ggml.c 495 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if defined(__AVX2__) || defined(__AVX512F__)
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  462. #if __AVXVNNI__
  463. const __m256i zero = _mm256_setzero_si256();
  464. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  465. return _mm256_cvtepi32_ps(summed_pairs);
  466. #else
  467. // Perform multiplication and create 16-bit values
  468. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  469. return sum_i16_pairs_float(dot);
  470. #endif
  471. }
  472. // multiply int8_t, add results pairwise twice and return as float vector
  473. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  474. #if __AVXVNNIINT8__
  475. const __m256i zero = _mm256_setzero_si256();
  476. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. #else
  479. // Get absolute values of x vectors
  480. const __m256i ax = _mm256_sign_epi8(x, x);
  481. // Sign the values of the y vectors
  482. const __m256i sy = _mm256_sign_epi8(y, x);
  483. return mul_sum_us8_pairs_float(ax, sy);
  484. #endif
  485. }
  486. static inline __m128i packNibbles( __m256i bytes )
  487. {
  488. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  489. #if __AVX512F__
  490. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  491. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  492. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  493. #else
  494. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  495. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  496. __m256i low = _mm256_and_si256( lowByte, bytes );
  497. high = _mm256_srli_epi16( high, 4 );
  498. bytes = _mm256_or_si256( low, high );
  499. // Compress uint16_t lanes into bytes
  500. __m128i r0 = _mm256_castsi256_si128( bytes );
  501. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  502. return _mm_packus_epi16( r0, r1 );
  503. #endif
  504. }
  505. #elif defined(__AVX__)
  506. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  507. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  508. uint32_t x32;
  509. memcpy(&x32, x, sizeof(uint32_t));
  510. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  511. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  512. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  513. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  514. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  515. bytesl = _mm_or_si128(bytesl, bit_mask);
  516. bytesh = _mm_or_si128(bytesh, bit_mask);
  517. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  518. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  519. return _mm256_set_m128i(bytesh, bytesl);
  520. }
  521. // Unpack 32 4-bit fields into 32 bytes
  522. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  523. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  524. {
  525. // Load 16 bytes from memory
  526. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  527. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  528. const __m128i lowMask = _mm_set1_epi8(0xF);
  529. tmpl = _mm_and_si128(lowMask, tmpl);
  530. tmph = _mm_and_si128(lowMask, tmph);
  531. return _mm256_set_m128i(tmph, tmpl);
  532. }
  533. // add int16_t pairwise and return as float vector
  534. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  535. const __m128i ones = _mm_set1_epi16(1);
  536. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  537. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  538. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  539. return _mm256_cvtepi32_ps(summed_pairs);
  540. }
  541. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  542. const __m128i axl = _mm256_castsi256_si128(ax);
  543. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  544. const __m128i syl = _mm256_castsi256_si128(sy);
  545. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  546. // Perform multiplication and create 16-bit values
  547. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  548. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  549. return sum_i16_pairs_float(doth, dotl);
  550. }
  551. // multiply int8_t, add results pairwise twice and return as float vector
  552. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  553. const __m128i xl = _mm256_castsi256_si128(x);
  554. const __m128i xh = _mm256_extractf128_si256(x, 1);
  555. const __m128i yl = _mm256_castsi256_si128(y);
  556. const __m128i yh = _mm256_extractf128_si256(y, 1);
  557. // Get absolute values of x vectors
  558. const __m128i axl = _mm_sign_epi8(xl, xl);
  559. const __m128i axh = _mm_sign_epi8(xh, xh);
  560. // Sign the values of the y vectors
  561. const __m128i syl = _mm_sign_epi8(yl, xl);
  562. const __m128i syh = _mm_sign_epi8(yh, xh);
  563. // Perform multiplication and create 16-bit values
  564. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  565. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  566. return sum_i16_pairs_float(doth, dotl);
  567. }
  568. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  572. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  573. __m128i low = _mm_and_si128( lowByte, bytes1 );
  574. high = _mm_srli_epi16( high, 4 );
  575. bytes1 = _mm_or_si128( low, high );
  576. high = _mm_andnot_si128( lowByte, bytes2 );
  577. low = _mm_and_si128( lowByte, bytes2 );
  578. high = _mm_srli_epi16( high, 4 );
  579. bytes2 = _mm_or_si128( low, high );
  580. return _mm_packus_epi16( bytes1, bytes2);
  581. }
  582. #endif
  583. #elif defined(__SSSE3__)
  584. // horizontally add 4x4 floats
  585. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  586. __m128 res_0 =_mm_hadd_ps(a, b);
  587. __m128 res_1 =_mm_hadd_ps(c, d);
  588. __m128 res =_mm_hadd_ps(res_0, res_1);
  589. res =_mm_hadd_ps(res, res);
  590. res =_mm_hadd_ps(res, res);
  591. return _mm_cvtss_f32(res);
  592. }
  593. #endif // __AVX__ || __AVX2__ || __AVX512F__
  594. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  595. #if defined(__ARM_NEON)
  596. #if !defined(__aarch64__)
  597. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  598. return
  599. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  600. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  601. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  602. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  603. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  604. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  605. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  606. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  607. }
  608. inline static int16_t vaddvq_s8(int8x16_t v) {
  609. return
  610. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  611. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  612. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  613. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  614. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  615. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  616. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  617. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  618. }
  619. inline static int32_t vaddvq_s16(int16x8_t v) {
  620. return
  621. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  622. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  623. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  624. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  625. }
  626. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  627. return
  628. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  629. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  630. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  631. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  632. }
  633. inline static int32_t vaddvq_s32(int32x4_t v) {
  634. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  635. }
  636. inline static float vaddvq_f32(float32x4_t v) {
  637. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  638. }
  639. inline static float vminvq_f32(float32x4_t v) {
  640. return
  641. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  642. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  643. }
  644. inline static float vmaxvq_f32(float32x4_t v) {
  645. return
  646. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  647. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  648. }
  649. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  650. int32x4_t res;
  651. res[0] = roundf(vgetq_lane_f32(v, 0));
  652. res[1] = roundf(vgetq_lane_f32(v, 1));
  653. res[2] = roundf(vgetq_lane_f32(v, 2));
  654. res[3] = roundf(vgetq_lane_f32(v, 3));
  655. return res;
  656. }
  657. #endif
  658. #endif
  659. #define QK4_0 32
  660. typedef struct {
  661. ggml_fp16_t d; // delta
  662. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  663. } block_q4_0;
  664. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  665. #define QK4_1 32
  666. typedef struct {
  667. ggml_fp16_t d; // delta
  668. ggml_fp16_t m; // min
  669. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  670. } block_q4_1;
  671. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  672. #define QK5_0 32
  673. typedef struct {
  674. ggml_fp16_t d; // delta
  675. uint8_t qh[4]; // 5-th bit of quants
  676. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  677. } block_q5_0;
  678. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  679. #define QK5_1 32
  680. typedef struct {
  681. ggml_fp16_t d; // delta
  682. ggml_fp16_t m; // min
  683. uint8_t qh[4]; // 5-th bit of quants
  684. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  685. } block_q5_1;
  686. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  687. #define QK8_0 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. int8_t qs[QK8_0]; // quants
  691. } block_q8_0;
  692. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  693. #define QK8_1 32
  694. typedef struct {
  695. float d; // delta
  696. float s; // d * sum(qs[i])
  697. int8_t qs[QK8_1]; // quants
  698. } block_q8_1;
  699. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  700. // reference implementation for deterministic creation of model files
  701. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  702. static const int qk = QK4_0;
  703. assert(k % qk == 0);
  704. const int nb = k / qk;
  705. for (int i = 0; i < nb; i++) {
  706. float amax = 0.0f; // absolute max
  707. float max = 0.0f;
  708. for (int j = 0; j < qk; j++) {
  709. const float v = x[i*qk + j];
  710. if (amax < fabsf(v)) {
  711. amax = fabsf(v);
  712. max = v;
  713. }
  714. }
  715. const float d = max / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = GGML_FP32_TO_FP16(d);
  718. for (int j = 0; j < qk/2; ++j) {
  719. const float x0 = x[i*qk + 0 + j]*id;
  720. const float x1 = x[i*qk + qk/2 + j]*id;
  721. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  722. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  723. y[i].qs[j] = xi0;
  724. y[i].qs[j] |= xi1 << 4;
  725. }
  726. }
  727. }
  728. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  729. quantize_row_q4_0_reference(x, y, k);
  730. }
  731. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  732. const int qk = QK4_1;
  733. assert(k % qk == 0);
  734. const int nb = k / qk;
  735. for (int i = 0; i < nb; i++) {
  736. float min = FLT_MAX;
  737. float max = -FLT_MAX;
  738. for (int j = 0; j < qk; j++) {
  739. const float v = x[i*qk + j];
  740. if (v < min) min = v;
  741. if (v > max) max = v;
  742. }
  743. const float d = (max - min) / ((1 << 4) - 1);
  744. const float id = d ? 1.0f/d : 0.0f;
  745. y[i].d = GGML_FP32_TO_FP16(d);
  746. y[i].m = GGML_FP32_TO_FP16(min);
  747. for (int j = 0; j < qk/2; ++j) {
  748. const float x0 = (x[i*qk + 0 + j] - min)*id;
  749. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  750. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  751. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  752. y[i].qs[j] = xi0;
  753. y[i].qs[j] |= xi1 << 4;
  754. }
  755. }
  756. }
  757. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  758. quantize_row_q4_1_reference(x, y, k);
  759. }
  760. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  761. static const int qk = QK5_0;
  762. assert(k % qk == 0);
  763. const int nb = k / qk;
  764. for (int i = 0; i < nb; i++) {
  765. float amax = 0.0f; // absolute max
  766. float max = 0.0f;
  767. for (int j = 0; j < qk; j++) {
  768. const float v = x[i*qk + j];
  769. if (amax < fabsf(v)) {
  770. amax = fabsf(v);
  771. max = v;
  772. }
  773. }
  774. const float d = max / -16;
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = GGML_FP32_TO_FP16(d);
  777. uint32_t qh = 0;
  778. for (int j = 0; j < qk/2; ++j) {
  779. const float x0 = x[i*qk + 0 + j]*id;
  780. const float x1 = x[i*qk + qk/2 + j]*id;
  781. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  782. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  783. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  784. // get the 5-th bit and store it in qh at the right position
  785. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  786. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  787. }
  788. memcpy(&y[i].qh, &qh, sizeof(qh));
  789. }
  790. }
  791. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  792. quantize_row_q5_0_reference(x, y, k);
  793. }
  794. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  795. const int qk = QK5_1;
  796. assert(k % qk == 0);
  797. const int nb = k / qk;
  798. for (int i = 0; i < nb; i++) {
  799. float min = FLT_MAX;
  800. float max = -FLT_MAX;
  801. for (int j = 0; j < qk; j++) {
  802. const float v = x[i*qk + j];
  803. if (v < min) min = v;
  804. if (v > max) max = v;
  805. }
  806. const float d = (max - min) / ((1 << 5) - 1);
  807. const float id = d ? 1.0f/d : 0.0f;
  808. y[i].d = GGML_FP32_TO_FP16(d);
  809. y[i].m = GGML_FP32_TO_FP16(min);
  810. uint32_t qh = 0;
  811. for (int j = 0; j < qk/2; ++j) {
  812. const float x0 = (x[i*qk + 0 + j] - min)*id;
  813. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  814. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  815. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  816. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  817. // get the 5-th bit and store it in qh at the right position
  818. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  819. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  820. }
  821. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  822. }
  823. }
  824. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  825. quantize_row_q5_1_reference(x, y, k);
  826. }
  827. // reference implementation for deterministic creation of model files
  828. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. for (int i = 0; i < nb; i++) {
  832. float amax = 0.0f; // absolute max
  833. for (int j = 0; j < QK8_0; j++) {
  834. const float v = x[i*QK8_0 + j];
  835. amax = MAX(amax, fabsf(v));
  836. }
  837. const float d = amax / ((1 << 7) - 1);
  838. const float id = d ? 1.0f/d : 0.0f;
  839. y[i].d = GGML_FP32_TO_FP16(d);
  840. for (int j = 0; j < QK8_0; ++j) {
  841. const float x0 = x[i*QK8_0 + j]*id;
  842. y[i].qs[j] = roundf(x0);
  843. }
  844. }
  845. }
  846. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  847. assert(QK8_0 == 32);
  848. assert(k % QK8_0 == 0);
  849. const int nb = k / QK8_0;
  850. block_q8_0 * restrict y = vy;
  851. #if defined(__ARM_NEON)
  852. for (int i = 0; i < nb; i++) {
  853. float32x4_t srcv [8];
  854. float32x4_t asrcv[8];
  855. float32x4_t amaxv[8];
  856. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  857. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  858. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  859. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  860. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  861. const float amax = vmaxvq_f32(amaxv[0]);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = GGML_FP32_TO_FP16(d);
  865. for (int j = 0; j < 8; j++) {
  866. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  867. const int32x4_t vi = vcvtnq_s32_f32(v);
  868. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  869. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  870. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  871. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  872. }
  873. }
  874. #elif defined(__wasm_simd128__)
  875. for (int i = 0; i < nb; i++) {
  876. v128_t srcv [8];
  877. v128_t asrcv[8];
  878. v128_t amaxv[8];
  879. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  880. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  881. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  882. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  883. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  884. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  885. wasm_f32x4_extract_lane(amaxv[0], 1)),
  886. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  887. wasm_f32x4_extract_lane(amaxv[0], 3)));
  888. const float d = amax / ((1 << 7) - 1);
  889. const float id = d ? 1.0f/d : 0.0f;
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. for (int j = 0; j < 8; j++) {
  892. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  893. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  894. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  895. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  896. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  897. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  898. }
  899. }
  900. #elif defined(__AVX2__) || defined(__AVX__)
  901. for (int i = 0; i < nb; i++) {
  902. // Load elements into 4 AVX vectors
  903. __m256 v0 = _mm256_loadu_ps( x );
  904. __m256 v1 = _mm256_loadu_ps( x + 8 );
  905. __m256 v2 = _mm256_loadu_ps( x + 16 );
  906. __m256 v3 = _mm256_loadu_ps( x + 24 );
  907. x += 32;
  908. // Compute max(abs(e)) for the block
  909. const __m256 signBit = _mm256_set1_ps( -0.0f );
  910. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  911. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  912. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  913. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  914. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  915. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  916. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  917. const float maxScalar = _mm_cvtss_f32( max4 );
  918. // Quantize these floats
  919. const float d = maxScalar / 127.f;
  920. y[i].d = GGML_FP32_TO_FP16(d);
  921. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  922. const __m256 mul = _mm256_set1_ps( id );
  923. // Apply the multiplier
  924. v0 = _mm256_mul_ps( v0, mul );
  925. v1 = _mm256_mul_ps( v1, mul );
  926. v2 = _mm256_mul_ps( v2, mul );
  927. v3 = _mm256_mul_ps( v3, mul );
  928. // Round to nearest integer
  929. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  930. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  931. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  932. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  933. // Convert floats to integers
  934. __m256i i0 = _mm256_cvtps_epi32( v0 );
  935. __m256i i1 = _mm256_cvtps_epi32( v1 );
  936. __m256i i2 = _mm256_cvtps_epi32( v2 );
  937. __m256i i3 = _mm256_cvtps_epi32( v3 );
  938. #if defined(__AVX2__)
  939. // Convert int32 to int16
  940. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  941. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  942. // Convert int16 to int8
  943. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  944. // We got our precious signed bytes, but the order is now wrong
  945. // These AVX2 pack instructions process 16-byte pieces independently
  946. // The following instruction is fixing the order
  947. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  948. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  949. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  950. #else
  951. // Since we don't have in AVX some necessary functions,
  952. // we split the registers in half and call AVX2 analogs from SSE
  953. __m128i ni0 = _mm256_castsi256_si128( i0 );
  954. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  955. __m128i ni2 = _mm256_castsi256_si128( i1 );
  956. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  957. __m128i ni4 = _mm256_castsi256_si128( i2 );
  958. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  959. __m128i ni6 = _mm256_castsi256_si128( i3 );
  960. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  961. // Convert int32 to int16
  962. ni0 = _mm_packs_epi32( ni0, ni1 );
  963. ni2 = _mm_packs_epi32( ni2, ni3 );
  964. ni4 = _mm_packs_epi32( ni4, ni5 );
  965. ni6 = _mm_packs_epi32( ni6, ni7 );
  966. // Convert int16 to int8
  967. ni0 = _mm_packs_epi16( ni0, ni2 );
  968. ni4 = _mm_packs_epi16( ni4, ni6 );
  969. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  970. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  971. #endif
  972. }
  973. #else
  974. // scalar
  975. quantize_row_q8_0_reference(x, y, k);
  976. #endif
  977. }
  978. // reference implementation for deterministic creation of model files
  979. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  980. assert(QK8_1 == 32);
  981. assert(k % QK8_1 == 0);
  982. const int nb = k / QK8_1;
  983. for (int i = 0; i < nb; i++) {
  984. float amax = 0.0f; // absolute max
  985. for (int j = 0; j < QK8_1; j++) {
  986. const float v = x[i*QK8_1 + j];
  987. amax = MAX(amax, fabsf(v));
  988. }
  989. const float d = amax / ((1 << 7) - 1);
  990. const float id = d ? 1.0f/d : 0.0f;
  991. y[i].d = d;
  992. int sum = 0;
  993. for (int j = 0; j < QK8_1/2; ++j) {
  994. const float v0 = x[i*QK8_1 + j]*id;
  995. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  996. y[i].qs[ j] = roundf(v0);
  997. y[i].qs[QK8_1/2 + j] = roundf(v1);
  998. sum += y[i].qs[ j];
  999. sum += y[i].qs[QK8_1/2 + j];
  1000. }
  1001. y[i].s = sum*d;
  1002. }
  1003. }
  1004. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1005. assert(k % QK8_1 == 0);
  1006. const int nb = k / QK8_1;
  1007. block_q8_1 * restrict y = vy;
  1008. #if defined(__ARM_NEON)
  1009. for (int i = 0; i < nb; i++) {
  1010. float32x4_t srcv [8];
  1011. float32x4_t asrcv[8];
  1012. float32x4_t amaxv[8];
  1013. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1014. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1015. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1016. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1017. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1018. const float amax = vmaxvq_f32(amaxv[0]);
  1019. const float d = amax / ((1 << 7) - 1);
  1020. const float id = d ? 1.0f/d : 0.0f;
  1021. y[i].d = d;
  1022. int32x4_t accv = vdupq_n_s32(0);
  1023. for (int j = 0; j < 8; j++) {
  1024. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1025. const int32x4_t vi = vcvtnq_s32_f32(v);
  1026. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1027. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1028. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1029. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1030. accv = vaddq_s32(accv, vi);
  1031. }
  1032. y[i].s = d * vaddvq_s32(accv);
  1033. }
  1034. #elif defined(__wasm_simd128__)
  1035. for (int i = 0; i < nb; i++) {
  1036. v128_t srcv [8];
  1037. v128_t asrcv[8];
  1038. v128_t amaxv[8];
  1039. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1040. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1041. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1042. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1043. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1044. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1045. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1046. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1047. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1048. const float d = amax / ((1 << 7) - 1);
  1049. const float id = d ? 1.0f/d : 0.0f;
  1050. y[i].d = d;
  1051. v128_t accv = wasm_i32x4_splat(0);
  1052. for (int j = 0; j < 8; j++) {
  1053. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1054. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1055. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1056. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1057. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1058. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1059. accv = wasm_i32x4_add(accv, vi);
  1060. }
  1061. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1062. wasm_i32x4_extract_lane(accv, 1) +
  1063. wasm_i32x4_extract_lane(accv, 2) +
  1064. wasm_i32x4_extract_lane(accv, 3));
  1065. }
  1066. #elif defined(__AVX2__) || defined(__AVX__)
  1067. for (int i = 0; i < nb; i++) {
  1068. // Load elements into 4 AVX vectors
  1069. __m256 v0 = _mm256_loadu_ps( x );
  1070. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1071. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1072. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1073. x += 32;
  1074. // Compute max(abs(e)) for the block
  1075. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1076. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1077. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1078. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1079. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1080. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1081. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1082. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1083. const float maxScalar = _mm_cvtss_f32( max4 );
  1084. // Quantize these floats
  1085. const float d = maxScalar / 127.f;
  1086. y[i].d = d;
  1087. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1088. const __m256 mul = _mm256_set1_ps( id );
  1089. // Apply the multiplier
  1090. v0 = _mm256_mul_ps( v0, mul );
  1091. v1 = _mm256_mul_ps( v1, mul );
  1092. v2 = _mm256_mul_ps( v2, mul );
  1093. v3 = _mm256_mul_ps( v3, mul );
  1094. // Round to nearest integer
  1095. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1096. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1097. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1098. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1099. // Convert floats to integers
  1100. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1101. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1102. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1103. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1104. #if defined(__AVX2__)
  1105. // Compute the sum of the quants and set y[i].s
  1106. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1107. // Convert int32 to int16
  1108. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1109. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1110. // Convert int16 to int8
  1111. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1112. // We got our precious signed bytes, but the order is now wrong
  1113. // These AVX2 pack instructions process 16-byte pieces independently
  1114. // The following instruction is fixing the order
  1115. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1116. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1117. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1118. #else
  1119. // Since we don't have in AVX some necessary functions,
  1120. // we split the registers in half and call AVX2 analogs from SSE
  1121. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1122. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1123. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1124. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1125. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1126. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1127. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1128. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1129. // Compute the sum of the quants and set y[i].s
  1130. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1131. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1132. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1133. // Convert int32 to int16
  1134. ni0 = _mm_packs_epi32( ni0, ni1 );
  1135. ni2 = _mm_packs_epi32( ni2, ni3 );
  1136. ni4 = _mm_packs_epi32( ni4, ni5 );
  1137. ni6 = _mm_packs_epi32( ni6, ni7 );
  1138. // Convert int16 to int8
  1139. ni0 = _mm_packs_epi16( ni0, ni2 );
  1140. ni4 = _mm_packs_epi16( ni4, ni6 );
  1141. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1142. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1143. #endif
  1144. }
  1145. #else
  1146. // scalar
  1147. quantize_row_q8_1_reference(x, y, k);
  1148. #endif
  1149. }
  1150. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1151. static const int qk = QK4_0;
  1152. assert(k % qk == 0);
  1153. const int nb = k / qk;
  1154. for (int i = 0; i < nb; i++) {
  1155. const float d = GGML_FP16_TO_FP32(x[i].d);
  1156. for (int j = 0; j < qk/2; ++j) {
  1157. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1158. const int x1 = (x[i].qs[j] >> 4) - 8;
  1159. y[i*qk + j + 0 ] = x0*d;
  1160. y[i*qk + j + qk/2] = x1*d;
  1161. }
  1162. }
  1163. }
  1164. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1165. static const int qk = QK4_1;
  1166. assert(k % qk == 0);
  1167. const int nb = k / qk;
  1168. for (int i = 0; i < nb; i++) {
  1169. const float d = GGML_FP16_TO_FP32(x[i].d);
  1170. const float m = GGML_FP16_TO_FP32(x[i].m);
  1171. for (int j = 0; j < qk/2; ++j) {
  1172. const int x0 = (x[i].qs[j] & 0x0F);
  1173. const int x1 = (x[i].qs[j] >> 4);
  1174. y[i*qk + j + 0 ] = x0*d + m;
  1175. y[i*qk + j + qk/2] = x1*d + m;
  1176. }
  1177. }
  1178. }
  1179. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1180. static const int qk = QK5_0;
  1181. assert(k % qk == 0);
  1182. const int nb = k / qk;
  1183. for (int i = 0; i < nb; i++) {
  1184. const float d = GGML_FP16_TO_FP32(x[i].d);
  1185. uint32_t qh;
  1186. memcpy(&qh, x[i].qh, sizeof(qh));
  1187. for (int j = 0; j < qk/2; ++j) {
  1188. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1189. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1190. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1191. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1192. y[i*qk + j + 0 ] = x0*d;
  1193. y[i*qk + j + qk/2] = x1*d;
  1194. }
  1195. }
  1196. }
  1197. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1198. static const int qk = QK5_1;
  1199. assert(k % qk == 0);
  1200. const int nb = k / qk;
  1201. for (int i = 0; i < nb; i++) {
  1202. const float d = GGML_FP16_TO_FP32(x[i].d);
  1203. const float m = GGML_FP16_TO_FP32(x[i].m);
  1204. uint32_t qh;
  1205. memcpy(&qh, x[i].qh, sizeof(qh));
  1206. for (int j = 0; j < qk/2; ++j) {
  1207. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1208. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1209. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1210. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1211. y[i*qk + j + 0 ] = x0*d + m;
  1212. y[i*qk + j + qk/2] = x1*d + m;
  1213. }
  1214. }
  1215. }
  1216. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1217. static const int qk = QK8_0;
  1218. assert(k % qk == 0);
  1219. const int nb = k / qk;
  1220. const block_q8_0 * restrict x = vx;
  1221. for (int i = 0; i < nb; i++) {
  1222. const float d = GGML_FP16_TO_FP32(x[i].d);
  1223. for (int j = 0; j < qk; ++j) {
  1224. y[i*qk + j] = x[i].qs[j]*d;
  1225. }
  1226. }
  1227. }
  1228. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1229. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1230. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1231. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1232. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1233. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1234. [GGML_TYPE_Q4_0] = {
  1235. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1236. .quantize_row_q = quantize_row_q4_0,
  1237. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1238. .quantize_row_q_dot = quantize_row_q8_0,
  1239. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1240. .vec_dot_type = GGML_TYPE_Q8_0,
  1241. },
  1242. [GGML_TYPE_Q4_1] = {
  1243. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1244. .quantize_row_q = quantize_row_q4_1,
  1245. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1246. .quantize_row_q_dot = quantize_row_q8_1,
  1247. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1248. .vec_dot_type = GGML_TYPE_Q8_1,
  1249. },
  1250. [GGML_TYPE_Q5_0] = {
  1251. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1252. .quantize_row_q = quantize_row_q5_0,
  1253. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1254. .quantize_row_q_dot = quantize_row_q8_0,
  1255. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1256. .vec_dot_type = GGML_TYPE_Q8_0,
  1257. },
  1258. [GGML_TYPE_Q5_1] = {
  1259. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1260. .quantize_row_q = quantize_row_q5_1,
  1261. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1262. .quantize_row_q_dot = quantize_row_q8_1,
  1263. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1264. .vec_dot_type = GGML_TYPE_Q8_1,
  1265. },
  1266. [GGML_TYPE_Q8_0] = {
  1267. .dequantize_row_q = dequantize_row_q8_0,
  1268. .quantize_row_q = quantize_row_q8_0,
  1269. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1270. .quantize_row_q_dot = quantize_row_q8_0,
  1271. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1272. .vec_dot_type = GGML_TYPE_Q8_0,
  1273. },
  1274. [GGML_TYPE_Q8_1] = {
  1275. .dequantize_row_q = NULL, // TODO
  1276. .quantize_row_q = quantize_row_q8_1,
  1277. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1278. .quantize_row_q_dot = quantize_row_q8_1,
  1279. .vec_dot_q = NULL, // TODO
  1280. .vec_dot_type = GGML_TYPE_Q8_1,
  1281. },
  1282. };
  1283. // For internal test use
  1284. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1285. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1286. return quantize_fns[i];
  1287. }
  1288. //
  1289. // simd mappings
  1290. //
  1291. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1292. // we then implement the fundamental computation operations below using only these macros
  1293. // adding support for new architectures requires to define the corresponding SIMD macros
  1294. //
  1295. // GGML_F32_STEP / GGML_F16_STEP
  1296. // number of elements to process in a single step
  1297. //
  1298. // GGML_F32_EPR / GGML_F16_EPR
  1299. // number of elements to fit in a single register
  1300. //
  1301. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1302. #define GGML_SIMD
  1303. // F32 NEON
  1304. #define GGML_F32_STEP 16
  1305. #define GGML_F32_EPR 4
  1306. #define GGML_F32x4 float32x4_t
  1307. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1308. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1309. #define GGML_F32x4_LOAD vld1q_f32
  1310. #define GGML_F32x4_STORE vst1q_f32
  1311. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1312. #define GGML_F32x4_ADD vaddq_f32
  1313. #define GGML_F32x4_MUL vmulq_f32
  1314. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1315. #define GGML_F32x4_REDUCE(res, x) \
  1316. { \
  1317. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1318. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1319. } \
  1320. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1321. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1322. } \
  1323. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1324. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1325. } \
  1326. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1327. }
  1328. #define GGML_F32_VEC GGML_F32x4
  1329. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1330. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1331. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1332. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1333. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1334. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1335. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1336. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1337. // F16 NEON
  1338. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1339. #define GGML_F16_STEP 32
  1340. #define GGML_F16_EPR 8
  1341. #define GGML_F16x8 float16x8_t
  1342. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1343. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1344. #define GGML_F16x8_LOAD vld1q_f16
  1345. #define GGML_F16x8_STORE vst1q_f16
  1346. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1347. #define GGML_F16x8_ADD vaddq_f16
  1348. #define GGML_F16x8_MUL vmulq_f16
  1349. #define GGML_F16x8_REDUCE(res, x) \
  1350. { \
  1351. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1352. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1353. } \
  1354. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1355. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1356. } \
  1357. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1358. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1359. } \
  1360. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1361. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1362. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1363. }
  1364. #define GGML_F16_VEC GGML_F16x8
  1365. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1366. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1367. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1368. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1369. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1370. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1371. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1372. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1373. #else
  1374. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1375. // and take advantage of the vcvt_ functions to convert to/from FP16
  1376. #define GGML_F16_STEP 16
  1377. #define GGML_F16_EPR 4
  1378. #define GGML_F32Cx4 float32x4_t
  1379. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1380. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1381. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1382. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1383. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1384. #define GGML_F32Cx4_ADD vaddq_f32
  1385. #define GGML_F32Cx4_MUL vmulq_f32
  1386. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1387. #define GGML_F16_VEC GGML_F32Cx4
  1388. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1389. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1390. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1391. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1392. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1393. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1394. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1395. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1396. #endif
  1397. #elif defined(__AVX__)
  1398. #define GGML_SIMD
  1399. // F32 AVX
  1400. #define GGML_F32_STEP 32
  1401. #define GGML_F32_EPR 8
  1402. #define GGML_F32x8 __m256
  1403. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1404. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1405. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1406. #define GGML_F32x8_STORE _mm256_storeu_ps
  1407. #if defined(__FMA__)
  1408. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1409. #else
  1410. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1411. #endif
  1412. #define GGML_F32x8_ADD _mm256_add_ps
  1413. #define GGML_F32x8_MUL _mm256_mul_ps
  1414. #define GGML_F32x8_REDUCE(res, x) \
  1415. { \
  1416. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1417. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1418. } \
  1419. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1420. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1421. } \
  1422. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1423. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1424. } \
  1425. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1426. _mm256_extractf128_ps(x[0], 1)); \
  1427. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1428. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1429. }
  1430. // TODO: is this optimal ?
  1431. #define GGML_F32_VEC GGML_F32x8
  1432. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1433. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1434. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1435. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1436. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1437. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1438. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1439. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1440. // F16 AVX
  1441. #define GGML_F16_STEP 32
  1442. #define GGML_F16_EPR 8
  1443. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1444. #define GGML_F32Cx8 __m256
  1445. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1446. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1447. #if defined(__F16C__)
  1448. // the _mm256_cvt intrinsics require F16C
  1449. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1450. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1451. #else
  1452. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1453. float tmp[8];
  1454. for (int i = 0; i < 8; i++) {
  1455. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1456. }
  1457. return _mm256_loadu_ps(tmp);
  1458. }
  1459. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1460. float arr[8];
  1461. _mm256_storeu_ps(arr, y);
  1462. for (int i = 0; i < 8; i++)
  1463. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1464. }
  1465. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1466. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1467. #endif
  1468. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1469. #define GGML_F32Cx8_ADD _mm256_add_ps
  1470. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1471. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1472. #define GGML_F16_VEC GGML_F32Cx8
  1473. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1474. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1475. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1476. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1477. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1478. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1479. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1480. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1481. #elif defined(__POWER9_VECTOR__)
  1482. #define GGML_SIMD
  1483. // F32 POWER9
  1484. #define GGML_F32_STEP 32
  1485. #define GGML_F32_EPR 4
  1486. #define GGML_F32x4 vector float
  1487. #define GGML_F32x4_ZERO 0.0f
  1488. #define GGML_F32x4_SET1 vec_splats
  1489. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1490. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1491. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1492. #define GGML_F32x4_ADD vec_add
  1493. #define GGML_F32x4_MUL vec_mul
  1494. #define GGML_F32x4_REDUCE(res, x) \
  1495. { \
  1496. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1497. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1498. } \
  1499. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1500. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1501. } \
  1502. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1503. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1504. } \
  1505. res = vec_extract(x[0], 0) + \
  1506. vec_extract(x[0], 1) + \
  1507. vec_extract(x[0], 2) + \
  1508. vec_extract(x[0], 3); \
  1509. }
  1510. #define GGML_F32_VEC GGML_F32x4
  1511. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1512. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1513. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1514. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1515. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1516. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1517. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1518. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1519. // F16 POWER9
  1520. #define GGML_F16_STEP GGML_F32_STEP
  1521. #define GGML_F16_EPR GGML_F32_EPR
  1522. #define GGML_F16_VEC GGML_F32x4
  1523. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1524. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1525. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1526. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1527. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1528. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1529. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1530. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1531. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1532. #define GGML_F16_VEC_STORE(p, r, i) \
  1533. if (i & 0x1) \
  1534. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1535. r[i - GGML_ENDIAN_BYTE(0)]), \
  1536. 0, p - GGML_F16_EPR)
  1537. #elif defined(__wasm_simd128__)
  1538. #define GGML_SIMD
  1539. // F32 WASM
  1540. #define GGML_F32_STEP 16
  1541. #define GGML_F32_EPR 4
  1542. #define GGML_F32x4 v128_t
  1543. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1544. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1545. #define GGML_F32x4_LOAD wasm_v128_load
  1546. #define GGML_F32x4_STORE wasm_v128_store
  1547. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1548. #define GGML_F32x4_ADD wasm_f32x4_add
  1549. #define GGML_F32x4_MUL wasm_f32x4_mul
  1550. #define GGML_F32x4_REDUCE(res, x) \
  1551. { \
  1552. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1553. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1554. } \
  1555. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1556. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1557. } \
  1558. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1559. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1560. } \
  1561. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1562. wasm_f32x4_extract_lane(x[0], 1) + \
  1563. wasm_f32x4_extract_lane(x[0], 2) + \
  1564. wasm_f32x4_extract_lane(x[0], 3); \
  1565. }
  1566. #define GGML_F32_VEC GGML_F32x4
  1567. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1568. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1569. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1570. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1571. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1572. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1573. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1574. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1575. // F16 WASM
  1576. #define GGML_F16_STEP 16
  1577. #define GGML_F16_EPR 4
  1578. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1579. float tmp[4];
  1580. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1581. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1582. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1583. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1584. return wasm_v128_load(tmp);
  1585. }
  1586. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1587. float tmp[4];
  1588. wasm_v128_store(tmp, x);
  1589. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1590. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1591. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1592. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1593. }
  1594. #define GGML_F16x4 v128_t
  1595. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1596. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1597. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1598. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1599. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1600. #define GGML_F16x4_ADD wasm_f32x4_add
  1601. #define GGML_F16x4_MUL wasm_f32x4_mul
  1602. #define GGML_F16x4_REDUCE(res, x) \
  1603. { \
  1604. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1605. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1606. } \
  1607. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1608. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1609. } \
  1610. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1611. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1612. } \
  1613. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1614. wasm_f32x4_extract_lane(x[0], 1) + \
  1615. wasm_f32x4_extract_lane(x[0], 2) + \
  1616. wasm_f32x4_extract_lane(x[0], 3); \
  1617. }
  1618. #define GGML_F16_VEC GGML_F16x4
  1619. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1620. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1621. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1622. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1623. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1624. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1625. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1626. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1627. #elif defined(__SSE3__)
  1628. #define GGML_SIMD
  1629. // F32 SSE
  1630. #define GGML_F32_STEP 32
  1631. #define GGML_F32_EPR 4
  1632. #define GGML_F32x4 __m128
  1633. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1634. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1635. #define GGML_F32x4_LOAD _mm_loadu_ps
  1636. #define GGML_F32x4_STORE _mm_storeu_ps
  1637. #if defined(__FMA__)
  1638. // TODO: Does this work?
  1639. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1640. #else
  1641. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1642. #endif
  1643. #define GGML_F32x4_ADD _mm_add_ps
  1644. #define GGML_F32x4_MUL _mm_mul_ps
  1645. #define GGML_F32x4_REDUCE(res, x) \
  1646. { \
  1647. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1648. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1649. } \
  1650. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1651. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1652. } \
  1653. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1654. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1655. } \
  1656. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1657. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1658. }
  1659. // TODO: is this optimal ?
