars() override {
  2317. return VARS_TO_STR3(type, ne, ne_tgt);
  2318. }
  2319. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2320. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2321. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  2322. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  2323. ggml_tensor * build_graph(ggml_context * ctx) override {
  2324. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2325. ggml_set_name(a, "a");
  2326. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  2327. ggml_set_name(out, "out");
  2328. return out;
  2329. }
  2330. };
  2331. // GGML_OP_GROUP_NORM
  2332. struct test_group_norm : public test_case {
  2333. const ggml_type type;
  2334. const std::array<int64_t, 4> ne;
  2335. const int32_t num_groups;
  2336. const float eps;
  2337. std::string vars() override {
  2338. return VARS_TO_STR3(type, ne, num_groups);
  2339. }
  2340. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2341. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2342. int32_t num_groups = 32,
  2343. float eps = 1e-6f)
  2344. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2345. ggml_tensor * build_graph(ggml_context * ctx) override {
  2346. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2347. ggml_set_name(a, "a");
  2348. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2349. ggml_set_name(out, "out");
  2350. return out;
  2351. }
  2352. };
  2353. // GGML_OP_ACC
  2354. struct test_acc : public test_case {
  2355. const ggml_type type;
  2356. const std::array<int64_t, 4> ne_a;
  2357. const std::array<int64_t, 4> ne_b;
  2358. std::string vars() override {
  2359. return VARS_TO_STR3(type, ne_a, ne_b);
  2360. }
  2361. test_acc(ggml_type type = GGML_TYPE_F32,
  2362. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2363. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2364. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2365. ggml_tensor * build_graph(ggml_context * ctx) override {
  2366. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2367. ggml_set_param(ctx, a);
  2368. ggml_set_name(a, "a");
  2369. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2370. ggml_set_param(ctx, b);
  2371. ggml_set_name(b, "b");
  2372. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2373. ggml_set_name(out, "out");
  2374. return out;
  2375. }
  2376. };
  2377. // GGML_OP_PAD
  2378. struct test_pad : public test_case {
  2379. const ggml_type type;
  2380. const std::array<int64_t, 4> ne_a;
  2381. const int pad_0;
  2382. const int pad_1;
  2383. std::string vars() override {
  2384. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2385. }
  2386. test_pad(ggml_type type = GGML_TYPE_F32,
  2387. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2388. int pad_0 = 1, int pad_1 = 1)
  2389. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2390. ggml_tensor * build_graph(ggml_context * ctx) override {
  2391. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2392. ggml_set_name(a, "a");
  2393. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2394. ggml_set_name(out, "out");
  2395. return out;
  2396. }
  2397. };
  2398. // GGML_OP_PAD_REFLECT_1D
  2399. struct test_pad_reflect_1d : public test_case {
  2400. const ggml_type type;
  2401. const std::array<int64_t, 4> ne_a;
  2402. const int pad_0;
  2403. const int pad_1;
  2404. std::string vars() override {
  2405. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2406. }
  2407. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2408. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2409. int pad_0 = 10, int pad_1 = 9)
  2410. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2411. ggml_tensor * build_graph(ggml_context * ctx) override {
  2412. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2413. ggml_set_name(a, "a");
  2414. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2415. ggml_set_name(out, "out");
  2416. return out;
  2417. }
  2418. };
  2419. // GGML_OP_ARANGE
  2420. struct test_arange : public test_case {
  2421. const ggml_type type;
  2422. const float start;
  2423. const float stop;
  2424. const float step;
  2425. std::string vars() override {
  2426. return VARS_TO_STR4(type, start, stop, step);
  2427. }
  2428. test_arange(ggml_type type = GGML_TYPE_F32,
  2429. float start = 0.f, float stop = 10.f, float step = 1.f)
  2430. : type(type), start(start), stop(stop), step(step) {}
  2431. ggml_tensor * build_graph(ggml_context * ctx) override {
  2432. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2433. ggml_set_name(out, "out");
  2434. return out;
  2435. }
  2436. };
  2437. // GGML_OP_TIMESTEP_EMBEDDING
  2438. struct test_timestep_embedding : public test_case {
  2439. const ggml_type type;
  2440. const std::array<int64_t, 4> ne_a;
  2441. const int dim;
  2442. const int max_period;
  2443. std::string vars() override {
  2444. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2445. }
  2446. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2447. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2448. int dim = 320, int max_period=10000)
  2449. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2450. ggml_tensor * build_graph(ggml_context * ctx) override {
  2451. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2452. ggml_set_name(a, "a");
  2453. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2454. ggml_set_name(out, "out");
  2455. return out;
  2456. }
  2457. };
  2458. // GGML_OP_LEAKY_RELU
  2459. struct test_leaky_relu : public test_case {
  2460. const ggml_type type;
  2461. const std::array<int64_t, 4> ne_a;
  2462. const float negative_slope;
  2463. std::string vars() override {
  2464. return VARS_TO_STR3(type, ne_a, negative_slope);
  2465. }
  2466. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2467. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2468. float negative_slope = 0.1f)
  2469. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2470. ggml_tensor * build_graph(ggml_context * ctx) override {
  2471. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2472. ggml_set_name(a, "a");
  2473. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2474. ggml_set_name(out, "out");
  2475. return out;
  2476. }
  2477. };
  2478. // GGML_OP_FLASH_ATTN_EXT
  2479. struct test_flash_attn_ext : public test_case {
  2480. const int64_t hs; // head size
  2481. const int64_t nh; // num heads
  2482. const int64_t kv; // kv size
  2483. const int64_t nb; // batch size
