convert_hf_to_gguf.py 337 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  550. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  551. res = "llama-bpe"
  552. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  553. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  554. res = "deepseek-llm"
  555. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  556. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  557. res = "deepseek-coder"
  558. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  559. # ref: https://huggingface.co/tiiuae/falcon-7b
  560. res = "falcon"
  561. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  562. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  563. res = "bert-bge"
  564. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  565. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  566. res = "falcon3"
  567. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  568. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  569. res = "bert-bge-large"
  570. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  571. # ref: https://huggingface.co/mosaicml/mpt-7b
  572. res = "mpt"
  573. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  574. # ref: https://huggingface.co/bigcode/starcoder2-3b
  575. res = "starcoder"
  576. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  577. # ref: https://huggingface.co/openai-community/gpt2
  578. res = "gpt-2"
  579. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  580. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  581. res = "stablelm2"
  582. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  583. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  584. res = "refact"
  585. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  586. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  587. res = "command-r"
  588. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  589. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  590. res = "qwen2"
  591. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  592. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  593. res = "olmo"
  594. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  595. # ref: https://huggingface.co/databricks/dbrx-base
  596. res = "dbrx"
  597. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  598. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  599. res = "jina-v1-en"
  600. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  601. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  602. res = "jina-v2-en"
  603. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  604. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  605. res = "jina-v2-es"
  606. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  607. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  608. res = "jina-v2-de"
  609. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  610. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  611. res = "smaug-bpe"
  612. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  613. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  614. res = "poro-chat"
  615. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  616. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  617. res = "jina-v2-code"
  618. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  619. # ref: https://huggingface.co/LumiOpen/Viking-7B
  620. res = "viking"
  621. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  622. # ref: https://huggingface.co/core42/jais-13b
  623. res = "jais"
  624. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  625. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  626. res = "codeshell"
  627. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  628. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  629. res = "tekken"
  630. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  631. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  632. res = "smollm"
  633. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  634. # ref: https://huggingface.co/bigscience/bloom
  635. res = "bloom"
  636. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  637. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  638. res = "gpt3-finnish"
  639. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  640. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  641. res = "exaone"
  642. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  643. # ref: https://huggingface.co/microsoft/phi-2
  644. res = "phi-2"
  645. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  646. # ref: https://huggingface.co/facebook/chameleon-7b
  647. res = "chameleon"
  648. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  649. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  650. res = "roberta-bpe"
  651. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  652. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  653. res = "gigachat"
  654. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  655. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  656. res = "megrez"
  657. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  658. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  659. res = "deepseek-v3"
  660. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  661. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  662. res = "deepseek-r1-qwen"
  663. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  664. # ref: https://huggingface.co/Xenova/gpt-4o
  665. res = "gpt-4o"
  666. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  667. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  668. res = "superbpe"
  669. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  670. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  671. res = "trillion"
  672. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  673. # ref: https://huggingface.co/inclusionAI/Ling-lite
  674. res = "bailingmoe"
  675. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  676. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  677. res = "llama4"
  678. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  679. # ref: https://huggingface.co/mistral-community/pixtral-12b
  680. res = "pixtral"
  681. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  682. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  683. res = "seed-coder"
  684. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  685. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  686. res = "chatglm-bpe"
  687. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  688. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  689. res = "chatglm-bpe"
  690. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  691. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  692. res = "glm4"
  693. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  694. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  695. res = "minerva-7b"
  696. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  697. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  698. res = "hunyuan"
  699. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  700. # ref: https://huggingface.co/skt/A.X-4.0
  701. res = "a.x-4.0"
  702. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  703. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  704. res = "falcon-h1"
  705. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  706. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  707. res = "falcon-h1"
  708. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  709. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  710. res = "falcon-h1"
  711. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  712. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  713. res = "falcon-h1"
  714. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  715. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  716. res = "midm-2.0"
  717. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  718. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  719. res = "lfm2"
  720. if res is None:
  721. logger.warning("\n")
  722. logger.warning("**************************************************************************************")
  723. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  724. logger.warning("** There are 2 possible reasons for this:")
  725. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  726. logger.warning("** - the pre-tokenization config has changed upstream")
  727. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  728. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  729. logger.warning("**")
  730. logger.warning(f"** chkhsh: {chkhsh}")
  731. logger.warning("**************************************************************************************")
  732. logger.warning("\n")
  733. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  734. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  735. logger.debug(f"chkhsh: {chkhsh}")
  736. return res
  737. # Marker: End get_vocab_base_pre
  738. def _set_vocab_none(self) -> None:
  739. self.gguf_writer.add_tokenizer_model("none")
  740. def _set_vocab_gpt2(self) -> None:
  741. tokens, toktypes, tokpre = self.get_vocab_base()
  742. self.gguf_writer.add_tokenizer_model("gpt2")
  743. self.gguf_writer.add_tokenizer_pre(tokpre)
  744. self.gguf_writer.add_token_list(tokens)
  745. self.gguf_writer.add_token_types(toktypes)
  746. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  747. special_vocab.add_to_gguf(self.gguf_writer)
  748. def _set_vocab_qwen(self):
  749. dir_model = self.dir_model
  750. hparams = self.hparams
  751. tokens: list[str] = []
  752. toktypes: list[int] = []
  753. from transformers import AutoTokenizer
  754. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  755. vocab_size = hparams["vocab_size"]
  756. assert max(tokenizer.get_vocab().values()) < vocab_size
  757. tokpre = self.get_vocab_base_pre(tokenizer)
  758. merges = []
  759. vocab = {}
  760. mergeable_ranks = tokenizer.mergeable_ranks
  761. for token, rank in mergeable_ranks.items():
  762. vocab[QwenModel.token_bytes_to_string(token)] = rank
  763. if len(token) == 1:
  764. continue
  765. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  766. assert len(merged) == 2
  767. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  768. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  769. added_vocab = tokenizer.special_tokens
  770. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  771. for i in range(vocab_size):
  772. if i not in reverse_vocab:
  773. tokens.append(f"[PAD{i}]")
  774. toktypes.append(gguf.TokenType.UNUSED)
  775. elif reverse_vocab[i] in added_vocab:
  776. tokens.append(reverse_vocab[i])
  777. toktypes.append(gguf.TokenType.CONTROL)
  778. else:
  779. tokens.append(reverse_vocab[i])
  780. toktypes.append(gguf.TokenType.NORMAL)
  781. self.gguf_writer.add_tokenizer_model("gpt2")
  782. self.gguf_writer.add_tokenizer_pre(tokpre)
  783. self.gguf_writer.add_token_list(tokens)
  784. self.gguf_writer.add_token_types(toktypes)
  785. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  786. special_vocab.merges = merges
  787. # only add special tokens when they were not already loaded from config.json
  788. if len(special_vocab.special_token_ids) == 0:
  789. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  790. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  791. # this one is usually not in config.json anyway
  792. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  793. special_vocab.add_to_gguf(self.gguf_writer)
  794. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  795. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  796. self.gguf_writer.add_tokenizer_model("llama")
  797. self.gguf_writer.add_tokenizer_pre("default")
  798. self.gguf_writer.add_token_list(tokens)
  799. self.gguf_writer.add_token_scores(scores)