  1660. #define GGML_F32_VEC GGML_F32x4
  1661. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1662. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1663. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1664. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1665. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1666. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1667. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1668. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1669. // F16 SSE
  1670. #define GGML_F16_STEP 32
  1671. #define GGML_F16_EPR 4
  1672. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1673. float tmp[4];
  1674. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1675. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1676. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1677. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1678. return _mm_loadu_ps(tmp);
  1679. }
  1680. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1681. float arr[4];
  1682. _mm_storeu_ps(arr, y);
  1683. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1684. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1685. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1686. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1687. }
  1688. #define GGML_F32Cx4 __m128
  1689. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1690. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1691. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1692. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1693. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1694. #define GGML_F32Cx4_ADD _mm_add_ps
  1695. #define GGML_F32Cx4_MUL _mm_mul_ps
  1696. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1697. #define GGML_F16_VEC GGML_F32Cx4
  1698. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1699. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1700. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1701. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1702. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1703. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1704. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1705. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1706. #endif
  1707. // GGML_F32_ARR / GGML_F16_ARR
  1708. // number of registers to use per step
  1709. #ifdef GGML_SIMD
  1710. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1711. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1712. #endif
  1713. //
  1714. // fundamental operations
  1715. //
  1716. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1717. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1718. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1719. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1720. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1721. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1722. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1723. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1724. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1725. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1726. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1727. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1728. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1729. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1730. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1731. #ifdef GGML_SIMD
  1732. float sumf = 0.0f;
  1733. const int np = (n & ~(GGML_F32_STEP - 1));
  1734. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1735. GGML_F32_VEC ax[GGML_F32_ARR];
  1736. GGML_F32_VEC ay[GGML_F32_ARR];
  1737. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1738. for (int j = 0; j < GGML_F32_ARR; j++) {
  1739. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1740. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1741. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1742. }
  1743. }
  1744. // reduce sum0..sum3 to sum0
  1745. GGML_F32_VEC_REDUCE(sumf, sum);
  1746. // leftovers
  1747. for (int i = np; i < n; ++i) {
  1748. sumf += x[i]*y[i];
  1749. }
  1750. #else
  1751. // scalar
  1752. ggml_float sumf = 0.0;
  1753. for (int i = 0; i < n; ++i) {
  1754. sumf += (ggml_float)(x[i]*y[i]);
  1755. }
  1756. #endif
  1757. *s = sumf;
  1758. }
  1759. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1760. ggml_float sumf = 0.0;
  1761. #if defined(GGML_SIMD)
  1762. const int np = (n & ~(GGML_F16_STEP - 1));
  1763. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1764. GGML_F16_VEC ax[GGML_F16_ARR];
  1765. GGML_F16_VEC ay[GGML_F16_ARR];
  1766. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1767. for (int j = 0; j < GGML_F16_ARR; j++) {
  1768. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1769. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1770. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1771. }
  1772. }
  1773. // reduce sum0..sum3 to sum0
  1774. GGML_F16_VEC_REDUCE(sumf, sum);
  1775. // leftovers
  1776. for (int i = np; i < n; ++i) {
  1777. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1778. }
  1779. #else
  1780. for (int i = 0; i < n; ++i) {
  1781. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1782. }
  1783. #endif
  1784. *s = sumf;
  1785. }
  1786. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1787. const int qk = QK8_0;
  1788. const int nb = n / qk;
  1789. assert(n % qk == 0);
  1790. assert(nb % 2 == 0);
  1791. const block_q4_0 * restrict x = vx;
  1792. const block_q8_0 * restrict y = vy;
  1793. #if defined(__ARM_NEON)
  1794. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1795. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1796. for (int i = 0; i < nb; i += 2) {
  1797. const block_q4_0 * restrict x0 = &x[i + 0];
  1798. const block_q4_0 * restrict x1 = &x[i + 1];
  1799. const block_q8_0 * restrict y0 = &y[i + 0];
  1800. const block_q8_0 * restrict y1 = &y[i + 1];
  1801. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1802. const int8x16_t s8b = vdupq_n_s8(0x8);
  1803. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1804. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1805. // 4-bit -> 8-bit
  1806. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1807. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1808. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1809. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1810. // sub 8
  1811. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1812. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1813. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1814. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1815. // load y
  1816. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1817. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1818. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1819. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1820. #if defined(__ARM_FEATURE_DOTPROD)
  1821. // dot product into int32x4_t
  1822. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1823. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1824. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1825. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1826. #else
  1827. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1828. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1829. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1830. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1831. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1832. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1833. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1834. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1835. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1836. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1837. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1838. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1839. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1840. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1841. #endif
  1842. }
  1843. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1844. #elif defined(__AVX2__)
  1845. // Initialize accumulator with zeros
  1846. __m256 acc = _mm256_setzero_ps();
  1847. // Main loop
  1848. for (int i = 0; i < nb; ++i) {
  1849. /* Compute combined scale for the block */
  1850. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1851. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1852. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1853. const __m256i off = _mm256_set1_epi8( 8 );
  1854. bx = _mm256_sub_epi8( bx, off );
  1855. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1856. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1857. /* Multiply q with scale and accumulate */
  1858. acc = _mm256_fmadd_ps( d, q, acc );
  1859. }
  1860. *s = hsum_float_8(acc);
  1861. #elif defined(__AVX__)
  1862. // Initialize accumulator with zeros
  1863. __m256 acc = _mm256_setzero_ps();
  1864. // Main loop
  1865. for (int i = 0; i < nb; ++i) {
  1866. // Compute combined scale for the block
  1867. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1868. const __m128i lowMask = _mm_set1_epi8(0xF);
  1869. const __m128i off = _mm_set1_epi8(8);
  1870. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1871. __m128i bx = _mm_and_si128(lowMask, tmp);
  1872. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1873. bx = _mm_sub_epi8(bx, off);
  1874. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1875. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1876. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1877. bx = _mm_sub_epi8(bx, off);
  1878. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1879. // Convert int32_t to float
  1880. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1881. // Apply the scale, and accumulate
  1882. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1883. }
  1884. *s = hsum_float_8(acc);
  1885. #elif defined(__SSSE3__)
  1886. // set constants
  1887. const __m128i lowMask = _mm_set1_epi8(0xF);
  1888. const __m128i off = _mm_set1_epi8(8);
  1889. // Initialize accumulator with zeros
  1890. __m128 acc_0 = _mm_setzero_ps();
  1891. __m128 acc_1 = _mm_setzero_ps();
  1892. __m128 acc_2 = _mm_setzero_ps();
  1893. __m128 acc_3 = _mm_setzero_ps();
  1894. // First round without accumulation
  1895. {
  1896. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1897. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1898. // Compute combined scale for the block 0 and 1
  1899. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1900. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1901. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1902. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1903. bx_0 = _mm_sub_epi8(bx_0, off);
  1904. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1905. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1906. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1907. bx_1 = _mm_sub_epi8(bx_1, off);
  1908. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1909. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1910. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1911. // Compute combined scale for the block 2 and 3
  1912. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1913. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1914. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1915. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1916. bx_2 = _mm_sub_epi8(bx_2, off);
  1917. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1918. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1919. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1920. bx_3 = _mm_sub_epi8(bx_3, off);
  1921. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1922. // Convert int32_t to float
  1923. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1924. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1925. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1926. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1927. // Apply the scale
  1928. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1929. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1930. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1931. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1932. }
  1933. // Main loop
  1934. for (int i = 2; i < nb; i+=2) {
  1935. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1936. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1937. // Compute combined scale for the block 0 and 1
  1938. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1939. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1940. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1941. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1942. bx_0 = _mm_sub_epi8(bx_0, off);
  1943. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1944. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1945. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1946. bx_1 = _mm_sub_epi8(bx_1, off);
  1947. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1948. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1949. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1950. // Compute combined scale for the block 2 and 3
  1951. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1952. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1953. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1954. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1955. bx_2 = _mm_sub_epi8(bx_2, off);
  1956. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1957. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1958. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1959. bx_3 = _mm_sub_epi8(bx_3, off);
  1960. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1961. // Convert int32_t to float
  1962. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1963. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1964. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1965. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1966. // Apply the scale
  1967. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1968. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1969. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1970. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1971. // Acummulate
  1972. acc_0 = _mm_add_ps(p0_d, acc_0);
  1973. acc_1 = _mm_add_ps(p1_d, acc_1);
  1974. acc_2 = _mm_add_ps(p2_d, acc_2);
  1975. acc_3 = _mm_add_ps(p3_d, acc_3);
  1976. }
  1977. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1978. #else
  1979. // scalar
  1980. float sumf = 0.0;
  1981. for (int i = 0; i < nb; i++) {
  1982. int sumi = 0;
  1983. for (int j = 0; j < qk/2; ++j) {
  1984. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1985. const int v1 = (x[i].qs[j] >> 4) - 8;
  1986. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1987. }
  1988. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1989. }
  1990. *s = sumf;
  1991. #endif
  1992. }
  1993. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1994. const int qk = QK8_1;
  1995. const int nb = n / qk;
  1996. assert(n % qk == 0);
  1997. assert(nb % 2 == 0);
  1998. const block_q4_1 * restrict x = vx;
  1999. const block_q8_1 * restrict y = vy;
  2000. // TODO: add WASM SIMD
  2001. #if defined(__ARM_NEON)
  2002. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2003. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2004. float summs = 0;
  2005. for (int i = 0; i < nb; i += 2) {
  2006. const block_q4_1 * restrict x0 = &x[i + 0];
  2007. const block_q4_1 * restrict x1 = &x[i + 1];
  2008. const block_q8_1 * restrict y0 = &y[i + 0];
  2009. const block_q8_1 * restrict y1 = &y[i + 1];
  2010. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2011. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2012. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2013. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2014. // 4-bit -> 8-bit
  2015. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2016. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2017. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2018. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2019. // load y
  2020. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2021. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2022. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2023. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2024. #if defined(__ARM_FEATURE_DOTPROD)
  2025. // dot product into int32x4_t
  2026. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2027. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2028. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2029. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2030. #else
  2031. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2032. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2033. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2034. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2035. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2036. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2037. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2038. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2039. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2040. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2041. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2042. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2043. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2044. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2045. #endif
  2046. }
  2047. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2048. #elif defined(__AVX2__) || defined(__AVX__)
  2049. // Initialize accumulator with zeros
  2050. __m256 acc = _mm256_setzero_ps();
  2051. float summs = 0;
  2052. // Main loop
  2053. for (int i = 0; i < nb; ++i) {
  2054. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2055. const float d1 = y[i].d;
  2056. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2057. const __m256 d0v = _mm256_set1_ps( d0 );
  2058. const __m256 d1v = _mm256_set1_ps( d1 );
  2059. // Compute combined scales
  2060. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2061. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2062. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2063. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2064. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2065. // Accumulate d0*d1*x*y
  2066. #if defined(__AVX2__)
  2067. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2068. #else
  2069. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2070. #endif
  2071. }
  2072. *s = hsum_float_8(acc) + summs;
  2073. #else
  2074. // scalar
  2075. float sumf = 0.0;
  2076. for (int i = 0; i < nb; i++) {
  2077. int sumi = 0;
  2078. for (int j = 0; j < qk/2; ++j) {
  2079. const int v0 = (x[i].qs[j] & 0x0F);
  2080. const int v1 = (x[i].qs[j] >> 4);
  2081. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2082. }
  2083. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2084. }
  2085. *s = sumf;
  2086. #endif
  2087. }
  2088. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2089. const int qk = QK8_0;
  2090. const int nb = n / qk;
  2091. assert(n % qk == 0);
  2092. assert(nb % 2 == 0);
  2093. assert(qk == QK5_0);
  2094. const block_q5_0 * restrict x = vx;
  2095. const block_q8_0 * restrict y = vy;
  2096. #if defined(__ARM_NEON)
  2097. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2098. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2099. uint32_t qh0;
  2100. uint32_t qh1;
  2101. uint64_t tmp0[4];
  2102. uint64_t tmp1[4];
  2103. for (int i = 0; i < nb; i += 2) {
  2104. const block_q5_0 * restrict x0 = &x[i];
  2105. const block_q5_0 * restrict x1 = &x[i + 1];
  2106. const block_q8_0 * restrict y0 = &y[i];
  2107. const block_q8_0 * restrict y1 = &y[i + 1];
  2108. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2109. // extract the 5th bit via lookup table ((!b) << 4)
  2110. memcpy(&qh0, x0->qh, sizeof(qh0));
  2111. memcpy(&qh1, x1->qh, sizeof(qh1));
  2112. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2113. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2114. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2115. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2116. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2117. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2118. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2119. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2120. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2121. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2122. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2123. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2124. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2125. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2126. // 4-bit -> 8-bit
  2127. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2128. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2129. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2130. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2131. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2132. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2133. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2134. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2135. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2136. // load y
  2137. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2138. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2139. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2140. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2141. #if defined(__ARM_FEATURE_DOTPROD)
  2142. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2143. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2144. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2145. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2146. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2147. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2148. #else
  2149. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2150. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2151. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2152. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2153. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2154. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2155. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2156. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2157. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2158. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2159. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2160. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2161. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2162. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2163. #endif
  2164. }
  2165. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2166. #elif defined(__wasm_simd128__)
  2167. v128_t sumv = wasm_f32x4_splat(0.0f);
  2168. uint32_t qh;
  2169. uint64_t tmp[4];
  2170. // TODO: check if unrolling this is better
  2171. for (int i = 0; i < nb; ++i) {
  2172. const block_q5_0 * restrict x0 = &x[i];
  2173. const block_q8_0 * restrict y0 = &y[i];
  2174. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2175. // extract the 5th bit
  2176. memcpy(&qh, x0->qh, sizeof(qh));
  2177. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2178. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2179. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2180. tmp[3] = table_b2b_1[(qh >> 24) ];
  2181. const v128_t qhl = wasm_v128_load(tmp + 0);
  2182. const v128_t qhh = wasm_v128_load(tmp + 2);
  2183. const v128_t v0 = wasm_v128_load(x0->qs);
  2184. // 4-bit -> 8-bit
  2185. const v128_t v0l = wasm_v128_and (v0, m4b);
  2186. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2187. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2188. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2189. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2190. // load y
  2191. const v128_t v1l = wasm_v128_load(y0->qs);
  2192. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2193. // int8x16 -> int16x8
  2194. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2195. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2196. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2197. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2198. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2199. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2200. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2201. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2202. // dot product
  2203. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2204. wasm_i32x4_add(
  2205. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2206. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2207. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2208. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2209. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2210. }
  2211. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2212. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2213. #elif defined(__AVX2__)
  2214. // Initialize accumulator with zeros
  2215. __m256 acc = _mm256_setzero_ps();
  2216. // Main loop
  2217. for (int i = 0; i < nb; i++) {
  2218. /* Compute combined scale for the block */
  2219. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2220. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2221. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2222. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2223. bx = _mm256_or_si256(bx, bxhi);
  2224. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2225. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2226. /* Multiply q with scale and accumulate */
  2227. acc = _mm256_fmadd_ps(d, q, acc);
  2228. }
  2229. *s = hsum_float_8(acc);
  2230. #elif defined(__AVX__)
  2231. // Initialize accumulator with zeros
  2232. __m256 acc = _mm256_setzero_ps();
  2233. __m128i mask = _mm_set1_epi8((char)0xF0);
  2234. // Main loop
  2235. for (int i = 0; i < nb; i++) {
  2236. /* Compute combined scale for the block */
  2237. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2238. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2239. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2240. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2241. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2242. bxhil = _mm_andnot_si128(bxhil, mask);
  2243. bxhih = _mm_andnot_si128(bxhih, mask);
  2244. __m128i bxl = _mm256_castsi256_si128(bx);
  2245. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2246. bxl = _mm_or_si128(bxl, bxhil);
  2247. bxh = _mm_or_si128(bxh, bxhih);
  2248. bx = _mm256_set_m128i(bxh, bxl);
  2249. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2250. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2251. /* Multiply q with scale and accumulate */
  2252. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2253. }
  2254. *s = hsum_float_8(acc);
  2255. #else
  2256. // scalar
  2257. float sumf = 0.0;
  2258. for (int i = 0; i < nb; i++) {
  2259. uint32_t qh;
  2260. memcpy(&qh, x[i].qh, sizeof(qh));
  2261. int sumi = 0;
  2262. for (int j = 0; j < qk/2; ++j) {
  2263. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2264. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2265. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2266. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2267. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2268. }
  2269. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2270. }
  2271. *s = sumf;
  2272. #endif
  2273. }
  2274. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2275. const int qk = QK8_1;
  2276. const int nb = n / qk;
  2277. assert(n % qk == 0);
  2278. assert(nb % 2 == 0);
  2279. assert(qk == QK5_1);
  2280. const block_q5_1 * restrict x = vx;
  2281. const block_q8_1 * restrict y = vy;
  2282. #if defined(__ARM_NEON)
  2283. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2284. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2285. float summs0 = 0.0f;
  2286. float summs1 = 0.0f;
  2287. uint32_t qh0;
  2288. uint32_t qh1;
  2289. uint64_t tmp0[4];
  2290. uint64_t tmp1[4];
  2291. for (int i = 0; i < nb; i += 2) {
  2292. const block_q5_1 * restrict x0 = &x[i];
  2293. const block_q5_1 * restrict x1 = &x[i + 1];
  2294. const block_q8_1 * restrict y0 = &y[i];
  2295. const block_q8_1 * restrict y1 = &y[i + 1];
  2296. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2297. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2298. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2299. // extract the 5th bit via lookup table ((b) << 4)
  2300. memcpy(&qh0, x0->qh, sizeof(qh0));
  2301. memcpy(&qh1, x1->qh, sizeof(qh1));
  2302. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2303. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2304. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2305. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2306. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2307. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2308. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2309. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2310. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2311. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2312. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2313. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2314. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2315. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2316. // 4-bit -> 8-bit
  2317. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2318. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2319. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2320. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2321. // add high bit
  2322. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2323. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2324. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2325. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2326. // load y
  2327. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2328. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2329. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2330. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2331. #if defined(__ARM_FEATURE_DOTPROD)
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2333. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2334. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2335. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2336. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2337. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2338. #else
  2339. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2340. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2341. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2342. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2343. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2344. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2345. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2346. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2347. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2348. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2349. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2350. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2351. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2352. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2353. #endif
  2354. }
  2355. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2356. #elif defined(__wasm_simd128__)
  2357. v128_t sumv = wasm_f32x4_splat(0.0f);
  2358. float summs = 0.0f;
  2359. uint32_t qh;
  2360. uint64_t tmp[4];
  2361. // TODO: check if unrolling this is better
  2362. for (int i = 0; i < nb; ++i) {
  2363. const block_q5_1 * restrict x0 = &x[i];
  2364. const block_q8_1 * restrict y0 = &y[i];
  2365. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2366. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2367. // extract the 5th bit
  2368. memcpy(&qh, x0->qh, sizeof(qh));
  2369. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2370. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2371. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2372. tmp[3] = table_b2b_0[(qh >> 24) ];
  2373. const v128_t qhl = wasm_v128_load(tmp + 0);
  2374. const v128_t qhh = wasm_v128_load(tmp + 2);
  2375. const v128_t v0 = wasm_v128_load(x0->qs);
  2376. // 4-bit -> 8-bit
  2377. const v128_t v0l = wasm_v128_and (v0, m4b);
  2378. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2379. // add high bit
  2380. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2381. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2382. // load y
  2383. const v128_t v1l = wasm_v128_load(y0->qs);
  2384. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2385. // int8x16 -> int16x8
  2386. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2387. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2388. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2389. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2390. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2391. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2392. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2393. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2394. // dot product
  2395. sumv = wasm_f32x4_add(sumv,
  2396. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2397. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2398. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2399. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2400. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2401. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2402. }
  2403. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2404. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2405. #elif defined(__AVX2__)
  2406. // Initialize accumulator with zeros
  2407. __m256 acc = _mm256_setzero_ps();
  2408. float summs = 0.0f;
  2409. // Main loop
  2410. for (int i = 0; i < nb; i++) {
  2411. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2412. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2413. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2414. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2415. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2416. bx = _mm256_or_si256(bx, bxhi);
  2417. const __m256 dy = _mm256_set1_ps(y[i].d);
  2418. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2419. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2420. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2421. }
  2422. *s = hsum_float_8(acc) + summs;
  2423. #elif defined(__AVX__)
  2424. // Initialize accumulator with zeros
  2425. __m256 acc = _mm256_setzero_ps();
  2426. __m128i mask = _mm_set1_epi8(0x10);
  2427. float summs = 0.0f;
  2428. // Main loop
  2429. for (int i = 0; i < nb; i++) {
  2430. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2431. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2432. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2433. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2434. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2435. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2436. bxhil = _mm_and_si128(bxhil, mask);
  2437. bxhih = _mm_and_si128(bxhih, mask);
  2438. __m128i bxl = _mm256_castsi256_si128(bx);
  2439. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2440. bxl = _mm_or_si128(bxl, bxhil);
  2441. bxh = _mm_or_si128(bxh, bxhih);
  2442. bx = _mm256_set_m128i(bxh, bxl);
  2443. const __m256 dy = _mm256_set1_ps(y[i].d);
  2444. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2445. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2446. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2447. }
  2448. *s = hsum_float_8(acc) + summs;
  2449. #else
  2450. // scalar
  2451. float sumf = 0.0;
  2452. for (int i = 0; i < nb; i++) {
  2453. uint32_t qh;
  2454. memcpy(&qh, x[i].qh, sizeof(qh));
  2455. int sumi = 0;
  2456. for (int j = 0; j < qk/2; ++j) {
  2457. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2458. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2459. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2460. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2461. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2462. }
  2463. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2464. }
  2465. *s = sumf;
  2466. #endif
  2467. }
  2468. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2469. const int qk = QK8_0;
  2470. const int nb = n / qk;
  2471. assert(n % qk == 0);
  2472. assert(nb % 2 == 0);
  2473. const block_q8_0 * restrict x = vx;
  2474. const block_q8_0 * restrict y = vy;
  2475. #if defined(__ARM_NEON)
  2476. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2477. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2478. for (int i = 0; i < nb; i += 2) {
  2479. const block_q8_0 * restrict x0 = &x[i + 0];
  2480. const block_q8_0 * restrict x1 = &x[i + 1];
  2481. const block_q8_0 * restrict y0 = &y[i + 0];
  2482. const block_q8_0 * restrict y1 = &y[i + 1];
  2483. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2484. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2485. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2486. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2487. // load y
  2488. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2489. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2490. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2491. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2492. #if defined(__ARM_FEATURE_DOTPROD)
  2493. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2494. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2495. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2496. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2497. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2498. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2499. #else
  2500. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2501. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2502. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2503. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2504. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2505. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2506. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2507. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2508. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2509. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2510. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2511. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2512. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2513. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2514. #endif
  2515. }
  2516. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2517. #elif defined(__AVX2__) || defined(__AVX__)
  2518. // Initialize accumulator with zeros
  2519. __m256 acc = _mm256_setzero_ps();
  2520. // Main loop
  2521. for (int i = 0; i < nb; ++i) {
  2522. // Compute combined scale for the block
  2523. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2524. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2525. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2526. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2527. // Multiply q with scale and accumulate
  2528. #if defined(__AVX2__)
  2529. acc = _mm256_fmadd_ps( d, q, acc );
  2530. #else
  2531. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2532. #endif
  2533. }
  2534. *s = hsum_float_8(acc);
  2535. #else
  2536. // scalar
  2537. float sumf = 0.0;
  2538. for (int i = 0; i < nb; i++) {
  2539. int sumi = 0;
  2540. for (int j = 0; j < qk; j++) {
  2541. sumi += x[i].qs[j]*y[i].qs[j];
  2542. }
  2543. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2544. }
  2545. *s = sumf;
  2546. #endif
  2547. }
  2548. // compute GGML_VEC_DOT_UNROLL dot products at once
  2549. // xs - x row stride in bytes
  2550. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2551. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2552. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2553. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2554. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2555. }
  2556. #if defined(GGML_SIMD)
  2557. const int np = (n & ~(GGML_F16_STEP - 1));
  2558. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2559. GGML_F16_VEC ax[GGML_F16_ARR];
  2560. GGML_F16_VEC ay[GGML_F16_ARR];
  2561. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2562. for (int j = 0; j < GGML_F16_ARR; j++) {
  2563. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2564. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2565. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2566. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2567. }
  2568. }
  2569. }
  2570. // reduce sum0..sum3 to sum0
  2571. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2572. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2573. }
  2574. // leftovers
  2575. for (int i = np; i < n; ++i) {
  2576. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2577. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2578. }
  2579. }
  2580. #else
  2581. for (int i = 0; i < n; ++i) {
  2582. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2583. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2584. }
  2585. }
  2586. #endif
  2587. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2588. s[i] = sumf[i];
  2589. }
  2590. }
  2591. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2592. #if defined(GGML_SIMD)
  2593. const int np = (n & ~(GGML_F32_STEP - 1));
  2594. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2595. GGML_F32_VEC ax[GGML_F32_ARR];
  2596. GGML_F32_VEC ay[GGML_F32_ARR];
  2597. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2598. for (int j = 0; j < GGML_F32_ARR; j++) {
  2599. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2600. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2601. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2602. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2603. }
  2604. }
  2605. // leftovers
  2606. for (int i = np; i < n; ++i) {
  2607. y[i] += x[i]*v;
  2608. }
  2609. #else
  2610. // scalar
  2611. for (int i = 0; i < n; ++i) {
  2612. y[i] += x[i]*v;
  2613. }
  2614. #endif
  2615. }
  2616. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2617. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2618. #if defined(GGML_SIMD)
  2619. const int np = (n & ~(GGML_F32_STEP - 1));
  2620. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2621. GGML_F32_VEC ay[GGML_F32_ARR];
  2622. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2623. for (int j = 0; j < GGML_F32_ARR; j++) {
  2624. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2625. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2626. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2627. }
  2628. }
  2629. // leftovers
  2630. for (int i = np; i < n; ++i) {
  2631. y[i] *= v;
  2632. }
  2633. #else
  2634. // scalar
  2635. for (int i = 0; i < n; ++i) {
  2636. y[i] *= v;
  2637. }
  2638. #endif
  2639. }
  2640. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2641. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2642. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2643. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2644. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2645. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2646. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2647. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2648. static const float GELU_COEF_A = 0.044715f;
  2649. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2650. inline static float ggml_gelu_f32(float x) {
  2651. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2652. }
  2653. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2654. const uint16_t * i16 = (const uint16_t *) x;
  2655. for (int i = 0; i < n; ++i) {
  2656. y[i] = table_gelu_f16[i16[i]];
  2657. }
  2658. }
  2659. #ifdef GGML_GELU_FP16
  2660. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2661. uint16_t t;
  2662. for (int i = 0; i < n; ++i) {
  2663. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2664. memcpy(&t, &fp16, sizeof(uint16_t));
  2665. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2666. }
  2667. }
  2668. #else
  2669. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2670. for (int i = 0; i < n; ++i) {
  2671. y[i] = ggml_gelu_f32(x[i]);
  2672. }
  2673. }
  2674. #endif
  2675. // Sigmoid Linear Unit (SiLU) function
  2676. inline static float ggml_silu_f32(float x) {
  2677. return x/(1.0f + expf(-x));
  2678. }
  2679. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2680. // const uint16_t * i16 = (const uint16_t *) x;
  2681. // for (int i = 0; i < n; ++i) {
  2682. // y[i] = table_silu_f16[i16[i]];
  2683. // }
  2684. //}
  2685. #ifdef GGML_SILU_FP16
  2686. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2687. uint16_t t;
  2688. for (int i = 0; i < n; ++i) {
  2689. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2690. memcpy(&t, &fp16, sizeof(uint16_t));
  2691. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2692. }
  2693. }
  2694. #else
  2695. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2696. for (int i = 0; i < n; ++i) {
  2697. y[i] = ggml_silu_f32(x[i]);
  2698. }
  2699. }
  2700. #endif
  2701. inline static float ggml_silu_backward_f32(float x, float dy) {
  2702. const float s = 1.0f/(1.0f + expf(-x));
  2703. return dy*s*(1.0f + x*(1.0f - s));
  2704. }
  2705. #ifdef GGML_SILU_FP16
  2706. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2707. for (int i = 0; i < n; ++i) {
  2708. // we did not use x[i] to compute forward silu but its f16 equivalent
  2709. // take derivative at f16 of x[i]:
  2710. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2711. float usedx = GGML_FP16_TO_FP32(fp16);
  2712. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2713. }
  2714. }
  2715. #else
  2716. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2717. for (int i = 0; i < n; ++i) {
  2718. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2719. }
  2720. }
  2721. #endif
  2722. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2723. #ifndef GGML_USE_ACCELERATE
  2724. ggml_float sum = 0.0;
  2725. for (int i = 0; i < n; ++i) {
  2726. sum += (ggml_float)x[i];
  2727. }
  2728. *s = sum;
  2729. #else
  2730. vDSP_sve(x, 1, s, n);
  2731. #endif
  2732. }
  2733. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2734. ggml_float sum = 0.0;
  2735. for (int i = 0; i < n; ++i) {
  2736. sum += (ggml_float)x[i];
  2737. }
  2738. *s = sum;
  2739. }
  2740. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2741. #ifndef GGML_USE_ACCELERATE
  2742. float max = -INFINITY;
  2743. for (int i = 0; i < n; ++i) {
  2744. max = MAX(max, x[i]);
  2745. }
  2746. *s = max;
  2747. #else
  2748. vDSP_maxv(x, 1, s, n);
  2749. #endif
  2750. }
  2751. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2752. ggml_vec_norm_f32(n, s, x);
  2753. *s = 1.f/(*s);
  2754. }
  2755. //
  2756. // logging
  2757. //
  2758. #if (GGML_DEBUG >= 1)
  2759. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2760. #else
  2761. #define GGML_PRINT_DEBUG(...)
  2762. #endif
  2763. #if (GGML_DEBUG >= 5)
  2764. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2765. #else
  2766. #define GGML_PRINT_DEBUG_5(...)
  2767. #endif
  2768. #if (GGML_DEBUG >= 10)
  2769. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2770. #else
  2771. #define GGML_PRINT_DEBUG_10(...)
  2772. #endif
  2773. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2774. //
  2775. // data types
  2776. //
  2777. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2778. [GGML_TYPE_F32] = 1,
  2779. [GGML_TYPE_F16] = 1,
  2780. [GGML_TYPE_Q4_0] = QK4_0,
  2781. [GGML_TYPE_Q4_1] = QK4_1,
  2782. [GGML_TYPE_Q5_0] = QK5_0,
  2783. [GGML_TYPE_Q5_1] = QK5_1,
  2784. [GGML_TYPE_Q8_0] = QK8_0,
  2785. [GGML_TYPE_Q8_1] = QK8_1,
  2786. [GGML_TYPE_I8] = 1,
  2787. [GGML_TYPE_I16] = 1,
  2788. [GGML_TYPE_I32] = 1,
  2789. };
  2790. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2791. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2792. [GGML_TYPE_F32] = sizeof(float),
  2793. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2794. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2795. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2796. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2797. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2798. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2799. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2800. [GGML_TYPE_I8] = sizeof(int8_t),
  2801. [GGML_TYPE_I16] = sizeof(int16_t),
  2802. [GGML_TYPE_I32] = sizeof(int32_t),
  2803. };
  2804. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2805. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2806. [GGML_TYPE_F32] = "f32",
  2807. [GGML_TYPE_F16] = "f16",
  2808. [GGML_TYPE_Q4_0] = "q4_0",
  2809. [GGML_TYPE_Q4_1] = "q4_1",
  2810. [GGML_TYPE_Q5_0] = "q5_0",
  2811. [GGML_TYPE_Q5_1] = "q5_1",
  2812. [GGML_TYPE_Q8_0] = "q8_0",
  2813. [GGML_TYPE_Q8_1] = "q8_1",
  2814. [GGML_TYPE_I8] = "i8",
  2815. [GGML_TYPE_I16] = "i16",
  2816. [GGML_TYPE_I32] = "i32",
  2817. };
  2818. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2819. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2820. [GGML_TYPE_F32] = false,
  2821. [GGML_TYPE_F16] = false,
  2822. [GGML_TYPE_Q4_0] = true,
  2823. [GGML_TYPE_Q4_1] = true,
  2824. [GGML_TYPE_Q5_0] = true,
  2825. [GGML_TYPE_Q5_1] = true,
  2826. [GGML_TYPE_Q8_0] = true,
  2827. [GGML_TYPE_Q8_1] = true,
  2828. [GGML_TYPE_I8] = false,
  2829. [GGML_TYPE_I16] = false,
  2830. [GGML_TYPE_I32] = false,
  2831. };
  2832. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2833. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2834. "NONE",
  2835. "DUP",
  2836. "ADD",
  2837. "ADD1",
  2838. "ACC",
  2839. "SUB",
  2840. "MUL",
  2841. "DIV",
  2842. "SQR",
  2843. "SQRT",
  2844. "LOG",
  2845. "SUM",
  2846. "SUM_ROWS",
  2847. "MEAN",
  2848. "REPEAT",
  2849. "ABS",
  2850. "SGN",
  2851. "NEG",
  2852. "STEP",
  2853. "RELU",
  2854. "GELU",
  2855. "SILU",
  2856. "SILU_BACK",
  2857. "NORM",
  2858. "RMS_NORM",
  2859. "RMS_NORM_BACK",
  2860. "MUL_MAT",
  2861. "SCALE",
  2862. "SET",
  2863. "CPY",
  2864. "CONT",
  2865. "RESHAPE",
  2866. "VIEW",
  2867. "PERMUTE",
  2868. "TRANSPOSE",
  2869. "GET_ROWS",
  2870. "GET_ROWS_BACK",
  2871. "DIAG",
  2872. "DIAG_MASK_INF",
  2873. "DIAG_MASK_ZERO",
  2874. "SOFT_MAX",
  2875. "ROPE",
  2876. "ROPE_BACK",
  2877. "ALIBI",
  2878. "CLAMP",
  2879. "CONV_1D_1S",
  2880. "CONV_1D_2S",
  2881. "FLASH_ATTN",
  2882. "FLASH_FF",
  2883. "MAP_UNARY",
  2884. "MAP_BINARY",
  2885. };
  2886. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2887. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2888. "none",
  2889. "x",
  2890. "x+y",
  2891. "x+y",
  2892. "view(x,nb,offset)+=y->x",
  2893. "x-y",
  2894. "x*y",
  2895. "x/y",
  2896. "x^2",
  2897. "√x",
  2898. "log(x)",
  2899. "Σx",
  2900. "Σx_k",
  2901. "Σx/n",
  2902. "repeat(x)",
  2903. "abs(x)",
  2904. "sgn(x)",
  2905. "-x",
  2906. "step(x)",
  2907. "relu(x)",
  2908. "gelu(x)",
  2909. "silu(x)",
  2910. "silu_back(x)",
  2911. "norm(x)",
  2912. "rms_norm(x)",
  2913. "rms_norm_back(x)",
  2914. "X*Y",
  2915. "x*v",
  2916. "y-\\>view(x)",
  2917. "x-\\>y",
  2918. "cont(x)",
  2919. "reshape(x)",
  2920. "view(x)",
  2921. "permute(x)",
  2922. "transpose(x)",
  2923. "get_rows(x)",
  2924. "get_rows_back(x)",
  2925. "diag(x)",
  2926. "diag_mask_inf(x)",
  2927. "diag_mask_zero(x)",
  2928. "soft_max(x)",
  2929. "rope(x)",
  2930. "rope_back(x)",
  2931. "alibi(x)",
  2932. "clamp(x)",
  2933. "conv_1d_1s(x)",
  2934. "conv_1d_2s(x)",
  2935. "flash_attn(x)",
  2936. "flash_ff(x)",
  2937. "f(x)",
  2938. "f(x,y)",
  2939. };
  2940. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2941. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2942. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2943. //
  2944. // ggml context
  2945. //
  2946. struct ggml_context {
  2947. size_t mem_size;
  2948. void * mem_buffer;
  2949. bool mem_buffer_owned;
  2950. bool no_alloc;
  2951. int n_objects;
  2952. struct ggml_object * objects_begin;
  2953. struct ggml_object * objects_end;
  2954. struct ggml_scratch scratch;
  2955. struct ggml_scratch scratch_save;
  2956. };
  2957. struct ggml_context_container {
  2958. bool used;
  2959. struct ggml_context context;
  2960. };
  2961. //
  2962. // compute types
  2963. //
  2964. enum ggml_task_type {
  2965. GGML_TASK_INIT = 0,
  2966. GGML_TASK_COMPUTE,
  2967. GGML_TASK_FINALIZE,
  2968. };
  2969. struct ggml_compute_params {
  2970. enum ggml_task_type type;
  2971. int ith, nth;
  2972. // work buffer for all threads
  2973. size_t wsize;
  2974. void * wdata;
  2975. };
  2976. //
  2977. // ggml state
  2978. //
  2979. struct ggml_state {
  2980. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2981. };
  2982. // global state
  2983. static struct ggml_state g_state;
  2984. static atomic_int g_state_barrier = 0;
  2985. // barrier via spin lock
  2986. inline static void ggml_critical_section_start(void) {
  2987. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2988. while (processing > 0) {
  2989. // wait for other threads to finish
  2990. atomic_fetch_sub(&g_state_barrier, 1);
  2991. sched_yield(); // TODO: reconsider this
  2992. processing = atomic_fetch_add(&g_state_barrier, 1);
  2993. }
  2994. }
  2995. // TODO: make this somehow automatically executed
  2996. // some sort of "sentry" mechanism
  2997. inline static void ggml_critical_section_end(void) {
  2998. atomic_fetch_sub(&g_state_barrier, 1);
  2999. }
  3000. ////////////////////////////////////////////////////////////////////////////////
  3001. void ggml_print_object(const struct ggml_object * obj) {
  3002. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3003. obj->offs, obj->size, (const void *) obj->next);
  3004. }
  3005. void ggml_print_objects(const struct ggml_context * ctx) {
  3006. struct ggml_object * obj = ctx->objects_begin;
  3007. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3008. while (obj != NULL) {
  3009. ggml_print_object(obj);
  3010. obj = obj->next;
  3011. }
  3012. GGML_PRINT("%s: --- end ---\n", __func__);
  3013. }
  3014. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3015. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3016. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3017. }
  3018. int ggml_nrows(const struct ggml_tensor * tensor) {
  3019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3020. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3021. }
  3022. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3023. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3024. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3025. }
  3026. int ggml_blck_size(enum ggml_type type) {
  3027. return GGML_BLCK_SIZE[type];
  3028. }
  3029. size_t ggml_type_size(enum ggml_type type) {
  3030. return GGML_TYPE_SIZE[type];
  3031. }
  3032. float ggml_type_sizef(enum ggml_type type) {
  3033. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3034. }
  3035. const char * ggml_type_name(enum ggml_type type) {
  3036. return GGML_TYPE_NAME[type];
  3037. }
  3038. const char * ggml_op_name(enum ggml_op op) {
  3039. return GGML_OP_NAME[op];
  3040. }
  3041. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3042. return GGML_TYPE_SIZE[tensor->type];
  3043. }
  3044. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3045. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3046. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3047. }
  3048. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3049. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3050. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3051. }
  3052. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3053. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3054. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3055. }
  3056. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3057. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3058. return
  3059. (t0->ne[0] == t1->ne[0]) &&
  3060. (t0->ne[2] == t1->ne[2]) &&
  3061. (t0->ne[3] == t1->ne[3]);
  3062. }
  3063. bool ggml_is_quantized(enum ggml_type type) {
  3064. return GGML_IS_QUANTIZED[type];
  3065. }
  3066. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3067. enum ggml_type wtype = GGML_TYPE_COUNT;
  3068. switch (ftype) {
  3069. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3070. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3071. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3072. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3073. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3074. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3075. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3076. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3077. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3078. }
  3079. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3080. return wtype;
  3081. }
  3082. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3083. return tensor->nb[0] > tensor->nb[1];
  3084. }
  3085. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3086. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3087. return
  3088. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3089. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3090. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3091. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3092. }
  3093. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3094. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3095. return
  3096. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3097. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3098. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3099. }
  3100. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3101. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3102. return
  3103. (t0->ne[0] == t1->ne[0] ) &&
  3104. (t0->ne[1] == t1->ne[1] ) &&
  3105. (t0->ne[2] == t1->ne[2] ) &&
  3106. (t0->ne[3] == t1->ne[3] );
  3107. }
  3108. // check if t1 can be represented as a repeatition of t0
  3109. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3110. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3111. return
  3112. (t1->ne[0]%t0->ne[0] == 0) &&
  3113. (t1->ne[1]%t0->ne[1] == 0) &&
  3114. (t1->ne[2]%t0->ne[2] == 0) &&
  3115. (t1->ne[3]%t0->ne[3] == 0);
  3116. }
  3117. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3118. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3119. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3120. }
  3121. static inline int ggml_up32(int n) {
  3122. return (n + 31) & ~31;
  3123. }
  3124. //static inline int ggml_up64(int n) {
  3125. // return (n + 63) & ~63;
  3126. //}
  3127. static inline int ggml_up(int n, int m) {
  3128. // assert m is a power of 2
  3129. GGML_ASSERT((m & (m - 1)) == 0);
  3130. return (n + m - 1) & ~(m - 1);
  3131. }
  3132. // assert that pointer is aligned to GGML_MEM_ALIGN
  3133. #define ggml_assert_aligned(ptr) \
  3134. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3135. ////////////////////////////////////////////////////////////////////////////////
  3136. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3137. // make this function thread safe
  3138. ggml_critical_section_start();
  3139. static bool is_first_call = true;
  3140. if (is_first_call) {
  3141. // initialize time system (required on Windows)
  3142. ggml_time_init();
  3143. // initialize GELU, SILU and EXP F32 tables
  3144. {
  3145. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3146. ggml_fp16_t ii;
  3147. for (int i = 0; i < (1 << 16); ++i) {
  3148. uint16_t ui = i;
  3149. memcpy(&ii, &ui, sizeof(ii));
  3150. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3151. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3152. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3153. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3154. }
  3155. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3156. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3157. }
  3158. // initialize g_state
  3159. {
  3160. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3161. g_state = (struct ggml_state) {
  3162. /*.contexts =*/ { { 0 } },
  3163. };
  3164. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3165. g_state.contexts[i].used = false;
  3166. }
  3167. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3168. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3169. }
  3170. #if defined(GGML_USE_CUBLAS)
  3171. ggml_init_cublas();
  3172. #elif defined(GGML_USE_CLBLAST)
  3173. ggml_cl_init();
  3174. #endif
  3175. is_first_call = false;
  3176. }
  3177. // find non-used context in g_state
  3178. struct ggml_context * ctx = NULL;
  3179. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3180. if (!g_state.contexts[i].used) {
  3181. g_state.contexts[i].used = true;
  3182. ctx = &g_state.contexts[i].context;
  3183. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3184. break;
  3185. }
  3186. }
  3187. if (ctx == NULL) {
  3188. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3189. ggml_critical_section_end();
  3190. return NULL;
  3191. }
  3192. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3193. *ctx = (struct ggml_context) {
  3194. /*.mem_size =*/ mem_size,
  3195. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3196. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3197. /*.no_alloc =*/ params.no_alloc,
  3198. /*.n_objects =*/ 0,
  3199. /*.objects_begin =*/ NULL,
  3200. /*.objects_end =*/ NULL,
  3201. /*.scratch =*/ { 0, 0, NULL, },
  3202. /*.scratch_save =*/ { 0, 0, NULL, },
  3203. };
  3204. GGML_ASSERT(ctx->mem_buffer != NULL);
  3205. ggml_assert_aligned(ctx->mem_buffer);
  3206. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3207. ggml_critical_section_end();
  3208. return ctx;
  3209. }
  3210. void ggml_free(struct ggml_context * ctx) {
  3211. // make this function thread safe
  3212. ggml_critical_section_start();
  3213. bool found = false;
  3214. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3215. if (&g_state.contexts[i].context == ctx) {
  3216. g_state.contexts[i].used = false;
  3217. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3218. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3219. if (ctx->mem_buffer_owned) {
  3220. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3221. }
  3222. found = true;
  3223. break;
  3224. }
  3225. }
  3226. if (!found) {
  3227. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3228. }
  3229. ggml_critical_section_end();
  3230. }
  3231. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3232. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3233. }
  3234. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3235. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3236. ctx->scratch = scratch;
  3237. return result;
  3238. }
  3239. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3240. ctx->no_alloc = no_alloc;
  3241. }
  3242. // IMPORTANT:
  3243. // when creating "opt" tensors, always save and load the scratch buffer
  3244. // this is an error prone process, but it is necessary to support inplace
  3245. // operators when using scratch buffers
  3246. // TODO: implement a better way
  3247. void ggml_scratch_save(struct ggml_context * ctx) {
  3248. ctx->scratch_save = ctx->scratch;
  3249. ctx->scratch.data = NULL;
  3250. }
  3251. void ggml_scratch_load(struct ggml_context * ctx) {
  3252. ctx->scratch = ctx->scratch_save;
  3253. }
  3254. ////////////////////////////////////////////////////////////////////////////////
  3255. struct ggml_tensor * ggml_new_tensor_impl(
  3256. struct ggml_context * ctx,
  3257. enum ggml_type type,
  3258. int n_dims,
  3259. const int64_t* ne,
  3260. void* data) {
  3261. // always insert objects at the end of the context's memory pool
  3262. struct ggml_object * obj_cur = ctx->objects_end;
  3263. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3264. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3265. const size_t cur_end = cur_offs + cur_size;
  3266. size_t size_needed = 0;
  3267. if (data == NULL && !ctx->no_alloc) {
  3268. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3269. for (int i = 1; i < n_dims; i++) {
  3270. size_needed *= ne[i];
  3271. }
  3272. // align to GGML_MEM_ALIGN
  3273. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3274. }
  3275. char * const mem_buffer = ctx->mem_buffer;
  3276. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3277. if (ctx->scratch.data == NULL || data != NULL) {
  3278. size_needed += GGML_TENSOR_SIZE;
  3279. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3280. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3281. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3282. assert(false);
  3283. return NULL;
  3284. }
  3285. *obj_new = (struct ggml_object) {
  3286. .offs = cur_end + GGML_OBJECT_SIZE,
  3287. .size = size_needed,
  3288. .next = NULL,
  3289. };
  3290. } else {
  3291. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3292. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3293. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3294. assert(false);
  3295. return NULL;
  3296. }
  3297. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3298. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3299. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3300. assert(false);
  3301. return NULL;
  3302. }
  3303. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3304. *obj_new = (struct ggml_object) {
  3305. .offs = cur_end + GGML_OBJECT_SIZE,
  3306. .size = GGML_TENSOR_SIZE,
  3307. .next = NULL,
  3308. };
  3309. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3310. ctx->scratch.offs += size_needed;
  3311. }
  3312. if (obj_cur != NULL) {
  3313. obj_cur->next = obj_new;
  3314. } else {
  3315. // this is the first object in this context
  3316. ctx->objects_begin = obj_new;
  3317. }
  3318. ctx->objects_end = obj_new;
  3319. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3320. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3321. ggml_assert_aligned(result);
  3322. *result = (struct ggml_tensor) {
  3323. /*.type =*/ type,
  3324. /*.backend =*/ GGML_BACKEND_CPU,
  3325. /*.n_dims =*/ n_dims,
  3326. /*.ne =*/ { 1, 1, 1, 1 },
  3327. /*.nb =*/ { 0, 0, 0, 0 },
  3328. /*.op =*/ GGML_OP_NONE,
  3329. /*.is_param =*/ false,
  3330. /*.grad =*/ NULL,
  3331. /*.src0 =*/ NULL,
  3332. /*.src1 =*/ NULL,
  3333. /*.opt =*/ { NULL },
  3334. /*.n_tasks =*/ 0,
  3335. /*.perf_runs =*/ 0,
  3336. /*.perf_cycles =*/ 0,
  3337. /*.perf_time_us =*/ 0,
  3338. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3339. /*.name =*/ { 0 },
  3340. /*.pad =*/ { 0 },
  3341. };
  3342. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3343. //ggml_assert_aligned(result->data);
  3344. for (int i = 0; i < n_dims; i++) {
  3345. result->ne[i] = ne[i];
  3346. }
  3347. result->nb[0] = GGML_TYPE_SIZE[type];
  3348. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3349. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3350. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3351. }
  3352. ctx->n_objects++;
  3353. return result;
  3354. }
  3355. struct ggml_tensor * ggml_new_tensor(
  3356. struct ggml_context * ctx,
  3357. enum ggml_type type,
  3358. int n_dims,
  3359. const int64_t * ne) {
  3360. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3361. }
  3362. struct ggml_tensor * ggml_new_tensor_1d(
  3363. struct ggml_context * ctx,
  3364. enum ggml_type type,
  3365. int64_t ne0) {
  3366. return ggml_new_tensor(ctx, type, 1, &ne0);
  3367. }
  3368. struct ggml_tensor * ggml_new_tensor_2d(
  3369. struct ggml_context * ctx,
  3370. enum ggml_type type,
  3371. int64_t ne0,
  3372. int64_t ne1) {
  3373. const int64_t ne[2] = { ne0, ne1 };
  3374. return ggml_new_tensor(ctx, type, 2, ne);
  3375. }
  3376. struct ggml_tensor * ggml_new_tensor_3d(
  3377. struct ggml_context * ctx,
  3378. enum ggml_type type,
  3379. int64_t ne0,
  3380. int64_t ne1,
  3381. int64_t ne2) {
  3382. const int64_t ne[3] = { ne0, ne1, ne2 };
  3383. return ggml_new_tensor(ctx, type, 3, ne);
  3384. }
  3385. struct ggml_tensor * ggml_new_tensor_4d(
  3386. struct ggml_context * ctx,
  3387. enum ggml_type type,
  3388. int64_t ne0,
  3389. int64_t ne1,
  3390. int64_t ne2,
  3391. int64_t ne3) {
  3392. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3393. return ggml_new_tensor(ctx, type, 4, ne);
  3394. }
  3395. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3396. ggml_scratch_save(ctx);
  3397. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3398. ggml_scratch_load(ctx);
  3399. ggml_set_i32(result, value);
  3400. return result;
  3401. }
  3402. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3403. ggml_scratch_save(ctx);
  3404. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3405. ggml_scratch_load(ctx);
  3406. ggml_set_f32(result, value);
  3407. return result;
  3408. }
  3409. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3410. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3411. }
  3412. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3413. memset(tensor->data, 0, ggml_nbytes(tensor));
  3414. return tensor;
  3415. }
  3416. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3417. const int n = ggml_nrows(tensor);
  3418. const int nc = tensor->ne[0];
  3419. const size_t n1 = tensor->nb[1];
  3420. char * const data = tensor->data;
  3421. switch (tensor->type) {
  3422. case GGML_TYPE_I8:
  3423. {
  3424. assert(tensor->nb[0] == sizeof(int8_t));
  3425. for (int i = 0; i < n; i++) {
  3426. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3427. }
  3428. } break;
  3429. case GGML_TYPE_I16:
  3430. {
  3431. assert(tensor->nb[0] == sizeof(int16_t));
  3432. for (int i = 0; i < n; i++) {
  3433. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3434. }
  3435. } break;
  3436. case GGML_TYPE_I32:
  3437. {
  3438. assert(tensor->nb[0] == sizeof(int32_t));
  3439. for (int i = 0; i < n; i++) {
  3440. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3441. }
  3442. } break;
  3443. case GGML_TYPE_F16:
  3444. {
  3445. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3446. for (int i = 0; i < n; i++) {
  3447. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3448. }
  3449. } break;
  3450. case GGML_TYPE_F32:
  3451. {
  3452. assert(tensor->nb[0] == sizeof(float));
  3453. for (int i = 0; i < n; i++) {
  3454. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3455. }
  3456. } break;
  3457. default:
  3458. {
  3459. GGML_ASSERT(false);
  3460. } break;
  3461. }
  3462. return tensor;
  3463. }
  3464. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3465. const int n = ggml_nrows(tensor);
  3466. const int nc = tensor->ne[0];
  3467. const size_t n1 = tensor->nb[1];
  3468. char * const data = tensor->data;
  3469. switch (tensor->type) {
  3470. case GGML_TYPE_I8:
  3471. {
  3472. assert(tensor->nb[0] == sizeof(int8_t));
  3473. for (int i = 0; i < n; i++) {
  3474. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3475. }
  3476. } break;
  3477. case GGML_TYPE_I16:
  3478. {
  3479. assert(tensor->nb[0] == sizeof(int16_t));
  3480. for (int i = 0; i < n; i++) {
  3481. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3482. }
  3483. } break;
  3484. case GGML_TYPE_I32:
  3485. {
  3486. assert(tensor->nb[0] == sizeof(int32_t));
  3487. for (int i = 0; i < n; i++) {
  3488. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3489. }
  3490. } break;
  3491. case GGML_TYPE_F16:
  3492. {
  3493. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3494. for (int i = 0; i < n; i++) {
  3495. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3496. }
  3497. } break;
  3498. case GGML_TYPE_F32:
  3499. {
  3500. assert(tensor->nb[0] == sizeof(float));
  3501. for (int i = 0; i < n; i++) {
  3502. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3503. }
  3504. } break;
  3505. default:
  3506. {
  3507. GGML_ASSERT(false);
  3508. } break;
  3509. }
  3510. return tensor;
  3511. }
  3512. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3513. switch (tensor->type) {
  3514. case GGML_TYPE_I8:
  3515. {
  3516. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3517. return ((int8_t *)(tensor->data))[i];
  3518. } break;
  3519. case GGML_TYPE_I16:
  3520. {
  3521. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3522. return ((int16_t *)(tensor->data))[i];
  3523. } break;
  3524. case GGML_TYPE_I32:
  3525. {
  3526. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3527. return ((int32_t *)(tensor->data))[i];
  3528. } break;
  3529. case GGML_TYPE_F16:
  3530. {
  3531. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3532. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3533. } break;
  3534. case GGML_TYPE_F32:
  3535. {
  3536. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3537. return ((float *)(tensor->data))[i];
  3538. } break;
  3539. default:
  3540. {
  3541. GGML_ASSERT(false);
  3542. } break;
  3543. }
  3544. return 0.0f;
  3545. }
  3546. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3547. switch (tensor->type) {
  3548. case GGML_TYPE_I8:
  3549. {
  3550. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3551. ((int8_t *)(tensor->data))[i] = value;
  3552. } break;
  3553. case GGML_TYPE_I16:
  3554. {
  3555. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3556. ((int16_t *)(tensor->data))[i] = value;
  3557. } break;
  3558. case GGML_TYPE_I32:
  3559. {
  3560. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3561. ((int32_t *)(tensor->data))[i] = value;
  3562. } break;
  3563. case GGML_TYPE_F16:
  3564. {
  3565. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3566. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3567. } break;
  3568. case GGML_TYPE_F32:
  3569. {
  3570. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3571. ((float *)(tensor->data))[i] = value;
  3572. } break;
  3573. default:
  3574. {
  3575. GGML_ASSERT(false);
  3576. } break;
  3577. }
  3578. }
  3579. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3580. switch (tensor->type) {
  3581. case GGML_TYPE_I8:
  3582. {
  3583. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3584. return ((int8_t *)(tensor->data))[i];
  3585. } break;
  3586. case GGML_TYPE_I16:
  3587. {
  3588. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3589. return ((int16_t *)(tensor->data))[i];
  3590. } break;
  3591. case GGML_TYPE_I32:
  3592. {
  3593. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3594. return ((int32_t *)(tensor->data))[i];
  3595. } break;
  3596. case GGML_TYPE_F16:
  3597. {
  3598. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3599. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3600. } break;
  3601. case GGML_TYPE_F32:
  3602. {
  3603. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3604. return ((float *)(tensor->data))[i];
  3605. } break;
  3606. default:
  3607. {
  3608. GGML_ASSERT(false);
  3609. } break;
  3610. }
  3611. return 0.0f;
  3612. }
  3613. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3614. switch (tensor->type) {
  3615. case GGML_TYPE_I8:
  3616. {
  3617. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3618. ((int8_t *)(tensor->data))[i] = value;
  3619. } break;
  3620. case GGML_TYPE_I16:
  3621. {
  3622. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3623. ((int16_t *)(tensor->data))[i] = value;
  3624. } break;
  3625. case GGML_TYPE_I32:
  3626. {
  3627. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3628. ((int32_t *)(tensor->data))[i] = value;
  3629. } break;
  3630. case GGML_TYPE_F16:
  3631. {
  3632. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3633. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3634. } break;
  3635. case GGML_TYPE_F32:
  3636. {
  3637. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3638. ((float *)(tensor->data))[i] = value;
  3639. } break;
  3640. default:
  3641. {
  3642. GGML_ASSERT(false);
  3643. } break;
  3644. }
  3645. }
  3646. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3647. return tensor->data;
  3648. }
  3649. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3650. assert(tensor->type == GGML_TYPE_F32);
  3651. return (float *)(tensor->data);
  3652. }
  3653. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3654. return tensor->name;
  3655. }
  3656. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3657. strncpy(tensor->name, name, sizeof(tensor->name));
  3658. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3659. }
  3660. struct ggml_tensor * ggml_view_tensor(
  3661. struct ggml_context * ctx,
  3662. const struct ggml_tensor * src) {
  3663. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3664. result->nb[0] = src->nb[0];
  3665. result->nb[1] = src->nb[1];
  3666. result->nb[2] = src->nb[2];
  3667. result->nb[3] = src->nb[3];
  3668. return result;
  3669. }
  3670. ////////////////////////////////////////////////////////////////////////////////
  3671. // ggml_dup
  3672. struct ggml_tensor * ggml_dup_impl(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a,
  3675. bool inplace) {
  3676. bool is_node = false;
  3677. if (!inplace && (a->grad)) {
  3678. is_node = true;
  3679. }
  3680. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3681. result->op = GGML_OP_DUP;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src0 = a;
  3684. result->src1 = NULL;
  3685. return result;
  3686. }
  3687. struct ggml_tensor * ggml_dup(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a) {
  3690. return ggml_dup_impl(ctx, a, false);
  3691. }
  3692. struct ggml_tensor * ggml_dup_inplace(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a) {
  3695. return ggml_dup_impl(ctx, a, true);
  3696. }
  3697. // ggml_add
  3698. struct ggml_tensor * ggml_add_impl(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. struct ggml_tensor * b,
  3702. bool inplace) {
  3703. GGML_ASSERT(ggml_are_same_shape(a, b));
  3704. bool is_node = false;
  3705. if (!inplace && (a->grad || b->grad)) {
  3706. is_node = true;
  3707. }
  3708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3709. result->op = GGML_OP_ADD;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src0 = a;
  3712. result->src1 = b;
  3713. return result;
  3714. }
  3715. struct ggml_tensor * ggml_add(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. struct ggml_tensor * b) {
  3719. return ggml_add_impl(ctx, a, b, false);
  3720. }
  3721. struct ggml_tensor * ggml_add_inplace(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. struct ggml_tensor * b) {
  3725. return ggml_add_impl(ctx, a, b, true);
  3726. }
  3727. // ggml_add1
  3728. struct ggml_tensor * ggml_add1_impl(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. struct ggml_tensor * b,
  3732. bool inplace) {
  3733. GGML_ASSERT(ggml_is_scalar(b));
  3734. GGML_ASSERT(ggml_is_padded_1d(a));
  3735. bool is_node = false;
  3736. if (!inplace && (a->grad || b->grad)) {
  3737. is_node = true;
  3738. }
  3739. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3740. result->op = GGML_OP_ADD1;
  3741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3742. result->src0 = a;
  3743. result->src1 = b;
  3744. return result;
  3745. }
  3746. struct ggml_tensor * ggml_add1(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. struct ggml_tensor * b) {
  3750. return ggml_add1_impl(ctx, a, b, false);
  3751. }
  3752. struct ggml_tensor * ggml_add1_inplace(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. struct ggml_tensor * b) {
  3756. return ggml_add1_impl(ctx, a, b, true);
  3757. }
  3758. // ggml_acc
  3759. struct ggml_tensor * ggml_acc_impl(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. struct ggml_tensor * b,
  3763. size_t nb1,
  3764. size_t nb2,
  3765. size_t nb3,
  3766. size_t offset,
  3767. bool inplace) {
  3768. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3769. GGML_ASSERT(ggml_is_contiguous(a));
  3770. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3771. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3772. bool is_node = false;
  3773. if (!inplace && (a->grad || b->grad)) {
  3774. is_node = true;
  3775. }
  3776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3777. ggml_scratch_save(ctx);
  3778. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3779. ((int32_t *) c->data)[0] = nb1;
  3780. ((int32_t *) c->data)[1] = nb2;
  3781. ((int32_t *) c->data)[2] = nb3;
  3782. ((int32_t *) c->data)[3] = offset;
  3783. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3784. ggml_scratch_load(ctx);
  3785. result->op = GGML_OP_ACC;
  3786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3787. result->src0 = a;
  3788. result->src1 = b;
  3789. result->opt[0] = c;
  3790. return result;
  3791. }
  3792. struct ggml_tensor * ggml_acc(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a,
  3795. struct ggml_tensor * b,
  3796. size_t nb1,
  3797. size_t nb2,
  3798. size_t nb3,
  3799. size_t offset) {
  3800. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3801. }
  3802. struct ggml_tensor * ggml_acc_inplace(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * a,
  3805. struct ggml_tensor * b,
  3806. size_t nb1,
  3807. size_t nb2,
  3808. size_t nb3,
  3809. size_t offset) {
  3810. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3811. }
  3812. // ggml_sub
  3813. struct ggml_tensor * ggml_sub_impl(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a,
  3816. struct ggml_tensor * b,
  3817. bool inplace) {
  3818. GGML_ASSERT(ggml_are_same_shape(a, b));
  3819. bool is_node = false;
  3820. if (!inplace && (a->grad || b->grad)) {
  3821. is_node = true;
  3822. }
  3823. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3824. result->op = GGML_OP_SUB;
  3825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3826. result->src0 = a;
  3827. result->src1 = b;
  3828. return result;
  3829. }
  3830. struct ggml_tensor * ggml_sub(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. struct ggml_tensor * b) {
  3834. return ggml_sub_impl(ctx, a, b, false);
  3835. }
  3836. struct ggml_tensor * ggml_sub_inplace(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a,
  3839. struct ggml_tensor * b) {
  3840. return ggml_sub_impl(ctx, a, b, true);
  3841. }
  3842. // ggml_mul
  3843. struct ggml_tensor * ggml_mul_impl(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b,
  3847. bool inplace) {
  3848. // TODO: support less-strict constraint
  3849. // GGML_ASSERT(ggml_can_repeat(b, a));
  3850. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3851. bool is_node = false;
  3852. if (!inplace && (a->grad || b->grad)) {
  3853. // TODO: support backward pass for broadcasting
  3854. GGML_ASSERT(ggml_are_same_shape(a, b));
  3855. is_node = true;
  3856. }
  3857. if (inplace) {
  3858. GGML_ASSERT(is_node == false);
  3859. }
  3860. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3861. result->op = GGML_OP_MUL;
  3862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3863. result->src0 = a;
  3864. result->src1 = b;
  3865. return result;
  3866. }
  3867. struct ggml_tensor * ggml_mul(
  3868. struct ggml_context * ctx,
  3869. struct ggml_tensor * a,
  3870. struct ggml_tensor * b) {
  3871. return ggml_mul_impl(ctx, a, b, false);
  3872. }
  3873. struct ggml_tensor * ggml_mul_inplace(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. struct ggml_tensor * b) {
  3877. return ggml_mul_impl(ctx, a, b, true);
  3878. }
  3879. // ggml_div
  3880. struct ggml_tensor * ggml_div_impl(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a,
  3883. struct ggml_tensor * b,
  3884. bool inplace) {
  3885. GGML_ASSERT(ggml_are_same_shape(a, b));
  3886. bool is_node = false;
  3887. if (!inplace && (a->grad || b->grad)) {
  3888. is_node = true;
  3889. }
  3890. if (inplace) {
  3891. GGML_ASSERT(is_node == false);
  3892. }
  3893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3894. result->op = GGML_OP_DIV;
  3895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3896. result->src0 = a;
  3897. result->src1 = b;
  3898. return result;
  3899. }
  3900. struct ggml_tensor * ggml_div(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a,
  3903. struct ggml_tensor * b) {
  3904. return ggml_div_impl(ctx, a, b, false);
  3905. }
  3906. struct ggml_tensor * ggml_div_inplace(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. struct ggml_tensor * b) {
  3910. return ggml_div_impl(ctx, a, b, true);
  3911. }
  3912. // ggml_sqr
  3913. struct ggml_tensor * ggml_sqr_impl(
  3914. struct ggml_context * ctx,
  3915. struct ggml_tensor * a,
  3916. bool inplace) {
  3917. bool is_node = false;
  3918. if (!inplace && (a->grad)) {
  3919. is_node = true;
  3920. }
  3921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3922. result->op = GGML_OP_SQR;
  3923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3924. result->src0 = a;
  3925. result->src1 = NULL;
  3926. return result;
  3927. }
  3928. struct ggml_tensor * ggml_sqr(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a) {
  3931. return ggml_sqr_impl(ctx, a, false);
  3932. }
  3933. struct ggml_tensor * ggml_sqr_inplace(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a) {
  3936. return ggml_sqr_impl(ctx, a, true);
  3937. }
  3938. // ggml_sqrt
  3939. struct ggml_tensor * ggml_sqrt_impl(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a,
  3942. bool inplace) {
  3943. bool is_node = false;
  3944. if (!inplace && (a->grad)) {
  3945. is_node = true;
  3946. }
  3947. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3948. result->op = GGML_OP_SQRT;
  3949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3950. result->src0 = a;
  3951. result->src1 = NULL;
  3952. return result;
  3953. }
  3954. struct ggml_tensor * ggml_sqrt(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a) {
  3957. return ggml_sqrt_impl(ctx, a, false);
  3958. }
  3959. struct ggml_tensor * ggml_sqrt_inplace(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a) {
  3962. return ggml_sqrt_impl(ctx, a, true);
  3963. }
  3964. // ggml_log
  3965. struct ggml_tensor * ggml_log_impl(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. bool inplace) {
  3969. bool is_node = false;
  3970. if (!inplace && (a->grad)) {
  3971. is_node = true;
  3972. }
  3973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3974. result->op = GGML_OP_LOG;
  3975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3976. result->src0 = a;
  3977. result->src1 = NULL;
  3978. return result;
  3979. }
  3980. struct ggml_tensor * ggml_log(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. return ggml_log_impl(ctx, a, false);
  3984. }
  3985. struct ggml_tensor * ggml_log_inplace(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a) {
  3988. return ggml_log_impl(ctx, a, true);
  3989. }
  3990. // ggml_sum
  3991. struct ggml_tensor * ggml_sum(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a) {
  3994. bool is_node = false;
  3995. if (a->grad) {
  3996. is_node = true;
  3997. }
  3998. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3999. result->op = GGML_OP_SUM;
  4000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4001. result->src0 = a;
  4002. result->src1 = NULL;
  4003. return result;
  4004. }
  4005. // ggml_sum_rows
  4006. struct ggml_tensor * ggml_sum_rows(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a) {
  4009. bool is_node = false;
  4010. if (a->grad) {
  4011. is_node = true;
  4012. }
  4013. int64_t ne[4] = {1,1,1,1};
  4014. for (int i=1; i<a->n_dims; ++i) {
  4015. ne[i] = a->ne[i];
  4016. }
  4017. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4018. result->op = GGML_OP_SUM_ROWS;
  4019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4020. result->src0 = a;
  4021. result->src1 = NULL;
  4022. return result;
  4023. }
  4024. // ggml_mean
  4025. struct ggml_tensor * ggml_mean(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. bool is_node = false;
  4029. if (a->grad) {
  4030. GGML_ASSERT(false); // TODO: implement
  4031. is_node = true;
  4032. }
  4033. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4034. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4035. result->op = GGML_OP_MEAN;
  4036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4037. result->src0 = a;
  4038. result->src1 = NULL;
  4039. return result;
  4040. }
  4041. // ggml_repeat
  4042. struct ggml_tensor * ggml_repeat(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. struct ggml_tensor * b) {
  4046. GGML_ASSERT(ggml_can_repeat(a, b));
  4047. bool is_node = false;
  4048. if (a->grad) {
  4049. is_node = true;
  4050. }
  4051. if (ggml_are_same_shape(a, b) && !is_node) {
  4052. return a;
  4053. }
  4054. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4055. result->op = GGML_OP_REPEAT;
  4056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4057. result->src0 = a;
  4058. result->src1 = b;
  4059. return result;
  4060. }
  4061. // ggml_abs
  4062. struct ggml_tensor * ggml_abs_impl(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a,
  4065. bool inplace) {
  4066. bool is_node = false;
  4067. if (!inplace && (a->grad)) {
  4068. is_node = true;
  4069. }
  4070. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4071. result->op = GGML_OP_ABS;
  4072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4073. result->src0 = a;
  4074. result->src1 = NULL;
  4075. return result;
  4076. }
  4077. struct ggml_tensor * ggml_abs(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a) {
  4080. return ggml_abs_impl(ctx, a, false);
  4081. }
  4082. struct ggml_tensor * ggml_abs_inplace(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a) {
  4085. return ggml_abs_impl(ctx, a, true);
  4086. }
  4087. // ggml_sgn
  4088. struct ggml_tensor * ggml_sgn_impl(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. bool inplace) {
  4092. bool is_node = false;
  4093. if (!inplace && (a->grad)) {
  4094. is_node = true;
  4095. }
  4096. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4097. result->op = GGML_OP_SGN;
  4098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4099. result->src0 = a;
  4100. result->src1 = NULL;
  4101. return result;
  4102. }
  4103. struct ggml_tensor * ggml_sgn(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a) {
  4106. return ggml_sgn_impl(ctx, a, false);
  4107. }
  4108. struct ggml_tensor * ggml_sgn_inplace(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a) {
  4111. return ggml_sgn_impl(ctx, a, true);
  4112. }
  4113. // ggml_neg
  4114. struct ggml_tensor * ggml_neg_impl(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. bool inplace) {
  4118. bool is_node = false;
  4119. if (!inplace && (a->grad)) {
  4120. is_node = true;
  4121. }
  4122. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4123. result->op = GGML_OP_NEG;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src0 = a;
  4126. result->src1 = NULL;
  4127. return result;
  4128. }
  4129. struct ggml_tensor * ggml_neg(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a) {
  4132. return ggml_neg_impl(ctx, a, false);
  4133. }
  4134. struct ggml_tensor * ggml_neg_inplace(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a) {
  4137. return ggml_neg_impl(ctx, a, true);
  4138. }
  4139. // ggml_step
  4140. struct ggml_tensor * ggml_step_impl(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. bool inplace) {
  4144. bool is_node = false;
  4145. if (!inplace && (a->grad)) {
  4146. is_node = true;
  4147. }
  4148. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4149. result->op = GGML_OP_STEP;
  4150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4151. result->src0 = a;
  4152. result->src1 = NULL;
  4153. return result;
  4154. }
  4155. struct ggml_tensor * ggml_step(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a) {
  4158. return ggml_step_impl(ctx, a, false);
  4159. }
  4160. struct ggml_tensor * ggml_step_inplace(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. return ggml_step_impl(ctx, a, true);
  4164. }
  4165. // ggml_relu
  4166. struct ggml_tensor * ggml_relu_impl(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. bool inplace) {
  4170. bool is_node = false;
  4171. if (!inplace && (a->grad)) {
  4172. is_node = true;
  4173. }
  4174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4175. result->op = GGML_OP_RELU;
  4176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4177. result->src0 = a;
  4178. result->src1 = NULL;
  4179. return result;
  4180. }
  4181. struct ggml_tensor * ggml_relu(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_relu_impl(ctx, a, false);
  4185. }
  4186. struct ggml_tensor * ggml_relu_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_relu_impl(ctx, a, true);
  4190. }
  4191. // ggml_gelu
  4192. struct ggml_tensor * ggml_gelu_impl(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. bool inplace) {
  4196. bool is_node = false;
  4197. if (!inplace && (a->grad)) {
  4198. is_node = true;
  4199. }
  4200. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4201. result->op = GGML_OP_GELU;
  4202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4203. result->src0 = a;
  4204. result->src1 = NULL;
  4205. return result;
  4206. }
  4207. struct ggml_tensor * ggml_gelu(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_gelu_impl(ctx, a, false);
  4211. }
  4212. struct ggml_tensor * ggml_gelu_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_gelu_impl(ctx, a, true);
  4216. }
  4217. // ggml_silu
  4218. struct ggml_tensor * ggml_silu_impl(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. bool inplace) {
  4222. bool is_node = false;
  4223. if (!inplace && (a->grad)) {
  4224. is_node = true;
  4225. }
  4226. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4227. result->op = GGML_OP_SILU;
  4228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4229. result->src0 = a;
  4230. result->src1 = NULL;
  4231. return result;
  4232. }
  4233. struct ggml_tensor * ggml_silu(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. return ggml_silu_impl(ctx, a, false);
  4237. }
  4238. struct ggml_tensor * ggml_silu_inplace(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_silu_impl(ctx, a, true);
  4242. }
  4243. // ggml_silu_back
  4244. struct ggml_tensor * ggml_silu_back(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a,
  4247. struct ggml_tensor * b) {
  4248. bool is_node = false;
  4249. if (a->grad || b->grad) {
  4250. // TODO: implement backward
  4251. is_node = true;
  4252. }
  4253. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4254. result->op = GGML_OP_SILU_BACK;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src0 = a;
  4257. result->src1 = b;
  4258. return result;
  4259. }
  4260. // ggml_norm
  4261. struct ggml_tensor * ggml_norm_impl(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. bool inplace) {
  4265. bool is_node = false;
  4266. if (!inplace && (a->grad)) {
  4267. GGML_ASSERT(false); // TODO: implement backward
  4268. is_node = true;
  4269. }
  4270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4271. result->op = GGML_OP_NORM;
  4272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4273. result->src0 = a;
  4274. result->src1 = NULL; // TODO: maybe store epsilon here?