  2484. const bool mask; // use mask
  2485. const float max_bias; // ALiBi
  2486. const float logit_softcap; // Gemma 2
  2487. const ggml_type type_KV;
  2488. std::string vars() override {
  2489. return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV);
  2490. }
  2491. double max_nmse_err() override {
  2492. return 5e-4;
  2493. }
  2494. uint64_t op_flops(ggml_tensor * t) override {
  2495. GGML_UNUSED(t);
  2496. // Just counting matmul costs:
  2497. // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
  2498. return 2 * 2 * nh * nb * hs * kv;
  2499. }
  2500. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8,
  2501. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
  2502. : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
  2503. ggml_tensor * build_graph(ggml_context * ctx) override {
  2504. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  2505. ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1);
  2506. ggml_set_name(q, "q");
  2507. ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
  2508. ggml_set_name(k, "k");
  2509. ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
  2510. ggml_set_name(v, "v");
  2511. ggml_tensor * m = nullptr;
  2512. if (mask) {
  2513. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2514. ggml_set_name(m, "m");
  2515. }
  2516. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
  2517. ggml_set_name(out, "out");
  2518. return out;
  2519. }
  2520. bool grad_precise() override {
  2521. return true;
  2522. }
  2523. };
  2524. // GGML_OP_CROSS_ENTROPY_LOSS
  2525. struct test_cross_entropy_loss : public test_case {
  2526. const ggml_type type;
  2527. const std::array<int64_t, 4> ne;
  2528. std::string vars() override {
  2529. return VARS_TO_STR2(type, ne);
  2530. }
  2531. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2532. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2533. : type(type), ne(ne) {}
  2534. ggml_tensor * build_graph(ggml_context * ctx) override {
  2535. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2536. ggml_set_param(ctx, logits);
  2537. ggml_set_name(logits, "logits");
  2538. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2539. // The labels are assumed to be constant -> no gradients.
  2540. ggml_set_name(labels, "labels");
  2541. // Ensure labels add up to 1:
  2542. labels = ggml_soft_max(ctx, labels);
  2543. ggml_set_name(labels, "labels_normalized");
  2544. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2545. ggml_set_name(out, "out");
  2546. return out;
  2547. }
  2548. void initialize_tensors(ggml_context * ctx) override {
  2549. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2550. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2551. init_tensor_uniform(t, -100.0f, 100.0f);
  2552. }
  2553. }
  2554. float grad_eps() override {
  2555. return 1.0f;
  2556. }
  2557. bool grad_precise() override {
  2558. return true;
  2559. }
  2560. };
  2561. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2562. struct test_cross_entropy_loss_back : public test_case {
  2563. const ggml_type type;
  2564. const std::array<int64_t, 4> ne;
  2565. std::string vars() override {
  2566. return VARS_TO_STR2(type, ne);
  2567. }
  2568. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2569. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2570. : type(type), ne(ne) {}
  2571. ggml_tensor * build_graph(ggml_context * ctx) override {
  2572. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2573. ggml_set_name(grad, "grad");
  2574. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2575. ggml_set_name(logits, "logits");
  2576. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2577. ggml_set_name(labels, "labels");
  2578. // Ensure labels add up to 1:
  2579. labels = ggml_soft_max(ctx, labels);
  2580. ggml_set_name(labels, "labels_normalized");
  2581. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2582. ggml_set_name(out, "out");
  2583. return out;
  2584. }
  2585. };
  2586. // GGML_OP_OPT_STEP_ADAMW
  2587. struct test_opt_step_adamw : public test_case {
  2588. const ggml_type type;
  2589. const std::array<int64_t, 4> ne;
  2590. std::string vars() override {
  2591. return VARS_TO_STR2(type, ne);
  2592. }
  2593. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2594. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2595. : type(type), ne(ne) {}
  2596. ggml_tensor * build_graph(ggml_context * ctx) override {
  2597. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2598. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2599. ggml_set_name(a, "a");
  2600. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2601. ggml_set_name(grad, "grad");
  2602. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2603. ggml_set_name(grad_m, "grad_m");
  2604. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2605. ggml_set_name(grad_v, "grad_v");
  2606. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2607. ggml_set_name(adamw_params, "adamw_params");
  2608. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2609. ggml_set_name(out, "out");
  2610. return out;
  2611. }
  2612. void initialize_tensors(ggml_context * ctx) override {
  2613. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2614. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2615. }
  2616. }
  2617. bool grad_precise() override {
  2618. return true;
  2619. }
  2620. };
  2621. enum llm_norm_type {
  2622. LLM_NORM,
  2623. LLM_NORM_RMS,
  2624. };
  2625. struct llama_hparams {
  2626. uint32_t n_vocab;
  2627. uint32_t n_embd;
  2628. uint32_t n_head;
  2629. uint32_t n_head_kv;
  2630. static constexpr uint32_t n_layer = 1;
  2631. uint32_t n_rot;
  2632. uint32_t n_embd_head; // dimension of values (d_v)
  2633. uint32_t n_ff;
  2634. float f_norm_eps;
  2635. float f_norm_rms_eps;
  2636. // cparams
  2637. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2638. static constexpr uint32_t n_ctx_orig = n_ctx;
  2639. // batch
  2640. int32_t n_tokens;
  2641. // llm_build_context
  2642. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2643. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2644. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2645. return n_embd_head * n_head_kv;
  2646. }
  2647. };
  2648. // LLM base class
  2649. struct test_llm : public test_case {
  2650. llama_hparams hp;
  2651. protected:
  2652. test_llm(llama_hparams hp)
  2653. : hp(std::move(hp)) {
  2654. }
  2655. public:
  2656. struct ggml_tensor * llm_build_norm(
  2657. struct ggml_context * ctx,
  2658. struct ggml_tensor * cur,
  2659. struct ggml_tensor * mw,
  2660. struct ggml_tensor * mb,
  2661. llm_norm_type type) {
  2662. switch (type) {
  2663. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2664. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2665. }
  2666. cur = ggml_mul(ctx, cur, mw);
  2667. if (mb) {
  2668. cur = ggml_add(ctx, cur, mb);
  2669. }
  2670. return cur;
  2671. }
  2672. void llm_build_kv_store(
  2673. struct ggml_context * ctx,
  2674. struct ggml_tensor * k_l,
  2675. struct ggml_tensor * v_l,
  2676. struct ggml_tensor * k_cur,
  2677. struct ggml_tensor * v_cur) {
  2678. // compute the transposed [n_tokens, n_embd] V matrix
  2679. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2680. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2681. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2682. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2683. ( hp.n_ctx)*ggml_element_size(v_l),
  2684. (hp.kv_head)*ggml_element_size(v_l));
  2685. // important: storing RoPE-ed version of K in the KV cache!
  2686. ggml_cpy(ctx, k_cur, k_cache_view);
  2687. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2688. }
  2689. struct ggml_tensor * llm_build_kqv(
  2690. struct ggml_context * ctx,
  2691. struct ggml_tensor * k_l,
  2692. struct ggml_tensor * v_l,
  2693. struct ggml_tensor * q_cur,
  2694. struct ggml_tensor * kq_mask,
  2695. float kq_scale) {
  2696. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2697. struct ggml_tensor * k =
  2698. ggml_view_3d(ctx, k_l,
  2699. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2700. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2701. ggml_row_size(k_l->type, hp.n_embd_head),
  2702. 0);
  2703. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2704. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2705. // split cached v into n_head heads
  2706. struct ggml_tensor * v =
  2707. ggml_view_3d(ctx, v_l,
  2708. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2709. ggml_element_size(v_l)*hp.n_ctx,
  2710. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2711. 0);
  2712. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2713. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2714. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2715. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2716. cur = ggml_mul_mat(ctx, wo, cur);
  2717. return cur;
  2718. }
  2719. void initialize_tensors(ggml_context * ctx) override {
  2720. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2721. if (t->type == GGML_TYPE_I32) {
  2722. // pos
  2723. std::vector<int> data(hp.n_tokens);
  2724. for (int i = 0; i < hp.n_tokens; i++) {
  2725. data[i] = rand() % hp.n_ctx;
  2726. }
  2727. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2728. } else {
  2729. init_tensor_uniform(t);
  2730. }
  2731. }
  2732. }
  2733. };
  2734. // Llama
  2735. struct test_llama : public test_llm {
  2736. static constexpr float freq_base = 10000.0f;
  2737. static constexpr float freq_scale = 1.0f;
  2738. static constexpr float ext_factor = 0.0f;
  2739. static constexpr float attn_factor = 1.0f;
  2740. static constexpr float beta_fast = 32.0f;
  2741. static constexpr float beta_slow = 1.0f;
  2742. std::string op_desc(ggml_tensor * t) override {
  2743. GGML_UNUSED(t);
  2744. return "LLAMA";
  2745. }
  2746. std::string vars() override {
  2747. auto n_tokens = hp.n_tokens;
  2748. return VARS_TO_STR1(n_tokens);
  2749. }
  2750. double max_nmse_err() override {
  2751. return 2e-3;
  2752. }
  2753. test_llama(int n_tokens = 1)
  2754. : test_llm({
  2755. /*n_vocab =*/ 32000,
  2756. /*n_embd =*/ 3200,
  2757. /*n_head =*/ 32,
  2758. /*n_head_kv =*/ 32,
  2759. /*n_rot =*/ 100,
  2760. /*n_embd_head =*/ 100,
  2761. /*n_ff =*/ 8640,
  2762. /*f_norm_eps =*/ 0.f,
  2763. /*f_norm_rms_eps =*/ 1e-5f,
  2764. /*n_tokens =*/ n_tokens,
  2765. }) {
  2766. }
  2767. ggml_tensor * build_graph(ggml_context * ctx) override {
  2768. struct ggml_tensor * cur;
  2769. struct ggml_tensor * inpL;
  2770. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2771. // inp_pos - contains the positions
  2772. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2773. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2774. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2775. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2776. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2777. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2778. struct ggml_tensor * inpSA = inpL;
  2779. // norm
  2780. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2781. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  2782. // self-attention
  2783. {
  2784. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2785. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2786. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2787. // compute Q and K and RoPE them
  2788. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  2789. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  2790. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  2791. Qcur = ggml_rope_ext(
  2792. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  2793. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2794. ext_factor, attn_factor, beta_fast, beta_slow
  2795. );
  2796. Kcur = ggml_rope_ext(
  2797. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  2798. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2799. ext_factor, attn_factor, beta_fast, beta_slow
  2800. );
  2801. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2802. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2803. }
  2804. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  2805. // feed-forward network
  2806. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2807. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  2808. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2809. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2810. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2811. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  2812. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  2813. cur = ggml_silu(ctx, cur);
  2814. cur = ggml_mul(ctx, cur, tmp);
  2815. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2816. cur = ggml_add(ctx, cur, ffn_inp);
  2817. // input for next layer
  2818. inpL = cur;
  2819. }
