ggml-opencl.cpp 291 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <string.h>
  15. #include <cstddef>
  16. #include <cstdint>
  17. #include <atomic>
  18. #include <fstream>
  19. #include <limits>
  20. #include <vector>
  21. #include <string>
  22. #include <cmath>
  23. #include <memory>
  24. #include <charconv>
  25. #include <mutex>
  26. #undef MIN
  27. #undef MAX
  28. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  29. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  30. #define UNUSED(x) (void)(x)
  31. #define CL_CHECK(err) \
  32. do { \
  33. cl_int err_ = (err); \
  34. if (err_ != CL_SUCCESS) { \
  35. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  36. #err, err_, __FILE__, __LINE__); \
  37. GGML_ASSERT(0); \
  38. } \
  39. } while (0)
  40. //------------------------------------------------------------------------------
  41. // OpenCL
  42. //------------------------------------------------------------------------------
  43. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  44. enum GPU_FAMILY {
  45. ADRENO,
  46. INTEL,
  47. UNKNOWN,
  48. };
  49. enum ADRENO_GPU_GEN {
  50. ADRENO_UNKNOWN,
  51. A7X,
  52. A8X,
  53. X1E,
  54. };
  55. enum ADRENO_CL_COMPILER_TYPE {
  56. E031,
  57. DX,
  58. };
  59. struct ggml_cl_version {
  60. cl_uint major = 0;
  61. cl_uint minor = 0;
  62. };
  63. struct ggml_cl_compiler_version {
  64. ADRENO_CL_COMPILER_TYPE type;
  65. int major = -1;
  66. int minor = -1;
  67. int patch = -1;
  68. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  69. return major == x && minor == y && patch == z && type == t;
  70. }
  71. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  72. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  73. }
  74. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  75. return same(t, x, y, z) || newer_than(t, x, y, z);
  76. }
  77. };
  78. static size_t align_to(size_t value, size_t to_alignment) {
  79. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  80. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  81. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  82. }
  83. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  84. static ggml_cl_version parse_cl_version(std::string_view str) {
  85. size_t major_str_begin = 0;
  86. size_t major_str_end = str.find(".", major_str_begin);
  87. if (major_str_end == std::string::npos) {
  88. return {};
  89. }
  90. size_t minor_str_begin = major_str_end + 1;
  91. size_t minor_str_end = str.find(" ", minor_str_begin);
  92. if (minor_str_end == std::string::npos) {
  93. return {};
  94. }
  95. cl_uint version_major;
  96. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  97. return {};
  98. }
  99. cl_uint version_minor;
  100. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  101. return {};
  102. }
  103. return { version_major, version_minor };
  104. }
  105. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  106. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  107. size_t param_size;
  108. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  109. std::unique_ptr<char[]> param_storage(new char[param_size]);
  110. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  111. auto param_value = std::string_view(param_storage.get(), param_size);
  112. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  113. if (param_value.find(version_prefix) != 0) {
  114. return {};
  115. }
  116. param_value.remove_prefix(version_prefix.length());
  117. return parse_cl_version(param_value);
  118. }
  119. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  120. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  121. size_t param_size;
  122. #if CL_TARGET_OPENCL_VERSION >= 300
  123. if (platform_version.major >= 3) {
  124. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  125. if (!param_size) {
  126. return {};
  127. }
  128. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  129. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  130. unsigned versions_count = param_size / sizeof(cl_name_version);
  131. cl_version version_max = 0;
  132. for (unsigned i = 0; i < versions_count; i++) {
  133. version_max = std::max<cl_version>(versions[i].version, version_max);
  134. }
  135. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  136. }
  137. #else
  138. GGML_UNUSED(platform_version);
  139. #endif // CL_TARGET_OPENCL_VERSION >= 300
  140. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  141. if (!param_size) {
  142. return {};
  143. }
  144. std::unique_ptr<char[]> param_storage(new char[param_size]);
  145. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  146. auto param_value = std::string_view(param_storage.get(), param_size);
  147. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  148. if (param_value.find(version_prefix) != 0) {
  149. return {};
  150. }
  151. param_value.remove_prefix(version_prefix.length());
  152. return parse_cl_version(param_value);
  153. }
  154. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  155. if (strstr(device_name, "730") ||
  156. strstr(device_name, "740") ||
  157. strstr(device_name, "750")) {
  158. return ADRENO_GPU_GEN::A7X;
  159. }
  160. if (strstr(device_name, "830")) {
  161. return ADRENO_GPU_GEN::A8X;
  162. }
  163. if (strstr(device_name, "X1")) {
  164. return ADRENO_GPU_GEN::X1E;
  165. }
  166. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  167. }
  168. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  169. std::string driver_ver_str(driver_version);
  170. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  171. size_t compiler_ver_pos = driver_ver_str.find("E031");
  172. size_t compiler_ver_len = 13;
  173. size_t compiler_major_offset = 5;
  174. size_t compiler_minor_offset = 8;
  175. size_t compiler_patch_offset = 11;
  176. if (compiler_ver_pos == std::string::npos) {
  177. compiler_ver_pos = driver_ver_str.find("DX");
  178. if (compiler_ver_pos == std::string::npos) {
  179. return {};
  180. }
  181. type = ADRENO_CL_COMPILER_TYPE::DX;
  182. compiler_ver_len = 11;
  183. compiler_major_offset = 3;
  184. }
  185. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  186. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  187. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  188. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  189. return { type, major, minor, patch };
  190. }
  191. // Profiling
  192. struct ProfilingInfo {
  193. std::string op_name;
  194. std::string kernel_name;
  195. cl_kernel kernel;
  196. cl_event evt;
  197. cl_ulong cmd_queued;
  198. cl_ulong cmd_submit;
  199. cl_ulong cmd_start;
  200. cl_ulong cmd_end;
  201. cl_ulong overhead_start;
  202. cl_ulong overhead_end;
  203. // For the times below, see spec for clGetEventProfilingInfo
  204. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  205. cl_ulong cmd_queued_duration_ns;
  206. // The time kernel spent for submission - START - SUBMIT
  207. cl_ulong cmd_submit_duration_ns;
  208. // Kernel execution time in nanoseconds - END - START
  209. cl_ulong cmd_duration_ns;
  210. // The time for the kernel to complete - COMPLETE - END
  211. cl_ulong cmd_complete_duration_ns;
  212. // Total time to finish the kernel - COMPELTE - QUEUED
  213. cl_ulong cmd_total_duration_ns;
  214. // Global and local work sizes.
  215. size_t global_size[3];
  216. size_t local_size[3];
  217. // Op output size.
  218. size_t output_size[4];
  219. };
  220. static void populateProfilingInfo(
  221. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  222. size_t global_size[3], size_t local_size[3],
  223. const ggml_tensor * tensor) {
  224. info.op_name = tensor->name;
  225. info.kernel = kernel;
  226. info.evt = evt;
  227. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  228. info.local_size[0] = 0;
  229. info.local_size[1] = 0;
  230. info.local_size[2] = 0;
  231. info.global_size[0] = 0;
  232. info.global_size[1] = 0;
  233. info.global_size[2] = 0;
  234. if (local_size) {
  235. for (cl_uint i = 0; i < work_dim; ++i) {
  236. info.local_size[i] = local_size[i];
  237. }
  238. }
  239. for (cl_uint i = 0; i < work_dim; ++i) {
  240. info.global_size[i] = global_size[i];
  241. }
  242. info.output_size[0] = tensor->ne[0];
  243. info.output_size[1] = tensor->ne[1];
  244. info.output_size[2] = tensor->ne[2];
  245. info.output_size[3] = tensor->ne[3];
  246. }
  247. struct ggml_backend_opencl_context;
  248. // backend device context
  249. struct ggml_backend_opencl_device_context {
  250. cl_platform_id platform;
  251. std::string platform_name;
  252. cl_device_id device;
  253. std::string device_name;
  254. cl_device_type device_type;
  255. std::string device_version;
  256. // Initialized by ggml_cl2_init().
  257. ggml_backend_opencl_context * backend_ctx = nullptr;
  258. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  259. ggml_backend_buffer_type buffer_type;
  260. cl_context context = nullptr;
  261. };
  262. // backend context
  263. struct ggml_backend_opencl_context {
  264. int ref_count;
  265. cl_device_id device;
  266. std::string device_name;
  267. std::string driver_version;
  268. GPU_FAMILY gpu_family;
  269. ADRENO_GPU_GEN adreno_gen;
  270. cl_int alignment;
  271. size_t max_alloc_size;
  272. bool fp16_support;
  273. bool has_vector_subgroup_broadcast;
  274. bool disable_fusion;
  275. ggml_cl_compiler_version adreno_cl_compiler_version;
  276. int adreno_wave_size;
  277. cl_bool non_uniform_workgroups;
  278. cl_context context;
  279. cl_command_queue queue;
  280. cl_program program_add;
  281. cl_program program_clamp;
  282. cl_program program_cpy;
  283. cl_program program_cvt;
  284. cl_program program_diag_mask_inf;
  285. cl_program program_gelu;
  286. cl_program program_gemv_noshuffle_general;
  287. cl_program program_gemv_noshuffle;
  288. cl_program program_get_rows;
  289. cl_program program_set_rows;
  290. cl_program program_glu;
  291. cl_program program_im2col_f16;
  292. cl_program program_im2col_f32;
  293. cl_program program_mul_mat_Ab_Bi_8x4;
  294. cl_program program_mul_mv_q4_0_f32;
  295. cl_program program_mul_mv_q4_0_f32_v;
  296. cl_program program_mul_mv_q4_0_f32_8x_flat;
  297. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  298. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  299. cl_program program_mul_mv_q6_K;
  300. cl_program program_mul_mv_f16_f16;
  301. cl_program program_mul_mv_f16_f32_1row;
  302. cl_program program_mul_mv_f16_f32_l4;
  303. cl_program program_mul_mv_f16_f32;
  304. cl_program program_mul_mv_f32_f32;
  305. cl_program program_mul;
  306. cl_program program_mul_mat_f16_f32_tiled;
  307. cl_program program_div;
  308. cl_program program_sub;
  309. cl_program program_norm;
  310. cl_program program_relu;
  311. cl_program program_rms_norm;
  312. cl_program program_group_norm;
  313. cl_program program_rope;
  314. cl_program program_scale;
  315. cl_program program_silu;
  316. cl_program program_sigmoid;
  317. cl_program program_softmax_f32;
  318. cl_program program_softmax_f16;
  319. cl_program program_softmax_4_f32;
  320. cl_program program_softmax_4_f16;
  321. cl_program program_argsort_f32_i32;
  322. cl_program program_sum_rows_f32;
  323. cl_program program_repeat;
  324. cl_program program_pad;
  325. cl_program program_tanh;
  326. cl_program program_upscale;
  327. cl_program program_concat;
  328. cl_program program_conv_2d_f16;
  329. cl_program program_conv_2d_f32;
  330. cl_program program_conv_2d_f16_f32;
  331. cl_program program_tsembd;
  332. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  333. cl_kernel kernel_add, kernel_add_row;
  334. cl_kernel kernel_mul, kernel_mul_row;
  335. cl_kernel kernel_div, kernel_div_row;
  336. cl_kernel kernel_sub, kernel_sub_row;
  337. cl_kernel kernel_scale;
  338. cl_kernel kernel_silu, kernel_silu_4;
  339. cl_kernel kernel_gelu, kernel_gelu_4;
  340. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  341. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  342. cl_kernel kernel_relu;
  343. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  344. cl_kernel kernel_clamp;
  345. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_geglu_erf, kernel_geglu_quick,
  346. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  347. cl_kernel kernel_norm;
  348. cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
  349. cl_kernel kernel_group_norm;
  350. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  351. cl_kernel kernel_soft_max, kernel_soft_max_4;
  352. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  353. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  354. cl_kernel kernel_set_rows_f32, kernel_set_rows_f16;
  355. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  356. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  357. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  358. cl_kernel kernel_mul_mat_f32_f32;
  359. cl_kernel kernel_mul_mat_f16_f16;
  360. cl_kernel kernel_mul_mat_f16_f32_1row;
  361. cl_kernel kernel_mul_mat_f16_f32;
  362. cl_kernel kernel_mul_mat_f16_f32_l4;
  363. cl_kernel kernel_mul_mat_f16_f32_tiled;
  364. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  365. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  366. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  367. cl_kernel kernel_convert_block_q4_0_noshuffle;
  368. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  369. cl_kernel kernel_mul_mv_q6_K_f32;
  370. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  371. cl_kernel kernel_argsort_f32_i32;
  372. cl_kernel kernel_sum_rows_f32;
  373. cl_kernel kernel_repeat;
  374. cl_kernel kernel_pad;
  375. cl_kernel kernel_tanh_f32_nd;
  376. cl_kernel kernel_tanh_f16_nd;
  377. cl_kernel kernel_upscale;
  378. cl_kernel kernel_upscale_bilinear;
  379. cl_kernel kernel_concat_f32_contiguous;
  380. cl_kernel kernel_concat_f32_non_contiguous;
  381. cl_kernel kernel_conv_2d_f16;
  382. cl_kernel kernel_conv_2d_f32;
  383. cl_kernel kernel_conv_2d_f16_f32;
  384. cl_kernel kernel_timestep_embedding;
  385. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  386. std::vector<ProfilingInfo> profiling_info;
  387. void write_profiling_info() {
  388. FILE * fperf = fopen("cl_profiling.csv", "w");
  389. if (!fperf) {
  390. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  391. return;
  392. }
  393. // Populate profiling info
  394. for (ProfilingInfo & info : profiling_info) {
  395. cl_ulong cmd_queued;
  396. cl_ulong cmd_submit;
  397. cl_ulong cmd_start;
  398. cl_ulong cmd_end;
  399. cl_ulong cmd_complete;
  400. CL_CHECK(clWaitForEvents(1, &info.evt));
  401. CL_CHECK(clGetEventProfilingInfo(
  402. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  403. CL_CHECK(clGetEventProfilingInfo(
  404. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  405. CL_CHECK(clGetEventProfilingInfo(
  406. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  407. CL_CHECK(clGetEventProfilingInfo(
  408. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  409. CL_CHECK(clGetEventProfilingInfo(
  410. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  411. CL_CHECK(clReleaseEvent(info.evt));
  412. char kernel_name[512];
  413. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  414. sizeof(kernel_name), kernel_name, NULL));
  415. info.kernel_name = kernel_name;
  416. info.cmd_queued = cmd_queued;
  417. info.cmd_submit = cmd_submit;
  418. info.cmd_start = cmd_start;
  419. info.cmd_end = cmd_end;
  420. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  421. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  422. info.cmd_duration_ns = cmd_end - cmd_start;
  423. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  424. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  425. }
  426. // Dump a csv
  427. float total_kernel_time = 0;
  428. fprintf(fperf, "op name, kernel name, queued duration (ms), submit duration(ms), exec duration (ms), complete duration (ms), total duration (ms), global size, local size, output size\n");
  429. for (const ProfilingInfo & info : profiling_info) {
  430. total_kernel_time += info.cmd_duration_ns/1.e6f;
  431. fprintf(fperf, "%s,%s,%f,%f,%f,%f,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  432. info.op_name.c_str(), info.kernel_name.c_str(),
  433. info.cmd_queued_duration_ns/1.e6f,
  434. info.cmd_submit_duration_ns/1.e6f,
  435. info.cmd_duration_ns/1.e6f,
  436. info.cmd_complete_duration_ns/1.e6f,
  437. info.cmd_total_duration_ns/1.e6f,
  438. info.global_size[0], info.global_size[1], info.global_size[2],
  439. info.local_size[0], info.local_size[1], info.local_size[2],
  440. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  441. }
  442. fclose(fperf);
  443. GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
  444. // Dump a simple chrome trace
  445. FILE* ftrace = fopen("cl_trace.json", "w");
  446. if (!ftrace) {
  447. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  448. return;
  449. }
  450. fprintf(ftrace, "[\n");
  451. for (const ProfilingInfo & info : profiling_info) {
  452. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  453. info.kernel_name.c_str(), info.cmd_queued/1000);
  454. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Host\"},\n",
  455. info.kernel_name.c_str(), info.cmd_submit/1000);
  456. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  457. info.kernel_name.c_str(), info.cmd_start/1000);
  458. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %lu, \"pid\": \"\", \"tid\": \"Device\"},\n",
  459. info.kernel_name.c_str(), info.cmd_end/1000);
  460. }
  461. fclose(ftrace);
  462. }
  463. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  464. size_t workgroup_size = 0;
  465. size_t ret_size = 0;
  466. CL_CHECK(
  467. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  468. sizeof(size_t), &workgroup_size, &ret_size));
  469. GGML_ASSERT(sizeof(size_t) == ret_size);
  470. return workgroup_size;
  471. }
  472. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  473. #ifdef GGML_OPENCL_PROFILING
  474. cl_event evt;
  475. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  476. profiling_info.emplace_back();
  477. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  478. #else
  479. GGML_UNUSED(tensor);
  480. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  481. #endif
  482. }
  483. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  484. // Transpose kernels
  485. cl_program program_transpose;
  486. cl_kernel kernel_transpose_32;
  487. cl_kernel kernel_transpose_32_16;
  488. cl_kernel kernel_transpose_16;
  489. cl_mem A_s_d_max; // max scale buffer size for transpose
  490. cl_mem A_q_d_max; // max weight buffer size for transpose
  491. cl_mem B_d_max; // max activation buffer size for transpose
  492. // Gemm and Gemv related programs, kernels, etc
  493. cl_program program_CL_gemm;
  494. cl_program program_CL_gemv_general;
  495. cl_program program_CL_gemv_4096_1_11008;
  496. cl_program program_CL_gemv_4096_1_4096;
  497. cl_program program_CL_gemv_11008_1_4096;
  498. cl_program program_CL_gemv_32000_1_4096;
  499. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  500. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  501. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  502. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  503. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  504. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  505. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  506. void free() {
  507. ref_count--;
  508. if (ref_count == 0) {
  509. #ifdef GGML_OPENCL_PROFILING
  510. write_profiling_info();
  511. #endif
  512. }
  513. }
  514. };
  515. // All registered devices with a default device in the front.
  516. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  517. inline std::string read_file(const std::string &path) {
  518. std::ifstream ifs(path);
  519. if (!ifs) {
  520. return "";
  521. }
  522. std::string text;
  523. ifs.seekg(0, std::ios::end);
  524. text.resize(ifs.tellg());
  525. ifs.seekg(0, std::ios::beg);
  526. ifs.read(&text[0], text.size());
  527. return text;
  528. }
  529. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  530. cl_program p;
  531. char *program_log;
  532. size_t program_size;
  533. size_t log_size;
  534. int err;
  535. program_size = strlen(program_buffer);
  536. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  537. if(err < 0) {
  538. GGML_LOG_ERROR("OpenCL error creating program");
  539. exit(1);
  540. }
  541. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  542. if(err < 0) {
  543. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  544. program_log = (char*) malloc(log_size + 1);
  545. program_log[log_size] = '\0';
  546. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  547. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  548. free(program_log);
  549. exit(1);
  550. }
  551. return p;
  552. }
  553. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  554. cl_int err;
  555. // compiler options for general kernels
  556. auto opencl_c_std =
  557. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  558. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  559. " -cl-mad-enable -cl-unsafe-math-optimizations"
  560. " -cl-finite-math-only -cl-fast-relaxed-math";
  561. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  562. // add
  563. {
  564. #ifdef GGML_OPENCL_EMBED_KERNELS
  565. const std::string kernel_src {
  566. #include "add.cl.h"
  567. };
  568. #else
  569. const std::string kernel_src = read_file("add.cl");
  570. #endif
  571. backend_ctx->program_add =
  572. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  573. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  574. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  575. GGML_LOG_CONT(".");
  576. }
  577. // clamp
  578. {
  579. #ifdef GGML_OPENCL_EMBED_KERNELS
  580. const std::string kernel_src {
  581. #include "clamp.cl.h"
  582. };
  583. #else
  584. const std::string kernel_src = read_file("clamp.cl");
  585. #endif
  586. backend_ctx->program_clamp =
  587. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  588. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  589. GGML_LOG_CONT(".");
  590. }
  591. // cpy
  592. {
  593. #ifdef GGML_OPENCL_EMBED_KERNELS
  594. const std::string kernel_src {
  595. #include "cpy.cl.h"
  596. };
  597. #else
  598. const std::string kernel_src = read_file("cpy.cl");
  599. #endif
  600. backend_ctx->program_cpy =
  601. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  602. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  603. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  604. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  605. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  606. GGML_LOG_CONT(".");
  607. }
  608. // cvt
  609. {
  610. #ifdef GGML_OPENCL_EMBED_KERNELS
  611. const std::string kernel_src {
  612. #include "cvt.cl.h"
  613. };
  614. #else
  615. const std::string kernel_src = read_file("cvt.cl");
  616. #endif
  617. backend_ctx->program_cvt =
  618. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  619. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  620. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  621. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  622. GGML_LOG_CONT(".");
  623. }
  624. // diag_mask_inf
  625. {
  626. #ifdef GGML_OPENCL_EMBED_KERNELS
  627. const std::string kernel_src {
  628. #include "diag_mask_inf.cl.h"
  629. };
  630. #else
  631. const std::string kernel_src = read_file("diag_mask_inf.cl");
  632. #endif
  633. backend_ctx->program_diag_mask_inf =
  634. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  635. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  636. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  637. GGML_LOG_CONT(".");
  638. }
  639. // gelu
  640. {
  641. #ifdef GGML_OPENCL_EMBED_KERNELS
  642. const std::string kernel_src {
  643. #include "gelu.cl.h"
  644. };
  645. #else
  646. const std::string kernel_src = read_file("gelu.cl");
  647. #endif
  648. backend_ctx->program_gelu =
  649. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  650. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  651. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  652. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  653. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  654. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  655. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  656. GGML_LOG_CONT(".");
  657. }
  658. // glu
  659. {
  660. #ifdef GGML_OPENCL_EMBED_KERNELS
  661. const std::string kernel_src {
  662. #include "glu.cl.h"
  663. };
  664. #else
  665. const std::string kernel_src = read_file("glu.cl");
  666. #endif
  667. backend_ctx->program_glu =
  668. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  669. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  670. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  671. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  672. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  673. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  674. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  675. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  676. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  677. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  678. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  679. GGML_LOG_CONT(".");
  680. }
  681. // get_rows
  682. {
  683. #ifdef GGML_OPENCL_EMBED_KERNELS
  684. const std::string kernel_src {
  685. #include "get_rows.cl.h"
  686. };
  687. #else
  688. const std::string kernel_src = read_file("get_rows.cl");
  689. #endif
  690. backend_ctx->program_get_rows =
  691. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  692. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  693. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  694. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  695. GGML_LOG_CONT(".");
  696. }
  697. // im2col_f32
  698. {
  699. #ifdef GGML_OPENCL_EMBED_KERNELS
  700. const std::string kernel_src {
  701. #include "im2col_f32.cl.h"
  702. };
  703. #else
  704. const std::string kernel_src = read_file("im2col_f32.cl");
  705. #endif
  706. backend_ctx->program_im2col_f32 =
  707. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  708. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  709. GGML_LOG_CONT(".");
  710. }
  711. // im2col_f16
  712. {
  713. #ifdef GGML_OPENCL_EMBED_KERNELS
  714. const std::string kernel_src {
  715. #include "im2col_f16.cl.h"
  716. };
  717. #else
  718. const std::string kernel_src = read_file("im2col_f16.cl");
  719. #endif
  720. backend_ctx->program_im2col_f16 =
  721. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  722. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  723. GGML_LOG_CONT(".");
  724. }
  725. // mul_mv_q4_0_f32
  726. {
  727. #ifdef GGML_OPENCL_EMBED_KERNELS
  728. const std::string kernel_src {
  729. #include "mul_mv_q4_0_f32.cl.h"
  730. };
  731. #else
  732. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  733. #endif
  734. backend_ctx->program_mul_mv_q4_0_f32 =
  735. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  736. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  737. GGML_LOG_CONT(".");
  738. }
  739. // mul_mv_q4_0_f32_v
  740. {
  741. #ifdef GGML_OPENCL_EMBED_KERNELS
  742. const std::string kernel_src {
  743. #include "mul_mv_q4_0_f32_v.cl.h"
  744. };
  745. #else
  746. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  747. #endif
  748. backend_ctx->program_mul_mv_q4_0_f32_v =
  749. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  750. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  751. GGML_LOG_CONT(".");
  752. }
  753. // mul_mv_q4_0_f32_8x_flat
  754. {
  755. #ifdef GGML_OPENCL_EMBED_KERNELS
  756. const std::string kernel_src {
  757. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  758. };
  759. #else
  760. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  761. #endif
  762. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  763. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  764. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  765. GGML_LOG_CONT(".");
  766. }
  767. // mul_mv_q4_0_f32_1d_8x_flat
  768. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  769. // those compiler versions since it is anyway not used for Adreno.