  4275. return result;
  4276. }
  4277. struct ggml_tensor * ggml_norm(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_norm_impl(ctx, a, false);
  4281. }
  4282. struct ggml_tensor * ggml_norm_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_norm_impl(ctx, a, true);
  4286. }
  4287. struct ggml_tensor * ggml_rms_norm_impl(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. bool inplace) {
  4291. bool is_node = false;
  4292. if (!inplace && (a->grad)) {
  4293. is_node = true;
  4294. }
  4295. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4296. result->op = GGML_OP_RMS_NORM;
  4297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4298. result->src0 = a;
  4299. result->src1 = NULL; // TODO: maybe store epsilon here?
  4300. return result;
  4301. }
  4302. struct ggml_tensor * ggml_rms_norm(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. return ggml_rms_norm_impl(ctx, a, false);
  4306. }
  4307. struct ggml_tensor * ggml_rms_norm_inplace(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a) {
  4310. return ggml_rms_norm_impl(ctx, a, true);
  4311. }
  4312. struct ggml_tensor * ggml_rms_norm_back(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a,
  4315. struct ggml_tensor * b) {
  4316. bool is_node = false;
  4317. if (a->grad) {
  4318. // TODO: implement backward
  4319. is_node = true;
  4320. }
  4321. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4322. result->op = GGML_OP_RMS_NORM_BACK;
  4323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4324. result->src0 = a;
  4325. result->src1 = b;
  4326. return result;
  4327. }
  4328. // ggml_mul_mat
  4329. struct ggml_tensor * ggml_mul_mat(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b) {
  4333. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4334. GGML_ASSERT(!ggml_is_transposed(a));
  4335. bool is_node = false;
  4336. if (a->grad || b->grad) {
  4337. is_node = true;
  4338. }
  4339. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4340. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4341. result->op = GGML_OP_MUL_MAT;
  4342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4343. result->src0 = a;
  4344. result->src1 = b;
  4345. return result;
  4346. }
  4347. // ggml_scale
  4348. struct ggml_tensor * ggml_scale_impl(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. struct ggml_tensor * b,
  4352. bool inplace) {
  4353. GGML_ASSERT(ggml_is_scalar(b));
  4354. GGML_ASSERT(ggml_is_padded_1d(a));
  4355. bool is_node = false;
  4356. if (!inplace && (a->grad || b->grad)) {
  4357. is_node = true;
  4358. }
  4359. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4360. result->op = GGML_OP_SCALE;
  4361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4362. result->src0 = a;
  4363. result->src1 = b;
  4364. return result;
  4365. }
  4366. struct ggml_tensor * ggml_scale(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a,
  4369. struct ggml_tensor * b) {
  4370. return ggml_scale_impl(ctx, a, b, false);
  4371. }
  4372. struct ggml_tensor * ggml_scale_inplace(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. struct ggml_tensor * b) {
  4376. return ggml_scale_impl(ctx, a, b, true);
  4377. }
  4378. // ggml_set
  4379. struct ggml_tensor * ggml_set_impl(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. struct ggml_tensor * b,
  4383. size_t nb1,
  4384. size_t nb2,
  4385. size_t nb3,
  4386. size_t offset,
  4387. bool inplace) {
  4388. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4389. bool is_node = false;
  4390. if (!inplace && (a->grad || b->grad)) {
  4391. is_node = true;
  4392. }
  4393. // make a view of the destination
  4394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4395. ggml_scratch_save(ctx);
  4396. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4397. (( int32_t * ) c->data)[0] = nb1;
  4398. (( int32_t * ) c->data)[1] = nb2;
  4399. (( int32_t * ) c->data)[2] = nb3;
  4400. (( int32_t * ) c->data)[3] = offset;
  4401. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4402. ggml_scratch_load(ctx);
  4403. result->op = GGML_OP_SET;
  4404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4405. result->src0 = a;
  4406. result->src1 = b;
  4407. result->opt[0] = c;
  4408. return result;
  4409. }
  4410. struct ggml_tensor * ggml_set(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a,
  4413. struct ggml_tensor * b,
  4414. size_t nb1,
  4415. size_t nb2,
  4416. size_t nb3,
  4417. size_t offset) {
  4418. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4419. }
  4420. struct ggml_tensor * ggml_set_inplace(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. struct ggml_tensor * b,
  4424. size_t nb1,
  4425. size_t nb2,
  4426. size_t nb3,
  4427. size_t offset) {
  4428. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4429. }
  4430. struct ggml_tensor * ggml_set_1d(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. struct ggml_tensor * b,
  4434. size_t offset) {
  4435. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4436. }
  4437. struct ggml_tensor * ggml_set_1d_inplace(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. struct ggml_tensor * b,
  4441. size_t offset) {
  4442. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4443. }
  4444. struct ggml_tensor * ggml_set_2d(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * a,
  4447. struct ggml_tensor * b,
  4448. size_t nb1,
  4449. size_t offset) {
  4450. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4451. }
  4452. struct ggml_tensor * ggml_set_2d_inplace(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a,
  4455. struct ggml_tensor * b,
  4456. size_t nb1,
  4457. size_t offset) {
  4458. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4459. }
  4460. // ggml_cpy
  4461. struct ggml_tensor * ggml_cpy_impl(
  4462. struct ggml_context * ctx,
  4463. struct ggml_tensor * a,
  4464. struct ggml_tensor * b,
  4465. bool inplace) {
  4466. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4467. bool is_node = false;
  4468. if (!inplace && (a->grad || b->grad)) {
  4469. is_node = true;
  4470. }
  4471. // make a view of the destination
  4472. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4473. result->op = GGML_OP_CPY;
  4474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4475. result->src0 = a;
  4476. result->src1 = b;
  4477. return result;
  4478. }
  4479. struct ggml_tensor * ggml_cpy(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. struct ggml_tensor * b) {
  4483. return ggml_cpy_impl(ctx, a, b, false);
  4484. }
  4485. struct ggml_tensor * ggml_cpy_inplace(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * b) {
  4489. return ggml_cpy_impl(ctx, a, b, true);
  4490. }
  4491. // ggml_cont
  4492. struct ggml_tensor * ggml_cont_impl(
  4493. struct ggml_context * ctx,
  4494. struct ggml_tensor * a,
  4495. bool inplace) {
  4496. bool is_node = false;
  4497. if (!inplace && a->grad) {
  4498. is_node = true;
  4499. }
  4500. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4501. result->op = GGML_OP_CONT;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src0 = a;
  4504. result->src1 = NULL;
  4505. return result;
  4506. }
  4507. struct ggml_tensor * ggml_cont(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a) {
  4510. return ggml_cont_impl(ctx, a, false);
  4511. }
  4512. struct ggml_tensor * ggml_cont_inplace(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a) {
  4515. return ggml_cont_impl(ctx, a, true);
  4516. }
  4517. // ggml_reshape
  4518. struct ggml_tensor * ggml_reshape(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. struct ggml_tensor * b) {
  4522. GGML_ASSERT(ggml_is_contiguous(a));
  4523. GGML_ASSERT(ggml_is_contiguous(b));
  4524. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4525. bool is_node = false;
  4526. if (a->grad) {
  4527. is_node = true;
  4528. }
  4529. if (b->grad) {
  4530. // gradient propagation is not supported
  4531. //GGML_ASSERT(false);
  4532. }
  4533. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4534. result->op = GGML_OP_RESHAPE;
  4535. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4536. result->src0 = a;
  4537. result->src1 = NULL;
  4538. return result;
  4539. }
  4540. struct ggml_tensor * ggml_reshape_1d(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. int64_t ne0) {
  4544. GGML_ASSERT(ggml_is_contiguous(a));
  4545. GGML_ASSERT(ggml_nelements(a) == ne0);
  4546. bool is_node = false;
  4547. if (a->grad) {
  4548. is_node = true;
  4549. }
  4550. const int64_t ne[1] = { ne0 };
  4551. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4552. result->op = GGML_OP_RESHAPE;
  4553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4554. result->src0 = a;
  4555. result->src1 = NULL;
  4556. return result;
  4557. }
  4558. struct ggml_tensor * ggml_reshape_2d(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a,
  4561. int64_t ne0,
  4562. int64_t ne1) {
  4563. GGML_ASSERT(ggml_is_contiguous(a));
  4564. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4565. bool is_node = false;
  4566. if (a->grad) {
  4567. is_node = true;
  4568. }
  4569. const int64_t ne[2] = { ne0, ne1 };
  4570. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4571. result->op = GGML_OP_RESHAPE;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src0 = a;
  4574. result->src1 = NULL;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_reshape_3d(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a,
  4580. int64_t ne0,
  4581. int64_t ne1,
  4582. int64_t ne2) {
  4583. GGML_ASSERT(ggml_is_contiguous(a));
  4584. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4585. bool is_node = false;
  4586. if (a->grad) {
  4587. is_node = true;
  4588. }
  4589. const int64_t ne[3] = { ne0, ne1, ne2 };
  4590. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4591. result->op = GGML_OP_RESHAPE;
  4592. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4593. result->src0 = a;
  4594. result->src1 = NULL;
  4595. return result;
  4596. }
  4597. struct ggml_tensor * ggml_reshape_4d(
  4598. struct ggml_context * ctx,
  4599. struct ggml_tensor * a,
  4600. int64_t ne0,
  4601. int64_t ne1,
  4602. int64_t ne2,
  4603. int64_t ne3) {
  4604. GGML_ASSERT(ggml_is_contiguous(a));
  4605. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4606. bool is_node = false;
  4607. if (a->grad) {
  4608. is_node = true;
  4609. }
  4610. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4611. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4612. result->op = GGML_OP_RESHAPE;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src0 = a;
  4615. result->src1 = NULL;
  4616. return result;
  4617. }
  4618. // ggml_view_1d
  4619. struct ggml_tensor * ggml_view_1d(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. int64_t ne0,
  4623. size_t offset) {
  4624. bool is_node = false;
  4625. if (a->grad) {
  4626. is_node = true;
  4627. }
  4628. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4629. result->op = GGML_OP_VIEW;
  4630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4631. result->src0 = a;
  4632. result->src1 = NULL;
  4633. if (is_node) {
  4634. memcpy(result->padding, &offset, sizeof(offset));
  4635. }
  4636. return result;
  4637. }
  4638. // ggml_view_2d
  4639. struct ggml_tensor * ggml_view_2d(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a,
  4642. int64_t ne0,
  4643. int64_t ne1,
  4644. size_t nb1,
  4645. size_t offset) {
  4646. bool is_node = false;
  4647. if (a->grad) {
  4648. is_node = true;
  4649. }
  4650. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4651. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4652. result->nb[1] = nb1;
  4653. result->nb[2] = result->nb[1]*ne1;
  4654. result->nb[3] = result->nb[2];
  4655. result->op = GGML_OP_VIEW;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src0 = a;
  4658. result->src1 = NULL;
  4659. if (is_node) {
  4660. memcpy(result->padding, &offset, sizeof(offset));
  4661. }
  4662. return result;
  4663. }
  4664. // ggml_view_3d
  4665. struct ggml_tensor * ggml_view_3d(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. int64_t ne0,
  4669. int64_t ne1,
  4670. int64_t ne2,
  4671. size_t nb1,
  4672. size_t nb2,
  4673. size_t offset) {
  4674. bool is_node = false;
  4675. if (a->grad) {
  4676. is_node = true;
  4677. }
  4678. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4679. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4680. result->nb[1] = nb1;
  4681. result->nb[2] = nb2;
  4682. result->nb[3] = result->nb[2]*ne2;
  4683. result->op = GGML_OP_VIEW;
  4684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4685. result->src0 = a;
  4686. result->src1 = NULL;
  4687. if (is_node) {
  4688. memcpy(result->padding, &offset, sizeof(offset));
  4689. }
  4690. return result;
  4691. }
  4692. // ggml_view_4d
  4693. struct ggml_tensor * ggml_view_4d(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. int64_t ne0,
  4697. int64_t ne1,
  4698. int64_t ne2,
  4699. int64_t ne3,
  4700. size_t nb1,
  4701. size_t nb2,
  4702. size_t nb3,
  4703. size_t offset) {
  4704. bool is_node = false;
  4705. if (a->grad) {
  4706. is_node = true;
  4707. }
  4708. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4709. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4710. result->nb[1] = nb1;
  4711. result->nb[2] = nb2;
  4712. result->nb[3] = nb3;
  4713. result->op = GGML_OP_VIEW;
  4714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4715. result->src0 = a;
  4716. result->src1 = NULL;
  4717. if (is_node) {
  4718. memcpy(result->padding, &offset, sizeof(offset));
  4719. }
  4720. return result;
  4721. }
  4722. // ggml_permute
  4723. struct ggml_tensor * ggml_permute(
  4724. struct ggml_context * ctx,
  4725. struct ggml_tensor * a,
  4726. int axis0,
  4727. int axis1,
  4728. int axis2,
  4729. int axis3) {
  4730. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4731. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4732. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4733. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4734. GGML_ASSERT(axis0 != axis1);
  4735. GGML_ASSERT(axis0 != axis2);
  4736. GGML_ASSERT(axis0 != axis3);
  4737. GGML_ASSERT(axis1 != axis2);
  4738. GGML_ASSERT(axis1 != axis3);
  4739. GGML_ASSERT(axis2 != axis3);
  4740. bool is_node = false;
  4741. if (a->grad) {
  4742. is_node = true;
  4743. }
  4744. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4745. int ne[GGML_MAX_DIMS];
  4746. int nb[GGML_MAX_DIMS];
  4747. ne[axis0] = a->ne[0];
  4748. ne[axis1] = a->ne[1];
  4749. ne[axis2] = a->ne[2];
  4750. ne[axis3] = a->ne[3];
  4751. nb[axis0] = a->nb[0];
  4752. nb[axis1] = a->nb[1];
  4753. nb[axis2] = a->nb[2];
  4754. nb[axis3] = a->nb[3];
  4755. result->ne[0] = ne[0];
  4756. result->ne[1] = ne[1];
  4757. result->ne[2] = ne[2];
  4758. result->ne[3] = ne[3];
  4759. result->nb[0] = nb[0];
  4760. result->nb[1] = nb[1];
  4761. result->nb[2] = nb[2];
  4762. result->nb[3] = nb[3];
  4763. result->op = GGML_OP_PERMUTE;
  4764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4765. result->src0 = a;
  4766. result->src1 = NULL;
  4767. if (is_node) {
  4768. result->padding[0] = axis0;
  4769. result->padding[1] = axis1;
  4770. result->padding[2] = axis2;
  4771. result->padding[3] = axis3;
  4772. }
  4773. return result;
  4774. }
  4775. // ggml_transpose
  4776. struct ggml_tensor * ggml_transpose(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a) {
  4779. bool is_node = false;
  4780. if (a->grad) {
  4781. is_node = true;
  4782. }
  4783. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4784. result->ne[0] = a->ne[1];
  4785. result->ne[1] = a->ne[0];
  4786. result->nb[0] = a->nb[1];
  4787. result->nb[1] = a->nb[0];
  4788. result->op = GGML_OP_TRANSPOSE;
  4789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4790. result->src0 = a;
  4791. result->src1 = NULL;
  4792. return result;
  4793. }
  4794. // ggml_get_rows
  4795. struct ggml_tensor * ggml_get_rows(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. struct ggml_tensor * b) {
  4799. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4800. bool is_node = false;
  4801. if (a->grad || b->grad) {
  4802. is_node = true;
  4803. }
  4804. // TODO: implement non F32 return
  4805. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4806. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4807. result->op = GGML_OP_GET_ROWS;
  4808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4809. result->src0 = a;
  4810. result->src1 = b;
  4811. return result;
  4812. }
  4813. // ggml_get_rows_back
  4814. struct ggml_tensor * ggml_get_rows_back(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. struct ggml_tensor * b,
  4818. struct ggml_tensor * c) {
  4819. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4820. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4821. bool is_node = false;
  4822. if (a->grad || b->grad) {
  4823. is_node = true;
  4824. }
  4825. // TODO: implement non F32 return
  4826. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4827. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4828. result->op = GGML_OP_GET_ROWS_BACK;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src0 = a;
  4831. result->src1 = b;
  4832. result->opt[0] = c;
  4833. return result;
  4834. }
  4835. // ggml_diag
  4836. struct ggml_tensor * ggml_diag(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a) {
  4839. GGML_ASSERT(a->ne[1] == 1);
  4840. bool is_node = false;
  4841. if (a->grad) {
  4842. is_node = true;
  4843. }
  4844. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4845. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4846. result->op = GGML_OP_DIAG;
  4847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4848. result->src0 = a;
  4849. result->src1 = NULL;
  4850. return result;
  4851. }
  4852. // ggml_diag_mask_inf
  4853. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. int n_past,
  4857. bool inplace) {
  4858. bool is_node = false;
  4859. if (a->grad) {
  4860. is_node = true;
  4861. }
  4862. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4863. ggml_scratch_save(ctx);
  4864. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4865. ((int32_t *) b->data)[0] = n_past;
  4866. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4867. ggml_scratch_load(ctx);
  4868. result->op = GGML_OP_DIAG_MASK_INF;
  4869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4870. result->src0 = a;
  4871. result->src1 = b;
  4872. return result;
  4873. }
  4874. struct ggml_tensor * ggml_diag_mask_inf(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. int n_past) {
  4878. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4879. }
  4880. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. int n_past) {
  4884. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4885. }
  4886. // ggml_diag_mask_zero
  4887. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. int n_past,
  4891. bool inplace) {
  4892. bool is_node = false;
  4893. if (a->grad) {
  4894. is_node = true;
  4895. }
  4896. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4897. ggml_scratch_save(ctx);
  4898. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4899. ggml_set_name(b, "n_past, inplace");
  4900. ((int32_t *) b->data)[0] = n_past;
  4901. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4902. ggml_scratch_load(ctx);
  4903. result->op = GGML_OP_DIAG_MASK_ZERO;
  4904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4905. result->src0 = a;
  4906. result->src1 = b;
  4907. return result;
  4908. }
  4909. struct ggml_tensor * ggml_diag_mask_zero(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. int n_past) {
  4913. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4914. }
  4915. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4916. struct ggml_context * ctx,
  4917. struct ggml_tensor * a,
  4918. int n_past) {
  4919. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4920. }
  4921. // ggml_soft_max
  4922. struct ggml_tensor * ggml_soft_max_impl(
  4923. struct ggml_context * ctx,
  4924. struct ggml_tensor * a,
  4925. bool inplace) {
  4926. bool is_node = false;
  4927. if (a->grad) {
  4928. is_node = true;
  4929. }
  4930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4931. result->op = GGML_OP_SOFT_MAX;
  4932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4933. result->src0 = a;
  4934. result->src1 = NULL;
  4935. return result;
  4936. }
  4937. struct ggml_tensor * ggml_soft_max(
  4938. struct ggml_context * ctx,
  4939. struct ggml_tensor * a) {
  4940. return ggml_soft_max_impl(ctx, a, false);
  4941. }
  4942. struct ggml_tensor * ggml_soft_max_inplace(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a) {
  4945. return ggml_soft_max_impl(ctx, a, true);
  4946. }
  4947. // ggml_rope
  4948. struct ggml_tensor * ggml_rope_impl(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a,
  4951. int n_past,
  4952. int n_dims,
  4953. int mode,
  4954. bool inplace) {
  4955. GGML_ASSERT(n_past >= 0);
  4956. bool is_node = false;
  4957. if (!inplace && a->grad) {
  4958. is_node = true;
  4959. }
  4960. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4961. ggml_scratch_save(ctx);
  4962. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4963. ((int32_t *) b->data)[0] = n_past;
  4964. ((int32_t *) b->data)[1] = n_dims;
  4965. ((int32_t *) b->data)[2] = mode;
  4966. ggml_scratch_load(ctx);
  4967. result->op = GGML_OP_ROPE;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src0 = a;
  4970. result->src1 = b;
  4971. return result;
  4972. }
  4973. struct ggml_tensor * ggml_rope(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. int n_past,
  4977. int n_dims,
  4978. int mode) {
  4979. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4980. }
  4981. struct ggml_tensor * ggml_rope_inplace(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. int n_past,
  4985. int n_dims,
  4986. int mode) {
  4987. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4988. }
  4989. // ggml_rope_back
  4990. struct ggml_tensor * ggml_rope_back(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a,
  4993. int n_past,
  4994. int n_dims,
  4995. int mode) {
  4996. GGML_ASSERT(n_past >= 0);
  4997. bool is_node = false;
  4998. if (a->grad) {
  4999. GGML_ASSERT(false); // TODO: implement backward
  5000. is_node = true;
  5001. }
  5002. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5003. ggml_scratch_save(ctx);
  5004. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5005. ggml_set_name(b, "n_past, n_dims, mode");
  5006. ((int32_t *) b->data)[0] = n_past;
  5007. ((int32_t *) b->data)[1] = n_dims;
  5008. ((int32_t *) b->data)[2] = mode;
  5009. ggml_scratch_load(ctx);
  5010. result->op = GGML_OP_ROPE_BACK;
  5011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5012. result->src0 = a;
  5013. result->src1 = b;
  5014. return result;
  5015. }
  5016. // ggml_alibi
  5017. struct ggml_tensor * ggml_alibi(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. int n_past,
  5021. int n_head,
  5022. float bias_max) {
  5023. GGML_ASSERT(n_past >= 0);
  5024. bool is_node = false;
  5025. if (a->grad) {
  5026. GGML_ASSERT(false); // TODO: implement backward
  5027. is_node = true;
  5028. }
  5029. // TODO: when implement backward, fix this:
  5030. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5031. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5032. ggml_scratch_save(ctx);
  5033. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5034. ((int32_t *) b->data)[0] = n_past;
  5035. ((int32_t *) b->data)[1] = n_head;
  5036. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5037. (((float *) b->data)[2]) = bias_max;
  5038. ggml_scratch_load(ctx);
  5039. result->op = GGML_OP_ALIBI;
  5040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5041. result->src0 = a;
  5042. result->src1 = b;
  5043. return result;
  5044. }
  5045. // ggml_clamp
  5046. struct ggml_tensor * ggml_clamp(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. float min,
  5050. float max) {
  5051. bool is_node = false;
  5052. if (a->grad) {
  5053. GGML_ASSERT(false); // TODO: implement backward
  5054. is_node = true;
  5055. }
  5056. // TODO: when implement backward, fix this:
  5057. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5058. ggml_scratch_save(ctx);
  5059. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5060. ((float *) b->data)[0] = min;
  5061. ((float *) b->data)[1] = max;
  5062. ggml_scratch_load(ctx);
  5063. result->op = GGML_OP_CLAMP;
  5064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5065. result->src0 = a;
  5066. result->src1 = b;
  5067. return result;
  5068. }
  5069. // ggml_conv_1d_1s
  5070. struct ggml_tensor * ggml_conv_1d_1s(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. struct ggml_tensor * b) {
  5074. GGML_ASSERT(ggml_is_matrix(b));
  5075. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5076. GGML_ASSERT(a->ne[3] == 1);
  5077. bool is_node = false;
  5078. if (a->grad || b->grad) {
  5079. GGML_ASSERT(false); // TODO: implement backward
  5080. is_node = true;
  5081. }
  5082. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5083. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5084. result->op = GGML_OP_CONV_1D_1S;
  5085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5086. result->src0 = a;
  5087. result->src1 = b;
  5088. return result;
  5089. }
  5090. // ggml_conv_1d_2s
  5091. struct ggml_tensor * ggml_conv_1d_2s(
  5092. struct ggml_context * ctx,
  5093. struct ggml_tensor * a,
  5094. struct ggml_tensor * b) {
  5095. GGML_ASSERT(ggml_is_matrix(b));
  5096. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5097. GGML_ASSERT(a->ne[3] == 1);
  5098. bool is_node = false;
  5099. if (a->grad || b->grad) {
  5100. GGML_ASSERT(false); // TODO: implement backward
  5101. is_node = true;
  5102. }
  5103. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5104. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5105. result->op = GGML_OP_CONV_1D_2S;
  5106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5107. result->src0 = a;
  5108. result->src1 = b;
  5109. return result;
  5110. }
  5111. // ggml_flash_attn
  5112. struct ggml_tensor * ggml_flash_attn(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * q,
  5115. struct ggml_tensor * k,
  5116. struct ggml_tensor * v,
  5117. bool masked) {
  5118. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5119. // TODO: check if vT can be multiplied by (k*qT)
  5120. bool is_node = false;
  5121. if (q->grad || k->grad || v->grad) {
  5122. GGML_ASSERT(false); // TODO: implement backward
  5123. is_node = true;
  5124. }
  5125. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5126. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5127. result->op = GGML_OP_FLASH_ATTN;
  5128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5129. result->src0 = q;
  5130. result->src1 = k;
  5131. result->opt[0] = v;
  5132. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5133. return result;
  5134. }
  5135. // ggml_flash_ff
  5136. struct ggml_tensor * ggml_flash_ff(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. struct ggml_tensor * b0,
  5140. struct ggml_tensor * b1,
  5141. struct ggml_tensor * c0,
  5142. struct ggml_tensor * c1) {
  5143. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5144. // TODO: more checks
  5145. bool is_node = false;
  5146. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5147. GGML_ASSERT(false); // TODO: implement backward
  5148. is_node = true;
  5149. }
  5150. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5151. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5152. result->op = GGML_OP_FLASH_FF;
  5153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5154. result->src0 = a;
  5155. result->src1 = b0;
  5156. result->opt[0] = b1;
  5157. result->opt[1] = c0;
  5158. result->opt[2] = c1;
  5159. return result;
  5160. }
  5161. // ggml_map_unary
  5162. struct ggml_tensor * ggml_map_unary_impl_f32(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. const ggml_unary_op_f32_t fun,
  5166. bool inplace) {
  5167. bool is_node = false;
  5168. if (!inplace && a->grad) {
  5169. is_node = true;
  5170. }
  5171. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5172. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5173. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5174. result->op = GGML_OP_MAP_UNARY;
  5175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5176. result->src0 = a;
  5177. result->opt[0] = addr_tensor;
  5178. return result;
  5179. }
  5180. struct ggml_tensor * ggml_map_unary_f32(
  5181. struct ggml_context * ctx,
  5182. struct ggml_tensor * a,
  5183. const ggml_unary_op_f32_t fun) {
  5184. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5185. }
  5186. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a,
  5189. const ggml_unary_op_f32_t fun) {
  5190. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5191. }
  5192. // ggml_map_binary
  5193. struct ggml_tensor * ggml_map_binary_impl_f32(
  5194. struct ggml_context * ctx,
  5195. struct ggml_tensor * a,
  5196. struct ggml_tensor * b,
  5197. const ggml_binary_op_f32_t fun,
  5198. bool inplace) {
  5199. GGML_ASSERT(ggml_are_same_shape(a, b));
  5200. bool is_node = false;
  5201. if (!inplace && (a->grad || b->grad)) {
  5202. is_node = true;
  5203. }
  5204. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5205. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5206. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5207. result->op = GGML_OP_MAP_BINARY;
  5208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5209. result->src0 = a;
  5210. result->src1 = b;
  5211. result->opt[0] = addr_tensor;
  5212. return result;
  5213. }
  5214. struct ggml_tensor * ggml_map_binary_f32(
  5215. struct ggml_context * ctx,
  5216. struct ggml_tensor * a,
  5217. struct ggml_tensor * b,
  5218. const ggml_binary_op_f32_t fun) {
  5219. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5220. }
  5221. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5222. struct ggml_context * ctx,
  5223. struct ggml_tensor * a,
  5224. struct ggml_tensor * b,
  5225. const ggml_binary_op_f32_t fun) {
  5226. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5227. }
  5228. ////////////////////////////////////////////////////////////////////////////////
  5229. void ggml_set_param(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * tensor) {
  5232. tensor->is_param = true;
  5233. GGML_ASSERT(tensor->grad == NULL);
  5234. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5235. }
  5236. // ggml_compute_forward_dup
  5237. static void ggml_compute_forward_dup_same_cont(
  5238. const struct ggml_compute_params * params,
  5239. const struct ggml_tensor * src0,
  5240. struct ggml_tensor * dst) {
  5241. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5242. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5243. GGML_ASSERT(src0->type == dst->type);
  5244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5245. return;
  5246. }
  5247. const size_t nb00 = src0->nb[0];
  5248. const size_t nb0 = dst->nb[0];
  5249. const int ith = params->ith; // thread index
  5250. const int nth = params->nth; // number of threads
  5251. // parallelize by elements
  5252. const int ne = ggml_nelements(dst);
  5253. const int dr = (ne + nth - 1) / nth;
  5254. const int ie0 = dr * ith;
  5255. const int ie1 = MIN(ie0 + dr, ne);
  5256. if (ie0 < ie1) {
  5257. memcpy(
  5258. ((char *) dst->data + ie0*nb0),
  5259. ((char *) src0->data + ie0*nb00),
  5260. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5261. }
  5262. }
  5263. static void ggml_compute_forward_dup_f16(
  5264. const struct ggml_compute_params * params,
  5265. const struct ggml_tensor * src0,
  5266. struct ggml_tensor * dst) {
  5267. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5269. return;
  5270. }
  5271. const int64_t ne00 = src0->ne[0];
  5272. const int64_t ne01 = src0->ne[1];
  5273. const int64_t ne02 = src0->ne[2];
  5274. const int64_t ne03 = src0->ne[3];
  5275. const int64_t ne0 = dst->ne[0];
  5276. const int64_t ne1 = dst->ne[1];
  5277. const int64_t ne2 = dst->ne[2];
  5278. const int64_t ne3 = dst->ne[3];
  5279. const size_t nb00 = src0->nb[0];
  5280. const size_t nb01 = src0->nb[1];
  5281. const size_t nb02 = src0->nb[2];
  5282. const size_t nb03 = src0->nb[3];
  5283. const size_t nb0 = dst->nb[0];
  5284. const size_t nb1 = dst->nb[1];
  5285. const size_t nb2 = dst->nb[2];
  5286. const size_t nb3 = dst->nb[3];
  5287. const int ith = params->ith; // thread index
  5288. const int nth = params->nth; // number of threads
  5289. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5290. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5291. return;
  5292. }
  5293. // parallelize by rows
  5294. const int nr = ne01;
  5295. // number of rows per thread
  5296. const int dr = (nr + nth - 1) / nth;
  5297. // row range for this thread
  5298. const int ir0 = dr * ith;
  5299. const int ir1 = MIN(ir0 + dr, nr);
  5300. if (src0->type == dst->type &&
  5301. ne00 == ne0 &&
  5302. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5303. // copy by rows
  5304. const size_t rs = ne00*nb00;
  5305. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5306. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5307. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5308. memcpy(
  5309. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5310. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5311. rs);
  5312. }
  5313. }
  5314. }
  5315. return;
  5316. }
  5317. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5318. if (ggml_is_contiguous(dst)) {
  5319. if (nb00 == sizeof(ggml_fp16_t)) {
  5320. if (dst->type == GGML_TYPE_F16) {
  5321. size_t id = 0;
  5322. const size_t rs = ne00 * nb00;
  5323. char * dst_ptr = (char *) dst->data;
  5324. for (int i03 = 0; i03 < ne03; i03++) {
  5325. for (int i02 = 0; i02 < ne02; i02++) {
  5326. id += rs * ir0;
  5327. for (int i01 = ir0; i01 < ir1; i01++) {
  5328. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5329. memcpy(dst_ptr + id, src0_ptr, rs);
  5330. id += rs;
  5331. }
  5332. id += rs * (ne01 - ir1);
  5333. }
  5334. }
  5335. } else if (dst->type == GGML_TYPE_F32) {
  5336. size_t id = 0;
  5337. float * dst_ptr = (float *) dst->data;
  5338. for (int i03 = 0; i03 < ne03; i03++) {
  5339. for (int i02 = 0; i02 < ne02; i02++) {
  5340. id += ne00 * ir0;
  5341. for (int i01 = ir0; i01 < ir1; i01++) {
  5342. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5343. for (int i00 = 0; i00 < ne00; i00++) {
  5344. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5345. id++;
  5346. }
  5347. }
  5348. id += ne00 * (ne01 - ir1);
  5349. }
  5350. }
  5351. } else if (ggml_is_quantized(dst->type)) {
  5352. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5353. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5354. size_t id = 0;
  5355. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5356. char * dst_ptr = (char *) dst->data;
  5357. for (int i03 = 0; i03 < ne03; i03++) {
  5358. for (int i02 = 0; i02 < ne02; i02++) {
  5359. id += rs * ir0;
  5360. for (int i01 = ir0; i01 < ir1; i01++) {
  5361. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5362. for (int i00 = 0; i00 < ne00; i00++) {
  5363. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5364. }
  5365. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5366. id += rs;
  5367. }
  5368. id += rs * (ne01 - ir1);
  5369. }
  5370. }
  5371. } else {
  5372. GGML_ASSERT(false); // TODO: implement
  5373. }
  5374. } else {
  5375. //printf("%s: this is not optimal - fix me\n", __func__);
  5376. if (dst->type == GGML_TYPE_F32) {
  5377. size_t id = 0;
  5378. float * dst_ptr = (float *) dst->data;
  5379. for (int i03 = 0; i03 < ne03; i03++) {
  5380. for (int i02 = 0; i02 < ne02; i02++) {
  5381. id += ne00 * ir0;
  5382. for (int i01 = ir0; i01 < ir1; i01++) {
  5383. for (int i00 = 0; i00 < ne00; i00++) {
  5384. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5385. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5386. id++;
  5387. }
  5388. }
  5389. id += ne00 * (ne01 - ir1);
  5390. }
  5391. }
  5392. } else if (dst->type == GGML_TYPE_F16) {
  5393. size_t id = 0;
  5394. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5395. for (int i03 = 0; i03 < ne03; i03++) {
  5396. for (int i02 = 0; i02 < ne02; i02++) {
  5397. id += ne00 * ir0;
  5398. for (int i01 = ir0; i01 < ir1; i01++) {
  5399. for (int i00 = 0; i00 < ne00; i00++) {
  5400. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5401. dst_ptr[id] = *src0_ptr;
  5402. id++;
  5403. }
  5404. }
  5405. id += ne00 * (ne01 - ir1);
  5406. }
  5407. }
  5408. } else {
  5409. GGML_ASSERT(false); // TODO: implement
  5410. }
  5411. }
  5412. return;
  5413. }
  5414. // dst counters
  5415. int64_t i10 = 0;
  5416. int64_t i11 = 0;
  5417. int64_t i12 = 0;
  5418. int64_t i13 = 0;
  5419. if (dst->type == GGML_TYPE_F16) {
  5420. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5421. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5422. i10 += ne00 * ir0;
  5423. while (i10 >= ne0) {
  5424. i10 -= ne0;
  5425. if (++i11 == ne1) {
  5426. i11 = 0;
  5427. if (++i12 == ne2) {
  5428. i12 = 0;
  5429. if (++i13 == ne3) {
  5430. i13 = 0;
  5431. }
  5432. }
  5433. }
  5434. }
  5435. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5436. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5437. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5438. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5439. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5440. if (++i10 == ne00) {
  5441. i10 = 0;
  5442. if (++i11 == ne01) {
  5443. i11 = 0;
  5444. if (++i12 == ne02) {
  5445. i12 = 0;
  5446. if (++i13 == ne03) {
  5447. i13 = 0;
  5448. }
  5449. }
  5450. }
  5451. }
  5452. }
  5453. }
  5454. i10 += ne00 * (ne01 - ir1);
  5455. while (i10 >= ne0) {
  5456. i10 -= ne0;
  5457. if (++i11 == ne1) {
  5458. i11 = 0;
  5459. if (++i12 == ne2) {
  5460. i12 = 0;
  5461. if (++i13 == ne3) {
  5462. i13 = 0;
  5463. }
  5464. }
  5465. }
  5466. }
  5467. }
  5468. }
  5469. } else if (dst->type == GGML_TYPE_F32) {
  5470. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5471. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5472. i10 += ne00 * ir0;
  5473. while (i10 >= ne0) {
  5474. i10 -= ne0;
  5475. if (++i11 == ne1) {
  5476. i11 = 0;
  5477. if (++i12 == ne2) {
  5478. i12 = 0;
  5479. if (++i13 == ne3) {
  5480. i13 = 0;
  5481. }
  5482. }
  5483. }
  5484. }
  5485. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5486. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5487. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5488. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5489. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5490. if (++i10 == ne0) {
  5491. i10 = 0;
  5492. if (++i11 == ne1) {
  5493. i11 = 0;
  5494. if (++i12 == ne2) {
  5495. i12 = 0;
  5496. if (++i13 == ne3) {
  5497. i13 = 0;
  5498. }
  5499. }
  5500. }
  5501. }
  5502. }
  5503. }
  5504. i10 += ne00 * (ne01 - ir1);
  5505. while (i10 >= ne0) {
  5506. i10 -= ne0;
  5507. if (++i11 == ne1) {
  5508. i11 = 0;
  5509. if (++i12 == ne2) {
  5510. i12 = 0;
  5511. if (++i13 == ne3) {
  5512. i13 = 0;
  5513. }
  5514. }
  5515. }
  5516. }
  5517. }
  5518. }
  5519. } else {
  5520. GGML_ASSERT(false); // TODO: implement
  5521. }
  5522. }
  5523. static void ggml_compute_forward_dup_f32(
  5524. const struct ggml_compute_params * params,
  5525. const struct ggml_tensor * src0,
  5526. struct ggml_tensor * dst) {
  5527. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5528. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5529. return;
  5530. }
  5531. const int64_t ne00 = src0->ne[0];
  5532. const int64_t ne01 = src0->ne[1];
  5533. const int64_t ne02 = src0->ne[2];
  5534. const int64_t ne03 = src0->ne[3];
  5535. const int64_t ne0 = dst->ne[0];
  5536. const int64_t ne1 = dst->ne[1];
  5537. const int64_t ne2 = dst->ne[2];
  5538. const int64_t ne3 = dst->ne[3];
  5539. const size_t nb00 = src0->nb[0];
  5540. const size_t nb01 = src0->nb[1];
  5541. const size_t nb02 = src0->nb[2];
  5542. const size_t nb03 = src0->nb[3];
  5543. const size_t nb0 = dst->nb[0];
  5544. const size_t nb1 = dst->nb[1];
  5545. const size_t nb2 = dst->nb[2];
  5546. const size_t nb3 = dst->nb[3];
  5547. const int ith = params->ith; // thread index
  5548. const int nth = params->nth; // number of threads
  5549. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5550. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5551. return;
  5552. }
  5553. // parallelize by rows
  5554. const int nr = ne01;
  5555. // number of rows per thread
  5556. const int dr = (nr + nth - 1) / nth;
  5557. // row range for this thread
  5558. const int ir0 = dr * ith;
  5559. const int ir1 = MIN(ir0 + dr, nr);
  5560. if (src0->type == dst->type &&
  5561. ne00 == ne0 &&
  5562. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5563. // copy by rows
  5564. const size_t rs = ne00*nb00;
  5565. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5566. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5567. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5568. memcpy(
  5569. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5570. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5571. rs);
  5572. }
  5573. }
  5574. }
  5575. return;
  5576. }
  5577. if (ggml_is_contiguous(dst)) {
  5578. // TODO: simplify
  5579. if (nb00 == sizeof(float)) {
  5580. if (dst->type == GGML_TYPE_F32) {
  5581. size_t id = 0;
  5582. const size_t rs = ne00 * nb00;
  5583. char * dst_ptr = (char *) dst->data;
  5584. for (int i03 = 0; i03 < ne03; i03++) {
  5585. for (int i02 = 0; i02 < ne02; i02++) {
  5586. id += rs * ir0;
  5587. for (int i01 = ir0; i01 < ir1; i01++) {
  5588. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5589. memcpy(dst_ptr + id, src0_ptr, rs);
  5590. id += rs;
  5591. }
  5592. id += rs * (ne01 - ir1);
  5593. }
  5594. }
  5595. } else if (dst->type == GGML_TYPE_F16) {
  5596. size_t id = 0;
  5597. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5598. for (int i03 = 0; i03 < ne03; i03++) {
  5599. for (int i02 = 0; i02 < ne02; i02++) {
  5600. id += ne00 * ir0;
  5601. for (int i01 = ir0; i01 < ir1; i01++) {
  5602. for (int i00 = 0; i00 < ne00; i00++) {
  5603. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5604. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5605. id++;
  5606. }
  5607. }
  5608. id += ne00 * (ne01 - ir1);
  5609. }
  5610. }
  5611. } else if (ggml_is_quantized(dst->type)) {
  5612. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5613. size_t id = 0;
  5614. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5615. char * dst_ptr = (char *) dst->data;
  5616. for (int i03 = 0; i03 < ne03; i03++) {
  5617. for (int i02 = 0; i02 < ne02; i02++) {
  5618. id += rs * ir0;
  5619. for (int i01 = ir0; i01 < ir1; i01++) {
  5620. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5621. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5622. id += rs;
  5623. }
  5624. id += rs * (ne01 - ir1);
  5625. }
  5626. }
  5627. } else {
  5628. GGML_ASSERT(false); // TODO: implement
  5629. }
  5630. } else {
  5631. //printf("%s: this is not optimal - fix me\n", __func__);
  5632. if (dst->type == GGML_TYPE_F32) {
  5633. size_t id = 0;
  5634. float * dst_ptr = (float *) dst->data;
  5635. for (int i03 = 0; i03 < ne03; i03++) {
  5636. for (int i02 = 0; i02 < ne02; i02++) {
  5637. id += ne00 * ir0;
  5638. for (int i01 = ir0; i01 < ir1; i01++) {
  5639. for (int i00 = 0; i00 < ne00; i00++) {
  5640. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5641. dst_ptr[id] = *src0_ptr;
  5642. id++;
  5643. }
  5644. }
  5645. id += ne00 * (ne01 - ir1);
  5646. }
  5647. }
  5648. } else if (dst->type == GGML_TYPE_F16) {
  5649. size_t id = 0;
  5650. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5651. for (int i03 = 0; i03 < ne03; i03++) {
  5652. for (int i02 = 0; i02 < ne02; i02++) {
  5653. id += ne00 * ir0;
  5654. for (int i01 = ir0; i01 < ir1; i01++) {
  5655. for (int i00 = 0; i00 < ne00; i00++) {
  5656. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5657. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5658. id++;
  5659. }
  5660. }
  5661. id += ne00 * (ne01 - ir1);
  5662. }
  5663. }
  5664. } else {
  5665. GGML_ASSERT(false); // TODO: implement
  5666. }
  5667. }
  5668. return;
  5669. }
  5670. // dst counters
  5671. int64_t i10 = 0;
  5672. int64_t i11 = 0;
  5673. int64_t i12 = 0;
  5674. int64_t i13 = 0;
  5675. if (dst->type == GGML_TYPE_F32) {
  5676. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5677. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5678. i10 += ne00 * ir0;
  5679. while (i10 >= ne0) {
  5680. i10 -= ne0;
  5681. if (++i11 == ne1) {
  5682. i11 = 0;
  5683. if (++i12 == ne2) {
  5684. i12 = 0;
  5685. if (++i13 == ne3) {
  5686. i13 = 0;
  5687. }
  5688. }
  5689. }
  5690. }
  5691. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5692. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5693. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5694. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5695. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5696. if (++i10 == ne0) {
  5697. i10 = 0;
  5698. if (++i11 == ne1) {
  5699. i11 = 0;
  5700. if (++i12 == ne2) {
  5701. i12 = 0;
  5702. if (++i13 == ne3) {
  5703. i13 = 0;
  5704. }
  5705. }
  5706. }
  5707. }
  5708. }
  5709. }
  5710. i10 += ne00 * (ne01 - ir1);
  5711. while (i10 >= ne0) {
  5712. i10 -= ne0;
  5713. if (++i11 == ne1) {
  5714. i11 = 0;
  5715. if (++i12 == ne2) {
  5716. i12 = 0;
  5717. if (++i13 == ne3) {
  5718. i13 = 0;
  5719. }
  5720. }
  5721. }
  5722. }
  5723. }
  5724. }
  5725. } else if (dst->type == GGML_TYPE_F16) {
  5726. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5727. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5728. i10 += ne00 * ir0;