  800. self.gguf_writer.add_token_types(toktypes)
  801. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  802. special_vocab.add_to_gguf(self.gguf_writer)
  803. def _create_vocab_sentencepiece(self):
  804. from sentencepiece import SentencePieceProcessor
  805. tokenizer_path = self.dir_model / 'tokenizer.model'
  806. if not tokenizer_path.is_file():
  807. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  808. tokenizer = SentencePieceProcessor()
  809. tokenizer.LoadFromFile(str(tokenizer_path))
  810. vocab_size = self.find_hparam([
  811. "vocab_size_per_layer_input", # gemma3n
  812. "vocab_size",
  813. ], optional=True) or tokenizer.vocab_size()
  814. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  815. scores: list[float] = [-10000.0] * vocab_size
  816. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  817. for token_id in range(tokenizer.vocab_size()):
  818. if token_id >= vocab_size:
  819. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  820. break
  821. piece = tokenizer.IdToPiece(token_id)
  822. text = piece.encode("utf-8")
  823. score = tokenizer.GetScore(token_id)
  824. toktype = SentencePieceTokenTypes.NORMAL
  825. if tokenizer.IsUnknown(token_id):
  826. toktype = SentencePieceTokenTypes.UNKNOWN
  827. elif tokenizer.IsControl(token_id):
  828. toktype = SentencePieceTokenTypes.CONTROL
  829. elif tokenizer.IsUnused(token_id):
  830. toktype = SentencePieceTokenTypes.UNUSED
  831. elif tokenizer.IsByte(token_id):
  832. toktype = SentencePieceTokenTypes.BYTE
  833. tokens[token_id] = text
  834. scores[token_id] = score
  835. toktypes[token_id] = toktype
  836. added_tokens_file = self.dir_model / 'added_tokens.json'
  837. if added_tokens_file.is_file():
  838. with open(added_tokens_file, "r", encoding="utf-8") as f:
  839. added_tokens_json = json.load(f)
  840. for key in added_tokens_json:
  841. token_id = added_tokens_json[key]
  842. if token_id >= vocab_size:
  843. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  844. continue
  845. tokens[token_id] = key.encode("utf-8")
  846. scores[token_id] = -1000.0
  847. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  848. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  849. if tokenizer_config_file.is_file():
  850. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  851. tokenizer_config_json = json.load(f)
  852. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  853. for token_id, token_data in added_tokens_decoder.items():
  854. token_id = int(token_id)
  855. token: str = token_data["content"]
  856. if token_id >= vocab_size:
  857. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  858. continue
  859. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  860. if tokens[token_id] != token.encode("utf-8"):
  861. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  862. if token_data.get("special") or self.does_token_look_special(token):
  863. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  864. else:
  865. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  866. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  867. scores[token_id] = -1000.0
  868. tokens[token_id] = token.encode("utf-8")
  869. if vocab_size > len(tokens):
  870. pad_count = vocab_size - len(tokens)
  871. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  872. for i in range(1, pad_count + 1):
  873. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  874. scores.append(-1000.0)
  875. toktypes.append(SentencePieceTokenTypes.UNUSED)
  876. return tokens, scores, toktypes
  877. def _set_vocab_llama_hf(self):
  878. vocab = gguf.LlamaHfVocab(self.dir_model)
  879. tokens = []
  880. scores = []
  881. toktypes = []
  882. for text, score, toktype in vocab.all_tokens():
  883. tokens.append(text)
  884. scores.append(score)
  885. toktypes.append(toktype)
  886. assert len(tokens) == vocab.vocab_size
  887. self.gguf_writer.add_tokenizer_model("llama")
  888. self.gguf_writer.add_tokenizer_pre("default")
  889. self.gguf_writer.add_token_list(tokens)
  890. self.gguf_writer.add_token_scores(scores)
  891. self.gguf_writer.add_token_types(toktypes)
  892. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  893. special_vocab.add_to_gguf(self.gguf_writer)
  894. def _set_vocab_rwkv_world(self):
  895. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  896. vocab_size = self.hparams.get("vocab_size", 65536)
  897. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  898. toktypes: list[int] = [gguf.TokenType.CONTROL]
  899. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  900. lines = f.readlines()
  901. for line in lines:
  902. parts = line.split(' ')
  903. assert len(parts) >= 3
  904. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  905. token = token.encode("utf-8") if isinstance(token, str) else token
  906. assert isinstance(token, bytes)
  907. assert len(token) == token_len
  908. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  909. tokens.append(token_text.encode("utf-8"))
  910. toktypes.append(gguf.TokenType.NORMAL)
  911. remainder = vocab_size - len(tokens)
  912. assert remainder >= 0
  913. for i in range(len(tokens), vocab_size):
  914. tokens.append(f"[PAD{i}]".encode("utf-8"))
  915. toktypes.append(gguf.TokenType.UNUSED)
  916. self.gguf_writer.add_tokenizer_model("rwkv")
  917. self.gguf_writer.add_token_list(tokens)
  918. self.gguf_writer.add_token_types(toktypes)
  919. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  920. if special_vocab.chat_template is None:
  921. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  922. if template_path.is_file():
  923. with open(template_path, "r", encoding="utf-8") as f:
  924. template = f.read()
  925. else:
  926. template = "rwkv-world"
  927. special_vocab.chat_template = template
  928. # hack: Add '\n\n' as the EOT token to make it chat normally
  929. special_vocab._set_special_token("eot", 261)
  930. # hack: Override these as they have already been set (incorrectly)
  931. special_vocab.special_token_ids["bos"] = 0
  932. special_vocab.special_token_ids["eos"] = 0
  933. special_vocab.add_to_gguf(self.gguf_writer)
  934. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  935. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  936. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  937. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  938. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  939. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  940. assert field # tokenizer model
  941. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  942. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  943. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  944. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  945. assert field # token list
  946. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  947. if model_name == "llama-spm":
  948. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  949. assert field # token scores
  950. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  951. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  952. assert field # token types
  953. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  954. if model_name != "llama-spm":
  955. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  956. assert field # token merges
  957. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  958. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  959. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  960. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  961. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  962. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  963. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  964. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  965. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  966. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  967. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  968. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  969. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  970. def _try_set_pooling_type(self) -> None:
  971. # get pooling path
  972. pooling_path = None
  973. module_path = self.dir_model / "modules.json"
  974. if module_path.is_file():
  975. with open(module_path, encoding="utf-8") as f:
  976. modules = json.load(f)
  977. for mod in modules:
  978. if mod["type"] == "sentence_transformers.models.Pooling":
  979. pooling_path = mod["path"]
  980. break
  981. # get pooling type
  982. if pooling_path is not None:
  983. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  984. pooling = json.load(f)
  985. if pooling["pooling_mode_mean_tokens"]:
  986. pooling_type = gguf.PoolingType.MEAN
  987. elif pooling["pooling_mode_cls_token"]:
  988. pooling_type = gguf.PoolingType.CLS
  989. elif pooling["pooling_mode_lasttoken"]:
  990. pooling_type = gguf.PoolingType.LAST
  991. else:
  992. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  993. self.gguf_writer.add_pooling_type(pooling_type)
  994. class MmprojModel(ModelBase):
  995. model_type = ModelType.MMPROJ
  996. model_arch = gguf.MODEL_ARCH.MMPROJ
  997. preprocessor_config: dict[str, Any]
  998. global_config: dict[str, Any]
  999. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1000. has_vision_encoder: bool = True # by default
  1001. has_audio_encoder: bool = False
  1002. # for models having multiple encoders, we need to separate their hparams
  1003. hparams_vision: dict[str, Any] | None = None
  1004. hparams_audio: dict[str, Any] | None = None
  1005. def __init__(self, *args, **kwargs):
  1006. super().__init__(*args, **kwargs)
  1007. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1008. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1009. # get n_embd of the text model
  1010. if "text_config" not in self.hparams:
  1011. self.hparams["text_config"] = {}
  1012. if "audio_config" not in self.hparams:
  1013. self.hparams["audio_config"] = {}
  1014. text_config = {**self.hparams, **self.hparams["text_config"]}
  1015. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1016. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1017. # move vision config to the top level, while preserving the original hparams in global_config
  1018. import copy
  1019. self.global_config = copy.deepcopy(self.hparams)
  1020. self.hparams_vision = self.get_vision_config()
  1021. self.hparams_audio = self.get_audio_config()
  1022. if self.hparams_vision is None and self.hparams_audio is None:
  1023. raise ValueError("vision_config / audio_config not found in hparams")
  1024. # for compat with vision-only models
  1025. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1026. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1027. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1028. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1029. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1030. # load preprocessor config
  1031. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1032. self.preprocessor_config = json.load(f)
  1033. def get_vision_config(self) -> dict[str, Any] | None:
  1034. return self.global_config.get("vision_config")
  1035. def get_audio_config(self) -> dict[str, Any] | None:
  1036. return self.global_config.get("audio_config")
  1037. def set_type(self):
  1038. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1039. def set_gguf_parameters(self):
  1040. self.gguf_writer.add_file_type(self.ftype)
  1041. if self.has_vision_encoder:
  1042. self.gguf_writer.add_clip_has_vision_encoder(True)
  1043. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1044. # vision config
  1045. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1046. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1047. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1048. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1049. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1050. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1051. # preprocessor config