  770. if (backend_ctx->gpu_family != ADRENO ||
  771. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  772. backend_ctx->adreno_cl_compiler_version.type == DX) {
  773. #ifdef GGML_OPENCL_EMBED_KERNELS
  774. const std::string kernel_src {
  775. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  776. };
  777. #else
  778. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  779. #endif
  780. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  781. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  782. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  783. GGML_LOG_CONT(".");
  784. }
  785. // mul_mv_q4_0_f32_1d_16x_flat
  786. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  787. // those compiler versions since it is anyway not used for Adreno.
  788. if (backend_ctx->gpu_family != ADRENO ||
  789. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  790. backend_ctx->adreno_cl_compiler_version.type == DX) {
  791. #ifdef GGML_OPENCL_EMBED_KERNELS
  792. const std::string kernel_src {
  793. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  794. };
  795. #else
  796. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  797. #endif
  798. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  799. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  800. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  801. GGML_LOG_CONT(".");
  802. }
  803. // mul_mv_q6_k
  804. {
  805. #ifdef GGML_OPENCL_EMBED_KERNELS
  806. const std::string kernel_src {
  807. #include "mul_mv_q6_k.cl.h"
  808. };
  809. #else
  810. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  811. #endif
  812. backend_ctx->program_mul_mv_q6_K =
  813. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  814. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  815. GGML_LOG_CONT(".");
  816. }
  817. // mul_mv_f16_f16
  818. {
  819. #ifdef GGML_OPENCL_EMBED_KERNELS
  820. const std::string kernel_src {
  821. #include "mul_mv_f16_f16.cl.h"
  822. };
  823. #else
  824. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  825. #endif
  826. backend_ctx->program_mul_mv_f16_f16 =
  827. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  828. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  829. GGML_LOG_CONT(".");
  830. }
  831. // mul_mv_f16_f32_1row
  832. {
  833. #ifdef GGML_OPENCL_EMBED_KERNELS
  834. const std::string kernel_src {
  835. #include "mul_mv_f16_f32_1row.cl.h"
  836. };
  837. #else
  838. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  839. #endif
  840. backend_ctx->program_mul_mv_f16_f32_1row =
  841. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  842. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  843. GGML_LOG_CONT(".");
  844. }
  845. // mul_mv_f16_f32_l4
  846. {
  847. #ifdef GGML_OPENCL_EMBED_KERNELS
  848. const std::string kernel_src {
  849. #include "mul_mv_f16_f32_l4.cl.h"
  850. };
  851. #else
  852. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  853. #endif
  854. backend_ctx->program_mul_mv_f16_f32_l4 =
  855. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  856. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  857. GGML_LOG_CONT(".");
  858. }
  859. // mul_mv_f16_f32
  860. {
  861. #ifdef GGML_OPENCL_EMBED_KERNELS
  862. const std::string kernel_src {
  863. #include "mul_mv_f16_f32.cl.h"
  864. };
  865. #else
  866. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  867. #endif
  868. backend_ctx->program_mul_mv_f16_f32 =
  869. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  870. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  871. GGML_LOG_CONT(".");
  872. }
  873. // mul_mv_f32_f32
  874. {
  875. #ifdef GGML_OPENCL_EMBED_KERNELS
  876. const std::string kernel_src {
  877. #include "mul_mv_f32_f32.cl.h"
  878. };
  879. #else
  880. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  881. #endif
  882. backend_ctx->program_mul_mv_f32_f32 =
  883. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  884. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  885. GGML_LOG_CONT(".");
  886. }
  887. // mul_mat_f16_f32_tiled
  888. {
  889. #ifdef GGML_OPENCL_EMBED_KERNELS
  890. const std::string kernel_src {
  891. #include "mul_mat_f16_f32.cl.h"
  892. };
  893. #else
  894. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  895. #endif
  896. backend_ctx->program_mul_mat_f16_f32_tiled =
  897. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  898. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  899. GGML_LOG_CONT(".");
  900. }
  901. // mul
  902. {
  903. #ifdef GGML_OPENCL_EMBED_KERNELS
  904. const std::string kernel_src {
  905. #include "mul.cl.h"
  906. };
  907. #else
  908. const std::string kernel_src = read_file("mul.cl");
  909. #endif
  910. backend_ctx->program_mul =
  911. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  912. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  913. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  914. GGML_LOG_CONT(".");
  915. }
  916. // norm
  917. {
  918. #ifdef GGML_OPENCL_EMBED_KERNELS
  919. const std::string kernel_src {
  920. #include "norm.cl.h"
  921. };
  922. #else
  923. const std::string kernel_src = read_file("norm.cl");
  924. #endif
  925. backend_ctx->program_norm =
  926. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  927. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  928. GGML_LOG_CONT(".");
  929. }
  930. // relu
  931. {
  932. #ifdef GGML_OPENCL_EMBED_KERNELS
  933. const std::string kernel_src {
  934. #include "relu.cl.h"
  935. };
  936. #else
  937. const std::string kernel_src = read_file("relu.cl");
  938. #endif
  939. backend_ctx->program_relu =
  940. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  941. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  942. GGML_LOG_CONT(".");
  943. }
  944. // rms_norm
  945. {
  946. #ifdef GGML_OPENCL_EMBED_KERNELS
  947. const std::string kernel_src {
  948. #include "rms_norm.cl.h"
  949. };
  950. #else
  951. const std::string kernel_src = read_file("rms_norm.cl");
  952. #endif
  953. backend_ctx->program_rms_norm =
  954. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  955. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  956. CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
  957. GGML_LOG_CONT(".");
  958. }
  959. // rope
  960. {
  961. #ifdef GGML_OPENCL_EMBED_KERNELS
  962. const std::string kernel_src {
  963. #include "rope.cl.h"
  964. };
  965. #else
  966. const std::string kernel_src = read_file("rope.cl");
  967. #endif
  968. backend_ctx->program_rope =
  969. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  970. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  971. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  972. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  973. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  974. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  975. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  976. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  977. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  978. GGML_LOG_CONT(".");
  979. }
  980. // scale
  981. {
  982. #ifdef GGML_OPENCL_EMBED_KERNELS
  983. const std::string kernel_src {
  984. #include "scale.cl.h"
  985. };
  986. #else
  987. const std::string kernel_src = read_file("scale.cl");
  988. #endif
  989. backend_ctx->program_scale =
  990. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  991. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  992. GGML_LOG_CONT(".");
  993. }
  994. // silu
  995. {
  996. #ifdef GGML_OPENCL_EMBED_KERNELS
  997. const std::string kernel_src {
  998. #include "silu.cl.h"
  999. };
  1000. #else
  1001. const std::string kernel_src = read_file("silu.cl");
  1002. #endif
  1003. backend_ctx->program_silu =
  1004. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1005. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  1006. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  1007. GGML_LOG_CONT(".");
  1008. }
  1009. // softmax_f32
  1010. {
  1011. #ifdef GGML_OPENCL_EMBED_KERNELS
  1012. const std::string kernel_src {
  1013. #include "softmax_f32.cl.h"
  1014. };
  1015. #else
  1016. const std::string kernel_src = read_file("softmax_f32.cl");
  1017. #endif
  1018. backend_ctx->program_softmax_f32 =
  1019. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1020. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1021. GGML_LOG_CONT(".");
  1022. }
  1023. // softmax_f16
  1024. {
  1025. #ifdef GGML_OPENCL_EMBED_KERNELS
  1026. const std::string kernel_src {
  1027. #include "softmax_f16.cl.h"
  1028. };
  1029. #else
  1030. const std::string kernel_src = read_file("softmax_f16.cl");
  1031. #endif
  1032. backend_ctx->program_softmax_f16 =
  1033. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1034. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1035. GGML_LOG_CONT(".");
  1036. }
  1037. // softmax_4_f32
  1038. {
  1039. #ifdef GGML_OPENCL_EMBED_KERNELS
  1040. const std::string kernel_src {
  1041. #include "softmax_4_f32.cl.h"
  1042. };
  1043. #else
  1044. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1045. #endif
  1046. backend_ctx->program_softmax_4_f32 =
  1047. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1048. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1049. GGML_LOG_CONT(".");
  1050. }
  1051. // softmax_4_f16
  1052. {
  1053. #ifdef GGML_OPENCL_EMBED_KERNELS
  1054. const std::string kernel_src {
  1055. #include "softmax_4_f16.cl.h"
  1056. };
  1057. #else
  1058. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1059. #endif
  1060. backend_ctx->program_softmax_4_f16 =
  1061. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1062. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1063. GGML_LOG_CONT(".");
  1064. }
  1065. // argsort
  1066. {
  1067. #ifdef GGML_OPENCL_EMBED_KERNELS
  1068. const std::string kernel_src {
  1069. #include "argsort.cl.h"
  1070. };
  1071. #else
  1072. const std::string kernel_src = read_file("argsort.cl");
  1073. #endif
  1074. backend_ctx->program_argsort_f32_i32 =
  1075. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1076. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1077. GGML_LOG_CONT(".");
  1078. }
  1079. // div
  1080. {
  1081. #ifdef GGML_OPENCL_EMBED_KERNELS
  1082. const std::string kernel_src {
  1083. #include "div.cl.h"
  1084. };
  1085. #else
  1086. const std::string kernel_src = read_file("div.cl");
  1087. #endif
  1088. backend_ctx->program_div =
  1089. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1090. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1091. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1092. GGML_LOG_CONT(".");
  1093. }
  1094. // sub
  1095. {
  1096. #ifdef GGML_OPENCL_EMBED_KERNELS
  1097. const std::string kernel_src {
  1098. #include "sub.cl.h"
  1099. };
  1100. #else
  1101. const std::string kernel_src = read_file("sub.cl");
  1102. #endif
  1103. backend_ctx->program_sub =
  1104. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1105. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1106. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1107. GGML_LOG_CONT(".");
  1108. }
  1109. // sum_rows
  1110. {
  1111. #ifdef GGML_OPENCL_EMBED_KERNELS
  1112. const std::string kernel_src {
  1113. #include "sum_rows.cl.h"
  1114. };
  1115. #else
  1116. const std::string kernel_src = read_file("sum_rows.cl");
  1117. #endif
  1118. backend_ctx->program_sum_rows_f32 =
  1119. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1120. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1121. GGML_LOG_CONT(".");
  1122. }
  1123. // sigmoid
  1124. {
  1125. #ifdef GGML_OPENCL_EMBED_KERNELS
  1126. const std::string kernel_src {
  1127. #include "sigmoid.cl.h"
  1128. };
  1129. #else
  1130. const std::string kernel_src = read_file("sigmoid.cl");
  1131. #endif
  1132. backend_ctx->program_sigmoid =
  1133. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1134. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1135. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1136. GGML_LOG_CONT(".");
  1137. }
  1138. // group_norm
  1139. {
  1140. #ifdef GGML_OPENCL_EMBED_KERNELS
  1141. const std::string kernel_src {
  1142. #include "group_norm.cl.h"
  1143. };
  1144. #else
  1145. const std::string kernel_src = read_file("group_norm.cl");
  1146. #endif
  1147. backend_ctx->program_group_norm =
  1148. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1149. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1150. GGML_LOG_CONT(".");
  1151. }
  1152. // repeat
  1153. {
  1154. #ifdef GGML_OPENCL_EMBED_KERNELS
  1155. const std::string kernel_src {
  1156. #include "repeat.cl.h"
  1157. };
  1158. #else
  1159. const std::string kernel_src = read_file("repeat.cl");
  1160. #endif
  1161. if (!kernel_src.empty()) {
  1162. backend_ctx->program_repeat =
  1163. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1164. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1165. GGML_LOG_CONT(".");
  1166. } else {
  1167. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1168. backend_ctx->program_repeat = nullptr;
  1169. backend_ctx->kernel_repeat = nullptr;
  1170. }
  1171. }
  1172. // pad
  1173. {
  1174. #ifdef GGML_OPENCL_EMBED_KERNELS
  1175. const std::string kernel_src {
  1176. #include "pad.cl.h"
  1177. };
  1178. #else
  1179. const std::string kernel_src = read_file("pad.cl");
  1180. #endif
  1181. if (!kernel_src.empty()) {
  1182. backend_ctx->program_pad =
  1183. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1184. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1185. GGML_LOG_CONT(".");
  1186. } else {
  1187. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1188. backend_ctx->program_pad = nullptr;
  1189. backend_ctx->kernel_pad = nullptr;
  1190. }
  1191. }
  1192. // tanh
  1193. {
  1194. #ifdef GGML_OPENCL_EMBED_KERNELS
  1195. const std::string kernel_src {
  1196. #include "tanh.cl.h"
  1197. };
  1198. #else
  1199. const std::string kernel_src = read_file("tanh.cl");
  1200. #endif
  1201. if (!kernel_src.empty()) {
  1202. backend_ctx->program_tanh =
  1203. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1204. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1205. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1206. GGML_LOG_CONT(".");
  1207. } else {
  1208. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1209. backend_ctx->program_tanh = nullptr;
  1210. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1211. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1212. }
  1213. }
  1214. // upscale
  1215. {
  1216. #ifdef GGML_OPENCL_EMBED_KERNELS
  1217. const std::string kernel_src {
  1218. #include "upscale.cl.h"
  1219. };
  1220. #else
  1221. const std::string kernel_src = read_file("upscale.cl");
  1222. #endif
  1223. if (!kernel_src.empty()) {
  1224. backend_ctx->program_upscale =
  1225. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1226. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1227. if (backend_ctx->program_upscale) {
  1228. cl_int err_bilinear;
  1229. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1230. if (err_bilinear != CL_SUCCESS) {
  1231. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1232. backend_ctx->kernel_upscale_bilinear = nullptr;
  1233. }
  1234. } else {
  1235. backend_ctx->kernel_upscale_bilinear = nullptr;
  1236. }
  1237. GGML_LOG_CONT(".");
  1238. } else {
  1239. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1240. backend_ctx->program_upscale = nullptr;
  1241. backend_ctx->kernel_upscale = nullptr;
  1242. backend_ctx->kernel_upscale_bilinear = nullptr;
  1243. }
  1244. }
  1245. // concat
  1246. {
  1247. #ifdef GGML_OPENCL_EMBED_KERNELS
  1248. const std::string kernel_src {
  1249. #include "concat.cl.h"
  1250. };
  1251. #else
  1252. const std::string kernel_src = read_file("concat.cl");
  1253. #endif
  1254. if (!kernel_src.empty()) {
  1255. backend_ctx->program_concat =
  1256. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1257. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1258. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1259. GGML_LOG_CONT(".");
  1260. } else {
  1261. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1262. backend_ctx->program_concat = nullptr;
  1263. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1264. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1265. }
  1266. }
  1267. // timestep_embedding
  1268. {
  1269. #ifdef GGML_OPENCL_EMBED_KERNELS
  1270. const std::string kernel_src {
  1271. #include "tsembd.cl.h"
  1272. };
  1273. #else
  1274. const std::string kernel_src = read_file("tsembd.cl");
  1275. #endif
  1276. if (!kernel_src.empty()) {
  1277. backend_ctx->program_tsembd =
  1278. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1279. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1280. GGML_LOG_CONT(".");
  1281. } else {
  1282. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1283. backend_ctx->program_tsembd = nullptr;
  1284. backend_ctx->kernel_timestep_embedding = nullptr;
  1285. }
  1286. }
  1287. // set_rows
  1288. {
  1289. #ifdef GGML_OPENCL_EMBED_KERNELS
  1290. const std::string kernel_src {
  1291. #include "set_rows.cl.h"
  1292. };
  1293. #else
  1294. const std::string kernel_src = read_file("set_rows.cl");
  1295. #endif
  1296. backend_ctx->program_set_rows =
  1297. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1298. CL_CHECK((backend_ctx->kernel_set_rows_f32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32", &err), err));
  1299. CL_CHECK((backend_ctx->kernel_set_rows_f16 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16", &err), err));
  1300. GGML_LOG_CONT(".");
  1301. }
  1302. // conv2d
  1303. {
  1304. #ifdef GGML_OPENCL_EMBED_KERNELS
  1305. const std::string kernel_src {
  1306. #include "conv2d.cl.h"
  1307. };
  1308. const std::string kernel_src_f16_f32 {
  1309. #include "conv2d_f16_f32.cl.h"
  1310. };
  1311. #else
  1312. const std::string kernel_src = read_file("conv2d.cl");
  1313. const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
  1314. #endif
  1315. if (!kernel_src.empty()) {
  1316. backend_ctx->program_conv_2d_f16 =
  1317. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
  1318. CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
  1319. GGML_LOG_CONT(".");
  1320. backend_ctx->program_conv_2d_f32 =
  1321. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1322. CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
  1323. GGML_LOG_CONT(".");
  1324. } else {
  1325. GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
  1326. backend_ctx->program_conv_2d_f16 = nullptr;
  1327. backend_ctx->kernel_conv_2d_f16 = nullptr;
  1328. backend_ctx->program_conv_2d_f32 = nullptr;
  1329. backend_ctx->kernel_conv_2d_f32 = nullptr;
  1330. }
  1331. if (!kernel_src_f16_f32.empty()) {
  1332. backend_ctx->program_conv_2d_f16_f32 =
  1333. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
  1334. CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
  1335. GGML_LOG_CONT(".");
  1336. } else {
  1337. GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
  1338. backend_ctx->program_conv_2d_f16_f32 = nullptr;
  1339. backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
  1340. }
  1341. }
  1342. // mul_mv_id_q4_0_f32_8x_flat
  1343. {
  1344. #ifdef GGML_OPENCL_EMBED_KERNELS
  1345. const std::string kernel_src {
  1346. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1347. };
  1348. #else
  1349. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1350. #endif
  1351. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1352. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1353. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1354. GGML_LOG_CONT(".");
  1355. }
  1356. // Adreno kernels
  1357. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1358. // transpose
  1359. {
  1360. #ifdef GGML_OPENCL_EMBED_KERNELS
  1361. const std::string kernel_src {
  1362. #include "transpose.cl.h"
  1363. };
  1364. #else
  1365. const std::string kernel_src = read_file("transpose.cl");
  1366. #endif
  1367. backend_ctx->program_transpose =
  1368. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1369. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1370. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1371. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1372. GGML_LOG_CONT(".");
  1373. }
  1374. // gemv_noshuffle_general
  1375. {
  1376. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1377. " -cl-mad-enable "
  1378. " -DSIMDGROUP_WIDTH=" +
  1379. std::to_string(backend_ctx->adreno_wave_size);
  1380. if (backend_ctx->has_vector_subgroup_broadcast) {
  1381. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1382. }
  1383. #ifdef GGML_OPENCL_EMBED_KERNELS
  1384. const std::string kernel_src_CL_gemv_general {
  1385. #include "gemv_noshuffle_general.cl.h"
  1386. };
  1387. #else
  1388. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1389. #endif
  1390. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1391. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1392. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1393. GGML_LOG_CONT(".");
  1394. }
  1395. // gemv_noshuffle
  1396. {
  1397. // Gemv 2048, 16384
  1398. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1399. " -cl-mad-enable "
  1400. " -DLINE_STRIDE_A=2048 "
  1401. " -DBLOCK_STRIDE_A=16384 "
  1402. " -DSIMDGROUP_WIDTH=" +
  1403. std::to_string(backend_ctx->adreno_wave_size);
  1404. if (backend_ctx->has_vector_subgroup_broadcast) {
  1405. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1406. }
  1407. #ifdef GGML_OPENCL_EMBED_KERNELS
  1408. const std::string kernel_src_CL_gemv {
  1409. #include "gemv_noshuffle.cl.h"
  1410. };
  1411. #else
  1412. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1413. #endif
  1414. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1415. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1416. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1417. GGML_LOG_CONT(".");
  1418. // Gemv 2048, 16384
  1419. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1420. " -cl-mad-enable "
  1421. " -DLINE_STRIDE_A=2048 "
  1422. " -DBLOCK_STRIDE_A=16384 "
  1423. " -DSIMDGROUP_WIDTH=" +
  1424. std::to_string(backend_ctx->adreno_wave_size);
  1425. if (backend_ctx->has_vector_subgroup_broadcast) {
  1426. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1427. }
  1428. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1429. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1430. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1431. GGML_LOG_CONT(".");
  1432. // Gemv 5504, 44032
  1433. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1434. " -cl-mad-enable "
  1435. " -DLINE_STRIDE_A=5504 "
  1436. " -DBLOCK_STRIDE_A=44032 "
  1437. " -DSIMDGROUP_WIDTH=" +
  1438. std::to_string(backend_ctx->adreno_wave_size);
  1439. if (backend_ctx->has_vector_subgroup_broadcast) {
  1440. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1441. }
  1442. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1443. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1444. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1445. GGML_LOG_CONT(".");
  1446. // Gemv 16000, 128000
  1447. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1448. " -cl-mad-enable "
  1449. " -DLINE_STRIDE_A=16000 "
  1450. " -DBLOCK_STRIDE_A=128000 "
  1451. " -DSIMDGROUP_WIDTH=" +
  1452. std::to_string(backend_ctx->adreno_wave_size);
  1453. if (backend_ctx->has_vector_subgroup_broadcast) {
  1454. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1455. }
  1456. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1457. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1458. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1459. GGML_LOG_CONT(".");
  1460. }
  1461. // mul_mat_Ab_Bi_8x4
  1462. {
  1463. #ifdef GGML_OPENCL_EMBED_KERNELS
  1464. const std::string kernel_src_CL_gemm {
  1465. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1466. };
  1467. #else
  1468. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1469. #endif
  1470. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1471. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1472. GGML_LOG_CONT(".");
  1473. }
  1474. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1475. GGML_LOG_CONT("\n");
  1476. }
  1477. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1478. // XXX static bool initialized = false;
  1479. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1480. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1481. namespace /* anonymous */ {
  1482. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1483. }
  1484. // Look for available and suitable devices.