  2820. cur = inpL;
  2821. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2822. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  2823. // lm_head
  2824. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  2825. cur = ggml_mul_mat(ctx, output, cur);
  2826. return cur;
  2827. }
  2828. };
  2829. // Falcon
  2830. struct test_falcon : public test_llm {
  2831. static constexpr float freq_base = 10000.0f;
  2832. static constexpr float freq_scale = 1.0f;
  2833. static constexpr float ext_factor = 0.0f;
  2834. static constexpr float attn_factor = 1.0f;
  2835. static constexpr float beta_fast = 32.0f;
  2836. static constexpr float beta_slow = 1.0f;
  2837. std::string op_desc(ggml_tensor * t) override {
  2838. GGML_UNUSED(t);
  2839. return "FALCON";
  2840. }
  2841. std::string vars() override {
  2842. auto n_tokens = hp.n_tokens;
  2843. return VARS_TO_STR1(n_tokens);
  2844. }
  2845. double max_nmse_err() override {
  2846. return 2e-3;
  2847. }
  2848. test_falcon(int n_tokens = 1)
  2849. : test_llm({
  2850. /*n_vocab =*/ 32000,
  2851. /*n_embd =*/ 3200,
  2852. /*n_head =*/ 50,
  2853. /*n_head_kv =*/ 1,
  2854. /*n_rot =*/ 64,
  2855. /*n_embd_head =*/ 64,
  2856. /*n_ff =*/ 8640,
  2857. /*f_norm_eps =*/ 1e-5f,
  2858. /*f_norm_rms_eps =*/ 0.f,
  2859. /*n_tokens =*/ n_tokens,
  2860. }) {
  2861. }
  2862. ggml_tensor * build_graph(ggml_context * ctx) override {
  2863. struct ggml_tensor * cur;
  2864. struct ggml_tensor * inpL;
  2865. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2866. // inp_pos - contains the positions
  2867. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2868. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2869. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2870. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2871. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2872. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2873. // norm
  2874. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2875. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2876. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  2877. // self-attention
  2878. {
  2879. cur = attn_norm;
  2880. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  2881. cur = ggml_mul_mat(ctx, wqkv, cur);
  2882. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  2883. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  2884. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  2885. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  2886. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  2887. // using mode = 2 for neox mode
  2888. Qcur = ggml_rope_ext(
  2889. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  2890. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  2891. );
  2892. Kcur = ggml_rope_ext(
  2893. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  2894. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  2895. );
  2896. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2897. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2898. }
  2899. struct ggml_tensor * ffn_inp = cur;
  2900. // feed forward
  2901. {
  2902. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2903. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2904. cur = attn_norm;
  2905. cur = ggml_mul_mat(ctx, ffn_up, cur);
  2906. cur = ggml_gelu(ctx, cur);
  2907. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2908. }
  2909. cur = ggml_add(ctx, cur, ffn_inp);
  2910. cur = ggml_add(ctx, cur, inpL);
  2911. // input for next layer
  2912. inpL = cur;
  2913. }
  2914. cur = inpL;
  2915. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2916. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2917. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  2918. // lm_head
  2919. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  2920. cur = ggml_mul_mat(ctx, output, cur);
  2921. return cur;
  2922. }
  2923. };
  2924. // ###########################################
  2925. // ## Section 3: GGML Op Test Instantiation ##
  2926. // ###########################################
  2927. static const ggml_type all_types[] = {
  2928. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  2929. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  2930. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  2931. GGML_TYPE_Q8_0,
  2932. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  2933. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  2934. GGML_TYPE_Q6_K,
  2935. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  2936. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  2937. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  2938. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  2939. };
  2940. static const ggml_type base_types[] = {
  2941. GGML_TYPE_F32, GGML_TYPE_F16,
  2942. GGML_TYPE_Q8_0, // for I8MM tests
  2943. GGML_TYPE_Q4_0,
  2944. GGML_TYPE_Q4_1, // for I8MM tests
  2945. GGML_TYPE_Q4_K,
  2946. GGML_TYPE_IQ2_XXS
  2947. };
  2948. static const ggml_type other_types[] = {
  2949. GGML_TYPE_Q4_1,
  2950. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  2951. GGML_TYPE_Q8_0,
  2952. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  2953. GGML_TYPE_Q5_K,
  2954. GGML_TYPE_Q6_K,
  2955. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  2956. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  2957. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  2958. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  2959. GGML_TYPE_BF16,
  2960. };
  2961. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  2962. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  2963. std::vector<std::unique_ptr<test_case>> test_cases;
  2964. std::default_random_engine rng(0);
  2965. // unary ops
  2966. for (int v : {0, 1}) {
  2967. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  2968. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 2, 2, 2 }, v));
  2969. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 5, 7, 11, 13 }, v));
  2970. }
  2971. }
  2972. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  2973. for (ggml_type type : all_types) {
  2974. for (int b : {1, 7}) {
  2975. for (bool v : {false, true}) {
  2976. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  2977. }
  2978. }
  2979. }
  2980. for (int b : {1, 7}) {
  2981. for (bool v : {false, true}) {
  2982. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  2983. }
  2984. }
