| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128 |
- #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
- #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
- // suppress warnings in CL headers for GCC and Clang
- #pragma GCC diagnostic ignored "-Woverlength-strings"
- #ifdef __clang__
- #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
- #endif
- #include "ggml-opencl.h"
- #include "ggml-backend.h"
- #include "ggml-impl.h"
- #include "ggml-backend-impl.h"
- #include "ggml.h"
- #include <CL/cl.h>
- #include <string.h>
- #include <cstddef>
- #include <cstdint>
- #include <atomic>
- #include <fstream>
- #include <limits>
- #include <vector>
- #include <string>
- #include <cmath>
- #include <memory>
- #include <charconv>
- #include <mutex>
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define UNUSED(x) (void)(x)
- #define CL_CHECK(err) \
- do { \
- cl_int err_ = (err); \
- if (err_ != CL_SUCCESS) { \
- GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
- #err, err_, __FILE__, __LINE__); \
- GGML_ASSERT(0); \
- } \
- } while (0)
- //------------------------------------------------------------------------------
- // OpenCL
- //------------------------------------------------------------------------------
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
- enum GPU_FAMILY {
- ADRENO,
- INTEL,
- UNKNOWN,
- };
- enum ADRENO_GPU_GEN {
- ADRENO_UNKNOWN,
- A7X,
- A8X,
- X1E,
- };
- enum ADRENO_CL_COMPILER_TYPE {
- E031,
- DX,
- };
- struct ggml_cl_version {
- cl_uint major = 0;
- cl_uint minor = 0;
- };
- struct ggml_cl_compiler_version {
- ADRENO_CL_COMPILER_TYPE type;
- int major = -1;
- int minor = -1;
- int patch = -1;
- bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return major == x && minor == y && patch == z && type == t;
- }
- bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
- }
- bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
- return same(t, x, y, z) || newer_than(t, x, y, z);
- }
- };
- static size_t align_to(size_t value, size_t to_alignment) {
- GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
- GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
- return ((value + to_alignment - 1) / to_alignment) * to_alignment;
- }
- // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version parse_cl_version(std::string_view str) {
- size_t major_str_begin = 0;
- size_t major_str_end = str.find(".", major_str_begin);
- if (major_str_end == std::string::npos) {
- return {};
- }
- size_t minor_str_begin = major_str_end + 1;
- size_t minor_str_end = str.find(" ", minor_str_begin);
- if (minor_str_end == std::string::npos) {
- return {};
- }
- cl_uint version_major;
- if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
- return {};
- }
- cl_uint version_minor;
- if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
- return {};
- }
- return { version_major, version_minor };
- }
- // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
- size_t param_size;
- CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, ¶m_size));
- std::unique_ptr<char[]> param_storage(new char[param_size]);
- CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
- auto param_value = std::string_view(param_storage.get(), param_size);
- const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
- if (param_value.find(version_prefix) != 0) {
- return {};
- }
- param_value.remove_prefix(version_prefix.length());
- return parse_cl_version(param_value);
- }
- // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
- static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
- size_t param_size;
- #if CL_TARGET_OPENCL_VERSION >= 300
- if (platform_version.major >= 3) {
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, ¶m_size));
- if (!param_size) {
- return {};
- }
- std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
- unsigned versions_count = param_size / sizeof(cl_name_version);
- cl_version version_max = 0;
- for (unsigned i = 0; i < versions_count; i++) {
- version_max = std::max<cl_version>(versions[i].version, version_max);
- }
- return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
- }
- #else
- GGML_UNUSED(platform_version);
- #endif // CL_TARGET_OPENCL_VERSION >= 300
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, ¶m_size));
- if (!param_size) {
- return {};
- }
- std::unique_ptr<char[]> param_storage(new char[param_size]);
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
- auto param_value = std::string_view(param_storage.get(), param_size);
- const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
- if (param_value.find(version_prefix) != 0) {
- return {};
- }
- param_value.remove_prefix(version_prefix.length());
- return parse_cl_version(param_value);
- }
- static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
- if (strstr(device_name, "730") ||
- strstr(device_name, "740") ||
- strstr(device_name, "750")) {
- return ADRENO_GPU_GEN::A7X;
- }
- if (strstr(device_name, "830")) {
- return ADRENO_GPU_GEN::A8X;
- }
- if (strstr(device_name, "X1")) {
- return ADRENO_GPU_GEN::X1E;
- }
- return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
- }
- static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
- std::string driver_ver_str(driver_version);
- ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
- size_t compiler_ver_pos = driver_ver_str.find("E031");
- size_t compiler_ver_len = 13;
- size_t compiler_major_offset = 5;
- size_t compiler_minor_offset = 8;
- size_t compiler_patch_offset = 11;
- if (compiler_ver_pos == std::string::npos) {
- compiler_ver_pos = driver_ver_str.find("DX");
- if (compiler_ver_pos == std::string::npos) {
- return {};
- }
- type = ADRENO_CL_COMPILER_TYPE::DX;
- compiler_ver_len = 11;
- compiler_major_offset = 3;
- }
- std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
- int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
- int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
- int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
- return { type, major, minor, patch };
- }
- // Profiling
- struct ProfilingInfo {
- std::string op_name;
- std::string kernel_name;
- cl_kernel kernel;
- cl_event evt;
- cl_ulong cmd_queued;
- cl_ulong cmd_submit;
- cl_ulong cmd_start;
- cl_ulong cmd_end;
- cl_ulong overhead_start;
- cl_ulong overhead_end;
- // For the times below, see spec for clGetEventProfilingInfo
- // The time kernel spent in cmd queue - SUBMIT - QUEUED
- cl_ulong cmd_queued_duration_ns;
- // The time kernel spent for submission - START - SUBMIT
- cl_ulong cmd_submit_duration_ns;
- // Kernel execution time in nanoseconds - END - START
- cl_ulong cmd_duration_ns;
- // The time for the kernel to complete - COMPLETE - END
- cl_ulong cmd_complete_duration_ns;
- // Total time to finish the kernel - COMPELTE - QUEUED
- cl_ulong cmd_total_duration_ns;
- // Global and local work sizes.
- size_t global_size[3];
- size_t local_size[3];
- // Op output size.
- size_t output_size[4];
- };
- static void populateProfilingInfo(
- ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
- size_t global_size[3], size_t local_size[3],
- const ggml_tensor * tensor) {
- info.op_name = tensor->name;
- info.kernel = kernel;
- info.evt = evt;
- // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
- info.local_size[0] = 0;
- info.local_size[1] = 0;
- info.local_size[2] = 0;
- info.global_size[0] = 0;
- info.global_size[1] = 0;
- info.global_size[2] = 0;
- if (local_size) {
- for (cl_uint i = 0; i < work_dim; ++i) {
- info.local_size[i] = local_size[i];
- }
- }
- for (cl_uint i = 0; i < work_dim; ++i) {
- info.global_size[i] = global_size[i];
- }
- info.output_size[0] = tensor->ne[0];
- info.output_size[1] = tensor->ne[1];
- info.output_size[2] = tensor->ne[2];
- info.output_size[3] = tensor->ne[3];
- }
- struct ggml_backend_opencl_context;
- // backend device context
- struct ggml_backend_opencl_device_context {
- cl_platform_id platform;
- std::string platform_name;
- cl_device_id device;
- std::string device_name;
- cl_device_type device_type;
- std::string device_version;
- // Initialized by ggml_cl2_init().
- ggml_backend_opencl_context * backend_ctx = nullptr;
- // Initialized by ggml_backend_opencl_device_get_buffer_type()
- ggml_backend_buffer_type buffer_type;
- cl_context context = nullptr;
- };
- // backend context
- struct ggml_backend_opencl_context {
- int ref_count;
- cl_device_id device;
- std::string device_name;
- std::string driver_version;
- GPU_FAMILY gpu_family;
- ADRENO_GPU_GEN adreno_gen;
- cl_int alignment;
- size_t max_alloc_size;
- bool fp16_support;
- bool has_vector_subgroup_broadcast;
- bool disable_fusion;
- ggml_cl_compiler_version adreno_cl_compiler_version;
- int adreno_wave_size;
- cl_bool non_uniform_workgroups;
- cl_context context;
- cl_command_queue queue;
- cl_program program_add;
- cl_program program_clamp;
- cl_program program_cpy;
- cl_program program_cvt;
- cl_program program_diag_mask_inf;
- cl_program program_gelu;
- cl_program program_gemv_noshuffle_general;
- cl_program program_gemv_noshuffle;
- cl_program program_get_rows;
- cl_program program_set_rows;
- cl_program program_glu;
- cl_program program_im2col_f16;
- cl_program program_im2col_f32;
- cl_program program_mul_mat_Ab_Bi_8x4;
- cl_program program_mul_mv_q4_0_f32;
- cl_program program_mul_mv_q4_0_f32_v;
- cl_program program_mul_mv_q4_0_f32_8x_flat;
- cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
- cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
- cl_program program_mul_mv_q6_K;
- cl_program program_mul_mv_f16_f16;
- cl_program program_mul_mv_f16_f32_1row;
- cl_program program_mul_mv_f16_f32_l4;
- cl_program program_mul_mv_f16_f32;
- cl_program program_mul_mv_f32_f32;
- cl_program program_mul;
- cl_program program_mul_mat_f16_f32_tiled;
- cl_program program_div;
- cl_program program_sub;
- cl_program program_norm;
- cl_program program_relu;
- cl_program program_rms_norm;
- cl_program program_group_norm;
- cl_program program_rope;
- cl_program program_scale;
- cl_program program_silu;
- cl_program program_sigmoid;
- cl_program program_softmax_f32;
- cl_program program_softmax_f16;
- cl_program program_softmax_4_f32;
- cl_program program_softmax_4_f16;
- cl_program program_argsort_f32_i32;
- cl_program program_sum_rows_f32;
- cl_program program_repeat;
- cl_program program_pad;
- cl_program program_tanh;
- cl_program program_upscale;
- cl_program program_concat;
- cl_program program_conv_2d_f16;
- cl_program program_conv_2d_f32;
- cl_program program_conv_2d_f16_f32;
- cl_program program_tsembd;
- cl_program program_mul_mv_id_q4_0_f32_8x_flat;
- cl_kernel kernel_add, kernel_add_row;
- cl_kernel kernel_mul, kernel_mul_row;
- cl_kernel kernel_div, kernel_div_row;
- cl_kernel kernel_sub, kernel_sub_row;
- cl_kernel kernel_scale;
- cl_kernel kernel_silu, kernel_silu_4;
- cl_kernel kernel_gelu, kernel_gelu_4;
- cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
- cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
- cl_kernel kernel_relu;
- cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
- cl_kernel kernel_clamp;
- cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_geglu_erf, kernel_geglu_quick,
- kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
- cl_kernel kernel_norm;
- cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
- cl_kernel kernel_group_norm;
- cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
- cl_kernel kernel_soft_max, kernel_soft_max_4;
- cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
- cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
- cl_kernel kernel_set_rows_f32, kernel_set_rows_f16;
- cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
- cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
- cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
- cl_kernel kernel_mul_mat_f32_f32;
- cl_kernel kernel_mul_mat_f16_f16;
- cl_kernel kernel_mul_mat_f16_f32_1row;
- cl_kernel kernel_mul_mat_f16_f32;
- cl_kernel kernel_mul_mat_f16_f32_l4;
- cl_kernel kernel_mul_mat_f16_f32_tiled;
- cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
- cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
- cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
- cl_kernel kernel_convert_block_q4_0_noshuffle;
- cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
- cl_kernel kernel_mul_mv_q6_K_f32;
- cl_kernel kernel_im2col_f32, kernel_im2col_f16;
- cl_kernel kernel_argsort_f32_i32;
- cl_kernel kernel_sum_rows_f32;
- cl_kernel kernel_repeat;
- cl_kernel kernel_pad;
- cl_kernel kernel_tanh_f32_nd;
- cl_kernel kernel_tanh_f16_nd;
- cl_kernel kernel_upscale;
- cl_kernel kernel_upscale_bilinear;
- cl_kernel kernel_concat_f32_contiguous;
- cl_kernel kernel_concat_f32_non_contiguous;
- cl_kernel kernel_conv_2d_f16;
- cl_kernel kernel_conv_2d_f32;
- cl_kernel kernel_conv_2d_f16_f32;
- cl_kernel kernel_timestep_embedding;
- cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
- std::vector<ProfilingInfo> profiling_info;
- void write_profiling_info() {
- FILE * fperf = fopen("cl_profiling.csv", "w");
- if (!fperf) {
- GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
- return;
- }
- // Populate profiling info
- for (ProfilingInfo & info : profiling_info) {
- cl_ulong cmd_queued;
- cl_ulong cmd_submit;
- cl_ulong cmd_start;
- cl_ulong cmd_end;
- cl_ulong cmd_complete;
- CL_CHECK(clWaitForEvents(1, &info.evt));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
- CL_CHECK(clReleaseEvent(info.evt));
- char kernel_name[512];
- CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
- sizeof(kernel_name), kernel_name, NULL));
- info.kernel_name = kernel_name;
- info.cmd_queued = cmd_queued;
- info.cmd_submit = cmd_submit;
- info.cmd_start = cmd_start;
- info.cmd_end = cmd_end;
- info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
- info.cmd_submit_duration_ns = cmd_start - cmd_submit;
- info.cmd_duration_ns = cmd_end - cmd_start;
- info.cmd_complete_duration_ns = cmd_complete - cmd_end;
- info.cmd_total_duration_ns = cmd_complete - cmd_queued;
- }
- // Dump a csv
- float total_kernel_time = 0;
- fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
- for (const ProfilingInfo & info : profiling_info) {
- total_kernel_time += info.cmd_duration_ns/1.e6f;
- fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
- info.op_name.c_str(), info.kernel_name.c_str(),
- info.cmd_queued_duration_ns/1.e6f,
- info.cmd_submit_duration_ns/1.e6f,
- info.cmd_duration_ns/1.e6f,
- info.cmd_complete_duration_ns/1.e6f,
- info.cmd_total_duration_ns/1.e6f,
- info.global_size[0], info.global_size[1], info.global_size[2],
- info.local_size[0], info.local_size[1], info.local_size[2],
- info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
- }
- fclose(fperf);
- GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
- // Dump a simple chrome trace