  1485. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1486. std::vector<ggml_backend_device> found_devices;
  1487. #ifdef GGML_OPENCL_PROFILING
  1488. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1489. #endif
  1490. struct cl_device;
  1491. struct cl_platform {
  1492. cl_platform_id id;
  1493. unsigned number;
  1494. char name[128];
  1495. char vendor[128];
  1496. struct cl_device * devices;
  1497. unsigned n_devices;
  1498. struct cl_device * default_device;
  1499. };
  1500. struct cl_device {
  1501. struct cl_platform * platform;
  1502. cl_device_id id;
  1503. unsigned number;
  1504. cl_device_type type;
  1505. char name[128];
  1506. char version[128];
  1507. };
  1508. enum { NPLAT = 16, NDEV = 16 };
  1509. struct cl_platform platforms[NPLAT];
  1510. unsigned n_platforms = 0;
  1511. struct cl_device devices[NDEV];
  1512. unsigned n_devices = 0;
  1513. struct cl_device * default_device = NULL;
  1514. unsigned default_platform_number = 0;
  1515. cl_platform_id platform_ids[NPLAT];
  1516. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1517. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1518. return found_devices;
  1519. }
  1520. for (unsigned i = 0; i < n_platforms; i++) {
  1521. struct cl_platform * p = &platforms[i];
  1522. p->number = i;
  1523. p->id = platform_ids[i];
  1524. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1525. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1526. cl_device_id device_ids[NDEV];
  1527. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1528. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1529. p->n_devices = 0;
  1530. } else {
  1531. CL_CHECK(clGetDeviceIDsError);
  1532. }
  1533. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1534. p->default_device = NULL;
  1535. for (unsigned j = 0; j < p->n_devices; j++) {
  1536. struct cl_device * d = &devices[n_devices];
  1537. d->number = n_devices++;
  1538. d->id = device_ids[j];
  1539. d->platform = p;
  1540. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1541. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1542. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1543. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1544. p->default_device = d;
  1545. }
  1546. }
  1547. if (default_device == NULL && p->default_device != NULL) {
  1548. default_device = p->default_device;
  1549. default_platform_number = i;
  1550. }
  1551. }
  1552. if (n_devices == 0) {
  1553. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1554. return found_devices;
  1555. }
  1556. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1557. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1558. int user_platform_number = -1;
  1559. int user_device_number = -1;
  1560. cl_device * candidate_devices = nullptr;
  1561. unsigned n_candidate_devices = 0;
  1562. unsigned n;
  1563. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1564. user_platform_number = (int)n;
  1565. }
  1566. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1567. user_device_number = (int)n;
  1568. }
  1569. if (user_platform_number != -1 && user_device_number != -1) {
  1570. cl_platform* platform = &platforms[user_platform_number];
  1571. if ((unsigned)user_device_number >= platform->n_devices) {
  1572. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  1573. exit(1);
  1574. }
  1575. default_device = &platform->devices[user_device_number];
  1576. candidate_devices = platform->devices;
  1577. n_candidate_devices = platform->n_devices;
  1578. } else {
  1579. // Choose a platform by matching a substring.
  1580. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  1581. for (unsigned i = 0; i < n_platforms; i++) {
  1582. struct cl_platform * p = &platforms[i];
  1583. if (strstr(p->name, user_platform_string) != NULL ||
  1584. strstr(p->vendor, user_platform_string) != NULL) {
  1585. user_platform_number = (int)i;
  1586. break;
  1587. }
  1588. }
  1589. if (user_platform_number == -1) {
  1590. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  1591. exit(1);
  1592. }
  1593. }
  1594. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  1595. struct cl_platform * p = &platforms[platform_idx];
  1596. candidate_devices = p->devices;
  1597. n_candidate_devices = p->n_devices;
  1598. default_device = p->default_device;
  1599. if (n_candidate_devices == 0) {
  1600. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  1601. exit(1);
  1602. }
  1603. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  1604. for (unsigned i = 0; i < n_candidate_devices; i++) {
  1605. struct cl_device * d = &candidate_devices[i];
  1606. if (strstr(d->name, user_device_string) != NULL) {
  1607. user_device_number = d->number;
  1608. break;
  1609. }
  1610. }
  1611. if (user_device_number == -1) {
  1612. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  1613. exit(1);
  1614. }
  1615. }
  1616. if (user_device_number != -1) {
  1617. candidate_devices = &devices[user_device_number];
  1618. n_candidate_devices = 1;
  1619. default_device = &candidate_devices[0];
  1620. }
  1621. GGML_ASSERT(n_candidate_devices > 0);
  1622. if (default_device == NULL) {
  1623. default_device = &candidate_devices[0];
  1624. }
  1625. }
  1626. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  1627. // Put the default device in front.
  1628. for (unsigned i = 1; i < n_candidate_devices; i++) {
  1629. if (&candidate_devices[i] == default_device) {
  1630. std::swap(candidate_devices[0], candidate_devices[i]);
  1631. default_device = &candidate_devices[0];
  1632. break;
  1633. }
  1634. }
  1635. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  1636. std::vector<cl_device_id> device_ids;
  1637. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1638. device_ids.push_back(dev->id);
  1639. }
  1640. cl_int err;
  1641. cl_context shared_context;
  1642. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  1643. CL_CHECK(
  1644. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  1645. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1646. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  1647. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  1648. /*.platform =*/dev->platform->id,
  1649. /*.platform_nane =*/dev->platform->name,
  1650. /*.device =*/dev->id,
  1651. /*.device_name =*/dev->name,
  1652. /*.device_type =*/dev->type,
  1653. /*.device_version =*/dev->version,
  1654. /*.backend_ctx =*/nullptr,
  1655. /*.buffer_type =*/{},
  1656. /*.context =*/shared_context,
  1657. });
  1658. found_devices.push_back(ggml_backend_device{
  1659. /* .iface = */ ggml_backend_opencl_device_i,
  1660. /* .reg = */ reg,
  1661. /* .context = */ dev_ctx.get(),
  1662. });
  1663. if (!ggml_cl2_init(&found_devices.back())) {
  1664. found_devices.pop_back();
  1665. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  1666. continue;
  1667. }
  1668. dev_ctx.release();
  1669. }
  1670. if (found_devices.size()) {
  1671. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  1672. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  1673. dev_ctx->device_version.c_str());
  1674. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  1675. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  1676. dev_ctx->device_name.c_str());
  1677. }
  1678. }
  1679. return found_devices;
  1680. }
  1681. // Initialize device if it is supported (returns nullptr if it is not).
  1682. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1683. GGML_ASSERT(dev);
  1684. GGML_ASSERT(dev->context);
  1685. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  1686. GGML_ASSERT(dev_ctx->platform);
  1687. GGML_ASSERT(dev_ctx->device);
  1688. if (dev_ctx->backend_ctx) {
  1689. return dev_ctx->backend_ctx;
  1690. }
  1691. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  1692. backend_ctx->device = dev_ctx->device;
  1693. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  1694. // ref_count get increased in ggml_backend_opencl_device_init
  1695. // This function is also used to retrieve backend context, so we don't want
  1696. // to increase ref_count for each call. We only want to increase ref_count
  1697. // when the associated device is initialized
  1698. backend_ctx->ref_count = 0;
  1699. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  1700. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  1701. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  1702. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  1703. // Usually device version contains the detailed device name
  1704. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  1705. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  1706. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  1707. }
  1708. // Use wave size of 64 for all Adreno GPUs.
  1709. backend_ctx->adreno_wave_size = 64;
  1710. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  1711. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  1712. } else {
  1713. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  1714. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  1715. return nullptr;
  1716. }
  1717. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1718. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  1719. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  1720. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  1721. return nullptr;
  1722. }
  1723. #endif
  1724. // Populate backend device name
  1725. backend_ctx->device_name = dev_ctx->device_name;
  1726. // A local ref of cl_device_id for convenience
  1727. cl_device_id device = backend_ctx->device;
  1728. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  1729. // Check device OpenCL version, OpenCL 2.0 or above is required
  1730. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  1731. if (opencl_c_version.major < 2) {
  1732. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  1733. return nullptr;
  1734. }
  1735. // Check driver version
  1736. size_t driver_version_str_size;
  1737. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  1738. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  1739. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  1740. driver_version[driver_version_str_size] = '\0';
  1741. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  1742. backend_ctx->driver_version = driver_version;
  1743. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  1744. backend_ctx->has_vector_subgroup_broadcast =
  1745. backend_ctx->adreno_cl_compiler_version.major >= 47 ||
  1746. backend_ctx->adreno_cl_compiler_version.major == 17;
  1747. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  1748. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  1749. size_t ext_str_size;
  1750. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  1751. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  1752. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  1753. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  1754. // Check if ext_buffer contains cl_khr_fp16
  1755. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  1756. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  1757. // fp16 is required
  1758. if (!backend_ctx->fp16_support) {
  1759. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  1760. return nullptr;
  1761. }
  1762. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  1763. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  1764. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  1765. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  1766. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  1767. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  1768. return nullptr;
  1769. }
  1770. cl_uint base_align_in_bits;
  1771. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  1772. GGML_ASSERT(base_align_in_bits % 8u == 0);
  1773. backend_ctx->alignment = base_align_in_bits / 8u;
  1774. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  1775. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  1776. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  1777. // Check SVM.
  1778. cl_device_svm_capabilities svm_caps;
  1779. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  1780. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  1781. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  1782. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  1783. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  1784. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  1785. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  1786. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  1787. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  1788. if (opencl_c_version.major >= 3) {
  1789. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  1790. &backend_ctx->non_uniform_workgroups, 0));
  1791. } else {
  1792. GGML_ASSERT(opencl_c_version.major == 2);
  1793. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  1794. backend_ctx->non_uniform_workgroups = true;
  1795. }
  1796. // Print out configurations
  1797. #ifdef GGML_OPENCL_SOA_Q
  1798. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  1799. #endif // GGML_OPENCL_SOA_Q
  1800. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1801. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  1802. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1803. cl_int err;
  1804. // A local ref of cl_context for convenience
  1805. cl_context context = backend_ctx->context = dev_ctx->context;
  1806. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  1807. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  1808. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  1809. //)));
  1810. cl_command_queue_properties command_queue_props = 0;
  1811. #ifdef GGML_OPENCL_PROFILING
  1812. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  1813. #endif
  1814. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  1815. // Load kernels
  1816. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  1817. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1818. // Allocate intermediate buffers and images
  1819. size_t required_A_q_d_bytes = 311164928;
  1820. size_t required_A_s_d_bytes = 38895616;
  1821. size_t required_B_d_bytes = 45088768;
  1822. // Ensure buffer sizes do not exceed the maximum allocation size
  1823. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  1824. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  1825. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  1826. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  1827. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1828. required_A_q_d_bytes, max_A_q_d_bytes);
  1829. }
  1830. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  1831. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1832. required_A_s_d_bytes, max_A_s_d_bytes);
  1833. }
  1834. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  1835. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  1836. required_B_d_bytes, max_B_d_bytes);
  1837. }
  1838. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  1839. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  1840. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  1841. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1842. backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
  1843. dev_ctx->backend_ctx = backend_ctx.release();
  1844. return dev_ctx->backend_ctx;
  1845. }
  1846. static void ggml_cl2_free(ggml_backend_t backend) {
  1847. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  1848. ctx->free();
  1849. // The CL context is shared by all backends, release it if all backends have been released
  1850. bool should_release_opencl = true;
  1851. for (auto device : g_ggml_backend_opencl_devices) {
  1852. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  1853. if (ctx_dev->backend_ctx->ref_count > 0) {
  1854. should_release_opencl = false;
  1855. }
  1856. }
  1857. if (should_release_opencl) {
  1858. CL_CHECK(clReleaseContext(ctx->context));
  1859. }
  1860. }
  1861. //------------------------------------------------------------------------------
  1862. // Tensor extra management
  1863. //------------------------------------------------------------------------------
  1864. struct ggml_tensor_extra_cl {
  1865. // The buffer object that holds the data.
  1866. cl_mem data_device;
  1867. // The offset into the buffer object. This is primarily for scratch buffer
  1868. // and view operation.
  1869. // NB: this offset no longer includes view offset (view_offs). Whenever this
  1870. // offset is used, view_offs should be considered.
  1871. cl_ulong offset;
  1872. // The actual size of the cl_mem object. This is needed when returning the
  1873. // block to the pool.
  1874. size_t actual_size;
  1875. void reset() {
  1876. data_device = nullptr;
  1877. offset = 0;
  1878. actual_size = 0;
  1879. }
  1880. };
  1881. // Additional tensor extra structs for quantized tensors.
  1882. // These tensors are loaded from files and should not be allocated in scratch --
  1883. // they should always be allocated from the pool. Hence, they do not have an
  1884. // `offset`, which indicate their locations in the scratch buffer.
  1885. struct ggml_tensor_extra_cl_q4_0 {
  1886. // Quantized values.
  1887. cl_mem q = nullptr;
  1888. // Quantized values in image1d_buffer_t.
  1889. cl_mem q_img = nullptr;
  1890. // Scales.
  1891. cl_mem d = nullptr;
  1892. // Scales in image1d_buffer_t.
  1893. cl_mem d_img = nullptr;
  1894. // Size of quantized values.
  1895. size_t size_q = 0;
  1896. // Size of scales.
  1897. size_t size_d = 0;
  1898. ~ggml_tensor_extra_cl_q4_0() {
  1899. reset();
  1900. }
  1901. void reset() {
  1902. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  1903. // They must be properly released so that the original buffer can be
  1904. // properly released to avoid memory leak.
  1905. if (q != nullptr) {
  1906. CL_CHECK(clReleaseMemObject(q));
  1907. q = nullptr;
  1908. }
  1909. if (d != nullptr) {
  1910. CL_CHECK(clReleaseMemObject(d));
  1911. d = nullptr;
  1912. }
  1913. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  1914. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  1915. // So, there is no need to release them here.
  1916. // TODO: initialize them for non SMALL_PATH path, or remove them.
  1917. q_img = nullptr;
  1918. d_img = nullptr;
  1919. size_q = 0;
  1920. size_d = 0;
  1921. }
  1922. };
  1923. //------------------------------------------------------------------------------
  1924. // Backend API
  1925. //------------------------------------------------------------------------------
  1926. //
  1927. // backend
  1928. //
  1929. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  1930. return "OpenCL";
  1931. UNUSED(backend);
  1932. }
  1933. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  1934. ggml_cl2_free(backend);
  1935. }
  1936. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1937. GGML_UNUSED(backend);
  1938. GGML_UNUSED(tensor);
  1939. GGML_UNUSED(data);
  1940. GGML_UNUSED(offset);
  1941. GGML_UNUSED(size);
  1942. }
  1943. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1944. GGML_UNUSED(backend);
  1945. GGML_UNUSED(tensor);
  1946. GGML_UNUSED(data);
  1947. GGML_UNUSED(offset);
  1948. GGML_UNUSED(size);
  1949. }
  1950. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  1951. GGML_UNUSED(backend);
  1952. GGML_UNUSED(src);
  1953. GGML_UNUSED(dst);
  1954. return false;
  1955. }
  1956. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  1957. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  1958. cl_event evt;
  1959. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  1960. CL_CHECK(clWaitForEvents(1, &evt));
  1961. CL_CHECK(clReleaseEvent(evt));
  1962. }
  1963. // Syncronizes the 'backend_ctx's device with others so that commands
  1964. // enqueued to it won't start until commands in the other devices have
  1965. // completed.
  1966. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  1967. if (g_ggml_backend_opencl_devices.size() < 2)
  1968. return; // No other devices to synchronize with.
  1969. std::vector<cl_event> events;
  1970. events.reserve(g_ggml_backend_opencl_devices.size());
  1971. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  1972. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  1973. if (backend_ctx != other_backend_ctx) {
  1974. cl_event ev;
  1975. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  1976. CL_CHECK(clFlush(other_backend_ctx->queue));
  1977. events.push_back(ev);
  1978. }
  1979. }
  1980. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  1981. for (auto ev : events) {
  1982. CL_CHECK(clReleaseEvent(ev));
  1983. }
  1984. }
  1985. static void sync_with_other_backends(ggml_backend_t backend) {
  1986. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  1987. sync_with_other_backends(backend_ctx);
  1988. }
  1989. static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
  1990. if (!ggml_can_fuse(cgraph, node_idx, ops)) {
  1991. return false;
  1992. }
  1993. if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
  1994. const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
  1995. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  1996. GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
  1997. GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
  1998. // rms_norm only supports f32
  1999. if (mul->src[0]->type != GGML_TYPE_F32 ||
  2000. mul->src[1]->type != GGML_TYPE_F32 ||
  2001. mul->type != GGML_TYPE_F32) {
  2002. return false;
  2003. }
  2004. // if rms_norm is the B operand, then we don't handle broadcast
  2005. if (rms_norm == mul->src[1] &&
  2006. !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
  2007. return false;
  2008. }
  2009. // rms_norm assumes contiguous rows
  2010. if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
  2011. return false;
  2012. }
  2013. }
  2014. return true;
  2015. }
  2016. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
  2017. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2018. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2019. for (int i = 0; i < cgraph->n_nodes; i++) {
  2020. ggml_tensor * node = cgraph->nodes[i];
  2021. // NOTE: this may oversynchronize by synchronizing with
  2022. // backends/devices which don't compute 'cgraph's
  2023. // dependencies.
  2024. sync_with_other_backends(backend);
  2025. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2026. continue;
  2027. }
  2028. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
  2029. ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
  2030. i++;
  2031. continue;
  2032. }
  2033. bool ok = ggml_cl_compute_forward(backend, node);
  2034. if (!ok) {
  2035. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2036. }
  2037. GGML_ASSERT(ok);
  2038. }
  2039. return GGML_STATUS_SUCCESS;
  2040. }
  2041. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2042. GGML_UNUSED(dev);
  2043. switch (op->op) {
  2044. case GGML_OP_NONE:
  2045. return true;
  2046. case GGML_OP_GET_ROWS:
  2047. switch (op->src[0]->type) {
  2048. case GGML_TYPE_F32:
  2049. case GGML_TYPE_F16:
  2050. return true;
  2051. case GGML_TYPE_Q4_0:
  2052. #ifdef GGML_OPENCL_SOA_Q
  2053. // We do not support flattened Q4_0 (and possibly other Q's)
  2054. return false;
  2055. #else // GGML_OPENCL_SOA_Q
  2056. return true;
  2057. #endif // GGML_OPENCL_SOA_Q
  2058. default:
  2059. return false;
  2060. }
  2061. case GGML_OP_SET_ROWS:
  2062. {
  2063. // TODO: add support
  2064. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  2065. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  2066. if (op->src[0]->type != GGML_TYPE_F32) {
  2067. return false;
  2068. }
  2069. switch (op->type) {
  2070. case GGML_TYPE_F16:
  2071. case GGML_TYPE_F32:
  2072. return true;
  2073. default:
  2074. return false;
  2075. }
  2076. }
  2077. case GGML_OP_CPY:
  2078. case GGML_OP_DUP:
  2079. case GGML_OP_CONT:
  2080. switch (op->src[0]->type) {
  2081. case GGML_TYPE_F32:
  2082. switch (op->type) {
  2083. case GGML_TYPE_F16:
  2084. case GGML_TYPE_F32:
  2085. return true;
  2086. default:
  2087. return false;
  2088. }
  2089. case GGML_TYPE_F16:
  2090. switch (op->type) {
  2091. case GGML_TYPE_F16:
  2092. case GGML_TYPE_F32:
  2093. return true;
  2094. default:
  2095. return false;
  2096. }
  2097. default:
  2098. return false;
  2099. }
  2100. case GGML_OP_ADD:
  2101. case GGML_OP_SCALE:
  2102. case GGML_OP_MUL:
  2103. case GGML_OP_DIV:
  2104. case GGML_OP_SUB:
  2105. return op->src[0]->type == GGML_TYPE_F32;
  2106. case GGML_OP_UNARY:
  2107. switch (ggml_get_unary_op(op)) {
  2108. case GGML_UNARY_OP_GELU:
  2109. case GGML_UNARY_OP_SILU:
  2110. case GGML_UNARY_OP_RELU:
  2111. case GGML_UNARY_OP_GELU_ERF:
  2112. case GGML_UNARY_OP_GELU_QUICK:
  2113. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2114. case GGML_UNARY_OP_SIGMOID:
  2115. return ggml_is_contiguous(op->src[0]);
  2116. case GGML_UNARY_OP_TANH:
  2117. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2118. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2119. default:
  2120. return false;
  2121. }
  2122. case GGML_OP_GLU:
  2123. switch (ggml_get_glu_op(op)) {
  2124. case GGML_GLU_OP_GEGLU:
  2125. case GGML_GLU_OP_REGLU:
  2126. case GGML_GLU_OP_SWIGLU:
  2127. case GGML_GLU_OP_GEGLU_ERF:
  2128. case GGML_GLU_OP_GEGLU_QUICK:
  2129. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2130. default:
  2131. return false;
  2132. }
  2133. case GGML_OP_CLAMP:
  2134. return op->src[0]->type == GGML_TYPE_F32;
  2135. case GGML_OP_SOFT_MAX:
  2136. case GGML_OP_NORM:
  2137. case GGML_OP_RMS_NORM:
  2138. return true;
  2139. case GGML_OP_REPEAT:
  2140. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2141. case GGML_OP_PAD:
  2142. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 &&
  2143. op->src[0]->ne[3] == 1 && op->ne[3] == 1;
  2144. case GGML_OP_UPSCALE:
  2145. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2146. case GGML_OP_CONV_2D:
  2147. return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
  2148. (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2149. (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2150. case GGML_OP_CONCAT:
  2151. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2152. case GGML_OP_TIMESTEP_EMBEDDING:
  2153. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2154. case GGML_OP_GROUP_NORM:
  2155. return ggml_is_contiguous(op->src[0]);
  2156. case GGML_OP_MUL_MAT:
  2157. if (op->src[0]->type == GGML_TYPE_F16) {
  2158. return true;
  2159. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2160. return op->src[1]->type == GGML_TYPE_F32;
  2161. } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2162. op->src[0]->type == GGML_TYPE_Q6_K) {
  2163. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2164. }
  2165. return false;
  2166. case GGML_OP_MUL_MAT_ID:
  2167. if (op->src[0]->type == GGML_TYPE_Q4_0) {
  2168. if (op->src[1]->type == GGML_TYPE_F32) {
  2169. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2170. }
  2171. }
  2172. return false;
  2173. case GGML_OP_RESHAPE:
  2174. case GGML_OP_VIEW:
  2175. case GGML_OP_PERMUTE:
  2176. case GGML_OP_TRANSPOSE:
  2177. return true;
  2178. case GGML_OP_DIAG_MASK_INF:
  2179. return op->ne[3] == 1;
  2180. case GGML_OP_ROPE: {
  2181. const int mode = ((const int32_t *) op->op_params)[2];
  2182. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2183. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2184. if (is_mrope && !is_vision) {
  2185. if (op->src[0]->type == GGML_TYPE_F32 ||
  2186. op->src[0]->type == GGML_TYPE_F16) {
  2187. return true;
  2188. }
  2189. return false;
  2190. }
  2191. if (is_vision) {
  2192. if (op->src[0]->type == GGML_TYPE_F32 ||
  2193. op->src[0]->type == GGML_TYPE_F16) {
  2194. return true;
  2195. }
  2196. return false;
  2197. }
  2198. return true;
  2199. }
  2200. case GGML_OP_IM2COL:
  2201. return true;
  2202. case GGML_OP_ARGSORT:
  2203. return op->src[0]->type == GGML_TYPE_F32;
  2204. case GGML_OP_SUM_ROWS:
  2205. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2206. default:
  2207. return false;
  2208. }
  2209. }
  2210. // Forward declaration - implementation appears later in the file.