  1052. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1053. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1054. if self.has_audio_encoder:
  1055. self.gguf_writer.add_clip_has_audio_encoder(True)
  1056. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1057. # audio config
  1058. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1059. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1060. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1061. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1062. if not self.has_vision_encoder and not self.has_audio_encoder:
  1063. raise ValueError("MmprojModel must have either vision or audio encoder")
  1064. def write_vocab(self):
  1065. raise ValueError("MmprojModel does not support vocab writing")
  1066. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1067. assert self.hparams_vision is not None
  1068. return self._find_param(self.hparams_vision, keys, optional)
  1069. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1070. assert self.hparams_audio is not None
  1071. return self._find_param(self.hparams_audio, keys, optional)
  1072. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1073. key = next((k for k in keys if k in obj), None)
  1074. if key is not None:
  1075. return obj[key]
  1076. if optional:
  1077. return None
  1078. raise KeyError(f"could not find any of: {keys}")
  1079. @ModelBase.register("GPTNeoXForCausalLM")
  1080. class GPTNeoXModel(TextModel):
  1081. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1082. def set_gguf_parameters(self):
  1083. block_count = self.hparams["num_hidden_layers"]
  1084. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1085. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1086. self.gguf_writer.add_block_count(block_count)
  1087. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1088. self.gguf_writer.add_rope_dimension_count(
  1089. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1090. )
  1091. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1092. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1093. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1095. del bid # unused
  1096. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1097. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1098. tensors: list[tuple[str, Tensor]] = []
  1099. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1100. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1101. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1102. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1103. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1104. data_torch = torch.cat(
  1105. (
  1106. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1107. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1108. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1109. ),
  1110. dim=0,
  1111. )
  1112. logger.info("re-format attention.linear_qkv.weight")
  1113. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1114. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1115. data_torch = torch.cat(
  1116. (
  1117. qkv_bias[:, 0, :].reshape((n_embed,)),
  1118. qkv_bias[:, 1, :].reshape((n_embed,)),
  1119. qkv_bias[:, 2, :].reshape((n_embed,)),
  1120. ),
  1121. dim=0,
  1122. )
  1123. logger.info("re-format attention.linear_qkv.bias")
  1124. tensors.append((self.map_tensor_name(name), data_torch))
  1125. return tensors
  1126. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1127. class BloomModel(TextModel):
  1128. model_arch = gguf.MODEL_ARCH.BLOOM
  1129. def set_gguf_parameters(self):
  1130. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1131. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1132. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1133. self.gguf_writer.add_embedding_length(n_embed)
  1134. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1135. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1136. self.gguf_writer.add_head_count(n_head)
  1137. self.gguf_writer.add_head_count_kv(n_head)
  1138. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1139. self.gguf_writer.add_file_type(self.ftype)
  1140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1141. del bid # unused
  1142. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1143. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1144. name = re.sub(r'transformer\.', '', name)
  1145. tensors: list[tuple[str, Tensor]] = []
  1146. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1147. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1148. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1149. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1150. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1151. data_torch = torch.cat(
  1152. (
  1153. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1154. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1155. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1156. ),
  1157. dim=0,
  1158. )
  1159. logger.info("re-format attention.linear_qkv.weight")
  1160. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1161. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1162. data_torch = torch.cat(
  1163. (
  1164. qkv_bias[:, 0, :].reshape((n_embed,)),
  1165. qkv_bias[:, 1, :].reshape((n_embed,)),
  1166. qkv_bias[:, 2, :].reshape((n_embed,)),
  1167. ),
  1168. dim=0,
  1169. )
  1170. logger.info("re-format attention.linear_qkv.bias")
  1171. tensors.append((self.map_tensor_name(name), data_torch))
  1172. return tensors
  1173. @ModelBase.register("MPTForCausalLM")
  1174. class MPTModel(TextModel):
  1175. model_arch = gguf.MODEL_ARCH.MPT
  1176. def set_vocab(self):
  1177. try:
  1178. self._set_vocab_gpt2()
  1179. except Exception:
  1180. # Fallback for SEA-LION model
  1181. self._set_vocab_sentencepiece()
  1182. self.gguf_writer.add_add_bos_token(False)
  1183. self.gguf_writer.add_pad_token_id(3)
  1184. self.gguf_writer.add_eos_token_id(1)
  1185. self.gguf_writer.add_unk_token_id(0)
  1186. def set_gguf_parameters(self):
  1187. block_count = self.hparams["n_layers"]
  1188. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1189. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1190. self.gguf_writer.add_block_count(block_count)
  1191. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1192. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1193. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1194. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1195. self.gguf_writer.add_layer_norm_eps(1e-5)
  1196. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1197. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1198. if self.hparams["attn_config"]["alibi"]:
  1199. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1200. else:
  1201. self.gguf_writer.add_max_alibi_bias(0.0)
  1202. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1203. del bid # unused
  1204. if "scales" in name:
  1205. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1206. new_name = new_name.replace("scales", "act.scales")
  1207. else:
  1208. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1209. return [(new_name, data_torch)]
  1210. @ModelBase.register("OrionForCausalLM")
  1211. class OrionModel(TextModel):
  1212. model_arch = gguf.MODEL_ARCH.ORION
  1213. def set_vocab(self):
  1214. self._set_vocab_sentencepiece()
  1215. def set_gguf_parameters(self):
  1216. block_count = self.hparams["num_hidden_layers"]
  1217. head_count = self.hparams["num_attention_heads"]
  1218. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1219. ctx_length = 0
  1220. if "max_sequence_length" in self.hparams:
  1221. ctx_length = self.hparams["max_sequence_length"]
  1222. elif "max_position_embeddings" in self.hparams:
  1223. ctx_length = self.hparams["max_position_embeddings"]
  1224. elif "model_max_length" in self.hparams:
  1225. ctx_length = self.hparams["model_max_length"]
  1226. else:
  1227. raise ValueError("gguf: can not find ctx length parameter.")
  1228. self.gguf_writer.add_file_type(self.ftype)
  1229. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1230. self.gguf_writer.add_context_length(ctx_length)
  1231. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1232. self.gguf_writer.add_block_count(block_count)
  1233. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1234. self.gguf_writer.add_head_count(head_count)
  1235. self.gguf_writer.add_head_count_kv(head_count_kv)
  1236. # note: config provides rms norm but it is actually layer norm
  1237. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1238. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1239. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1240. class BaichuanModel(TextModel):
  1241. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1242. def set_vocab(self):
  1243. self._set_vocab_sentencepiece()
  1244. def set_gguf_parameters(self):
  1245. block_count = self.hparams["num_hidden_layers"]
  1246. head_count = self.hparams["num_attention_heads"]
  1247. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1248. ctx_length = 0
  1249. if "max_sequence_length" in self.hparams:
  1250. ctx_length = self.hparams["max_sequence_length"]
  1251. elif "max_position_embeddings" in self.hparams:
  1252. ctx_length = self.hparams["max_position_embeddings"]
  1253. elif "model_max_length" in self.hparams:
  1254. ctx_length = self.hparams["model_max_length"]
  1255. else:
  1256. raise ValueError("gguf: can not find ctx length parameter.")
  1257. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1258. self.gguf_writer.add_context_length(ctx_length)
  1259. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1260. self.gguf_writer.add_block_count(block_count)
  1261. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1262. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1263. self.gguf_writer.add_head_count(head_count)
  1264. self.gguf_writer.add_head_count_kv(head_count_kv)
  1265. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1266. self.gguf_writer.add_file_type(self.ftype)
  1267. rope_scaling = self.hparams.get("rope_scaling") or {}
  1268. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1269. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1270. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1271. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1272. head_count = self.hparams["num_attention_heads"]
  1273. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1274. tensors: list[tuple[str, Tensor]] = []
  1275. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1276. logger.info(f"Unpacking and permuting layer {bid}")
  1277. tensors = [
  1278. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1279. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1280. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1281. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1282. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1283. self._reverse_hf_part(data_torch, 2)),
  1284. ]
  1285. else:
  1286. tensors = [(self.map_tensor_name(name), data_torch)]
  1287. return tensors
  1288. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1289. if n_kv_head is not None and n_head != n_kv_head:
  1290. n_head //= n_kv_head
  1291. return (
  1292. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1293. .swapaxes(1, 2)
  1294. .reshape(weights.shape)
  1295. )
  1296. def _reverse_hf_permute_part(
  1297. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1298. ) -> Tensor:
  1299. r = weights.shape[0] // 3
  1300. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1301. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1302. r = weights.shape[0] // 3
  1303. return weights[r * n_part:r * n_part + r, ...]