- FILE* ftrace = fopen("cl_trace.json", "w");
- if (!ftrace) {
- GGML_LOG_ERROR("Failed to open cl_trace.json\n");
- return;
- }
- fprintf(ftrace, "[\n");
- for (const ProfilingInfo & info : profiling_info) {
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
- info.kernel_name.c_str(), info.cmd_queued/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
- info.kernel_name.c_str(), info.cmd_submit/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
- info.kernel_name.c_str(), info.cmd_start/1000);
- fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
- info.kernel_name.c_str(), info.cmd_end/1000);
- }
- fclose(ftrace);
- }
- size_t get_kernel_workgroup_size(cl_kernel kernel) const {
- size_t workgroup_size = 0;
- size_t ret_size = 0;
- CL_CHECK(
- clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
- sizeof(size_t), &workgroup_size, &ret_size));
- GGML_ASSERT(sizeof(size_t) == ret_size);
- return workgroup_size;
- }
- void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- profiling_info.emplace_back();
- populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
- #else
- GGML_UNUSED(tensor);
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Transpose kernels
- cl_program program_transpose;
- cl_kernel kernel_transpose_32;
- cl_kernel kernel_transpose_32_16;
- cl_kernel kernel_transpose_16;
- cl_mem A_s_d_max; // max scale buffer size for transpose
- cl_mem A_q_d_max; // max weight buffer size for transpose
- cl_mem B_d_max; // max activation buffer size for transpose
- // Gemm and Gemv related programs, kernels, etc
- cl_program program_CL_gemm;
- cl_program program_CL_gemv_general;
- cl_program program_CL_gemv_4096_1_11008;
- cl_program program_CL_gemv_4096_1_4096;
- cl_program program_CL_gemv_11008_1_4096;
- cl_program program_CL_gemv_32000_1_4096;
- cl_kernel CL_mul_mat_Ab_Bi_8x4;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- void free() {
- ref_count--;
- if (ref_count == 0) {
- #ifdef GGML_OPENCL_PROFILING
- write_profiling_info();
- #endif
- }
- }
- };
- // All registered devices with a default device in the front.
- static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
- inline std::string read_file(const std::string &path) {
- std::ifstream ifs(path);
- if (!ifs) {
- return "";
- }
- std::string text;
- ifs.seekg(0, std::ios::end);
- text.resize(ifs.tellg());
- ifs.seekg(0, std::ios::beg);
- ifs.read(&text[0], text.size());
- return text;
- }
- static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
- cl_program p;
- char *program_log;
- size_t program_size;
- size_t log_size;
- int err;
- program_size = strlen(program_buffer);
- p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
- if(err < 0) {
- GGML_LOG_ERROR("OpenCL error creating program");
- exit(1);
- }
- err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
- if(err < 0) {
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
- program_log = (char*) malloc(log_size + 1);
- program_log[log_size] = '\0';
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
- GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
- free(program_log);
- exit(1);
- }
- return p;
- }
- static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
- cl_int err;
- // compiler options for general kernels
- auto opencl_c_std =
- std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
- std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable -cl-unsafe-math-optimizations"
- " -cl-finite-math-only -cl-fast-relaxed-math";
- GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
- // add
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "add.cl.h"
- };
- #else
- const std::string kernel_src = read_file("add.cl");
- #endif
- backend_ctx->program_add =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
- CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
- GGML_LOG_CONT(".");
- }
- // clamp
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "clamp.cl.h"
- };
- #else
- const std::string kernel_src = read_file("clamp.cl");
- #endif
- backend_ctx->program_clamp =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
- GGML_LOG_CONT(".");
- }
- // cpy
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "cpy.cl.h"
- };
- #else
- const std::string kernel_src = read_file("cpy.cl");
- #endif
- backend_ctx->program_cpy =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // cvt
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "cvt.cl.h"
- };
- #else
- const std::string kernel_src = read_file("cvt.cl");
- #endif
- backend_ctx->program_cvt =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
- GGML_LOG_CONT(".");
- }
- // diag_mask_inf
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "diag_mask_inf.cl.h"
- };
- #else
- const std::string kernel_src = read_file("diag_mask_inf.cl");
- #endif
- backend_ctx->program_diag_mask_inf =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
- CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
- GGML_LOG_CONT(".");
- }
- // gelu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "gelu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("gelu.cl");
- #endif
- backend_ctx->program_gelu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // glu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "glu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("glu.cl");
- #endif
- backend_ctx->program_glu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
- CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
- CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // get_rows
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "get_rows.cl.h"
- };
- #else
- const std::string kernel_src = read_file("get_rows.cl");
- #endif
- backend_ctx->program_get_rows =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
- GGML_LOG_CONT(".");
- }
- // im2col_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "im2col_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("im2col_f32.cl");
- #endif
- backend_ctx->program_im2col_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // im2col_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "im2col_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("im2col_f16.cl");
- #endif
- backend_ctx->program_im2col_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_v
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_v.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_v =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_8x_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_1d_8x_flat
- // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
- // those compiler versions since it is anyway not used for Adreno.
- if (backend_ctx->gpu_family != ADRENO ||
- backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
- backend_ctx->adreno_cl_compiler_version.type == DX) {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q4_0_f32_1d_16x_flat
- // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
- // those compiler versions since it is anyway not used for Adreno.
- if (backend_ctx->gpu_family != ADRENO ||
- backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
- backend_ctx->adreno_cl_compiler_version.type == DX) {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_q6_k
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_q6_k.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_q6_k.cl");
- #endif
- backend_ctx->program_mul_mv_q6_K =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32_1row
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32_1row.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32_1row =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32_l4
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32_l4.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32_l4 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f16_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f16_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
- #endif
- backend_ctx->program_mul_mv_f16_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mv_f32_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_f32_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
- #endif
- backend_ctx->program_mul_mv_f32_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mat_f16_f32_tiled
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mat_f16_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
- #endif
- backend_ctx->program_mul_mat_f16_f32_tiled =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul.cl");
- #endif
- backend_ctx->program_mul =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
- GGML_LOG_CONT(".");
- }
- // norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("norm.cl");
- #endif
- backend_ctx->program_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
- GGML_LOG_CONT(".");
- }
- // relu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "relu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("relu.cl");
- #endif
- backend_ctx->program_relu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
- GGML_LOG_CONT(".");
- }
- // rms_norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "rms_norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("rms_norm.cl");
- #endif
- backend_ctx->program_rms_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
- GGML_LOG_CONT(".");
- }
- // rope
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "rope.cl.h"
- };
- #else
- const std::string kernel_src = read_file("rope.cl");
- #endif
- backend_ctx->program_rope =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // scale
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "scale.cl.h"
- };
- #else
- const std::string kernel_src = read_file("scale.cl");
- #endif
- backend_ctx->program_scale =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
- GGML_LOG_CONT(".");
- }
- // silu
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "silu.cl.h"
- };
- #else
- const std::string kernel_src = read_file("silu.cl");
- #endif
- backend_ctx->program_silu =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
- CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_f32.cl");
- #endif
- backend_ctx->program_softmax_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_f16.cl");
- #endif
- backend_ctx->program_softmax_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_4_f32
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_4_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_4_f32.cl");
- #endif
- backend_ctx->program_softmax_4_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
- GGML_LOG_CONT(".");
- }
- // softmax_4_f16
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "softmax_4_f16.cl.h"
- };
- #else
- const std::string kernel_src = read_file("softmax_4_f16.cl");
- #endif
- backend_ctx->program_softmax_4_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // argsort
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "argsort.cl.h"
- };
- #else
- const std::string kernel_src = read_file("argsort.cl");
- #endif
- backend_ctx->program_argsort_f32_i32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
- GGML_LOG_CONT(".");
- }
- // div
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "div.cl.h"
- };
- #else
- const std::string kernel_src = read_file("div.cl");
- #endif
- backend_ctx->program_div =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
- CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
- GGML_LOG_CONT(".");
- }
- // sub
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "sub.cl.h"
- };
- #else
- const std::string kernel_src = read_file("sub.cl");
- #endif
- backend_ctx->program_sub =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
- CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
- GGML_LOG_CONT(".");
- }
- // sum_rows
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "sum_rows.cl.h"
- };
- #else
- const std::string kernel_src = read_file("sum_rows.cl");
- #endif
- backend_ctx->program_sum_rows_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
- GGML_LOG_CONT(".");
- }
- // sigmoid
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "sigmoid.cl.h"
- };
- #else
- const std::string kernel_src = read_file("sigmoid.cl");
- #endif
- backend_ctx->program_sigmoid =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // group_norm
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "group_norm.cl.h"
- };
- #else
- const std::string kernel_src = read_file("group_norm.cl");
- #endif
- backend_ctx->program_group_norm =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
- GGML_LOG_CONT(".");
- }
- // repeat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "repeat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("repeat.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_repeat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
- backend_ctx->program_repeat = nullptr;
- backend_ctx->kernel_repeat = nullptr;
- }
- }
- // pad
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "pad.cl.h"
- };
- #else
- const std::string kernel_src = read_file("pad.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_pad =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
- backend_ctx->program_pad = nullptr;
- backend_ctx->kernel_pad = nullptr;
- }
- }
- // tanh
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "tanh.cl.h"
- };
- #else
- const std::string kernel_src = read_file("tanh.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_tanh =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
- CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
- backend_ctx->program_tanh = nullptr;
- backend_ctx->kernel_tanh_f32_nd = nullptr;
- backend_ctx->kernel_tanh_f16_nd = nullptr;
- }
- }
- // upscale
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "upscale.cl.h"
- };
- #else
- const std::string kernel_src = read_file("upscale.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_upscale =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
- if (backend_ctx->program_upscale) {
- cl_int err_bilinear;
- backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
- if (err_bilinear != CL_SUCCESS) {
- GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
- backend_ctx->kernel_upscale_bilinear = nullptr;
- }
- } else {
- backend_ctx->kernel_upscale_bilinear = nullptr;
- }
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
- backend_ctx->program_upscale = nullptr;
- backend_ctx->kernel_upscale = nullptr;
- backend_ctx->kernel_upscale_bilinear = nullptr;
- }
- }
- // concat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "concat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("concat.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_concat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
- CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
- backend_ctx->program_concat = nullptr;
- backend_ctx->kernel_concat_f32_contiguous = nullptr;
- backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
- }
- }
- // timestep_embedding
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "tsembd.cl.h"
- };
- #else
- const std::string kernel_src = read_file("tsembd.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_tsembd =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
- backend_ctx->program_tsembd = nullptr;
- backend_ctx->kernel_timestep_embedding = nullptr;
- }
- }
- // set_rows
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "set_rows.cl.h"
- };
- #else
- const std::string kernel_src = read_file("set_rows.cl");
- #endif
- backend_ctx->program_set_rows =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_set_rows_f32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_set_rows_f16 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16", &err), err));
- GGML_LOG_CONT(".");
- }
- // conv2d
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "conv2d.cl.h"
- };
- const std::string kernel_src_f16_f32 {
- #include "conv2d_f16_f32.cl.h"
- };
- #else
- const std::string kernel_src = read_file("conv2d.cl");
- const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
- #endif
- if (!kernel_src.empty()) {
- backend_ctx->program_conv_2d_f16 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
- CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
- GGML_LOG_CONT(".");
- backend_ctx->program_conv_2d_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
- backend_ctx->program_conv_2d_f16 = nullptr;
- backend_ctx->kernel_conv_2d_f16 = nullptr;
- backend_ctx->program_conv_2d_f32 = nullptr;
- backend_ctx->kernel_conv_2d_f32 = nullptr;
- }
- if (!kernel_src_f16_f32.empty()) {
- backend_ctx->program_conv_2d_f16_f32 =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
- GGML_LOG_CONT(".");
- } else {
- GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
- backend_ctx->program_conv_2d_f16_f32 = nullptr;
- backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
- }
- }
- // mul_mv_id_q4_0_f32_8x_flat
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
- };
- #else
- const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
- #endif
- backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
- GGML_LOG_CONT(".");
- }
- // Adreno kernels
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // transpose
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "transpose.cl.h"
- };
- #else
- const std::string kernel_src = read_file("transpose.cl");
- #endif
- backend_ctx->program_transpose =
- build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
- CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
- CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
- GGML_LOG_CONT(".");
- }
- // gemv_noshuffle_general
- {
- std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv_general {
- #include "gemv_noshuffle_general.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
- #endif
- backend_ctx->program_CL_gemv_general = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- }
- // gemv_noshuffle
- {
- // Gemv 2048, 16384
- std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv {
- #include "gemv_noshuffle.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
- #endif
- backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 2048, 16384
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 5504, 44032
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=5504 "
- " -DBLOCK_STRIDE_A=44032 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- // Gemv 16000, 128000
- CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=16000 "
- " -DBLOCK_STRIDE_A=128000 "
- " -DSIMDGROUP_WIDTH=" +
- std::to_string(backend_ctx->adreno_wave_size);
- if (backend_ctx->has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
- backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
- GGML_LOG_CONT(".");
- }
- // mul_mat_Ab_Bi_8x4
- {
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemm {
- #include "mul_mat_Ab_Bi_8x4.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
- #endif
- backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
- GGML_LOG_CONT(".");
- }
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- GGML_LOG_CONT("\n");
- }
- // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
- // XXX static bool initialized = false;
- // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
- static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
- namespace /* anonymous */ {
- extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
- }
- // Look for available and suitable devices.
- static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
- std::vector<ggml_backend_device> found_devices;
- #ifdef GGML_OPENCL_PROFILING
- GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
- #endif
- struct cl_device;
- struct cl_platform {
- cl_platform_id id;
- unsigned number;
- char name[128];
- char vendor[128];
- struct cl_device * devices;
- unsigned n_devices;
- struct cl_device * default_device;
- };
- struct cl_device {
- struct cl_platform * platform;
- cl_device_id id;
- unsigned number;
- cl_device_type type;
- char name[128];
- char version[128];
- };
- enum { NPLAT = 16, NDEV = 16 };
- struct cl_platform platforms[NPLAT];
- unsigned n_platforms = 0;
- struct cl_device devices[NDEV];
- unsigned n_devices = 0;
- struct cl_device * default_device = NULL;
- unsigned default_platform_number = 0;
- cl_platform_id platform_ids[NPLAT];
- if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
- GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
- return found_devices;
- }
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- p->number = i;
- p->id = platform_ids[i];
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
- cl_device_id device_ids[NDEV];
- cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
- if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
- p->n_devices = 0;
- } else {
- CL_CHECK(clGetDeviceIDsError);
- }
- p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
- p->default_device = NULL;
- for (unsigned j = 0; j < p->n_devices; j++) {
- struct cl_device * d = &devices[n_devices];
- d->number = n_devices++;
- d->id = device_ids[j];
- d->platform = p;
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
- if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
- p->default_device = d;
- }
- }
- if (default_device == NULL && p->default_device != NULL) {
- default_device = p->default_device;
- default_platform_number = i;
- }
- }
- if (n_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
- return found_devices;
- }
- char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
- char * user_device_string = getenv("GGML_OPENCL_DEVICE");
- int user_platform_number = -1;
- int user_device_number = -1;
- cl_device * candidate_devices = nullptr;
- unsigned n_candidate_devices = 0;
- unsigned n;
- if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
- user_platform_number = (int)n;
- }
- if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
- user_device_number = (int)n;
- }
- if (user_platform_number != -1 && user_device_number != -1) {
- cl_platform* platform = &platforms[user_platform_number];
- if ((unsigned)user_device_number >= platform->n_devices) {
- GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
- exit(1);
- }
- default_device = &platform->devices[user_device_number];
- candidate_devices = platform->devices;
- n_candidate_devices = platform->n_devices;
- } else {
- // Choose a platform by matching a substring.
- if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- if (strstr(p->name, user_platform_string) != NULL ||
- strstr(p->vendor, user_platform_string) != NULL) {
- user_platform_number = (int)i;
- break;
- }
- }
- if (user_platform_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
- exit(1);
- }
- }
- int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
- struct cl_platform * p = &platforms[platform_idx];
- candidate_devices = p->devices;
- n_candidate_devices = p->n_devices;
- default_device = p->default_device;
- if (n_candidate_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
- exit(1);
- }
- if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
- for (unsigned i = 0; i < n_candidate_devices; i++) {
- struct cl_device * d = &candidate_devices[i];
- if (strstr(d->name, user_device_string) != NULL) {
- user_device_number = d->number;
- break;
- }
- }
- if (user_device_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
- exit(1);
- }
- }
- if (user_device_number != -1) {
- candidate_devices = &devices[user_device_number];
- n_candidate_devices = 1;
- default_device = &candidate_devices[0];
- }
- GGML_ASSERT(n_candidate_devices > 0);
- if (default_device == NULL) {
- default_device = &candidate_devices[0];
- }
- }
- GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
- // Put the default device in front.
- for (unsigned i = 1; i < n_candidate_devices; i++) {
- if (&candidate_devices[i] == default_device) {
- std::swap(candidate_devices[0], candidate_devices[i]);
- default_device = &candidate_devices[0];
- break;
- }
- }
- GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
- std::vector<cl_device_id> device_ids;
- for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
- device_ids.push_back(dev->id);
- }
- cl_int err;
- cl_context shared_context;
- cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
- CL_CHECK(
- (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
- for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
- GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
- auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
- /*.platform =*/dev->platform->id,
- /*.platform_nane =*/dev->platform->name,
- /*.device =*/dev->id,
- /*.device_name =*/dev->name,
- /*.device_type =*/dev->type,
- /*.device_version =*/dev->version,
- /*.backend_ctx =*/nullptr,
- /*.buffer_type =*/{},
- /*.context =*/shared_context,
- });
- found_devices.push_back(ggml_backend_device{
- /* .iface = */ ggml_backend_opencl_device_i,
- /* .reg = */ reg,
- /* .context = */ dev_ctx.get(),
- });
- if (!ggml_cl2_init(&found_devices.back())) {
- found_devices.pop_back();
- GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
- continue;
- }
- dev_ctx.release();
- }
- if (found_devices.size()) {
- auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
- GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
- dev_ctx->device_version.c_str());
- if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
- GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
- dev_ctx->device_name.c_str());
- }
- }
- return found_devices;
- }
- // Initialize device if it is supported (returns nullptr if it is not).
- static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
- GGML_ASSERT(dev);
- GGML_ASSERT(dev->context);
- ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
- GGML_ASSERT(dev_ctx->platform);
- GGML_ASSERT(dev_ctx->device);
- if (dev_ctx->backend_ctx) {
- return dev_ctx->backend_ctx;
- }
- auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
- backend_ctx->device = dev_ctx->device;
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- // ref_count get increased in ggml_backend_opencl_device_init
- // This function is also used to retrieve backend context, so we don't want
- // to increase ref_count for each call. We only want to increase ref_count
- // when the associated device is initialized
- backend_ctx->ref_count = 0;
- if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
- strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
- strstr(dev_ctx->device_version.c_str(), "Adreno")) {
- backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
- // Usually device version contains the detailed device name
- backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
- if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
- backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
- }
- // Use wave size of 64 for all Adreno GPUs.
- backend_ctx->adreno_wave_size = 64;
- } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
- backend_ctx->gpu_family = GPU_FAMILY::INTEL;
- } else {
- GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- return nullptr;
- }
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
- GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
- "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
- return nullptr;
- }
- #endif
- // Populate backend device name
- backend_ctx->device_name = dev_ctx->device_name;
- // A local ref of cl_device_id for convenience
- cl_device_id device = backend_ctx->device;
- ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
- // Check device OpenCL version, OpenCL 2.0 or above is required
- ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
- if (opencl_c_version.major < 2) {
- GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
- return nullptr;
- }
- // Check driver version
- size_t driver_version_str_size;
- clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
- char *driver_version = (char *)alloca(driver_version_str_size + 1);
- clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
- driver_version[driver_version_str_size] = '\0';
- GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
- backend_ctx->driver_version = driver_version;
- backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
- backend_ctx->has_vector_subgroup_broadcast =
- backend_ctx->adreno_cl_compiler_version.major >= 47 ||
- backend_ctx->adreno_cl_compiler_version.major == 17;
- GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
- backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
- size_t ext_str_size;
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
- char *ext_buffer = (char *)alloca(ext_str_size + 1);
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
- ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
- // Check if ext_buffer contains cl_khr_fp16
- backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
- GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
- // fp16 is required
- if (!backend_ctx->fp16_support) {
- GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
- return nullptr;
- }
- // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
- // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
- if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
- strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
- GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
- "(note that subgroups is an optional feature in OpenCL 3.0)\n");
- return nullptr;
- }
- cl_uint base_align_in_bits;
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
- GGML_ASSERT(base_align_in_bits % 8u == 0);
- backend_ctx->alignment = base_align_in_bits / 8u;
- GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
- clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
- GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
- // Check SVM.