  2211. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2212. static ggml_guid_t ggml_backend_opencl_guid() {
  2213. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2214. return &guid;
  2215. }
  2216. static ggml_backend_i ggml_backend_opencl_i = {
  2217. /* .get_name = */ ggml_backend_opencl_name,
  2218. /* .free = */ ggml_backend_opencl_free,
  2219. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2220. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2221. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2222. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2223. /* .graph_plan_create = */ NULL,
  2224. /* .graph_plan_free = */ NULL,
  2225. /* .graph_plan_update = */ NULL,
  2226. /* .graph_plan_compute = */ NULL,
  2227. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2228. /* .event_record = */ NULL,
  2229. /* .event_wait = */ NULL,
  2230. };
  2231. ggml_backend_t ggml_backend_opencl_init(void) {
  2232. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2233. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2234. ggml_backend_t backend = new ggml_backend {
  2235. /* .guid = */ ggml_backend_opencl_guid(),
  2236. /* .interface = */ ggml_backend_opencl_i,
  2237. /* .device = */ dev,
  2238. /* .context = */ backend_ctx
  2239. };
  2240. return backend;
  2241. }
  2242. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2243. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2244. }
  2245. //
  2246. // buffer
  2247. //
  2248. struct ggml_backend_opencl_buffer_context {
  2249. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2250. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2251. // each tensor is allocated a separate buffer. When flattening is enabled
  2252. // with small allocation, each tensor is backed by two cl_mem objects (for
  2253. // quants and scales) packed into a backend_opencl_buffer.
  2254. ggml_backend_opencl_buffer_context(cl_mem buf)
  2255. : name("OpenCL") {
  2256. buffer.push_back(buf);
  2257. }
  2258. ~ggml_backend_opencl_buffer_context() {
  2259. for (cl_mem buf : buffer) {
  2260. CL_CHECK(clReleaseMemObject(buf));
  2261. }
  2262. for (cl_mem im : img) {
  2263. CL_CHECK(clReleaseMemObject(im));
  2264. }
  2265. // Delete all extras to trigger their destructors
  2266. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2267. delete e;
  2268. }
  2269. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2270. delete e;
  2271. }
  2272. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2273. delete e;
  2274. }
  2275. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2276. delete e;
  2277. }
  2278. }
  2279. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2280. ggml_tensor_extra_cl * extra;
  2281. if (temp_tensor_extras.empty()) {
  2282. extra = new ggml_tensor_extra_cl();
  2283. } else {
  2284. extra = temp_tensor_extras.back();
  2285. temp_tensor_extras.pop_back();
  2286. }
  2287. temp_tensor_extras_in_use.push_back(extra);
  2288. extra->reset();
  2289. return extra;
  2290. }
  2291. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2292. ggml_tensor_extra_cl_q4_0 * extra;
  2293. if (temp_tensor_extras_q4_0.empty()) {
  2294. extra = new ggml_tensor_extra_cl_q4_0();
  2295. } else {
  2296. extra = temp_tensor_extras_q4_0.back();
  2297. temp_tensor_extras_q4_0.pop_back();
  2298. }
  2299. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2300. extra->reset();
  2301. return extra;
  2302. }
  2303. void reset() {
  2304. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2305. temp_tensor_extras.push_back(e);
  2306. }
  2307. temp_tensor_extras_in_use.clear();
  2308. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2309. temp_tensor_extras_q4_0.push_back(e);
  2310. }
  2311. temp_tensor_extras_q4_0_in_use.clear();
  2312. }
  2313. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  2314. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  2315. // extras get created and put in `in_use`. When the buffer is reset via
  2316. // the `reset` callback, all extras in `in_use` get moved to available extras
  2317. // for reuse.
  2318. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  2319. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  2320. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  2321. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  2322. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  2323. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  2324. // Hence, there is alway a buffer object in this vector. When each tensor is
  2325. // being initialized, this original buffer object will be released if both
  2326. // flattening and small allocation are enabled, and additional buffer
  2327. // objects will be created in init_tensor to represent flattened quantized
  2328. // weights.
  2329. std::vector<cl_mem> buffer;
  2330. // These are image1d_buffer_t objects that wrap around the quants and scales.
  2331. // For Q4_0 quantization, there should be two of them - one for quants and
  2332. // one for scales. They should be populated only when flattening and small
  2333. // allocation are enabled.
  2334. std::vector<cl_mem> img;
  2335. std::string name;
  2336. };
  2337. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  2338. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2339. delete ctx;
  2340. }
  2341. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  2342. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  2343. return (void *) (uintptr_t) backend_ctx->alignment;
  2344. }
  2345. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  2346. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2347. ggml_cl2_init(buffer->buft->device);
  2348. if (tensor->view_src != nullptr) {
  2349. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  2350. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  2351. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  2352. // Reuse extra of the parent tensor. The offset of this view tensor
  2353. // becomes `extra->offset + view_offs` and needs to be calculated when
  2354. // it is used. This changes is needed because of the change to
  2355. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  2356. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  2357. // to allocate extras from the same buffer context for ordinary
  2358. // intermediate tensors. But for views into kv cache tensors, doing so
  2359. // would mess up the extras used by kv cache.
  2360. // Before #7640, `buffer` is for intermediate tensors, which is always
  2361. // different from that of kv cache tensors.
  2362. //
  2363. // NB: now extra->offset no longer accounts for view_offs.
  2364. // NB: this should not apply to weight tensors (for end-to-end runs, but
  2365. // may apply for test-backend-ops).
  2366. // FIXME: if any unexpected results are seen, double check the offset -
  2367. // there could be other places that need fix.
  2368. tensor->extra = view_extra;
  2369. } else {
  2370. {
  2371. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  2372. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  2373. extra->offset = offset;
  2374. extra->data_device = ctx->buffer[0];
  2375. extra->actual_size = ggml_nbytes(tensor);
  2376. tensor->extra = extra;
  2377. }
  2378. }
  2379. return GGML_STATUS_SUCCESS;
  2380. }
  2381. // The optimized gemm and gemv kernels are used for large matrices without batch.
  2382. // tensor is the quantized weights matrix.
  2383. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2384. int64_t threshold_ne0 = 512;
  2385. int64_t threshold_ne1 = 512;
  2386. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  2387. backend_ctx->adreno_cl_compiler_version.type != DX) {
  2388. threshold_ne0 = 128;
  2389. threshold_ne1 = 128;
  2390. }
  2391. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  2392. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2393. }
  2394. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2395. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2396. cl_context context = backend_ctx->context;
  2397. cl_command_queue queue = backend_ctx->queue;
  2398. #ifdef GGML_OPENCL_SOA_Q
  2399. // We separate the quantized bits and scale from block_q4_0 by using an
  2400. // additional kernel, where each thread handles a block. We first read the
  2401. // original weights into a temporary buffer, then create two separate
  2402. // buffers for quantized bits and scales, which are then populated by the
  2403. // conversion kernel.
  2404. if (tensor->type == GGML_TYPE_Q4_0) {
  2405. // Tensors should have been preallocated, therefore they should
  2406. // already have ggml_tensor_extra_cl as extra.
  2407. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  2408. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  2409. // Allocate the new extra and create aliases from the original.
  2410. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2411. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  2412. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  2413. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  2414. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  2415. cl_int err;
  2416. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2417. ggml_nbytes(tensor), NULL, &err);
  2418. CL_CHECK(err);
  2419. CL_CHECK(clEnqueueWriteBuffer(
  2420. queue, data_device, CL_TRUE, 0,
  2421. ggml_nbytes(tensor), data, 0, NULL, NULL));
  2422. // We consider the specified offset arg as always, although For weights
  2423. // the offset arg should be 0 (we do not assert this).
  2424. //GGML_ASSERT(offset == 0);
  2425. // We create subbuffers from the original tensor buffer for scales and
  2426. // quants - i.e., scales and quants are aliases into the buffer obejct
  2427. // that backs the original tensor. This is a cleaner way to adapt to the
  2428. // new memory management.
  2429. // In the old code, we allocate new buffers for scales and quants
  2430. // respectively, which could still be done but would result in double
  2431. // allocation; properly deallocating the preallocated buffer that backs
  2432. // the tensors is tricky and would leak the backend specific information
  2433. // into the general backend code.
  2434. // Does this create misaligned subbuffers (alignment is 1024) in certain
  2435. // cases ?
  2436. cl_buffer_region region;
  2437. // The original tensor memory is divided into scales and quants, i.e.,
  2438. // we first store scales, then quants.
  2439. // Create subbuffer for scales.
  2440. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  2441. region.size = size_d;
  2442. extra->d = clCreateSubBuffer(
  2443. extra_orig->data_device, CL_MEM_READ_WRITE,
  2444. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2445. CL_CHECK(err);
  2446. auto previous_origin = region.origin;
  2447. // Create subbuffer for quants.
  2448. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  2449. region.size = size_q;
  2450. extra->q = clCreateSubBuffer(
  2451. extra_orig->data_device, CL_MEM_READ_WRITE,
  2452. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2453. CL_CHECK(err);
  2454. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2455. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2456. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2457. // The optimized kernels need weights in natural order, so unshuffle.
  2458. if (use_adreno_kernels(backend_ctx, tensor)) {
  2459. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  2460. }
  2461. #else
  2462. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2463. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2464. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  2465. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  2466. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  2467. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  2468. size_t local_work_size[] = {64, 1, 1};
  2469. cl_event evt;
  2470. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2471. CL_CHECK(clWaitForEvents(1, &evt));
  2472. CL_CHECK(clReleaseMemObject(data_device));
  2473. tensor->extra = extra;
  2474. // transpose the weights and scales
  2475. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2476. // Only do transpose for large, non batched matrix
  2477. // TODO: use preallocated images instead of sub-buffer then image
  2478. if (use_adreno_kernels(backend_ctx, tensor)) {
  2479. // <----------------------------------------------------------------------------------> //
  2480. // start transpose
  2481. // <----------------------------------------------------------------------------------> //
  2482. int M = tensor->ne[1]; // ne01
  2483. int K = tensor->ne[0]; // ne00
  2484. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  2485. GGML_ASSERT(K % 32 == 0);
  2486. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  2487. GGML_ASSERT(M % 4 == 0);
  2488. // transpose is out of place, so we need to allocate transposed buffers
  2489. // <----------------------------------------------------------------------------------> //
  2490. // use sub_buffer of max buffer size instead
  2491. size_t q_size_bytes = K * M / 8 * sizeof(float);
  2492. cl_buffer_region region;
  2493. region.origin = 0;
  2494. region.size = q_size_bytes;
  2495. cl_mem qT_d = clCreateSubBuffer(
  2496. backend_ctx->A_q_d_max,
  2497. 0,
  2498. CL_BUFFER_CREATE_TYPE_REGION,
  2499. &region,
  2500. &err);
  2501. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  2502. CL_CHECK(err);
  2503. // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
  2504. size_t d_size_bytes = M * (K / 32) * 2;
  2505. region.origin = 0;
  2506. region.size = d_size_bytes;
  2507. cl_mem dT_d = clCreateSubBuffer(
  2508. backend_ctx->A_s_d_max,
  2509. 0,
  2510. CL_BUFFER_CREATE_TYPE_REGION,
  2511. &region,
  2512. &err);
  2513. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  2514. CL_CHECK(err);
  2515. // <----------------------------------------------------------------------------------> //
  2516. // create images from the buffers
  2517. // <----------------------------------------------------------------------------------> //
  2518. cl_mem q_d_image1D;
  2519. cl_mem d_d_image1D;
  2520. cl_mem qT_d_image1D;
  2521. cl_mem dT_d_image1D;
  2522. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2523. cl_image_desc img_desc_1d;
  2524. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2525. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2526. img_desc_1d.image_width = M * K / 4 / 4;
  2527. img_desc_1d.buffer = extra->q;
  2528. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2529. CL_CHECK(err);
  2530. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2531. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2532. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2533. img_desc_1d.image_width = M * K / 4 / 4;
  2534. img_desc_1d.buffer = qT_d;
  2535. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2536. CL_CHECK(err);
  2537. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2538. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2539. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2540. img_desc_1d.image_width = M * K / 32 / 4;
  2541. img_desc_1d.buffer = extra->d;
  2542. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2543. CL_CHECK(err);
  2544. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  2545. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2546. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2547. img_desc_1d.image_width = M * K / 32 / 4;
  2548. img_desc_1d.buffer = dT_d;
  2549. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  2550. CL_CHECK(err);
  2551. // <----------------------------------------------------------------------------------> //
  2552. // set up and call the transpose kernels
  2553. // <----------------------------------------------------------------------------------> //
  2554. // weights
  2555. int height_q = M / 4;
  2556. int width_q = K / 4 / 4;
  2557. kernel = backend_ctx->kernel_transpose_16;
  2558. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  2559. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  2560. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  2561. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  2562. size_t local_size_q[3] = {4, 16, 1};
  2563. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  2564. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  2565. CL_CHECK(clWaitForEvents(1, &evt));
  2566. // scales
  2567. int height_s = M / 4;
  2568. int width_s = K / 32 / 4;
  2569. kernel = backend_ctx->kernel_transpose_16;
  2570. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  2571. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  2572. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  2573. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  2574. size_t local_size_s[3] = {4, 16, 1};
  2575. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  2576. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  2577. CL_CHECK(clWaitForEvents(1, &evt));
  2578. // <----------------------------------------------------------------------------------> //
  2579. // copy transposed buffer contents to original buffers
  2580. // <----------------------------------------------------------------------------------> //
  2581. // weights
  2582. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  2583. CL_CHECK(clWaitForEvents(1, &evt));
  2584. // scales
  2585. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  2586. CL_CHECK(clWaitForEvents(1, &evt));
  2587. // <----------------------------------------------------------------------------------> //
  2588. // deallocate transpose buffers
  2589. // <----------------------------------------------------------------------------------> //
  2590. CL_CHECK(clReleaseMemObject(qT_d));
  2591. CL_CHECK(clReleaseMemObject(dT_d));
  2592. // deallocate temporary images
  2593. CL_CHECK(clReleaseMemObject(q_d_image1D));
  2594. CL_CHECK(clReleaseMemObject(d_d_image1D));
  2595. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  2596. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  2597. // <----------------------------------------------------------------------------------> //
  2598. // end transpose
  2599. // <----------------------------------------------------------------------------------> //
  2600. }
  2601. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2602. return;
  2603. }
  2604. #endif // GGML_OPENCL_SOA_Q
  2605. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2606. GGML_ASSERT(extra);
  2607. CL_CHECK(clEnqueueWriteBuffer(
  2608. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  2609. size, data, 0, NULL, NULL));
  2610. GGML_UNUSED(buffer);
  2611. }
  2612. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2613. GGML_ASSERT(tensor->extra);
  2614. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2615. cl_context context = backend_ctx->context;
  2616. cl_command_queue queue = backend_ctx->queue;
  2617. // Make sure all previously submitted commands in other devices are finished.
  2618. sync_with_other_backends(backend_ctx);
  2619. #ifdef GGML_OPENCL_SOA_Q
  2620. // In end-to-end runs, get_tensor is usually used to get back the logits,
  2621. // where we can simply do clEnqueueReadBuffer since they are f32.
  2622. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  2623. // which requires reading back quantized weight tensors.
  2624. // To properly support this, we need to restore block_q4_0 struct arrays
  2625. // from the flattened buffers.
  2626. if (tensor->type == GGML_TYPE_Q4_0) {
  2627. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  2628. cl_int err;
  2629. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2630. ggml_nbytes(tensor), NULL, &err);
  2631. CL_CHECK(err);
  2632. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  2633. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  2634. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  2635. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  2636. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  2637. size_t local_work_size[] = {1, 1, 1};
  2638. cl_event evt;
  2639. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  2640. global_work_size, local_work_size, 0, NULL, &evt));
  2641. CL_CHECK(clWaitForEvents(1, &evt));
  2642. CL_CHECK(clEnqueueReadBuffer(
  2643. queue, data_device, CL_TRUE, offset,
  2644. size, data, 0, NULL, NULL));
  2645. CL_CHECK(clReleaseMemObject(data_device));
  2646. return;
  2647. }
  2648. #endif // GGML_OPENCL_SOA_Q
  2649. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2650. CL_CHECK(clEnqueueReadBuffer(
  2651. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  2652. size, data, 0, NULL, NULL));
  2653. GGML_UNUSED(buffer);
  2654. }
  2655. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  2656. ggml_backend_dev_t dev = buffer->buft->device;
  2657. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2658. cl_command_queue queue = backend_ctx->queue;
  2659. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2660. for (cl_mem buf : ctx->buffer) {
  2661. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  2662. }
  2663. CL_CHECK(clFinish(queue));
  2664. }
  2665. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  2666. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2667. ctx->reset();
  2668. }
  2669. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  2670. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  2671. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  2672. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  2673. /* .memset_tensor = */ NULL,
  2674. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  2675. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  2676. /* .cpy_tensor = */ NULL,
  2677. /* .clear = */ ggml_backend_opencl_buffer_clear,
  2678. /* .reset = */ ggml_backend_opencl_buffer_reset,
  2679. };
  2680. //
  2681. // buffer type
  2682. //
  2683. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  2684. return "OpenCL";
  2685. GGML_UNUSED(buffer_type);
  2686. }
  2687. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  2688. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  2689. // clCreateBuffer returns -61 for size 0
  2690. size = std::max(size, (size_t)1);
  2691. cl_int err;
  2692. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  2693. if (err != CL_SUCCESS) {
  2694. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  2695. return nullptr;
  2696. }
  2697. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  2698. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  2699. }
  2700. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  2701. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2702. return backend_ctx->alignment;
  2703. }
  2704. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  2705. static size_t max_size = -1;
  2706. if (max_size == (size_t)-1) {
  2707. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  2708. max_size = backend_ctx->max_alloc_size;
  2709. }
  2710. return max_size;
  2711. }
  2712. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  2713. return ggml_backend_is_opencl(backend);
  2714. UNUSED(buft);
  2715. }
  2716. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  2717. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  2718. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  2719. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  2720. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  2721. /* .get_alloc_size = */ NULL,
  2722. /* .is_host = */ NULL,
  2723. };
  2724. //
  2725. // backend device
  2726. //
  2727. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  2728. return "GPUOpenCL";
  2729. GGML_UNUSED(dev);
  2730. }
  2731. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  2732. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  2733. return dev_ctx->device_name.c_str();
  2734. }
  2735. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  2736. *free = 1;
  2737. *total = 1;
  2738. GGML_UNUSED(dev);
  2739. }
  2740. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  2741. return GGML_BACKEND_DEVICE_TYPE_GPU;
  2742. GGML_UNUSED(dev);
  2743. }
  2744. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  2745. props->name = ggml_backend_opencl_device_get_name(dev);
  2746. props->description = ggml_backend_opencl_device_get_description(dev);
  2747. props->type = ggml_backend_opencl_device_get_type(dev);
  2748. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  2749. props->caps = ggml_backend_dev_caps {
  2750. /* .async = */ false,
  2751. /* .host_buffer = */ false,
  2752. /* .buffer_from_host_ptr = */ false,
  2753. /* .events = */ false,
  2754. };
  2755. }
  2756. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  2757. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  2758. // Getting a new reference to the backend, increase ref_count
  2759. backend_ctx->ref_count++;
  2760. ggml_backend_t backend = new ggml_backend {
  2761. /* .guid = */ ggml_backend_opencl_guid(),
  2762. /* .interface = */ ggml_backend_opencl_i,
  2763. /* .device = */ dev,
  2764. /* .context = */ backend_ctx,
  2765. };
  2766. return backend;
  2767. GGML_UNUSED(params);
  2768. }
  2769. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  2770. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  2771. dev_ctx->buffer_type = ggml_backend_buffer_type{
  2772. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  2773. /* .device = */ dev,
  2774. /* .context = */ nullptr,
  2775. };
  2776. return &dev_ctx->buffer_type;
  2777. }
  2778. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  2779. GGML_UNUSED(dev);
  2780. GGML_UNUSED(ptr);
  2781. GGML_UNUSED(size);
  2782. GGML_UNUSED(max_tensor_size);
  2783. return nullptr;
  2784. }
  2785. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2786. return ggml_opencl_supports_op(dev, op);
  2787. }
  2788. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  2789. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  2790. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  2791. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  2792. return false;
  2793. }
  2794. // Check cl_context is the same. clEnqueue* commands may not use
  2795. // buffers from another cl_context.
  2796. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  2797. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  2798. return backend_ctx0->context == backend_ctx1->context;
  2799. }
  2800. namespace /* anonymous */ {
  2801. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  2802. /* .get_name = */ ggml_backend_opencl_device_get_name,
  2803. /* .get_description = */ ggml_backend_opencl_device_get_description,
  2804. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  2805. /* .get_type = */ ggml_backend_opencl_device_get_type,
  2806. /* .get_props = */ ggml_backend_opencl_device_get_props,
  2807. /* .init_backend = */ ggml_backend_opencl_device_init,
  2808. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  2809. /* .get_host_buffer_type = */ NULL,
  2810. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  2811. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  2812. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  2813. /* .offload_op = */ NULL,
  2814. /* .event_new = */ NULL,
  2815. /* .event_free = */ NULL,
  2816. /* .event_synchronize = */ NULL,
  2817. };
  2818. }
  2819. // Backend registry
  2820. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  2821. return "OpenCL";
  2822. GGML_UNUSED(reg);
  2823. }
  2824. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  2825. return g_ggml_backend_opencl_devices.size();
  2826. GGML_UNUSED(reg);
  2827. }
  2828. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  2829. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  2830. return &g_ggml_backend_opencl_devices[index];
  2831. GGML_UNUSED(reg);
  2832. GGML_UNUSED(index);
  2833. }
  2834. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  2835. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  2836. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  2837. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  2838. /* .get_proc_address = */ NULL,
  2839. };
  2840. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  2841. static std::mutex mutex;
  2842. static ggml_backend_reg reg;
  2843. static bool initialized = false;
  2844. std::lock_guard<std::mutex> lock(mutex);
  2845. if (initialized) {
  2846. return &reg;
  2847. }
  2848. initialized = true;
  2849. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  2850. reg = ggml_backend_reg{
  2851. /* .api_version = */ GGML_BACKEND_API_VERSION,
  2852. /* .iface = */ ggml_backend_opencl_reg_i,
  2853. /* .context = */ NULL,
  2854. };
  2855. return &reg;
  2856. }
  2857. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  2858. //------------------------------------------------------------------------------
  2859. // Debugging utils
  2860. //------------------------------------------------------------------------------
  2861. #if 0
  2862. #define QK4_0 32
  2863. typedef struct {
  2864. ggml_fp16_t d; // delta
  2865. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  2866. } block_q4_0;
  2867. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  2868. "wrong q4_0 block size/padding");
  2869. #include <math.h>
  2870. #ifdef __cplusplus
  2871. #include "half.hpp"
  2872. #endif
  2873. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  2874. void * buf = malloc(ggml_nbytes(tensor));
  2875. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2876. cl_command_queue queue = backend_ctx->queue;
  2877. #ifdef GGML_OPENCL_SOA_Q
  2878. void * buf_q;
  2879. void * buf_d;
  2880. #endif
  2881. // Make sure everything is done.