  5729. while (i10 >= ne0) {
  5730. i10 -= ne0;
  5731. if (++i11 == ne1) {
  5732. i11 = 0;
  5733. if (++i12 == ne2) {
  5734. i12 = 0;
  5735. if (++i13 == ne3) {
  5736. i13 = 0;
  5737. }
  5738. }
  5739. }
  5740. }
  5741. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5742. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5743. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5744. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5745. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5746. if (++i10 == ne0) {
  5747. i10 = 0;
  5748. if (++i11 == ne1) {
  5749. i11 = 0;
  5750. if (++i12 == ne2) {
  5751. i12 = 0;
  5752. if (++i13 == ne3) {
  5753. i13 = 0;
  5754. }
  5755. }
  5756. }
  5757. }
  5758. }
  5759. }
  5760. i10 += ne00 * (ne01 - ir1);
  5761. while (i10 >= ne0) {
  5762. i10 -= ne0;
  5763. if (++i11 == ne1) {
  5764. i11 = 0;
  5765. if (++i12 == ne2) {
  5766. i12 = 0;
  5767. if (++i13 == ne3) {
  5768. i13 = 0;
  5769. }
  5770. }
  5771. }
  5772. }
  5773. }
  5774. }
  5775. } else {
  5776. GGML_ASSERT(false); // TODO: implement
  5777. }
  5778. }
  5779. static void ggml_compute_forward_dup(
  5780. const struct ggml_compute_params * params,
  5781. const struct ggml_tensor * src0,
  5782. struct ggml_tensor * dst) {
  5783. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5784. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5785. return;
  5786. }
  5787. switch (src0->type) {
  5788. case GGML_TYPE_F16:
  5789. {
  5790. ggml_compute_forward_dup_f16(params, src0, dst);
  5791. } break;
  5792. case GGML_TYPE_F32:
  5793. {
  5794. ggml_compute_forward_dup_f32(params, src0, dst);
  5795. } break;
  5796. default:
  5797. {
  5798. GGML_ASSERT(false);
  5799. } break;
  5800. }
  5801. }
  5802. // ggml_compute_forward_add
  5803. static void ggml_compute_forward_add_f32(
  5804. const struct ggml_compute_params * params,
  5805. const struct ggml_tensor * src0,
  5806. const struct ggml_tensor * src1,
  5807. struct ggml_tensor * dst) {
  5808. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5809. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5810. return;
  5811. }
  5812. const int ith = params->ith;
  5813. const int nth = params->nth;
  5814. const int nr = ggml_nrows(src0);
  5815. const int64_t ne0 = src0->ne[0];
  5816. const int64_t ne1 = src0->ne[1];
  5817. const int64_t ne2 = src0->ne[2];
  5818. const size_t nb00 = src0->nb[0];
  5819. const size_t nb01 = src0->nb[1];
  5820. const size_t nb02 = src0->nb[2];
  5821. const size_t nb03 = src0->nb[3];
  5822. const size_t nb10 = src1->nb[0];
  5823. const size_t nb11 = src1->nb[1];
  5824. const size_t nb12 = src1->nb[2];
  5825. const size_t nb13 = src1->nb[3];
  5826. const size_t nb0 = dst->nb[0];
  5827. const size_t nb1 = dst->nb[1];
  5828. const size_t nb2 = dst->nb[2];
  5829. const size_t nb3 = dst->nb[3];
  5830. GGML_ASSERT( nb0 == sizeof(float));
  5831. GGML_ASSERT(nb00 == sizeof(float));
  5832. // rows per thread
  5833. const int dr = (nr + nth - 1)/nth;
  5834. // row range for this thread
  5835. const int ir0 = dr*ith;
  5836. const int ir1 = MIN(ir0 + dr, nr);
  5837. if (nb10 == sizeof(float)) {
  5838. for (int ir = ir0; ir < ir1; ++ir) {
  5839. // src0, src1 and dst are same shape => same indices
  5840. const int i3 = ir/(ne2*ne1);
  5841. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5842. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5843. #ifdef GGML_USE_ACCELERATE
  5844. vDSP_vadd(
  5845. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5846. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5847. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5848. ne0);
  5849. #else
  5850. ggml_vec_add_f32(ne0,
  5851. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5852. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5853. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5854. #endif
  5855. // }
  5856. // }
  5857. }
  5858. } else {
  5859. // src1 is not contiguous
  5860. for (int ir = ir0; ir < ir1; ++ir) {
  5861. // src0, src1 and dst are same shape => same indices
  5862. const int i3 = ir/(ne2*ne1);
  5863. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5864. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5865. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5866. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5867. for (int i0 = 0; i0 < ne0; i0++) {
  5868. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5869. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5870. }
  5871. }
  5872. }
  5873. }
  5874. static void ggml_compute_forward_add_f16_f32(
  5875. const struct ggml_compute_params * params,
  5876. const struct ggml_tensor * src0,
  5877. const struct ggml_tensor * src1,
  5878. struct ggml_tensor * dst) {
  5879. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5881. return;
  5882. }
  5883. const int ith = params->ith;
  5884. const int nth = params->nth;
  5885. const int nr = ggml_nrows(src0);
  5886. const int64_t ne0 = src0->ne[0];
  5887. const int64_t ne1 = src0->ne[1];
  5888. const int64_t ne2 = src0->ne[2];
  5889. const size_t nb00 = src0->nb[0];
  5890. const size_t nb01 = src0->nb[1];
  5891. const size_t nb02 = src0->nb[2];
  5892. const size_t nb03 = src0->nb[3];
  5893. const size_t nb10 = src1->nb[0];
  5894. const size_t nb11 = src1->nb[1];
  5895. const size_t nb12 = src1->nb[2];
  5896. const size_t nb13 = src1->nb[3];
  5897. const size_t nb0 = dst->nb[0];
  5898. const size_t nb1 = dst->nb[1];
  5899. const size_t nb2 = dst->nb[2];
  5900. const size_t nb3 = dst->nb[3];
  5901. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5902. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5903. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5904. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5905. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5906. // rows per thread
  5907. const int dr = (nr + nth - 1)/nth;
  5908. // row range for this thread
  5909. const int ir0 = dr*ith;
  5910. const int ir1 = MIN(ir0 + dr, nr);
  5911. if (nb10 == sizeof(float)) {
  5912. for (int ir = ir0; ir < ir1; ++ir) {
  5913. // src0, src1 and dst are same shape => same indices
  5914. const int i3 = ir/(ne2*ne1);
  5915. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5916. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5917. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5918. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5919. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5920. for (int i = 0; i < ne0; i++) {
  5921. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5922. }
  5923. }
  5924. }
  5925. else {
  5926. // src1 is not contiguous
  5927. GGML_ASSERT(false);
  5928. }
  5929. }
  5930. static void ggml_compute_forward_add_f16_f16(
  5931. const struct ggml_compute_params * params,
  5932. const struct ggml_tensor * src0,
  5933. const struct ggml_tensor * src1,
  5934. struct ggml_tensor * dst) {
  5935. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5937. return;
  5938. }
  5939. const int ith = params->ith;
  5940. const int nth = params->nth;
  5941. const int nr = ggml_nrows(src0);
  5942. const int64_t ne0 = src0->ne[0];
  5943. const int64_t ne1 = src0->ne[1];
  5944. const int64_t ne2 = src0->ne[2];
  5945. const size_t nb00 = src0->nb[0];
  5946. const size_t nb01 = src0->nb[1];
  5947. const size_t nb02 = src0->nb[2];
  5948. const size_t nb03 = src0->nb[3];
  5949. const size_t nb10 = src1->nb[0];
  5950. const size_t nb11 = src1->nb[1];
  5951. const size_t nb12 = src1->nb[2];
  5952. const size_t nb13 = src1->nb[3];
  5953. const size_t nb0 = dst->nb[0];
  5954. const size_t nb1 = dst->nb[1];
  5955. const size_t nb2 = dst->nb[2];
  5956. const size_t nb3 = dst->nb[3];
  5957. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5958. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5959. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5960. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5961. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5962. // rows per thread
  5963. const int dr = (nr + nth - 1)/nth;
  5964. // row range for this thread
  5965. const int ir0 = dr*ith;
  5966. const int ir1 = MIN(ir0 + dr, nr);
  5967. if (nb10 == sizeof(ggml_fp16_t)) {
  5968. for (int ir = ir0; ir < ir1; ++ir) {
  5969. // src0, src1 and dst are same shape => same indices
  5970. const int i3 = ir/(ne2*ne1);
  5971. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5972. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5973. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5974. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5975. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5976. for (int i = 0; i < ne0; i++) {
  5977. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5978. }
  5979. }
  5980. }
  5981. else {
  5982. // src1 is not contiguous
  5983. GGML_ASSERT(false);
  5984. }
  5985. }
  5986. static void ggml_compute_forward_add_q_f32(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. const struct ggml_tensor * src1,
  5990. struct ggml_tensor * dst) {
  5991. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5993. return;
  5994. }
  5995. const int nr = ggml_nrows(src0);
  5996. const int64_t ne00 = src0->ne[0];
  5997. const int64_t ne01 = src0->ne[1];
  5998. const int64_t ne02 = src0->ne[2];
  5999. //const int64_t ne03 = src0->ne[3];
  6000. const size_t nb00 = src0->nb[0];
  6001. const size_t nb01 = src0->nb[1];
  6002. const size_t nb02 = src0->nb[2];
  6003. const size_t nb03 = src0->nb[3];
  6004. const size_t nb10 = src1->nb[0];
  6005. const size_t nb11 = src1->nb[1];
  6006. const size_t nb12 = src1->nb[2];
  6007. const size_t nb13 = src1->nb[3];
  6008. const size_t nb0 = dst->nb[0];
  6009. const size_t nb1 = dst->nb[1];
  6010. const size_t nb2 = dst->nb[2];
  6011. const size_t nb3 = dst->nb[3];
  6012. const int ith = params->ith;
  6013. const int nth = params->nth;
  6014. const enum ggml_type type = src0->type;
  6015. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6016. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6017. // we don't support permuted src0 or src1
  6018. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6019. GGML_ASSERT(nb10 == sizeof(float));
  6020. // dst cannot be transposed or permuted
  6021. GGML_ASSERT(nb0 <= nb1);
  6022. GGML_ASSERT(nb1 <= nb2);
  6023. GGML_ASSERT(nb2 <= nb3);
  6024. GGML_ASSERT(ggml_is_quantized(src0->type));
  6025. GGML_ASSERT(dst->type == src0->type);
  6026. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6027. // rows per thread
  6028. const int dr = (nr + nth - 1)/nth;
  6029. // row range for this thread
  6030. const int ir0 = dr*ith;
  6031. const int ir1 = MIN(ir0 + dr, nr);
  6032. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6033. for (int ir = ir0; ir < ir1; ++ir) {
  6034. // src0 indices
  6035. const int i03 = ir/(ne02*ne01);
  6036. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6037. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6038. // src1 and dst are same shape as src0 => same indices
  6039. const int i13 = i03;
  6040. const int i12 = i02;
  6041. const int i11 = i01;
  6042. const int i3 = i03;
  6043. const int i2 = i02;
  6044. const int i1 = i01;
  6045. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6046. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6047. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6048. assert(ne00 % 32 == 0);
  6049. // unquantize row from src0 to temp buffer
  6050. dequantize_row_q(src0_row, wdata, ne00);
  6051. // add src1
  6052. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6053. // quantize row to dst
  6054. quantize_row_q(wdata, dst_row, ne00);
  6055. }
  6056. }
  6057. static void ggml_compute_forward_add(
  6058. const struct ggml_compute_params * params,
  6059. const struct ggml_tensor * src0,
  6060. const struct ggml_tensor * src1,
  6061. struct ggml_tensor * dst) {
  6062. switch (src0->type) {
  6063. case GGML_TYPE_F32:
  6064. {
  6065. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6066. } break;
  6067. case GGML_TYPE_F16:
  6068. {
  6069. if (src1->type == GGML_TYPE_F16) {
  6070. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6071. }
  6072. else if (src1->type == GGML_TYPE_F32) {
  6073. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6074. }
  6075. else {
  6076. GGML_ASSERT(false);
  6077. }
  6078. } break;
  6079. case GGML_TYPE_Q4_0:
  6080. case GGML_TYPE_Q4_1:
  6081. case GGML_TYPE_Q5_0:
  6082. case GGML_TYPE_Q5_1:
  6083. case GGML_TYPE_Q8_0:
  6084. {
  6085. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6086. } break;
  6087. default:
  6088. {
  6089. GGML_ASSERT(false);
  6090. } break;
  6091. }
  6092. }
  6093. // ggml_compute_forward_add1
  6094. static void ggml_compute_forward_add1_f32(
  6095. const struct ggml_compute_params * params,
  6096. const struct ggml_tensor * src0,
  6097. const struct ggml_tensor * src1,
  6098. struct ggml_tensor * dst) {
  6099. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6100. GGML_ASSERT(ggml_is_scalar(src1));
  6101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6102. return;
  6103. }
  6104. const int ith = params->ith;
  6105. const int nth = params->nth;
  6106. const int nr = ggml_nrows(src0);
  6107. const int64_t ne0 = src0->ne[0];
  6108. const int64_t ne1 = src0->ne[1];
  6109. const int64_t ne2 = src0->ne[2];
  6110. const size_t nb00 = src0->nb[0];
  6111. const size_t nb01 = src0->nb[1];
  6112. const size_t nb02 = src0->nb[2];
  6113. const size_t nb03 = src0->nb[3];
  6114. const size_t nb0 = dst->nb[0];
  6115. const size_t nb1 = dst->nb[1];
  6116. const size_t nb2 = dst->nb[2];
  6117. const size_t nb3 = dst->nb[3];
  6118. GGML_ASSERT( nb0 == sizeof(float));
  6119. GGML_ASSERT(nb00 == sizeof(float));
  6120. // rows per thread
  6121. const int dr = (nr + nth - 1)/nth;
  6122. // row range for this thread
  6123. const int ir0 = dr*ith;
  6124. const int ir1 = MIN(ir0 + dr, nr);
  6125. for (int ir = ir0; ir < ir1; ++ir) {
  6126. // src0 and dst are same shape => same indices
  6127. const int i3 = ir/(ne2*ne1);
  6128. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6129. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6130. #ifdef GGML_USE_ACCELERATE
  6131. UNUSED(ggml_vec_add1_f32);
  6132. vDSP_vadd(
  6133. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6134. (float *) ((char *) src1->data), 0,
  6135. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6136. ne0);
  6137. #else
  6138. ggml_vec_add1_f32(ne0,
  6139. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6140. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6141. *(float *) src1->data);
  6142. #endif
  6143. }
  6144. }
  6145. static void ggml_compute_forward_add1_f16_f32(
  6146. const struct ggml_compute_params * params,
  6147. const struct ggml_tensor * src0,
  6148. const struct ggml_tensor * src1,
  6149. struct ggml_tensor * dst) {
  6150. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6151. GGML_ASSERT(ggml_is_scalar(src1));
  6152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6153. return;
  6154. }
  6155. // scalar to add
  6156. const float v = *(float *) src1->data;
  6157. const int ith = params->ith;
  6158. const int nth = params->nth;
  6159. const int nr = ggml_nrows(src0);
  6160. const int64_t ne0 = src0->ne[0];
  6161. const int64_t ne1 = src0->ne[1];
  6162. const int64_t ne2 = src0->ne[2];
  6163. const size_t nb00 = src0->nb[0];
  6164. const size_t nb01 = src0->nb[1];
  6165. const size_t nb02 = src0->nb[2];
  6166. const size_t nb03 = src0->nb[3];
  6167. const size_t nb0 = dst->nb[0];
  6168. const size_t nb1 = dst->nb[1];
  6169. const size_t nb2 = dst->nb[2];
  6170. const size_t nb3 = dst->nb[3];
  6171. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6172. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6173. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6174. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6175. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6176. // rows per thread
  6177. const int dr = (nr + nth - 1)/nth;
  6178. // row range for this thread
  6179. const int ir0 = dr*ith;
  6180. const int ir1 = MIN(ir0 + dr, nr);
  6181. for (int ir = ir0; ir < ir1; ++ir) {
  6182. // src0 and dst are same shape => same indices
  6183. const int i3 = ir/(ne2*ne1);
  6184. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6185. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6186. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6187. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6188. for (int i = 0; i < ne0; i++) {
  6189. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6190. }
  6191. }
  6192. }
  6193. static void ggml_compute_forward_add1_f16_f16(
  6194. const struct ggml_compute_params * params,
  6195. const struct ggml_tensor * src0,
  6196. const struct ggml_tensor * src1,
  6197. struct ggml_tensor * dst) {
  6198. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6199. GGML_ASSERT(ggml_is_scalar(src1));
  6200. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6201. return;
  6202. }
  6203. // scalar to add
  6204. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6205. const int ith = params->ith;
  6206. const int nth = params->nth;
  6207. const int nr = ggml_nrows(src0);
  6208. const int64_t ne0 = src0->ne[0];
  6209. const int64_t ne1 = src0->ne[1];
  6210. const int64_t ne2 = src0->ne[2];
  6211. const size_t nb00 = src0->nb[0];
  6212. const size_t nb01 = src0->nb[1];
  6213. const size_t nb02 = src0->nb[2];
  6214. const size_t nb03 = src0->nb[3];
  6215. const size_t nb0 = dst->nb[0];
  6216. const size_t nb1 = dst->nb[1];
  6217. const size_t nb2 = dst->nb[2];
  6218. const size_t nb3 = dst->nb[3];
  6219. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6220. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6221. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6222. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6223. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6224. // rows per thread
  6225. const int dr = (nr + nth - 1)/nth;
  6226. // row range for this thread
  6227. const int ir0 = dr*ith;
  6228. const int ir1 = MIN(ir0 + dr, nr);
  6229. for (int ir = ir0; ir < ir1; ++ir) {
  6230. // src0 and dst are same shape => same indices
  6231. const int i3 = ir/(ne2*ne1);
  6232. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6233. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6234. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6235. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6236. for (int i = 0; i < ne0; i++) {
  6237. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6238. }
  6239. }
  6240. }
  6241. static void ggml_compute_forward_add1_q_f32(
  6242. const struct ggml_compute_params * params,
  6243. const struct ggml_tensor * src0,
  6244. const struct ggml_tensor * src1,
  6245. struct ggml_tensor * dst) {
  6246. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6247. GGML_ASSERT(ggml_is_scalar(src1));
  6248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6249. return;
  6250. }
  6251. // scalar to add
  6252. const float v = *(float *) src1->data;
  6253. const int ith = params->ith;
  6254. const int nth = params->nth;
  6255. const int nr = ggml_nrows(src0);
  6256. const int64_t ne0 = src0->ne[0];
  6257. const int64_t ne1 = src0->ne[1];
  6258. const int64_t ne2 = src0->ne[2];
  6259. const size_t nb00 = src0->nb[0];
  6260. const size_t nb01 = src0->nb[1];
  6261. const size_t nb02 = src0->nb[2];
  6262. const size_t nb03 = src0->nb[3];
  6263. const size_t nb0 = dst->nb[0];
  6264. const size_t nb1 = dst->nb[1];
  6265. const size_t nb2 = dst->nb[2];
  6266. const size_t nb3 = dst->nb[3];
  6267. const enum ggml_type type = src0->type;
  6268. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6269. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6270. // we don't support permuted src0
  6271. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6272. // dst cannot be transposed or permuted
  6273. GGML_ASSERT(nb0 <= nb1);
  6274. GGML_ASSERT(nb1 <= nb2);
  6275. GGML_ASSERT(nb2 <= nb3);
  6276. GGML_ASSERT(ggml_is_quantized(src0->type));
  6277. GGML_ASSERT(dst->type == src0->type);
  6278. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6279. // rows per thread
  6280. const int dr = (nr + nth - 1)/nth;
  6281. // row range for this thread
  6282. const int ir0 = dr*ith;
  6283. const int ir1 = MIN(ir0 + dr, nr);
  6284. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6285. for (int ir = ir0; ir < ir1; ++ir) {
  6286. // src0 and dst are same shape => same indices
  6287. const int i3 = ir/(ne2*ne1);
  6288. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6289. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6290. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6291. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6292. assert(ne0 % 32 == 0);
  6293. // unquantize row from src0 to temp buffer
  6294. dequantize_row_q(src0_row, wdata, ne0);
  6295. // add src1
  6296. ggml_vec_acc1_f32(ne0, wdata, v);
  6297. // quantize row to dst
  6298. quantize_row_q(wdata, dst_row, ne0);
  6299. }
  6300. }
  6301. static void ggml_compute_forward_add1(
  6302. const struct ggml_compute_params * params,
  6303. const struct ggml_tensor * src0,
  6304. const struct ggml_tensor * src1,
  6305. struct ggml_tensor * dst) {
  6306. switch (src0->type) {
  6307. case GGML_TYPE_F32:
  6308. {
  6309. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6310. } break;
  6311. case GGML_TYPE_F16:
  6312. {
  6313. if (src1->type == GGML_TYPE_F16) {
  6314. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6315. }
  6316. else if (src1->type == GGML_TYPE_F32) {
  6317. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6318. }
  6319. else {
  6320. GGML_ASSERT(false);
  6321. }
  6322. } break;
  6323. case GGML_TYPE_Q4_0:
  6324. case GGML_TYPE_Q4_1:
  6325. case GGML_TYPE_Q5_0:
  6326. case GGML_TYPE_Q5_1:
  6327. case GGML_TYPE_Q8_0:
  6328. case GGML_TYPE_Q8_1:
  6329. {
  6330. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6331. } break;
  6332. default:
  6333. {
  6334. GGML_ASSERT(false);
  6335. } break;
  6336. }
  6337. }
  6338. // ggml_compute_forward_acc
  6339. static void ggml_compute_forward_acc_f32(
  6340. const struct ggml_compute_params * params,
  6341. const struct ggml_tensor * src0,
  6342. const struct ggml_tensor * src1,
  6343. const struct ggml_tensor * opt0,
  6344. struct ggml_tensor * dst) {
  6345. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6346. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6347. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6348. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6349. // view src0 and dst with these strides and data offset inbytes during acc
  6350. // nb0 is implicitely element_size because src0 and dst are contiguous
  6351. size_t nb1 = ((int32_t *) opt0->data)[0];
  6352. size_t nb2 = ((int32_t *) opt0->data)[1];
  6353. size_t nb3 = ((int32_t *) opt0->data)[2];
  6354. size_t offset = ((int32_t *) opt0->data)[3];
  6355. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6356. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6357. // memcpy needs to be synchronized across threads to avoid race conditions.
  6358. // => do it in INIT phase
  6359. memcpy(
  6360. ((char *) dst->data),
  6361. ((char *) src0->data),
  6362. ggml_nbytes(dst));
  6363. }
  6364. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6365. return;
  6366. }
  6367. const int ith = params->ith;
  6368. const int nth = params->nth;
  6369. const int nr = ggml_nrows(src1);
  6370. const int nc = src1->ne[0];
  6371. const int64_t ne10 = src1->ne[0];
  6372. const int64_t ne11 = src1->ne[1];
  6373. const int64_t ne12 = src1->ne[2];
  6374. const int64_t ne13 = src1->ne[3];
  6375. const size_t nb10 = src1->nb[0];
  6376. const size_t nb11 = src1->nb[1];
  6377. const size_t nb12 = src1->nb[2];
  6378. const size_t nb13 = src1->nb[3];
  6379. // src0 and dst as viewed during acc
  6380. const size_t nb0 = ggml_element_size(src0);
  6381. const size_t nb00 = nb0;
  6382. const size_t nb01 = nb1;
  6383. const size_t nb02 = nb2;
  6384. const size_t nb03 = nb3;
  6385. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6386. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6387. GGML_ASSERT(nb10 == sizeof(float));
  6388. // rows per thread
  6389. const int dr = (nr + nth - 1)/nth;
  6390. // row range for this thread
  6391. const int ir0 = dr*ith;
  6392. const int ir1 = MIN(ir0 + dr, nr);
  6393. for (int ir = ir0; ir < ir1; ++ir) {
  6394. // src0 and dst are viewed with shape of src1 and offset
  6395. // => same indices
  6396. const int i3 = ir/(ne12*ne11);
  6397. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6398. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6399. #ifdef GGML_USE_ACCELERATE
  6400. vDSP_vadd(
  6401. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6402. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6403. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6404. #else
  6405. ggml_vec_add_f32(nc,
  6406. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6407. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6408. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6409. #endif
  6410. }
  6411. }
  6412. static void ggml_compute_forward_acc(
  6413. const struct ggml_compute_params * params,
  6414. const struct ggml_tensor * src0,
  6415. const struct ggml_tensor * src1,
  6416. const struct ggml_tensor * opt0,
  6417. struct ggml_tensor * dst) {
  6418. switch (src0->type) {
  6419. case GGML_TYPE_F32:
  6420. {
  6421. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6422. } break;
  6423. case GGML_TYPE_F16:
  6424. case GGML_TYPE_Q4_0:
  6425. case GGML_TYPE_Q4_1:
  6426. case GGML_TYPE_Q5_0:
  6427. case GGML_TYPE_Q5_1:
  6428. case GGML_TYPE_Q8_0:
  6429. case GGML_TYPE_Q8_1:
  6430. default:
  6431. {
  6432. GGML_ASSERT(false);
  6433. } break;
  6434. }
  6435. }
  6436. // ggml_compute_forward_sub
  6437. static void ggml_compute_forward_sub_f32(
  6438. const struct ggml_compute_params * params,
  6439. const struct ggml_tensor * src0,
  6440. const struct ggml_tensor * src1,
  6441. struct ggml_tensor * dst) {
  6442. assert(params->ith == 0);
  6443. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6444. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6445. return;
  6446. }
  6447. const int nr = ggml_nrows(src0);
  6448. const int64_t ne0 = src0->ne[0];
  6449. const int64_t ne1 = src0->ne[1];
  6450. const int64_t ne2 = src0->ne[2];
  6451. const size_t nb00 = src0->nb[0];
  6452. const size_t nb01 = src0->nb[1];
  6453. const size_t nb02 = src0->nb[2];
  6454. const size_t nb03 = src0->nb[3];
  6455. const size_t nb10 = src1->nb[0];
  6456. const size_t nb11 = src1->nb[1];
  6457. const size_t nb12 = src1->nb[2];
  6458. const size_t nb13 = src1->nb[3];
  6459. const size_t nb0 = dst->nb[0];
  6460. const size_t nb1 = dst->nb[1];
  6461. const size_t nb2 = dst->nb[2];
  6462. const size_t nb3 = dst->nb[3];
  6463. GGML_ASSERT( nb0 == sizeof(float));
  6464. GGML_ASSERT(nb00 == sizeof(float));
  6465. if (nb10 == sizeof(float)) {
  6466. for (int ir = 0; ir < nr; ++ir) {
  6467. // src0, src1 and dst are same shape => same indices
  6468. const int i3 = ir/(ne2*ne1);
  6469. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6470. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6471. #ifdef GGML_USE_ACCELERATE
  6472. vDSP_vsub(
  6473. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6474. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6475. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6476. ne0);
  6477. #else
  6478. ggml_vec_sub_f32(ne0,
  6479. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6480. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6481. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6482. #endif
  6483. // }
  6484. // }
  6485. }
  6486. } else {
  6487. // src1 is not contiguous
  6488. for (int ir = 0; ir < nr; ++ir) {
  6489. // src0, src1 and dst are same shape => same indices
  6490. const int i3 = ir/(ne2*ne1);
  6491. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6492. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6493. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6494. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6495. for (int i0 = 0; i0 < ne0; i0++) {
  6496. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6497. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6498. }
  6499. }
  6500. }
  6501. }
  6502. static void ggml_compute_forward_sub(
  6503. const struct ggml_compute_params * params,
  6504. const struct ggml_tensor * src0,
  6505. const struct ggml_tensor * src1,
  6506. struct ggml_tensor * dst) {
  6507. switch (src0->type) {
  6508. case GGML_TYPE_F32:
  6509. {
  6510. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6511. } break;
  6512. default:
  6513. {
  6514. GGML_ASSERT(false);
  6515. } break;
  6516. }
  6517. }
  6518. // ggml_compute_forward_mul
  6519. static void ggml_compute_forward_mul_f32(
  6520. const struct ggml_compute_params * params,
  6521. const struct ggml_tensor * src0,
  6522. const struct ggml_tensor * src1,
  6523. struct ggml_tensor * dst) {
  6524. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6526. return;
  6527. }
  6528. const int ith = params->ith;
  6529. const int nth = params->nth;
  6530. #ifdef GGML_USE_CUBLAS
  6531. if (src1->backend == GGML_BACKEND_CUDA) {
  6532. if (ith == 0) {
  6533. ggml_cuda_mul(src0, src1, dst);
  6534. }
  6535. return;
  6536. }
  6537. #endif
  6538. const int64_t nr = ggml_nrows(src0);
  6539. const int64_t ne00 = src0->ne[0];
  6540. const int64_t ne01 = src0->ne[1];
  6541. const int64_t ne02 = src0->ne[2];
  6542. const int64_t ne10 = src1->ne[0];
  6543. const int64_t ne11 = src1->ne[1];
  6544. const int64_t ne12 = src1->ne[2];
  6545. const int64_t ne13 = src1->ne[3];
  6546. const size_t nb00 = src0->nb[0];
  6547. const size_t nb01 = src0->nb[1];
  6548. const size_t nb02 = src0->nb[2];
  6549. const size_t nb03 = src0->nb[3];
  6550. const size_t nb10 = src1->nb[0];
  6551. const size_t nb11 = src1->nb[1];
  6552. const size_t nb12 = src1->nb[2];
  6553. const size_t nb13 = src1->nb[3];
  6554. const size_t nb0 = dst->nb[0];
  6555. const size_t nb1 = dst->nb[1];
  6556. const size_t nb2 = dst->nb[2];
  6557. const size_t nb3 = dst->nb[3];
  6558. GGML_ASSERT( nb0 == sizeof(float));
  6559. GGML_ASSERT(nb00 == sizeof(float));
  6560. GGML_ASSERT(ne00 == ne10);
  6561. if (nb10 == sizeof(float)) {
  6562. for (int64_t ir = ith; ir < nr; ir += nth) {
  6563. // src0 and dst are same shape => same indices
  6564. const int64_t i03 = ir/(ne02*ne01);
  6565. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6566. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6567. const int64_t i13 = i03 % ne13;
  6568. const int64_t i12 = i02 % ne12;
  6569. const int64_t i11 = i01 % ne11;
  6570. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6571. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6572. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6573. #ifdef GGML_USE_ACCELERATE
  6574. UNUSED(ggml_vec_mul_f32);
  6575. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6576. #else
  6577. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6578. #endif
  6579. // }
  6580. // }
  6581. }
  6582. } else {
  6583. // src1 is not contiguous
  6584. for (int64_t ir = ith; ir < nr; ir += nth) {
  6585. // src0 and dst are same shape => same indices
  6586. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6587. const int64_t i03 = ir/(ne02*ne01);
  6588. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6589. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6590. const int64_t i13 = i03 % ne13;
  6591. const int64_t i12 = i02 % ne12;
  6592. const int64_t i11 = i01 % ne11;
  6593. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6594. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6595. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6596. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6597. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6598. }
  6599. }
  6600. }
  6601. }
  6602. static void ggml_compute_forward_mul(
  6603. const struct ggml_compute_params * params,
  6604. const struct ggml_tensor * src0,
  6605. const struct ggml_tensor * src1,
  6606. struct ggml_tensor * dst) {
  6607. switch (src0->type) {
  6608. case GGML_TYPE_F32:
  6609. {
  6610. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6611. } break;
  6612. default:
  6613. {
  6614. GGML_ASSERT(false);
  6615. } break;
  6616. }
  6617. }
  6618. // ggml_compute_forward_div
  6619. static void ggml_compute_forward_div_f32(
  6620. const struct ggml_compute_params * params,
  6621. const struct ggml_tensor * src0,
  6622. const struct ggml_tensor * src1,
  6623. struct ggml_tensor * dst) {
  6624. assert(params->ith == 0);
  6625. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6627. return;
  6628. }
  6629. const int nr = ggml_nrows(src0);
  6630. const int64_t ne0 = src0->ne[0];
  6631. const int64_t ne1 = src0->ne[1];
  6632. const int64_t ne2 = src0->ne[2];
  6633. const size_t nb00 = src0->nb[0];
  6634. const size_t nb01 = src0->nb[1];
  6635. const size_t nb02 = src0->nb[2];
  6636. const size_t nb03 = src0->nb[3];
  6637. const size_t nb10 = src1->nb[0];
  6638. const size_t nb11 = src1->nb[1];
  6639. const size_t nb12 = src1->nb[2];
  6640. const size_t nb13 = src1->nb[3];
  6641. const size_t nb0 = dst->nb[0];
  6642. const size_t nb1 = dst->nb[1];
  6643. const size_t nb2 = dst->nb[2];
  6644. const size_t nb3 = dst->nb[3];
  6645. GGML_ASSERT( nb0 == sizeof(float));
  6646. GGML_ASSERT(nb00 == sizeof(float));
  6647. if (nb10 == sizeof(float)) {
  6648. for (int ir = 0; ir < nr; ++ir) {
  6649. // src0, src1 and dst are same shape => same indices
  6650. const int i3 = ir/(ne2*ne1);
  6651. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6652. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6653. #ifdef GGML_USE_ACCELERATE
  6654. vDSP_vdiv(
  6655. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6656. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6657. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6658. ne0);
  6659. #else
  6660. ggml_vec_div_f32(ne0,
  6661. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6662. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6663. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6664. #endif
  6665. // }
  6666. // }
  6667. }
  6668. } else {
  6669. // src1 is not contiguous
  6670. for (int ir = 0; ir < nr; ++ir) {
  6671. // src0, src1 and dst are same shape => same indices
  6672. const int i3 = ir/(ne2*ne1);
  6673. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6674. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6675. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6676. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6677. for (int i0 = 0; i0 < ne0; i0++) {
  6678. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6679. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6680. }
  6681. }
  6682. }
  6683. }
  6684. static void ggml_compute_forward_div(
  6685. const struct ggml_compute_params * params,
  6686. const struct ggml_tensor * src0,
  6687. const struct ggml_tensor * src1,
  6688. struct ggml_tensor * dst) {
  6689. switch (src0->type) {
  6690. case GGML_TYPE_F32:
  6691. {
  6692. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6693. } break;
  6694. default:
  6695. {
  6696. GGML_ASSERT(false);
  6697. } break;
  6698. }
  6699. }
  6700. // ggml_compute_forward_sqr
  6701. static void ggml_compute_forward_sqr_f32(
  6702. const struct ggml_compute_params * params,
  6703. const struct ggml_tensor * src0,
  6704. struct ggml_tensor * dst) {
  6705. assert(params->ith == 0);
  6706. assert(ggml_are_same_shape(src0, dst));
  6707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6708. return;
  6709. }
  6710. const int n = ggml_nrows(src0);
  6711. const int nc = src0->ne[0];
  6712. assert( dst->nb[0] == sizeof(float));
  6713. assert(src0->nb[0] == sizeof(float));
  6714. for (int i = 0; i < n; i++) {
  6715. ggml_vec_sqr_f32(nc,
  6716. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6717. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6718. }
  6719. }
  6720. static void ggml_compute_forward_sqr(
  6721. const struct ggml_compute_params * params,
  6722. const struct ggml_tensor * src0,
  6723. struct ggml_tensor * dst) {
  6724. switch (src0->type) {
  6725. case GGML_TYPE_F32:
  6726. {
  6727. ggml_compute_forward_sqr_f32(params, src0, dst);
  6728. } break;
  6729. default:
  6730. {
  6731. GGML_ASSERT(false);
  6732. } break;
  6733. }
  6734. }
  6735. // ggml_compute_forward_sqrt
  6736. static void ggml_compute_forward_sqrt_f32(
  6737. const struct ggml_compute_params * params,
  6738. const struct ggml_tensor * src0,
  6739. struct ggml_tensor * dst) {
  6740. assert(params->ith == 0);
  6741. assert(ggml_are_same_shape(src0, dst));
  6742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6743. return;
  6744. }
  6745. const int n = ggml_nrows(src0);
  6746. const int nc = src0->ne[0];
  6747. assert( dst->nb[0] == sizeof(float));
  6748. assert(src0->nb[0] == sizeof(float));
  6749. for (int i = 0; i < n; i++) {
  6750. ggml_vec_sqrt_f32(nc,
  6751. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6752. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6753. }
  6754. }
  6755. static void ggml_compute_forward_sqrt(
  6756. const struct ggml_compute_params * params,
  6757. const struct ggml_tensor * src0,
  6758. struct ggml_tensor * dst) {
  6759. switch (src0->type) {
  6760. case GGML_TYPE_F32:
  6761. {
  6762. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6763. } break;
  6764. default:
  6765. {
  6766. GGML_ASSERT(false);
  6767. } break;
  6768. }
  6769. }
  6770. // ggml_compute_forward_log
  6771. static void ggml_compute_forward_log_f32(
  6772. const struct ggml_compute_params * params,
  6773. const struct ggml_tensor * src0,
  6774. struct ggml_tensor * dst) {
  6775. GGML_ASSERT(params->ith == 0);
  6776. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6778. return;
  6779. }
  6780. const int n = ggml_nrows(src0);
  6781. const int nc = src0->ne[0];
  6782. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6783. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6784. for (int i = 0; i < n; i++) {
  6785. ggml_vec_log_f32(nc,
  6786. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6787. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6788. }
  6789. }
  6790. static void ggml_compute_forward_log(
  6791. const struct ggml_compute_params * params,
  6792. const struct ggml_tensor * src0,
  6793. struct ggml_tensor * dst) {
  6794. switch (src0->type) {
  6795. case GGML_TYPE_F32:
  6796. {
  6797. ggml_compute_forward_log_f32(params, src0, dst);
  6798. } break;
  6799. default:
  6800. {
  6801. GGML_ASSERT(false);
  6802. } break;
  6803. }
  6804. }
  6805. // ggml_compute_forward_sum
  6806. static void ggml_compute_forward_sum_f32(
  6807. const struct ggml_compute_params * params,
  6808. const struct ggml_tensor * src0,
  6809. struct ggml_tensor * dst) {
  6810. assert(params->ith == 0);
  6811. assert(ggml_is_scalar(dst));
  6812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6813. return;
  6814. }
  6815. assert(ggml_is_scalar(dst));
  6816. assert(src0->nb[0] == sizeof(float));
  6817. const int64_t ne00 = src0->ne[0];
  6818. const int64_t ne01 = src0->ne[1];
  6819. const int64_t ne02 = src0->ne[2];
  6820. const int64_t ne03 = src0->ne[3];
  6821. const size_t nb01 = src0->nb[1];
  6822. const size_t nb02 = src0->nb[2];
  6823. const size_t nb03 = src0->nb[3];
  6824. ggml_float sum = 0;
  6825. ggml_float row_sum = 0;
  6826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6828. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6829. ggml_vec_sum_ggf(ne00,
  6830. &row_sum,
  6831. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6832. sum += row_sum;
  6833. }
  6834. }
  6835. }
  6836. ((float *) dst->data)[0] = sum;
  6837. }
  6838. static void ggml_compute_forward_sum(
  6839. const struct ggml_compute_params * params,
  6840. const struct ggml_tensor * src0,
  6841. struct ggml_tensor * dst) {
  6842. switch (src0->type) {
  6843. case GGML_TYPE_F32:
  6844. {
  6845. ggml_compute_forward_sum_f32(params, src0, dst);
  6846. } break;
  6847. default:
  6848. {
  6849. GGML_ASSERT(false);
  6850. } break;
  6851. }
  6852. }
  6853. // ggml_compute_forward_sum_rows
  6854. static void ggml_compute_forward_sum_rows_f32(
  6855. const struct ggml_compute_params * params,
  6856. const struct ggml_tensor * src0,
  6857. struct ggml_tensor * dst) {
  6858. GGML_ASSERT(params->ith == 0);
  6859. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6860. return;
  6861. }
  6862. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6863. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6864. const int64_t ne00 = src0->ne[0];
  6865. const int64_t ne01 = src0->ne[1];
  6866. const int64_t ne02 = src0->ne[2];
  6867. const int64_t ne03 = src0->ne[3];
  6868. const int64_t ne0 = dst->ne[0];
  6869. const int64_t ne1 = dst->ne[1];
  6870. const int64_t ne2 = dst->ne[2];
  6871. const int64_t ne3 = dst->ne[3];
  6872. GGML_ASSERT(ne0 == 1);
  6873. GGML_ASSERT(ne1 == ne01);
  6874. GGML_ASSERT(ne2 == ne02);
  6875. GGML_ASSERT(ne3 == ne03);
  6876. const size_t nb01 = src0->nb[1];
  6877. const size_t nb02 = src0->nb[2];
  6878. const size_t nb03 = src0->nb[3];
  6879. const size_t nb1 = dst->nb[1];
  6880. const size_t nb2 = dst->nb[2];
  6881. const size_t nb3 = dst->nb[3];
  6882. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6883. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6884. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6885. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6886. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6887. float row_sum = 0;
  6888. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6889. dst_row[0] = row_sum;
  6890. }
  6891. }
  6892. }
  6893. }
  6894. static void ggml_compute_forward_sum_rows(
  6895. const struct ggml_compute_params * params,
  6896. const struct ggml_tensor * src0,
  6897. struct ggml_tensor * dst) {
  6898. switch (src0->type) {
  6899. case GGML_TYPE_F32:
  6900. {
  6901. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6902. } break;
  6903. default:
  6904. {
  6905. GGML_ASSERT(false);
  6906. } break;
  6907. }
  6908. }
  6909. // ggml_compute_forward_mean
  6910. static void ggml_compute_forward_mean_f32(
  6911. const struct ggml_compute_params * params,
  6912. const struct ggml_tensor * src0,
  6913. struct ggml_tensor * dst) {
  6914. assert(params->ith == 0);
  6915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6916. return;
  6917. }
  6918. assert(src0->nb[0] == sizeof(float));
  6919. const int64_t ne00 = src0->ne[0];
  6920. const int64_t ne01 = src0->ne[1];
  6921. const int64_t ne02 = src0->ne[2];
  6922. const int64_t ne03 = src0->ne[3];
  6923. const size_t nb01 = src0->nb[1];
  6924. const size_t nb02 = src0->nb[2];
  6925. const size_t nb03 = src0->nb[3];
  6926. const int64_t ne0 = dst->ne[0];
  6927. const int64_t ne1 = dst->ne[1];
  6928. const int64_t ne2 = dst->ne[2];
  6929. const int64_t ne3 = dst->ne[3];
  6930. assert(ne0 == 1);
  6931. assert(ne1 == ne01);
  6932. assert(ne2 == ne02);
  6933. assert(ne3 == ne03);
  6934. UNUSED(ne0);
  6935. UNUSED(ne1);
  6936. UNUSED(ne2);
  6937. UNUSED(ne3);
  6938. const size_t nb1 = dst->nb[1];
  6939. const size_t nb2 = dst->nb[2];
  6940. const size_t nb3 = dst->nb[3];
  6941. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6942. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6943. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6944. ggml_vec_sum_f32(ne00,
  6945. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6946. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6947. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6948. }
  6949. }
  6950. }
  6951. }
  6952. static void ggml_compute_forward_mean(
  6953. const struct ggml_compute_params * params,
  6954. const struct ggml_tensor * src0,
  6955. struct ggml_tensor * dst) {
  6956. switch (src0->type) {
  6957. case GGML_TYPE_F32:
  6958. {
  6959. ggml_compute_forward_mean_f32(params, src0, dst);
  6960. } break;
  6961. default:
  6962. {
  6963. GGML_ASSERT(false);
  6964. } break;
  6965. }
  6966. }
  6967. // ggml_compute_forward_repeat
  6968. static void ggml_compute_forward_repeat_f32(
  6969. const struct ggml_compute_params * params,
  6970. const struct ggml_tensor * src0,
  6971. struct ggml_tensor * dst) {
  6972. GGML_ASSERT(params->ith == 0);
  6973. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6975. return;
  6976. }
  6977. const int64_t ne0 = dst->ne[0];
  6978. const int64_t ne1 = dst->ne[1];
  6979. const int64_t ne2 = dst->ne[2];
  6980. const int64_t ne3 = dst->ne[3];
  6981. const int64_t ne00 = src0->ne[0];
  6982. const int64_t ne01 = src0->ne[1];
  6983. const int64_t ne02 = src0->ne[2];
  6984. const int64_t ne03 = src0->ne[3];
  6985. const size_t nb0 = dst->nb[0];
  6986. const size_t nb1 = dst->nb[1];
  6987. const size_t nb2 = dst->nb[2];
  6988. const size_t nb3 = dst->nb[3];
  6989. const size_t nb00 = src0->nb[0];
  6990. const size_t nb01 = src0->nb[1];
  6991. const size_t nb02 = src0->nb[2];
  6992. const size_t nb03 = src0->nb[3];
  6993. // guaranteed to be an integer due to the check in ggml_can_repeat
  6994. const int nr0 = (int)(ne0/ne00);
  6995. const int nr1 = (int)(ne1/ne01);
  6996. const int nr2 = (int)(ne2/ne02);
  6997. const int nr3 = (int)(ne3/ne03);
  6998. // TODO: support for transposed / permuted tensors
  6999. GGML_ASSERT(nb0 == sizeof(float));
  7000. GGML_ASSERT(nb00 == sizeof(float));
  7001. // TODO: maybe this is not optimal?