- cl_device_svm_capabilities svm_caps;
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
- GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
- svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
- if (opencl_c_version.major >= 3) {
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
- &backend_ctx->non_uniform_workgroups, 0));
- } else {
- GGML_ASSERT(opencl_c_version.major == 2);
- // Non-uniform workgroup sizes is mandatory feature in v2.x.
- backend_ctx->non_uniform_workgroups = true;
- }
- // Print out configurations
- #ifdef GGML_OPENCL_SOA_Q
- GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
- #endif // GGML_OPENCL_SOA_Q
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- cl_int err;
- // A local ref of cl_context for convenience
- cl_context context = backend_ctx->context = dev_ctx->context;
- //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
- // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
- // (queue = clCreateCommandQueue(context, device, 0, &err), err)
- //)));
- cl_command_queue_properties command_queue_props = 0;
- #ifdef GGML_OPENCL_PROFILING
- command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
- #endif
- CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
- // Load kernels
- load_cl_kernels(backend_ctx.get(), opencl_c_version);
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Allocate intermediate buffers and images
- size_t required_A_q_d_bytes = 311164928;
- size_t required_A_s_d_bytes = 38895616;
- size_t required_B_d_bytes = 45088768;
- // Ensure buffer sizes do not exceed the maximum allocation size
- size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
- size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
- size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
- if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_A_q_d_bytes, max_A_q_d_bytes);
- }
- if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_A_s_d_bytes, max_A_s_d_bytes);
- }
- if (required_B_d_bytes > backend_ctx->max_alloc_size) {
- GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
- required_B_d_bytes, max_B_d_bytes);
- }
- CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
- dev_ctx->backend_ctx = backend_ctx.release();
- return dev_ctx->backend_ctx;
- }
- static void ggml_cl2_free(ggml_backend_t backend) {
- ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
- ctx->free();
- // The CL context is shared by all backends, release it if all backends have been released
- bool should_release_opencl = true;
- for (auto device : g_ggml_backend_opencl_devices) {
- ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
- if (ctx_dev->backend_ctx->ref_count > 0) {
- should_release_opencl = false;
- }
- }
- if (should_release_opencl) {
- CL_CHECK(clReleaseContext(ctx->context));
- }
- }
- //------------------------------------------------------------------------------
- // Tensor extra management
- //------------------------------------------------------------------------------
- struct ggml_tensor_extra_cl {
- // The buffer object that holds the data.
- cl_mem data_device;
- // The offset into the buffer object. This is primarily for scratch buffer
- // and view operation.
- // NB: this offset no longer includes view offset (view_offs). Whenever this
- // offset is used, view_offs should be considered.
- cl_ulong offset;
- // The actual size of the cl_mem object. This is needed when returning the
- // block to the pool.
- size_t actual_size;
- void reset() {
- data_device = nullptr;
- offset = 0;
- actual_size = 0;
- }
- };
- // Additional tensor extra structs for quantized tensors.
- // These tensors are loaded from files and should not be allocated in scratch --
- // they should always be allocated from the pool. Hence, they do not have an
- // `offset`, which indicate their locations in the scratch buffer.
- struct ggml_tensor_extra_cl_q4_0 {
- // Quantized values.
- cl_mem q = nullptr;
- // Quantized values in image1d_buffer_t.
- cl_mem q_img = nullptr;
- // Scales.
- cl_mem d = nullptr;
- // Scales in image1d_buffer_t.
- cl_mem d_img = nullptr;
- // Size of quantized values.
- size_t size_q = 0;
- // Size of scales.
- size_t size_d = 0;
- ~ggml_tensor_extra_cl_q4_0() {
- reset();
- }
- void reset() {
- // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
- // They must be properly released so that the original buffer can be
- // properly released to avoid memory leak.
- if (q != nullptr) {
- CL_CHECK(clReleaseMemObject(q));
- q = nullptr;
- }
- if (d != nullptr) {
- CL_CHECK(clReleaseMemObject(d));
- d = nullptr;
- }
- // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
- // enabled. They point to the images in ggml_backend_opencl_buffer_context.
- // So, there is no need to release them here.
- // TODO: initialize them for non SMALL_PATH path, or remove them.
- q_img = nullptr;
- d_img = nullptr;
- size_q = 0;
- size_d = 0;
- }
- };
- //------------------------------------------------------------------------------
- // Backend API
- //------------------------------------------------------------------------------
- //
- // backend
- //
- static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
- return "OpenCL";
- UNUSED(backend);
- }
- static void ggml_backend_opencl_free(ggml_backend_t backend) {
- ggml_cl2_free(backend);
- }
- static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
- GGML_UNUSED(backend);
- GGML_UNUSED(src);
- GGML_UNUSED(dst);
- return false;
- }
- static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
- auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
- cl_event evt;
- CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseEvent(evt));
- }
- // Syncronizes the 'backend_ctx's device with others so that commands
- // enqueued to it won't start until commands in the other devices have
- // completed.
- static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
- if (g_ggml_backend_opencl_devices.size() < 2)
- return; // No other devices to synchronize with.
- std::vector<cl_event> events;
- events.reserve(g_ggml_backend_opencl_devices.size());
- for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
- auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
- if (backend_ctx != other_backend_ctx) {
- cl_event ev;
- CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
- CL_CHECK(clFlush(other_backend_ctx->queue));
- events.push_back(ev);
- }
- }
- CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
- for (auto ev : events) {
- CL_CHECK(clReleaseEvent(ev));
- }
- }
- static void sync_with_other_backends(ggml_backend_t backend) {
- auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
- sync_with_other_backends(backend_ctx);
- }
- static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
- if (!ggml_can_fuse(cgraph, node_idx, ops)) {
- return false;
- }
- if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
- const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
- const ggml_tensor *mul = cgraph->nodes[node_idx+1];
- GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
- GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
- // rms_norm only supports f32
- if (mul->src[0]->type != GGML_TYPE_F32 ||
- mul->src[1]->type != GGML_TYPE_F32 ||
- mul->type != GGML_TYPE_F32) {
- return false;
- }
- // if rms_norm is the B operand, then we don't handle broadcast
- if (rms_norm == mul->src[1] &&
- !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
- return false;
- }
- // rms_norm assumes contiguous rows
- if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
- return false;
- }
- }
- return true;
- }
- static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
- static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- // NOTE: this may oversynchronize by synchronizing with
- // backends/devices which don't compute 'cgraph's
- // dependencies.
- sync_with_other_backends(backend);
- if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
- ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
- i++;
- continue;
- }
- bool ok = ggml_cl_compute_forward(backend, node);
- if (!ok) {
- GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- GGML_UNUSED(dev);
- switch (op->op) {
- case GGML_OP_NONE:
- return true;
- case GGML_OP_GET_ROWS:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- return true;
- case GGML_TYPE_Q4_0:
- #ifdef GGML_OPENCL_SOA_Q
- // We do not support flattened Q4_0 (and possibly other Q's)
- return false;
- #else // GGML_OPENCL_SOA_Q
- return true;
- #endif // GGML_OPENCL_SOA_Q
- default:
- return false;
- }
- case GGML_OP_SET_ROWS:
- {
- // TODO: add support
- // ref: https://github.com/ggml-org/llama.cpp/pull/14274
- #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
- if (op->src[0]->type != GGML_TYPE_F32) {
- return false;
- }
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- }
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_F16:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- default:
- return false;
- }
- case GGML_OP_ADD:
- case GGML_OP_SCALE:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_SUB:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_GELU_QUICK:
- return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
- case GGML_UNARY_OP_SIGMOID:
- return ggml_is_contiguous(op->src[0]);
- case GGML_UNARY_OP_TANH:
- return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
- (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
- default:
- return false;
- }
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(op)) {
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
- default:
- return false;
- }
- case GGML_OP_CLAMP:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_SOFT_MAX:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- return true;
- case GGML_OP_REPEAT:
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
- case GGML_OP_PAD:
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
- op->src[0]->ne[3] == 1 && op->ne[3] == 1;
- case GGML_OP_UPSCALE:
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
- case GGML_OP_CONV_2D:
- return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
- (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
- (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
- case GGML_OP_CONCAT:
- return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
- case GGML_OP_TIMESTEP_EMBEDDING:
- return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
- case GGML_OP_GROUP_NORM:
- return ggml_is_contiguous(op->src[0]);
- case GGML_OP_MUL_MAT:
- if (op->src[0]->type == GGML_TYPE_F16) {
- return true;
- } else if (op->src[0]->type == GGML_TYPE_F32) {
- return op->src[1]->type == GGML_TYPE_F32;
- } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
- op->src[0]->type == GGML_TYPE_Q6_K) {
- return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- }
- return false;
- case GGML_OP_MUL_MAT_ID:
- if (op->src[0]->type == GGML_TYPE_Q4_0) {
- if (op->src[1]->type == GGML_TYPE_F32) {
- return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- }
- }
- return false;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- return true;
- case GGML_OP_DIAG_MASK_INF:
- return op->ne[3] == 1;
- case GGML_OP_ROPE: {
- const int mode = ((const int32_t *) op->op_params)[2];
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_mrope && !is_vision) {
- if (op->src[0]->type == GGML_TYPE_F32 ||
- op->src[0]->type == GGML_TYPE_F16) {
- return true;
- }
- return false;
- }
- if (is_vision) {
- if (op->src[0]->type == GGML_TYPE_F32 ||
- op->src[0]->type == GGML_TYPE_F16) {
- return true;
- }
- return false;
- }
- return true;
- }
- case GGML_OP_IM2COL:
- return true;
- case GGML_OP_ARGSORT:
- return op->src[0]->type == GGML_TYPE_F32;
- case GGML_OP_SUM_ROWS:
- return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
- default:
- return false;
- }
- }
- // Forward declaration - implementation appears later in the file.
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
- static ggml_guid_t ggml_backend_opencl_guid() {
- static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
- return &guid;
- }
- static ggml_backend_i ggml_backend_opencl_i = {
- /* .get_name = */ ggml_backend_opencl_name,
- /* .free = */ ggml_backend_opencl_free,
- /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
- /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
- /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
- /* .synchronize = */ ggml_backend_opencl_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_opencl_graph_compute,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- };
- ggml_backend_t ggml_backend_opencl_init(void) {
- ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .interface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx
- };
- return backend;
- }
- bool ggml_backend_is_opencl(ggml_backend_t backend) {
- return backend && backend->iface.get_name == ggml_backend_opencl_name;
- }
- //
- // buffer
- //
- struct ggml_backend_opencl_buffer_context {
- // A buffer context can hold multiple cl_mem objects. This is for flattening
- // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
- // each tensor is allocated a separate buffer. When flattening is enabled
- // with small allocation, each tensor is backed by two cl_mem objects (for
- // quants and scales) packed into a backend_opencl_buffer.