  2882. CL_CHECK(clFinish(queue));
  2883. #ifdef GGML_OPENCL_SOA_Q
  2884. if (tensor->type == GGML_TYPE_Q4_0) {
  2885. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  2886. GGML_ASSERT(extra);
  2887. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  2888. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  2889. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  2890. buf_q = malloc(size_q);
  2891. buf_d = malloc(size_d);
  2892. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  2893. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  2894. CL_CHECK(clFinish(queue));
  2895. } else {
  2896. // Read out the tensor from GPU memory.
  2897. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2898. GGML_ASSERT(extra);
  2899. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  2900. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  2901. CL_CHECK(clFinish(queue));
  2902. }
  2903. #else
  2904. // Read out the tensor from GPU memory.
  2905. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  2906. GGML_ASSERT(extra);
  2907. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  2908. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  2909. CL_CHECK(clFinish(queue));
  2910. #endif // GGML_OPENCL_SOA_Q
  2911. // Open file and dump.
  2912. char fname[512];
  2913. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  2914. FILE * f = fopen(fname, "w");
  2915. if (!f) {
  2916. printf("Failed to open %s\n", fname);
  2917. return;
  2918. }
  2919. if (tensor->type == GGML_TYPE_F32) {
  2920. float * data = (float *) buf;
  2921. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2922. if (isnan(data[i])) {
  2923. printf("NaN found: %s\n", tensor->name);
  2924. break;
  2925. }
  2926. fprintf(f, "%f\n", data[i]);
  2927. }
  2928. } else if (tensor->type == GGML_TYPE_I32) {
  2929. int * data = (int *) buf;
  2930. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2931. if (isnan(data[i])) {
  2932. printf("NaN found: %s\n", tensor->name);
  2933. break;
  2934. }
  2935. fprintf(f, "%d\n", data[i]);
  2936. }
  2937. } else if (tensor->type == GGML_TYPE_F16) {
  2938. #ifdef __cplusplus
  2939. half_float::half * data = (half_float::half *) buf;
  2940. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  2941. if (std::isnan(data[i])) {
  2942. printf("NaN found: %s\n", tensor->name);
  2943. break;
  2944. }
  2945. fprintf(f, "%f\n", float(data[i]));
  2946. }
  2947. #endif
  2948. } else if (tensor->type == GGML_TYPE_Q4_0) {
  2949. #ifdef GGML_OPENCL_SOA_Q
  2950. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  2951. unsigned char * data_q = (unsigned char *)buf_q;
  2952. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  2953. fprintf(f, "%04x, ", data_d[i]);
  2954. for (int k = 0; k < QK4_0/2; ++k) {
  2955. fprintf(f, "%02x, ", data_q[k]);
  2956. }
  2957. fprintf(f, "\n");
  2958. data_q += QK4_0/2;
  2959. }
  2960. free(buf_d);
  2961. free(buf_q);
  2962. #else
  2963. block_q4_0 * data = (block_q4_0 *) buf;
  2964. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  2965. fprintf(f, "%04x, ", data[i].d);
  2966. for (int k = 0; k < QK4_0/2; ++k) {
  2967. fprintf(f, "%02x, ", data[i].qs[k]);
  2968. }
  2969. fprintf(f, "\n");
  2970. }
  2971. #endif // GGML_OPENCL_SOA_Q
  2972. }
  2973. free(buf);
  2974. fflush(f);
  2975. fclose(f);
  2976. }
  2977. #else
  2978. #define dump_tensor(tensor)
  2979. #endif
  2980. //------------------------------------------------------------------------------
  2981. // Ops
  2982. //------------------------------------------------------------------------------
  2983. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  2984. const int64_t ne10 = src1->ne[0];
  2985. const int64_t ne0 = dst->ne[0];
  2986. const int64_t ne1 = dst->ne[1];
  2987. // TODO: find the optimal values for these
  2988. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  2989. src1->type == GGML_TYPE_F32 &&
  2990. dst->type == GGML_TYPE_F32 &&
  2991. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  2992. }
  2993. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2994. UNUSED(backend);
  2995. UNUSED(src0);
  2996. UNUSED(src1);
  2997. UNUSED(dst);
  2998. }
  2999. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3000. GGML_ASSERT(src0);
  3001. GGML_ASSERT(src0->extra);
  3002. GGML_ASSERT(src1);
  3003. GGML_ASSERT(src1->extra);
  3004. GGML_ASSERT(dst);
  3005. GGML_ASSERT(dst->extra);
  3006. const int ne00 = src0 ? src0->ne[0] : 0;
  3007. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3008. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3009. const int ne10 = src1 ? src1->ne[0] : 0;
  3010. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  3011. const int ne11 = src1 ? src1->ne[1] : 0;
  3012. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  3013. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  3014. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  3015. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3016. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3017. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3018. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3019. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3020. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3021. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3022. cl_kernel kernel;
  3023. switch (src0->type) {
  3024. case GGML_TYPE_F32:
  3025. kernel = backend_ctx->kernel_get_rows_f32;
  3026. break;
  3027. case GGML_TYPE_F16:
  3028. kernel = backend_ctx->kernel_get_rows_f16;
  3029. break;
  3030. case GGML_TYPE_Q4_0:
  3031. kernel = backend_ctx->kernel_get_rows_q4_0;
  3032. break;
  3033. default:
  3034. GGML_ASSERT(false && "not implemented");
  3035. }
  3036. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3037. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3038. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3039. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3040. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3041. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3042. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3043. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3044. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3045. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  3046. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
  3047. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  3048. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
  3049. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
  3050. size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
  3051. size_t local_work_size[] = {1, 1, 1};
  3052. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3053. }
  3054. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3055. GGML_ASSERT(src0);
  3056. GGML_ASSERT(src0->extra);
  3057. GGML_ASSERT(src1);
  3058. GGML_ASSERT(src1->extra);
  3059. GGML_ASSERT(dst);
  3060. GGML_ASSERT(dst->extra);
  3061. // ne0 = ne00
  3062. // ne2 = ne02
  3063. // ne3 = ne03
  3064. const int ne01 = src0->ne[1];
  3065. const int ne02 = src0->ne[2];
  3066. const int ne03 = src0->ne[3];
  3067. const cl_ulong nb01 = src0->nb[1];
  3068. const cl_ulong nb02 = src0->nb[2];
  3069. const cl_ulong nb03 = src0->nb[3];
  3070. const int ne11 = src1->ne[1];
  3071. const int ne12 = src1->ne[2];
  3072. const cl_ulong nb10 = src1->nb[0];
  3073. const cl_ulong nb11 = src1->nb[1];
  3074. const cl_ulong nb12 = src1->nb[2];
  3075. const int ne0 = dst->ne[0];
  3076. const cl_ulong nb1 = dst->nb[1];
  3077. const cl_ulong nb2 = dst->nb[2];
  3078. const cl_ulong nb3 = dst->nb[3];
  3079. const int nblk0 = ne0/ggml_blck_size(dst->type);
  3080. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3081. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3082. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3083. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3084. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3085. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3086. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3087. cl_kernel kernel;
  3088. switch (dst->type) {
  3089. case GGML_TYPE_F32:
  3090. kernel = backend_ctx->kernel_set_rows_f32;
  3091. break;
  3092. case GGML_TYPE_F16:
  3093. kernel = backend_ctx->kernel_set_rows_f16;
  3094. break;
  3095. default:
  3096. GGML_ABORT("not implemented");
  3097. }
  3098. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3099. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3100. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3101. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3102. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3103. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3104. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  3105. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3106. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3107. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3108. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
  3109. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  3110. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  3111. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  3112. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  3113. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  3114. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  3115. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  3116. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  3117. int nth0 = 64;
  3118. if (backend_ctx->gpu_family == INTEL) {
  3119. nth0 = 32;
  3120. } else if (backend_ctx->gpu_family == ADRENO) {
  3121. nth0 = 64;
  3122. }
  3123. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  3124. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  3125. nth0 *= 2;
  3126. }
  3127. int rows_per_workgroup = 1;
  3128. if (nth0 > nblk0) {
  3129. rows_per_workgroup = nth0 / nblk0;
  3130. nth0 = nblk0;
  3131. }
  3132. size_t global_work_size[] = {
  3133. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  3134. (size_t)ne02*rows_per_workgroup,
  3135. (size_t)ne03};
  3136. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  3137. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3138. }
  3139. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3140. GGML_ASSERT(src0);
  3141. GGML_ASSERT(src0->extra);
  3142. GGML_ASSERT(src1);
  3143. GGML_ASSERT(src1->extra);
  3144. GGML_ASSERT(dst);
  3145. GGML_ASSERT(dst->extra);
  3146. const int ne00 = src0 ? src0->ne[0] : 0;
  3147. const int ne01 = src0 ? src0->ne[1] : 0;
  3148. const int ne02 = src0 ? src0->ne[2] : 0;
  3149. const int ne03 = src0 ? src0->ne[3] : 0;
  3150. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  3151. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3152. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3153. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3154. const int ne10 = src1 ? src1->ne[0] : 0;
  3155. const int ne11 = src1 ? src1->ne[1] : 0;
  3156. const int ne12 = src1 ? src1->ne[2] : 0;
  3157. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  3158. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  3159. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  3160. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  3161. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  3162. const int ne0 = dst ? dst->ne[0] : 0;
  3163. const int ne1 = dst ? dst->ne[1] : 0;
  3164. const int ne2 = dst ? dst->ne[2] : 0;
  3165. const int ne3 = dst ? dst->ne[3] : 0;
  3166. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  3167. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  3168. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  3169. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  3170. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3171. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3172. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3173. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3174. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3175. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3176. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3177. bool bcast_row = false;
  3178. cl_kernel kernel;
  3179. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3180. GGML_ASSERT(ggml_is_contiguous(src0));
  3181. // src1 is a row
  3182. GGML_ASSERT(ne11 == 1);
  3183. bcast_row = true;
  3184. int ne = ne00 / 4;
  3185. kernel = backend_ctx->kernel_add_row;
  3186. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3187. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3188. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3189. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3190. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3191. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3192. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3193. } else {
  3194. kernel = backend_ctx->kernel_add;
  3195. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3196. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3197. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3198. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3199. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3200. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3201. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3202. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3203. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3204. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3205. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3206. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3207. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3208. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3209. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3210. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3211. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3212. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3213. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3214. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3215. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3216. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3217. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3218. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3219. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3220. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3221. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3222. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3223. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3224. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3225. }
  3226. if (bcast_row) {
  3227. int n = ggml_nelements(dst)/4;
  3228. size_t global_work_size[] = {(size_t)n, 1, 1};
  3229. size_t local_work_size[] = {64, 1, 1};
  3230. size_t * local_work_size_ptr = local_work_size;
  3231. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3232. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3233. }
  3234. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3235. } else {
  3236. unsigned int nth = MIN(64, ne0);
  3237. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3238. size_t local_work_size[] = {nth, 1, 1};
  3239. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3240. }
  3241. }
  3242. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3243. GGML_ASSERT(src0);
  3244. GGML_ASSERT(src0->extra);
  3245. GGML_ASSERT(src1);
  3246. GGML_ASSERT(src1->extra);
  3247. GGML_ASSERT(dst);
  3248. GGML_ASSERT(dst->extra);
  3249. const int ne00 = src0 ? src0->ne[0] : 0;
  3250. const int ne01 = src0 ? src0->ne[1] : 0;
  3251. const int ne02 = src0 ? src0->ne[2] : 0;
  3252. const int ne03 = src0 ? src0->ne[3] : 0;
  3253. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  3254. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3255. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3256. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3257. const int ne10 = src1 ? src1->ne[0] : 0;
  3258. const int ne11 = src1 ? src1->ne[1] : 0;
  3259. const int ne12 = src1 ? src1->ne[2] : 0;
  3260. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  3261. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  3262. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  3263. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  3264. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  3265. const int ne0 = dst ? dst->ne[0] : 0;
  3266. const int ne1 = dst ? dst->ne[1] : 0;
  3267. const int ne2 = dst ? dst->ne[2] : 0;
  3268. const int ne3 = dst ? dst->ne[3] : 0;
  3269. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  3270. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  3271. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  3272. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  3273. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3274. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3275. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3276. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3277. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3278. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3279. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3280. bool bcast_row = false;
  3281. cl_kernel kernel;
  3282. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3283. GGML_ASSERT(ggml_is_contiguous(src0));
  3284. // src1 is a row
  3285. GGML_ASSERT(ne11 == 1);
  3286. bcast_row = true;
  3287. int ne = ne00 / 4;
  3288. kernel = backend_ctx->kernel_mul_row;
  3289. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3290. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3291. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3292. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3293. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3294. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3295. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3296. } else {
  3297. kernel = backend_ctx->kernel_mul;
  3298. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3299. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3300. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3301. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3302. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3303. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3304. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3305. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3306. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3307. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3308. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3309. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3310. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3311. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3312. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3313. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3314. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3315. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3316. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3317. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3318. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3319. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3320. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3321. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3322. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3323. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3324. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3325. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3326. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3327. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3328. }
  3329. if (bcast_row) {
  3330. int n = ggml_nelements(dst)/4;
  3331. size_t global_work_size[] = {(size_t)n, 1, 1};
  3332. size_t local_work_size[] = {64, 1, 1};
  3333. size_t * local_work_size_ptr = local_work_size;
  3334. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3335. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3336. }
  3337. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3338. } else {
  3339. unsigned int nth = MIN(64, ne0);
  3340. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3341. size_t local_work_size[] = {nth, 1, 1};
  3342. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3343. }
  3344. }
  3345. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3346. GGML_ASSERT(src0);
  3347. GGML_ASSERT(src0->extra);
  3348. GGML_ASSERT(src1);
  3349. GGML_ASSERT(src1->extra);
  3350. GGML_ASSERT(dst);
  3351. GGML_ASSERT(dst->extra);
  3352. const int ne00 = src0->ne[0];
  3353. const int ne01 = src0->ne[1];
  3354. const int ne02 = src0->ne[2];
  3355. const int ne03 = src0->ne[3];
  3356. const cl_ulong nb00 = src0->nb[0];
  3357. const cl_ulong nb01 = src0->nb[1];
  3358. const cl_ulong nb02 = src0->nb[2];
  3359. const cl_ulong nb03 = src0->nb[3];
  3360. const int ne10 = src1->ne[0];
  3361. const int ne11 = src1->ne[1];
  3362. const int ne12 = src1->ne[2];
  3363. const int ne13 = src1->ne[3];
  3364. const cl_ulong nb10 = src1->nb[0];
  3365. const cl_ulong nb11 = src1->nb[1];
  3366. const cl_ulong nb12 = src1->nb[2];
  3367. const cl_ulong nb13 = src1->nb[3];
  3368. const int ne0 = dst->ne[0];
  3369. const cl_ulong nb0 = dst->nb[0];
  3370. const cl_ulong nb1 = dst->nb[1];
  3371. const cl_ulong nb2 = dst->nb[2];
  3372. const cl_ulong nb3 = dst->nb[3];
  3373. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3374. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3375. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3376. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3377. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3378. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3379. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3380. bool bcast_row = false;
  3381. cl_kernel kernel;
  3382. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3383. GGML_ASSERT(ggml_is_contiguous(src0));
  3384. // src1 is a row
  3385. GGML_ASSERT(ne11 == 1);
  3386. bcast_row = true;
  3387. int ne = ne00 / 4;
  3388. kernel = backend_ctx->kernel_div_row;
  3389. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3390. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3391. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3392. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3393. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3394. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3395. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3396. } else {
  3397. kernel = backend_ctx->kernel_div;
  3398. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3399. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3400. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3401. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3402. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3403. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3404. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  3405. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3406. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3407. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3408. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3409. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  3410. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  3411. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  3412. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  3413. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  3414. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  3415. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  3416. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  3417. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  3418. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  3419. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  3420. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  3421. }
  3422. if (bcast_row) {
  3423. int n = ggml_nelements(dst)/4;
  3424. size_t global_work_size[] = {(size_t)n, 1, 1};
  3425. size_t local_work_size[] = {64, 1, 1};
  3426. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3427. } else {
  3428. unsigned int nth = MIN(64, ne0);
  3429. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3430. size_t local_work_size[] = {nth, 1, 1};
  3431. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3432. }
  3433. }
  3434. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3435. GGML_ASSERT(src0);
  3436. GGML_ASSERT(src0->extra);
  3437. GGML_ASSERT(src1);
  3438. GGML_ASSERT(src1->extra);
  3439. GGML_ASSERT(dst);
  3440. GGML_ASSERT(dst->extra);
  3441. const int ne00 = src0->ne[0];
  3442. const int ne01 = src0->ne[1];
  3443. const int ne02 = src0->ne[2];
  3444. const int ne03 = src0->ne[3];
  3445. const cl_ulong nb00 = src0->nb[0];
  3446. const cl_ulong nb01 = src0->nb[1];
  3447. const cl_ulong nb02 = src0->nb[2];
  3448. const cl_ulong nb03 = src0->nb[3];
  3449. const int ne10 = src1->ne[0];
  3450. const int ne11 = src1->ne[1];
  3451. const int ne12 = src1->ne[2];
  3452. const int ne13 = src1->ne[3];
  3453. const cl_ulong nb10 = src1->nb[0];
  3454. const cl_ulong nb11 = src1->nb[1];
  3455. const cl_ulong nb12 = src1->nb[2];
  3456. const cl_ulong nb13 = src1->nb[3];
  3457. const int ne0 = dst->ne[0];
  3458. const cl_ulong nb0 = dst->nb[0];
  3459. const cl_ulong nb1 = dst->nb[1];
  3460. const cl_ulong nb2 = dst->nb[2];
  3461. const cl_ulong nb3 = dst->nb[3];
  3462. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3463. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3464. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3465. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3466. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3467. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3468. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3469. bool bcast_row = false;
  3470. cl_kernel kernel;
  3471. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  3472. GGML_ASSERT(ggml_is_contiguous(src0));
  3473. // src1 is a row
  3474. GGML_ASSERT(ne11 == 1);
  3475. bcast_row = true;
  3476. int ne = ne00 / 4;
  3477. kernel = backend_ctx->kernel_sub_row;
  3478. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3479. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3480. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3481. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3482. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3483. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3484. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3485. } else {
  3486. kernel = backend_ctx->kernel_sub;
  3487. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3488. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3489. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3490. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3491. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3492. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3493. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  3494. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3495. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3496. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3497. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3498. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  3499. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  3500. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  3501. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  3502. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  3503. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  3504. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  3505. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  3506. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  3507. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  3508. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  3509. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  3510. }
  3511. if (bcast_row) {
  3512. int n = ggml_nelements(dst)/4;
  3513. size_t global_work_size[] = {(size_t)n, 1, 1};
  3514. size_t local_work_size[] = {64, 1, 1};
  3515. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3516. } else {
  3517. unsigned int nth = MIN(64, ne0);
  3518. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  3519. size_t local_work_size[] = {nth, 1, 1};
  3520. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3521. }
  3522. }
  3523. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3524. GGML_ASSERT(src0);
  3525. GGML_ASSERT(src0->extra);
  3526. GGML_ASSERT(dst);
  3527. GGML_ASSERT(dst->extra);
  3528. UNUSED(src1);
  3529. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3530. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3531. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3532. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3533. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3534. cl_kernel kernel;
  3535. int n = ggml_nelements(dst);
  3536. if (n % 4 == 0) {
  3537. kernel = backend_ctx->kernel_gelu_4;
  3538. n /= 4;
  3539. } else {
  3540. kernel = backend_ctx->kernel_gelu;
  3541. }
  3542. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3543. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3544. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3545. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3546. size_t global_work_size[] = {(size_t)n, 1, 1};
  3547. size_t local_work_size[] = {64, 1, 1};
  3548. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3549. }
  3550. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3551. GGML_ASSERT(src0);
  3552. GGML_ASSERT(src0->extra);
  3553. GGML_ASSERT(dst);
  3554. GGML_ASSERT(dst->extra);
  3555. UNUSED(src1);
  3556. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3557. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3558. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3559. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3560. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3561. cl_kernel kernel;
  3562. int n = ggml_nelements(dst);
  3563. if (n % 4 == 0) {
  3564. kernel = backend_ctx->kernel_gelu_erf_4;
  3565. n /= 4;
  3566. } else {
  3567. kernel = backend_ctx->kernel_gelu_erf;
  3568. }
  3569. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3570. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3571. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3572. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3573. size_t global_work_size[] = {(size_t)n, 1, 1};
  3574. size_t local_work_size[] = {64, 1, 1};
  3575. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3576. }
  3577. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3578. GGML_ASSERT(src0);
  3579. GGML_ASSERT(src0->extra);
  3580. GGML_ASSERT(dst);
  3581. GGML_ASSERT(dst->extra);
  3582. UNUSED(src1);
  3583. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3584. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3585. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3586. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3587. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3588. cl_kernel kernel;
  3589. int n = ggml_nelements(dst);
  3590. if (n % 4 == 0) {
  3591. kernel = backend_ctx->kernel_gelu_quick_4;
  3592. n /= 4;
  3593. } else {
  3594. kernel = backend_ctx->kernel_gelu_quick;
  3595. }
  3596. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3597. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3598. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3599. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3600. size_t global_work_size[] = {(size_t)n, 1, 1};
  3601. size_t local_work_size[] = {64, 1, 1};
  3602. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3603. }
  3604. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3605. GGML_ASSERT(src0);
  3606. GGML_ASSERT(src0->extra);
  3607. GGML_ASSERT(dst);
  3608. GGML_ASSERT(dst->extra);
  3609. UNUSED(src1);
  3610. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3611. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3612. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3613. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3614. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3615. cl_kernel kernel;
  3616. int n = ggml_nelements(dst);
  3617. if (n % 4 == 0) {
  3618. kernel = backend_ctx->kernel_silu_4;
  3619. n /= 4;
  3620. } else {
  3621. kernel = backend_ctx->kernel_silu;
  3622. }
  3623. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3624. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3625. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3626. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3627. size_t global_work_size[] = {(size_t)n, 1, 1};
  3628. size_t local_work_size[] = {64, 1, 1};
  3629. size_t * local_work_size_ptr = local_work_size;
  3630. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3631. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3632. }
  3633. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3634. }
  3635. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3636. GGML_ASSERT(src0);
  3637. GGML_ASSERT(src0->extra);
  3638. GGML_ASSERT(dst);
  3639. GGML_ASSERT(dst->extra);
  3640. UNUSED(src1);
  3641. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3642. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3643. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3644. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3645. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3646. cl_kernel kernel = backend_ctx->kernel_relu;
  3647. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3648. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3649. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3650. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3651. const int64_t n = ggml_nelements(dst);
  3652. size_t global_work_size[] = {(size_t)n, 1, 1};
  3653. size_t local_work_size[] = {64, 1, 1};
  3654. size_t * local_work_size_ptr = local_work_size;
  3655. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3656. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3657. }
  3658. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3659. }
  3660. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3661. GGML_ASSERT(src0);
  3662. GGML_ASSERT(src0->extra);
  3663. GGML_ASSERT(dst);
  3664. GGML_ASSERT(dst->extra);
  3665. UNUSED(src1);
  3666. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3667. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3668. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3669. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3670. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3671. cl_kernel kernel;
  3672. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  3673. kernel = backend_ctx->kernel_sigmoid_f32;
  3674. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  3675. kernel = backend_ctx->kernel_sigmoid_f16;
  3676. } else {
  3677. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  3678. }
  3679. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3680. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3681. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3682. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3683. const int64_t n = ggml_nelements(dst);
  3684. size_t global_work_size[] = {(size_t)n, 1, 1};
  3685. size_t local_work_size[] = {64, 1, 1};
  3686. size_t * local_work_size_ptr = local_work_size;
  3687. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3688. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3689. }
  3690. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3691. }
  3692. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3693. GGML_ASSERT(src0);
  3694. GGML_ASSERT(src0->extra);
  3695. GGML_ASSERT(dst);
  3696. GGML_ASSERT(dst->extra);
  3697. UNUSED(src1);
  3698. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3699. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3700. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3701. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3702. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3703. float min;
  3704. float max;
  3705. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  3706. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  3707. cl_kernel kernel = backend_ctx->kernel_clamp;
  3708. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3709. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3710. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3711. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3712. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  3713. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  3714. const int64_t n = ggml_nelements(dst);
  3715. size_t global_work_size[] = {(size_t)n, 1, 1};
  3716. size_t local_work_size[] = {64, 1, 1};
  3717. size_t * local_work_size_ptr = local_work_size;
  3718. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  3719. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  3720. }
  3721. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  3722. }
  3723. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3724. GGML_ASSERT(src0);
  3725. GGML_ASSERT(src0->extra);
  3726. GGML_ASSERT(dst);
  3727. GGML_ASSERT(dst->extra);
  3728. UNUSED(src1);
  3729. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3730. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3731. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3732. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3733. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3734. float eps;
  3735. memcpy(&eps, dst->op_params, sizeof(float));
  3736. const int ne00 = src0 ? src0->ne[0] : 0;
  3737. const int ne01 = src0 ? src0->ne[1] : 0;
  3738. const int ne02 = src0 ? src0->ne[2] : 0;
  3739. const int ne03 = src0 ? src0->ne[3] : 0;
  3740. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3741. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3742. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3743. const int nth = MIN(64, ne00);
  3744. cl_kernel kernel = backend_ctx->kernel_norm;
  3745. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3746. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3747. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3748. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3749. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3750. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3751. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  3752. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  3753. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  3754. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  3755. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  3756. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  3757. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  3758. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3759. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3760. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3761. }
  3762. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3763. GGML_ASSERT(src0);
  3764. GGML_ASSERT(src0->extra);
  3765. GGML_ASSERT(dst);
  3766. GGML_ASSERT(dst->extra);
  3767. UNUSED(src1);
  3768. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3769. //ggml_backend_opencl_device_context * dev_ctx =
  3770. // (ggml_backend_opencl_device_context *)backend->device->context;
  3771. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3772. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3773. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3774. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3775. float eps;
  3776. memcpy(&eps, dst->op_params, sizeof(float));
  3777. const int ne00 = src0 ? src0->ne[0] : 0;
  3778. const int ne01 = src0 ? src0->ne[1] : 0;
  3779. const int ne02 = src0 ? src0->ne[2] : 0;
  3780. const int ne03 = src0 ? src0->ne[3] : 0;
  3781. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  3782. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  3783. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  3784. GGML_ASSERT(ne00 % 4 == 0);
  3785. const int nth = MIN(64, ne00);
  3786. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3787. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3788. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  3789. // Note, this kernel declares local memory in kernel args and the size
  3790. // depends on subgroup size.