  7002. for (int i3 = 0; i3 < nr3; i3++) {
  7003. for (int k3 = 0; k3 < ne03; k3++) {
  7004. for (int i2 = 0; i2 < nr2; i2++) {
  7005. for (int k2 = 0; k2 < ne02; k2++) {
  7006. for (int i1 = 0; i1 < nr1; i1++) {
  7007. for (int k1 = 0; k1 < ne01; k1++) {
  7008. for (int i0 = 0; i0 < nr0; i0++) {
  7009. ggml_vec_cpy_f32(ne00,
  7010. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7011. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7012. }
  7013. }
  7014. }
  7015. }
  7016. }
  7017. }
  7018. }
  7019. }
  7020. static void ggml_compute_forward_repeat(
  7021. const struct ggml_compute_params * params,
  7022. const struct ggml_tensor * src0,
  7023. struct ggml_tensor * dst) {
  7024. switch (src0->type) {
  7025. case GGML_TYPE_F32:
  7026. {
  7027. ggml_compute_forward_repeat_f32(params, src0, dst);
  7028. } break;
  7029. default:
  7030. {
  7031. GGML_ASSERT(false);
  7032. } break;
  7033. }
  7034. }
  7035. // ggml_compute_forward_abs
  7036. static void ggml_compute_forward_abs_f32(
  7037. const struct ggml_compute_params * params,
  7038. const struct ggml_tensor * src0,
  7039. struct ggml_tensor * dst) {
  7040. assert(params->ith == 0);
  7041. assert(ggml_are_same_shape(src0, dst));
  7042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7043. return;
  7044. }
  7045. const int n = ggml_nrows(src0);
  7046. const int nc = src0->ne[0];
  7047. assert(dst->nb[0] == sizeof(float));
  7048. assert(src0->nb[0] == sizeof(float));
  7049. for (int i = 0; i < n; i++) {
  7050. ggml_vec_abs_f32(nc,
  7051. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7052. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7053. }
  7054. }
  7055. static void ggml_compute_forward_abs(
  7056. const struct ggml_compute_params * params,
  7057. const struct ggml_tensor * src0,
  7058. struct ggml_tensor * dst) {
  7059. switch (src0->type) {
  7060. case GGML_TYPE_F32:
  7061. {
  7062. ggml_compute_forward_abs_f32(params, src0, dst);
  7063. } break;
  7064. default:
  7065. {
  7066. GGML_ASSERT(false);
  7067. } break;
  7068. }
  7069. }
  7070. // ggml_compute_forward_sgn
  7071. static void ggml_compute_forward_sgn_f32(
  7072. const struct ggml_compute_params * params,
  7073. const struct ggml_tensor * src0,
  7074. struct ggml_tensor * dst) {
  7075. assert(params->ith == 0);
  7076. assert(ggml_are_same_shape(src0, dst));
  7077. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7078. return;
  7079. }
  7080. const int n = ggml_nrows(src0);
  7081. const int nc = src0->ne[0];
  7082. assert(dst->nb[0] == sizeof(float));
  7083. assert(src0->nb[0] == sizeof(float));
  7084. for (int i = 0; i < n; i++) {
  7085. ggml_vec_sgn_f32(nc,
  7086. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7087. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7088. }
  7089. }
  7090. static void ggml_compute_forward_sgn(
  7091. const struct ggml_compute_params * params,
  7092. const struct ggml_tensor * src0,
  7093. struct ggml_tensor * dst) {
  7094. switch (src0->type) {
  7095. case GGML_TYPE_F32:
  7096. {
  7097. ggml_compute_forward_sgn_f32(params, src0, dst);
  7098. } break;
  7099. default:
  7100. {
  7101. GGML_ASSERT(false);
  7102. } break;
  7103. }
  7104. }
  7105. // ggml_compute_forward_neg
  7106. static void ggml_compute_forward_neg_f32(
  7107. const struct ggml_compute_params * params,
  7108. const struct ggml_tensor * src0,
  7109. struct ggml_tensor * dst) {
  7110. assert(params->ith == 0);
  7111. assert(ggml_are_same_shape(src0, dst));
  7112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7113. return;
  7114. }
  7115. const int n = ggml_nrows(src0);
  7116. const int nc = src0->ne[0];
  7117. assert(dst->nb[0] == sizeof(float));
  7118. assert(src0->nb[0] == sizeof(float));
  7119. for (int i = 0; i < n; i++) {
  7120. ggml_vec_neg_f32(nc,
  7121. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7122. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7123. }
  7124. }
  7125. static void ggml_compute_forward_neg(
  7126. const struct ggml_compute_params * params,
  7127. const struct ggml_tensor * src0,
  7128. struct ggml_tensor * dst) {
  7129. switch (src0->type) {
  7130. case GGML_TYPE_F32:
  7131. {
  7132. ggml_compute_forward_neg_f32(params, src0, dst);
  7133. } break;
  7134. default:
  7135. {
  7136. GGML_ASSERT(false);
  7137. } break;
  7138. }
  7139. }
  7140. // ggml_compute_forward_step
  7141. static void ggml_compute_forward_step_f32(
  7142. const struct ggml_compute_params * params,
  7143. const struct ggml_tensor * src0,
  7144. struct ggml_tensor * dst) {
  7145. assert(params->ith == 0);
  7146. assert(ggml_are_same_shape(src0, dst));
  7147. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7148. return;
  7149. }
  7150. const int n = ggml_nrows(src0);
  7151. const int nc = src0->ne[0];
  7152. assert(dst->nb[0] == sizeof(float));
  7153. assert(src0->nb[0] == sizeof(float));
  7154. for (int i = 0; i < n; i++) {
  7155. ggml_vec_step_f32(nc,
  7156. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7157. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7158. }
  7159. }
  7160. static void ggml_compute_forward_step(
  7161. const struct ggml_compute_params * params,
  7162. const struct ggml_tensor * src0,
  7163. struct ggml_tensor * dst) {
  7164. switch (src0->type) {
  7165. case GGML_TYPE_F32:
  7166. {
  7167. ggml_compute_forward_step_f32(params, src0, dst);
  7168. } break;
  7169. default:
  7170. {
  7171. GGML_ASSERT(false);
  7172. } break;
  7173. }
  7174. }
  7175. // ggml_compute_forward_relu
  7176. static void ggml_compute_forward_relu_f32(
  7177. const struct ggml_compute_params * params,
  7178. const struct ggml_tensor * src0,
  7179. struct ggml_tensor * dst) {
  7180. assert(params->ith == 0);
  7181. assert(ggml_are_same_shape(src0, dst));
  7182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7183. return;
  7184. }
  7185. const int n = ggml_nrows(src0);
  7186. const int nc = src0->ne[0];
  7187. assert(dst->nb[0] == sizeof(float));
  7188. assert(src0->nb[0] == sizeof(float));
  7189. for (int i = 0; i < n; i++) {
  7190. ggml_vec_relu_f32(nc,
  7191. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7192. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7193. }
  7194. }
  7195. static void ggml_compute_forward_relu(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * src0,
  7198. struct ggml_tensor * dst) {
  7199. switch (src0->type) {
  7200. case GGML_TYPE_F32:
  7201. {
  7202. ggml_compute_forward_relu_f32(params, src0, dst);
  7203. } break;
  7204. default:
  7205. {
  7206. GGML_ASSERT(false);
  7207. } break;
  7208. }
  7209. }
  7210. // ggml_compute_forward_gelu
  7211. static void ggml_compute_forward_gelu_f32(
  7212. const struct ggml_compute_params * params,
  7213. const struct ggml_tensor * src0,
  7214. struct ggml_tensor * dst) {
  7215. GGML_ASSERT(ggml_is_contiguous(src0));
  7216. GGML_ASSERT(ggml_is_contiguous(dst));
  7217. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7218. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7219. return;
  7220. }
  7221. const int ith = params->ith;
  7222. const int nth = params->nth;
  7223. const int nc = src0->ne[0];
  7224. const int nr = ggml_nrows(src0);
  7225. // rows per thread
  7226. const int dr = (nr + nth - 1)/nth;
  7227. // row range for this thread
  7228. const int ir0 = dr*ith;
  7229. const int ir1 = MIN(ir0 + dr, nr);
  7230. for (int i1 = ir0; i1 < ir1; i1++) {
  7231. ggml_vec_gelu_f32(nc,
  7232. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7233. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7234. #ifndef NDEBUG
  7235. for (int k = 0; k < nc; k++) {
  7236. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7237. UNUSED(x);
  7238. assert(!isnan(x));
  7239. assert(!isinf(x));
  7240. }
  7241. #endif
  7242. }
  7243. }
  7244. static void ggml_compute_forward_gelu(
  7245. const struct ggml_compute_params * params,
  7246. const struct ggml_tensor * src0,
  7247. struct ggml_tensor * dst) {
  7248. switch (src0->type) {
  7249. case GGML_TYPE_F32:
  7250. {
  7251. ggml_compute_forward_gelu_f32(params, src0, dst);
  7252. } break;
  7253. default:
  7254. {
  7255. GGML_ASSERT(false);
  7256. } break;
  7257. }
  7258. //printf("XXXXXXXX gelu\n");
  7259. }
  7260. // ggml_compute_forward_silu
  7261. static void ggml_compute_forward_silu_f32(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. struct ggml_tensor * dst) {
  7265. GGML_ASSERT(ggml_is_contiguous(src0));
  7266. GGML_ASSERT(ggml_is_contiguous(dst));
  7267. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7269. return;
  7270. }
  7271. const int ith = params->ith;
  7272. const int nth = params->nth;
  7273. const int nc = src0->ne[0];
  7274. const int nr = ggml_nrows(src0);
  7275. // rows per thread
  7276. const int dr = (nr + nth - 1)/nth;
  7277. // row range for this thread
  7278. const int ir0 = dr*ith;
  7279. const int ir1 = MIN(ir0 + dr, nr);
  7280. for (int i1 = ir0; i1 < ir1; i1++) {
  7281. ggml_vec_silu_f32(nc,
  7282. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7283. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7284. #ifndef NDEBUG
  7285. for (int k = 0; k < nc; k++) {
  7286. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7287. UNUSED(x);
  7288. assert(!isnan(x));
  7289. assert(!isinf(x));
  7290. }
  7291. #endif
  7292. }
  7293. }
  7294. static void ggml_compute_forward_silu(
  7295. const struct ggml_compute_params * params,
  7296. const struct ggml_tensor * src0,
  7297. struct ggml_tensor * dst) {
  7298. switch (src0->type) {
  7299. case GGML_TYPE_F32:
  7300. {
  7301. ggml_compute_forward_silu_f32(params, src0, dst);
  7302. } break;
  7303. default:
  7304. {
  7305. GGML_ASSERT(false);
  7306. } break;
  7307. }
  7308. }
  7309. // ggml_compute_forward_silu_back
  7310. static void ggml_compute_forward_silu_back_f32(
  7311. const struct ggml_compute_params * params,
  7312. const struct ggml_tensor * src0,
  7313. const struct ggml_tensor * grad,
  7314. struct ggml_tensor * dst) {
  7315. GGML_ASSERT(ggml_is_contiguous(grad));
  7316. GGML_ASSERT(ggml_is_contiguous(src0));
  7317. GGML_ASSERT(ggml_is_contiguous(dst));
  7318. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7319. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7321. return;
  7322. }
  7323. const int ith = params->ith;
  7324. const int nth = params->nth;
  7325. const int nc = src0->ne[0];
  7326. const int nr = ggml_nrows(src0);
  7327. // rows per thread
  7328. const int dr = (nr + nth - 1)/nth;
  7329. // row range for this thread
  7330. const int ir0 = dr*ith;
  7331. const int ir1 = MIN(ir0 + dr, nr);
  7332. for (int i1 = ir0; i1 < ir1; i1++) {
  7333. ggml_vec_silu_backward_f32(nc,
  7334. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7335. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7336. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7337. #ifndef NDEBUG
  7338. for (int k = 0; k < nc; k++) {
  7339. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7340. UNUSED(x);
  7341. assert(!isnan(x));
  7342. assert(!isinf(x));
  7343. }
  7344. #endif
  7345. }
  7346. }
  7347. static void ggml_compute_forward_silu_back(
  7348. const struct ggml_compute_params * params,
  7349. const struct ggml_tensor * src0,
  7350. const struct ggml_tensor * grad,
  7351. struct ggml_tensor * dst) {
  7352. switch (src0->type) {
  7353. case GGML_TYPE_F32:
  7354. {
  7355. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7356. } break;
  7357. default:
  7358. {
  7359. GGML_ASSERT(false);
  7360. } break;
  7361. }
  7362. }
  7363. // ggml_compute_forward_norm
  7364. static void ggml_compute_forward_norm_f32(
  7365. const struct ggml_compute_params * params,
  7366. const struct ggml_tensor * src0,
  7367. struct ggml_tensor * dst) {
  7368. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7370. return;
  7371. }
  7372. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7373. const int ith = params->ith;
  7374. const int nth = params->nth;
  7375. const int64_t ne00 = src0->ne[0];
  7376. const int64_t ne01 = src0->ne[1];
  7377. const int64_t ne02 = src0->ne[2];
  7378. const int64_t ne03 = src0->ne[3];
  7379. const size_t nb01 = src0->nb[1];
  7380. const size_t nb02 = src0->nb[2];
  7381. const size_t nb03 = src0->nb[3];
  7382. const size_t nb1 = dst->nb[1];
  7383. const size_t nb2 = dst->nb[2];
  7384. const size_t nb3 = dst->nb[3];
  7385. const float eps = 1e-5f; // TODO: make this a parameter
  7386. // TODO: optimize
  7387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7389. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7390. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7391. ggml_float sum = 0.0;
  7392. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7393. sum += (ggml_float)x[i00];
  7394. }
  7395. float mean = sum/ne00;
  7396. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7397. ggml_float sum2 = 0.0;
  7398. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7399. float v = x[i00] - mean;
  7400. y[i00] = v;
  7401. sum2 += (ggml_float)(v*v);
  7402. }
  7403. float variance = sum2/ne00;
  7404. const float scale = 1.0f/sqrtf(variance + eps);
  7405. ggml_vec_scale_f32(ne00, y, scale);
  7406. }
  7407. }
  7408. }
  7409. }
  7410. static void ggml_compute_forward_norm(
  7411. const struct ggml_compute_params * params,
  7412. const struct ggml_tensor * src0,
  7413. struct ggml_tensor * dst) {
  7414. switch (src0->type) {
  7415. case GGML_TYPE_F32:
  7416. {
  7417. ggml_compute_forward_norm_f32(params, src0, dst);
  7418. } break;
  7419. default:
  7420. {
  7421. GGML_ASSERT(false);
  7422. } break;
  7423. }
  7424. }
  7425. static void ggml_compute_forward_rms_norm_f32(
  7426. const struct ggml_compute_params * params,
  7427. const struct ggml_tensor * src0,
  7428. struct ggml_tensor * dst) {
  7429. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7430. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7431. return;
  7432. }
  7433. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7434. const int ith = params->ith;
  7435. const int nth = params->nth;
  7436. const int64_t ne00 = src0->ne[0];
  7437. const int64_t ne01 = src0->ne[1];
  7438. const int64_t ne02 = src0->ne[2];
  7439. const int64_t ne03 = src0->ne[3];
  7440. const size_t nb01 = src0->nb[1];
  7441. const size_t nb02 = src0->nb[2];
  7442. const size_t nb03 = src0->nb[3];
  7443. const size_t nb1 = dst->nb[1];
  7444. const size_t nb2 = dst->nb[2];
  7445. const size_t nb3 = dst->nb[3];
  7446. const float eps = 1e-6f; // TODO: make this a parameter
  7447. // TODO: optimize
  7448. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7449. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7450. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7451. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7452. ggml_float sum = 0.0;
  7453. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7454. sum += (ggml_float)(x[i00] * x[i00]);
  7455. }
  7456. float mean = sum/ne00;
  7457. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7458. memcpy(y, x, ne00 * sizeof(float));
  7459. // for (int i00 = 0; i00 < ne00; i00++) {
  7460. // y[i00] = x[i00];
  7461. // }
  7462. const float scale = 1.0f/sqrtf(mean + eps);
  7463. ggml_vec_scale_f32(ne00, y, scale);
  7464. }
  7465. }
  7466. }
  7467. }
  7468. static void ggml_compute_forward_rms_norm(
  7469. const struct ggml_compute_params * params,
  7470. const struct ggml_tensor * src0,
  7471. struct ggml_tensor * dst) {
  7472. switch (src0->type) {
  7473. case GGML_TYPE_F32:
  7474. {
  7475. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7476. } break;
  7477. default:
  7478. {
  7479. GGML_ASSERT(false);
  7480. } break;
  7481. }
  7482. }
  7483. static void ggml_compute_forward_rms_norm_back_f32(
  7484. const struct ggml_compute_params * params,
  7485. const struct ggml_tensor * src0,
  7486. const struct ggml_tensor * src1,
  7487. struct ggml_tensor * dst) {
  7488. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7490. return;
  7491. }
  7492. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7493. const int ith = params->ith;
  7494. const int nth = params->nth;
  7495. const int64_t ne00 = src0->ne[0];
  7496. const int64_t ne01 = src0->ne[1];
  7497. const int64_t ne02 = src0->ne[2];
  7498. const int64_t ne03 = src0->ne[3];
  7499. const size_t nb01 = src0->nb[1];
  7500. const size_t nb02 = src0->nb[2];
  7501. const size_t nb03 = src0->nb[3];
  7502. const size_t nb11 = src1->nb[1];
  7503. const size_t nb12 = src1->nb[2];
  7504. const size_t nb13 = src1->nb[3];
  7505. const size_t nb1 = dst->nb[1];
  7506. const size_t nb2 = dst->nb[2];
  7507. const size_t nb3 = dst->nb[3];
  7508. const float eps = 1e-6f; // TODO: make this a parameter
  7509. // TODO: optimize
  7510. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7511. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7512. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7513. // src1 is same shape as src0 => same indices
  7514. const int64_t i11 = i01;
  7515. const int64_t i12 = i02;
  7516. const int64_t i13 = i03;
  7517. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7518. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7519. ggml_float sum_xx = 0.0;
  7520. ggml_float sum_xdz = 0.0;
  7521. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7522. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7523. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7524. }
  7525. //const float mean = (float)(sum_xx)/ne00;
  7526. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7527. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7528. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7529. // we could cache rms from forward pass to improve performance.
  7530. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7531. //const float rms = sqrtf(mean_eps);
  7532. const float rrms = 1.0f / sqrtf(mean_eps);
  7533. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7534. {
  7535. // z = rms_norm(x)
  7536. //
  7537. // rms_norm(src0) =
  7538. // scale(
  7539. // src0,
  7540. // div(
  7541. // 1,
  7542. // sqrt(
  7543. // add(
  7544. // scale(
  7545. // sum(
  7546. // sqr(
  7547. // src0)),
  7548. // (1.0/N)),
  7549. // eps))));
  7550. // postorder:
  7551. // ## op args grad
  7552. // 00 param src0 grad[#00]
  7553. // 01 const 1
  7554. // 02 sqr (#00) grad[#02]
  7555. // 03 sum (#02) grad[#03]
  7556. // 04 const 1/N
  7557. // 05 scale (#03, #04) grad[#05]
  7558. // 06 const eps
  7559. // 07 add (#05, #06) grad[#07]
  7560. // 08 sqrt (#07) grad[#08]
  7561. // 09 div (#01,#08) grad[#09]
  7562. // 10 scale (#00,#09) grad[#10]
  7563. //
  7564. // backward pass, given grad[#10]
  7565. // #10: scale
  7566. // grad[#00] += scale(grad[#10],#09)
  7567. // grad[#09] += sum(mul(grad[#10],#00))
  7568. // #09: div
  7569. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7570. // #08: sqrt
  7571. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7572. // #07: add
  7573. // grad[#05] += grad[#07]
  7574. // #05: scale
  7575. // grad[#03] += scale(grad[#05],#04)
  7576. // #03: sum
  7577. // grad[#02] += repeat(grad[#03], #02)
  7578. // #02:
  7579. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7580. //
  7581. // substitute and simplify:
  7582. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7583. // grad[#02] = repeat(grad[#03], #02)
  7584. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7585. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7586. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7587. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7588. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7589. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7590. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7591. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7592. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7593. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7594. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7595. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7596. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7597. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7598. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7599. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7600. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7601. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7602. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7603. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7604. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7605. // a = b*c + d*e
  7606. // a = b*c*f/f + d*e*f/f
  7607. // a = (b*c*f + d*e*f)*(1/f)
  7608. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7609. // a = (b + d*e/c)*c
  7610. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7611. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7612. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7613. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7614. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7615. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7616. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7617. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7618. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7619. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7620. }
  7621. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7622. // post-order:
  7623. // dx := x
  7624. // dx := scale(dx,-mean_xdz/mean_eps)
  7625. // dx := add(dx, dz)
  7626. // dx := scale(dx, rrms)
  7627. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7628. ggml_vec_cpy_f32 (ne00, dx, x);
  7629. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7630. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7631. ggml_vec_acc_f32 (ne00, dx, dz);
  7632. ggml_vec_scale_f32(ne00, dx, rrms);
  7633. }
  7634. }
  7635. }
  7636. }
  7637. static void ggml_compute_forward_rms_norm_back(
  7638. const struct ggml_compute_params * params,
  7639. const struct ggml_tensor * src0,
  7640. const struct ggml_tensor * src1,
  7641. struct ggml_tensor * dst) {
  7642. switch (src0->type) {
  7643. case GGML_TYPE_F32:
  7644. {
  7645. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7646. } break;
  7647. default:
  7648. {
  7649. GGML_ASSERT(false);
  7650. } break;
  7651. }
  7652. }
  7653. // ggml_compute_forward_mul_mat
  7654. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7655. // helper function to determine if it is better to use BLAS or not
  7656. // for large matrices, BLAS is faster
  7657. static bool ggml_compute_forward_mul_mat_use_blas(
  7658. const struct ggml_tensor * src0,
  7659. const struct ggml_tensor * src1,
  7660. struct ggml_tensor * dst) {
  7661. //const int64_t ne00 = src0->ne[0];
  7662. //const int64_t ne01 = src0->ne[1];
  7663. const int64_t ne10 = src1->ne[0];
  7664. const int64_t ne0 = dst->ne[0];
  7665. const int64_t ne1 = dst->ne[1];
  7666. // TODO: find the optimal values for these
  7667. if (ggml_is_contiguous(src0) &&
  7668. ggml_is_contiguous(src1) &&
  7669. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7670. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7671. return true;
  7672. }
  7673. return false;
  7674. }
  7675. #endif
  7676. static void ggml_compute_forward_mul_mat_f32(
  7677. const struct ggml_compute_params * params,
  7678. const struct ggml_tensor * src0,
  7679. const struct ggml_tensor * src1,
  7680. struct ggml_tensor * dst) {
  7681. int64_t t0 = ggml_perf_time_us();
  7682. UNUSED(t0);
  7683. const int64_t ne00 = src0->ne[0];
  7684. const int64_t ne01 = src0->ne[1];
  7685. const int64_t ne02 = src0->ne[2];
  7686. const int64_t ne03 = src0->ne[3];
  7687. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7688. const int64_t ne10 = src1->ne[0];
  7689. #endif
  7690. const int64_t ne11 = src1->ne[1];
  7691. #ifndef NDEBUG
  7692. const int64_t ne12 = src1->ne[2];
  7693. const int64_t ne13 = src1->ne[3];
  7694. const int64_t ne0 = dst->ne[0];
  7695. const int64_t ne1 = dst->ne[1];
  7696. const int64_t ne2 = dst->ne[2];
  7697. const int64_t ne3 = dst->ne[3];
  7698. const int nb00 = src0->nb[0];
  7699. #endif
  7700. const int nb01 = src0->nb[1];
  7701. const int nb02 = src0->nb[2];
  7702. const int nb03 = src0->nb[3];
  7703. #ifndef NDEBUG
  7704. const int nb10 = src1->nb[0];
  7705. #endif
  7706. const int nb11 = src1->nb[1];
  7707. const int nb12 = src1->nb[2];
  7708. const int nb13 = src1->nb[3];
  7709. const int nb0 = dst->nb[0];
  7710. const int nb1 = dst->nb[1];
  7711. const int nb2 = dst->nb[2];
  7712. const int nb3 = dst->nb[3];
  7713. const int ith = params->ith;
  7714. const int nth = params->nth;
  7715. assert(ne02 == ne12);
  7716. assert(ne03 == ne13);
  7717. assert(ne2 == ne12);
  7718. assert(ne3 == ne13);
  7719. // we don't support permuted src0 or src1
  7720. assert(nb00 == sizeof(float));
  7721. assert(nb10 == sizeof(float));
  7722. // dst cannot be transposed or permuted
  7723. assert(nb0 == sizeof(float));
  7724. assert(nb0 <= nb1);
  7725. assert(nb1 <= nb2);
  7726. assert(nb2 <= nb3);
  7727. assert(ne0 == ne01);
  7728. assert(ne1 == ne11);
  7729. assert(ne2 == ne02);
  7730. assert(ne3 == ne03);
  7731. // nb01 >= nb00 - src0 is not transposed
  7732. // compute by src0 rows
  7733. #if defined(GGML_USE_CUBLAS)
  7734. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7735. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7736. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7737. }
  7738. return;
  7739. }
  7740. #elif defined(GGML_USE_CLBLAST)
  7741. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7742. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7743. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7744. }
  7745. return;
  7746. }
  7747. #endif
  7748. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7749. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7750. if (params->ith != 0) {
  7751. return;
  7752. }
  7753. if (params->type == GGML_TASK_INIT) {
  7754. return;
  7755. }
  7756. if (params->type == GGML_TASK_FINALIZE) {
  7757. return;
  7758. }
  7759. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7760. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7761. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7762. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7763. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7764. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7765. ne11, ne01, ne10,
  7766. 1.0f, y, ne10,
  7767. x, ne00,
  7768. 0.0f, d, ne01);
  7769. }
  7770. }
  7771. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7772. return;
  7773. }
  7774. #endif
  7775. if (params->type == GGML_TASK_INIT) {
  7776. return;
  7777. }
  7778. if (params->type == GGML_TASK_FINALIZE) {
  7779. return;
  7780. }
  7781. // parallelize by src0 rows using ggml_vec_dot_f32
  7782. // total rows in src0
  7783. const int nr = ne01*ne02*ne03;
  7784. // rows per thread
  7785. const int dr = (nr + nth - 1)/nth;
  7786. // row range for this thread
  7787. const int ir0 = dr*ith;
  7788. const int ir1 = MIN(ir0 + dr, nr);
  7789. for (int ir = ir0; ir < ir1; ++ir) {
  7790. // src0 indices
  7791. const int i03 = ir/(ne02*ne01);
  7792. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7793. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7794. for (int64_t ic = 0; ic < ne11; ++ic) {
  7795. // src1 indices
  7796. const int i13 = i03;
  7797. const int i12 = i02;
  7798. const int i11 = ic;
  7799. // dst indices
  7800. const int i0 = i01;
  7801. const int i1 = i11;
  7802. const int i2 = i02;
  7803. const int i3 = i03;
  7804. ggml_vec_dot_f32(ne00,
  7805. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7806. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7807. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7808. }
  7809. }
  7810. //int64_t t1 = ggml_perf_time_us();
  7811. //static int64_t acc = 0;
  7812. //acc += t1 - t0;
  7813. //if (t1 - t0 > 10) {
  7814. // printf("\n");
  7815. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7816. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7817. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7818. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7819. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7820. //}
  7821. }
  7822. static void ggml_compute_forward_mul_mat_f16_f32(
  7823. const struct ggml_compute_params * params,
  7824. const struct ggml_tensor * src0,
  7825. const struct ggml_tensor * src1,
  7826. struct ggml_tensor * dst) {
  7827. int64_t t0 = ggml_perf_time_us();
  7828. UNUSED(t0);
  7829. const int64_t ne00 = src0->ne[0];
  7830. const int64_t ne01 = src0->ne[1];
  7831. const int64_t ne02 = src0->ne[2];
  7832. const int64_t ne03 = src0->ne[3];
  7833. const int64_t ne10 = src1->ne[0];
  7834. const int64_t ne11 = src1->ne[1];
  7835. const int64_t ne12 = src1->ne[2];
  7836. const int64_t ne13 = src1->ne[3];
  7837. const int64_t ne0 = dst->ne[0];
  7838. const int64_t ne1 = dst->ne[1];
  7839. const int64_t ne2 = dst->ne[2];
  7840. const int64_t ne3 = dst->ne[3];
  7841. //const int64_t ne = ne0*ne1*ne2*ne3;
  7842. const int nb00 = src0->nb[0];
  7843. const int nb01 = src0->nb[1];
  7844. const int nb02 = src0->nb[2];
  7845. const int nb03 = src0->nb[3];
  7846. const int nb10 = src1->nb[0];
  7847. const int nb11 = src1->nb[1];
  7848. const int nb12 = src1->nb[2];
  7849. const int nb13 = src1->nb[3];
  7850. const int nb0 = dst->nb[0];
  7851. const int nb1 = dst->nb[1];
  7852. const int nb2 = dst->nb[2];
  7853. const int nb3 = dst->nb[3];
  7854. const int ith = params->ith;
  7855. const int nth = params->nth;
  7856. GGML_ASSERT(ne02 == ne12);
  7857. GGML_ASSERT(ne03 == ne13);
  7858. GGML_ASSERT(ne2 == ne12);
  7859. GGML_ASSERT(ne3 == ne13);
  7860. // TODO: we don't support permuted src0
  7861. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7862. // dst cannot be transposed or permuted
  7863. GGML_ASSERT(nb0 == sizeof(float));
  7864. GGML_ASSERT(nb0 <= nb1);
  7865. GGML_ASSERT(nb1 <= nb2);
  7866. GGML_ASSERT(nb2 <= nb3);
  7867. GGML_ASSERT(ne0 == ne01);
  7868. GGML_ASSERT(ne1 == ne11);
  7869. GGML_ASSERT(ne2 == ne02);
  7870. GGML_ASSERT(ne3 == ne03);
  7871. // nb01 >= nb00 - src0 is not transposed
  7872. // compute by src0 rows
  7873. #if defined(GGML_USE_CUBLAS)
  7874. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7875. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7876. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7877. }
  7878. return;
  7879. }
  7880. #elif defined(GGML_USE_CLBLAST)
  7881. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7882. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7883. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7884. }
  7885. return;
  7886. }
  7887. #endif
  7888. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7889. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7890. GGML_ASSERT(nb10 == sizeof(float));
  7891. if (params->ith != 0) {
  7892. return;
  7893. }
  7894. if (params->type == GGML_TASK_INIT) {
  7895. return;
  7896. }
  7897. if (params->type == GGML_TASK_FINALIZE) {
  7898. return;
  7899. }
  7900. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7901. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7902. float * const wdata = params->wdata;
  7903. {
  7904. size_t id = 0;
  7905. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7906. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7907. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7908. }
  7909. }
  7910. assert(id*sizeof(float) <= params->wsize);
  7911. }
  7912. const float * x = wdata;
  7913. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7914. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7915. // zT = y * xT
  7916. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7917. ne11, ne01, ne10,
  7918. 1.0f, y, ne10,
  7919. x, ne00,
  7920. 0.0f, d, ne01);
  7921. }
  7922. }
  7923. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7924. return;
  7925. }
  7926. #endif
  7927. if (params->type == GGML_TASK_INIT) {
  7928. ggml_fp16_t * const wdata = params->wdata;
  7929. size_t id = 0;
  7930. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7931. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7932. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7933. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7934. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7935. }
  7936. }
  7937. }
  7938. }
  7939. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7940. return;
  7941. }
  7942. if (params->type == GGML_TASK_FINALIZE) {
  7943. return;
  7944. }
  7945. // fp16 -> half the size, so divide by 2
  7946. // TODO: do not support transposed src1
  7947. assert(nb10/2 == sizeof(ggml_fp16_t));
  7948. // parallelize by src0 rows using ggml_vec_dot_f16
  7949. // total rows in src0
  7950. const int nr = ne01*ne02*ne03;
  7951. // rows per thread
  7952. const int dr = (nr + nth - 1)/nth;
  7953. // row range for this thread
  7954. const int ir0 = dr*ith;
  7955. const int ir1 = MIN(ir0 + dr, nr);
  7956. ggml_fp16_t * wdata = params->wdata;
  7957. for (int ir = ir0; ir < ir1; ++ir) {
  7958. // src0 indices
  7959. const int i03 = ir/(ne02*ne01);
  7960. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7961. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7962. const int i13 = i03;
  7963. const int i12 = i02;
  7964. const int i0 = i01;
  7965. const int i2 = i02;
  7966. const int i3 = i03;
  7967. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7968. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7969. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7970. for (int64_t ic = 0; ic < ne11; ++ic) {
  7971. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7972. }
  7973. }
  7974. //int64_t t1 = ggml_time_us();
  7975. //static int64_t acc = 0;
  7976. //acc += t1 - t0;
  7977. //if (t1 - t0 > 10) {
  7978. // printf("\n");
  7979. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7980. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7981. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7982. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7983. //}
  7984. }
  7985. static void ggml_compute_forward_mul_mat_q_f32(
  7986. const struct ggml_compute_params * params,
  7987. const struct ggml_tensor * src0,
  7988. const struct ggml_tensor * src1,
  7989. struct ggml_tensor * dst) {
  7990. int64_t t0 = ggml_perf_time_us();
  7991. UNUSED(t0);
  7992. const int64_t ne00 = src0->ne[0];
  7993. const int64_t ne01 = src0->ne[1];
  7994. const int64_t ne02 = src0->ne[2];
  7995. const int64_t ne03 = src0->ne[3];
  7996. const int64_t ne10 = src1->ne[0];
  7997. const int64_t ne11 = src1->ne[1];
  7998. const int64_t ne12 = src1->ne[2];
  7999. const int64_t ne13 = src1->ne[3];
  8000. const int64_t ne0 = dst->ne[0];
  8001. const int64_t ne1 = dst->ne[1];
  8002. const int64_t ne2 = dst->ne[2];
  8003. const int64_t ne3 = dst->ne[3];
  8004. const int nb00 = src0->nb[0];
  8005. const int nb01 = src0->nb[1];
  8006. const int nb02 = src0->nb[2];
  8007. const int nb03 = src0->nb[3];
  8008. const int nb10 = src1->nb[0];
  8009. const int nb11 = src1->nb[1];
  8010. const int nb12 = src1->nb[2];
  8011. const int nb13 = src1->nb[3];
  8012. const int nb0 = dst->nb[0];
  8013. const int nb1 = dst->nb[1];
  8014. const int nb2 = dst->nb[2];
  8015. const int nb3 = dst->nb[3];
  8016. const int ith = params->ith;
  8017. const int nth = params->nth;
  8018. GGML_ASSERT(ne02 == ne12);
  8019. GGML_ASSERT(ne03 == ne13);
  8020. GGML_ASSERT(ne2 == ne12);
  8021. GGML_ASSERT(ne3 == ne13);
  8022. const enum ggml_type type = src0->type;
  8023. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8024. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8025. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8026. // we don't support permuted src0 or src1
  8027. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8028. GGML_ASSERT(nb10 == sizeof(float));
  8029. // dst cannot be transposed or permuted
  8030. GGML_ASSERT(nb0 == sizeof(float));
  8031. GGML_ASSERT(nb0 <= nb1);
  8032. GGML_ASSERT(nb1 <= nb2);
  8033. GGML_ASSERT(nb2 <= nb3);
  8034. GGML_ASSERT(ne0 == ne01);
  8035. GGML_ASSERT(ne1 == ne11);
  8036. GGML_ASSERT(ne2 == ne02);
  8037. GGML_ASSERT(ne3 == ne03);
  8038. // nb01 >= nb00 - src0 is not transposed
  8039. // compute by src0 rows
  8040. #if defined(GGML_USE_CUBLAS)
  8041. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8042. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8043. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8044. }
  8045. return;
  8046. }
  8047. #elif defined(GGML_USE_CLBLAST)
  8048. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8049. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8050. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8051. }
  8052. return;
  8053. }
  8054. #endif
  8055. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8056. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8057. if (params->ith != 0) {
  8058. return;
  8059. }
  8060. if (params->type == GGML_TASK_INIT) {
  8061. return;
  8062. }
  8063. if (params->type == GGML_TASK_FINALIZE) {
  8064. return;
  8065. }
  8066. float * const wdata = params->wdata;
  8067. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8068. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8069. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8070. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8071. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8072. {
  8073. size_t id = 0;
  8074. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8075. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8076. id += ne00;
  8077. }
  8078. assert(id*sizeof(float) <= params->wsize);
  8079. }
  8080. const float * x = wdata;
  8081. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8082. ne11, ne01, ne10,
  8083. 1.0f, y, ne10,
  8084. x, ne00,
  8085. 0.0f, d, ne01);
  8086. }
  8087. }
  8088. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8089. return;
  8090. }
  8091. #endif
  8092. if (params->type == GGML_TASK_INIT) {
  8093. char * wdata = params->wdata;
  8094. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8095. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8096. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8097. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8098. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8099. wdata += row_size;
  8100. }
  8101. }
  8102. }
  8103. return;
  8104. }
  8105. if (params->type == GGML_TASK_FINALIZE) {
  8106. return;
  8107. }
  8108. // parallelize by src0 rows using ggml_vec_dot_q
  8109. // total rows in src0
  8110. const int nr = ne01*ne02*ne03;
  8111. // rows per thread
  8112. const int dr = (nr + nth - 1)/nth;
  8113. // row range for this thread
  8114. const int ir0 = dr*ith;
  8115. const int ir1 = MIN(ir0 + dr, nr);
  8116. void * wdata = params->wdata;
  8117. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8118. for (int ir = ir0; ir < ir1; ++ir) {
  8119. // src0 indices
  8120. const int i03 = ir/(ne02*ne01);
  8121. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8122. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8123. const int i13 = i03;
  8124. const int i12 = i02;
  8125. const int i0 = i01;
  8126. const int i2 = i02;
  8127. const int i3 = i03;
  8128. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8129. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8130. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8131. assert(ne00 % 32 == 0);
  8132. for (int64_t ic = 0; ic < ne11; ++ic) {
  8133. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8134. }
  8135. }
  8136. //int64_t t1 = ggml_time_us();
  8137. //static int64_t acc = 0;
  8138. //acc += t1 - t0;
  8139. //if (t1 - t0 > 10) {
  8140. // printf("\n");
  8141. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8142. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8143. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8144. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8145. //}
  8146. }
  8147. static void ggml_compute_forward_mul_mat(
  8148. const struct ggml_compute_params * params,
  8149. const struct ggml_tensor * src0,
  8150. const struct ggml_tensor * src1,
  8151. struct ggml_tensor * dst) {
  8152. switch (src0->type) {
  8153. case GGML_TYPE_Q4_0:
  8154. case GGML_TYPE_Q4_1:
  8155. case GGML_TYPE_Q5_0:
  8156. case GGML_TYPE_Q5_1:
  8157. case GGML_TYPE_Q8_0:
  8158. case GGML_TYPE_Q8_1:
  8159. {
  8160. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8161. } break;
  8162. case GGML_TYPE_F16:
  8163. {
  8164. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8165. } break;
  8166. case GGML_TYPE_F32:
  8167. {
  8168. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8169. } break;
  8170. default:
  8171. {
  8172. GGML_ASSERT(false);
  8173. } break;
  8174. }
  8175. }
  8176. // ggml_compute_forward_scale
  8177. static void ggml_compute_forward_scale_f32(
  8178. const struct ggml_compute_params * params,
  8179. const struct ggml_tensor * src0,
  8180. const struct ggml_tensor * src1,
  8181. struct ggml_tensor * dst) {
  8182. GGML_ASSERT(ggml_is_contiguous(src0));
  8183. GGML_ASSERT(ggml_is_contiguous(dst));
  8184. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8185. GGML_ASSERT(ggml_is_scalar(src1));
  8186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8187. return;
  8188. }
  8189. // scale factor
  8190. const float v = *(float *) src1->data;
  8191. const int ith = params->ith;
  8192. const int nth = params->nth;
  8193. const int nc = src0->ne[0];
  8194. const int nr = ggml_nrows(src0);
  8195. // rows per thread
  8196. const int dr = (nr + nth - 1)/nth;
  8197. // row range for this thread
  8198. const int ir0 = dr*ith;
  8199. const int ir1 = MIN(ir0 + dr, nr);
  8200. const size_t nb01 = src0->nb[1];
  8201. const size_t nb1 = dst->nb[1];
  8202. for (int i1 = ir0; i1 < ir1; i1++) {
  8203. if (dst->data != src0->data) {
  8204. // src0 is same shape as dst => same indices
  8205. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8206. }
  8207. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8208. }
  8209. }
  8210. static void ggml_compute_forward_scale(
  8211. const struct ggml_compute_params * params,
  8212. const struct ggml_tensor * src0,
  8213. const struct ggml_tensor * src1,
  8214. struct ggml_tensor * dst) {
  8215. switch (src0->type) {
  8216. case GGML_TYPE_F32:
  8217. {
  8218. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8219. } break;
  8220. default:
  8221. {
  8222. GGML_ASSERT(false);
  8223. } break;
  8224. }
  8225. }
  8226. // ggml_compute_forward_set
  8227. static void ggml_compute_forward_set_f32(
  8228. const struct ggml_compute_params * params,
  8229. const struct ggml_tensor * src0,
  8230. const struct ggml_tensor * src1,
  8231. const struct ggml_tensor * opt0,
  8232. struct ggml_tensor * dst) {
  8233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8234. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8235. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8236. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8237. // view src0 and dst with these strides and data offset inbytes during set
  8238. // nb0 is implicitely element_size because src0 and dst are contiguous
  8239. size_t nb1 = ((int32_t *) opt0->data)[0];
  8240. size_t nb2 = ((int32_t *) opt0->data)[1];
  8241. size_t nb3 = ((int32_t *) opt0->data)[2];
  8242. size_t offset = ((int32_t *) opt0->data)[3];
  8243. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8244. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8245. // memcpy needs to be synchronized across threads to avoid race conditions.
  8246. // => do it in INIT phase
  8247. memcpy(
  8248. ((char *) dst->data),
  8249. ((char *) src0->data),
  8250. ggml_nbytes(dst));
  8251. }
  8252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8253. return;
  8254. }
  8255. const int ith = params->ith;
  8256. const int nth = params->nth;
  8257. const int nr = ggml_nrows(src1);
  8258. const int nc = src1->ne[0];
  8259. const int64_t ne10 = src1->ne[0];
  8260. const int64_t ne11 = src1->ne[1];
  8261. const int64_t ne12 = src1->ne[2];
  8262. const int64_t ne13 = src1->ne[3];
  8263. const size_t nb10 = src1->nb[0];
  8264. const size_t nb11 = src1->nb[1];
  8265. const size_t nb12 = src1->nb[2];
  8266. const size_t nb13 = src1->nb[3];
  8267. // src0 and dst as viewed during set
  8268. const size_t nb0 = ggml_element_size(src0);
  8269. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8270. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8271. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8272. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8273. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8274. GGML_ASSERT(nb10 == sizeof(float));
  8275. // rows per thread
  8276. const int dr = (nr + nth - 1)/nth;
  8277. // row range for this thread
  8278. const int ir0 = dr*ith;
  8279. const int ir1 = MIN(ir0 + dr, nr);
  8280. for (int ir = ir0; ir < ir1; ++ir) {
  8281. // src0 and dst are viewed with shape of src1 and offset
  8282. // => same indices
  8283. const int i3 = ir/(ne12*ne11);
  8284. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8285. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8286. ggml_vec_cpy_f32(nc,
  8287. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8288. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8289. }
  8290. }
  8291. static void ggml_compute_forward_set(
  8292. const struct ggml_compute_params * params,
  8293. const struct ggml_tensor * src0,
  8294. const struct ggml_tensor * src1,
  8295. const struct ggml_tensor * opt0,
  8296. struct ggml_tensor * dst) {
  8297. switch (src0->type) {
  8298. case GGML_TYPE_F32:
  8299. {
  8300. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8301. } break;
  8302. case GGML_TYPE_F16:
  8303. case GGML_TYPE_Q4_0:
  8304. case GGML_TYPE_Q4_1:
  8305. case GGML_TYPE_Q5_0:
  8306. case GGML_TYPE_Q5_1:
  8307. case GGML_TYPE_Q8_0:
  8308. case GGML_TYPE_Q8_1:
  8309. default:
  8310. {
  8311. GGML_ASSERT(false);
  8312. } break;
  8313. }
  8314. }
  8315. // ggml_compute_forward_cpy
  8316. static void ggml_compute_forward_cpy(
  8317. const struct ggml_compute_params * params,
  8318. const struct ggml_tensor * src0,
  8319. struct ggml_tensor * dst) {
  8320. ggml_compute_forward_dup(params, src0, dst);
  8321. }
  8322. // ggml_compute_forward_cont
  8323. static void ggml_compute_forward_cont(
  8324. const struct ggml_compute_params * params,
  8325. const struct ggml_tensor * src0,
  8326. struct ggml_tensor * dst) {
  8327. ggml_compute_forward_dup(params, src0, dst);
  8328. }
  8329. // ggml_compute_forward_reshape
  8330. static void ggml_compute_forward_reshape(
  8331. const struct ggml_compute_params * params,
  8332. const struct ggml_tensor * src0,
  8333. struct ggml_tensor * dst) {
  8334. // NOP
  8335. UNUSED(params);
  8336. UNUSED(src0);
  8337. UNUSED(dst);
  8338. }
  8339. // ggml_compute_forward_view
  8340. static void ggml_compute_forward_view(
  8341. const struct ggml_compute_params * params,
  8342. const struct ggml_tensor * src0) {
  8343. // NOP
  8344. UNUSED(params);
  8345. UNUSED(src0);
  8346. }
  8347. // ggml_compute_forward_permute
  8348. static void ggml_compute_forward_permute(
  8349. const struct ggml_compute_params * params,
  8350. const struct ggml_tensor * src0) {
  8351. // NOP
  8352. UNUSED(params);
  8353. UNUSED(src0);
  8354. }
  8355. // ggml_compute_forward_transpose
  8356. static void ggml_compute_forward_transpose(
  8357. const struct ggml_compute_params * params,
  8358. const struct ggml_tensor * src0) {
  8359. // NOP
  8360. UNUSED(params);
  8361. UNUSED(src0);
  8362. }
  8363. // ggml_compute_forward_get_rows
  8364. static void ggml_compute_forward_get_rows_q(
  8365. const struct ggml_compute_params * params,
  8366. const struct ggml_tensor * src0,
  8367. const struct ggml_tensor * src1,
  8368. struct ggml_tensor * dst) {
  8369. assert(params->ith == 0);
  8370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8371. return;
  8372. }
  8373. const int nc = src0->ne[0];
  8374. const int nr = ggml_nelements(src1);
  8375. const enum ggml_type type = src0->type;
  8376. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8377. assert( dst->ne[0] == nc);
  8378. assert( dst->ne[1] == nr);
  8379. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8380. for (int i = 0; i < nr; ++i) {
  8381. const int r = ((int32_t *) src1->data)[i];
  8382. dequantize_row_q(
  8383. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8384. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8385. }
  8386. }
  8387. static void ggml_compute_forward_get_rows_f16(
  8388. const struct ggml_compute_params * params,
  8389. const struct ggml_tensor * src0,
  8390. const struct ggml_tensor * src1,
  8391. struct ggml_tensor * dst) {
  8392. assert(params->ith == 0);
  8393. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8394. return;
  8395. }
  8396. const int nc = src0->ne[0];
  8397. const int nr = ggml_nelements(src1);
  8398. assert( dst->ne[0] == nc);
  8399. assert( dst->ne[1] == nr);
  8400. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8401. for (int i = 0; i < nr; ++i) {
  8402. const int r = ((int32_t *) src1->data)[i];
  8403. for (int j = 0; j < nc; ++j) {
  8404. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8405. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8406. }
  8407. }
  8408. }
  8409. static void ggml_compute_forward_get_rows_f32(
  8410. const struct ggml_compute_params * params,
  8411. const struct ggml_tensor * src0,
  8412. const struct ggml_tensor * src1,
  8413. struct ggml_tensor * dst) {
  8414. assert(params->ith == 0);
  8415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8416. return;
  8417. }
  8418. const int nc = src0->ne[0];
  8419. const int nr = ggml_nelements(src1);
  8420. assert( dst->ne[0] == nc);
  8421. assert( dst->ne[1] == nr);
  8422. assert(src0->nb[0] == sizeof(float));
  8423. for (int i = 0; i < nr; ++i) {
  8424. const int r = ((int32_t *) src1->data)[i];
  8425. ggml_vec_cpy_f32(nc,
  8426. (float *) ((char *) dst->data + i*dst->nb[1]),
  8427. (float *) ((char *) src0->data + r*src0->nb[1]));
  8428. }
  8429. }
  8430. static void ggml_compute_forward_get_rows(
  8431. const struct ggml_compute_params * params,
  8432. const struct ggml_tensor * src0,
  8433. const struct ggml_tensor * src1,
  8434. struct ggml_tensor * dst) {
  8435. switch (src0->type) {
  8436. case GGML_TYPE_Q4_0:
  8437. case GGML_TYPE_Q4_1:
  8438. case GGML_TYPE_Q5_0:
  8439. case GGML_TYPE_Q5_1:
  8440. case GGML_TYPE_Q8_0:
  8441. case GGML_TYPE_Q8_1:
  8442. {
  8443. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8444. } break;
  8445. case GGML_TYPE_F16:
  8446. {
  8447. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8448. } break;
  8449. case GGML_TYPE_F32:
  8450. {
  8451. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8452. } break;
  8453. default:
  8454. {
  8455. GGML_ASSERT(false);
  8456. } break;
  8457. }
  8458. //static bool first = true;
  8459. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8460. //if (first) {
  8461. // first = false;
  8462. //} else {
  8463. // for (int k = 0; k < dst->ne[1]; ++k) {
  8464. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8465. // for (int i = 0; i < 16; ++i) {
  8466. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8467. // }
  8468. // printf("\n");
  8469. // }
  8470. // printf("\n");
  8471. // }
  8472. // printf("\n");
  8473. // exit(0);
  8474. //}
  8475. }
  8476. // ggml_compute_forward_get_rows_back
  8477. static void ggml_compute_forward_get_rows_back_f32_f16(
  8478. const struct ggml_compute_params * params,
  8479. const struct ggml_tensor * src0,
  8480. const struct ggml_tensor * src1,
  8481. const struct ggml_tensor * opt0,
  8482. struct ggml_tensor * dst) {
  8483. GGML_ASSERT(params->ith == 0);
  8484. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8485. GGML_ASSERT(ggml_is_contiguous(opt0));
  8486. GGML_ASSERT(ggml_is_contiguous(dst));
  8487. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8488. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8489. return;
  8490. }
  8491. const int nc = src0->ne[0];
  8492. const int nr = ggml_nelements(src1);
  8493. GGML_ASSERT( dst->ne[0] == nc);
  8494. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8495. for (int i = 0; i < nr; ++i) {
  8496. const int r = ((int32_t *) src1->data)[i];
  8497. for (int j = 0; j < nc; ++j) {
  8498. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8499. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8500. }
  8501. }
  8502. }
  8503. static void ggml_compute_forward_get_rows_back_f32(
  8504. const struct ggml_compute_params * params,
  8505. const struct ggml_tensor * src0,
  8506. const struct ggml_tensor * src1,
  8507. const struct ggml_tensor * opt0,
  8508. struct ggml_tensor * dst) {
  8509. GGML_ASSERT(params->ith == 0);
  8510. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8511. GGML_ASSERT(ggml_is_contiguous(opt0));
  8512. GGML_ASSERT(ggml_is_contiguous(dst));
  8513. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8515. return;
  8516. }
  8517. const int nc = src0->ne[0];
  8518. const int nr = ggml_nelements(src1);
  8519. GGML_ASSERT( dst->ne[0] == nc);
  8520. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8521. for (int i = 0; i < nr; ++i) {
  8522. const int r = ((int32_t *) src1->data)[i];
  8523. ggml_vec_add_f32(nc,
  8524. (float *) ((char *) dst->data + r*dst->nb[1]),
  8525. (float *) ((char *) dst->data + r*dst->nb[1]),
  8526. (float *) ((char *) src0->data + i*src0->nb[1]));
  8527. }
  8528. }
  8529. static void ggml_compute_forward_get_rows_back(
  8530. const struct ggml_compute_params * params,
  8531. const struct ggml_tensor * src0,
  8532. const struct ggml_tensor * src1,
  8533. const struct ggml_tensor * opt0,
  8534. struct ggml_tensor * dst) {
  8535. switch (src0->type) {
  8536. case GGML_TYPE_F16:
  8537. {
  8538. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8539. } break;
  8540. case GGML_TYPE_F32:
  8541. {
  8542. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8543. } break;
  8544. default:
  8545. {
  8546. GGML_ASSERT(false);
  8547. } break;
  8548. }
  8549. //static bool first = true;
  8550. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8551. //if (first) {
  8552. // first = false;
  8553. //} else {
  8554. // for (int k = 0; k < dst->ne[1]; ++k) {
  8555. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8556. // for (int i = 0; i < 16; ++i) {
  8557. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8558. // }
  8559. // printf("\n");
  8560. // }
  8561. // printf("\n");
  8562. // }
  8563. // printf("\n");
  8564. // exit(0);
  8565. //}
  8566. }
  8567. // ggml_compute_forward_diag
  8568. static void ggml_compute_forward_diag_f32(
  8569. const struct ggml_compute_params * params,
  8570. const struct ggml_tensor * src0,
  8571. struct ggml_tensor * dst) {
  8572. GGML_ASSERT(params->ith == 0);
  8573. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8574. return;
  8575. }
  8576. // TODO: handle transposed/permuted matrices
  8577. const int ne00 = src0->ne[0];
  8578. const int ne01 = src0->ne[1];
  8579. const int ne02 = src0->ne[2];
  8580. const int ne03 = src0->ne[3];
  8581. const int ne0 = dst->ne[0];
  8582. const int ne1 = dst->ne[1];
  8583. const int ne2 = dst->ne[2];
  8584. const int ne3 = dst->ne[3];
  8585. GGML_ASSERT(ne00 == ne0);
  8586. GGML_ASSERT(ne00 == ne1);
  8587. GGML_ASSERT(ne01 == 1);
  8588. GGML_ASSERT(ne02 == ne2);
  8589. GGML_ASSERT(ne03 == ne3);
  8590. const int nb00 = src0->nb[0];
  8591. //const int nb01 = src0->nb[1];
  8592. const int nb02 = src0->nb[2];
  8593. const int nb03 = src0->nb[3];
  8594. const int nb0 = dst->nb[0];
  8595. const int nb1 = dst->nb[1];
  8596. const int nb2 = dst->nb[2];
  8597. const int nb3 = dst->nb[3];
  8598. GGML_ASSERT(nb00 == sizeof(float));
  8599. GGML_ASSERT(nb0 == sizeof(float));
  8600. for (int i3 = 0; i3 < ne3; i3++) {
  8601. for (int i2 = 0; i2 < ne2; i2++) {
  8602. for (int i1 = 0; i1 < ne1; i1++) {
  8603. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8604. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8605. for (int i0 = 0; i0 < i1; i0++) {
  8606. d[i0] = 0;
  8607. }
  8608. d[i1] = s[i1];
  8609. for (int i0 = i1+1; i0 < ne0; i0++) {
  8610. d[i0] = 0;
  8611. }
  8612. }
  8613. }
  8614. }
  8615. }
  8616. static void ggml_compute_forward_diag(
  8617. const struct ggml_compute_params * params,
  8618. const struct ggml_tensor * src0,
  8619. struct ggml_tensor * dst) {
  8620. switch (src0->type) {
  8621. case GGML_TYPE_F32:
  8622. {
  8623. ggml_compute_forward_diag_f32(params, src0, dst);
  8624. } break;
  8625. default:
  8626. {
  8627. GGML_ASSERT(false);
  8628. } break;
  8629. }
  8630. }
  8631. // ggml_compute_forward_diag_mask_inf
  8632. static void ggml_compute_forward_diag_mask_f32(
  8633. const struct ggml_compute_params * params,
  8634. const struct ggml_tensor * src0,
  8635. const struct ggml_tensor * src1,
  8636. struct ggml_tensor * dst,
  8637. const float value) {
  8638. assert(src1->type == GGML_TYPE_I32);
  8639. assert(ggml_nelements(src1) == 2);
  8640. const int ith = params->ith;
  8641. const int nth = params->nth;
  8642. const int n_past = ((int32_t *) src1->data)[0];
  8643. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8644. assert(n_past >= 0);
  8645. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8646. // memcpy needs to be synchronized across threads to avoid race conditions.