- ggml_backend_opencl_buffer_context(cl_mem buf)
- : name("OpenCL") {
- buffer.push_back(buf);
- }
- ~ggml_backend_opencl_buffer_context() {
- for (cl_mem buf : buffer) {
- CL_CHECK(clReleaseMemObject(buf));
- }
- for (cl_mem im : img) {
- CL_CHECK(clReleaseMemObject(im));
- }
- // Delete all extras to trigger their destructors
- for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
- delete e;
- }
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- delete e;
- }
- }
- ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
- ggml_tensor_extra_cl * extra;
- if (temp_tensor_extras.empty()) {
- extra = new ggml_tensor_extra_cl();
- } else {
- extra = temp_tensor_extras.back();
- temp_tensor_extras.pop_back();
- }
- temp_tensor_extras_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
- ggml_tensor_extra_cl_q4_0 * extra;
- if (temp_tensor_extras_q4_0.empty()) {
- extra = new ggml_tensor_extra_cl_q4_0();
- } else {
- extra = temp_tensor_extras_q4_0.back();
- temp_tensor_extras_q4_0.pop_back();
- }
- temp_tensor_extras_q4_0_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- void reset() {
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- temp_tensor_extras.push_back(e);
- }
- temp_tensor_extras_in_use.clear();
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- temp_tensor_extras_q4_0.push_back(e);
- }
- temp_tensor_extras_q4_0_in_use.clear();
- }
- // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
- // being used are in `temp_tensor_extras_in_use`. At the first run, new
- // extras get created and put in `in_use`. When the buffer is reset via
- // the `reset` callback, all extras in `in_use` get moved to available extras
- // for reuse.
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
- // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
- // before any tensor is initialized (at the beginning of alloc_tensor_range).
- // Hence, there is alway a buffer object in this vector. When each tensor is
- // being initialized, this original buffer object will be released if both
- // flattening and small allocation are enabled, and additional buffer
- // objects will be created in init_tensor to represent flattened quantized
- // weights.
- std::vector<cl_mem> buffer;
- // These are image1d_buffer_t objects that wrap around the quants and scales.
- // For Q4_0 quantization, there should be two of them - one for quants and
- // one for scales. They should be populated only when flattening and small
- // allocation are enabled.
- std::vector<cl_mem> img;
- std::string name;
- };
- static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- delete ctx;
- }
- static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
- return (void *) (uintptr_t) backend_ctx->alignment;
- }
- static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_cl2_init(buffer->buft->device);
- if (tensor->view_src != nullptr) {
- GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
- ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
- GGML_ASSERT(view_extra && "view_extra is nullptr?");
- // Reuse extra of the parent tensor. The offset of this view tensor
- // becomes `extra->offset + view_offs` and needs to be calculated when
- // it is used. This changes is needed because of the change to
- // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
- // `buffer` passed in here will always be `tensor->buffer`. It is OK
- // to allocate extras from the same buffer context for ordinary
- // intermediate tensors. But for views into kv cache tensors, doing so
- // would mess up the extras used by kv cache.
- // Before #7640, `buffer` is for intermediate tensors, which is always
- // different from that of kv cache tensors.
- //
- // NB: now extra->offset no longer accounts for view_offs.
- // NB: this should not apply to weight tensors (for end-to-end runs, but
- // may apply for test-backend-ops).
- // FIXME: if any unexpected results are seen, double check the offset -
- // there could be other places that need fix.
- tensor->extra = view_extra;
- } else {
- {
- size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
- ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
- extra->offset = offset;
- extra->data_device = ctx->buffer[0];
- extra->actual_size = ggml_nbytes(tensor);
- tensor->extra = extra;
- }
- }
- return GGML_STATUS_SUCCESS;
- }
- // The optimized gemm and gemv kernels are used for large matrices without batch.
- // tensor is the quantized weights matrix.
- inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
- int64_t threshold_ne0 = 512;
- int64_t threshold_ne1 = 512;
- if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
- backend_ctx->adreno_cl_compiler_version.type != DX) {
- threshold_ne0 = 128;
- threshold_ne1 = 128;
- }
- return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
- tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- // We separate the quantized bits and scale from block_q4_0 by using an
- // additional kernel, where each thread handles a block. We first read the
- // original weights into a temporary buffer, then create two separate
- // buffers for quantized bits and scales, which are then populated by the
- // conversion kernel.
- if (tensor->type == GGML_TYPE_Q4_0) {
- // Tensors should have been preallocated, therefore they should
- // already have ggml_tensor_extra_cl as extra.
- ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
- GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
- // Allocate the new extra and create aliases from the original.
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
- size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
- size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
- GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, data_device, CL_TRUE, 0,
- ggml_nbytes(tensor), data, 0, NULL, NULL));
- // We consider the specified offset arg as always, although For weights
- // the offset arg should be 0 (we do not assert this).
- //GGML_ASSERT(offset == 0);
- // We create subbuffers from the original tensor buffer for scales and
- // quants - i.e., scales and quants are aliases into the buffer obejct
- // that backs the original tensor. This is a cleaner way to adapt to the
- // new memory management.
- // In the old code, we allocate new buffers for scales and quants
- // respectively, which could still be done but would result in double
- // allocation; properly deallocating the preallocated buffer that backs
- // the tensors is tricky and would leak the backend specific information
- // into the general backend code.
- // Does this create misaligned subbuffers (alignment is 1024) in certain
- // cases ?
- cl_buffer_region region;
- // The original tensor memory is divided into scales and quants, i.e.,
- // we first store scales, then quants.
- // Create subbuffer for scales.
- region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
- region.size = size_d;
- extra->d = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- auto previous_origin = region.origin;
- // Create subbuffer for quants.
- region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
- region.size = size_q;
- extra->q = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- // The optimized kernels need weights in natural order, so unshuffle.
- if (use_adreno_kernels(backend_ctx, tensor)) {
- kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
- }
- #else
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseMemObject(data_device));
- tensor->extra = extra;
- // transpose the weights and scales
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Only do transpose for large, non batched matrix
- // TODO: use preallocated images instead of sub-buffer then image
- if (use_adreno_kernels(backend_ctx, tensor)) {
- // <----------------------------------------------------------------------------------> //
- // start transpose
- // <----------------------------------------------------------------------------------> //
- int M = tensor->ne[1]; // ne01
- int K = tensor->ne[0]; // ne00
- //For matrix-vector multiplication kernel, we assume K is a multiple of 32
- GGML_ASSERT(K % 32 == 0);
- //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
- GGML_ASSERT(M % 4 == 0);
- // transpose is out of place, so we need to allocate transposed buffers
- // <----------------------------------------------------------------------------------> //
- // use sub_buffer of max buffer size instead
- size_t q_size_bytes = K * M / 8 * sizeof(float);
- cl_buffer_region region;
- region.origin = 0;
- region.size = q_size_bytes;
- cl_mem qT_d = clCreateSubBuffer(
- backend_ctx->A_q_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
- CL_CHECK(err);
- // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
- size_t d_size_bytes = M * (K / 32) * 2;
- region.origin = 0;
- region.size = d_size_bytes;
- cl_mem dT_d = clCreateSubBuffer(
- backend_ctx->A_s_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // create images from the buffers
- // <----------------------------------------------------------------------------------> //
- cl_mem q_d_image1D;
- cl_mem d_d_image1D;
- cl_mem qT_d_image1D;
- cl_mem dT_d_image1D;
- cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- cl_image_desc img_desc_1d;
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 4 / 4;
- img_desc_1d.buffer = extra->q;
- q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 4 / 4;
- img_desc_1d.buffer = qT_d;
- qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4;
- img_desc_1d.buffer = extra->d;
- d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4;
- img_desc_1d.buffer = dT_d;
- dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // set up and call the transpose kernels
- // <----------------------------------------------------------------------------------> //
- // weights
- int height_q = M / 4;
- int width_q = K / 4 / 4;
- kernel = backend_ctx->kernel_transpose_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
- size_t local_size_q[3] = {4, 16, 1};
- size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- int height_s = M / 4;
- int width_s = K / 32 / 4;
- kernel = backend_ctx->kernel_transpose_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
- size_t local_size_s[3] = {4, 16, 1};
- size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // copy transposed buffer contents to original buffers
- // <----------------------------------------------------------------------------------> //
- // weights
- CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // deallocate transpose buffers
- // <----------------------------------------------------------------------------------> //
- CL_CHECK(clReleaseMemObject(qT_d));
- CL_CHECK(clReleaseMemObject(dT_d));
- // deallocate temporary images
- CL_CHECK(clReleaseMemObject(q_d_image1D));
- CL_CHECK(clReleaseMemObject(d_d_image1D));
- CL_CHECK(clReleaseMemObject(qT_d_image1D));
- CL_CHECK(clReleaseMemObject(dT_d_image1D));
- // <----------------------------------------------------------------------------------> //
- // end transpose
- // <----------------------------------------------------------------------------------> //
- }
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->extra);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- // Make sure all previously submitted commands in other devices are finished.
- sync_with_other_backends(backend_ctx);
- #ifdef GGML_OPENCL_SOA_Q
- // In end-to-end runs, get_tensor is usually used to get back the logits,
- // where we can simply do clEnqueueReadBuffer since they are f32.
- // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
- // which requires reading back quantized weight tensors.
- // To properly support this, we need to restore block_q4_0 struct arrays
- // from the flattened buffers.
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {1, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
- global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clEnqueueReadBuffer(
- queue, data_device, CL_TRUE, offset,
- size, data, 0, NULL, NULL));
- CL_CHECK(clReleaseMemObject(data_device));
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- CL_CHECK(clEnqueueReadBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_dev_t dev = buffer->buft->device;
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- cl_command_queue queue = backend_ctx->queue;
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- for (cl_mem buf : ctx->buffer) {
- CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
- }
- CL_CHECK(clFinish(queue));
- }
- static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ctx->reset();
- }
- static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
- /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
- /* .get_base = */ ggml_backend_opencl_buffer_get_base,
- /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
- /* .memset_tensor = */ NULL,
- /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_opencl_buffer_clear,
- /* .reset = */ ggml_backend_opencl_buffer_reset,
- };
- //
- // buffer type
- //
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
- return "OpenCL";
- GGML_UNUSED(buffer_type);
- }
- static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
- // clCreateBuffer returns -61 for size 0
- size = std::max(size, (size_t)1);
- cl_int err;
- cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
- if (err != CL_SUCCESS) {
- GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
- return nullptr;
- }
- ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
- return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
- }
- static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- return backend_ctx->alignment;
- }
- static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
- static size_t max_size = -1;
- if (max_size == (size_t)-1) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- max_size = backend_ctx->max_alloc_size;
- }
- return max_size;
- }
- static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_opencl(backend);
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
- /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
- /* .get_alloc_size = */ NULL,
- /* .is_host = */ NULL,
- };
- //
- // backend device
- //
- static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
- return "GPUOpenCL";
- GGML_UNUSED(dev);
- }
- static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
- ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
- return dev_ctx->device_name.c_str();
- }
- static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
- *free = 1;
- *total = 1;
- GGML_UNUSED(dev);
- }
- static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
- return GGML_BACKEND_DEVICE_TYPE_GPU;
- GGML_UNUSED(dev);
- }
- static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
- props->name = ggml_backend_opencl_device_get_name(dev);
- props->description = ggml_backend_opencl_device_get_description(dev);
- props->type = ggml_backend_opencl_device_get_type(dev);
- ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
- props->caps = ggml_backend_dev_caps {
- /* .async = */ false,
- /* .host_buffer = */ false,
- /* .buffer_from_host_ptr = */ false,
- /* .events = */ false,
- };
- }
- static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
- // Getting a new reference to the backend, increase ref_count
- backend_ctx->ref_count++;
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .interface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx,
- };
- return backend;
- GGML_UNUSED(params);
- }
- static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
- auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
- dev_ctx->buffer_type = ggml_backend_buffer_type{
- /* .iface = */ ggml_backend_opencl_buffer_type_interface,
- /* .device = */ dev,
- /* .context = */ nullptr,
- };
- return &dev_ctx->buffer_type;
- }
- static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
- GGML_UNUSED(dev);
- GGML_UNUSED(ptr);
- GGML_UNUSED(size);
- GGML_UNUSED(max_tensor_size);
- return nullptr;
- }
- static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- return ggml_opencl_supports_op(dev, op);
- }
- static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
- // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
- if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
- buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
- return false;
- }
- // Check cl_context is the same. clEnqueue* commands may not use
- // buffers from another cl_context.
- ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
- ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
- return backend_ctx0->context == backend_ctx1->context;
- }
- namespace /* anonymous */ {
- struct ggml_backend_device_i ggml_backend_opencl_device_i = {
- /* .get_name = */ ggml_backend_opencl_device_get_name,
- /* .get_description = */ ggml_backend_opencl_device_get_description,
- /* .get_memory = */ ggml_backend_opencl_device_get_memory,
- /* .get_type = */ ggml_backend_opencl_device_get_type,
- /* .get_props = */ ggml_backend_opencl_device_get_props,
- /* .init_backend = */ ggml_backend_opencl_device_init,
- /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
- /* .get_host_buffer_type = */ NULL,
- /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
- /* .supports_op = */ ggml_backend_opencl_device_supports_op,
- /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- }
- // Backend registry
- static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
- return "OpenCL";
- GGML_UNUSED(reg);
- }
- static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
- return g_ggml_backend_opencl_devices.size();
- GGML_UNUSED(reg);
- }
- static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
- GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
- return &g_ggml_backend_opencl_devices[index];
- GGML_UNUSED(reg);
- GGML_UNUSED(index);
- }
- static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
- /* .get_name = */ ggml_backend_opencl_reg_get_name,
- /* .device_count = */ ggml_backend_opencl_reg_device_count,
- /* .device_get = */ ggml_backend_opencl_reg_device_get,
- /* .get_proc_address = */ NULL,
- };
- ggml_backend_reg_t ggml_backend_opencl_reg(void) {
- static std::mutex mutex;
- static ggml_backend_reg reg;
- static bool initialized = false;
- std::lock_guard<std::mutex> lock(mutex);
- if (initialized) {
- return ®
- }
- initialized = true;
- g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(®);
- reg = ggml_backend_reg{
- /* .api_version = */ GGML_BACKEND_API_VERSION,
- /* .iface = */ ggml_backend_opencl_reg_i,
- /* .context = */ NULL,
- };
- return ®
- }
- GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
- //------------------------------------------------------------------------------
- // Debugging utils
- //------------------------------------------------------------------------------
- #if 0
- #define QK4_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
- "wrong q4_0 block size/padding");
- #include <math.h>
- #ifdef __cplusplus
- #include "half.hpp"
- #endif
- static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
- void * buf = malloc(ggml_nbytes(tensor));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- void * buf_q;
- void * buf_d;
- #endif
- // Make sure everything is done.
- CL_CHECK(clFinish(queue));
- #ifdef GGML_OPENCL_SOA_Q
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
- GGML_ASSERT(extra);
- size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
- size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
- GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
- buf_q = malloc(size_q);
- buf_d = malloc(size_d);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
- CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- } else {
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- }
- #else
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- #endif // GGML_OPENCL_SOA_Q
- // Open file and dump.
- char fname[512];
- snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
- FILE * f = fopen(fname, "w");
- if (!f) {
- printf("Failed to open %s\n", fname);
- return;
- }
- if (tensor->type == GGML_TYPE_F32) {
- float * data = (float *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_I32) {
- int * data = (int *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%d\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_F16) {
- #ifdef __cplusplus
- half_float::half * data = (half_float::half *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (std::isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", float(data[i]));
- }
- #endif
- } else if (tensor->type == GGML_TYPE_Q4_0) {
- #ifdef GGML_OPENCL_SOA_Q
- ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
- unsigned char * data_q = (unsigned char *)buf_q;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data_d[i]);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data_q[k]);
- }
- fprintf(f, "\n");
- data_q += QK4_0/2;
- }
- free(buf_d);
- free(buf_q);
- #else
- block_q4_0 * data = (block_q4_0 *) buf;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data[i].d);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data[i].qs[k]);
- }
- fprintf(f, "\n");
- }
- #endif // GGML_OPENCL_SOA_Q
- }
- free(buf);
- fflush(f);
- fclose(f);
- }
- #else
- #define dump_tensor(tensor)
- #endif
- //------------------------------------------------------------------------------
- // Ops
- //------------------------------------------------------------------------------
- static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
- }
- static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- UNUSED(backend);
- UNUSED(src0);
- UNUSED(src1);
- UNUSED(dst);
- }
- static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_get_rows_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_get_rows_f16;
- break;
- case GGML_TYPE_Q4_0:
- kernel = backend_ctx->kernel_get_rows_q4_0;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
- size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
- size_t local_work_size[] = {1, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // ne0 = ne00
- // ne2 = ne02
- // ne3 = ne03
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const int ne0 = dst->ne[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- const int nblk0 = ne0/ggml_blck_size(dst->type);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- switch (dst->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_set_rows_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_set_rows_f16;
- break;
- default:
- GGML_ABORT("not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
- int nth0 = 64;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- }
- int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
- while (nth0 < nblk0 && nth0 < max_workgroup_size) {
- nth0 *= 2;
- }
- int rows_per_workgroup = 1;
- if (nth0 > nblk0) {
- rows_per_workgroup = nth0 / nblk0;
- nth0 = nblk0;
- }
- size_t global_work_size[] = {
- (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
- (size_t)ne02*rows_per_workgroup,
- (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_add_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_add;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_mul_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_mul;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const int ne0 = dst->ne[0];
- const cl_ulong nb0 = dst->nb[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_div_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_div;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb10 = src1->nb[0];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const int ne0 = dst->ne[0];
- const cl_ulong nb0 = dst->nb[0];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_sub_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_sub;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_erf_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu_erf;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_quick_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu_quick;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_silu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_silu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_relu;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_sigmoid_f32;
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_sigmoid_f16;
- } else {
- GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float min;
- float max;
- memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
- cl_kernel kernel = backend_ctx->kernel_clamp;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int nth = MIN(64, ne00);
- cl_kernel kernel = backend_ctx->kernel_norm;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- //ggml_backend_opencl_device_context * dev_ctx =
- // (ggml_backend_opencl_device_context *)backend->device->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- GGML_ASSERT(ne00 % 4 == 0);
- const int nth = MIN(64, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- cl_kernel kernel = backend_ctx->kernel_rms_norm;
- // Note, this kernel declares local memory in kernel args and the size
- // depends on subgroup size.
- // Note, this requires OpenCL 2.1 and above
- // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
- size_t sgs;
- //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
- // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
- // sizeof(local_work_size), local_work_size,
- // sizeof(size_t), &sgs, NULL));
- if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- } else if (backend_ctx->gpu_family == INTEL) {
- sgs = 32;
- } else {
- GGML_ASSERT(false && "Unsupported GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
- // This is local memory - the size depends on subgroup size.
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
- GGML_ASSERT(mul_tensor);
- GGML_ASSERT(rms_norm_tensor);
- // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
- const ggml_tensor * src0 = rms_norm_tensor->src[0];
- const ggml_tensor * src1;
- if (mul_tensor->src[0] == rms_norm_tensor) {
- src1 = mul_tensor->src[1];
- } else if (mul_tensor->src[1] == rms_norm_tensor) {
- src1 = mul_tensor->src[0];
- } else {
- GGML_ASSERT(false && "Invalid args for rms_norm and mul");
- }
- const ggml_tensor * dst = mul_tensor;
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- float eps;
- memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const cl_ulong nb13 = src1->nb[3];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- GGML_ASSERT(ne00 % 4 == 0);
- size_t sgs;
- if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- } else if (backend_ctx->gpu_family == INTEL) {
- sgs = 32;
- } else {
- GGML_ASSERT(false && "Unsupported GPU");
- }
- cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
- int nth = sgs;
- int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
- while (nth < ne00 && nth < max_workgroup_size) {
- nth *= 2;
- }
- nth = MIN(nth, max_workgroup_size);
- nth = MIN(nth, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*nth/sgs, NULL));
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- int32_t n_groups = ((const int32_t *) dst->op_params)[0];
- int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
- float eps = ((const float *) dst->op_params)[1];
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne = ne00*ne01*ne02;
- cl_kernel kernel = backend_ctx->kernel_group_norm;
- size_t sgs = 64;
- if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- } else if (backend_ctx->gpu_family == INTEL) {
- sgs = 32;
- } else {
- GGML_ASSERT(false && "Unsupported GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
- size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
- size_t local_work_size[] = {(size_t)sgs, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0_abs = extra0->offset + src0->view_offs;
- cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_tanh_f32_nd;
- } else if (dst->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_tanh_f16_nd;
- } else {
- GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
- }
- GGML_ASSERT(kernel != nullptr);
- const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
- const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
- const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
- size_t global_work_size[3];
- if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
- return;
- }
- global_work_size[0] = (size_t)ne10;
- global_work_size[1] = (size_t)ne11;
- global_work_size[2] = (size_t)ne12;
- size_t lws0 = 16, lws1 = 4, lws2 = 1;
- if (ne10 < 16) lws0 = ne10;
- if (ne11 < 4) lws1 = ne11;
- if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
- while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
- while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
- while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
- size_t local_work_size[] = {lws0, lws1, lws2};
- size_t* local_work_size_ptr = local_work_size;
- if (!backend_ctx->non_uniform_workgroups) {
- if (global_work_size[0] % local_work_size[0] != 0 ||
- global_work_size[1] % local_work_size[1] != 0 ||
- global_work_size[2] % local_work_size[2] != 0) {
- local_work_size_ptr = NULL;
- }
- }
- if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(dst->type == src0->type);
- UNUSED(src1_shape_def);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- if (backend_ctx->kernel_repeat == nullptr) {
- GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
- const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
- const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
- const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
- cl_kernel kernel = backend_ctx->kernel_repeat;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
- size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
- size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
- size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
- size_t global_work_size[] = { gws0, gws1, gws2 };
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
- }
- static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- if (backend_ctx->kernel_pad == nullptr) {
- GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const int s_ne0 = src0->ne[0];
- const int s_ne1 = src0->ne[1];
- const int s_ne2 = src0->ne[2];
- const int d_ne0 = dst->ne[0];
- const int d_ne1 = dst->ne[1];
- const int d_ne2 = dst->ne[2];
- cl_kernel kernel = backend_ctx->kernel_pad;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne0));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne1));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne2));
- size_t lws0 = 64;
- size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
- size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2 };
- size_t local_work_size[] = { lws0, 1, 1 };
- size_t * local_work_size_ptr = local_work_size;
- if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr;
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
- const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
- cl_kernel kernel = nullptr;
- if (mode == GGML_SCALE_MODE_NEAREST) {
- kernel = backend_ctx->kernel_upscale;
- if (kernel == nullptr) {
- GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- } else if (mode == GGML_SCALE_MODE_BILINEAR) {
- kernel = backend_ctx->kernel_upscale_bilinear;
- if (kernel == nullptr) {
- GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- } else {
- GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- const int ne2 = dst->ne[2];
- const int ne3 = dst->ne[3];
- float sf0 = (float)ne0 / ne00;
- float sf1 = (float)ne1 / ne01;
- float sf2 = (float)ne2 / ne02;
- float sf3 = (float)ne3 / ne03;
- float pixel_offset = 0.5f;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
- if (mode == GGML_SCALE_MODE_NEAREST) {
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
- } else if (mode == GGML_SCALE_MODE_BILINEAR) {
- if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
- sf0 = (float)(ne0 - 1) / (ne00 - 1);
- sf1 = (float)(ne1 - 1) / (ne01 - 1);
- pixel_offset = 0.0f;
- }
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
- }
- size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
- if (dst_total_elements == 0) {
- return;
- }
- size_t global_work_size[] = { dst_total_elements, 1, 1 };
- size_t local_work_size_pref = 256;
- size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr;
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
- GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
- cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
- cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
- const int32_t dim = ((const int32_t *) dst->op_params)[0];
- GGML_ASSERT(dim >= 0 && dim <= 3);
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
- if (dim == 3) {
- size_t nbytes_src0 = ggml_nbytes(src0);
- size_t nbytes_src1 = ggml_nbytes(src1);
- CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
- off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
- CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
- off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
- } else {
- cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
- size_t global_work_size[3];
- for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
- cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
- cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
- cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
- int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
- int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
- int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), ¤t_off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), ¤t_off_src1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), ¤t_off_dst));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
- global_work_size[0] = d_ne0;
- global_work_size[1] = d_ne1;
- global_work_size[2] = d_ne2;
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
- }
- }
- } else {
- cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
- long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
- cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
- cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
- long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
- cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(long), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(long), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(long), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(long), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(long), &d_ne0));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(long), &d_ne1));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(long), &d_ne2));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(long), &d_ne3));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
- size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
- d_ne2 > 0 ? (size_t)d_ne2 : 1,
- d_ne3 > 0 ? (size_t)d_ne3 : 1 };
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
- }
- }
- static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- if (backend_ctx->kernel_timestep_embedding == nullptr) {
- GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
- return;
- }
- ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
- cl_ulong off_dst = extra_dst->offset + dst->view_offs;
- const int logical_dim = dst->op_params[0];
- const int max_period = dst->op_params[1];
- const int dst_nb1_bytes = dst->nb[1];
- cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
- size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
- size_t gws1 = (size_t)src0->ne[0];
- size_t global_work_size[] = {gws0, gws1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
- }
- static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int M = src0->ne[1];
- const int N = src1->ne[1];
- const int K = src0->ne[0];
- cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
- // Tiling parameters. These need to be tuned for optimal performance.