  2985. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  2986. for (ggml_type type : all_types) {
  2987. for (bool v : {false, true}) {
  2988. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  2989. }
  2990. }
  2991. for (bool v : {false, true}) {
  2992. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  2993. }
  2994. for (ggml_type type_input : {GGML_TYPE_F32}) {
  2995. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  2996. for (int k0 : {1, 3}) {
  2997. for (int k1 : {1, 3}) {
  2998. for (int s0 : {1, 2}) {
  2999. for (int s1 : {1, 2}) {
  3000. for (int p0 : {0, 1}) {
  3001. for (int p1 : {0, 1}) {
  3002. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3003. }
  3004. }
  3005. }
  3006. }
  3007. }
  3008. }
  3009. }
  3010. }
  3011. // im2col 1D
  3012. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3013. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3014. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3015. for (int s0 : {1, 3}) {
  3016. for (int p0 : {0, 3}) {
  3017. for (int d0 : {1, 3}) {
  3018. test_cases.emplace_back(new test_im2col(
  3019. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3020. s0, 0, p0, 0, d0, 0, false));
  3021. }
  3022. }
  3023. }
  3024. // im2col 2D
  3025. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3026. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3027. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3028. for (int s0 : {1, 3}) {
  3029. for (int s1 : {1, 3}) {
  3030. for (int p0 : {0, 3}) {
  3031. for (int p1 : {0, 3}) {
  3032. for (int d0 : {1, 3}) {
  3033. for (int d1 : {1, 3}) {
  3034. test_cases.emplace_back(new test_im2col(
  3035. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3036. s0, s1, p0, p1, d0, d1, true));
  3037. }
  3038. }
  3039. }
  3040. }
  3041. }
  3042. }
  3043. // extra tests for im2col 2D
  3044. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3045. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3046. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3047. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3048. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3049. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3050. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3051. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3052. // sycl backend will limit task global_range < MAX_INT
  3053. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3054. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3055. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3056. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3057. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3058. test_cases.emplace_back(new test_conv_transpose_1d());
  3059. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3060. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3061. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3062. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3063. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3064. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3065. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3066. test_cases.emplace_back(new test_count_equal());
  3067. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3068. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3069. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3070. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3071. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3072. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3073. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3074. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3075. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3076. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3077. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3078. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3079. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3080. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3081. }
  3082. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3083. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3084. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3085. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3086. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3087. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3088. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3089. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3090. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3091. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3092. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3093. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3094. }
  3095. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3096. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3097. }
  3098. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3099. for (ggml_type type_dst : all_types) {
  3100. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3101. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3102. }
  3103. }
  3104. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3105. for (ggml_type type_src : all_types) {
  3106. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3107. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3108. }
  3109. }
  3110. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3111. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3112. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3113. }
  3114. }
  3115. test_cases.emplace_back(new test_cont());
  3116. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3117. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3118. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3119. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3120. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3121. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3122. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3123. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3124. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3125. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3126. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  3127. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3128. }
  3129. };
  3130. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  3131. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
  3132. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  3133. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 1, 1}, {1, 1, 1, 1});