  8647. // => do it in INIT phase
  8648. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8649. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8650. memcpy(
  8651. ((char *) dst->data),
  8652. ((char *) src0->data),
  8653. ggml_nbytes(dst));
  8654. }
  8655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8656. return;
  8657. }
  8658. // TODO: handle transposed/permuted matrices
  8659. const int n = ggml_nrows(src0);
  8660. const int nc = src0->ne[0];
  8661. const int nr = src0->ne[1];
  8662. const int nz = n/nr;
  8663. assert( dst->nb[0] == sizeof(float));
  8664. assert(src0->nb[0] == sizeof(float));
  8665. for (int k = 0; k < nz; k++) {
  8666. for (int j = ith; j < nr; j += nth) {
  8667. for (int i = n_past; i < nc; i++) {
  8668. if (i > n_past + j) {
  8669. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8670. }
  8671. }
  8672. }
  8673. }
  8674. }
  8675. static void ggml_compute_forward_diag_mask_inf(
  8676. const struct ggml_compute_params * params,
  8677. const struct ggml_tensor * src0,
  8678. const struct ggml_tensor * src1,
  8679. struct ggml_tensor * dst) {
  8680. switch (src0->type) {
  8681. case GGML_TYPE_F32:
  8682. {
  8683. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8684. } break;
  8685. default:
  8686. {
  8687. GGML_ASSERT(false);
  8688. } break;
  8689. }
  8690. }
  8691. static void ggml_compute_forward_diag_mask_zero(
  8692. const struct ggml_compute_params * params,
  8693. const struct ggml_tensor * src0,
  8694. const struct ggml_tensor * src1,
  8695. struct ggml_tensor * dst) {
  8696. switch (src0->type) {
  8697. case GGML_TYPE_F32:
  8698. {
  8699. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8700. } break;
  8701. default:
  8702. {
  8703. GGML_ASSERT(false);
  8704. } break;
  8705. }
  8706. }
  8707. // ggml_compute_forward_soft_max
  8708. static void ggml_compute_forward_soft_max_f32(
  8709. const struct ggml_compute_params * params,
  8710. const struct ggml_tensor * src0,
  8711. struct ggml_tensor * dst) {
  8712. GGML_ASSERT(ggml_is_contiguous(src0));
  8713. GGML_ASSERT(ggml_is_contiguous(dst));
  8714. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8715. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8716. return;
  8717. }
  8718. // TODO: handle transposed/permuted matrices
  8719. const int ith = params->ith;
  8720. const int nth = params->nth;
  8721. const int nc = src0->ne[0];
  8722. const int nr = ggml_nrows(src0);
  8723. // rows per thread
  8724. const int dr = (nr + nth - 1)/nth;
  8725. // row range for this thread
  8726. const int ir0 = dr*ith;
  8727. const int ir1 = MIN(ir0 + dr, nr);
  8728. for (int i1 = ir0; i1 < ir1; i1++) {
  8729. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8730. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8731. #ifndef NDEBUG
  8732. for (int i = 0; i < nc; ++i) {
  8733. //printf("p[%d] = %f\n", i, p[i]);
  8734. assert(!isnan(sp[i]));
  8735. }
  8736. #endif
  8737. float max = -INFINITY;
  8738. ggml_vec_max_f32(nc, &max, sp);
  8739. ggml_float sum = 0.0;
  8740. uint16_t scvt;
  8741. for (int i = 0; i < nc; i++) {
  8742. if (sp[i] == -INFINITY) {
  8743. dp[i] = 0.0f;
  8744. } else {
  8745. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8746. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8747. memcpy(&scvt, &s, sizeof(scvt));
  8748. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8749. sum += (ggml_float)val;
  8750. dp[i] = val;
  8751. }
  8752. }
  8753. assert(sum > 0.0);
  8754. sum = 1.0/sum;
  8755. ggml_vec_scale_f32(nc, dp, sum);
  8756. #ifndef NDEBUG
  8757. for (int i = 0; i < nc; ++i) {
  8758. assert(!isnan(dp[i]));
  8759. assert(!isinf(dp[i]));
  8760. }
  8761. #endif
  8762. }
  8763. }
  8764. static void ggml_compute_forward_soft_max(
  8765. const struct ggml_compute_params * params,
  8766. const struct ggml_tensor * src0,
  8767. struct ggml_tensor * dst) {
  8768. switch (src0->type) {
  8769. case GGML_TYPE_F32:
  8770. {
  8771. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8772. } break;
  8773. default:
  8774. {
  8775. GGML_ASSERT(false);
  8776. } break;
  8777. }
  8778. }
  8779. // ggml_compute_forward_alibi
  8780. static void ggml_compute_forward_alibi_f32(
  8781. const struct ggml_compute_params * params,
  8782. const struct ggml_tensor * src0,
  8783. const struct ggml_tensor * src1,
  8784. struct ggml_tensor * dst) {
  8785. assert(params->ith == 0);
  8786. assert(src1->type == GGML_TYPE_I32);
  8787. assert(ggml_nelements(src1) == 3);
  8788. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8789. return;
  8790. }
  8791. const int n_past = ((int32_t *) src1->data)[0];
  8792. const int n_head = ((int32_t *) src1->data)[1];
  8793. const float max_bias = ((float *) src1->data)[2];
  8794. assert(n_past >= 0);
  8795. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8796. const int ne1 = src0->ne[1]; // seq_len_without_past
  8797. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8798. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8799. const int n = ggml_nrows(src0);
  8800. const int ne2_ne3 = n/ne1; // ne2*ne3
  8801. const int nb0 = src0->nb[0];
  8802. const int nb1 = src0->nb[1];
  8803. const int nb2 = src0->nb[2];
  8804. //const int nb3 = src0->nb[3];
  8805. assert(nb0 == sizeof(float));
  8806. assert(ne1 + n_past == ne0); (void) n_past;
  8807. // add alibi to src0 (KQ_scaled)
  8808. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8809. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8810. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8811. for (int i = 0; i < ne0; i++) {
  8812. for (int j = 0; j < ne1; j++) {
  8813. for (int k = 0; k < ne2_ne3; k++) {
  8814. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8815. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8816. // TODO: k*nb2 or k*nb3
  8817. float m_k;
  8818. if (k < n_heads_log2_floor) {
  8819. m_k = powf(m0, k + 1);
  8820. } else {
  8821. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8822. }
  8823. pdst[0] = (i-ne0+1) * m_k + src[0];
  8824. }
  8825. }
  8826. }
  8827. }
  8828. static void ggml_compute_forward_alibi_f16(
  8829. const struct ggml_compute_params * params,
  8830. const struct ggml_tensor * src0,
  8831. const struct ggml_tensor * src1,
  8832. struct ggml_tensor * dst) {
  8833. assert(params->ith == 0);
  8834. assert(src1->type == GGML_TYPE_I32);
  8835. assert(ggml_nelements(src1) == 3);
  8836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8837. return;
  8838. }
  8839. const int n_past = ((int32_t *) src1->data)[0];
  8840. const int n_head = ((int32_t *) src1->data)[1];
  8841. const float max_bias = ((float *) src1->data)[2];
  8842. assert(n_past >= 0);
  8843. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8844. const int ne1 = src0->ne[1]; // seq_len_without_past
  8845. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8846. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8847. const int n = ggml_nrows(src0);
  8848. const int ne2_ne3 = n/ne1; // ne2*ne3
  8849. const int nb0 = src0->nb[0];
  8850. const int nb1 = src0->nb[1];
  8851. const int nb2 = src0->nb[2];
  8852. //const int nb3 = src0->nb[3];
  8853. assert(nb0 == sizeof(ggml_fp16_t));
  8854. assert(ne1 + n_past == ne0); (void) n_past;
  8855. // add alibi to src0 (KQ_scaled)
  8856. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8857. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8858. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8859. for (int i = 0; i < ne0; i++) {
  8860. for (int j = 0; j < ne1; j++) {
  8861. for (int k = 0; k < ne2_ne3; k++) {
  8862. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8863. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8864. // TODO: k*nb2 or k*nb3
  8865. float m_k;
  8866. if (k < n_heads_log2_floor) {
  8867. m_k = powf(m0, k + 1);
  8868. } else {
  8869. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8870. }
  8871. // we return F32
  8872. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  8873. }
  8874. }
  8875. }
  8876. }
  8877. static void ggml_compute_forward_alibi(
  8878. const struct ggml_compute_params * params,
  8879. const struct ggml_tensor * src0,
  8880. const struct ggml_tensor * src1,
  8881. struct ggml_tensor * dst) {
  8882. switch (src0->type) {
  8883. case GGML_TYPE_F16:
  8884. {
  8885. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8886. } break;
  8887. case GGML_TYPE_F32:
  8888. {
  8889. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8890. } break;
  8891. case GGML_TYPE_Q4_0:
  8892. case GGML_TYPE_Q4_1:
  8893. case GGML_TYPE_Q5_0:
  8894. case GGML_TYPE_Q5_1:
  8895. case GGML_TYPE_Q8_0:
  8896. case GGML_TYPE_Q8_1:
  8897. case GGML_TYPE_I8:
  8898. case GGML_TYPE_I16:
  8899. case GGML_TYPE_I32:
  8900. case GGML_TYPE_COUNT:
  8901. {
  8902. GGML_ASSERT(false);
  8903. } break;
  8904. }
  8905. }
  8906. // ggml_compute_forward_clamp
  8907. static void ggml_compute_forward_clamp_f32(
  8908. const struct ggml_compute_params * params,
  8909. const struct ggml_tensor * src0,
  8910. const struct ggml_tensor * src1,
  8911. struct ggml_tensor * dst) {
  8912. assert(params->ith == 0);
  8913. assert(src1->type == GGML_TYPE_I32);
  8914. assert(ggml_nelements(src1) == 2);
  8915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8916. return;
  8917. }
  8918. const int min = ((float *) src1->data)[0];
  8919. const int max = ((float *) src1->data)[1];
  8920. const int ith = params->ith;
  8921. const int nth = params->nth;
  8922. const int n = ggml_nrows(src0);
  8923. const int nc = src0->ne[0];
  8924. const size_t nb00 = src0->nb[0];
  8925. const size_t nb01 = src0->nb[1];
  8926. const size_t nb0 = dst->nb[0];
  8927. const size_t nb1 = dst->nb[1];
  8928. GGML_ASSERT( nb0 == sizeof(float));
  8929. GGML_ASSERT(nb00 == sizeof(float));
  8930. for (int j = ith; j < n; j += nth) {
  8931. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8932. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8933. for (int i = 0; i < nc; i++) {
  8934. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8935. }
  8936. }
  8937. }
  8938. static void ggml_compute_forward_clamp(
  8939. const struct ggml_compute_params * params,
  8940. const struct ggml_tensor * src0,
  8941. const struct ggml_tensor * src1,
  8942. struct ggml_tensor * dst) {
  8943. switch (src0->type) {
  8944. case GGML_TYPE_F32:
  8945. {
  8946. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  8947. } break;
  8948. case GGML_TYPE_F16:
  8949. case GGML_TYPE_Q4_0:
  8950. case GGML_TYPE_Q4_1:
  8951. case GGML_TYPE_Q5_0:
  8952. case GGML_TYPE_Q5_1:
  8953. case GGML_TYPE_Q8_0:
  8954. case GGML_TYPE_Q8_1:
  8955. case GGML_TYPE_I8:
  8956. case GGML_TYPE_I16:
  8957. case GGML_TYPE_I32:
  8958. case GGML_TYPE_COUNT:
  8959. {
  8960. GGML_ASSERT(false);
  8961. } break;
  8962. }
  8963. }
  8964. // ggml_compute_forward_rope
  8965. static void ggml_compute_forward_rope_f32(
  8966. const struct ggml_compute_params * params,
  8967. const struct ggml_tensor * src0,
  8968. const struct ggml_tensor * src1,
  8969. struct ggml_tensor * dst) {
  8970. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8971. GGML_ASSERT(ggml_nelements(src1) == 3);
  8972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8973. return;
  8974. }
  8975. const int n_past = ((int32_t *) src1->data)[0];
  8976. const int n_dims = ((int32_t *) src1->data)[1];
  8977. const int mode = ((int32_t *) src1->data)[2];
  8978. assert(n_past >= 0);
  8979. const size_t nb00 = src0->nb[0];
  8980. const size_t nb01 = src0->nb[1];
  8981. const size_t nb02 = src0->nb[2];
  8982. const size_t nb03 = src0->nb[3];
  8983. const int64_t ne0 = dst->ne[0];
  8984. const int64_t ne1 = dst->ne[1];
  8985. const int64_t ne2 = dst->ne[2];
  8986. const int64_t ne3 = dst->ne[3];
  8987. const size_t nb0 = dst->nb[0];
  8988. const size_t nb1 = dst->nb[1];
  8989. const size_t nb2 = dst->nb[2];
  8990. const size_t nb3 = dst->nb[3];
  8991. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8992. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8993. GGML_ASSERT(nb00 == sizeof(float));
  8994. const int ith = params->ith;
  8995. const int nth = params->nth;
  8996. const int nr = ggml_nrows(dst);
  8997. GGML_ASSERT(n_dims <= ne0);
  8998. GGML_ASSERT(n_dims % 2 == 0);
  8999. // rows per thread
  9000. const int dr = (nr + nth - 1)/nth;
  9001. // row range for this thread
  9002. const int ir0 = dr*ith;
  9003. const int ir1 = MIN(ir0 + dr, nr);
  9004. // row index used to determine which thread to use
  9005. int ir = 0;
  9006. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9007. const bool is_neox = mode & 2;
  9008. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9009. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9010. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9011. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9012. if (ir++ < ir0) continue;
  9013. if (ir > ir1) break;
  9014. float theta = (float)p;
  9015. if (!is_neox) {
  9016. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9017. const float cos_theta = cosf(theta);
  9018. const float sin_theta = sinf(theta);
  9019. theta *= theta_scale;
  9020. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9021. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9022. const float x0 = src[0];
  9023. const float x1 = src[1];
  9024. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9025. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9026. }
  9027. } else {
  9028. // TODO: this is probably wrong, but I can't figure it out ..
  9029. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9030. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9031. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9032. const float cos_theta = cosf(theta);
  9033. const float sin_theta = sinf(theta);
  9034. theta *= theta_scale;
  9035. const int64_t i0 = ib*n_dims + ic/2;
  9036. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9037. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9038. const float x0 = src[0];
  9039. const float x1 = src[n_dims/2];
  9040. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9041. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9042. }
  9043. }
  9044. }
  9045. }
  9046. }
  9047. }
  9048. }
  9049. static void ggml_compute_forward_rope_f16(
  9050. const struct ggml_compute_params * params,
  9051. const struct ggml_tensor * src0,
  9052. const struct ggml_tensor * src1,
  9053. struct ggml_tensor * dst) {
  9054. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9055. GGML_ASSERT(ggml_nelements(src1) == 3);
  9056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9057. return;
  9058. }
  9059. const int n_past = ((int32_t *) src1->data)[0];
  9060. const int n_dims = ((int32_t *) src1->data)[1];
  9061. const int mode = ((int32_t *) src1->data)[2];
  9062. assert(n_past >= 0);
  9063. const size_t nb00 = src0->nb[0];
  9064. const size_t nb01 = src0->nb[1];
  9065. const size_t nb02 = src0->nb[2];
  9066. const size_t nb03 = src0->nb[3];
  9067. const int64_t ne0 = dst->ne[0];
  9068. const int64_t ne1 = dst->ne[1];
  9069. const int64_t ne2 = dst->ne[2];
  9070. const int64_t ne3 = dst->ne[3];
  9071. const size_t nb0 = dst->nb[0];
  9072. const size_t nb1 = dst->nb[1];
  9073. const size_t nb2 = dst->nb[2];
  9074. const size_t nb3 = dst->nb[3];
  9075. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9076. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9077. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9078. const int ith = params->ith;
  9079. const int nth = params->nth;
  9080. const int nr = ggml_nrows(dst);
  9081. GGML_ASSERT(n_dims <= ne0);
  9082. GGML_ASSERT(n_dims % 2 == 0);
  9083. // rows per thread
  9084. const int dr = (nr + nth - 1)/nth;
  9085. // row range for this thread
  9086. const int ir0 = dr*ith;
  9087. const int ir1 = MIN(ir0 + dr, nr);
  9088. // row index used to determine which thread to use
  9089. int ir = 0;
  9090. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9091. const bool is_neox = mode & 2;
  9092. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9093. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9094. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9095. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9096. if (ir++ < ir0) continue;
  9097. if (ir > ir1) break;
  9098. float theta = (float)p;
  9099. if (!is_neox) {
  9100. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9101. const float cos_theta = cosf(theta);
  9102. const float sin_theta = sinf(theta);
  9103. theta *= theta_scale;
  9104. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9105. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9106. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9107. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9108. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9109. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9110. }
  9111. } else {
  9112. // TODO: this is probably wrong, but I can't figure it out ..
  9113. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9114. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9115. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9116. const float cos_theta = cosf(theta);
  9117. const float sin_theta = sinf(theta);
  9118. theta *= theta_scale;
  9119. const int64_t i0 = ib*n_dims + ic/2;
  9120. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9121. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9122. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9123. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9124. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9125. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9126. }
  9127. }
  9128. }
  9129. }
  9130. }
  9131. }
  9132. }
  9133. static void ggml_compute_forward_rope(
  9134. const struct ggml_compute_params * params,
  9135. const struct ggml_tensor * src0,
  9136. const struct ggml_tensor * src1,
  9137. struct ggml_tensor * dst) {
  9138. switch (src0->type) {
  9139. case GGML_TYPE_F16:
  9140. {
  9141. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9142. } break;
  9143. case GGML_TYPE_F32:
  9144. {
  9145. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9146. } break;
  9147. default:
  9148. {
  9149. GGML_ASSERT(false);
  9150. } break;
  9151. }
  9152. }
  9153. // ggml_compute_forward_rope_back
  9154. static void ggml_compute_forward_rope_back_f32(
  9155. const struct ggml_compute_params * params,
  9156. const struct ggml_tensor * src0,
  9157. const struct ggml_tensor * src1,
  9158. struct ggml_tensor * dst) {
  9159. assert(src1->type == GGML_TYPE_I32);
  9160. assert(ggml_nelements(src1) == 3);
  9161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9162. return;
  9163. }
  9164. // y = rope(x, src1)
  9165. // dx = rope_back(dy, src1)
  9166. // src0 is dy, src1 contains options
  9167. const int n_past = ((int32_t *) src1->data)[0];
  9168. const int n_dims = ((int32_t *) src1->data)[1];
  9169. const int mode = ((int32_t *) src1->data)[2];
  9170. assert(n_past >= 0);
  9171. const size_t nb00 = src0->nb[0];
  9172. const size_t nb01 = src0->nb[1];
  9173. const size_t nb02 = src0->nb[2];
  9174. const size_t nb03 = src0->nb[3];
  9175. const int64_t ne0 = dst->ne[0];
  9176. const int64_t ne1 = dst->ne[1];
  9177. const int64_t ne2 = dst->ne[2];
  9178. const int64_t ne3 = dst->ne[3];
  9179. const size_t nb0 = dst->nb[0];
  9180. const size_t nb1 = dst->nb[1];
  9181. const size_t nb2 = dst->nb[2];
  9182. const size_t nb3 = dst->nb[3];
  9183. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9184. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9185. assert(nb0 == sizeof(float));
  9186. const int ith = params->ith;
  9187. const int nth = params->nth;
  9188. const int nr = ggml_nrows(dst);
  9189. // rows per thread
  9190. const int dr = (nr + nth - 1)/nth;
  9191. // row range for this thread
  9192. const int ir0 = dr*ith;
  9193. const int ir1 = MIN(ir0 + dr, nr);
  9194. // row index used to determine which thread to use
  9195. int ir = 0;
  9196. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9197. const bool is_neox = mode & 2;
  9198. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9199. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9200. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9201. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9202. if (ir++ < ir0) continue;
  9203. if (ir > ir1) break;
  9204. float theta = (float)p;
  9205. if (!is_neox) {
  9206. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9207. const float cos_theta = cosf(theta);
  9208. const float sin_theta = sinf(theta);
  9209. theta *= theta_scale;
  9210. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9211. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9212. const float dy0 = dy[0];
  9213. const float dy1 = dy[1];
  9214. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9215. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9216. }
  9217. } else {
  9218. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9219. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9220. const float cos_theta = cosf(theta);
  9221. const float sin_theta = sinf(theta);
  9222. theta *= theta_scale;
  9223. const int64_t i0 = ib*n_dims + ic/2;
  9224. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9225. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9226. const float dy0 = dy[0];
  9227. const float dy1 = dy[n_dims/2];
  9228. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9229. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9230. }
  9231. }
  9232. }
  9233. }
  9234. }
  9235. }
  9236. }
  9237. static void ggml_compute_forward_rope_back_f16(
  9238. const struct ggml_compute_params * params,
  9239. const struct ggml_tensor * src0,
  9240. const struct ggml_tensor * src1,
  9241. struct ggml_tensor * dst) {
  9242. assert(src1->type == GGML_TYPE_I32);
  9243. assert(ggml_nelements(src1) == 3);
  9244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9245. return;
  9246. }
  9247. // y = rope(x, src1)
  9248. // dx = rope_back(dy, src1)
  9249. // src0 is dy, src1 contains options
  9250. const int n_past = ((int32_t *) src1->data)[0];
  9251. const int n_dims = ((int32_t *) src1->data)[1];
  9252. const int mode = ((int32_t *) src1->data)[2];
  9253. assert(n_past >= 0);
  9254. const size_t nb00 = src0->nb[0];
  9255. const size_t nb01 = src0->nb[1];
  9256. const size_t nb02 = src0->nb[2];
  9257. const size_t nb03 = src0->nb[3];
  9258. const int64_t ne0 = dst->ne[0];
  9259. const int64_t ne1 = dst->ne[1];
  9260. const int64_t ne2 = dst->ne[2];
  9261. const int64_t ne3 = dst->ne[3];
  9262. const size_t nb0 = dst->nb[0];
  9263. const size_t nb1 = dst->nb[1];
  9264. const size_t nb2 = dst->nb[2];
  9265. const size_t nb3 = dst->nb[3];
  9266. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9267. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9268. assert(nb0 == sizeof(ggml_fp16_t));
  9269. const int ith = params->ith;
  9270. const int nth = params->nth;
  9271. const int nr = ggml_nrows(dst);
  9272. // rows per thread
  9273. const int dr = (nr + nth - 1)/nth;
  9274. // row range for this thread
  9275. const int ir0 = dr*ith;
  9276. const int ir1 = MIN(ir0 + dr, nr);
  9277. // row index used to determine which thread to use
  9278. int ir = 0;
  9279. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9280. const bool is_neox = mode & 2;
  9281. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9282. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9283. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9284. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9285. if (ir++ < ir0) continue;
  9286. if (ir > ir1) break;
  9287. float theta = (float)p;
  9288. if (!is_neox) {
  9289. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9290. const float cos_theta = cosf(theta);
  9291. const float sin_theta = sinf(theta);
  9292. theta *= theta_scale;
  9293. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9294. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9295. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9296. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9297. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9298. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9299. }
  9300. } else {
  9301. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9302. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9303. const float cos_theta = cosf(theta);
  9304. const float sin_theta = sinf(theta);
  9305. theta *= theta_scale;
  9306. const int64_t i0 = ib*n_dims + ic/2;
  9307. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9308. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9309. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9310. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9311. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9312. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9313. }
  9314. }
  9315. }
  9316. }
  9317. }
  9318. }
  9319. }
  9320. static void ggml_compute_forward_rope_back(
  9321. const struct ggml_compute_params * params,
  9322. const struct ggml_tensor * src0,
  9323. const struct ggml_tensor * src1,
  9324. struct ggml_tensor * dst) {
  9325. switch (src0->type) {
  9326. case GGML_TYPE_F16:
  9327. {
  9328. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9329. } break;
  9330. case GGML_TYPE_F32:
  9331. {
  9332. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9333. } break;
  9334. default:
  9335. {
  9336. GGML_ASSERT(false);
  9337. } break;
  9338. }
  9339. }
  9340. // ggml_compute_forward_conv_1d_1s
  9341. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9342. const struct ggml_compute_params * params,
  9343. const struct ggml_tensor * src0,
  9344. const struct ggml_tensor * src1,
  9345. struct ggml_tensor * dst) {
  9346. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9347. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9348. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9349. int64_t t0 = ggml_perf_time_us();
  9350. UNUSED(t0);
  9351. const int64_t ne00 = src0->ne[0];
  9352. const int64_t ne01 = src0->ne[1];
  9353. const int64_t ne02 = src0->ne[2];
  9354. //const int64_t ne03 = src0->ne[3];
  9355. const int64_t ne10 = src1->ne[0];
  9356. const int64_t ne11 = src1->ne[1];
  9357. //const int64_t ne12 = src1->ne[2];
  9358. //const int64_t ne13 = src1->ne[3];
  9359. //const int64_t ne0 = dst->ne[0];
  9360. //const int64_t ne1 = dst->ne[1];
  9361. //const int64_t ne2 = dst->ne[2];
  9362. //const int64_t ne3 = dst->ne[3];
  9363. //const int64_t ne = ne0*ne1*ne2*ne3;
  9364. const int nb00 = src0->nb[0];
  9365. const int nb01 = src0->nb[1];
  9366. const int nb02 = src0->nb[2];
  9367. //const int nb03 = src0->nb[3];
  9368. const int nb10 = src1->nb[0];
  9369. const int nb11 = src1->nb[1];
  9370. //const int nb12 = src1->nb[2];
  9371. //const int nb13 = src1->nb[3];
  9372. //const int nb0 = dst->nb[0];
  9373. const int nb1 = dst->nb[1];
  9374. //const int nb2 = dst->nb[2];
  9375. //const int nb3 = dst->nb[3];
  9376. const int ith = params->ith;
  9377. const int nth = params->nth;
  9378. const int nk = ne00;
  9379. const int nh = nk/2;
  9380. const int ew0 = ggml_up32(ne01);
  9381. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9382. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9383. GGML_ASSERT(nb10 == sizeof(float));
  9384. if (params->type == GGML_TASK_INIT) {
  9385. // TODO: fix this memset (wsize is overestimated)
  9386. memset(params->wdata, 0, params->wsize);
  9387. // prepare kernel data (src0)
  9388. {
  9389. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9391. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9392. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9393. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9394. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9395. dst_data[i00*ew0 + i01] = src[i00];
  9396. }
  9397. }
  9398. }
  9399. }
  9400. // prepare source data (src1)
  9401. {
  9402. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9403. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9404. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9405. ggml_fp16_t * dst_data = wdata;
  9406. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9407. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9408. }
  9409. }
  9410. }
  9411. return;
  9412. }
  9413. if (params->type == GGML_TASK_FINALIZE) {
  9414. return;
  9415. }
  9416. // total rows in dst
  9417. const int nr = ne02;
  9418. // rows per thread
  9419. const int dr = (nr + nth - 1)/nth;
  9420. // row range for this thread
  9421. const int ir0 = dr*ith;
  9422. const int ir1 = MIN(ir0 + dr, nr);
  9423. for (int i1 = ir0; i1 < ir1; i1++) {
  9424. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9425. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9426. dst_data[i0] = 0;
  9427. for (int k = -nh; k <= nh; k++) {
  9428. float v = 0.0f;
  9429. ggml_vec_dot_f16(ew0, &v,
  9430. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9431. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9432. dst_data[i0] += v;
  9433. }
  9434. }
  9435. }
  9436. }
  9437. static void ggml_compute_forward_conv_1d_1s_f32(
  9438. const struct ggml_compute_params * params,
  9439. const struct ggml_tensor * src0,
  9440. const struct ggml_tensor * src1,
  9441. struct ggml_tensor * dst) {
  9442. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9443. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9444. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9445. int64_t t0 = ggml_perf_time_us();
  9446. UNUSED(t0);
  9447. const int64_t ne00 = src0->ne[0];
  9448. const int64_t ne01 = src0->ne[1];
  9449. const int64_t ne02 = src0->ne[2];
  9450. //const int64_t ne03 = src0->ne[3];
  9451. const int64_t ne10 = src1->ne[0];
  9452. const int64_t ne11 = src1->ne[1];
  9453. //const int64_t ne12 = src1->ne[2];
  9454. //const int64_t ne13 = src1->ne[3];
  9455. //const int64_t ne0 = dst->ne[0];
  9456. //const int64_t ne1 = dst->ne[1];
  9457. //const int64_t ne2 = dst->ne[2];
  9458. //const int64_t ne3 = dst->ne[3];
  9459. //const int64_t ne = ne0*ne1*ne2*ne3;
  9460. const int nb00 = src0->nb[0];
  9461. const int nb01 = src0->nb[1];
  9462. const int nb02 = src0->nb[2];
  9463. //const int nb03 = src0->nb[3];
  9464. const int nb10 = src1->nb[0];
  9465. const int nb11 = src1->nb[1];
  9466. //const int nb12 = src1->nb[2];
  9467. //const int nb13 = src1->nb[3];
  9468. //const int nb0 = dst->nb[0];
  9469. const int nb1 = dst->nb[1];
  9470. //const int nb2 = dst->nb[2];
  9471. //const int nb3 = dst->nb[3];
  9472. const int ith = params->ith;
  9473. const int nth = params->nth;
  9474. const int nk = ne00;
  9475. const int nh = nk/2;
  9476. const int ew0 = ggml_up32(ne01);
  9477. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9478. GGML_ASSERT(nb00 == sizeof(float));
  9479. GGML_ASSERT(nb10 == sizeof(float));
  9480. if (params->type == GGML_TASK_INIT) {
  9481. // TODO: fix this memset (wsize is overestimated)
  9482. memset(params->wdata, 0, params->wsize);
  9483. // prepare kernel data (src0)
  9484. {
  9485. float * const wdata = (float *) params->wdata + 0;
  9486. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9487. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9488. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9489. float * dst_data = wdata + i02*ew0*ne00;
  9490. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9491. dst_data[i00*ew0 + i01] = src[i00];
  9492. }
  9493. }
  9494. }
  9495. }
  9496. // prepare source data (src1)
  9497. {
  9498. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9499. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9500. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9501. float * dst_data = wdata;
  9502. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9503. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9504. }
  9505. }
  9506. }
  9507. return;
  9508. }
  9509. if (params->type == GGML_TASK_FINALIZE) {
  9510. return;
  9511. }
  9512. // total rows in dst
  9513. const int nr = ne02;
  9514. // rows per thread
  9515. const int dr = (nr + nth - 1)/nth;
  9516. // row range for this thread
  9517. const int ir0 = dr*ith;
  9518. const int ir1 = MIN(ir0 + dr, nr);
  9519. for (int i1 = ir0; i1 < ir1; i1++) {
  9520. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9521. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9522. dst_data[i0] = 0;
  9523. for (int k = -nh; k <= nh; k++) {
  9524. float v = 0.0f;
  9525. ggml_vec_dot_f32(ew0, &v,
  9526. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9527. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9528. dst_data[i0] += v;
  9529. }
  9530. }
  9531. }
  9532. }
  9533. static void ggml_compute_forward_conv_1d_1s(
  9534. const struct ggml_compute_params * params,
  9535. const struct ggml_tensor * src0,
  9536. const struct ggml_tensor * src1,
  9537. struct ggml_tensor * dst) {
  9538. switch (src0->type) {
  9539. case GGML_TYPE_F16:
  9540. {
  9541. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9542. } break;
  9543. case GGML_TYPE_F32:
  9544. {
  9545. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9546. } break;
  9547. default:
  9548. {
  9549. GGML_ASSERT(false);
  9550. } break;
  9551. }
  9552. }
  9553. // ggml_compute_forward_conv_1d_2s
  9554. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9555. const struct ggml_compute_params * params,
  9556. const struct ggml_tensor * src0,
  9557. const struct ggml_tensor * src1,
  9558. struct ggml_tensor * dst) {
  9559. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9560. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9561. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9562. int64_t t0 = ggml_perf_time_us();
  9563. UNUSED(t0);
  9564. const int64_t ne00 = src0->ne[0];
  9565. const int64_t ne01 = src0->ne[1];
  9566. const int64_t ne02 = src0->ne[2];
  9567. //const int64_t ne03 = src0->ne[3];
  9568. const int64_t ne10 = src1->ne[0];
  9569. const int64_t ne11 = src1->ne[1];
  9570. //const int64_t ne12 = src1->ne[2];
  9571. //const int64_t ne13 = src1->ne[3];
  9572. //const int64_t ne0 = dst->ne[0];
  9573. //const int64_t ne1 = dst->ne[1];
  9574. //const int64_t ne2 = dst->ne[2];
  9575. //const int64_t ne3 = dst->ne[3];
  9576. //const int64_t ne = ne0*ne1*ne2*ne3;
  9577. const int nb00 = src0->nb[0];
  9578. const int nb01 = src0->nb[1];
  9579. const int nb02 = src0->nb[2];
  9580. //const int nb03 = src0->nb[3];
  9581. const int nb10 = src1->nb[0];
  9582. const int nb11 = src1->nb[1];
  9583. //const int nb12 = src1->nb[2];
  9584. //const int nb13 = src1->nb[3];
  9585. //const int nb0 = dst->nb[0];
  9586. const int nb1 = dst->nb[1];
  9587. //const int nb2 = dst->nb[2];
  9588. //const int nb3 = dst->nb[3];
  9589. const int ith = params->ith;
  9590. const int nth = params->nth;
  9591. const int nk = ne00;
  9592. const int nh = nk/2;
  9593. const int ew0 = ggml_up32(ne01);
  9594. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9595. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9596. GGML_ASSERT(nb10 == sizeof(float));
  9597. if (params->type == GGML_TASK_INIT) {
  9598. // TODO: fix this memset (wsize is overestimated)
  9599. memset(params->wdata, 0, params->wsize);
  9600. // prepare kernel data (src0)
  9601. {
  9602. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9603. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9604. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9605. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9606. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9607. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9608. dst_data[i00*ew0 + i01] = src[i00];
  9609. }
  9610. }
  9611. }
  9612. }
  9613. // prepare source data (src1)
  9614. {
  9615. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9616. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9617. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9618. ggml_fp16_t * dst_data = wdata;
  9619. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9620. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9621. }
  9622. }
  9623. }
  9624. return;
  9625. }
  9626. if (params->type == GGML_TASK_FINALIZE) {
  9627. return;
  9628. }
  9629. // total rows in dst
  9630. const int nr = ne02;
  9631. // rows per thread
  9632. const int dr = (nr + nth - 1)/nth;
  9633. // row range for this thread
  9634. const int ir0 = dr*ith;
  9635. const int ir1 = MIN(ir0 + dr, nr);
  9636. for (int i1 = ir0; i1 < ir1; i1++) {
  9637. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9638. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9639. dst_data[i0/2] = 0;
  9640. for (int k = -nh; k <= nh; k++) {
  9641. float v = 0.0f;
  9642. ggml_vec_dot_f16(ew0, &v,
  9643. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9644. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9645. dst_data[i0/2] += v;
  9646. }
  9647. }
  9648. }
  9649. }
  9650. static void ggml_compute_forward_conv_1d_2s_f32(
  9651. const struct ggml_compute_params * params,
  9652. const struct ggml_tensor * src0,
  9653. const struct ggml_tensor * src1,
  9654. struct ggml_tensor * dst) {
  9655. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9656. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9657. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9658. int64_t t0 = ggml_perf_time_us();
  9659. UNUSED(t0);
  9660. const int64_t ne00 = src0->ne[0];
  9661. const int64_t ne01 = src0->ne[1];
  9662. const int64_t ne02 = src0->ne[2];
  9663. //const int64_t ne03 = src0->ne[3];
  9664. const int64_t ne10 = src1->ne[0];
  9665. const int64_t ne11 = src1->ne[1];
  9666. //const int64_t ne12 = src1->ne[2];
  9667. //const int64_t ne13 = src1->ne[3];
  9668. //const int64_t ne0 = dst->ne[0];
  9669. //const int64_t ne1 = dst->ne[1];
  9670. //const int64_t ne2 = dst->ne[2];
  9671. //const int64_t ne3 = dst->ne[3];
  9672. //const int64_t ne = ne0*ne1*ne2*ne3;
  9673. const int nb00 = src0->nb[0];
  9674. const int nb01 = src0->nb[1];
  9675. const int nb02 = src0->nb[2];
  9676. //const int nb03 = src0->nb[3];
  9677. const int nb10 = src1->nb[0];
  9678. const int nb11 = src1->nb[1];
  9679. //const int nb12 = src1->nb[2];
  9680. //const int nb13 = src1->nb[3];
  9681. //const int nb0 = dst->nb[0];
  9682. const int nb1 = dst->nb[1];
  9683. //const int nb2 = dst->nb[2];
  9684. //const int nb3 = dst->nb[3];
  9685. const int ith = params->ith;
  9686. const int nth = params->nth;
  9687. const int nk = ne00;
  9688. const int nh = nk/2;
  9689. const int ew0 = ggml_up32(ne01);
  9690. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9691. GGML_ASSERT(nb00 == sizeof(float));
  9692. GGML_ASSERT(nb10 == sizeof(float));
  9693. if (params->type == GGML_TASK_INIT) {
  9694. // TODO: fix this memset (wsize is overestimated)
  9695. memset(params->wdata, 0, params->wsize);
  9696. // prepare kernel data (src0)
  9697. {
  9698. float * const wdata = (float *) params->wdata + 0;
  9699. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9700. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9701. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9702. float * dst_data = wdata + i02*ew0*ne00;
  9703. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9704. dst_data[i00*ew0 + i01] = src[i00];
  9705. }
  9706. }
  9707. }
  9708. }
  9709. // prepare source data (src1)
  9710. {
  9711. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9712. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9713. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9714. float * dst_data = wdata;
  9715. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9716. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9717. }
  9718. }
  9719. }
  9720. return;
  9721. }
  9722. if (params->type == GGML_TASK_FINALIZE) {
  9723. return;
  9724. }
  9725. // total rows in dst
  9726. const int nr = ne02;
  9727. // rows per thread
  9728. const int dr = (nr + nth - 1)/nth;
  9729. // row range for this thread
  9730. const int ir0 = dr*ith;
  9731. const int ir1 = MIN(ir0 + dr, nr);
  9732. for (int i1 = ir0; i1 < ir1; i1++) {
  9733. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9734. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9735. dst_data[i0/2] = 0;
  9736. for (int k = -nh; k <= nh; k++) {
  9737. float v = 0.0f;
  9738. ggml_vec_dot_f32(ew0, &v,
  9739. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9740. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9741. dst_data[i0/2] += v;
  9742. }
  9743. }
  9744. }
  9745. }
  9746. static void ggml_compute_forward_conv_1d_2s(
  9747. const struct ggml_compute_params * params,
  9748. const struct ggml_tensor * src0,
  9749. const struct ggml_tensor * src1,
  9750. struct ggml_tensor * dst) {
  9751. switch (src0->type) {
  9752. case GGML_TYPE_F16:
  9753. {
  9754. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9755. } break;
  9756. case GGML_TYPE_F32:
  9757. {
  9758. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9759. } break;
  9760. default:
  9761. {
  9762. GGML_ASSERT(false);
  9763. } break;
  9764. }
  9765. }
  9766. // ggml_compute_forward_flash_attn
  9767. static void ggml_compute_forward_flash_attn_f32(
  9768. const struct ggml_compute_params * params,
  9769. const struct ggml_tensor * q,
  9770. const struct ggml_tensor * k,
  9771. const struct ggml_tensor * v,
  9772. const bool masked,
  9773. struct ggml_tensor * dst) {
  9774. int64_t t0 = ggml_perf_time_us();
  9775. UNUSED(t0);
  9776. const int64_t neq0 = q->ne[0];
  9777. const int64_t neq1 = q->ne[1];
  9778. const int64_t neq2 = q->ne[2];
  9779. const int64_t neq3 = q->ne[3];
  9780. const int64_t nek0 = k->ne[0];
  9781. const int64_t nek1 = k->ne[1];
  9782. //const int64_t nek2 = k->ne[2];
  9783. //const int64_t nek3 = k->ne[3];
  9784. //const int64_t nev0 = v->ne[0];
  9785. const int64_t nev1 = v->ne[1];
  9786. //const int64_t nev2 = v->ne[2];
  9787. //const int64_t nev3 = v->ne[3];
  9788. const int64_t ne0 = dst->ne[0];
  9789. const int64_t ne1 = dst->ne[1];
  9790. //const int64_t ne2 = dst->ne[2];
  9791. //const int64_t ne3 = dst->ne[3];
  9792. const int nbk0 = k->nb[0];
  9793. const int nbk1 = k->nb[1];
  9794. const int nbk2 = k->nb[2];
  9795. const int nbk3 = k->nb[3];
  9796. const int nbq0 = q->nb[0];
  9797. const int nbq1 = q->nb[1];
  9798. const int nbq2 = q->nb[2];
  9799. const int nbq3 = q->nb[3];
  9800. const int nbv0 = v->nb[0];
  9801. const int nbv1 = v->nb[1];
  9802. const int nbv2 = v->nb[2];
  9803. const int nbv3 = v->nb[3];
  9804. const int nb0 = dst->nb[0];
  9805. const int nb1 = dst->nb[1];
  9806. const int nb2 = dst->nb[2];
  9807. const int nb3 = dst->nb[3];
  9808. const int ith = params->ith;
  9809. const int nth = params->nth;
  9810. const int64_t D = neq0;
  9811. const int64_t N = neq1;
  9812. const int64_t P = nek1 - N;
  9813. const int64_t M = P + N;
  9814. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9815. GGML_ASSERT(ne0 == D);
  9816. GGML_ASSERT(ne1 == N);
  9817. GGML_ASSERT(P >= 0);
  9818. GGML_ASSERT(nbq0 == sizeof(float));
  9819. GGML_ASSERT(nbk0 == sizeof(float));
  9820. GGML_ASSERT(nbv0 == sizeof(float));
  9821. GGML_ASSERT(neq0 == D);
  9822. GGML_ASSERT(nek0 == D);
  9823. GGML_ASSERT(nev1 == D);
  9824. GGML_ASSERT(neq1 == N);
  9825. GGML_ASSERT(nek1 == N + P);
  9826. GGML_ASSERT(nev1 == D);
  9827. // dst cannot be transposed or permuted
  9828. GGML_ASSERT(nb0 == sizeof(float));
  9829. GGML_ASSERT(nb0 <= nb1);
  9830. GGML_ASSERT(nb1 <= nb2);
  9831. GGML_ASSERT(nb2 <= nb3);
  9832. if (params->type == GGML_TASK_INIT) {
  9833. return;
  9834. }
  9835. if (params->type == GGML_TASK_FINALIZE) {
  9836. return;
  9837. }
  9838. // parallelize by q rows using ggml_vec_dot_f32
  9839. // total rows in q
  9840. const int nr = neq1*neq2*neq3;
  9841. // rows per thread
  9842. const int dr = (nr + nth - 1)/nth;
  9843. // row range for this thread
  9844. const int ir0 = dr*ith;
  9845. const int ir1 = MIN(ir0 + dr, nr);
  9846. const float scale = 1.0f/sqrtf(D);
  9847. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9848. for (int ir = ir0; ir < ir1; ++ir) {
  9849. // q indices
  9850. const int iq3 = ir/(neq2*neq1);
  9851. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9852. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9853. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9854. for (int i = M; i < Mup; ++i) {
  9855. S[i] = -INFINITY;
  9856. }
  9857. for (int64_t ic = 0; ic < nek1; ++ic) {
  9858. // k indices
  9859. const int ik3 = iq3;
  9860. const int ik2 = iq2;
  9861. const int ik1 = ic;
  9862. // S indices
  9863. const int i1 = ik1;
  9864. ggml_vec_dot_f32(neq0,
  9865. S + i1,
  9866. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9867. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9868. }
  9869. // scale
  9870. ggml_vec_scale_f32(nek1, S, scale);
  9871. if (masked) {
  9872. for (int64_t i = P; i < M; i++) {
  9873. if (i > P + iq1) {
  9874. S[i] = -INFINITY;
  9875. }
  9876. }
  9877. }
  9878. // softmax
  9879. {
  9880. float max = -INFINITY;
  9881. ggml_vec_max_f32(M, &max, S);
  9882. ggml_float sum = 0.0;
  9883. {
  9884. #ifdef GGML_SOFT_MAX_ACCELERATE
  9885. max = -max;
  9886. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9887. vvexpf(S, S, &Mup);
  9888. ggml_vec_sum_f32(Mup, &sum, S);
  9889. #else
  9890. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9891. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9892. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9893. float * SS = S + i;
  9894. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9895. if (SS[j] == -INFINITY) {
  9896. SS[j] = 0.0f;
  9897. } else {
  9898. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9899. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9900. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9901. sump[j] += (ggml_float)val;
  9902. SS[j] = val;
  9903. }
  9904. }
  9905. }
  9906. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9907. sum += sump[i];
  9908. }
  9909. #endif
  9910. }
  9911. assert(sum > 0.0);
  9912. sum = 1.0/sum;
  9913. ggml_vec_scale_f32(M, S, sum);
  9914. #ifndef NDEBUG
  9915. for (int i = 0; i < M; ++i) {
  9916. assert(!isnan(S[i]));
  9917. assert(!isinf(S[i]));
  9918. }
  9919. #endif
  9920. }
  9921. for (int64_t ic = 0; ic < nev1; ++ic) {
  9922. // dst indices
  9923. const int i1 = iq1;
  9924. const int i2 = iq2;
  9925. const int i3 = iq3;
  9926. ggml_vec_dot_f32(nek1,
  9927. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9928. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9929. S);
  9930. }
  9931. }
  9932. }
  9933. static void ggml_compute_forward_flash_attn_f16(
  9934. const struct ggml_compute_params * params,
  9935. const struct ggml_tensor * q,
  9936. const struct ggml_tensor * k,
  9937. const struct ggml_tensor * v,
  9938. const bool masked,
  9939. struct ggml_tensor * dst) {
  9940. int64_t t0 = ggml_perf_time_us();
  9941. UNUSED(t0);
  9942. const int64_t neq0 = q->ne[0];
  9943. const int64_t neq1 = q->ne[1];
  9944. const int64_t neq2 = q->ne[2];
  9945. const int64_t neq3 = q->ne[3];
  9946. const int64_t nek0 = k->ne[0];
  9947. const int64_t nek1 = k->ne[1];
  9948. //const int64_t nek2 = k->ne[2];
  9949. //const int64_t nek3 = k->ne[3];
  9950. //const int64_t nev0 = v->ne[0];
  9951. const int64_t nev1 = v->ne[1];
  9952. //const int64_t nev2 = v->ne[2];
  9953. //const int64_t nev3 = v->ne[3];
  9954. const int64_t ne0 = dst->ne[0];
  9955. const int64_t ne1 = dst->ne[1];
  9956. //const int64_t ne2 = dst->ne[2];
  9957. //const int64_t ne3 = dst->ne[3];