  3791. // Note, this requires OpenCL 2.1 and above
  3792. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  3793. size_t sgs;
  3794. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  3795. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  3796. // sizeof(local_work_size), local_work_size,
  3797. // sizeof(size_t), &sgs, NULL));
  3798. if (backend_ctx->gpu_family == ADRENO) {
  3799. sgs = 64;
  3800. } else if (backend_ctx->gpu_family == INTEL) {
  3801. sgs = 32;
  3802. } else {
  3803. GGML_ASSERT(false && "Unsupported GPU");
  3804. }
  3805. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3806. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3807. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3808. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3809. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3810. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3811. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  3812. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  3813. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  3814. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  3815. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  3816. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  3817. // This is local memory - the size depends on subgroup size.
  3818. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  3819. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3820. }
  3821. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
  3822. GGML_ASSERT(mul_tensor);
  3823. GGML_ASSERT(rms_norm_tensor);
  3824. // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
  3825. const ggml_tensor * src0 = rms_norm_tensor->src[0];
  3826. const ggml_tensor * src1;
  3827. if (mul_tensor->src[0] == rms_norm_tensor) {
  3828. src1 = mul_tensor->src[1];
  3829. } else if (mul_tensor->src[1] == rms_norm_tensor) {
  3830. src1 = mul_tensor->src[0];
  3831. } else {
  3832. GGML_ASSERT(false && "Invalid args for rms_norm and mul");
  3833. }
  3834. const ggml_tensor * dst = mul_tensor;
  3835. GGML_ASSERT(src0);
  3836. GGML_ASSERT(src0->extra);
  3837. GGML_ASSERT(src1);
  3838. GGML_ASSERT(src1->extra);
  3839. GGML_ASSERT(dst);
  3840. GGML_ASSERT(dst->extra);
  3841. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3842. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3843. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3844. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3845. cl_ulong offset1 = extra1->offset + src0->view_offs;
  3846. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3847. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3848. float eps;
  3849. memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
  3850. const int ne00 = src0->ne[0];
  3851. const int ne01 = src0->ne[1];
  3852. const int ne02 = src0->ne[2];
  3853. const int ne03 = src0->ne[3];
  3854. const cl_ulong nb01 = src0->nb[1];
  3855. const cl_ulong nb02 = src0->nb[2];
  3856. const cl_ulong nb03 = src0->nb[3];
  3857. const int ne10 = src1->ne[0];
  3858. const int ne11 = src1->ne[1];
  3859. const int ne12 = src1->ne[2];
  3860. const int ne13 = src1->ne[3];
  3861. const cl_ulong nb11 = src1->nb[1];
  3862. const cl_ulong nb12 = src1->nb[2];
  3863. const cl_ulong nb13 = src1->nb[3];
  3864. const cl_ulong nb1 = dst->nb[1];
  3865. const cl_ulong nb2 = dst->nb[2];
  3866. const cl_ulong nb3 = dst->nb[3];
  3867. GGML_ASSERT(ne00 % 4 == 0);
  3868. size_t sgs;
  3869. if (backend_ctx->gpu_family == ADRENO) {
  3870. sgs = 64;
  3871. } else if (backend_ctx->gpu_family == INTEL) {
  3872. sgs = 32;
  3873. } else {
  3874. GGML_ASSERT(false && "Unsupported GPU");
  3875. }
  3876. cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
  3877. int nth = sgs;
  3878. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  3879. while (nth < ne00 && nth < max_workgroup_size) {
  3880. nth *= 2;
  3881. }
  3882. nth = MIN(nth, max_workgroup_size);
  3883. nth = MIN(nth, ne00);
  3884. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3885. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3886. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3887. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3888. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3889. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3890. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3891. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3892. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3893. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3894. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3895. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3896. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  3897. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  3898. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  3899. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  3900. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  3901. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  3902. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
  3903. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  3904. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  3905. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  3906. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  3907. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  3908. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  3909. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
  3910. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*nth/sgs, NULL));
  3911. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3912. }
  3913. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3914. GGML_ASSERT(src0);
  3915. GGML_ASSERT(src0->extra);
  3916. GGML_ASSERT(dst);
  3917. GGML_ASSERT(dst->extra);
  3918. UNUSED(src1);
  3919. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3920. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3921. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3922. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3923. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3924. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  3925. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  3926. float eps = ((const float *) dst->op_params)[1];
  3927. const int ne00 = src0->ne[0];
  3928. const int ne01 = src0->ne[1];
  3929. const int ne02 = src0->ne[2];
  3930. const int ne = ne00*ne01*ne02;
  3931. cl_kernel kernel = backend_ctx->kernel_group_norm;
  3932. size_t sgs = 64;
  3933. if (backend_ctx->gpu_family == ADRENO) {
  3934. sgs = 64;
  3935. } else if (backend_ctx->gpu_family == INTEL) {
  3936. sgs = 32;
  3937. } else {
  3938. GGML_ASSERT(false && "Unsupported GPU");
  3939. }
  3940. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3941. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3942. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3943. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3944. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  3945. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  3946. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  3947. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  3948. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  3949. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3950. }
  3951. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3952. GGML_ASSERT(src0);
  3953. GGML_ASSERT(src0->extra);
  3954. GGML_ASSERT(dst);
  3955. GGML_ASSERT(dst->extra);
  3956. UNUSED(src1);
  3957. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3958. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3959. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3960. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  3961. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  3962. cl_kernel kernel;
  3963. if (dst->type == GGML_TYPE_F32) {
  3964. kernel = backend_ctx->kernel_tanh_f32_nd;
  3965. } else if (dst->type == GGML_TYPE_F16) {
  3966. kernel = backend_ctx->kernel_tanh_f16_nd;
  3967. } else {
  3968. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  3969. }
  3970. GGML_ASSERT(kernel != nullptr);
  3971. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  3972. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  3973. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  3974. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  3975. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3976. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  3977. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3978. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  3979. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3980. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3981. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  3982. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  3983. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  3984. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  3985. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  3986. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  3987. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  3988. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  3989. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  3990. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  3991. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  3992. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  3993. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  3994. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  3995. size_t global_work_size[3];
  3996. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  3997. return;
  3998. }
  3999. global_work_size[0] = (size_t)ne10;
  4000. global_work_size[1] = (size_t)ne11;
  4001. global_work_size[2] = (size_t)ne12;
  4002. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  4003. if (ne10 < 16) lws0 = ne10;
  4004. if (ne11 < 4) lws1 = ne11;
  4005. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  4006. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  4007. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  4008. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  4009. size_t local_work_size[] = {lws0, lws1, lws2};
  4010. size_t* local_work_size_ptr = local_work_size;
  4011. if (!backend_ctx->non_uniform_workgroups) {
  4012. if (global_work_size[0] % local_work_size[0] != 0 ||
  4013. global_work_size[1] % local_work_size[1] != 0 ||
  4014. global_work_size[2] % local_work_size[2] != 0) {
  4015. local_work_size_ptr = NULL;
  4016. }
  4017. }
  4018. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  4019. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4020. }
  4021. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  4022. GGML_ASSERT(src0);
  4023. GGML_ASSERT(src0->extra);
  4024. GGML_ASSERT(dst);
  4025. GGML_ASSERT(dst->extra);
  4026. GGML_ASSERT(dst->type == src0->type);
  4027. UNUSED(src1_shape_def);
  4028. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4029. if (backend_ctx->kernel_repeat == nullptr) {
  4030. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  4031. return;
  4032. }
  4033. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4034. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4035. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4036. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4037. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  4038. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  4039. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  4040. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  4041. cl_kernel kernel = backend_ctx->kernel_repeat;
  4042. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4043. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  4044. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  4045. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4046. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  4047. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  4048. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  4049. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  4050. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  4051. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  4052. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  4053. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  4054. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  4055. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  4056. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  4057. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  4058. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  4059. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  4060. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  4061. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  4062. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  4063. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  4064. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  4065. size_t global_work_size[] = { gws0, gws1, gws2 };
  4066. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4067. }
  4068. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  4069. GGML_ASSERT(src0);
  4070. GGML_ASSERT(src0->extra);
  4071. GGML_ASSERT(dst);
  4072. GGML_ASSERT(dst->extra);
  4073. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4074. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4075. GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1);
  4076. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4077. if (backend_ctx->kernel_pad == nullptr) {
  4078. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  4079. return;
  4080. }
  4081. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4082. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4083. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4084. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4085. const int s_ne0 = src0->ne[0];
  4086. const int s_ne1 = src0->ne[1];
  4087. const int s_ne2 = src0->ne[2];
  4088. const int d_ne0 = dst->ne[0];
  4089. const int d_ne1 = dst->ne[1];
  4090. const int d_ne2 = dst->ne[2];
  4091. cl_kernel kernel = backend_ctx->kernel_pad;
  4092. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4093. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4094. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  4095. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4096. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  4097. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  4098. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  4099. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne0));
  4100. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne1));
  4101. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne2));
  4102. size_t lws0 = 64;
  4103. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  4104. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2 };
  4105. size_t local_work_size[] = { lws0, 1, 1 };
  4106. size_t * local_work_size_ptr = local_work_size;
  4107. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  4108. local_work_size_ptr = nullptr;
  4109. }
  4110. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4111. }
  4112. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  4113. GGML_ASSERT(src0);
  4114. GGML_ASSERT(src0->extra);
  4115. GGML_ASSERT(dst);
  4116. GGML_ASSERT(dst->extra);
  4117. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4118. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4119. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4120. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  4121. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  4122. cl_kernel kernel = nullptr;
  4123. if (mode == GGML_SCALE_MODE_NEAREST) {
  4124. kernel = backend_ctx->kernel_upscale;
  4125. if (kernel == nullptr) {
  4126. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  4127. return;
  4128. }
  4129. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  4130. kernel = backend_ctx->kernel_upscale_bilinear;
  4131. if (kernel == nullptr) {
  4132. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  4133. return;
  4134. }
  4135. } else {
  4136. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  4137. return;
  4138. }
  4139. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4140. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4141. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4142. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4143. const cl_ulong nb00 = src0->nb[0];
  4144. const cl_ulong nb01 = src0->nb[1];
  4145. const cl_ulong nb02 = src0->nb[2];
  4146. const cl_ulong nb03 = src0->nb[3];
  4147. const int ne00 = src0->ne[0];
  4148. const int ne01 = src0->ne[1];
  4149. const int ne02 = src0->ne[2];
  4150. const int ne03 = src0->ne[3];
  4151. const int ne0 = dst->ne[0];
  4152. const int ne1 = dst->ne[1];
  4153. const int ne2 = dst->ne[2];
  4154. const int ne3 = dst->ne[3];
  4155. float sf0 = (float)ne0 / ne00;
  4156. float sf1 = (float)ne1 / ne01;
  4157. float sf2 = (float)ne2 / ne02;
  4158. float sf3 = (float)ne3 / ne03;
  4159. float pixel_offset = 0.5f;
  4160. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4161. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4162. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  4163. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4164. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  4165. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  4166. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  4167. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  4168. if (mode == GGML_SCALE_MODE_NEAREST) {
  4169. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  4170. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  4171. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  4172. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  4173. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  4174. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  4175. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  4176. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  4177. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  4178. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  4179. sf0 = (float)(ne0 - 1) / (ne00 - 1);
  4180. sf1 = (float)(ne1 - 1) / (ne01 - 1);
  4181. pixel_offset = 0.0f;
  4182. }
  4183. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4184. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4185. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  4186. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  4187. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  4188. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  4189. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  4190. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  4191. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  4192. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  4193. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  4194. }
  4195. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  4196. if (dst_total_elements == 0) {
  4197. return;
  4198. }
  4199. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  4200. size_t local_work_size_pref = 256;
  4201. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  4202. size_t * local_work_size_ptr = local_work_size;
  4203. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  4204. local_work_size_ptr = nullptr;
  4205. }
  4206. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4207. }
  4208. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4209. GGML_ASSERT(src0);
  4210. GGML_ASSERT(src0->extra);
  4211. GGML_ASSERT(src1);
  4212. GGML_ASSERT(src1->extra);
  4213. GGML_ASSERT(dst);
  4214. GGML_ASSERT(dst->extra);
  4215. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4216. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4217. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4218. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4219. cl_command_queue queue = backend_ctx->queue;
  4220. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  4221. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  4222. return;
  4223. }
  4224. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  4225. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  4226. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  4227. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  4228. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  4229. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  4230. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  4231. GGML_ASSERT(dim >= 0 && dim <= 3);
  4232. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  4233. if (dim == 3) {
  4234. size_t nbytes_src0 = ggml_nbytes(src0);
  4235. size_t nbytes_src1 = ggml_nbytes(src1);
  4236. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  4237. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  4238. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  4239. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  4240. } else {
  4241. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  4242. size_t global_work_size[3];
  4243. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  4244. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  4245. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  4246. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  4247. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  4248. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  4249. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  4250. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  4251. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  4252. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  4253. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  4254. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  4255. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  4256. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  4257. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  4258. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  4259. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  4260. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  4261. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  4262. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  4263. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  4264. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  4265. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  4266. global_work_size[0] = d_ne0;
  4267. global_work_size[1] = d_ne1;
  4268. global_work_size[2] = d_ne2;
  4269. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4270. }
  4271. }
  4272. } else {
  4273. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  4274. long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  4275. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  4276. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  4277. long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  4278. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  4279. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  4280. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4281. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  4282. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  4283. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  4284. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  4285. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(long), &ne00));
  4286. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(long), &ne01));
  4287. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(long), &ne02));
  4288. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(long), &ne03));
  4289. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4290. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4291. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4292. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4293. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4294. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4295. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4296. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4297. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(long), &d_ne0));
  4298. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(long), &d_ne1));
  4299. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(long), &d_ne2));
  4300. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(long), &d_ne3));
  4301. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  4302. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  4303. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  4304. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  4305. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  4306. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  4307. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  4308. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  4309. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  4310. }
  4311. }
  4312. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  4313. GGML_ASSERT(src0);
  4314. GGML_ASSERT(src0->extra);
  4315. GGML_ASSERT(dst);
  4316. GGML_ASSERT(dst->extra);
  4317. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4318. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4319. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4320. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  4321. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  4322. return;
  4323. }
  4324. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  4325. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  4326. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  4327. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  4328. const int logical_dim = dst->op_params[0];
  4329. const int max_period = dst->op_params[1];
  4330. const int dst_nb1_bytes = dst->nb[1];
  4331. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  4332. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  4333. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  4334. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  4335. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  4336. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  4337. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  4338. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  4339. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  4340. size_t gws1 = (size_t)src0->ne[0];
  4341. size_t global_work_size[] = {gws0, gws1, 1};
  4342. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  4343. }
  4344. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4345. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4346. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4347. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4348. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4349. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4350. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4351. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4352. const int M = src0->ne[1];
  4353. const int N = src1->ne[1];
  4354. const int K = src0->ne[0];
  4355. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  4356. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  4357. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  4358. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  4359. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  4360. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  4361. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  4362. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  4363. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  4364. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  4365. // Tiling parameters. These need to be tuned for optimal performance.