  1304. @ModelBase.register("XverseForCausalLM")
  1305. class XverseModel(TextModel):
  1306. model_arch = gguf.MODEL_ARCH.XVERSE
  1307. def set_vocab(self):
  1308. assert (self.dir_model / "tokenizer.json").is_file()
  1309. dir_model = self.dir_model
  1310. hparams = self.hparams
  1311. tokens: list[bytes] = []
  1312. toktypes: list[int] = []
  1313. from transformers import AutoTokenizer
  1314. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1315. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1316. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1317. # because vocab_size is the count of items, and indexes start at 0.
  1318. max_vocab_index = max(tokenizer.get_vocab().values())
  1319. if max_vocab_index >= vocab_size:
  1320. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1321. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1322. added_vocab = tokenizer.get_added_vocab()
  1323. for token_id in range(vocab_size):
  1324. token_text = reverse_vocab[token_id].encode('utf-8')
  1325. # replace "\x00" to string with length > 0
  1326. if token_text == b"\x00":
  1327. toktype = gguf.TokenType.BYTE # special
  1328. token_text = f"<{token_text}>".encode('utf-8')
  1329. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1330. toktype = gguf.TokenType.BYTE # special
  1331. elif reverse_vocab[token_id] in added_vocab:
  1332. if tokenizer.added_tokens_decoder[token_id].special:
  1333. toktype = gguf.TokenType.CONTROL
  1334. else:
  1335. toktype = gguf.TokenType.USER_DEFINED
  1336. else:
  1337. toktype = gguf.TokenType.NORMAL
  1338. tokens.append(token_text)
  1339. toktypes.append(toktype)
  1340. self.gguf_writer.add_tokenizer_model("llama")
  1341. self.gguf_writer.add_tokenizer_pre("default")
  1342. self.gguf_writer.add_token_list(tokens)
  1343. self.gguf_writer.add_token_types(toktypes)
  1344. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1345. special_vocab.add_to_gguf(self.gguf_writer)
  1346. def set_gguf_parameters(self):
  1347. block_count = self.hparams["num_hidden_layers"]
  1348. head_count = self.hparams["num_attention_heads"]
  1349. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1350. ctx_length = 0
  1351. if "max_sequence_length" in self.hparams:
  1352. ctx_length = self.hparams["max_sequence_length"]
  1353. elif "max_position_embeddings" in self.hparams:
  1354. ctx_length = self.hparams["max_position_embeddings"]
  1355. elif "model_max_length" in self.hparams:
  1356. ctx_length = self.hparams["model_max_length"]
  1357. else:
  1358. raise ValueError("gguf: can not find ctx length parameter.")
  1359. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1360. self.gguf_writer.add_context_length(ctx_length)
  1361. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1362. self.gguf_writer.add_block_count(block_count)
  1363. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1364. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1365. self.gguf_writer.add_head_count(head_count)
  1366. self.gguf_writer.add_head_count_kv(head_count_kv)
  1367. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1368. self.gguf_writer.add_file_type(self.ftype)
  1369. rope_scaling = self.hparams.get("rope_scaling") or {}
  1370. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1371. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1372. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1374. del bid # unused
  1375. head_count = self.hparams["num_attention_heads"]
  1376. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1377. # HF models permute some of the tensors, so we need to undo that
  1378. if name.endswith("q_proj.weight"):
  1379. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1380. if name.endswith("k_proj.weight"):
  1381. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1382. return [(self.map_tensor_name(name), data_torch)]
  1383. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1384. if n_kv_head is not None and n_head != n_kv_head:
  1385. n_head //= n_kv_head
  1386. return (
  1387. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1388. .swapaxes(1, 2)
  1389. .reshape(weights.shape)
  1390. )
  1391. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1392. class FalconModel(TextModel):
  1393. model_arch = gguf.MODEL_ARCH.FALCON
  1394. def set_gguf_parameters(self):
  1395. block_count = self.hparams.get("num_hidden_layers")
  1396. if block_count is None:
  1397. block_count = self.hparams["n_layer"] # old name
  1398. n_head = self.hparams.get("num_attention_heads")
  1399. if n_head is None:
  1400. n_head = self.hparams["n_head"] # old name
  1401. n_head_kv = self.hparams.get("num_kv_heads")
  1402. if n_head_kv is None:
  1403. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1404. self.gguf_writer.add_context_length(2048) # not in config.json
  1405. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1406. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1407. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1408. self.gguf_writer.add_block_count(block_count)
  1409. self.gguf_writer.add_head_count(n_head)
  1410. self.gguf_writer.add_head_count_kv(n_head_kv)
  1411. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1412. self.gguf_writer.add_file_type(self.ftype)
  1413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1414. del bid # unused
  1415. # QKV tensor transform
  1416. # The original query_key_value tensor contains n_head_kv "kv groups",
  1417. # each consisting of n_head/n_head_kv query weights followed by one key
  1418. # and one value weight (shared by all query heads in the kv group).
  1419. # This layout makes it a big pain to work with in GGML.
  1420. # So we rearrange them here,, so that we have n_head query weights
  1421. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1422. # in contiguous fashion.
  1423. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1424. if "query_key_value" in name:
  1425. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1426. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1427. head_dim = self.hparams["hidden_size"] // n_head
  1428. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1429. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1430. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1431. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1432. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1433. return [(self.map_tensor_name(name), data_torch)]
  1434. @ModelBase.register("GPTBigCodeForCausalLM")
  1435. class StarCoderModel(TextModel):
  1436. model_arch = gguf.MODEL_ARCH.STARCODER
  1437. def set_gguf_parameters(self):
  1438. block_count = self.hparams["n_layer"]
  1439. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1440. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1441. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1442. self.gguf_writer.add_block_count(block_count)
  1443. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1444. self.gguf_writer.add_head_count_kv(1)
  1445. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1446. self.gguf_writer.add_file_type(self.ftype)
  1447. @ModelBase.register("GPTRefactForCausalLM")
  1448. class RefactModel(TextModel):
  1449. model_arch = gguf.MODEL_ARCH.REFACT
  1450. def set_vocab(self):
  1451. super().set_vocab()
  1452. # TODO: how to determine special FIM tokens automatically?
  1453. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1454. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1455. special_vocab._set_special_token("prefix", 1)
  1456. special_vocab._set_special_token("suffix", 3)
  1457. special_vocab._set_special_token("middle", 2)
  1458. special_vocab.chat_template = None # do not add it twice
  1459. special_vocab.add_to_gguf(self.gguf_writer)
  1460. def set_gguf_parameters(self):
  1461. hidden_dim = self.hparams["n_embd"]
  1462. inner_dim = 4 * hidden_dim
  1463. hidden_dim = int(2 * inner_dim / 3)
  1464. multiple_of = 256
  1465. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1466. block_count = self.hparams["n_layer"]
  1467. # refact uses Alibi. So this is from config.json which might be used by training.