  3134. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 1}, {1, 1, 1, 1});
  3135. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 1});
  3136. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1});
  3137. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 1, 1});
  3138. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1});
  3139. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 2});
  3140. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2});
  3141. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2});
  3142. add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 2, 2, 2});
  3143. // stable diffusion
  3144. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3145. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3146. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3147. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3148. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3149. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3150. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3151. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3152. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3153. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3154. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  3155. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3156. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  3157. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3158. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3159. test_cases.emplace_back(new test_add1());
  3160. test_cases.emplace_back(new test_scale());
  3161. test_cases.emplace_back(new test_silu_back());
  3162. for (float eps : {0.0f, 1e-7f, 1e-4f, 1e-1f}) {
  3163. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3164. test_cases.emplace_back(new test_rms_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3165. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3166. }
  3167. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3168. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3169. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3170. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3171. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3172. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3173. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3174. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3175. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3176. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3177. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3178. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3179. for (int i = 1; i < 9; ++i) {
  3180. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3181. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3182. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3183. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3184. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3185. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3186. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3187. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3188. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q6_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3189. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_IQ4_NL, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3190. }
  3191. #if 1
  3192. for (ggml_type type_a : base_types) {
  3193. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3194. // test cases without permutation
  3195. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  3196. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
  3197. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
  3198. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
  3199. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
  3200. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
  3201. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
  3202. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
  3203. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
  3204. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
  3205. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
  3206. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
  3207. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
  3208. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
  3209. // test cases with permutation
  3210. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3211. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3212. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3213. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3214. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3215. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3216. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3217. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3218. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3219. }
  3220. }
  3221. for (ggml_type type_a : other_types) {
  3222. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3223. if (ggml_blck_size(type_a) != 256) {
  3224. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3225. }
  3226. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3227. }
  3228. }
  3229. #else
  3230. // m = a rows
  3231. // n = b rows
  3232. // k = cols
  3233. std::uniform_int_distribution<> dist_m(1, 128);
  3234. std::uniform_int_distribution<> dist_n(16, 128);
  3235. std::uniform_int_distribution<> dist_k(1, 16);
  3236. for (int i = 0; i < 1000; i++) {
  3237. for (ggml_type type_a : all_types) {
  3238. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3239. int m = dist_m(rng);
  3240. int n = dist_n(rng);
  3241. int k = dist_k(rng) * ggml_blck_size(type_a);
  3242. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3243. }
  3244. }
  3245. }
  3246. #endif
  3247. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3248. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3249. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3250. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3251. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3252. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3253. // sycl backend will limit task global_range < MAX_INT
  3254. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3255. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3256. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3257. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3258. for (ggml_type type_a : base_types) {