- // They must match the #defines in the kernel mul_mat_f16_f32.cl.
- //
- // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
- // TPWM / TPWN: Threads per Work-group. This is the work-group size.
- // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
- //
- // The following relationships must hold:
- // OPWM = TPWM * OPTM
- // OPWN = TPWN * OPTN
- //
- const int OPWM = 64;
- const int OPWN = 64;
- const int TPWM = 16;
- const int TPWN = 8;
- size_t local_work_size[2] = { TPWM, TPWN };
- size_t global_work_size[2] = {
- (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
- (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
- };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_TENSOR_BINARY_OP_LOCALS;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
- const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
- const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
- const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
- const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
- const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
- const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
- const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
- const int64_t NPQ = (int64_t)N * OW * OH;
- const uint32_t BS_K = 64;
- const uint32_t BS_NPQ = 64;
- const uint32_t BS_CRS = 16;
- const uint32_t VEC_SIZE = 4;
- const uint32_t TS_K = 4;
- const uint32_t TS_NPQ = 8;
- const uint32_t WG_K = BS_K / TS_K;
- const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
- auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
- const uint32_t NB_K = splitWork(Cout, BS_K);
- const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
- cl_kernel kernel;
- size_t shmem_size;
- if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_conv_2d_f16;
- shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_conv_2d_f32;
- shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_conv_2d_f16_f32;
- shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
- } else {
- GGML_ASSERT(false && "Unsupported data type combination for conv2d");
- }
- cl_uint idx = 0;
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
- CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
- size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
- size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
- src0->ne[1] > 32 && // M > 32
- src1->ne[1] > 32 && // N > 32
- src0->ne[0] > 32 && // K > 32
- src0->ne[2] == 1 && src0->ne[3] == 1 &&
- src1->ne[2] == 1 && src1->ne[3] == 1 &&
- ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
- backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
- ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
- return;
- }
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- #ifdef GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
- #endif
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- int r2 = ne12/ne02;
- int r3 = ne13/ne03;
- GGML_ASSERT(ne00 == ne10);
- int nth0 = 32;
- int nth1 = 1;
- int nrows = 1;
- // The number of values produced by each subgroup
- int ndst = 4;
- cl_kernel kernel;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_context context = backend_ctx->context;
- if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
- // init CL objects
- // <--------------------------------------------> //
- cl_int status;
- cl_image_format img_fmt_1d;
- cl_image_desc img_desc_1d;
- cl_buffer_region region;
- cl_mem A_image1d = nullptr;
- cl_mem B_image1d = nullptr;
- cl_mem B_sub_buffer = nullptr;
- cl_mem C_d = nullptr;
- // for B transpose
- cl_mem B_d = nullptr;
- cl_mem B_d_input_image = nullptr;
- // <--------------------------------------------> //
- // define matrix dimensions
- // <--------------------------------------------> //
- int M = ne01;
- int N = ne1;
- int K = ne00;
- int padding;
- // <--------------------------------------------> //
- // q4_0 x fp32
- if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
- // TODO: remove duplicate definitions of image description + format -- move to top
- // create an image for A
- // <--------------------------------------------> //
- if (N == 1) {
- img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
- } else {
- img_fmt_1d = { CL_R, CL_FLOAT};
- }
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
- img_desc_1d.buffer = extra0_q4_0->q;
- A_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // create a sub_buffer for B
- // <--------------------------------------------> //
- region.origin = (extra1->offset);
- region.size = K * N * sizeof(float);
- B_sub_buffer = clCreateSubBuffer(
- extra1->data_device,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // transpose activation for Skyler's gemm
- if (N != 1) {
- //how many extra elements beyond multiple of 8
- int extra_elements = N % 8;
- //how much padding to add
- padding = 0;
- if (extra_elements > 0){
- padding = 8 - extra_elements;
- }
- // Specify the starting offset (in bytes)
- region.origin = 0;
- // Specify the size of the sub-buffer (divide by 2 for FP16)
- region.size = K * (N + padding) * sizeof(float)/2;
- B_d = clCreateSubBuffer(
- backend_ctx->B_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
- cl_image_desc image_desc_B_d_input = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * N / 4),
- 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
- };
- B_d_input_image = clCreateImage(
- context,
- 0,
- &image_format_B_d_input,
- &image_desc_B_d_input,
- NULL,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
- cl_image_desc image_desc_B_d_output = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * (N + padding)/4),
- 0, 0, 0, 0, 0, 0, 0, { B_d }
- };
- B_image1d = clCreateImage(
- context,
- 0,
- &image_format_B_d_output,
- &image_desc_B_d_output,
- NULL,
- &status);
- CL_CHECK(status);
- int height_B = N/4;
- if (height_B == 0) {
- height_B = 1;
- }
- int width_B = K/4;
- int padded_height_B = (N + padding)/4;
- kernel = backend_ctx->kernel_transpose_32_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
- size_t local_size_t[2] = { 1, 16 };
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=4;
- local_size_t[1]=8;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_size_t[0]=1;
- local_size_t[1]=8;
- } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- }
- size_t global_size_t[2] = {
- static_cast<size_t>(width_B),
- static_cast<size_t>(padded_height_B)
- };
- backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
- } else {
- // no need to transpose B in other cases
- // create an image for B from sub_buffer
- // <--------------------------------------------> //
- img_fmt_1d = {CL_RGBA, CL_FLOAT};
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_width = K * N / 4;
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.buffer = B_sub_buffer;
- B_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- }
- // choose gemm or gemv kernel
- // <--------------------------------------------> //
- if (N == 1) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- if (M == 4096 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- } else if (M == 4096 && K == 11008) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- } else if (M == 11008 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- } else if (M == 32000 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- }
- } else {
- kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
- }
- // <--------------------------------------------> //
- // set kernel args
- // <--------------------------------------------> //
- cl_uint k_arg = 0;
- if (N == 1) {
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
- } else {
- region.origin = extrad->offset; // Specify the starting offset (in bytes)
- region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
- C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- int padded_N = ne1 + padding;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
- }
- // <--------------------------------------------> //
- // choose workgroup size
- // <--------------------------------------------> //
- size_t global_work_size[3] = {
- 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
- size_t local_work_size[3] = {64, 2, 4};
- global_work_size[0] = (size_t)(ceil((float)ne1/8));
- global_work_size[1] = (size_t)(ne01/4);
- global_work_size[2] = (size_t)(1);
- local_work_size[0] = (size_t)(1); //4x32 for FP32
- local_work_size[1] = (size_t)(128);
- local_work_size[2] = (size_t)(1);
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 1;
- local_work_size[1] = 128;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- }
- if (N == 1) {
- size_t wavesize = backend_ctx->adreno_wave_size;
- local_work_size[0] = wavesize; // localsize
- local_work_size[1] = 4; // reduce factor
- local_work_size[2] = 1;
- global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
- global_work_size[1] = 4; // reduce factor
- global_work_size[2] = 1;
- }
- // <--------------------------------------------> //
- // enqueue kernel with profiling
- // <--------------------------------------------> //
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- // <--------------------------------------------> //
- // deallocate sub buffers and images
- // <--------------------------------------------> //
- CL_CHECK(clReleaseMemObject(A_image1d));
- CL_CHECK(clReleaseMemObject(B_sub_buffer));
- CL_CHECK(clReleaseMemObject(B_image1d));
- if (N != 1) {
- CL_CHECK(clReleaseMemObject(B_d));
- CL_CHECK(clReleaseMemObject(B_d_input_image));
- CL_CHECK(clReleaseMemObject(C_d));
- }
- // <--------------------------------------------> //
- return;
- }
- } // if (ne01 && ne1)
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- if (!ggml_is_transposed(src0) &&
- !ggml_is_transposed(src1) &&
- src1t == GGML_TYPE_F32 &&
- ne00%32 == 0 &&
- ne11 > 2) {
- #ifdef GGML_OPENCL_SOA_Q
- // Set up kernel.
- switch(src0t) {
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- default:
- break;
- }
- // Launch kernel.
- if (src0t == GGML_TYPE_Q4_0) {
- size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- if (backend_ctx->gpu_family == INTEL) {
- // Set global size for Intel. It uses 16x output values.
- global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
- global_work_size[1] = (size_t)ne11*nth1;
- global_work_size[2] = (size_t)ne12*ne13;
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- return;
- }
- #else // GGML_OPENCL_SOA_Q
- // TODO: add block_q4_0 variant.
- #endif // GGML_OPENCL_SOA_Q
- }
- // use custom matrix x vector kernel
- switch (src0t) {
- case GGML_TYPE_F32:
- //GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- kernel = backend_ctx->kernel_mul_mat_f32_f32;
- nrows = 4;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_F16:
- //GGML_ASSERT(ne02 == ne12);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- if (src1t == GGML_TYPE_F32) {
- if (ne11 * ne12 < 4) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
- } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
- nrows = ne11;
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f32;
- nrows = 4;
- }
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f16;
- nrows = 4;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- #ifdef GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst = 8;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst =8;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #else // GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
- // group produces N_DST (4 for Q4_0 kernel) values in the result.