  1468. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1469. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1470. self.gguf_writer.add_feed_forward_length(ff_dim)
  1471. self.gguf_writer.add_block_count(block_count)
  1472. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1473. self.gguf_writer.add_head_count_kv(1)
  1474. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1475. self.gguf_writer.add_file_type(self.ftype)
  1476. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1477. hidden_dim = self.hparams["n_embd"]
  1478. inner_dim = 4 * hidden_dim
  1479. hidden_dim = int(2 * inner_dim / 3)
  1480. multiple_of = 256
  1481. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1482. n_head = self.hparams["n_head"]
  1483. n_head_kv = 1
  1484. head_dim = self.hparams["n_embd"] // n_head
  1485. tensors: list[tuple[str, Tensor]] = []
  1486. if bid is not None:
  1487. if name == f"transformer.h.{bid}.attn.kv.weight":
  1488. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1489. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1490. elif name == f"transformer.h.{bid}.attn.q.weight":
  1491. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1492. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1493. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1494. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1495. if len(tensors) == 0:
  1496. tensors.append((self.map_tensor_name(name), data_torch))
  1497. return tensors
  1498. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1499. class StableLMModel(TextModel):
  1500. model_arch = gguf.MODEL_ARCH.STABLELM
  1501. def set_vocab(self):
  1502. if (self.dir_model / "tokenizer.json").is_file():
  1503. self._set_vocab_gpt2()
  1504. else:
  1505. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1506. self._set_vocab_qwen()
  1507. def set_gguf_parameters(self):
  1508. hparams = self.hparams
  1509. block_count = hparams["num_hidden_layers"]
  1510. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1511. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1512. self.gguf_writer.add_block_count(block_count)
  1513. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1514. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1515. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1516. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1517. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1518. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1519. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1520. self.gguf_writer.add_file_type(self.ftype)
  1521. _q_norms: list[dict[str, Tensor]] | None = None
  1522. _k_norms: list[dict[str, Tensor]] | None = None
  1523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1524. n_head = self.hparams["num_attention_heads"]
  1525. n_kv_head = self.hparams["num_key_value_heads"]
  1526. if name.find("q_layernorm.norms") != -1:
  1527. assert bid is not None
  1528. if self._q_norms is None:
  1529. self._q_norms = [{} for _ in range(self.block_count)]
  1530. self._q_norms[bid][name] = data_torch
  1531. if len(self._q_norms[bid]) >= n_head:
  1532. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1533. else:
  1534. return []
  1535. if name.find("k_layernorm.norms") != -1:
  1536. assert bid is not None
  1537. if self._k_norms is None:
  1538. self._k_norms = [{} for _ in range(self.block_count)]
  1539. self._k_norms[bid][name] = data_torch
  1540. if len(self._k_norms[bid]) >= n_kv_head:
  1541. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1542. else:
  1543. return []
  1544. return [(self.map_tensor_name(name), data_torch)]
  1545. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1546. datas: list[Tensor] = []
  1547. # extract the norms in order
  1548. for xid in range(n_head):
  1549. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1550. datas.append(norms[ename])
  1551. del norms[ename]
  1552. data_torch = torch.stack(datas, dim=0)
  1553. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1554. new_name = self.map_tensor_name(merged_name)
  1555. return [(new_name, data_torch)]
  1556. def prepare_tensors(self):
  1557. super().prepare_tensors()
  1558. if self._q_norms is not None or self._k_norms is not None:
  1559. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1560. norms = (
  1561. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1562. ) + (
  1563. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1564. )
  1565. if len(norms) > 0:
  1566. raise ValueError(f"Unprocessed norms: {norms}")
  1567. @ModelBase.register(
  1568. "LLaMAForCausalLM",
  1569. "LlamaForCausalLM",
  1570. "MistralForCausalLM",
  1571. "MixtralForCausalLM",
  1572. "VLlama3ForCausalLM",
  1573. "LlavaForConditionalGeneration",
  1574. "LlamaModel")
  1575. class LlamaModel(TextModel):
  1576. model_arch = gguf.MODEL_ARCH.LLAMA
  1577. undo_permute = True
  1578. def __init__(self, *args, **kwargs):
  1579. super().__init__(*args, **kwargs)
  1580. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1581. if self.hf_arch == "VLlama3ForCausalLM":
  1582. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1583. def set_vocab(self):
  1584. try:
  1585. self._set_vocab_sentencepiece()
  1586. except FileNotFoundError:
  1587. try:
  1588. self._set_vocab_llama_hf()
  1589. except (FileNotFoundError, TypeError):
  1590. # Llama 3
  1591. self._set_vocab_gpt2()
  1592. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1593. if self.hparams.get("vocab_size", 32000) == 32016:
  1594. special_vocab = gguf.SpecialVocab(
  1595. self.dir_model, load_merges=False,
  1596. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1597. )
  1598. special_vocab._set_special_token("prefix", 32007)
  1599. special_vocab._set_special_token("suffix", 32008)
  1600. special_vocab._set_special_token("middle", 32009)
  1601. special_vocab._set_special_token("eot", 32010)
  1602. special_vocab.add_to_gguf(self.gguf_writer)
  1603. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1604. if tokenizer_config_file.is_file():
  1605. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1606. tokenizer_config_json = json.load(f)
  1607. if "add_prefix_space" in tokenizer_config_json:
  1608. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1609. # Apply to granite small models only
  1610. if self.hparams.get("vocab_size", 32000) == 49152:
  1611. self.gguf_writer.add_add_bos_token(False)
  1612. def set_gguf_parameters(self):
  1613. super().set_gguf_parameters()
  1614. hparams = self.hparams
  1615. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1616. if (rope_dim := hparams.get("head_dim")) is None:
  1617. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1618. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1619. rope_scaling = self.hparams.get("rope_scaling") or {}
  1620. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1621. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1622. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1623. @staticmethod
  1624. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1625. if n_head_kv is not None and n_head != n_head_kv:
  1626. n_head = n_head_kv
  1627. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1628. .swapaxes(1, 2)
  1629. .reshape(weights.shape))
  1630. _experts: list[dict[str, Tensor]] | None = None
  1631. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1632. n_head = self.hparams["num_attention_heads"]
  1633. n_kv_head = self.hparams.get("num_key_value_heads")
  1634. is_vision_tensor = "vision_tower" in name \
  1635. or "vision_model" in name \
  1636. or "model.connector" in name \
  1637. or "multi_modal_projector" in name
  1638. if is_vision_tensor:
  1639. return [] # skip vision tensors
  1640. elif self.hf_arch == "LlamaModel":
  1641. name = "model." + name
  1642. elif name.startswith("model.text_model"):
  1643. name = name.replace("text_model.", "") # for SmolVLM
  1644. elif name.startswith("language_model."):
  1645. name = name.replace("language_model.", "") # for the rest
  1646. if self.undo_permute:
  1647. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1648. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1649. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1650. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1651. # process the experts separately
  1652. if name.find("block_sparse_moe.experts") != -1:
  1653. n_experts = self.hparams["num_local_experts"]
  1654. assert bid is not None
  1655. if self._experts is None:
  1656. self._experts = [{} for _ in range(self.block_count)]
  1657. self._experts[bid][name] = data_torch
  1658. if len(self._experts[bid]) >= n_experts * 3:
  1659. tensors: list[tuple[str, Tensor]] = []
  1660. # merge the experts into a single 3d tensor
  1661. for wid in ["w1", "w2", "w3"]:
  1662. datas: list[Tensor] = []
  1663. for xid in range(n_experts):
  1664. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1665. datas.append(self._experts[bid][ename])
  1666. del self._experts[bid][ename]
  1667. data_torch = torch.stack(datas, dim=0)
  1668. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1669. new_name = self.map_tensor_name(merged_name)
  1670. tensors.append((new_name, data_torch))
  1671. return tensors
  1672. else:
  1673. return []
  1674. return [(self.map_tensor_name(name), data_torch)]
  1675. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1676. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1677. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1678. base = self.hparams.get("rope_theta", 10000.0)
  1679. if (dim := self.hparams.get("head_dim")) is None:
  1680. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1681. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1682. factor = rope_scaling.get("factor", 8.0)
  1683. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1684. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1685. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1686. low_freq_wavelen = old_context_len / low_freq_factor
  1687. high_freq_wavelen = old_context_len / high_freq_factor
  1688. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1689. rope_factors = []
  1690. for freq in freqs:
  1691. wavelen = 2 * math.pi / freq
  1692. if wavelen < high_freq_wavelen:
  1693. rope_factors.append(1)
  1694. elif wavelen > low_freq_wavelen:
  1695. rope_factors.append(factor)
  1696. else:
  1697. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1698. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1699. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1700. def prepare_tensors(self):
  1701. super().prepare_tensors()
  1702. if self._experts is not None:
  1703. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1704. experts = [k for d in self._experts for k in d.keys()]
  1705. if len(experts) > 0:
  1706. raise ValueError(f"Unprocessed experts: {experts}")
  1707. @ModelBase.register("ArceeForCausalLM")
  1708. class ArceeModel(LlamaModel):
  1709. model_arch = gguf.MODEL_ARCH.ARCEE
  1710. def set_gguf_parameters(self):
  1711. super().set_gguf_parameters()
  1712. self._try_set_pooling_type()
  1713. rope_scaling = self.hparams.get("rope_scaling") or {}
  1714. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1715. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1716. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1717. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1718. @ModelBase.register(
  1719. "LlavaForConditionalGeneration", # pixtral
  1720. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1721. )
  1722. class LlavaVisionModel(MmprojModel):
  1723. img_break_tok_id = -1
  1724. def __init__(self, *args, **kwargs):
  1725. super().__init__(*args, **kwargs)
  1726. if self.hparams["model_type"] == "pixtral":
  1727. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1728. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1729. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1730. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1731. else:
  1732. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1733. def get_token_id(self, token: str) -> int:
  1734. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1735. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1736. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1737. for id_, token_data in added_tokens_decoder.items():
  1738. if token_data["content"] == token:
  1739. return int(id_)
  1740. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1741. def set_gguf_parameters(self):
  1742. super().set_gguf_parameters()
  1743. hparams = self.hparams
  1744. if hparams["model_type"] == "pixtral":
  1745. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1746. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1747. # hidden_act
  1748. if hparams["hidden_act"] == "silu":
  1749. self.gguf_writer.add_vision_use_silu(True)
  1750. elif hparams["hidden_act"] == "gelu":
  1751. self.gguf_writer.add_vision_use_gelu(True)
  1752. else:
  1753. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1754. # spatial_merge_size
  1755. if "spatial_merge_size" in self.global_config:
  1756. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1757. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1758. del bid # unused
  1759. n_head = self.hparams["num_attention_heads"]
  1760. n_kv_head = n_head
  1761. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1762. # process vision tensors
  1763. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1764. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1765. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1766. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1767. return [(self.map_tensor_name(name), data_torch)]
  1768. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1769. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1770. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1771. img_break_embd = data_torch[self.img_break_tok_id]
  1772. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1773. return [(self.map_tensor_name(name), img_break_embd)]
  1774. return [] # skip other tensors
  1775. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1776. class SmolVLMModel(MmprojModel):
  1777. def __init__(self, *args, **kwargs):
  1778. super().__init__(*args, **kwargs)
  1779. if self.hparams["model_type"] == "smolvlm_vision":
  1780. # fix for SmolVLM2, missing some keys in config.json
  1781. # default values are taken from transformers code
  1782. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1783. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1784. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1785. def set_gguf_parameters(self):
  1786. super().set_gguf_parameters()
  1787. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1788. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1789. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1790. self.gguf_writer.add_vision_use_gelu(True)
  1791. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1792. del bid, new_name, n_dims # unused
  1793. if ".embeddings." in name:
  1794. return gguf.GGMLQuantizationType.F32
  1795. return False
  1796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1797. del bid # unused
  1798. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1799. if is_vision_tensor:
  1800. return [(self.map_tensor_name(name), data_torch)]
  1801. return [] # skip other tensors
  1802. @ModelBase.register("Llama4ForConditionalGeneration")
  1803. class Llama4Model(LlamaModel):
  1804. model_arch = gguf.MODEL_ARCH.LLAMA4
  1805. undo_permute = False
  1806. def __init__(self, *args, **kwargs):
  1807. super().__init__(*args, **kwargs)
  1808. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1809. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1810. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1811. def set_vocab(self):
  1812. self._set_vocab_gpt2()
  1813. def set_gguf_parameters(self):
  1814. super().set_gguf_parameters()
  1815. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1816. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1818. if name.startswith("language_model."):
  1819. name = name.replace("language_model.", "")
  1820. # split the gate_up into gate and up
  1821. if "gate_up_proj" in name:
  1822. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1823. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1824. dim_half = data_torch.shape[-1] // 2
  1825. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1826. return [
  1827. (self.map_tensor_name(name_gate), gate_proj_weight),
  1828. (self.map_tensor_name(name_up), up_proj_weight)
  1829. ]
  1830. if name.endswith("down_proj"):
  1831. name += ".weight"
  1832. data_torch = data_torch.transpose(-1, -2)
  1833. if "multi_modal_projector" in name or "vision_model" in name:
  1834. return []
  1835. return super().modify_tensors(data_torch, name, bid)
  1836. @ModelBase.register("Llama4ForConditionalGeneration")
  1837. class Llama4VisionModel(MmprojModel):
  1838. def set_gguf_parameters(self):
  1839. super().set_gguf_parameters()
  1840. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1841. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1842. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1843. assert self.hparams["hidden_act"] == "gelu"
  1844. self.gguf_writer.add_vision_use_gelu(True)
  1845. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1846. del bid # unused
  1847. if "multi_modal_projector" in name or "vision_model" in name:
  1848. # process vision tensors
  1849. if "positional_embedding_vlm" in name and ".weight" not in name:
  1850. name += ".weight"
  1851. if "multi_modal_projector.linear_1" in name:
  1852. # despite the name with number postfix, this is a single fully connected layer
  1853. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1854. return [(self.map_tensor_name(name), data_torch)]
  1855. return []
  1856. @ModelBase.register("Mistral3ForConditionalGeneration")
  1857. class Mistral3Model(LlamaModel):
  1858. model_arch = gguf.MODEL_ARCH.LLAMA
  1859. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1860. name = name.replace("language_model.", "")
  1861. if "multi_modal_projector" in name or "vision_tower" in name:
  1862. return []
  1863. return super().modify_tensors(data_torch, name, bid)
  1864. @ModelBase.register("DeciLMForCausalLM")
  1865. class DeciModel(TextModel):
  1866. model_arch = gguf.MODEL_ARCH.DECI
  1867. @staticmethod
  1868. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1869. # DeciLM-specific code
  1870. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1871. return DeciModel._find_multiple(intermediate_size, 256)
  1872. @staticmethod
  1873. def _find_multiple(n: int, k: int) -> int:
  1874. # DeciLM-specific code
  1875. if n % k == 0:
  1876. return n
  1877. return n + k - (n % k)
  1878. def __init__(self, *args, **kwargs):
  1879. super().__init__(*args, **kwargs)
  1880. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1881. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1882. assert self.block_count == len(_block_configs)
  1883. self._num_kv_heads = list()
  1884. self._num_heads = list()
  1885. _ffn_multipliers = list()
  1886. # ***linear attention layer***
  1887. # if n_heads_in_group is None and replace_with_linear is True
  1888. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1889. # ***attention-free layer***
  1890. # if n_heads_in_group is None and replace_with_linear is False
  1891. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1892. # ***normal attention-layer***
  1893. # if n_heads_in_group is not None, then
  1894. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1895. # _num_heads[il] is num_attention_head
  1896. # ***dummy layer*** for nemotron 253B
  1897. # if n_heads_in_group is None and ffn_mult is None
  1898. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1899. for il in range(len(_block_configs)):
  1900. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1901. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1902. self._num_kv_heads.append(0)
  1903. self._num_heads.append(self.hparams["num_attention_heads"])
  1904. else:
  1905. self._num_kv_heads.append(0)
  1906. self._num_heads.append(0)
  1907. else:
  1908. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1909. self._num_heads.append(self.hparams["num_attention_heads"])
  1910. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1911. _ffn_multipliers.append(0.0)
  1912. else:
  1913. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1914. assert self.block_count == len(self._num_kv_heads)
  1915. assert self.block_count == len(self._num_heads)
  1916. assert self.block_count == len(_ffn_multipliers)
  1917. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1918. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1919. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1920. self._ffn_dims: list[int] = [
  1921. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1922. for multiplier in _ffn_multipliers
  1923. ]
  1924. def set_vocab(self):
  1925. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1926. # eos_token from '|eot_id|' to '|end_of_text|'
  1927. if self.hparams.get("vocab_size", 128256) == 128256:
  1928. tokens, toktypes, tokpre = self.get_vocab_base()
  1929. self.gguf_writer.add_tokenizer_model("gpt2")
  1930. self.gguf_writer.add_tokenizer_pre(tokpre)
  1931. self.gguf_writer.add_token_list(tokens)