  9958. const int nbk0 = k->nb[0];
  9959. const int nbk1 = k->nb[1];
  9960. const int nbk2 = k->nb[2];
  9961. const int nbk3 = k->nb[3];
  9962. const int nbq0 = q->nb[0];
  9963. const int nbq1 = q->nb[1];
  9964. const int nbq2 = q->nb[2];
  9965. const int nbq3 = q->nb[3];
  9966. const int nbv0 = v->nb[0];
  9967. const int nbv1 = v->nb[1];
  9968. const int nbv2 = v->nb[2];
  9969. const int nbv3 = v->nb[3];
  9970. const int nb0 = dst->nb[0];
  9971. const int nb1 = dst->nb[1];
  9972. const int nb2 = dst->nb[2];
  9973. const int nb3 = dst->nb[3];
  9974. const int ith = params->ith;
  9975. const int nth = params->nth;
  9976. const int64_t D = neq0;
  9977. const int64_t N = neq1;
  9978. const int64_t P = nek1 - N;
  9979. const int64_t M = P + N;
  9980. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9981. GGML_ASSERT(ne0 == D);
  9982. GGML_ASSERT(ne1 == N);
  9983. GGML_ASSERT(P >= 0);
  9984. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9985. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9986. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9987. GGML_ASSERT(neq0 == D);
  9988. GGML_ASSERT(nek0 == D);
  9989. GGML_ASSERT(nev1 == D);
  9990. GGML_ASSERT(neq1 == N);
  9991. GGML_ASSERT(nek1 == N + P);
  9992. GGML_ASSERT(nev1 == D);
  9993. // dst cannot be transposed or permuted
  9994. GGML_ASSERT(nb0 == sizeof(float));
  9995. GGML_ASSERT(nb0 <= nb1);
  9996. GGML_ASSERT(nb1 <= nb2);
  9997. GGML_ASSERT(nb2 <= nb3);
  9998. if (params->type == GGML_TASK_INIT) {
  9999. return;
  10000. }
  10001. if (params->type == GGML_TASK_FINALIZE) {
  10002. return;
  10003. }
  10004. // parallelize by q rows using ggml_vec_dot_f32
  10005. // total rows in q
  10006. const int nr = neq1*neq2*neq3;
  10007. // rows per thread
  10008. const int dr = (nr + nth - 1)/nth;
  10009. // row range for this thread
  10010. const int ir0 = dr*ith;
  10011. const int ir1 = MIN(ir0 + dr, nr);
  10012. const float scale = 1.0f/sqrtf(D);
  10013. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10014. for (int ir = ir0; ir < ir1; ++ir) {
  10015. // q indices
  10016. const int iq3 = ir/(neq2*neq1);
  10017. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10018. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10019. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10020. for (int i = M; i < Mup; ++i) {
  10021. S[i] = -INFINITY;
  10022. }
  10023. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10024. for (int64_t ic = 0; ic < nek1; ++ic) {
  10025. // k indices
  10026. const int ik3 = iq3;
  10027. const int ik2 = iq2;
  10028. const int ik1 = ic;
  10029. // S indices
  10030. const int i1 = ik1;
  10031. ggml_vec_dot_f16(neq0,
  10032. S + i1,
  10033. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10034. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10035. }
  10036. } else {
  10037. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10038. // k indices
  10039. const int ik3 = iq3;
  10040. const int ik2 = iq2;
  10041. const int ik1 = ic;
  10042. // S indices
  10043. const int i1 = ik1;
  10044. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10045. S + i1,
  10046. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10047. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10048. }
  10049. }
  10050. // scale
  10051. ggml_vec_scale_f32(nek1, S, scale);
  10052. if (masked) {
  10053. for (int64_t i = P; i < M; i++) {
  10054. if (i > P + iq1) {
  10055. S[i] = -INFINITY;
  10056. }
  10057. }
  10058. }
  10059. // softmax
  10060. {
  10061. float max = -INFINITY;
  10062. ggml_vec_max_f32(M, &max, S);
  10063. ggml_float sum = 0.0;
  10064. {
  10065. #ifdef GGML_SOFT_MAX_ACCELERATE
  10066. max = -max;
  10067. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10068. vvexpf(S, S, &Mup);
  10069. ggml_vec_sum_f32(Mup, &sum, S);
  10070. #else
  10071. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10072. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10073. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10074. float * SS = S + i;
  10075. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10076. if (SS[j] == -INFINITY) {
  10077. SS[j] = 0.0f;
  10078. } else {
  10079. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10080. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10081. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10082. sump[j] += (ggml_float)val;
  10083. SS[j] = val;
  10084. }
  10085. }
  10086. }
  10087. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10088. sum += sump[i];
  10089. }
  10090. #endif
  10091. }
  10092. assert(sum > 0.0);
  10093. sum = 1.0/sum;
  10094. ggml_vec_scale_f32(M, S, sum);
  10095. #ifndef NDEBUG
  10096. for (int i = 0; i < M; ++i) {
  10097. assert(!isnan(S[i]));
  10098. assert(!isinf(S[i]));
  10099. }
  10100. #endif
  10101. }
  10102. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10103. for (int64_t i = 0; i < M; i++) {
  10104. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10105. }
  10106. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10107. for (int64_t ic = 0; ic < nev1; ++ic) {
  10108. // dst indices
  10109. const int i1 = iq1;
  10110. const int i2 = iq2;
  10111. const int i3 = iq3;
  10112. ggml_vec_dot_f16(nek1,
  10113. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10114. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10115. S16);
  10116. }
  10117. } else {
  10118. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10119. // dst indices
  10120. const int i1 = iq1;
  10121. const int i2 = iq2;
  10122. const int i3 = iq3;
  10123. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10124. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10125. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10126. S16);
  10127. }
  10128. }
  10129. }
  10130. }
  10131. static void ggml_compute_forward_flash_attn(
  10132. const struct ggml_compute_params * params,
  10133. const struct ggml_tensor * q,
  10134. const struct ggml_tensor * k,
  10135. const struct ggml_tensor * v,
  10136. const bool masked,
  10137. struct ggml_tensor * dst) {
  10138. switch (q->type) {
  10139. case GGML_TYPE_F16:
  10140. {
  10141. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10142. } break;
  10143. case GGML_TYPE_F32:
  10144. {
  10145. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10146. } break;
  10147. default:
  10148. {
  10149. GGML_ASSERT(false);
  10150. } break;
  10151. }
  10152. }
  10153. // ggml_compute_forward_flash_ff
  10154. static void ggml_compute_forward_flash_ff_f16(
  10155. const struct ggml_compute_params * params,
  10156. const struct ggml_tensor * a, // F16
  10157. const struct ggml_tensor * b0, // F16 fc_w
  10158. const struct ggml_tensor * b1, // F32 fc_b
  10159. const struct ggml_tensor * c0, // F16 proj_w
  10160. const struct ggml_tensor * c1, // F32 proj_b
  10161. struct ggml_tensor * dst) {
  10162. int64_t t0 = ggml_perf_time_us();
  10163. UNUSED(t0);
  10164. const int64_t nea0 = a->ne[0];
  10165. const int64_t nea1 = a->ne[1];
  10166. const int64_t nea2 = a->ne[2];
  10167. const int64_t nea3 = a->ne[3];
  10168. const int64_t neb00 = b0->ne[0];
  10169. const int64_t neb01 = b0->ne[1];
  10170. //const int64_t neb02 = b0->ne[2];
  10171. //const int64_t neb03 = b0->ne[3];
  10172. const int64_t neb10 = b1->ne[0];
  10173. const int64_t neb11 = b1->ne[1];
  10174. //const int64_t neb12 = b1->ne[2];
  10175. //const int64_t neb13 = b1->ne[3];
  10176. const int64_t nec00 = c0->ne[0];
  10177. const int64_t nec01 = c0->ne[1];
  10178. //const int64_t nec02 = c0->ne[2];
  10179. //const int64_t nec03 = c0->ne[3];
  10180. const int64_t nec10 = c1->ne[0];
  10181. const int64_t nec11 = c1->ne[1];
  10182. //const int64_t nec12 = c1->ne[2];
  10183. //const int64_t nec13 = c1->ne[3];
  10184. const int64_t ne0 = dst->ne[0];
  10185. const int64_t ne1 = dst->ne[1];
  10186. const int64_t ne2 = dst->ne[2];
  10187. //const int64_t ne3 = dst->ne[3];
  10188. const int nba0 = a->nb[0];
  10189. const int nba1 = a->nb[1];
  10190. const int nba2 = a->nb[2];
  10191. const int nba3 = a->nb[3];
  10192. const int nbb00 = b0->nb[0];
  10193. const int nbb01 = b0->nb[1];
  10194. const int nbb02 = b0->nb[2];
  10195. const int nbb03 = b0->nb[3];
  10196. const int nbb10 = b1->nb[0];
  10197. //const int nbb11 = b1->nb[1];
  10198. //const int nbb12 = b1->nb[2];
  10199. //const int nbb13 = b1->nb[3];
  10200. const int nbc00 = c0->nb[0];
  10201. const int nbc01 = c0->nb[1];
  10202. const int nbc02 = c0->nb[2];
  10203. const int nbc03 = c0->nb[3];
  10204. const int nbc10 = c1->nb[0];
  10205. //const int nbc11 = c1->nb[1];
  10206. //const int nbc12 = c1->nb[2];
  10207. //const int nbc13 = c1->nb[3];
  10208. const int nb0 = dst->nb[0];
  10209. const int nb1 = dst->nb[1];
  10210. const int nb2 = dst->nb[2];
  10211. const int nb3 = dst->nb[3];
  10212. const int ith = params->ith;
  10213. const int nth = params->nth;
  10214. const int64_t D = nea0;
  10215. //const int64_t N = nea1;
  10216. const int64_t M = neb01;
  10217. GGML_ASSERT(ne0 == nea0);
  10218. GGML_ASSERT(ne1 == nea1);
  10219. GGML_ASSERT(ne2 == nea2);
  10220. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10221. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10222. GGML_ASSERT(nbb10 == sizeof(float));
  10223. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10224. GGML_ASSERT(nbc10 == sizeof(float));
  10225. GGML_ASSERT(neb00 == D);
  10226. GGML_ASSERT(neb01 == M);
  10227. GGML_ASSERT(neb10 == M);
  10228. GGML_ASSERT(neb11 == 1);
  10229. GGML_ASSERT(nec00 == M);
  10230. GGML_ASSERT(nec01 == D);
  10231. GGML_ASSERT(nec10 == D);
  10232. GGML_ASSERT(nec11 == 1);
  10233. // dst cannot be transposed or permuted
  10234. GGML_ASSERT(nb0 == sizeof(float));
  10235. GGML_ASSERT(nb0 <= nb1);
  10236. GGML_ASSERT(nb1 <= nb2);
  10237. GGML_ASSERT(nb2 <= nb3);
  10238. if (params->type == GGML_TASK_INIT) {
  10239. return;
  10240. }
  10241. if (params->type == GGML_TASK_FINALIZE) {
  10242. return;
  10243. }
  10244. // parallelize by a rows using ggml_vec_dot_f32
  10245. // total rows in a
  10246. const int nr = nea1*nea2*nea3;
  10247. // rows per thread
  10248. const int dr = (nr + nth - 1)/nth;
  10249. // row range for this thread
  10250. const int ir0 = dr*ith;
  10251. const int ir1 = MIN(ir0 + dr, nr);
  10252. for (int ir = ir0; ir < ir1; ++ir) {
  10253. // a indices
  10254. const int ia3 = ir/(nea2*nea1);
  10255. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10256. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10257. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10258. for (int64_t ic = 0; ic < neb01; ++ic) {
  10259. // b0 indices
  10260. const int ib03 = ia3;
  10261. const int ib02 = ia2;
  10262. const int ib01 = ic;
  10263. // S indices
  10264. const int i1 = ib01;
  10265. ggml_vec_dot_f16(nea0,
  10266. S + i1,
  10267. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10268. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10269. }
  10270. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10271. //ggml_vec_gelu_f32(neb01, S, S);
  10272. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10273. for (int64_t i = 0; i < M; i++) {
  10274. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10275. }
  10276. ggml_vec_gelu_f16(neb01, S16, S16);
  10277. {
  10278. // dst indices
  10279. const int i1 = ia1;
  10280. const int i2 = ia2;
  10281. const int i3 = ia3;
  10282. for (int64_t ic = 0; ic < nec01; ++ic) {
  10283. ggml_vec_dot_f16(neb01,
  10284. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10285. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10286. S16);
  10287. }
  10288. ggml_vec_add_f32(nec01,
  10289. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10290. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10291. (float *) c1->data);
  10292. }
  10293. }
  10294. }
  10295. static void ggml_compute_forward_flash_ff(
  10296. const struct ggml_compute_params * params,
  10297. const struct ggml_tensor * a,
  10298. const struct ggml_tensor * b0,
  10299. const struct ggml_tensor * b1,
  10300. const struct ggml_tensor * c0,
  10301. const struct ggml_tensor * c1,
  10302. struct ggml_tensor * dst) {
  10303. switch (b0->type) {
  10304. case GGML_TYPE_F16:
  10305. {
  10306. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10307. } break;
  10308. case GGML_TYPE_F32:
  10309. {
  10310. GGML_ASSERT(false); // TODO
  10311. } break;
  10312. default:
  10313. {
  10314. GGML_ASSERT(false);
  10315. } break;
  10316. }
  10317. }
  10318. // ggml_compute_forward_map_unary
  10319. static void ggml_compute_forward_map_unary_f32(
  10320. const struct ggml_compute_params * params,
  10321. const struct ggml_tensor * src0,
  10322. struct ggml_tensor * dst,
  10323. const ggml_unary_op_f32_t fun) {
  10324. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10325. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10326. return;
  10327. }
  10328. const int n = ggml_nrows(src0);
  10329. const int nc = src0->ne[0];
  10330. assert( dst->nb[0] == sizeof(float));
  10331. assert(src0->nb[0] == sizeof(float));
  10332. for (int i = 0; i < n; i++) {
  10333. fun(nc,
  10334. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10335. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10336. }
  10337. }
  10338. static void ggml_compute_forward_map_unary(
  10339. const struct ggml_compute_params * params,
  10340. const struct ggml_tensor * src0,
  10341. struct ggml_tensor * dst,
  10342. const ggml_unary_op_f32_t fun) {
  10343. switch (src0->type) {
  10344. case GGML_TYPE_F32:
  10345. {
  10346. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10347. } break;
  10348. default:
  10349. {
  10350. GGML_ASSERT(false);
  10351. } break;
  10352. }
  10353. }
  10354. // ggml_compute_forward_map_binary
  10355. static void ggml_compute_forward_map_binary_f32(
  10356. const struct ggml_compute_params * params,
  10357. const struct ggml_tensor * src0,
  10358. const struct ggml_tensor * src1,
  10359. struct ggml_tensor * dst,
  10360. const ggml_binary_op_f32_t fun) {
  10361. assert(params->ith == 0);
  10362. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10364. return;
  10365. }
  10366. const int n = ggml_nrows(src0);
  10367. const int nc = src0->ne[0];
  10368. assert( dst->nb[0] == sizeof(float));
  10369. assert(src0->nb[0] == sizeof(float));
  10370. assert(src1->nb[0] == sizeof(float));
  10371. for (int i = 0; i < n; i++) {
  10372. fun(nc,
  10373. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10374. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10375. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10376. }
  10377. }
  10378. static void ggml_compute_forward_map_binary(
  10379. const struct ggml_compute_params * params,
  10380. const struct ggml_tensor * src0,
  10381. const struct ggml_tensor * src1,
  10382. struct ggml_tensor * dst,
  10383. const ggml_binary_op_f32_t fun) {
  10384. switch (src0->type) {
  10385. case GGML_TYPE_F32:
  10386. {
  10387. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10388. } break;
  10389. default:
  10390. {
  10391. GGML_ASSERT(false);
  10392. } break;
  10393. }
  10394. }
  10395. /////////////////////////////////
  10396. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10397. GGML_ASSERT(params);
  10398. switch (tensor->op) {
  10399. case GGML_OP_DUP:
  10400. {
  10401. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10402. } break;
  10403. case GGML_OP_ADD:
  10404. {
  10405. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10406. } break;
  10407. case GGML_OP_ADD1:
  10408. {
  10409. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10410. } break;
  10411. case GGML_OP_ACC:
  10412. {
  10413. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10414. } break;
  10415. case GGML_OP_SUB:
  10416. {
  10417. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10418. } break;
  10419. case GGML_OP_MUL:
  10420. {
  10421. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10422. } break;
  10423. case GGML_OP_DIV:
  10424. {
  10425. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10426. } break;
  10427. case GGML_OP_SQR:
  10428. {
  10429. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10430. } break;
  10431. case GGML_OP_SQRT:
  10432. {
  10433. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10434. } break;
  10435. case GGML_OP_LOG:
  10436. {
  10437. ggml_compute_forward_log(params, tensor->src0, tensor);
  10438. } break;
  10439. case GGML_OP_SUM:
  10440. {
  10441. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10442. } break;
  10443. case GGML_OP_SUM_ROWS:
  10444. {
  10445. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10446. } break;
  10447. case GGML_OP_MEAN:
  10448. {
  10449. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10450. } break;
  10451. case GGML_OP_REPEAT:
  10452. {
  10453. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10454. } break;
  10455. case GGML_OP_ABS:
  10456. {
  10457. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10458. } break;
  10459. case GGML_OP_SGN:
  10460. {
  10461. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10462. } break;
  10463. case GGML_OP_NEG:
  10464. {
  10465. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10466. } break;
  10467. case GGML_OP_STEP:
  10468. {
  10469. ggml_compute_forward_step(params, tensor->src0, tensor);
  10470. } break;
  10471. case GGML_OP_RELU:
  10472. {
  10473. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10474. } break;
  10475. case GGML_OP_GELU:
  10476. {
  10477. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10478. } break;
  10479. case GGML_OP_SILU:
  10480. {
  10481. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10482. } break;
  10483. case GGML_OP_SILU_BACK:
  10484. {
  10485. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10486. } break;
  10487. case GGML_OP_NORM:
  10488. {
  10489. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10490. } break;
  10491. case GGML_OP_RMS_NORM:
  10492. {
  10493. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10494. } break;
  10495. case GGML_OP_RMS_NORM_BACK:
  10496. {
  10497. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10498. } break;
  10499. case GGML_OP_MUL_MAT:
  10500. {
  10501. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10502. } break;
  10503. case GGML_OP_SCALE:
  10504. {
  10505. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10506. } break;
  10507. case GGML_OP_SET:
  10508. {
  10509. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10510. } break;
  10511. case GGML_OP_CPY:
  10512. {
  10513. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10514. } break;
  10515. case GGML_OP_CONT:
  10516. {
  10517. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10518. } break;
  10519. case GGML_OP_RESHAPE:
  10520. {
  10521. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10522. } break;
  10523. case GGML_OP_VIEW:
  10524. {
  10525. ggml_compute_forward_view(params, tensor->src0);
  10526. } break;
  10527. case GGML_OP_PERMUTE:
  10528. {
  10529. ggml_compute_forward_permute(params, tensor->src0);
  10530. } break;
  10531. case GGML_OP_TRANSPOSE:
  10532. {
  10533. ggml_compute_forward_transpose(params, tensor->src0);
  10534. } break;
  10535. case GGML_OP_GET_ROWS:
  10536. {
  10537. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10538. } break;
  10539. case GGML_OP_GET_ROWS_BACK:
  10540. {
  10541. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10542. } break;
  10543. case GGML_OP_DIAG:
  10544. {
  10545. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10546. } break;
  10547. case GGML_OP_DIAG_MASK_INF:
  10548. {
  10549. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10550. } break;
  10551. case GGML_OP_DIAG_MASK_ZERO:
  10552. {
  10553. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10554. } break;
  10555. case GGML_OP_SOFT_MAX:
  10556. {
  10557. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10558. } break;
  10559. case GGML_OP_ROPE:
  10560. {
  10561. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10562. } break;
  10563. case GGML_OP_ROPE_BACK:
  10564. {
  10565. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10566. } break;
  10567. case GGML_OP_ALIBI:
  10568. {
  10569. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10570. } break;
  10571. case GGML_OP_CLAMP:
  10572. {
  10573. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10574. } break;
  10575. case GGML_OP_CONV_1D_1S:
  10576. {
  10577. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10578. } break;
  10579. case GGML_OP_CONV_1D_2S:
  10580. {
  10581. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10582. } break;
  10583. case GGML_OP_FLASH_ATTN:
  10584. {
  10585. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10586. GGML_ASSERT(t == 0 || t == 1);
  10587. bool masked = t != 0;
  10588. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10589. } break;
  10590. case GGML_OP_FLASH_FF:
  10591. {
  10592. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10593. } break;
  10594. case GGML_OP_MAP_UNARY:
  10595. {
  10596. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10597. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10598. }
  10599. break;
  10600. case GGML_OP_MAP_BINARY:
  10601. {
  10602. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10603. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10604. }
  10605. break;
  10606. case GGML_OP_NONE:
  10607. {
  10608. // nop
  10609. } break;
  10610. case GGML_OP_COUNT:
  10611. {
  10612. GGML_ASSERT(false);
  10613. } break;
  10614. }
  10615. }
  10616. ////////////////////////////////////////////////////////////////////////////////
  10617. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10618. struct ggml_tensor * src0 = tensor->src0;
  10619. struct ggml_tensor * src1 = tensor->src1;
  10620. switch (tensor->op) {
  10621. case GGML_OP_DUP:
  10622. {
  10623. if (src0->grad) {
  10624. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10625. }
  10626. } break;
  10627. case GGML_OP_ADD:
  10628. {
  10629. if (src0->grad) {
  10630. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10631. }
  10632. if (src1->grad) {
  10633. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10634. }
  10635. } break;
  10636. case GGML_OP_ADD1:
  10637. {
  10638. if (src0->grad) {
  10639. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10640. }
  10641. if (src1->grad) {
  10642. src1->grad = ggml_add_impl(ctx,
  10643. src1->grad,
  10644. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10645. inplace);
  10646. }
  10647. } break;
  10648. case GGML_OP_ACC:
  10649. {
  10650. if (src0->grad) {
  10651. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10652. }
  10653. if (src1->grad) {
  10654. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10655. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10656. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10657. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10658. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10659. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10660. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10661. tensor->grad,
  10662. src1->grad->ne[0],
  10663. src1->grad->ne[1],
  10664. src1->grad->ne[2],
  10665. src1->grad->ne[3],
  10666. nb1, nb2, nb3, offset);
  10667. src1->grad =
  10668. ggml_add_impl(ctx,
  10669. src1->grad,
  10670. ggml_reshape(ctx,
  10671. ggml_cont(ctx, tensor_grad_view),
  10672. src1->grad),
  10673. inplace);
  10674. }
  10675. } break;
  10676. case GGML_OP_SUB:
  10677. {
  10678. if (src0->grad) {
  10679. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10680. }
  10681. if (src1->grad) {
  10682. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10683. }
  10684. } break;
  10685. case GGML_OP_MUL:
  10686. {
  10687. if (src0->grad) {
  10688. src0->grad =
  10689. ggml_add_impl(ctx,
  10690. src0->grad,
  10691. ggml_mul(ctx, src1, tensor->grad),
  10692. inplace);
  10693. }
  10694. if (src1->grad) {
  10695. src1->grad =
  10696. ggml_add_impl(ctx,
  10697. src1->grad,
  10698. ggml_mul(ctx, src0, tensor->grad),
  10699. inplace);
  10700. }
  10701. } break;
  10702. case GGML_OP_DIV:
  10703. {
  10704. if (src0->grad) {
  10705. src0->grad =
  10706. ggml_add_impl(ctx,
  10707. src0->grad,
  10708. ggml_div(ctx, tensor->grad, src1),
  10709. inplace);
  10710. }
  10711. if (src1->grad) {
  10712. src1->grad =
  10713. ggml_sub_impl(ctx,
  10714. src1->grad,
  10715. ggml_mul(ctx,
  10716. tensor->grad,
  10717. ggml_div(ctx, tensor, src1)),
  10718. inplace);
  10719. }
  10720. } break;
  10721. case GGML_OP_SQR:
  10722. {
  10723. if (src0->grad) {
  10724. src0->grad =
  10725. ggml_add_impl(ctx,
  10726. src0->grad,
  10727. ggml_scale(ctx,
  10728. ggml_mul(ctx, src0, tensor->grad),
  10729. ggml_new_f32(ctx, 2.0f)),
  10730. inplace);
  10731. }
  10732. } break;
  10733. case GGML_OP_SQRT:
  10734. {
  10735. if (src0->grad) {
  10736. src0->grad =
  10737. ggml_add_impl(ctx,
  10738. src0->grad,
  10739. ggml_mul(ctx,
  10740. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10741. ggml_div(ctx,
  10742. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10743. tensor)),
  10744. inplace);
  10745. }
  10746. } break;
  10747. case GGML_OP_LOG:
  10748. {
  10749. if (src0->grad) {
  10750. src0->grad =
  10751. ggml_add_impl(ctx,
  10752. src0->grad,
  10753. ggml_div(ctx,
  10754. tensor->grad,
  10755. src0),
  10756. inplace);
  10757. }
  10758. } break;
  10759. case GGML_OP_SUM:
  10760. {
  10761. if (src0->grad) {
  10762. src0->grad =
  10763. ggml_add1_impl(ctx,
  10764. src0->grad,
  10765. tensor->grad,
  10766. inplace);
  10767. }
  10768. } break;
  10769. case GGML_OP_SUM_ROWS:
  10770. {
  10771. if (src0->grad) {
  10772. src0->grad =
  10773. ggml_add_impl(ctx,
  10774. src0->grad,
  10775. ggml_repeat(ctx,
  10776. tensor->grad,
  10777. src0->grad),
  10778. inplace);
  10779. }
  10780. } break;
  10781. case GGML_OP_MEAN:
  10782. {
  10783. GGML_ASSERT(false); // TODO: implement
  10784. } break;
  10785. case GGML_OP_REPEAT:
  10786. {
  10787. // necessary for llama
  10788. if (src0->grad) {
  10789. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10790. const int nc = tensor->ne[0];
  10791. const int nr = tensor->ne[1];
  10792. const int nc0 = src0->ne[0];
  10793. const int nr0 = src0->ne[1];
  10794. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10795. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10796. // tensor->grad [nc,nr,1,1]
  10797. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10798. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10799. // substitute [nc0,nr0,ncr,nrr]
  10800. // reshape [nc0*nr0,ncr*nrr,1,1]
  10801. // transpose [ncr*nrr,nc0*nr0,1,1]
  10802. // sum rows [1,nc0*nr0,1,1]
  10803. // transpose [nc0*nr0,1,1]
  10804. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10805. // add to src0->grad
  10806. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10807. struct ggml_tensor* F00 = tensor->grad;
  10808. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10809. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10810. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10811. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10812. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10813. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10814. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10815. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10816. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10817. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10818. src0->grad =
  10819. ggml_add_impl(ctx,
  10820. src0->grad,
  10821. F10,
  10822. inplace);
  10823. }
  10824. } break;
  10825. case GGML_OP_ABS:
  10826. {
  10827. if (src0->grad) {
  10828. src0->grad =
  10829. ggml_add_impl(ctx,
  10830. src0->grad,
  10831. ggml_mul(ctx,
  10832. ggml_sgn(ctx, src0),
  10833. tensor->grad),
  10834. inplace);
  10835. }
  10836. } break;
  10837. case GGML_OP_SGN:
  10838. {
  10839. if (src0->grad) {
  10840. // noop
  10841. }
  10842. } break;
  10843. case GGML_OP_NEG:
  10844. {
  10845. if (src0->grad) {
  10846. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10847. }
  10848. } break;
  10849. case GGML_OP_STEP:
  10850. {
  10851. if (src0->grad) {
  10852. // noop
  10853. }
  10854. } break;
  10855. case GGML_OP_RELU:
  10856. {
  10857. if (src0->grad) {
  10858. src0->grad = ggml_sub_impl(ctx,
  10859. src0->grad,
  10860. ggml_mul(ctx,
  10861. ggml_step(ctx, src0),
  10862. tensor->grad),
  10863. inplace);
  10864. }
  10865. } break;
  10866. case GGML_OP_GELU:
  10867. {
  10868. GGML_ASSERT(false); // TODO: not implemented
  10869. } break;
  10870. case GGML_OP_ALIBI:
  10871. {
  10872. GGML_ASSERT(false); // TODO: not implemented
  10873. } break;
  10874. case GGML_OP_CLAMP:
  10875. {
  10876. GGML_ASSERT(false); // TODO: not implemented
  10877. } break;
  10878. case GGML_OP_SILU:
  10879. {
  10880. // necessary for llama
  10881. if (src0->grad) {
  10882. src0->grad = ggml_add_impl(ctx,
  10883. src0->grad,
  10884. ggml_silu_back(ctx, src0, tensor->grad),
  10885. inplace);
  10886. }
  10887. } break;
  10888. case GGML_OP_SILU_BACK:
  10889. {
  10890. GGML_ASSERT(false); // TODO: not implemented
  10891. } break;
  10892. case GGML_OP_NORM:
  10893. {
  10894. GGML_ASSERT(false); // TODO: not implemented
  10895. } break;
  10896. case GGML_OP_RMS_NORM:
  10897. {
  10898. // necessary for llama
  10899. if (src0->grad) {
  10900. src0->grad = ggml_add_impl(ctx,
  10901. src0->grad,
  10902. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10903. inplace);
  10904. }
  10905. } break;
  10906. case GGML_OP_RMS_NORM_BACK:
  10907. {
  10908. GGML_ASSERT(false); // TODO: not implemented
  10909. } break;
  10910. case GGML_OP_MUL_MAT:
  10911. {
  10912. // https://cs231n.github.io/optimization-2/#staged
  10913. // # forward pass
  10914. // s0 = np.random.randn(5, 10)
  10915. // s1 = np.random.randn(10, 3)
  10916. // t = s0.dot(s1)
  10917. // # now suppose we had the gradient on t from above in the circuit
  10918. // dt = np.random.randn(*t.shape) # same shape as t
  10919. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10920. // ds1 = t.T.dot(dt)
  10921. // tensor.shape [m,p]
  10922. // src0.shape [n,m]
  10923. // src1.shape [n,p]
  10924. // necessary for llama
  10925. if (src0->grad) {
  10926. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10927. src0->grad =
  10928. ggml_add_impl(ctx,
  10929. src0->grad,
  10930. // ds0 = dt.dot(s1.T)
  10931. // ggml_out_prod(ctx, // [n,m]
  10932. // src1, // [n,p]
  10933. // tensor->grad), // [m,p]
  10934. // for now just using A*B==(B.T*A.T).T
  10935. ggml_cont(ctx, // [n,m]
  10936. ggml_transpose(ctx, // [n,m]
  10937. ggml_mul_mat(ctx, // [m,n]
  10938. ggml_cont(ctx, // [p,m]
  10939. ggml_transpose(ctx, // [p,m]
  10940. tensor->grad)), // [m,p]
  10941. ggml_cont(ctx, // [p,n]
  10942. ggml_transpose(ctx, // [p,n]
  10943. src1))))), // [n,p]
  10944. inplace);
  10945. }
  10946. if (src1->grad) {
  10947. src1->grad =
  10948. ggml_add_impl(ctx,
  10949. src1->grad,
  10950. // ds1 = s0.T.dot(dt):
  10951. ggml_mul_mat(ctx, // [n,p]
  10952. ggml_cont(ctx, // [m,n]
  10953. ggml_transpose(ctx, src0)), // [m,n]
  10954. tensor->grad), // [m,p]
  10955. inplace);
  10956. }
  10957. } break;
  10958. case GGML_OP_SCALE:
  10959. {
  10960. // necessary for llama
  10961. if (src0->grad) {
  10962. src0->grad =
  10963. ggml_add_impl(ctx,
  10964. src0->grad,
  10965. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10966. inplace);
  10967. }
  10968. if (src1->grad) {
  10969. src1->grad =
  10970. ggml_add_impl(ctx,
  10971. src1->grad,
  10972. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10973. inplace);
  10974. }
  10975. } break;
  10976. case GGML_OP_SET:
  10977. {
  10978. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10979. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10980. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10981. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10982. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10983. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10984. struct ggml_tensor * tensor_grad_view = NULL;
  10985. if (src0->grad || src1->grad) {
  10986. GGML_ASSERT(src0->type == tensor->type);
  10987. GGML_ASSERT(tensor->grad->type == tensor->type);
  10988. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10989. tensor_grad_view = ggml_view_4d(ctx,
  10990. tensor->grad,
  10991. src1->grad->ne[0],
  10992. src1->grad->ne[1],
  10993. src1->grad->ne[2],
  10994. src1->grad->ne[3],
  10995. nb1, nb2, nb3, offset);
  10996. }
  10997. if (src0->grad) {
  10998. src0->grad = ggml_add_impl(ctx,
  10999. src0->grad,
  11000. ggml_acc_impl(ctx,
  11001. tensor->grad,
  11002. ggml_neg(ctx, tensor_grad_view),
  11003. nb1, nb2, nb3, offset, false),
  11004. inplace);
  11005. }
  11006. if (src1->grad) {
  11007. src1->grad =
  11008. ggml_add_impl(ctx,
  11009. src1->grad,
  11010. ggml_reshape(ctx,
  11011. ggml_cont(ctx, tensor_grad_view),
  11012. src1->grad),
  11013. inplace);
  11014. }
  11015. } break;
  11016. case GGML_OP_CPY:
  11017. {
  11018. // necessary for llama
  11019. // cpy overwrites value of src1 by src0 and returns view(src1)
  11020. // the overwriting is mathematically equivalent to:
  11021. // tensor = src0 * 1 + src1 * 0
  11022. if (src0->grad) {
  11023. // dsrc0 = dtensor * 1
  11024. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11025. }
  11026. if (src1->grad) {
  11027. // dsrc1 = dtensor * 0 -> noop
  11028. }
  11029. } break;
  11030. case GGML_OP_CONT:
  11031. {
  11032. // same as cpy
  11033. if (src0->grad) {
  11034. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11035. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11036. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11037. }
  11038. } break;
  11039. case GGML_OP_RESHAPE:
  11040. {
  11041. // necessary for llama
  11042. if (src0->grad) {
  11043. src0->grad =
  11044. ggml_add_impl(ctx, src0->grad,
  11045. ggml_reshape(ctx, tensor->grad, src0->grad),
  11046. inplace);
  11047. }
  11048. } break;
  11049. case GGML_OP_VIEW:
  11050. {
  11051. // necessary for llama
  11052. if (src0->grad) {
  11053. size_t offset;
  11054. memcpy(&offset, tensor->padding, sizeof(offset));
  11055. size_t nb1 = tensor->nb[1];
  11056. size_t nb2 = tensor->nb[2];
  11057. size_t nb3 = tensor->nb[3];
  11058. if (src0->type != src0->grad->type) {
  11059. // gradient is typically F32, but src0 could be other type
  11060. size_t ng = ggml_element_size(src0->grad);
  11061. size_t n0 = ggml_element_size(src0);
  11062. GGML_ASSERT(offset % n0 == 0);
  11063. GGML_ASSERT(nb1 % n0 == 0);
  11064. GGML_ASSERT(nb2 % n0 == 0);
  11065. GGML_ASSERT(nb3 % n0 == 0);
  11066. offset = (offset / n0) * ng;
  11067. nb1 = (nb1 / n0) * ng;
  11068. nb2 = (nb2 / n0) * ng;
  11069. nb3 = (nb3 / n0) * ng;
  11070. }
  11071. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11072. }
  11073. } break;
  11074. case GGML_OP_PERMUTE:
  11075. {
  11076. // necessary for llama
  11077. if (src0->grad) {
  11078. int axis0 = tensor->padding[0] & 0x3;
  11079. int axis1 = tensor->padding[1] & 0x3;
  11080. int axis2 = tensor->padding[2] & 0x3;
  11081. int axis3 = tensor->padding[3] & 0x3;
  11082. int axes_backward[4] = {0,0,0,0};
  11083. axes_backward[axis0] = 0;
  11084. axes_backward[axis1] = 1;
  11085. axes_backward[axis2] = 2;
  11086. axes_backward[axis3] = 3;
  11087. src0->grad =
  11088. ggml_add_impl(ctx, src0->grad,
  11089. ggml_permute(ctx,
  11090. tensor->grad,
  11091. axes_backward[0],
  11092. axes_backward[1],
  11093. axes_backward[2],
  11094. axes_backward[3]),
  11095. inplace);
  11096. }
  11097. } break;
  11098. case GGML_OP_TRANSPOSE:
  11099. {
  11100. // necessary for llama
  11101. if (src0->grad) {
  11102. src0->grad =
  11103. ggml_add_impl(ctx, src0->grad,
  11104. ggml_transpose(ctx, tensor->grad),
  11105. inplace);
  11106. }
  11107. } break;
  11108. case GGML_OP_GET_ROWS:
  11109. {
  11110. // necessary for llama (only for tokenizer)
  11111. if (src0->grad) {
  11112. src0->grad =
  11113. ggml_add_impl(ctx, src0->grad,
  11114. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11115. inplace);
  11116. }
  11117. if (src1->grad) {
  11118. // noop
  11119. }
  11120. } break;
  11121. case GGML_OP_GET_ROWS_BACK:
  11122. {
  11123. GGML_ASSERT(false); // TODO: not implemented
  11124. } break;
  11125. case GGML_OP_DIAG:
  11126. {
  11127. GGML_ASSERT(false); // TODO: not implemented
  11128. } break;
  11129. case GGML_OP_DIAG_MASK_INF:
  11130. {
  11131. // necessary for llama
  11132. if (src0->grad) {
  11133. assert(src1->type == GGML_TYPE_I32);
  11134. assert(ggml_nelements(src1) == 2);
  11135. const int n_past = ((int32_t *) src1->data)[0];
  11136. src0->grad =
  11137. ggml_add_impl(ctx, src0->grad,
  11138. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11139. inplace);
  11140. }
  11141. if (src1->grad) {
  11142. // noop
  11143. }
  11144. } break;
  11145. case GGML_OP_DIAG_MASK_ZERO:
  11146. {
  11147. // necessary for llama
  11148. if (src0->grad) {
  11149. assert(src1->type == GGML_TYPE_I32);
  11150. assert(ggml_nelements(src1) == 2);
  11151. const int n_past = ((int32_t *) src1->data)[0];
  11152. src0->grad =
  11153. ggml_add_impl(ctx, src0->grad,
  11154. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11155. inplace);
  11156. }
  11157. if (src1->grad) {
  11158. // noop
  11159. }
  11160. } break;
  11161. case GGML_OP_SOFT_MAX:
  11162. {
  11163. // necessary for llama
  11164. if (src0->grad) {
  11165. // y = softmax(x)
  11166. //
  11167. // Jii = yi - yi*yi
  11168. // Jij = -yi*yj
  11169. // J = diag(y)-y.*y
  11170. // dx = J * dy
  11171. // dxk = sum(Jkj * dyk)
  11172. int64_t ne2[4] = {
  11173. tensor->ne[0],
  11174. 1,
  11175. tensor->ne[1]*tensor->ne[2],
  11176. tensor->ne[3]
  11177. };
  11178. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11179. ggml_reshape_4d(ctx,
  11180. ggml_cont(ctx, tensor),
  11181. ne2[0], ne2[1], ne2[2], ne2[3]));
  11182. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11183. ggml_reshape_4d(ctx,
  11184. ggml_cont(ctx, tensor->grad),
  11185. ne2[0], ne2[1], ne2[2], ne2[3]));
  11186. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11187. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11188. tensor2, // [ne0,1,ne1*ne2,ne3]
  11189. 1, 0, 2, 3));
  11190. src0->grad =
  11191. ggml_add_impl(ctx,
  11192. src0->grad, // [ne0,ne1,ne2,ne3]
  11193. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11194. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11195. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11196. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11197. tensor2), // [ne0,1,ne1*ne2,ne3]
  11198. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11199. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11200. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11201. grad2), // [ne0,1,ne1*ne2,ne3]
  11202. src0->grad),
  11203. inplace);
  11204. }
  11205. } break;
  11206. case GGML_OP_ROPE:
  11207. {
  11208. // necessary for llama
  11209. if (src0->grad) {
  11210. assert(src1->type == GGML_TYPE_I32);
  11211. assert(ggml_nelements(src1) == 3);
  11212. const int n_past = ((int32_t *) src1->data)[0];
  11213. const int n_dims = ((int32_t *) src1->data)[1];
  11214. const int mode = ((int32_t *) src1->data)[2];
  11215. src0->grad = ggml_add_impl(ctx,
  11216. src0->grad,
  11217. ggml_rope_back(ctx,
  11218. tensor->grad,
  11219. n_past,
  11220. n_dims,
  11221. mode),
  11222. inplace);
  11223. }
  11224. if (src1->grad) {
  11225. // noop
  11226. }
  11227. } break;
  11228. case GGML_OP_ROPE_BACK:
  11229. {
  11230. if (src0->grad) {
  11231. assert(src1->type == GGML_TYPE_I32);
  11232. assert(ggml_nelements(src1) == 3);
  11233. const int n_past = ((int32_t *) src1->data)[0];
  11234. const int n_dims = ((int32_t *) src1->data)[1];
  11235. const int mode = ((int32_t *) src1->data)[2];
  11236. src0->grad = ggml_add_impl(ctx,
  11237. src0->grad,
  11238. ggml_rope(ctx,
  11239. tensor->grad,
  11240. n_past,
  11241. n_dims,
  11242. mode),
  11243. inplace);
  11244. }
  11245. if (src1->grad) {
  11246. // noop
  11247. }
  11248. } break;
  11249. case GGML_OP_CONV_1D_1S:
  11250. {
  11251. GGML_ASSERT(false); // TODO: not implemented
  11252. } break;
  11253. case GGML_OP_CONV_1D_2S:
  11254. {
  11255. GGML_ASSERT(false); // TODO: not implemented
  11256. } break;
  11257. case GGML_OP_FLASH_ATTN:
  11258. {
  11259. GGML_ASSERT(false); // not supported
  11260. } break;
  11261. case GGML_OP_FLASH_FF:
  11262. {
  11263. GGML_ASSERT(false); // not supported
  11264. } break;
  11265. case GGML_OP_MAP_UNARY:
  11266. case GGML_OP_MAP_BINARY:
  11267. {
  11268. GGML_ASSERT(false); // not supported
  11269. } break;
  11270. case GGML_OP_NONE:
  11271. {
  11272. // nop
  11273. } break;
  11274. case GGML_OP_COUNT:
  11275. {
  11276. GGML_ASSERT(false);
  11277. } break;
  11278. }
  11279. }
  11280. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11281. if (node->grad == NULL) {
  11282. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11283. // it can also happen during forward pass, if the user performs computations with constants
  11284. if (node->op != GGML_OP_NONE) {
  11285. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11286. }
  11287. }
  11288. // check if already visited
  11289. for (int i = 0; i < cgraph->n_nodes; i++) {
  11290. if (cgraph->nodes[i] == node) {
  11291. return;
  11292. }
  11293. }
  11294. for (int i = 0; i < cgraph->n_leafs; i++) {
  11295. if (cgraph->leafs[i] == node) {
  11296. return;
  11297. }
  11298. }
  11299. if (node->src0) {
  11300. ggml_visit_parents(cgraph, node->src0);
  11301. }
  11302. if (node->src1) {
  11303. ggml_visit_parents(cgraph, node->src1);
  11304. }
  11305. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11306. if (node->opt[i]) {
  11307. ggml_visit_parents(cgraph, node->opt[i]);
  11308. }
  11309. }
  11310. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11311. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11312. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11313. if (strlen(node->name) == 0) {
  11314. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11315. }
  11316. cgraph->leafs[cgraph->n_leafs] = node;
  11317. cgraph->n_leafs++;
  11318. } else {
  11319. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11320. if (strlen(node->name) == 0) {
  11321. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11322. }
  11323. cgraph->nodes[cgraph->n_nodes] = node;
  11324. cgraph->grads[cgraph->n_nodes] = node->grad;
  11325. cgraph->n_nodes++;
  11326. }
  11327. }
  11328. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11329. if (!expand) {
  11330. cgraph->n_nodes = 0;
  11331. cgraph->n_leafs = 0;
  11332. }
  11333. const int n0 = cgraph->n_nodes;
  11334. UNUSED(n0);
  11335. ggml_visit_parents(cgraph, tensor);
  11336. const int n_new = cgraph->n_nodes - n0;
  11337. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11338. if (n_new > 0) {
  11339. // the last added node should always be starting point
  11340. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11341. }
  11342. }
  11343. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11344. ggml_build_forward_impl(cgraph, tensor, true);
  11345. }
  11346. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11347. struct ggml_cgraph result = {
  11348. /*.n_nodes =*/ 0,
  11349. /*.n_leafs =*/ 0,
  11350. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11351. /*.work_size =*/ 0,
  11352. /*.work =*/ NULL,
  11353. /*.nodes =*/ { NULL },
  11354. /*.grads =*/ { NULL },
  11355. /*.leafs =*/ { NULL },
  11356. /*.perf_runs =*/ 0,
  11357. /*.perf_cycles =*/ 0,
  11358. /*.perf_time_us =*/ 0,
  11359. };
  11360. ggml_build_forward_impl(&result, tensor, false);
  11361. return result;
  11362. }
  11363. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11364. struct ggml_cgraph result = *gf;
  11365. GGML_ASSERT(gf->n_nodes > 0);
  11366. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11367. if (keep) {
  11368. for (int i = 0; i < gf->n_nodes; i++) {
  11369. struct ggml_tensor * node = gf->nodes[i];
  11370. if (node->grad) {
  11371. node->grad = ggml_dup_tensor(ctx, node);
  11372. gf->grads[i] = node->grad;
  11373. }
  11374. }
  11375. }
  11376. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11377. struct ggml_tensor * node = gf->nodes[i];
  11378. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11379. if (node->grad) {
  11380. ggml_compute_backward(ctx, node, keep);
  11381. }
  11382. }
  11383. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11384. struct ggml_tensor * node = gf->nodes[i];
  11385. if (node->is_param) {
  11386. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11387. ggml_build_forward_impl(&result, node->grad, true);
  11388. }
  11389. }
  11390. return result;
  11391. }
  11392. //
  11393. // thread data
  11394. //
  11395. // synchronization is done via busy loops
  11396. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11397. //
  11398. #ifdef __APPLE__
  11399. //#include <os/lock.h>
  11400. //
  11401. //typedef os_unfair_lock ggml_lock_t;
  11402. //
  11403. //#define ggml_lock_init(x) UNUSED(x)
  11404. //#define ggml_lock_destroy(x) UNUSED(x)
  11405. //#define ggml_lock_lock os_unfair_lock_lock
  11406. //#define ggml_lock_unlock os_unfair_lock_unlock
  11407. //
  11408. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11409. typedef int ggml_lock_t;
  11410. #define ggml_lock_init(x) UNUSED(x)
  11411. #define ggml_lock_destroy(x) UNUSED(x)
  11412. #define ggml_lock_lock(x) UNUSED(x)
  11413. #define ggml_lock_unlock(x) UNUSED(x)
  11414. #define GGML_LOCK_INITIALIZER 0
  11415. typedef pthread_t ggml_thread_t;
  11416. #define ggml_thread_create pthread_create
  11417. #define ggml_thread_join pthread_join
  11418. #else
  11419. //typedef pthread_spinlock_t ggml_lock_t;
  11420. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11421. //#define ggml_lock_destroy pthread_spin_destroy
  11422. //#define ggml_lock_lock pthread_spin_lock
  11423. //#define ggml_lock_unlock pthread_spin_unlock
  11424. typedef int ggml_lock_t;
  11425. #define ggml_lock_init(x) UNUSED(x)
  11426. #define ggml_lock_destroy(x) UNUSED(x)
  11427. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11428. #define ggml_lock_lock(x) _mm_pause()
  11429. #else
  11430. #define ggml_lock_lock(x) UNUSED(x)
  11431. #endif
  11432. #define ggml_lock_unlock(x) UNUSED(x)
  11433. #define GGML_LOCK_INITIALIZER 0
  11434. typedef pthread_t ggml_thread_t;
  11435. #define ggml_thread_create pthread_create
  11436. #define ggml_thread_join pthread_join
  11437. #endif
  11438. struct ggml_compute_state_shared {
  11439. ggml_lock_t spin;
  11440. int n_threads;
  11441. // synchronization primitives
  11442. atomic_int n_ready;
  11443. atomic_bool has_work;
  11444. atomic_bool stop; // stop all threads
  11445. };
  11446. struct ggml_compute_state {
  11447. ggml_thread_t thrd;
  11448. struct ggml_compute_params params;
  11449. struct ggml_tensor * node;
  11450. struct ggml_compute_state_shared * shared;
  11451. };
  11452. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11453. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11454. const int n_threads = state->shared->n_threads;
  11455. while (true) {
  11456. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11457. atomic_store(&state->shared->has_work, false);