  3259. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3260. for (int n_mats : {4, 8}) {
  3261. for (int n_used : {1, 2, 4}) {
  3262. for (bool b : {false, true}) {
  3263. for (int n : {1, 32}) {
  3264. int m = 512;
  3265. int k = 256;
  3266. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3267. }
  3268. }
  3269. }
  3270. }
  3271. }
  3272. }
  3273. for (ggml_type type_a : other_types) {
  3274. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3275. for (int n_mats : {4}) {
  3276. for (int n_used : {2}) {
  3277. for (bool b : {false}) {
  3278. for (int n : {1, 32}) {
  3279. int m = 512;
  3280. int k = 256;
  3281. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3282. }
  3283. }
  3284. }
  3285. }
  3286. }
  3287. }
  3288. for (ggml_type type_a : base_types) {
  3289. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3290. for (int n : {1, 16}) {
  3291. for (int k : {1, 16}) {
  3292. for (int bs2 : {1, 3}) {
  3293. for (int bs3 : {1, 3}) {
  3294. for (int nr2 : {1, 2}) {
  3295. for (int nr3 : {1, 2}) {
  3296. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3297. }
  3298. }
  3299. }
  3300. }
  3301. }
  3302. }
  3303. }
  3304. }
  3305. test_cases.emplace_back(new test_sqr());
  3306. test_cases.emplace_back(new test_sqrt());
  3307. test_cases.emplace_back(new test_log());
  3308. test_cases.emplace_back(new test_sin());
  3309. test_cases.emplace_back(new test_cos());
  3310. test_cases.emplace_back(new test_clamp());
  3311. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3312. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3313. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3314. #if 0
  3315. std::uniform_int_distribution<> dist_ne1(1, 50);
  3316. int exponent = 1;
  3317. while (exponent < (1 << 17)) {
  3318. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3319. for (int n = 0; n < 10; ++n) {
  3320. int64_t ne0 = dist_ne0(rng);
  3321. int64_t ne1 = dist_ne1(rng);
  3322. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3323. }
  3324. exponent <<= 1;
  3325. }
  3326. #endif
  3327. for (bool mask : {false, true}) {
  3328. for (float max_bias : {0.0f, 8.0f}) {
  3329. if (!mask && max_bias > 0.0f) continue;
  3330. for (float scale : {1.0f, 0.1f}) {
  3331. for (int64_t ne0 : {16, 1024}) {
  3332. for (int64_t ne1 : {16, 1024}) {
  3333. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
  3334. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
  3335. }
  3336. }
  3337. }
  3338. }
  3339. }
  3340. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
  3341. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
  3342. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
  3343. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
  3344. for (float max_bias : {0.0f, 8.0f}) {
  3345. for (float scale : {1.0f, 0.1f}) {
  3346. for (int64_t ne0 : {16, 1024}) {
  3347. for (int64_t ne1 : {16, 1024}) {
  3348. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3349. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3350. }
  3351. }
  3352. }
  3353. }
  3354. for (bool fw : {true, false}) { // fw == forward
  3355. bool all = true;
  3356. for (float v : { 0, 1 }) {
  3357. for (float fs : { 1.0f, 1.4245f }) {
  3358. for (float ef : { 0.0f, 0.7465f }) {
  3359. for (float af : { 1.0f, 1.4245f }) {
  3360. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3361. for (bool ff : {false, true}) { // freq_factors
  3362. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3363. if (all) {
  3364. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3365. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3366. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3367. }
  3368. if (all) {
  3369. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3370. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3371. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3372. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3373. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3374. }
  3375. if (all) {
  3376. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3377. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3378. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3379. }
  3380. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3381. }
  3382. }
  3383. all = false;
  3384. }
  3385. }
  3386. }
  3387. }
  3388. }
  3389. for (int v : { 0, 1, 2, 3 }) {
  3390. for (int dim : { 0, 1, 2, 3, }) {
  3391. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3392. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3393. }
  3394. }
  3395. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3396. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3397. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3398. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3399. }
  3400. test_cases.emplace_back(new test_sum());
  3401. test_cases.emplace_back(new test_sum_rows());
  3402. test_cases.emplace_back(new test_mean());
  3403. test_cases.emplace_back(new test_upscale());
  3404. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  3405. test_cases.emplace_back(new test_upscale_ext());
  3406. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3407. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3408. test_cases.emplace_back(new test_acc());
  3409. test_cases.emplace_back(new test_pad());
  3410. test_cases.emplace_back(new test_pad_reflect_1d());
  3411. test_cases.emplace_back(new test_arange());
  3412. test_cases.emplace_back(new test_timestep_embedding());
  3413. test_cases.emplace_back(new test_leaky_relu());
  3414. for (int hs : { 64, 80, 128, 256, }) {
  3415. for (bool mask : { true, false } ) {
  3416. for (float max_bias : { 0.0f, 8.0f }) {
  3417. if (!mask && max_bias > 0.0f) continue;
  3418. for (float logit_softcap : {0.0f, 10.0f}) {
  3419. if (hs != 128 && logit_softcap != 0.0f) continue;
  3420. for (int nh : { 32, }) {
  3421. for (int kv : { 512, 1024, }) {
  3422. for (int nb : { 1, 3, 32, 35, }) {
  3423. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3424. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
  3425. }
  3426. }
  3427. }
  3428. }
  3429. }
  3430. }
  3431. }
  3432. }