  4366. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  4367. //
  4368. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  4369. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  4370. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  4371. //
  4372. // The following relationships must hold:
  4373. // OPWM = TPWM * OPTM
  4374. // OPWN = TPWN * OPTN
  4375. //
  4376. const int OPWM = 64;
  4377. const int OPWN = 64;
  4378. const int TPWM = 16;
  4379. const int TPWN = 8;
  4380. size_t local_work_size[2] = { TPWM, TPWN };
  4381. size_t global_work_size[2] = {
  4382. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  4383. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  4384. };
  4385. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  4386. }
  4387. static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4388. GGML_TENSOR_BINARY_OP_LOCALS;
  4389. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4390. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4391. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4392. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4393. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4394. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4395. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4396. const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
  4397. const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
  4398. const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
  4399. const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
  4400. const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
  4401. const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
  4402. const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
  4403. const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
  4404. const int64_t NPQ = (int64_t)N * OW * OH;
  4405. const uint32_t BS_K = 64;
  4406. const uint32_t BS_NPQ = 64;
  4407. const uint32_t BS_CRS = 16;
  4408. const uint32_t VEC_SIZE = 4;
  4409. const uint32_t TS_K = 4;
  4410. const uint32_t TS_NPQ = 8;
  4411. const uint32_t WG_K = BS_K / TS_K;
  4412. const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
  4413. auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
  4414. const uint32_t NB_K = splitWork(Cout, BS_K);
  4415. const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
  4416. cl_kernel kernel;
  4417. size_t shmem_size;
  4418. if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
  4419. kernel = backend_ctx->kernel_conv_2d_f16;
  4420. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
  4421. } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
  4422. kernel = backend_ctx->kernel_conv_2d_f32;
  4423. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  4424. } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
  4425. kernel = backend_ctx->kernel_conv_2d_f16_f32;
  4426. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  4427. } else {
  4428. GGML_ASSERT(false && "Unsupported data type combination for conv2d");
  4429. }
  4430. cl_uint idx = 0;
  4431. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
  4432. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
  4433. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
  4434. CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
  4435. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
  4436. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
  4437. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
  4438. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
  4439. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
  4440. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
  4441. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
  4442. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
  4443. size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
  4444. size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
  4445. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  4446. }
  4447. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4448. GGML_ASSERT(src0);
  4449. GGML_ASSERT(src0->extra);
  4450. GGML_ASSERT(src1);
  4451. GGML_ASSERT(src1->extra);
  4452. GGML_ASSERT(dst);
  4453. GGML_ASSERT(dst->extra);
  4454. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  4455. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  4456. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4457. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  4458. src0->ne[1] > 32 && // M > 32
  4459. src1->ne[1] > 32 && // N > 32
  4460. src0->ne[0] > 32 && // K > 32
  4461. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  4462. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  4463. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  4464. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  4465. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  4466. return;
  4467. }
  4468. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4469. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4470. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4471. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4472. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4473. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4474. #ifdef GGML_OPENCL_SOA_Q
  4475. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  4476. #endif
  4477. const int ne00 = src0 ? src0->ne[0] : 0;
  4478. const int ne01 = src0 ? src0->ne[1] : 0;
  4479. const int ne02 = src0 ? src0->ne[2] : 0;
  4480. const int ne03 = src0 ? src0->ne[3] : 0;
  4481. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  4482. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4483. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4484. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4485. const int ne10 = src1 ? src1->ne[0] : 0;
  4486. const int ne11 = src1 ? src1->ne[1] : 0;
  4487. const int ne12 = src1 ? src1->ne[2] : 0;
  4488. const int ne13 = src1 ? src1->ne[3] : 0;
  4489. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  4490. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  4491. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  4492. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  4493. const int ne0 = dst ? dst->ne[0] : 0;
  4494. const int ne1 = dst ? dst->ne[1] : 0;
  4495. int r2 = ne12/ne02;
  4496. int r3 = ne13/ne03;
  4497. GGML_ASSERT(ne00 == ne10);
  4498. int nth0 = 32;
  4499. int nth1 = 1;
  4500. int nrows = 1;
  4501. // The number of values produced by each subgroup
  4502. int ndst = 4;
  4503. cl_kernel kernel;
  4504. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  4505. cl_context context = backend_ctx->context;
  4506. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  4507. // init CL objects
  4508. // <--------------------------------------------> //
  4509. cl_int status;
  4510. cl_image_format img_fmt_1d;
  4511. cl_image_desc img_desc_1d;
  4512. cl_buffer_region region;
  4513. cl_mem A_image1d = nullptr;
  4514. cl_mem B_image1d = nullptr;
  4515. cl_mem B_sub_buffer = nullptr;
  4516. cl_mem C_d = nullptr;
  4517. // for B transpose
  4518. cl_mem B_d = nullptr;
  4519. cl_mem B_d_input_image = nullptr;
  4520. // <--------------------------------------------> //
  4521. // define matrix dimensions
  4522. // <--------------------------------------------> //
  4523. int M = ne01;
  4524. int N = ne1;
  4525. int K = ne00;
  4526. int padding;
  4527. // <--------------------------------------------> //
  4528. // q4_0 x fp32
  4529. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  4530. // TODO: remove duplicate definitions of image description + format -- move to top
  4531. // create an image for A
  4532. // <--------------------------------------------> //
  4533. if (N == 1) {
  4534. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  4535. } else {
  4536. img_fmt_1d = { CL_R, CL_FLOAT};
  4537. }
  4538. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  4539. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  4540. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  4541. img_desc_1d.buffer = extra0_q4_0->q;
  4542. A_image1d = clCreateImage(
  4543. context,
  4544. CL_MEM_READ_ONLY,
  4545. &img_fmt_1d,
  4546. &img_desc_1d,
  4547. NULL,
  4548. &status);
  4549. CL_CHECK(status);
  4550. // <--------------------------------------------> //
  4551. // create a sub_buffer for B
  4552. // <--------------------------------------------> //
  4553. region.origin = (extra1->offset);
  4554. region.size = K * N * sizeof(float);
  4555. B_sub_buffer = clCreateSubBuffer(
  4556. extra1->data_device,
  4557. 0,
  4558. CL_BUFFER_CREATE_TYPE_REGION,
  4559. &region,
  4560. &status);
  4561. CL_CHECK(status);
  4562. // <--------------------------------------------> //
  4563. // transpose activation for Skyler's gemm
  4564. if (N != 1) {
  4565. //how many extra elements beyond multiple of 8
  4566. int extra_elements = N % 8;
  4567. //how much padding to add
  4568. padding = 0;
  4569. if (extra_elements > 0){
  4570. padding = 8 - extra_elements;
  4571. }
  4572. // Specify the starting offset (in bytes)
  4573. region.origin = 0;
  4574. // Specify the size of the sub-buffer (divide by 2 for FP16)
  4575. region.size = K * (N + padding) * sizeof(float)/2;
  4576. B_d = clCreateSubBuffer(
  4577. backend_ctx->B_d_max,
  4578. 0,
  4579. CL_BUFFER_CREATE_TYPE_REGION,
  4580. &region,
  4581. &status);
  4582. CL_CHECK(status);
  4583. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  4584. cl_image_desc image_desc_B_d_input = {
  4585. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  4586. static_cast<size_t>(K * N / 4),
  4587. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  4588. };
  4589. B_d_input_image = clCreateImage(
  4590. context,
  4591. 0,
  4592. &image_format_B_d_input,
  4593. &image_desc_B_d_input,
  4594. NULL,
  4595. &status);
  4596. CL_CHECK(status);
  4597. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  4598. cl_image_desc image_desc_B_d_output = {
  4599. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  4600. static_cast<size_t>(K * (N + padding)/4),
  4601. 0, 0, 0, 0, 0, 0, 0, { B_d }
  4602. };
  4603. B_image1d = clCreateImage(
  4604. context,
  4605. 0,
  4606. &image_format_B_d_output,
  4607. &image_desc_B_d_output,
  4608. NULL,
  4609. &status);
  4610. CL_CHECK(status);
  4611. int height_B = N/4;
  4612. if (height_B == 0) {
  4613. height_B = 1;
  4614. }
  4615. int width_B = K/4;
  4616. int padded_height_B = (N + padding)/4;
  4617. kernel = backend_ctx->kernel_transpose_32_16;
  4618. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  4619. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  4620. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  4621. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  4622. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  4623. size_t local_size_t[2] = { 1, 16 };
  4624. //WGS tuning
  4625. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  4626. local_size_t[0]=4;
  4627. local_size_t[1]=8;
  4628. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  4629. local_size_t[0]=2;
  4630. local_size_t[1]=8;
  4631. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  4632. local_size_t[0]=1;
  4633. local_size_t[1]=8;
  4634. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  4635. local_size_t[0]=2;
  4636. local_size_t[1]=8;
  4637. }
  4638. size_t global_size_t[2] = {
  4639. static_cast<size_t>(width_B),
  4640. static_cast<size_t>(padded_height_B)
  4641. };
  4642. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  4643. } else {
  4644. // no need to transpose B in other cases
  4645. // create an image for B from sub_buffer
  4646. // <--------------------------------------------> //
  4647. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  4648. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  4649. img_desc_1d.image_width = K * N / 4;
  4650. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  4651. img_desc_1d.buffer = B_sub_buffer;
  4652. B_image1d = clCreateImage(
  4653. context,
  4654. CL_MEM_READ_ONLY,
  4655. &img_fmt_1d,
  4656. &img_desc_1d,
  4657. NULL,
  4658. &status);
  4659. CL_CHECK(status);
  4660. // <--------------------------------------------> //
  4661. }
  4662. // choose gemm or gemv kernel
  4663. // <--------------------------------------------> //
  4664. if (N == 1) {
  4665. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  4666. if (M == 4096 && K == 4096) {
  4667. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  4668. } else if (M == 4096 && K == 11008) {
  4669. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  4670. } else if (M == 11008 && K == 4096) {
  4671. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  4672. } else if (M == 32000 && K == 4096) {
  4673. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  4674. }
  4675. } else {
  4676. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  4677. }
  4678. // <--------------------------------------------> //
  4679. // set kernel args
  4680. // <--------------------------------------------> //
  4681. cl_uint k_arg = 0;
  4682. if (N == 1) {
  4683. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  4684. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  4685. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  4686. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  4687. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  4688. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  4689. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  4690. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  4691. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  4692. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  4693. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  4694. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  4695. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  4696. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  4697. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  4698. } else {
  4699. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  4700. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  4701. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  4702. CL_CHECK(status);
  4703. int padded_N = ne1 + padding;
  4704. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  4705. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  4706. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  4707. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  4708. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  4709. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  4710. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  4711. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  4712. }
  4713. // <--------------------------------------------> //
  4714. // choose workgroup size
  4715. // <--------------------------------------------> //
  4716. size_t global_work_size[3] = {
  4717. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  4718. size_t local_work_size[3] = {64, 2, 4};
  4719. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  4720. global_work_size[1] = (size_t)(ne01/4);
  4721. global_work_size[2] = (size_t)(1);
  4722. local_work_size[0] = (size_t)(1); //4x32 for FP32
  4723. local_work_size[1] = (size_t)(128);
  4724. local_work_size[2] = (size_t)(1);
  4725. //WGS tuning
  4726. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  4727. local_work_size[0] = 1;
  4728. local_work_size[1] = 128;
  4729. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  4730. local_work_size[0] = 2;
  4731. local_work_size[1] = 64;
  4732. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  4733. local_work_size[0] = 2;
  4734. local_work_size[1] = 64;
  4735. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  4736. local_work_size[0] = 2;
  4737. local_work_size[1] = 64;
  4738. }
  4739. if (N == 1) {
  4740. size_t wavesize = backend_ctx->adreno_wave_size;
  4741. local_work_size[0] = wavesize; // localsize
  4742. local_work_size[1] = 4; // reduce factor
  4743. local_work_size[2] = 1;
  4744. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  4745. global_work_size[1] = 4; // reduce factor
  4746. global_work_size[2] = 1;
  4747. }
  4748. // <--------------------------------------------> //
  4749. // enqueue kernel with profiling
  4750. // <--------------------------------------------> //
  4751. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4752. // <--------------------------------------------> //
  4753. // deallocate sub buffers and images
  4754. // <--------------------------------------------> //
  4755. CL_CHECK(clReleaseMemObject(A_image1d));
  4756. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  4757. CL_CHECK(clReleaseMemObject(B_image1d));
  4758. if (N != 1) {
  4759. CL_CHECK(clReleaseMemObject(B_d));
  4760. CL_CHECK(clReleaseMemObject(B_d_input_image));
  4761. CL_CHECK(clReleaseMemObject(C_d));
  4762. }
  4763. // <--------------------------------------------> //
  4764. return;
  4765. }
  4766. } // if (ne01 && ne1)
  4767. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  4768. if (!ggml_is_transposed(src0) &&
  4769. !ggml_is_transposed(src1) &&
  4770. src1t == GGML_TYPE_F32 &&
  4771. ne00%32 == 0 &&
  4772. ne11 > 2) {
  4773. #ifdef GGML_OPENCL_SOA_Q
  4774. // Set up kernel.
  4775. switch(src0t) {
  4776. case GGML_TYPE_Q4_0:
  4777. // This should have been satisfied.
  4778. GGML_ASSERT(ne11 == ne1);
  4779. GGML_ASSERT(ne01 == ne0);
  4780. if (backend_ctx->gpu_family == INTEL) {
  4781. nth0 = 16;
  4782. nth1 = 1;
  4783. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  4784. } else if (backend_ctx->gpu_family == ADRENO) {
  4785. nth0 = 64;
  4786. nth1 = 1;
  4787. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  4788. } else {
  4789. GGML_ASSERT(false && "TODO: Unknown GPU");
  4790. }
  4791. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  4792. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  4793. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4794. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4795. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4796. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4797. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4798. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4799. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4800. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4801. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  4802. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  4803. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  4804. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  4805. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  4806. break;
  4807. default:
  4808. break;
  4809. }
  4810. // Launch kernel.
  4811. if (src0t == GGML_TYPE_Q4_0) {
  4812. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  4813. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  4814. if (backend_ctx->gpu_family == INTEL) {
  4815. // Set global size for Intel. It uses 16x output values.
  4816. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  4817. global_work_size[1] = (size_t)ne11*nth1;
  4818. global_work_size[2] = (size_t)ne12*ne13;
  4819. }
  4820. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4821. return;
  4822. }
  4823. #else // GGML_OPENCL_SOA_Q
  4824. // TODO: add block_q4_0 variant.
  4825. #endif // GGML_OPENCL_SOA_Q
  4826. }
  4827. // use custom matrix x vector kernel
  4828. switch (src0t) {
  4829. case GGML_TYPE_F32:
  4830. //GGML_ASSERT(ne02 == ne12);
  4831. GGML_ASSERT(src1t == GGML_TYPE_F32);
  4832. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  4833. nrows = 4;
  4834. if (backend_ctx->gpu_family == INTEL) {
  4835. nth0 = 32;
  4836. nth1 = 1;
  4837. } else if (backend_ctx->gpu_family == ADRENO) {
  4838. nth0 = 64;
  4839. nth1 = 1;
  4840. } else {
  4841. GGML_ASSERT(false && "TODO: Unknown GPU");
  4842. }
  4843. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4844. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4845. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4846. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4847. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4848. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4849. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4850. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4851. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4852. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  4853. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4854. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4855. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4856. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4857. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4858. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4859. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  4860. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4861. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4862. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4863. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  4864. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  4865. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  4866. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  4867. break;
  4868. case GGML_TYPE_F16:
  4869. //GGML_ASSERT(ne02 == ne12);
  4870. if (backend_ctx->gpu_family == INTEL) {
  4871. nth0 = 32;
  4872. nth1 = 1;
  4873. } else if (backend_ctx->gpu_family == ADRENO) {
  4874. nth0 = 64;
  4875. nth1 = 1;
  4876. } else {
  4877. GGML_ASSERT(false && "TODO: Unknown GPU");
  4878. }
  4879. if (src1t == GGML_TYPE_F32) {
  4880. if (ne11 * ne12 < 4) {
  4881. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  4882. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  4883. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  4884. nrows = ne11;
  4885. } else {
  4886. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  4887. nrows = 4;
  4888. }
  4889. } else {
  4890. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  4891. nrows = 4;
  4892. }
  4893. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4894. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4895. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4896. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4897. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4898. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4899. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4900. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4901. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4902. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  4903. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4904. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4905. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4906. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4907. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4908. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4909. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  4910. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4911. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4912. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4913. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  4914. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  4915. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  4916. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  4917. break;
  4918. case GGML_TYPE_Q4_0:
  4919. // This should have been satisfied.
  4920. GGML_ASSERT(ne11 == ne1);
  4921. GGML_ASSERT(ne01 == ne0);
  4922. #ifdef GGML_OPENCL_SOA_Q
  4923. if (backend_ctx->gpu_family == INTEL) {
  4924. nth0 = 16;
  4925. nth1 = 1;
  4926. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  4927. ndst = 8;
  4928. } else if (backend_ctx->gpu_family == ADRENO) {
  4929. nth0 = 64;
  4930. nth1 = 1;
  4931. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  4932. ndst =8;
  4933. } else {
  4934. GGML_ASSERT(false && "TODO: Unknown GPU");
  4935. }
  4936. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  4937. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  4938. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4939. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4940. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4941. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4942. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4943. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4944. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4945. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4946. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  4947. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  4948. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  4949. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  4950. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  4951. #else // GGML_OPENCL_SOA_Q
  4952. if (backend_ctx->gpu_family == INTEL) {
  4953. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  4954. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  4955. // The number of workgroups on dim 0 (the leading dimension) is
  4956. // the nearest multiple of 4 that covers ne0 (equals ne01).
  4957. nth0 = 16;
  4958. nth1 = 1;
  4959. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  4960. ndst = 4;
  4961. } else if (backend_ctx->gpu_family == ADRENO) {
  4962. nth0 = 64;
  4963. nth1 = 1;
  4964. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  4965. ndst = 4;
  4966. } else {
  4967. GGML_ASSERT(false && "TODO: Unknown GPU");
  4968. }
  4969. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4970. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4971. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4972. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4973. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4974. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4975. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4976. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4977. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4978. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  4979. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  4980. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  4981. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  4982. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  4983. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  4984. #endif // GGML_OPENCL_SOA_Q
  4985. break;
  4986. case GGML_TYPE_Q4_1:
  4987. case GGML_TYPE_Q8_0:
  4988. case GGML_TYPE_Q2_K:
  4989. case GGML_TYPE_Q3_K:
  4990. case GGML_TYPE_Q4_K:
  4991. case GGML_TYPE_Q5_K:
  4992. case GGML_TYPE_Q6_K:
  4993. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  4994. if (backend_ctx->gpu_family == INTEL) {
  4995. nth0 = 2;
  4996. nth1 = 16;
  4997. } else if (backend_ctx->gpu_family == ADRENO) {
  4998. nth0 = 2;
  4999. nth1 = 64;
  5000. } else {
  5001. GGML_ASSERT(false && "TODO: Unknown GPU");
  5002. }
  5003. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5004. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5005. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5006. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5007. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5008. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5009. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5010. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5011. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5012. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  5013. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5014. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  5015. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  5016. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  5017. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  5018. break;
  5019. default:
  5020. GGML_ASSERT(false && "not implemented");
  5021. }
  5022. if (src0t == GGML_TYPE_Q4_0 ||
  5023. src0t == GGML_TYPE_Q4_1 ||
  5024. src0t == GGML_TYPE_Q8_0 ||
  5025. src0t == GGML_TYPE_Q2_K) {
  5026. // Each SIMD group produces N_DST values in the result. Assuming each
  5027. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  5028. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  5029. // (number of workgroups) will be a nearest multiple of
  5030. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  5031. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  5032. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  5033. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  5034. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5035. } else if (src0t == GGML_TYPE_Q4_K) {
  5036. GGML_ASSERT(false && "not implemented");
  5037. } else if (src0t == GGML_TYPE_Q3_K) {
  5038. GGML_ASSERT(false && "not implemented");
  5039. } else if (src0t == GGML_TYPE_Q5_K) {
  5040. GGML_ASSERT(false && "not implemented");
  5041. } else if (src0t == GGML_TYPE_Q6_K) {
  5042. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  5043. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  5044. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5045. } else {
  5046. int64_t ny = (ne11 + nrows - 1)/nrows;
  5047. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  5048. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  5049. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5050. }
  5051. }
  5052. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5053. GGML_ASSERT(src0);
  5054. GGML_ASSERT(src0->extra);
  5055. GGML_ASSERT(src1);
  5056. GGML_ASSERT(src1->extra);
  5057. GGML_ASSERT(dst);
  5058. GGML_ASSERT(dst->extra);
  5059. const ggml_tensor * src2 = dst->src[2];
  5060. GGML_ASSERT(src2);
  5061. GGML_ASSERT(src2->extra);
  5062. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5063. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5064. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  5065. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5066. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5067. cl_ulong offset2 = extra2->offset + src2->view_offs;
  5068. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5069. #ifdef GGML_OPENCL_SOA_Q
  5070. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  5071. #endif
  5072. const int ne00 = src0->ne[0];
  5073. const int ne01 = src0->ne[1];
  5074. const int ne02 = src0->ne[2];
  5075. const int ne03 = src0->ne[3];
  5076. const cl_ulong nb00 = src0->nb[0];
  5077. const cl_ulong nb02 = src0->nb[2];
  5078. const int ne10 = src1->ne[0];
  5079. const int ne11 = src1->ne[1];
  5080. const int ne12 = src1->ne[2];
  5081. const int ne13 = src1->ne[3];
  5082. const cl_ulong nb11 = src1->nb[1];
  5083. const cl_ulong nb12 = src1->nb[2];
  5084. const int ne20 = src2->ne[0];
  5085. const int ne21 = src2->ne[1];
  5086. const cl_ulong nb21 = src2->nb[1];
  5087. const int ne0 = dst->ne[0];
  5088. const int ne1 = dst->ne[1];
  5089. const int r2 = ne12/ne02;
  5090. const int r3 = ne13/ne03;
  5091. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  5092. GGML_ASSERT(ne00 == ne10);
  5093. int sgs = 32; // subgroup size
  5094. int nsg = 1; // number of subgroups
  5095. int nrows = 1; // number of row in src1
  5096. int ndst = 4; // number of values produced by each subgroup
  5097. cl_kernel kernel;
  5098. // subgroup mat vec
  5099. switch (src0->type) {
  5100. case GGML_TYPE_Q4_0: {
  5101. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  5102. if (backend_ctx->gpu_family == INTEL) {
  5103. sgs = 16;
  5104. nsg = 1;
  5105. ndst = 8;
  5106. } else if (backend_ctx->gpu_family == ADRENO) {
  5107. sgs = 64;
  5108. nsg = 1;
  5109. ndst = 8;
  5110. } else {
  5111. GGML_ASSERT(false && "TODO: Unknown GPU");
  5112. }
  5113. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  5114. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  5115. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5116. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5117. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  5118. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5119. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5120. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5121. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5122. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5123. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  5124. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  5125. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  5126. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  5127. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  5128. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  5129. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  5130. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  5131. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  5132. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  5133. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  5134. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  5135. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  5136. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  5137. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  5138. break;
  5139. }
  5140. default:
  5141. GGML_ASSERT(false && "not implemented");;
  5142. }
  5143. int _ne1 = 1;
  5144. int ne123 = dst_rows;
  5145. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  5146. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  5147. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5148. }
  5149. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5150. GGML_ASSERT(src0);
  5151. GGML_ASSERT(src0->extra);
  5152. GGML_ASSERT(dst);
  5153. GGML_ASSERT(dst->extra);
  5154. GGML_UNUSED(src1);
  5155. GGML_ASSERT(ggml_is_contiguous(src0));
  5156. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5157. float scale;
  5158. float bias;
  5159. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  5160. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  5161. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5162. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5163. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5164. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5165. cl_kernel kernel = backend_ctx->kernel_scale;
  5166. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5167. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5168. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5169. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5170. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  5171. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  5172. int n = ggml_nelements(dst)/4;
  5173. size_t global_work_size[] = {(size_t)n, 1, 1};
  5174. size_t local_work_size[] = {64, 1, 1};
  5175. size_t * local_work_size_ptr = local_work_size;
  5176. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  5177. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  5178. }
  5179. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5180. }
  5181. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5182. GGML_ASSERT(src0);
  5183. GGML_ASSERT(src0->extra);
  5184. GGML_ASSERT(src1);
  5185. GGML_ASSERT(src1->extra);
  5186. // GGML_OP_CPY happens between src0 and src1.
  5187. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  5188. UNUSED(dst);
  5189. const int ne00 = src0 ? src0->ne[0] : 0;
  5190. const int ne01 = src0 ? src0->ne[1] : 0;
  5191. const int ne02 = src0 ? src0->ne[2] : 0;
  5192. const int ne03 = src0 ? src0->ne[3] : 0;
  5193. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  5194. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5195. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5196. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5197. const int ne10 = src1 ? src1->ne[0] : 0;
  5198. const int ne11 = src1 ? src1->ne[1] : 0;
  5199. const int ne12 = src1 ? src1->ne[2] : 0;
  5200. const int ne13 = src1 ? src1->ne[3] : 0;
  5201. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  5202. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  5203. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  5204. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  5205. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  5206. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  5207. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5208. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5209. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5210. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5211. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5212. cl_kernel kernel;
  5213. switch (src0t) {
  5214. case GGML_TYPE_F32:
  5215. switch (src1t) {
  5216. case GGML_TYPE_F16:
  5217. kernel = backend_ctx->kernel_cpy_f32_f16;
  5218. break;
  5219. case GGML_TYPE_F32:
  5220. kernel = backend_ctx->kernel_cpy_f32_f32;
  5221. break;
  5222. default:
  5223. GGML_ASSERT(false && "not implemented");
  5224. }
  5225. break;
  5226. case GGML_TYPE_F16:
  5227. switch (src1t) {
  5228. case GGML_TYPE_F16:
  5229. kernel = backend_ctx->kernel_cpy_f16_f16;
  5230. break;
  5231. case GGML_TYPE_F32:
  5232. kernel = backend_ctx->kernel_cpy_f16_f32;
  5233. break;
  5234. default:
  5235. GGML_ASSERT(false && "not implemented");
  5236. }
  5237. break;
  5238. default:
  5239. GGML_ASSERT(false && "not implemented");
  5240. }
  5241. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5242. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5243. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5244. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5245. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5246. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5247. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5248. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5249. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  5250. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5251. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  5252. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  5253. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  5254. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  5255. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  5256. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  5257. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  5258. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  5259. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  5260. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  5261. const int nth = MIN(64, ne00);
  5262. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5263. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5264. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  5265. }
  5266. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5267. ggml_cl_cpy(backend, src0, dst, nullptr);
  5268. UNUSED(src1);
  5269. }
  5270. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5271. GGML_ASSERT(src0);
  5272. GGML_ASSERT(src0->extra);
  5273. GGML_ASSERT(dst);
  5274. GGML_ASSERT(dst->extra);
  5275. UNUSED(src1);
  5276. int n_past = ((int32_t *)(dst->op_params))[0];
  5277. const int ne00 = src0 ? src0->ne[0] : 0;
  5278. const int ne01 = src0 ? src0->ne[1] : 0;
  5279. const int ne02 = src0 ? src0->ne[2] : 0;
  5280. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5281. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5282. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5283. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5284. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5285. cl_kernel kernel;
  5286. if (ne00%8 == 0) {
  5287. kernel = backend_ctx->kernel_diag_mask_inf_8;
  5288. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5289. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5290. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5291. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5292. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5293. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5294. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  5295. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  5296. size_t local_work_size[] = {64, 1, 1};
  5297. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5298. } else {
  5299. kernel = backend_ctx->kernel_diag_mask_inf;
  5300. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5301. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5302. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5303. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5304. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5305. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5306. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  5307. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  5308. size_t local_work_size[] = {64, 1, 1};
  5309. size_t * local_work_size_ptr = local_work_size;
  5310. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  5311. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  5312. }
  5313. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5314. }
  5315. }
  5316. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5317. GGML_ASSERT(src0);
  5318. GGML_ASSERT(src0->extra);
  5319. GGML_ASSERT(dst);
  5320. GGML_ASSERT(dst->extra);
  5321. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  5322. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  5323. // alibi is not used; however, for some other models, it is used.