  1932. self.gguf_writer.add_token_types(toktypes)
  1933. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1934. special_vocab.add_to_gguf(self.gguf_writer)
  1935. else:
  1936. # DeciLM-7B
  1937. self._set_vocab_llama_hf()
  1938. def set_gguf_parameters(self):
  1939. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1940. assert self.block_count == len(self._num_kv_heads)
  1941. assert self.block_count == len(self._num_heads)
  1942. assert self.block_count == len(self._ffn_dims)
  1943. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1944. self.gguf_writer.add_rope_freq_base(rope_theta)
  1945. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1946. self.gguf_writer.add_head_count(self._num_heads)
  1947. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1948. self.gguf_writer.add_block_count(self.block_count)
  1949. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1950. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1951. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1952. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1953. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1954. self.gguf_writer.add_file_type(self.ftype)
  1955. else: # DeciLM-7B
  1956. super().set_gguf_parameters()
  1957. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1958. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1959. assert self.block_count == len(self._num_kv_heads)
  1960. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1961. hparams = self.hparams
  1962. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1963. if (rope_dim := hparams.get("head_dim")) is None:
  1964. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1965. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1966. rope_scaling = self.hparams.get("rope_scaling") or {}
  1967. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1968. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1969. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1970. @staticmethod
  1971. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1972. if n_head_kv is not None and n_head != n_head_kv:
  1973. n_head = n_head_kv
  1974. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1975. .swapaxes(1, 2)
  1976. .reshape(weights.shape))
  1977. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1978. n_head = self.hparams["num_attention_heads"]
  1979. if bid is not None:
  1980. if "num_key_value_heads_per_layer" in self.hparams:
  1981. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1982. elif "block_configs" in self.hparams:
  1983. n_kv_head = self._num_kv_heads[bid]
  1984. n_head = self._num_heads[bid]
  1985. else:
  1986. n_kv_head = self.hparams.get("num_key_value_heads")
  1987. else:
  1988. n_kv_head = self.hparams.get("num_key_value_heads")
  1989. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1990. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1991. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1992. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1993. return [(self.map_tensor_name(name), data_torch)]
  1994. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1995. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1996. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1997. base = self.hparams.get("rope_theta", 10000.0)
  1998. if (dim := self.hparams.get("head_dim")) is None:
  1999. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2000. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2001. factor = rope_scaling.get("factor", 8.0)
  2002. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2003. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2004. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2005. low_freq_wavelen = old_context_len / low_freq_factor
  2006. high_freq_wavelen = old_context_len / high_freq_factor
  2007. assert low_freq_wavelen != high_freq_wavelen
  2008. rope_factors = []
  2009. for freq in freqs:
  2010. wavelen = 2 * math.pi / freq
  2011. if wavelen < high_freq_wavelen:
  2012. rope_factors.append(1)
  2013. elif wavelen > low_freq_wavelen:
  2014. rope_factors.append(factor)
  2015. else:
  2016. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2017. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2018. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2019. def prepare_tensors(self):
  2020. super().prepare_tensors()
  2021. @ModelBase.register("BitnetForCausalLM")
  2022. class BitnetModel(TextModel):
  2023. model_arch = gguf.MODEL_ARCH.BITNET
  2024. def set_vocab(self):
  2025. self._set_vocab_sentencepiece()
  2026. def set_gguf_parameters(self):
  2027. super().set_gguf_parameters()
  2028. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2029. self.gguf_writer.add_rope_scaling_factor(1.0)
  2030. def weight_quant(self, weight: Tensor) -> Tensor:
  2031. dtype = weight.dtype
  2032. weight = weight.float()
  2033. scale = weight.abs().mean().clamp(min=1e-5)
  2034. iscale = 1 / scale
  2035. # TODO: multiply by the scale directly instead of inverting it twice
  2036. # (this is also unnecessarily doubly inverted upstream)
  2037. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2038. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2039. return result.type(dtype)
  2040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2041. new_name = self.map_tensor_name(name)
  2042. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2043. gguf.MODEL_TENSOR.ATTN_Q,
  2044. gguf.MODEL_TENSOR.ATTN_K,
  2045. gguf.MODEL_TENSOR.ATTN_V,
  2046. gguf.MODEL_TENSOR.ATTN_OUT,
  2047. gguf.MODEL_TENSOR.FFN_UP,
  2048. gguf.MODEL_TENSOR.FFN_DOWN,
  2049. gguf.MODEL_TENSOR.FFN_GATE,
  2050. ]):
  2051. # transform weight into 1/0/-1 (in fp32)
  2052. data_torch = self.weight_quant(data_torch)
  2053. yield (new_name, data_torch)
  2054. @ModelBase.register("GrokForCausalLM")
  2055. class GrokModel(TextModel):
  2056. model_arch = gguf.MODEL_ARCH.GROK
  2057. def set_vocab(self):
  2058. self._set_vocab_sentencepiece()
  2059. def __init__(self, *args, **kwargs):
  2060. super().__init__(*args, **kwargs)
  2061. def set_gguf_parameters(self):
  2062. super().set_gguf_parameters()
  2063. _experts: list[dict[str, Tensor]] | None = None
  2064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2065. # process the experts separately
  2066. if name.find(".moe.") != -1:
  2067. n_experts = self.hparams["num_local_experts"]
  2068. assert bid is not None
  2069. if self._experts is None:
  2070. self._experts = [{} for _ in range(self.block_count)]
  2071. self._experts[bid][name] = data_torch
  2072. if len(self._experts[bid]) >= n_experts * 3:
  2073. tensors: list[tuple[str, Tensor]] = []
  2074. # merge the experts into a single 3d tensor
  2075. for wid in ["linear", "linear_1", "linear_v"]:
  2076. datas: list[Tensor] = []
  2077. for xid in range(n_experts):
  2078. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2079. datas.append(self._experts[bid][ename])
  2080. del self._experts[bid][ename]
  2081. data_torch = torch.stack(datas, dim=0)
  2082. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2083. new_name = self.map_tensor_name(merged_name)
  2084. tensors.append((new_name, data_torch))
  2085. return tensors
  2086. else:
  2087. return []
  2088. return [(self.map_tensor_name(name), data_torch)]
  2089. @ModelBase.register("DbrxForCausalLM")
  2090. class DbrxModel(TextModel):
  2091. model_arch = gguf.MODEL_ARCH.DBRX
  2092. def set_gguf_parameters(self):
  2093. ffn_config = self.hparams["ffn_config"]
  2094. attn_config = self.hparams["attn_config"]
  2095. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2096. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2097. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2098. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2099. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2100. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2101. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2102. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2103. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2104. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2105. self.gguf_writer.add_layer_norm_eps(1e-5)
  2106. self.gguf_writer.add_file_type(self.ftype)
  2107. logger.info(f"gguf: file type = {self.ftype}")
  2108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2109. del bid # unused
  2110. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2111. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2112. n_embd = self.hparams["d_model"]
  2113. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2114. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2115. # But llama.cpp moe graph works differently
  2116. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2117. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2118. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2119. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2120. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2121. experts = False
  2122. for exp_tensor_name in exp_tensor_names.keys():
  2123. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2124. experts = True
  2125. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2126. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2127. data_torch = data_torch.permute(*permute_tensor)
  2128. break
  2129. # map tensor names
  2130. # In MoE models the ffn tensors are typically most of the model weights,
  2131. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2132. # Every other model has the weight names ending in .weight,
  2133. # let's assume that is the convention which is not the case for dbrx:
  2134. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2135. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2136. return [(new_name, data_torch)]
  2137. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2138. del name, new_name, bid # unused
  2139. return n_dims > 1
  2140. @ModelBase.register("MiniCPMForCausalLM")
  2141. class MiniCPMModel(TextModel):
  2142. model_arch = gguf.MODEL_ARCH.MINICPM
  2143. def set_gguf_parameters(self):
  2144. super().set_gguf_parameters()
  2145. embedding_scale = float(self.hparams["scale_emb"])
  2146. self.gguf_writer.add_embedding_scale(embedding_scale)
  2147. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2148. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2149. self.gguf_writer.add_residual_scale(residual_scale)
  2150. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2151. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2152. self.gguf_writer.add_logit_scale(logit_scale)
  2153. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2154. rope_scaling = self.hparams.get("rope_scaling") or {}