  3433. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3434. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3435. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3436. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3437. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3438. // these tests are disabled to save execution time, but they can be handy for debugging
  3439. #if 0
  3440. test_cases.emplace_back(new test_llama(1));
  3441. test_cases.emplace_back(new test_llama(2));
  3442. test_cases.emplace_back(new test_falcon(1));
  3443. test_cases.emplace_back(new test_falcon(2));
  3444. #endif
  3445. return test_cases;
  3446. }
  3447. // Test cases for performance evaluation: should be representative of real-world use cases
  3448. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3449. std::vector<std::unique_ptr<test_case>> test_cases;
  3450. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3451. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3452. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3453. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3454. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3455. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f));
  3456. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f));
  3457. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f));
  3458. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f));
  3459. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f));
  3460. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
  3461. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
  3462. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3463. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3464. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3465. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3466. for (ggml_type type_a : all_types) {
  3467. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3468. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3469. }
  3470. }
  3471. }
  3472. for (int K : {3, 5}) {
  3473. for (int IC : {256, 2560}) {
  3474. for (int IW_IH : {32, 64, 256}) {
  3475. if (IC == 2560 && IW_IH == 256) {
  3476. // too big
  3477. continue;
  3478. }
  3479. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3480. }
  3481. }
  3482. }
  3483. return test_cases;
  3484. }
  3485. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  3486. if (mode == MODE_TEST) {
  3487. auto test_cases = make_test_cases_eval();
  3488. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3489. if (backend_cpu == NULL) {
  3490. printf(" Failed to initialize CPU backend\n");
  3491. return false;
  3492. }
  3493. size_t n_ok = 0;
  3494. for (auto & test : test_cases) {
  3495. if (test->eval(backend, backend_cpu, op_name)) {
  3496. n_ok++;
  3497. }
  3498. }
  3499. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3500. ggml_backend_free(backend_cpu);
  3501. return n_ok == test_cases.size();
  3502. }
  3503. if (mode == MODE_GRAD) {
  3504. auto test_cases = make_test_cases_eval();
  3505. size_t n_ok = 0;
  3506. for (auto & test : test_cases) {
  3507. if (test->eval_grad(backend, op_name)) {
  3508. n_ok++;
  3509. }
  3510. }
  3511. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3512. return n_ok == test_cases.size();
  3513. }
  3514. if (mode == MODE_PERF) {
  3515. auto test_cases = make_test_cases_perf();
  3516. for (auto & test : test_cases) {
  3517. test->eval_perf(backend, op_name);
  3518. }
  3519. return true;
  3520. }
  3521. GGML_ABORT("fatal error");
  3522. }
  3523. static void usage(char ** argv) {
  3524. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  3525. printf(" valid modes:\n");
  3526. printf(" - test (default, compare with CPU backend for correctness)\n");
  3527. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3528. printf(" - perf (performance evaluation)\n");
  3529. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3530. }
  3531. int main(int argc, char ** argv) {
  3532. test_mode mode = MODE_TEST;
  3533. const char * op_name_filter = NULL;
  3534. const char * backend_filter = NULL;
  3535. for (int i = 1; i < argc; i++) {
  3536. if (strcmp(argv[i], "test") == 0) {
  3537. mode = MODE_TEST;
  3538. } else if (strcmp(argv[i], "perf") == 0) {
  3539. mode = MODE_PERF;
  3540. } else if (strcmp(argv[i], "grad") == 0) {
  3541. mode = MODE_GRAD;
  3542. } else if (strcmp(argv[i], "-o") == 0) {
  3543. if (i + 1 < argc) {
  3544. op_name_filter = argv[++i];
  3545. } else {
  3546. usage(argv);
  3547. return 1;
  3548. }
  3549. } else if (strcmp(argv[i], "-b") == 0) {
  3550. if (i + 1 < argc) {
  3551. backend_filter = argv[++i];
  3552. } else {
  3553. usage(argv);
  3554. return 1;
  3555. }
  3556. } else {
  3557. usage(argv);
  3558. return 1;
  3559. }
  3560. }
  3561. // load and enumerate backends
  3562. ggml_backend_load_all();
  3563. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3564. size_t n_ok = 0;
  3565. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3566. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3567. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3568. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3569. printf(" Skipping\n");
  3570. n_ok++;
  3571. continue;
  3572. }
  3573. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3574. printf(" Skipping CPU backend\n");
  3575. n_ok++;
  3576. continue;
  3577. }
  3578. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3579. GGML_ASSERT(backend != NULL);
  3580. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3581. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3582. if (ggml_backend_set_n_threads_fn) {
  3583. // TODO: better value for n_threads
  3584. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3585. }
  3586. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3587. size_t free, total; // NOLINT
  3588. ggml_backend_dev_memory(dev, &free, &total);
  3589. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3590. printf("\n");
  3591. bool ok = test_backend(backend, mode, op_name_filter);
  3592. printf(" Backend %s: ", ggml_backend_name(backend));
  3593. if (ok) {
  3594. printf("\033[1;32mOK\033[0m\n");
  3595. n_ok++;
  3596. } else {
  3597. printf("\033[1;31mFAIL\033[0m\n");
  3598. }
  3599. printf("\n");
  3600. ggml_backend_free(backend);
  3601. }
  3602. ggml_quantize_free();
  3603. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3604. if (n_ok != ggml_backend_dev_count()) {
  3605. printf("\033[1;31mFAIL\033[0m\n");
  3606. return 1;
  3607. }
  3608. printf("\033[1;32mOK\033[0m\n");
  3609. return 0;
  3610. }