  5324. // KQ_mask
  5325. if (src1) {
  5326. GGML_ASSERT(src1);
  5327. GGML_ASSERT(src1->extra);
  5328. }
  5329. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5330. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5331. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5332. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  5333. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5334. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5335. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  5336. const int ne00 = src0->ne[0];
  5337. const int ne01 = src0->ne[1];
  5338. const int ne02 = src0->ne[2];
  5339. const int ne03 = src0->ne[3];
  5340. const cl_long nb01 = src0->nb[1];
  5341. const cl_long nb02 = src0->nb[2];
  5342. const cl_long nb03 = src0->nb[3];
  5343. const int ne12 = src1 ? src1->ne[2] : 0;
  5344. const int ne13 = src1 ? src1->ne[3] : 0;
  5345. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  5346. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  5347. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  5348. const cl_long nb1 = dst->nb[1];
  5349. const cl_long nb2 = dst->nb[2];
  5350. const cl_long nb3 = dst->nb[3];
  5351. float scale, max_bias;
  5352. memcpy(&scale, dst->op_params + 0, sizeof(float));
  5353. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  5354. const int n_head = src0->ne[2];
  5355. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  5356. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  5357. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  5358. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  5359. // Local size must be wave size. Each workgroup is a wave, working on a row,
  5360. // where a row corresponds to leading dimension.
  5361. int nth = MIN(32, ne00);
  5362. if (backend_ctx->gpu_family == INTEL) {
  5363. // This is the same as the initial value.
  5364. nth = MIN(32, ne00);
  5365. }
  5366. else if (backend_ctx->gpu_family == ADRENO) {
  5367. nth = 64;
  5368. } else {
  5369. GGML_ASSERT(false && "TODO: Unknown GPU");
  5370. }
  5371. cl_kernel kernel;
  5372. if (ne00%4 == 0) {
  5373. if (use_f16) {
  5374. kernel = backend_ctx->kernel_soft_max_4_f16;
  5375. } else {
  5376. kernel = backend_ctx->kernel_soft_max_4;
  5377. }
  5378. } else {
  5379. if (use_f16) {
  5380. kernel = backend_ctx->kernel_soft_max_f16;
  5381. } else {
  5382. kernel = backend_ctx->kernel_soft_max;
  5383. }
  5384. }
  5385. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5386. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5387. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  5388. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5389. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5390. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5391. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5392. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  5393. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  5394. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  5395. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5396. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne13));
  5397. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  5398. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  5399. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  5400. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb1));
  5401. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb2));
  5402. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb3));
  5403. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &scale));
  5404. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(float), &max_bias));
  5405. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &m0));
  5406. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &m1));
  5407. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &n_head_log2));
  5408. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5409. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5410. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5411. }
  5412. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5413. GGML_ASSERT(src0);
  5414. GGML_ASSERT(src0->extra);
  5415. GGML_ASSERT(src1);
  5416. GGML_ASSERT(src1->extra);
  5417. GGML_ASSERT(dst);
  5418. GGML_ASSERT(dst->extra);
  5419. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5420. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5421. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5422. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5423. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5424. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5425. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5426. ggml_tensor * src2 = dst->src[2];
  5427. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  5428. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  5429. const int ne00 = src0 ? src0->ne[0] : 0;
  5430. const int ne01 = src0 ? src0->ne[1] : 0;
  5431. const int ne02 = src0 ? src0->ne[2] : 0;
  5432. const int ne03 = src0 ? src0->ne[3] : 0;
  5433. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  5434. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5435. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5436. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5437. const int ne10 = src1 ? src1->ne[0] : 0;
  5438. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  5439. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  5440. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  5441. const int ne0 = dst ? dst->ne[0] : 0;
  5442. const int ne1 = dst ? dst->ne[1] : 0;
  5443. const int ne2 = dst ? dst->ne[2] : 0;
  5444. const int ne3 = dst ? dst->ne[3] : 0;
  5445. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  5446. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  5447. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  5448. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  5449. GGML_ASSERT(ne10 % ne02 == 0);
  5450. GGML_ASSERT(ne10 >= ne02);
  5451. int nth = MIN(64, ne00);
  5452. const int n_past = ((int *) dst->op_params)[0];
  5453. const int n_dims = ((int *) dst->op_params)[1];
  5454. const int mode = ((int *) dst->op_params)[2];
  5455. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  5456. float freq_base;
  5457. float freq_scale;
  5458. float ext_factor;
  5459. float attn_factor;
  5460. float beta_fast;
  5461. float beta_slow;
  5462. int32_t sections[4];
  5463. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  5464. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  5465. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  5466. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  5467. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  5468. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  5469. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  5470. const bool is_neox = mode & 2;
  5471. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  5472. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5473. if (is_mrope) {
  5474. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5475. }
  5476. if (is_vision) {
  5477. GGML_ASSERT(n_dims == ne00/2);
  5478. }
  5479. cl_kernel kernel;
  5480. if (is_neox) {
  5481. switch (src0->type) {
  5482. case GGML_TYPE_F32:
  5483. kernel = backend_ctx->kernel_rope_neox_f32;
  5484. break;
  5485. case GGML_TYPE_F16:
  5486. kernel = backend_ctx->kernel_rope_neox_f16;
  5487. break;
  5488. default:
  5489. GGML_ASSERT(false);
  5490. };
  5491. } else if (is_mrope && !is_vision) {
  5492. switch (src0->type) {
  5493. case GGML_TYPE_F32:
  5494. kernel = backend_ctx->kernel_rope_multi_f32;
  5495. break;
  5496. case GGML_TYPE_F16:
  5497. kernel = backend_ctx->kernel_rope_multi_f16;
  5498. break;
  5499. default:
  5500. GGML_ASSERT(false);
  5501. };
  5502. } else if (is_vision) {
  5503. switch (src0->type) {
  5504. case GGML_TYPE_F32:
  5505. kernel = backend_ctx->kernel_rope_vision_f32;
  5506. break;
  5507. case GGML_TYPE_F16:
  5508. kernel = backend_ctx->kernel_rope_vision_f16;
  5509. break;
  5510. default:
  5511. GGML_ASSERT(false);
  5512. }
  5513. } else {
  5514. switch (src0->type) {
  5515. case GGML_TYPE_F32:
  5516. kernel = backend_ctx->kernel_rope_norm_f32;
  5517. break;
  5518. case GGML_TYPE_F16:
  5519. kernel = backend_ctx->kernel_rope_norm_f16;
  5520. break;
  5521. default:
  5522. GGML_ASSERT(false);
  5523. };
  5524. }
  5525. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5526. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5527. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5528. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5529. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  5530. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  5531. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  5532. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  5533. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5534. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5535. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  5536. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  5537. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  5538. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  5539. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  5540. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  5541. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  5542. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  5543. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  5544. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  5545. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  5546. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  5547. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  5548. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  5549. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  5550. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  5551. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  5552. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  5553. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  5554. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  5555. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  5556. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  5557. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  5558. if (is_mrope || is_vision) {
  5559. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  5560. }
  5561. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  5562. size_t local_work_size[] = {(size_t)nth, 1, 1};
  5563. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5564. }
  5565. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5566. GGML_ASSERT(src0);
  5567. GGML_ASSERT(src1);
  5568. GGML_ASSERT(src1->extra);
  5569. GGML_ASSERT(dst);
  5570. GGML_ASSERT(dst->extra);
  5571. // src0 - filter, src1 - input
  5572. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5573. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  5574. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5575. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5576. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5577. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5578. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5579. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5580. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  5581. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  5582. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  5583. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  5584. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  5585. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  5586. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  5587. const cl_long IH = is_2D ? src1->ne[1] : 1;
  5588. const cl_long IW = src1->ne[0];
  5589. const cl_long KH = is_2D ? src0->ne[1] : 1;
  5590. const cl_long KW = src0->ne[0];
  5591. const cl_long OH = is_2D ? dst->ne[2] : 1;
  5592. const cl_long OW = dst->ne[1];
  5593. // nb is byte offset, src is type float32
  5594. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  5595. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  5596. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  5597. const cl_long pelements = OW*KW*KH;
  5598. const cl_long CHW = IC*KH*KW;
  5599. cl_kernel kernel;
  5600. if(dst->type == GGML_TYPE_F16) {
  5601. kernel = backend_ctx->kernel_im2col_f16;
  5602. } else {
  5603. kernel = backend_ctx->kernel_im2col_f32;
  5604. }
  5605. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  5606. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  5607. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5608. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5609. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  5610. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  5611. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  5612. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  5613. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  5614. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  5615. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  5616. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  5617. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  5618. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  5619. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  5620. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  5621. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  5622. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  5623. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  5624. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  5625. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  5626. const int num_blocks = (pelements + 256 - 1) / 256;
  5627. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  5628. size_t local_work_size[] = {256, 1, 1};
  5629. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5630. }
  5631. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5632. GGML_ASSERT(src0);
  5633. GGML_ASSERT(src0->extra);
  5634. GGML_ASSERT(dst);
  5635. GGML_ASSERT(dst->extra);
  5636. GGML_UNUSED(src1);
  5637. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5638. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  5639. GGML_ASSERT(ggml_is_contiguous(src0));
  5640. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5641. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5642. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5643. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5644. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5645. const int ne00 = src0->ne[0];
  5646. const int nrows = ggml_nrows(src0);
  5647. int ne00_padded = 1;
  5648. while (ne00_padded < ne00) {
  5649. ne00_padded *= 2;
  5650. }
  5651. int order = (enum ggml_sort_order) dst->op_params[0];
  5652. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  5653. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5654. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5655. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5656. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5657. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5658. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  5659. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  5660. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  5661. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  5662. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  5663. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5664. }
  5665. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5666. GGML_ASSERT(src0);
  5667. GGML_ASSERT(src0->extra);
  5668. GGML_ASSERT(dst);
  5669. GGML_ASSERT(dst->extra);
  5670. GGML_UNUSED(src1);
  5671. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  5672. GGML_ASSERT(ggml_is_contiguous(src0));
  5673. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5674. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5675. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5676. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5677. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5678. const int ne00 = src0->ne[0];
  5679. const int ne01 = src0->ne[1];
  5680. const int ne02 = src0->ne[2];
  5681. const int ne03 = src0->ne[3];
  5682. const cl_ulong nb01 = src0->nb[1];
  5683. const cl_ulong nb02 = src0->nb[2];
  5684. const cl_ulong nb03 = src0->nb[3];
  5685. const cl_ulong nb1 = dst->nb[1];
  5686. const cl_ulong nb2 = dst->nb[2];
  5687. const cl_ulong nb3 = dst->nb[3];
  5688. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  5689. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5690. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5691. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  5692. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  5693. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  5694. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5695. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5696. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5697. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  5698. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  5699. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  5700. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  5701. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  5702. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  5703. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  5704. size_t local_work_size[] = {(size_t)64, 1, 1};
  5705. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5706. }
  5707. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5708. GGML_ASSERT(src0);
  5709. GGML_ASSERT(src0->extra);
  5710. GGML_ASSERT(dst);
  5711. GGML_ASSERT(dst->extra);
  5712. GGML_ASSERT(ggml_is_contiguous_1(src0));
  5713. if (src1) {
  5714. GGML_ASSERT(src1);
  5715. GGML_ASSERT(src1->extra);
  5716. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  5717. }
  5718. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5719. cl_kernel kernel;
  5720. switch (ggml_get_glu_op(dst)) {
  5721. case GGML_GLU_OP_GEGLU:
  5722. if (dst->type == GGML_TYPE_F32) {
  5723. kernel = backend_ctx->kernel_geglu;
  5724. } else {
  5725. kernel = backend_ctx->kernel_geglu_f16;
  5726. }
  5727. break;
  5728. case GGML_GLU_OP_REGLU:
  5729. if (dst->type == GGML_TYPE_F32) {
  5730. kernel = backend_ctx->kernel_reglu;
  5731. } else {
  5732. kernel = backend_ctx->kernel_reglu_f16;
  5733. }
  5734. break;
  5735. case GGML_GLU_OP_SWIGLU:
  5736. if (dst->type == GGML_TYPE_F32) {
  5737. kernel = backend_ctx->kernel_swiglu;
  5738. } else {
  5739. kernel = backend_ctx->kernel_swiglu_f16;
  5740. }
  5741. break;
  5742. case GGML_GLU_OP_GEGLU_ERF:
  5743. if (dst->type == GGML_TYPE_F32) {
  5744. kernel = backend_ctx->kernel_geglu_erf;
  5745. } else {
  5746. kernel = backend_ctx->kernel_geglu_erf_f16;
  5747. }
  5748. break;
  5749. case GGML_GLU_OP_GEGLU_QUICK:
  5750. if (dst->type == GGML_TYPE_F32) {
  5751. kernel = backend_ctx->kernel_geglu_quick;
  5752. } else {
  5753. kernel = backend_ctx->kernel_geglu_quick_f16;
  5754. }
  5755. break;
  5756. default:
  5757. GGML_ABORT("Unsupported glu op");
  5758. }
  5759. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5760. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5761. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  5762. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5763. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5764. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  5765. const int ne0 = dst->ne[0];
  5766. const cl_ulong nb01 = src0->nb[1];
  5767. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  5768. const cl_ulong nb1 = dst->nb[1];
  5769. const int swp = ((const int32_t *) dst->op_params)[1];
  5770. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  5771. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  5772. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5773. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5774. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  5775. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5776. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5777. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5778. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  5779. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  5780. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  5781. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  5782. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  5783. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  5784. const size_t nrows = ggml_nrows(src0);
  5785. size_t nth = 512;
  5786. size_t global_work_size[] = {nrows*nth, 1, 1};
  5787. size_t local_work_size[] = {nth, 1, 1};
  5788. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5789. }
  5790. //------------------------------------------------------------------------------
  5791. // Op offloading
  5792. //------------------------------------------------------------------------------
  5793. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  5794. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  5795. ggml_cl_func_t func = nullptr;
  5796. ggml_tensor * src0 = tensor->src[0];
  5797. ggml_tensor * src1 = tensor->src[1];
  5798. const bool any_on_device = tensor->extra
  5799. || (src0 != nullptr && src0->extra)
  5800. || (src1 != nullptr && src1->extra);
  5801. switch (tensor->op) {
  5802. case GGML_OP_GET_ROWS:
  5803. if (!any_on_device) {
  5804. return false;
  5805. }
  5806. func = ggml_cl_get_rows;
  5807. break;
  5808. case GGML_OP_SET_ROWS:
  5809. if (!any_on_device) {
  5810. return false;
  5811. }
  5812. func = ggml_cl_set_rows;
  5813. break;
  5814. case GGML_OP_CPY:
  5815. if (!any_on_device) {
  5816. return false;
  5817. }
  5818. func = ggml_cl_cpy;
  5819. break;
  5820. case GGML_OP_DUP:
  5821. case GGML_OP_CONT:
  5822. if (!any_on_device) {
  5823. return false;
  5824. }
  5825. func = ggml_cl_dup;
  5826. break;
  5827. case GGML_OP_ADD:
  5828. if (!any_on_device) {
  5829. return false;
  5830. }
  5831. func = ggml_cl_add;
  5832. break;
  5833. case GGML_OP_MUL:
  5834. if (!any_on_device) {
  5835. return false;
  5836. }
  5837. func = ggml_cl_mul;
  5838. break;
  5839. case GGML_OP_DIV:
  5840. if (!any_on_device) {
  5841. return false;
  5842. }
  5843. func = ggml_cl_div;
  5844. break;
  5845. case GGML_OP_SUB:
  5846. if (!any_on_device) {
  5847. return false;
  5848. }
  5849. func = ggml_cl_sub;
  5850. break;
  5851. case GGML_OP_UNARY:
  5852. switch (ggml_get_unary_op(tensor)) {
  5853. case GGML_UNARY_OP_GELU:
  5854. if (!any_on_device) {
  5855. return false;
  5856. }
  5857. func = ggml_cl_gelu;
  5858. break;
  5859. case GGML_UNARY_OP_GELU_ERF:
  5860. if (!any_on_device) {
  5861. return false;
  5862. }
  5863. func = ggml_cl_gelu_erf;
  5864. break;
  5865. case GGML_UNARY_OP_GELU_QUICK:
  5866. if (!any_on_device) {
  5867. return false;
  5868. }
  5869. func = ggml_cl_gelu_quick;
  5870. break;
  5871. case GGML_UNARY_OP_SILU:
  5872. if (!any_on_device) {
  5873. return false;
  5874. }
  5875. func = ggml_cl_silu;
  5876. break;
  5877. case GGML_UNARY_OP_RELU:
  5878. if (!any_on_device) {
  5879. return false;
  5880. }
  5881. func = ggml_cl_relu;
  5882. break;
  5883. case GGML_UNARY_OP_SIGMOID:
  5884. if (!any_on_device) {
  5885. return false;
  5886. }
  5887. func = ggml_cl_sigmoid;
  5888. break;
  5889. case GGML_UNARY_OP_TANH:
  5890. if (!any_on_device) {
  5891. return false;
  5892. }
  5893. func = ggml_cl_tanh;
  5894. break;
  5895. default:
  5896. return false;
  5897. } break;
  5898. case GGML_OP_GLU:
  5899. if (!any_on_device) {
  5900. return false;
  5901. }
  5902. func = ggml_cl_glu;
  5903. break;
  5904. case GGML_OP_CLAMP:
  5905. if (!any_on_device) {
  5906. return false;
  5907. }
  5908. func = ggml_cl_clamp;
  5909. break;
  5910. case GGML_OP_NORM:
  5911. if (!any_on_device) {
  5912. return false;
  5913. }
  5914. func = ggml_cl_norm;
  5915. break;
  5916. case GGML_OP_RMS_NORM:
  5917. if (!any_on_device) {
  5918. return false;
  5919. }
  5920. func = ggml_cl_rms_norm;
  5921. break;
  5922. case GGML_OP_GROUP_NORM:
  5923. if (!any_on_device) {
  5924. return false;
  5925. }
  5926. func = ggml_cl_group_norm;
  5927. break;
  5928. case GGML_OP_REPEAT:
  5929. if (!any_on_device) {
  5930. return false;
  5931. }
  5932. func = ggml_cl_repeat;
  5933. break;
  5934. case GGML_OP_PAD:
  5935. if (!any_on_device) {
  5936. return false;
  5937. }
  5938. ggml_cl_pad(backend, tensor->src[0], tensor);
  5939. return true;
  5940. case GGML_OP_UPSCALE:
  5941. if (!any_on_device) {
  5942. return false;
  5943. }
  5944. ggml_cl_upscale(backend, tensor->src[0], tensor);
  5945. return true;
  5946. case GGML_OP_CONV_2D:
  5947. if (!any_on_device) {
  5948. return false;
  5949. }
  5950. func = ggml_cl_conv_2d;
  5951. break;
  5952. case GGML_OP_CONCAT:
  5953. if (!any_on_device) {
  5954. return false;
  5955. }
  5956. func = ggml_cl_concat;
  5957. break;
  5958. case GGML_OP_TIMESTEP_EMBEDDING:
  5959. if (!any_on_device) {
  5960. return false;
  5961. }
  5962. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  5963. return true;
  5964. case GGML_OP_MUL_MAT:
  5965. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  5966. return false;
  5967. }
  5968. func = ggml_cl_mul_mat;
  5969. break;
  5970. case GGML_OP_MUL_MAT_ID:
  5971. if (!any_on_device) {
  5972. return false;
  5973. }
  5974. func = ggml_cl_mul_mat_id;
  5975. break;
  5976. case GGML_OP_SCALE:
  5977. if (!any_on_device) {
  5978. return false;
  5979. }
  5980. func = ggml_cl_scale;
  5981. break;
  5982. case GGML_OP_RESHAPE:
  5983. case GGML_OP_VIEW:
  5984. case GGML_OP_PERMUTE:
  5985. case GGML_OP_TRANSPOSE:
  5986. if (!any_on_device) {
  5987. return false;
  5988. }
  5989. func = ggml_cl_nop;
  5990. break;
  5991. case GGML_OP_DIAG_MASK_INF:
  5992. if (!any_on_device) {
  5993. return false;
  5994. }
  5995. func = ggml_cl_diag_mask_inf;
  5996. break;
  5997. case GGML_OP_SOFT_MAX:
  5998. if (!any_on_device) {
  5999. return false;
  6000. }
  6001. func = ggml_cl_soft_max;
  6002. break;
  6003. case GGML_OP_ROPE:
  6004. if (!any_on_device) {
  6005. return false;
  6006. }
  6007. func = ggml_cl_rope;
  6008. break;
  6009. case GGML_OP_IM2COL:
  6010. if (!any_on_device) {
  6011. return false;
  6012. }
  6013. func = ggml_cl_im2col;
  6014. break;
  6015. case GGML_OP_ARGSORT:
  6016. if (!any_on_device) {
  6017. return false;
  6018. }
  6019. func = ggml_cl_argsort;
  6020. break;
  6021. case GGML_OP_SUM_ROWS:
  6022. if (!any_on_device) {
  6023. return false;
  6024. }
  6025. func = ggml_cl_sum_rows;
  6026. break;
  6027. default:
  6028. return false;
  6029. }
  6030. func(backend, tensor->src[0], tensor->src[1], tensor);
  6031. return true;
  6032. }