- // The number of workgroups on dim 0 (the leading dimension) is
- // the nearest multiple of 4 that covers ne0 (equals ne01).
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
- ndst = 4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
- ndst = 4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #endif // GGML_OPENCL_SOA_Q
- break;
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 2;
- nth1 = 16;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 2;
- nth1 = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- if (src0t == GGML_TYPE_Q4_0 ||
- src0t == GGML_TYPE_Q4_1 ||
- src0t == GGML_TYPE_Q8_0 ||
- src0t == GGML_TYPE_Q2_K) {
- // Each SIMD group produces N_DST values in the result. Assuming each
- // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
- // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
- // (number of workgroups) will be a nearest multiple of
- // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
- // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
- size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else if (src0t == GGML_TYPE_Q4_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q3_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q5_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q6_K) {
- size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- int64_t ny = (ne11 + nrows - 1)/nrows;
- size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- }
- static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const ggml_tensor * src2 = dst->src[2];
- GGML_ASSERT(src2);
- GGML_ASSERT(src2->extra);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offset2 = extra2->offset + src2->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- #ifdef GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
- #endif
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb00 = src0->nb[0];
- const cl_ulong nb02 = src0->nb[2];
- const int ne10 = src1->ne[0];
- const int ne11 = src1->ne[1];
- const int ne12 = src1->ne[2];
- const int ne13 = src1->ne[3];
- const cl_ulong nb11 = src1->nb[1];
- const cl_ulong nb12 = src1->nb[2];
- const int ne20 = src2->ne[0];
- const int ne21 = src2->ne[1];
- const cl_ulong nb21 = src2->nb[1];
- const int ne0 = dst->ne[0];
- const int ne1 = dst->ne[1];
- const int r2 = ne12/ne02;
- const int r3 = ne13/ne03;
- const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
- GGML_ASSERT(ne00 == ne10);
- int sgs = 32; // subgroup size
- int nsg = 1; // number of subgroups
- int nrows = 1; // number of row in src1
- int ndst = 4; // number of values produced by each subgroup
- cl_kernel kernel;
- // subgroup mat vec
- switch (src0->type) {
- case GGML_TYPE_Q4_0: {
- kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
- if (backend_ctx->gpu_family == INTEL) {
- sgs = 16;
- nsg = 1;
- ndst = 8;
- } else if (backend_ctx->gpu_family == ADRENO) {
- sgs = 64;
- nsg = 1;
- ndst = 8;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
- break;
- }
- default:
- GGML_ASSERT(false && "not implemented");;
- }
- int _ne1 = 1;
- int ne123 = dst_rows;
- size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
- size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- float scale;
- float bias;
- memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_scale;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- // GGML_OP_CPY happens between src0 and src1.
- // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
- UNUSED(dst);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_kernel kernel;
- switch (src0t) {
- case GGML_TYPE_F32:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f32_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f32_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- case GGML_TYPE_F16:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f16_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f16_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- const int nth = MIN(64, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
- }
- static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cl_cpy(backend, src0, dst, nullptr);
- UNUSED(src1);
- }
- static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- int n_past = ((int32_t *)(dst->op_params))[0];
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (ne00%8 == 0) {
- kernel = backend_ctx->kernel_diag_mask_inf_8;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- } else {
- kernel = backend_ctx->kernel_diag_mask_inf;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
- size_t local_work_size[] = {64, 1, 1};
- size_t * local_work_size_ptr = local_work_size;
- if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
- local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
- }
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
- }
- }
- static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
- // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
- // alibi is not used; however, for some other models, it is used.
- // KQ_mask
- if (src1) {
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- }
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_long nb01 = src0->nb[1];
- const cl_long nb02 = src0->nb[2];
- const cl_long nb03 = src0->nb[3];
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_long nb11 = src1 ? src1->nb[1] : 0;
- const cl_long nb12 = src1 ? src1->nb[2] : 0;
- const cl_long nb13 = src1 ? src1->nb[3] : 0;
- const cl_long nb1 = dst->nb[1];
- const cl_long nb2 = dst->nb[2];
- const cl_long nb3 = dst->nb[3];
- float scale, max_bias;
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- const int n_head = src0->ne[2];
- const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
- // Local size must be wave size. Each workgroup is a wave, working on a row,
- // where a row corresponds to leading dimension.
- int nth = MIN(32, ne00);
- if (backend_ctx->gpu_family == INTEL) {
- // This is the same as the initial value.
- nth = MIN(32, ne00);
- }
- else if (backend_ctx->gpu_family == ADRENO) {
- nth = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- cl_kernel kernel;
- if (ne00%4 == 0) {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_4_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max_4;
- }
- } else {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max;
- }
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &scale));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(float), &max_bias));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &m0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &m1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &n_head_log2));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_tensor * src2 = dst->src[2];
- ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
- cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
- const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- GGML_ASSERT(ne10 % ne02 == 0);
- GGML_ASSERT(ne10 >= ne02);
- int nth = MIN(64, ne00);
- const int n_past = ((int *) dst->op_params)[0];
- const int n_dims = ((int *) dst->op_params)[1];
- const int mode = ((int *) dst->op_params)[2];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- float freq_base;
- float freq_scale;
- float ext_factor;
- float attn_factor;
- float beta_fast;
- float beta_slow;
- int32_t sections[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
- const bool is_neox = mode & 2;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_mrope) {
- GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
- }
- if (is_vision) {
- GGML_ASSERT(n_dims == ne00/2);
- }
- cl_kernel kernel;
- if (is_neox) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_neox_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_neox_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- } else if (is_mrope && !is_vision) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_multi_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_multi_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- } else if (is_vision) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_vision_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_vision_f16;
- break;
- default:
- GGML_ASSERT(false);
- }
- } else {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_norm_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_norm_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
- CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
- CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
- CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
- if (is_mrope || is_vision) {
- CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, §ions));
- }
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // src0 - filter, src1 - input
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const cl_long IC = src1->ne[is_2D ? 2 : 1];
- const cl_long IH = is_2D ? src1->ne[1] : 1;
- const cl_long IW = src1->ne[0];
- const cl_long KH = is_2D ? src0->ne[1] : 1;
- const cl_long KW = src0->ne[0];
- const cl_long OH = is_2D ? dst->ne[2] : 1;
- const cl_long OW = dst->ne[1];
- // nb is byte offset, src is type float32
- const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
- const cl_long batch = src1->ne[is_2D ? 3 : 2];
- const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
- const cl_long pelements = OW*KW*KH;
- const cl_long CHW = IC*KH*KW;
- cl_kernel kernel;
- if(dst->type == GGML_TYPE_F16) {
- kernel = backend_ctx->kernel_im2col_f16;
- } else {
- kernel = backend_ctx->kernel_im2col_f32;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
- const int num_blocks = (pelements + 256 - 1) / 256;
- size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
- size_t local_work_size[] = {256, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int ne00 = src0->ne[0];
- const int nrows = ggml_nrows(src0);
- int ne00_padded = 1;
- while (ne00_padded < ne00) {
- ne00_padded *= 2;
- }
- int order = (enum ggml_sort_order) dst->op_params[0];
- cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
- CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
- size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
- size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- const int ne00 = src0->ne[0];
- const int ne01 = src0->ne[1];
- const int ne02 = src0->ne[2];
- const int ne03 = src0->ne[3];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb02 = src0->nb[2];
- const cl_ulong nb03 = src0->nb[3];
- const cl_ulong nb1 = dst->nb[1];
- const cl_ulong nb2 = dst->nb[2];
- const cl_ulong nb3 = dst->nb[3];
- cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
- size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)64, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- if (src1) {
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- }
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_kernel kernel;
- switch (ggml_get_glu_op(dst)) {
- case GGML_GLU_OP_GEGLU:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_geglu;
- } else {
- kernel = backend_ctx->kernel_geglu_f16;
- }
- break;
- case GGML_GLU_OP_REGLU:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_reglu;
- } else {
- kernel = backend_ctx->kernel_reglu_f16;
- }
- break;
- case GGML_GLU_OP_SWIGLU:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_swiglu;
- } else {
- kernel = backend_ctx->kernel_swiglu_f16;
- }
- break;
- case GGML_GLU_OP_GEGLU_ERF:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_geglu_erf;
- } else {
- kernel = backend_ctx->kernel_geglu_erf_f16;
- }
- break;
- case GGML_GLU_OP_GEGLU_QUICK:
- if (dst->type == GGML_TYPE_F32) {
- kernel = backend_ctx->kernel_geglu_quick;
- } else {
- kernel = backend_ctx->kernel_geglu_quick_f16;
- }
- break;
- default:
- GGML_ABORT("Unsupported glu op");
- }
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
- const int ne0 = dst->ne[0];
- const cl_ulong nb01 = src0->nb[1];
- const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
- const cl_ulong nb1 = dst->nb[1];
- const int swp = ((const int32_t *) dst->op_params)[1];
- const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
- const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
- const size_t nrows = ggml_nrows(src0);
- size_t nth = 512;
- size_t global_work_size[] = {nrows*nth, 1, 1};
- size_t local_work_size[] = {nth, 1, 1};
- backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
- }
- //------------------------------------------------------------------------------
- // Op offloading
- //------------------------------------------------------------------------------
- typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
- ggml_cl_func_t func = nullptr;
- ggml_tensor * src0 = tensor->src[0];
- ggml_tensor * src1 = tensor->src[1];
- const bool any_on_device = tensor->extra
- || (src0 != nullptr && src0->extra)
- || (src1 != nullptr && src1->extra);
- switch (tensor->op) {
- case GGML_OP_GET_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_get_rows;
- break;
- case GGML_OP_SET_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_set_rows;
- break;
- case GGML_OP_CPY:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_cpy;
- break;
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_dup;
- break;
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_add;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_mul;
- break;
- case GGML_OP_DIV:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_div;
- break;
- case GGML_OP_SUB:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_sub;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu;
- break;
- case GGML_UNARY_OP_GELU_ERF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu_erf;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu_quick;
- break;
- case GGML_UNARY_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_silu;
- break;
- case GGML_UNARY_OP_RELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_relu;
- break;
- case GGML_UNARY_OP_SIGMOID:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_sigmoid;
- break;
- case GGML_UNARY_OP_TANH:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_tanh;
- break;
- default:
- return false;
- } break;
- case GGML_OP_GLU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_glu;
- break;
- case GGML_OP_CLAMP:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_clamp;
- break;
- case GGML_OP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_norm;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rms_norm;
- break;
- case GGML_OP_GROUP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_group_norm;
- break;
- case GGML_OP_REPEAT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_repeat;
- break;
- case GGML_OP_PAD:
- if (!any_on_device) {
- return false;
- }
- ggml_cl_pad(backend, tensor->src[0], tensor);
- return true;
- case GGML_OP_UPSCALE:
- if (!any_on_device) {
- return false;
- }
- ggml_cl_upscale(backend, tensor->src[0], tensor);
- return true;
- case GGML_OP_CONV_2D:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_conv_2d;
- break;
- case GGML_OP_CONCAT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_concat;
- break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- if (!any_on_device) {
- return false;
- }
- ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
- return true;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cl_mul_mat;
- break;
- case GGML_OP_MUL_MAT_ID:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_mul_mat_id;
- break;
- case GGML_OP_SCALE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_scale;
- break;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_soft_max;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rope;
- break;
- case GGML_OP_IM2COL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_im2col;
- break;
- case GGML_OP_ARGSORT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_argsort;
- break;
- case GGML_OP_SUM_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_sum_rows;
- break;
- default:
- return false;
- }
- func(backend, tensor->src[0], tensor->src[1], tensor);
- return true;
- }
|