  11458. } else {
  11459. while (atomic_load(&state->shared->has_work)) {
  11460. if (atomic_load(&state->shared->stop)) {
  11461. return 0;
  11462. }
  11463. ggml_lock_lock (&state->shared->spin);
  11464. ggml_lock_unlock(&state->shared->spin);
  11465. }
  11466. }
  11467. atomic_fetch_sub(&state->shared->n_ready, 1);
  11468. // wait for work
  11469. while (!atomic_load(&state->shared->has_work)) {
  11470. if (atomic_load(&state->shared->stop)) {
  11471. return 0;
  11472. }
  11473. ggml_lock_lock (&state->shared->spin);
  11474. ggml_lock_unlock(&state->shared->spin);
  11475. }
  11476. // check if we should stop
  11477. if (atomic_load(&state->shared->stop)) {
  11478. break;
  11479. }
  11480. if (state->node) {
  11481. if (state->params.ith < state->params.nth) {
  11482. ggml_compute_forward(&state->params, state->node);
  11483. }
  11484. state->node = NULL;
  11485. } else {
  11486. break;
  11487. }
  11488. }
  11489. return 0;
  11490. }
  11491. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11492. const int n_threads = cgraph->n_threads;
  11493. struct ggml_compute_state_shared state_shared = {
  11494. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11495. /*.n_threads =*/ n_threads,
  11496. /*.n_ready =*/ 0,
  11497. /*.has_work =*/ false,
  11498. /*.stop =*/ false,
  11499. };
  11500. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11501. // create thread pool
  11502. if (n_threads > 1) {
  11503. ggml_lock_init(&state_shared.spin);
  11504. atomic_store(&state_shared.has_work, true);
  11505. for (int j = 0; j < n_threads - 1; j++) {
  11506. workers[j] = (struct ggml_compute_state) {
  11507. .thrd = 0,
  11508. .params = {
  11509. .type = GGML_TASK_COMPUTE,
  11510. .ith = j + 1,
  11511. .nth = n_threads,
  11512. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11513. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11514. },
  11515. .node = NULL,
  11516. .shared = &state_shared,
  11517. };
  11518. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11519. GGML_ASSERT(rc == 0);
  11520. UNUSED(rc);
  11521. }
  11522. }
  11523. // initialize tasks + work buffer
  11524. {
  11525. size_t work_size = 0;
  11526. // thread scheduling for the different operations
  11527. for (int i = 0; i < cgraph->n_nodes; i++) {
  11528. struct ggml_tensor * node = cgraph->nodes[i];
  11529. switch (node->op) {
  11530. case GGML_OP_CPY:
  11531. case GGML_OP_DUP:
  11532. {
  11533. node->n_tasks = n_threads;
  11534. size_t cur = 0;
  11535. if (ggml_is_quantized(node->type)) {
  11536. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11537. }
  11538. work_size = MAX(work_size, cur);
  11539. } break;
  11540. case GGML_OP_ADD:
  11541. case GGML_OP_ADD1:
  11542. {
  11543. node->n_tasks = n_threads;
  11544. size_t cur = 0;
  11545. if (ggml_is_quantized(node->src0->type)) {
  11546. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11547. }
  11548. work_size = MAX(work_size, cur);
  11549. } break;
  11550. case GGML_OP_ACC:
  11551. {
  11552. node->n_tasks = n_threads;
  11553. size_t cur = 0;
  11554. if (ggml_is_quantized(node->src0->type)) {
  11555. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11556. }
  11557. work_size = MAX(work_size, cur);
  11558. } break;
  11559. case GGML_OP_SUB:
  11560. case GGML_OP_DIV:
  11561. case GGML_OP_SQR:
  11562. case GGML_OP_SQRT:
  11563. case GGML_OP_LOG:
  11564. case GGML_OP_SUM:
  11565. case GGML_OP_SUM_ROWS:
  11566. case GGML_OP_MEAN:
  11567. case GGML_OP_REPEAT:
  11568. case GGML_OP_ABS:
  11569. case GGML_OP_SGN:
  11570. case GGML_OP_NEG:
  11571. case GGML_OP_STEP:
  11572. case GGML_OP_RELU:
  11573. {
  11574. node->n_tasks = 1;
  11575. } break;
  11576. case GGML_OP_MUL:
  11577. case GGML_OP_GELU:
  11578. case GGML_OP_SILU:
  11579. case GGML_OP_SILU_BACK:
  11580. case GGML_OP_NORM:
  11581. case GGML_OP_RMS_NORM:
  11582. case GGML_OP_RMS_NORM_BACK:
  11583. {
  11584. node->n_tasks = n_threads;
  11585. } break;
  11586. case GGML_OP_MUL_MAT:
  11587. {
  11588. node->n_tasks = n_threads;
  11589. // TODO: use different scheduling for different matrix sizes
  11590. //const int nr0 = ggml_nrows(node->src0);
  11591. //const int nr1 = ggml_nrows(node->src1);
  11592. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11593. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11594. size_t cur = 0;
  11595. #if defined(GGML_USE_CUBLAS)
  11596. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11597. node->n_tasks = 1; // TODO: this actually is doing nothing
  11598. // the threads are still spinning
  11599. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11600. }
  11601. else
  11602. #elif defined(GGML_USE_CLBLAST)
  11603. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11604. node->n_tasks = 1; // TODO: this actually is doing nothing
  11605. // the threads are still spinning
  11606. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11607. }
  11608. else
  11609. #endif
  11610. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11611. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11612. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11613. node->n_tasks = 1; // TODO: this actually is doing nothing
  11614. // the threads are still spinning
  11615. // here we need memory just for single 2D matrix from src0
  11616. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11617. } else {
  11618. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11619. }
  11620. #else
  11621. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11622. #endif
  11623. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11624. cur = 0;
  11625. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11626. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11627. node->n_tasks = 1;
  11628. }
  11629. #endif
  11630. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11631. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11632. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11633. node->n_tasks = 1;
  11634. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11635. } else
  11636. #endif
  11637. {
  11638. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11639. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11640. }
  11641. } else {
  11642. GGML_ASSERT(false);
  11643. }
  11644. work_size = MAX(work_size, cur);
  11645. } break;
  11646. case GGML_OP_SCALE:
  11647. {
  11648. node->n_tasks = n_threads;
  11649. } break;
  11650. case GGML_OP_SET:
  11651. case GGML_OP_CONT:
  11652. case GGML_OP_RESHAPE:
  11653. case GGML_OP_VIEW:
  11654. case GGML_OP_PERMUTE:
  11655. case GGML_OP_TRANSPOSE:
  11656. case GGML_OP_GET_ROWS:
  11657. case GGML_OP_GET_ROWS_BACK:
  11658. case GGML_OP_DIAG:
  11659. case GGML_OP_DIAG_MASK_ZERO:
  11660. {
  11661. node->n_tasks = 1;
  11662. } break;
  11663. case GGML_OP_DIAG_MASK_INF:
  11664. case GGML_OP_SOFT_MAX:
  11665. case GGML_OP_ROPE:
  11666. case GGML_OP_ROPE_BACK:
  11667. {
  11668. node->n_tasks = n_threads;
  11669. } break;
  11670. case GGML_OP_ALIBI:
  11671. {
  11672. node->n_tasks = 1; //TODO
  11673. } break;
  11674. case GGML_OP_CLAMP:
  11675. {
  11676. node->n_tasks = 1; //TODO
  11677. } break;
  11678. case GGML_OP_CONV_1D_1S:
  11679. case GGML_OP_CONV_1D_2S:
  11680. {
  11681. node->n_tasks = n_threads;
  11682. GGML_ASSERT(node->src0->ne[3] == 1);
  11683. GGML_ASSERT(node->src1->ne[2] == 1);
  11684. GGML_ASSERT(node->src1->ne[3] == 1);
  11685. size_t cur = 0;
  11686. const int nk = node->src0->ne[0];
  11687. if (node->src0->type == GGML_TYPE_F16 &&
  11688. node->src1->type == GGML_TYPE_F32) {
  11689. cur = sizeof(ggml_fp16_t)*(
  11690. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11691. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11692. );
  11693. } else if (node->src0->type == GGML_TYPE_F32 &&
  11694. node->src1->type == GGML_TYPE_F32) {
  11695. cur = sizeof(float)*(
  11696. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11697. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11698. );
  11699. } else {
  11700. GGML_ASSERT(false);
  11701. }
  11702. work_size = MAX(work_size, cur);
  11703. } break;
  11704. case GGML_OP_FLASH_ATTN:
  11705. {
  11706. node->n_tasks = n_threads;
  11707. size_t cur = 0;
  11708. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11709. if (node->src1->type == GGML_TYPE_F32) {
  11710. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11711. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11712. }
  11713. if (node->src1->type == GGML_TYPE_F16) {
  11714. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11715. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11716. }
  11717. work_size = MAX(work_size, cur);
  11718. } break;
  11719. case GGML_OP_FLASH_FF:
  11720. {
  11721. node->n_tasks = n_threads;
  11722. size_t cur = 0;
  11723. if (node->src1->type == GGML_TYPE_F32) {
  11724. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11725. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11726. }
  11727. if (node->src1->type == GGML_TYPE_F16) {
  11728. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11729. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11730. }
  11731. work_size = MAX(work_size, cur);
  11732. } break;
  11733. case GGML_OP_MAP_UNARY:
  11734. case GGML_OP_MAP_BINARY:
  11735. {
  11736. node->n_tasks = 1;
  11737. } break;
  11738. case GGML_OP_NONE:
  11739. {
  11740. node->n_tasks = 1;
  11741. } break;
  11742. case GGML_OP_COUNT:
  11743. {
  11744. GGML_ASSERT(false);
  11745. } break;
  11746. }
  11747. }
  11748. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11749. GGML_ASSERT(false); // TODO: better handling
  11750. }
  11751. if (work_size > 0 && cgraph->work == NULL) {
  11752. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11753. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11754. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11755. }
  11756. }
  11757. const int64_t perf_start_cycles = ggml_perf_cycles();
  11758. const int64_t perf_start_time_us = ggml_perf_time_us();
  11759. for (int i = 0; i < cgraph->n_nodes; i++) {
  11760. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11761. struct ggml_tensor * node = cgraph->nodes[i];
  11762. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11763. //if (node->grad == NULL && node->perf_runs > 0) {
  11764. // continue;
  11765. //}
  11766. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11767. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11768. // INIT
  11769. struct ggml_compute_params params = {
  11770. /*.type =*/ GGML_TASK_INIT,
  11771. /*.ith =*/ 0,
  11772. /*.nth =*/ node->n_tasks,
  11773. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11774. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11775. };
  11776. ggml_compute_forward(&params, node);
  11777. // COMPUTE
  11778. if (node->n_tasks > 1) {
  11779. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11780. atomic_store(&state_shared.has_work, false);
  11781. }
  11782. while (atomic_load(&state_shared.has_work)) {
  11783. ggml_lock_lock (&state_shared.spin);
  11784. ggml_lock_unlock(&state_shared.spin);
  11785. }
  11786. // launch thread pool
  11787. for (int j = 0; j < n_threads - 1; j++) {
  11788. workers[j].params = (struct ggml_compute_params) {
  11789. .type = GGML_TASK_COMPUTE,
  11790. .ith = j + 1,
  11791. .nth = node->n_tasks,
  11792. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11793. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11794. };
  11795. workers[j].node = node;
  11796. }
  11797. atomic_fetch_sub(&state_shared.n_ready, 1);
  11798. while (atomic_load(&state_shared.n_ready) > 0) {
  11799. ggml_lock_lock (&state_shared.spin);
  11800. ggml_lock_unlock(&state_shared.spin);
  11801. }
  11802. atomic_store(&state_shared.has_work, true);
  11803. }
  11804. params.type = GGML_TASK_COMPUTE;
  11805. ggml_compute_forward(&params, node);
  11806. // wait for thread pool
  11807. if (node->n_tasks > 1) {
  11808. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11809. atomic_store(&state_shared.has_work, false);
  11810. }
  11811. while (atomic_load(&state_shared.has_work)) {
  11812. ggml_lock_lock (&state_shared.spin);
  11813. ggml_lock_unlock(&state_shared.spin);
  11814. }
  11815. atomic_fetch_sub(&state_shared.n_ready, 1);
  11816. while (atomic_load(&state_shared.n_ready) != 0) {
  11817. ggml_lock_lock (&state_shared.spin);
  11818. ggml_lock_unlock(&state_shared.spin);
  11819. }
  11820. }
  11821. // FINALIZE
  11822. if (node->n_tasks > 1) {
  11823. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11824. atomic_store(&state_shared.has_work, false);
  11825. }
  11826. while (atomic_load(&state_shared.has_work)) {
  11827. ggml_lock_lock (&state_shared.spin);
  11828. ggml_lock_unlock(&state_shared.spin);
  11829. }
  11830. // launch thread pool
  11831. for (int j = 0; j < n_threads - 1; j++) {
  11832. workers[j].params = (struct ggml_compute_params) {
  11833. .type = GGML_TASK_FINALIZE,
  11834. .ith = j + 1,
  11835. .nth = node->n_tasks,
  11836. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11837. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11838. };
  11839. workers[j].node = node;
  11840. }
  11841. atomic_fetch_sub(&state_shared.n_ready, 1);
  11842. while (atomic_load(&state_shared.n_ready) > 0) {
  11843. ggml_lock_lock (&state_shared.spin);
  11844. ggml_lock_unlock(&state_shared.spin);
  11845. }
  11846. atomic_store(&state_shared.has_work, true);
  11847. }
  11848. params.type = GGML_TASK_FINALIZE;
  11849. ggml_compute_forward(&params, node);
  11850. // wait for thread pool
  11851. if (node->n_tasks > 1) {
  11852. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11853. atomic_store(&state_shared.has_work, false);
  11854. }
  11855. while (atomic_load(&state_shared.has_work)) {
  11856. ggml_lock_lock (&state_shared.spin);
  11857. ggml_lock_unlock(&state_shared.spin);
  11858. }
  11859. atomic_fetch_sub(&state_shared.n_ready, 1);
  11860. while (atomic_load(&state_shared.n_ready) != 0) {
  11861. ggml_lock_lock (&state_shared.spin);
  11862. ggml_lock_unlock(&state_shared.spin);
  11863. }
  11864. }
  11865. // performance stats (node)
  11866. {
  11867. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11868. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11869. node->perf_runs++;
  11870. node->perf_cycles += perf_cycles_cur;
  11871. node->perf_time_us += perf_time_us_cur;
  11872. }
  11873. }
  11874. // join thread pool
  11875. if (n_threads > 1) {
  11876. atomic_store(&state_shared.stop, true);
  11877. atomic_store(&state_shared.has_work, true);
  11878. for (int j = 0; j < n_threads - 1; j++) {
  11879. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11880. GGML_ASSERT(rc == 0);
  11881. UNUSED(rc);
  11882. }
  11883. ggml_lock_destroy(&state_shared.spin);
  11884. }
  11885. // performance stats (graph)
  11886. {
  11887. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11888. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11889. cgraph->perf_runs++;
  11890. cgraph->perf_cycles += perf_cycles_cur;
  11891. cgraph->perf_time_us += perf_time_us_cur;
  11892. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11893. __func__, cgraph->perf_runs,
  11894. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11895. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11896. (double) perf_time_us_cur / 1000.0,
  11897. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11898. }
  11899. }
  11900. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11901. for (int i = 0; i < cgraph->n_nodes; i++) {
  11902. struct ggml_tensor * grad = cgraph->grads[i];
  11903. if (grad) {
  11904. ggml_set_zero(grad);
  11905. }
  11906. }
  11907. }
  11908. struct ggml_tensor * ggml_get_tensor_by_name(struct ggml_cgraph * cgraph, const char * name) {
  11909. for (int i = 0; i < cgraph->n_nodes; i++) {
  11910. struct ggml_tensor * node = cgraph->nodes[i];
  11911. if (strcmp(node->name, name) == 0) {
  11912. return node;
  11913. }
  11914. }
  11915. return NULL;
  11916. }
  11917. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11918. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11919. GGML_PRINT("=== GRAPH ===\n");
  11920. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11921. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11922. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11923. for (int i = 0; i < cgraph->n_nodes; i++) {
  11924. struct ggml_tensor * node = cgraph->nodes[i];
  11925. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11926. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11927. i,
  11928. node->ne[0], node->ne[1], node->ne[2],
  11929. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11930. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11931. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11932. (double) node->perf_time_us / 1000.0,
  11933. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11934. }
  11935. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11936. for (int i = 0; i < cgraph->n_leafs; i++) {
  11937. struct ggml_tensor * node = cgraph->leafs[i];
  11938. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11939. i,
  11940. node->ne[0], node->ne[1],
  11941. GGML_OP_NAME[node->op]);
  11942. }
  11943. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11944. if (perf_total_per_op_us[i] == 0) {
  11945. continue;
  11946. }
  11947. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  11948. }
  11949. GGML_PRINT("========================================\n");
  11950. }
  11951. // check if node is part of the graph
  11952. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11953. if (cgraph == NULL) {
  11954. return true;
  11955. }
  11956. for (int i = 0; i < cgraph->n_nodes; i++) {
  11957. if (cgraph->nodes[i] == node) {
  11958. return true;
  11959. }
  11960. }
  11961. return false;
  11962. }
  11963. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11964. for (int i = 0; i < cgraph->n_nodes; i++) {
  11965. struct ggml_tensor * parent = cgraph->nodes[i];
  11966. if (parent->grad == node) {
  11967. return parent;
  11968. }
  11969. }
  11970. return NULL;
  11971. }
  11972. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11973. char color[16];
  11974. FILE * fp = fopen(filename, "w");
  11975. GGML_ASSERT(fp);
  11976. fprintf(fp, "digraph G {\n");
  11977. fprintf(fp, " newrank = true;\n");
  11978. fprintf(fp, " rankdir = LR;\n");
  11979. for (int i = 0; i < gb->n_nodes; i++) {
  11980. struct ggml_tensor * node = gb->nodes[i];
  11981. if (ggml_graph_get_parent(gb, node) != NULL) {
  11982. continue;
  11983. }
  11984. if (node->is_param) {
  11985. snprintf(color, sizeof(color), "yellow");
  11986. } else if (node->grad) {
  11987. if (ggml_graph_find(gf, node)) {
  11988. snprintf(color, sizeof(color), "green");
  11989. } else {
  11990. snprintf(color, sizeof(color), "lightblue");
  11991. }
  11992. } else {
  11993. snprintf(color, sizeof(color), "white");
  11994. }
  11995. fprintf(fp, " \"%p\" [ "
  11996. "style = filled; fillcolor = %s; shape = record; "
  11997. "label=\"",
  11998. (void *) node, color);
  11999. if (strlen(node->name) > 0) {
  12000. fprintf(fp, "%s |", node->name);
  12001. }
  12002. if (node->n_dims == 2) {
  12003. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12004. } else {
  12005. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12006. }
  12007. if (node->grad) {
  12008. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12009. } else {
  12010. fprintf(fp, "\"; ]\n");
  12011. }
  12012. }
  12013. for (int i = 0; i < gb->n_leafs; i++) {
  12014. struct ggml_tensor * node = gb->leafs[i];
  12015. snprintf(color, sizeof(color), "pink");
  12016. fprintf(fp, " \"%p\" [ "
  12017. "style = filled; fillcolor = %s; shape = record; "
  12018. "label=\"<x>",
  12019. (void *) node, color);
  12020. if (strlen(node->name) > 0) {
  12021. fprintf(fp, "%s | ", node->name);
  12022. }
  12023. if (ggml_nelements(node) == 1) {
  12024. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12025. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12026. }
  12027. else {
  12028. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12029. }
  12030. }
  12031. else {
  12032. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12033. }
  12034. fprintf(fp, "\"; ]\n");
  12035. }
  12036. for (int i = 0; i < gb->n_nodes; i++) {
  12037. struct ggml_tensor * node = gb->nodes[i];
  12038. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12039. if (node->src0) {
  12040. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12041. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12042. parent0 ? (void *) parent0 : (void *) node->src0,
  12043. parent0 ? "g" : "x",
  12044. parent ? (void *) parent : (void *) node,
  12045. parent ? "g" : "x",
  12046. parent ? "empty" : "vee",
  12047. parent ? "dashed" : "solid");
  12048. }
  12049. if (node->src1) {
  12050. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12051. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12052. parent1 ? (void *) parent1 : (void *) node->src1,
  12053. parent1 ? "g" : "x",
  12054. parent ? (void *) parent : (void *) node,
  12055. parent ? "g" : "x",
  12056. parent ? "empty" : "vee",
  12057. parent ? "dashed" : "solid");
  12058. }
  12059. }
  12060. for (int i = 0; i < gb->n_leafs; i++) {
  12061. struct ggml_tensor * node = gb->leafs[i];
  12062. if (node->src0) {
  12063. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12064. (void *) node->src0, "x",
  12065. (void *) node, "x");
  12066. }
  12067. if (node->src1) {
  12068. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12069. (void *) node->src1, "x",
  12070. (void *) node, "x");
  12071. }
  12072. }
  12073. fprintf(fp, "}\n");
  12074. fclose(fp);
  12075. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12076. }
  12077. ////////////////////////////////////////////////////////////////////////////////
  12078. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12079. int i = 0;
  12080. for (int p = 0; p < np; ++p) {
  12081. const int64_t ne = ggml_nelements(ps[p]) ;
  12082. // TODO: add function to set tensor from array
  12083. for (int64_t j = 0; j < ne; ++j) {
  12084. ggml_set_f32_1d(ps[p], j, x[i++]);
  12085. }
  12086. }
  12087. }
  12088. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12089. int i = 0;
  12090. for (int p = 0; p < np; ++p) {
  12091. const int64_t ne = ggml_nelements(ps[p]) ;
  12092. // TODO: add function to get all elements at once
  12093. for (int64_t j = 0; j < ne; ++j) {
  12094. x[i++] = ggml_get_f32_1d(ps[p], j);
  12095. }
  12096. }
  12097. }
  12098. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12099. int i = 0;
  12100. for (int p = 0; p < np; ++p) {
  12101. const int64_t ne = ggml_nelements(ps[p]) ;
  12102. // TODO: add function to get all elements at once
  12103. for (int64_t j = 0; j < ne; ++j) {
  12104. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12105. }
  12106. }
  12107. }
  12108. //
  12109. // ADAM
  12110. //
  12111. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12112. //
  12113. static enum ggml_opt_result ggml_opt_adam(
  12114. struct ggml_context * ctx,
  12115. struct ggml_opt_params params,
  12116. struct ggml_tensor * f,
  12117. struct ggml_cgraph * gf,
  12118. struct ggml_cgraph * gb) {
  12119. GGML_ASSERT(ggml_is_scalar(f));
  12120. gf->n_threads = params.n_threads;
  12121. gb->n_threads = params.n_threads;
  12122. // these will store the parameters we want to optimize
  12123. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12124. int np = 0;
  12125. int nx = 0;
  12126. for (int i = 0; i < gf->n_nodes; ++i) {
  12127. if (gf->nodes[i]->is_param) {
  12128. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12129. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12130. ps[np++] = gf->nodes[i];
  12131. nx += ggml_nelements(gf->nodes[i]);
  12132. }
  12133. }
  12134. // constants
  12135. const float alpha = params.adam.alpha;
  12136. const float beta1 = params.adam.beta1;
  12137. const float beta2 = params.adam.beta2;
  12138. const float eps = params.adam.eps;
  12139. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12140. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12141. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12142. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12143. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12144. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12145. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12146. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12147. // initialize
  12148. ggml_vec_set_f32(nx, m, 0.0f);
  12149. ggml_vec_set_f32(nx, v, 0.0f);
  12150. // update view
  12151. ggml_opt_get_params(np, ps, x);
  12152. // compute the function value
  12153. ggml_graph_reset (gf);
  12154. ggml_set_f32 (f->grad, 1.0f);
  12155. ggml_graph_compute(ctx, gb);
  12156. float fx_prev = ggml_get_f32_1d(f, 0);
  12157. if (pf) {
  12158. pf[0] = fx_prev;
  12159. }
  12160. int n_no_improvement = 0;
  12161. float fx_best = fx_prev;
  12162. // run the optimizer
  12163. for (int t = 0; t < params.adam.n_iter; ++t) {
  12164. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12165. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12166. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12167. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12168. for (int i = 0; i < np; ++i) {
  12169. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12170. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12171. }
  12172. const int64_t t_start_wall = ggml_time_us();
  12173. const int64_t t_start_cpu = ggml_cycles();
  12174. UNUSED(t_start_wall);
  12175. UNUSED(t_start_cpu);
  12176. {
  12177. // update the gradient
  12178. ggml_opt_get_grad(np, ps, g1);
  12179. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12180. ggml_vec_scale_f32(nx, m, beta1);
  12181. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12182. // g2 = g1^2
  12183. ggml_vec_sqr_f32 (nx, g2, g1);
  12184. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12185. ggml_vec_scale_f32(nx, v, beta2);
  12186. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12187. // m^hat = m_t / (1 - beta1^t)
  12188. // v^hat = v_t / (1 - beta2^t)
  12189. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12190. ggml_vec_cpy_f32 (nx, mh, m);
  12191. ggml_vec_cpy_f32 (nx, vh, v);
  12192. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12193. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12194. ggml_vec_sqrt_f32 (nx, vh, vh);
  12195. ggml_vec_acc1_f32 (nx, vh, eps);
  12196. ggml_vec_div_f32 (nx, mh, mh, vh);
  12197. ggml_vec_sub_f32 (nx, x, x, mh);
  12198. // update the parameters
  12199. ggml_opt_set_params(np, ps, x);
  12200. }
  12201. ggml_graph_reset (gf);
  12202. ggml_set_f32 (f->grad, 1.0f);
  12203. ggml_graph_compute(ctx, gb);
  12204. const float fx = ggml_get_f32_1d(f, 0);
  12205. // check convergence
  12206. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12207. GGML_PRINT_DEBUG("converged\n");
  12208. return GGML_OPT_OK;
  12209. }
  12210. // delta-based convergence test
  12211. if (pf != NULL) {
  12212. // need at least params.past iterations to start checking for convergence
  12213. if (params.past <= t) {
  12214. const float rate = (pf[t%params.past] - fx)/fx;
  12215. if (fabsf(rate) < params.delta) {
  12216. return GGML_OPT_OK;
  12217. }
  12218. }
  12219. pf[t%params.past] = fx;
  12220. }
  12221. // check for improvement
  12222. if (params.max_no_improvement > 0) {
  12223. if (fx_best > fx) {
  12224. fx_best = fx;
  12225. n_no_improvement = 0;
  12226. } else {
  12227. ++n_no_improvement;
  12228. if (n_no_improvement >= params.max_no_improvement) {
  12229. return GGML_OPT_OK;
  12230. }
  12231. }
  12232. }
  12233. fx_prev = fx;
  12234. {
  12235. const int64_t t_end_cpu = ggml_cycles();
  12236. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12237. UNUSED(t_end_cpu);
  12238. const int64_t t_end_wall = ggml_time_us();
  12239. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12240. UNUSED(t_end_wall);
  12241. }
  12242. }
  12243. return GGML_OPT_DID_NOT_CONVERGE;
  12244. }
  12245. //
  12246. // L-BFGS
  12247. //
  12248. // the L-BFGS implementation below is based on the following implementation:
  12249. //
  12250. // https://github.com/chokkan/liblbfgs
  12251. //
  12252. struct ggml_lbfgs_iteration_data {
  12253. float alpha;
  12254. float ys;
  12255. float * s;
  12256. float * y;
  12257. };
  12258. static enum ggml_opt_result linesearch_backtracking(
  12259. struct ggml_context * ctx,
  12260. const struct ggml_opt_params * params,
  12261. int nx,
  12262. float * x,
  12263. float * fx,
  12264. float * g,
  12265. float * d,
  12266. float * step,
  12267. const float * xp,
  12268. struct ggml_tensor * f,
  12269. struct ggml_cgraph * gf,
  12270. struct ggml_cgraph * gb,
  12271. const int np,
  12272. struct ggml_tensor * ps[]) {
  12273. int count = 0;
  12274. float width = 0.0f;
  12275. float dg = 0.0f;
  12276. float finit = 0.0f;
  12277. float dginit = 0.0f;
  12278. float dgtest = 0.0f;
  12279. const float dec = 0.5f;
  12280. const float inc = 2.1f;
  12281. if (*step <= 0.f) {
  12282. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12283. }
  12284. // compute the initial gradient in the search direction
  12285. ggml_vec_dot_f32(nx, &dginit, g, d);
  12286. // make sure that d points to a descent direction
  12287. if (0 < dginit) {
  12288. return GGML_LINESEARCH_FAIL;
  12289. }
  12290. // initialize local variables
  12291. finit = *fx;
  12292. dgtest = params->lbfgs.ftol*dginit;
  12293. while (true) {
  12294. ggml_vec_cpy_f32(nx, x, xp);
  12295. ggml_vec_mad_f32(nx, x, d, *step);
  12296. // evaluate the function and gradient values
  12297. {
  12298. ggml_opt_set_params(np, ps, x);
  12299. ggml_graph_reset (gf);
  12300. ggml_set_f32 (f->grad, 1.0f);
  12301. ggml_graph_compute(ctx, gb);
  12302. ggml_opt_get_grad(np, ps, g);
  12303. *fx = ggml_get_f32_1d(f, 0);
  12304. }
  12305. ++count;
  12306. if (*fx > finit + (*step)*dgtest) {
  12307. width = dec;
  12308. } else {
  12309. // Armijo condition is satisfied
  12310. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12311. return count;
  12312. }
  12313. ggml_vec_dot_f32(nx, &dg, g, d);
  12314. // check the Wolfe condition
  12315. if (dg < params->lbfgs.wolfe * dginit) {
  12316. width = inc;
  12317. } else {
  12318. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12319. // regular Wolfe conditions
  12320. return count;
  12321. }
  12322. if(dg > -params->lbfgs.wolfe*dginit) {
  12323. width = dec;
  12324. } else {
  12325. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12326. return count;
  12327. }
  12328. return count;
  12329. }
  12330. }
  12331. if (*step < params->lbfgs.min_step) {
  12332. return GGML_LINESEARCH_MINIMUM_STEP;
  12333. }
  12334. if (*step > params->lbfgs.max_step) {
  12335. return GGML_LINESEARCH_MAXIMUM_STEP;
  12336. }
  12337. if (params->lbfgs.max_linesearch <= count) {
  12338. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12339. }
  12340. (*step) *= width;
  12341. }
  12342. return GGML_LINESEARCH_FAIL;
  12343. }
  12344. static enum ggml_opt_result ggml_opt_lbfgs(
  12345. struct ggml_context * ctx,
  12346. struct ggml_opt_params params,
  12347. struct ggml_tensor * f,
  12348. struct ggml_cgraph * gf,
  12349. struct ggml_cgraph * gb) {
  12350. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12351. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12352. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12353. return GGML_OPT_INVALID_WOLFE;
  12354. }
  12355. }
  12356. gf->n_threads = params.n_threads;
  12357. gb->n_threads = params.n_threads;
  12358. const int m = params.lbfgs.m;
  12359. // these will store the parameters we want to optimize
  12360. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12361. int np = 0;
  12362. int nx = 0;
  12363. for (int i = 0; i < gf->n_nodes; ++i) {
  12364. if (gf->nodes[i]->is_param) {
  12365. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12366. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12367. ps[np++] = gf->nodes[i];
  12368. nx += ggml_nelements(gf->nodes[i]);
  12369. }
  12370. }
  12371. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12372. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12373. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12374. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12375. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12376. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12377. float fx = 0.0f; // cost function value
  12378. float xnorm = 0.0f; // ||x||
  12379. float gnorm = 0.0f; // ||g||
  12380. float step = 0.0f;
  12381. // initialize x from the graph nodes
  12382. ggml_opt_get_params(np, ps, x);
  12383. // the L-BFGS memory
  12384. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12385. for (int i = 0; i < m; ++i) {
  12386. lm[i].alpha = 0.0f;
  12387. lm[i].ys = 0.0f;
  12388. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12389. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12390. }
  12391. // evaluate the function value and its gradient
  12392. {
  12393. ggml_opt_set_params(np, ps, x);
  12394. ggml_graph_reset (gf);
  12395. ggml_set_f32 (f->grad, 1.0f);
  12396. ggml_graph_compute(ctx, gb);
  12397. ggml_opt_get_grad(np, ps, g);
  12398. fx = ggml_get_f32_1d(f, 0);
  12399. }
  12400. if (pf) {
  12401. pf[0] = fx;
  12402. }
  12403. float fx_best = fx;
  12404. // search direction = -gradient
  12405. ggml_vec_neg_f32(nx, d, g);
  12406. // ||x||, ||g||
  12407. ggml_vec_norm_f32(nx, &xnorm, x);
  12408. ggml_vec_norm_f32(nx, &gnorm, g);
  12409. if (xnorm < 1.0f) {
  12410. xnorm = 1.0f;
  12411. }
  12412. // already optimized
  12413. if (gnorm/xnorm <= params.lbfgs.eps) {
  12414. return GGML_OPT_OK;
  12415. }
  12416. // initial step
  12417. ggml_vec_norm_inv_f32(nx, &step, d);
  12418. int j = 0;
  12419. int k = 1;
  12420. int ls = 0;
  12421. int end = 0;
  12422. int bound = 0;
  12423. int n_no_improvement = 0;
  12424. float ys = 0.0f;
  12425. float yy = 0.0f;
  12426. float beta = 0.0f;
  12427. while (true) {
  12428. // store the current position and gradient vectors
  12429. ggml_vec_cpy_f32(nx, xp, x);
  12430. ggml_vec_cpy_f32(nx, gp, g);
  12431. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12432. if (ls < 0) {
  12433. // linesearch failed - go back to the previous point and return
  12434. ggml_vec_cpy_f32(nx, x, xp);
  12435. ggml_vec_cpy_f32(nx, g, gp);
  12436. return ls;
  12437. }
  12438. ggml_vec_norm_f32(nx, &xnorm, x);
  12439. ggml_vec_norm_f32(nx, &gnorm, g);
  12440. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12441. if (xnorm < 1.0f) {
  12442. xnorm = 1.0f;
  12443. }
  12444. if (gnorm/xnorm <= params.lbfgs.eps) {
  12445. // converged
  12446. return GGML_OPT_OK;
  12447. }
  12448. // delta-based convergence test
  12449. if (pf != NULL) {
  12450. // need at least params.past iterations to start checking for convergence
  12451. if (params.past <= k) {
  12452. const float rate = (pf[k%params.past] - fx)/fx;
  12453. if (fabsf(rate) < params.delta) {
  12454. return GGML_OPT_OK;
  12455. }
  12456. }
  12457. pf[k%params.past] = fx;
  12458. }
  12459. // check for improvement
  12460. if (params.max_no_improvement > 0) {
  12461. if (fx < fx_best) {
  12462. fx_best = fx;
  12463. n_no_improvement = 0;
  12464. } else {
  12465. n_no_improvement++;
  12466. if (n_no_improvement >= params.max_no_improvement) {
  12467. return GGML_OPT_OK;
  12468. }
  12469. }
  12470. }
  12471. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12472. // reached the maximum number of iterations
  12473. return GGML_OPT_DID_NOT_CONVERGE;
  12474. }
  12475. // update vectors s and y:
  12476. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12477. // y_{k+1} = g_{k+1} - g_{k}.
  12478. //
  12479. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12480. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12481. // compute scalars ys and yy:
  12482. // ys = y^t \cdot s -> 1 / \rho.
  12483. // yy = y^t \cdot y.
  12484. //
  12485. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12486. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12487. lm[end].ys = ys;
  12488. // find new search direction
  12489. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12490. bound = (m <= k) ? m : k;
  12491. k++;
  12492. end = (end + 1)%m;
  12493. // initialize search direction with -g
  12494. ggml_vec_neg_f32(nx, d, g);
  12495. j = end;
  12496. for (int i = 0; i < bound; ++i) {
  12497. j = (j + m - 1) % m;
  12498. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12499. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12500. lm[j].alpha /= lm[j].ys;
  12501. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12502. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12503. }
  12504. ggml_vec_scale_f32(nx, d, ys/yy);
  12505. for (int i = 0; i < bound; ++i) {
  12506. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12507. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12508. beta /= lm[j].ys;
  12509. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12510. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12511. j = (j + 1)%m;
  12512. }
  12513. step = 1.0;
  12514. }
  12515. return GGML_OPT_DID_NOT_CONVERGE;
  12516. }
  12517. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12518. struct ggml_opt_params result;
  12519. switch (type) {
  12520. case GGML_OPT_ADAM:
  12521. {
  12522. result = (struct ggml_opt_params) {
  12523. .type = GGML_OPT_ADAM,
  12524. .n_threads = 1,
  12525. .past = 0,
  12526. .delta = 1e-5f,
  12527. .max_no_improvement = 100,
  12528. .print_forward_graph = true,
  12529. .print_backward_graph = true,
  12530. .adam = {
  12531. .n_iter = 10000,
  12532. .alpha = 0.001f,
  12533. .beta1 = 0.9f,
  12534. .beta2 = 0.999f,
  12535. .eps = 1e-8f,
  12536. .eps_f = 1e-5f,
  12537. .eps_g = 1e-3f,
  12538. },
  12539. };
  12540. } break;
  12541. case GGML_OPT_LBFGS:
  12542. {
  12543. result = (struct ggml_opt_params) {
  12544. .type = GGML_OPT_LBFGS,
  12545. .n_threads = 1,
  12546. .past = 0,
  12547. .delta = 1e-5f,
  12548. .max_no_improvement = 0,
  12549. .print_forward_graph = true,
  12550. .print_backward_graph = true,
  12551. .lbfgs = {
  12552. .m = 6,
  12553. .n_iter = 100,
  12554. .max_linesearch = 20,
  12555. .eps = 1e-5f,
  12556. .ftol = 1e-4f,
  12557. .wolfe = 0.9f,
  12558. .min_step = 1e-20f,
  12559. .max_step = 1e+20f,
  12560. .linesearch = GGML_LINESEARCH_DEFAULT,
  12561. },
  12562. };
  12563. } break;
  12564. }
  12565. return result;
  12566. }
  12567. enum ggml_opt_result ggml_opt(
  12568. struct ggml_context * ctx,
  12569. struct ggml_opt_params params,
  12570. struct ggml_tensor * f) {
  12571. bool free_ctx = false;
  12572. if (ctx == NULL) {
  12573. struct ggml_init_params params_ctx = {
  12574. .mem_size = 16*1024*1024,
  12575. .mem_buffer = NULL,
  12576. .no_alloc = false,
  12577. };
  12578. ctx = ggml_init(params_ctx);
  12579. if (ctx == NULL) {
  12580. return GGML_OPT_NO_CONTEXT;
  12581. }
  12582. free_ctx = true;
  12583. }
  12584. enum ggml_opt_result result = GGML_OPT_OK;
  12585. // build forward + backward compute graphs
  12586. struct ggml_cgraph gf = ggml_build_forward (f);
  12587. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12588. switch (params.type) {
  12589. case GGML_OPT_ADAM:
  12590. {
  12591. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12592. } break;
  12593. case GGML_OPT_LBFGS:
  12594. {
  12595. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12596. } break;
  12597. }
  12598. if (params.print_forward_graph) {
  12599. ggml_graph_print (&gf);
  12600. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12601. }
  12602. if (params.print_backward_graph) {
  12603. ggml_graph_print (&gb);
  12604. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12605. }
  12606. if (free_ctx) {
  12607. ggml_free(ctx);
  12608. }
  12609. return result;
  12610. }
  12611. ////////////////////////////////////////////////////////////////////////////////
  12612. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12613. assert(k % QK4_0 == 0);
  12614. const int nb = k / QK4_0;
  12615. for (int b = 0; b < n; b += k) {
  12616. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12617. quantize_row_q4_0_reference(src + b, y, k);
  12618. for (int i = 0; i < nb; i++) {
  12619. for (int j = 0; j < QK4_0; j += 2) {
  12620. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12621. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12622. hist[vi0]++;
  12623. hist[vi1]++;
  12624. }
  12625. }
  12626. }
  12627. return (n/QK4_0*sizeof(block_q4_0));
  12628. }
  12629. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12630. assert(k % QK4_1 == 0);
  12631. const int nb = k / QK4_1;
  12632. for (int b = 0; b < n; b += k) {
  12633. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12634. quantize_row_q4_1_reference(src + b, y, k);
  12635. for (int i = 0; i < nb; i++) {
  12636. for (int j = 0; j < QK4_1; j += 2) {
  12637. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12638. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12639. hist[vi0]++;
  12640. hist[vi1]++;
  12641. }
  12642. }
  12643. }
  12644. return (n/QK4_1*sizeof(block_q4_1));
  12645. }
  12646. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12647. assert(k % QK5_0 == 0);
  12648. const int nb = k / QK5_0;
  12649. for (int b = 0; b < n; b += k) {
  12650. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12651. quantize_row_q5_0_reference(src + b, y, k);
  12652. for (int i = 0; i < nb; i++) {
  12653. uint32_t qh;
  12654. memcpy(&qh, &y[i].qh, sizeof(qh));
  12655. for (int j = 0; j < QK5_0; j += 2) {
  12656. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12657. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12658. // cast to 16 bins
  12659. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12660. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12661. hist[vi0]++;
  12662. hist[vi1]++;
  12663. }
  12664. }
  12665. }
  12666. return (n/QK5_0*sizeof(block_q5_0));
  12667. }
  12668. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12669. assert(k % QK5_1 == 0);
  12670. const int nb = k / QK5_1;
  12671. for (int b = 0; b < n; b += k) {
  12672. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12673. quantize_row_q5_1_reference(src + b, y, k);
  12674. for (int i = 0; i < nb; i++) {
  12675. uint32_t qh;
  12676. memcpy(&qh, &y[i].qh, sizeof(qh));
  12677. for (int j = 0; j < QK5_1; j += 2) {
  12678. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12679. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12680. // cast to 16 bins
  12681. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12682. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12683. hist[vi0]++;
  12684. hist[vi1]++;
  12685. }
  12686. }
  12687. }
  12688. return (n/QK5_1*sizeof(block_q5_1));
  12689. }
  12690. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12691. assert(k % QK8_0 == 0);
  12692. const int nb = k / QK8_0;
  12693. for (int b = 0; b < n; b += k) {
  12694. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12695. quantize_row_q8_0_reference(src + b, y, k);
  12696. for (int i = 0; i < nb; i++) {
  12697. for (int j = 0; j < QK8_0; ++j) {
  12698. const int8_t vi = y[i].qs[j];
  12699. hist[vi/16 + 8]++;
  12700. }
  12701. }
  12702. }
  12703. return (n/QK8_0*sizeof(block_q8_0));
  12704. }
  12705. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12706. size_t result = 0;
  12707. switch (type) {
  12708. case GGML_TYPE_Q4_0:
  12709. {
  12710. GGML_ASSERT(start % QK4_0 == 0);
  12711. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12712. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12713. } break;
  12714. case GGML_TYPE_Q4_1:
  12715. {
  12716. GGML_ASSERT(start % QK4_1 == 0);
  12717. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12718. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12719. } break;
  12720. case GGML_TYPE_Q5_0:
  12721. {
  12722. GGML_ASSERT(start % QK5_0 == 0);
  12723. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12724. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12725. } break;
  12726. case GGML_TYPE_Q5_1:
  12727. {
  12728. GGML_ASSERT(start % QK5_1 == 0);
  12729. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12730. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12731. } break;
  12732. case GGML_TYPE_Q8_0:
  12733. {
  12734. GGML_ASSERT(start % QK8_0 == 0);
  12735. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12736. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12737. } break;
  12738. default:
  12739. assert(false);
  12740. }
  12741. return result;
  12742. }
  12743. ////////////////////////////////////////////////////////////////////////////////
  12744. int ggml_cpu_has_avx(void) {
  12745. #if defined(__AVX__)
  12746. return 1;
  12747. #else
  12748. return 0;
  12749. #endif
  12750. }
  12751. int ggml_cpu_has_avx2(void) {
  12752. #if defined(__AVX2__)
  12753. return 1;
  12754. #else
  12755. return 0;
  12756. #endif
  12757. }
  12758. int ggml_cpu_has_avx512(void) {
  12759. #if defined(__AVX512F__)
  12760. return 1;
  12761. #else
  12762. return 0;
  12763. #endif
  12764. }
  12765. int ggml_cpu_has_avx512_vbmi(void) {
  12766. #if defined(__AVX512VBMI__)
  12767. return 1;
  12768. #else
  12769. return 0;
  12770. #endif
  12771. }
  12772. int ggml_cpu_has_avx512_vnni(void) {
  12773. #if defined(__AVX512VNNI__)
  12774. return 1;
  12775. #else
  12776. return 0;
  12777. #endif
  12778. }
  12779. int ggml_cpu_has_fma(void) {
  12780. #if defined(__FMA__)
  12781. return 1;
  12782. #else
  12783. return 0;
  12784. #endif
  12785. }
  12786. int ggml_cpu_has_neon(void) {
  12787. #if defined(__ARM_NEON)
  12788. return 1;
  12789. #else
  12790. return 0;
  12791. #endif
  12792. }
  12793. int ggml_cpu_has_arm_fma(void) {
  12794. #if defined(__ARM_FEATURE_FMA)
  12795. return 1;
  12796. #else
  12797. return 0;
  12798. #endif
  12799. }
  12800. int ggml_cpu_has_f16c(void) {
  12801. #if defined(__F16C__)
  12802. return 1;
  12803. #else
  12804. return 0;
  12805. #endif
  12806. }
  12807. int ggml_cpu_has_fp16_va(void) {
  12808. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12809. return 1;
  12810. #else
  12811. return 0;
  12812. #endif
  12813. }
  12814. int ggml_cpu_has_wasm_simd(void) {
  12815. #if defined(__wasm_simd128__)
  12816. return 1;
  12817. #else
  12818. return 0;
  12819. #endif
  12820. }
  12821. int ggml_cpu_has_blas(void) {
  12822. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12823. return 1;
  12824. #else
  12825. return 0;
  12826. #endif
  12827. }
  12828. int ggml_cpu_has_cublas(void) {
  12829. #if defined(GGML_USE_CUBLAS)
  12830. return 1;
  12831. #else
  12832. return 0;
  12833. #endif
  12834. }
  12835. int ggml_cpu_has_clblast(void) {
  12836. #if defined(GGML_USE_CLBLAST)
  12837. return 1;
  12838. #else
  12839. return 0;
  12840. #endif
  12841. }
  12842. int ggml_cpu_has_gpublas(void) {
  12843. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12844. }
  12845. int ggml_cpu_has_sse3(void) {
  12846. #if defined(__SSE3__)
  12847. return 1;
  12848. #else
  12849. return 0;
  12850. #endif
  12851. }
  12852. int ggml_cpu_has_vsx(void) {
  12853. #if defined(__POWER9_VECTOR__)
  12854. return 1;
  12855. #else
  12856. return 0;
  12857. #endif
  12858. }
  12859. ////////////////////////////////////////////////////////////////////////////////