  2155. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2156. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2157. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2158. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2159. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2160. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2161. if rope_scaling is not None:
  2162. long_factors = rope_scaling.get('long_factor', None)
  2163. short_factors = rope_scaling.get('short_factor', None)
  2164. if long_factors is None or short_factors is None:
  2165. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2166. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2167. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2168. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2169. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2170. def set_vocab(self):
  2171. self._set_vocab_sentencepiece()
  2172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2173. del bid # unused
  2174. n_head = self.hparams["num_attention_heads"]
  2175. n_kv_head = self.hparams.get("num_key_value_heads")
  2176. # HF models permute some of the tensors, so we need to undo that
  2177. if name.endswith(("q_proj.weight")):
  2178. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2179. if name.endswith(("k_proj.weight")):
  2180. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2181. return [(self.map_tensor_name(name), data_torch)]
  2182. @ModelBase.register("MiniCPM3ForCausalLM")
  2183. class MiniCPM3Model(TextModel):
  2184. model_arch = gguf.MODEL_ARCH.MINICPM3
  2185. def set_gguf_parameters(self):
  2186. hparams = self.hparams
  2187. self.gguf_writer.add_file_type(self.ftype)
  2188. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2189. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2190. self.gguf_writer.add_block_count(self.block_count)
  2191. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2192. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2193. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2194. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2195. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2196. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2197. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2198. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2199. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2200. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2201. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2202. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2203. if rope_scaling is not None:
  2204. rope_dims = self.hparams["qk_rope_head_dim"]
  2205. long_factors = rope_scaling.get('long_factor', None)
  2206. short_factors = rope_scaling.get('short_factor', None)
  2207. if long_factors is None or short_factors is None:
  2208. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2209. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2210. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2211. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2212. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2213. def set_vocab(self):
  2214. self._set_vocab_sentencepiece()
  2215. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2216. if n_kv_head is not None and n_head != n_kv_head:
  2217. n_head //= n_kv_head
  2218. return (
  2219. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2220. .swapaxes(1, 2)
  2221. .reshape(weights.shape)
  2222. )
  2223. @ModelBase.register("QWenLMHeadModel")
  2224. class QwenModel(TextModel):
  2225. model_arch = gguf.MODEL_ARCH.QWEN
  2226. @staticmethod
  2227. def token_bytes_to_string(b):
  2228. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2229. byte_encoder = bytes_to_unicode()
  2230. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2231. @staticmethod
  2232. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2233. parts = [bytes([b]) for b in token]
  2234. while True:
  2235. min_idx = None
  2236. min_rank = None
  2237. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2238. rank = mergeable_ranks.get(pair[0] + pair[1])
  2239. if rank is not None and (min_rank is None or rank < min_rank):
  2240. min_idx = i
  2241. min_rank = rank
  2242. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2243. break
  2244. assert min_idx is not None
  2245. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2246. return parts
  2247. def set_vocab(self):
  2248. self._set_vocab_qwen()
  2249. def set_gguf_parameters(self):
  2250. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2251. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2252. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2253. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2254. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2255. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2256. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2257. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2258. self.gguf_writer.add_file_type(self.ftype)
  2259. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2260. class Qwen2Model(TextModel):
  2261. model_arch = gguf.MODEL_ARCH.QWEN2
  2262. def set_vocab(self):
  2263. try:
  2264. self._set_vocab_sentencepiece()
  2265. except FileNotFoundError:
  2266. self._set_vocab_gpt2()
  2267. def set_gguf_parameters(self):
  2268. super().set_gguf_parameters()
  2269. self._try_set_pooling_type()
  2270. rope_scaling = self.hparams.get("rope_scaling") or {}
  2271. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2272. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2273. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2274. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2275. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2276. if self.hf_arch == "Qwen2Model":
  2277. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2278. if "language_model." in name:
  2279. name = name.replace("language_model.", "") # for InternVL
  2280. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2281. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2282. # skip vision and audio tensors
  2283. return []
  2284. yield from super().modify_tensors(data_torch, name, bid)
  2285. @ModelBase.register("Ernie4_5_ForCausalLM")
  2286. class Ernie4_5Model(TextModel):
  2287. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2288. def set_vocab(self):
  2289. self._set_vocab_sentencepiece()
  2290. def set_gguf_parameters(self):
  2291. super().set_gguf_parameters()
  2292. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2293. num_heads = self.hparams["num_attention_heads"]
  2294. num_kv_heads = self.hparams["num_key_value_heads"]
  2295. head_dim = self.hparams["head_dim"]
  2296. if "ernie." in name:
  2297. name = name.replace("ernie.", "model.")
  2298. # split the qkv weights
  2299. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2300. if "qkv_proj" in name:
  2301. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2302. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2303. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2304. total_q_dim = num_heads * head_dim
  2305. total_k_dim = num_kv_heads * head_dim
  2306. total_v_dim = num_kv_heads * head_dim
  2307. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2308. return [
  2309. (self.map_tensor_name(name_q), q_proj_weight),
  2310. (self.map_tensor_name(name_k), k_proj_weight),
  2311. (self.map_tensor_name(name_v), v_proj_weight)
  2312. ]
  2313. # split the up_gate_proj into gate and up
  2314. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2315. if "up_gate_proj" in name:
  2316. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2317. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2318. dim_half = data_torch.shape[0] // 2
  2319. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2320. return [
  2321. (self.map_tensor_name(name_gate), gate_proj_weight),
  2322. (self.map_tensor_name(name_up), up_proj_weight)
  2323. ]
  2324. return [(self.map_tensor_name(name), data_torch)]
  2325. @ModelBase.register(
  2326. "Qwen2VLModel",
  2327. "Qwen2VLForConditionalGeneration",
  2328. "Qwen2_5_VLForConditionalGeneration",
  2329. "Qwen2_5OmniModel",
  2330. )
  2331. class Qwen2VLModel(TextModel):
  2332. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2333. def set_gguf_parameters(self):
  2334. super().set_gguf_parameters()
  2335. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2336. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2337. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2338. def set_vocab(self):
  2339. try:
  2340. self._set_vocab_sentencepiece()
  2341. except FileNotFoundError:
  2342. self._set_vocab_gpt2()
  2343. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2344. del bid # unused
  2345. if name.startswith("thinker."):
  2346. name = name.replace("thinker.", "")
  2347. if name.startswith("visual") or name.startswith("audio") or \
  2348. name.startswith("talker") or name.startswith("token2wav"):
  2349. # skip multimodal tensors
  2350. return []
  2351. return [(self.map_tensor_name(name), data_torch)]
  2352. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2353. class Qwen2VLVisionModel(MmprojModel):
  2354. def __init__(self, *args, **kwargs):
  2355. super().__init__(*args, **kwargs)
  2356. assert self.hparams_vision is not None
  2357. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2358. # rename config.json values
  2359. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2360. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2361. if "embed_dim" in self.hparams_vision: # qwen2vl
  2362. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2363. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2364. def set_gguf_parameters(self):
  2365. super().set_gguf_parameters()
  2366. assert self.hparams_vision is not None
  2367. hparams = self.hparams_vision
  2368. model_type = self.global_config['model_type']
  2369. if model_type == 'qwen2_vl':
  2370. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2371. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2372. if model_type == 'qwen2_5_omni':
  2373. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2374. else:
  2375. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2376. self.gguf_writer.add_vision_use_silu(True)
  2377. # find n_wa_pattern (window attention pattern)
  2378. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2379. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2380. n_wa_pattern = fullatt_block_indexes[0] + 1
  2381. # validate n_wa_pattern
  2382. for i in range(1, len(fullatt_block_indexes)):
  2383. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2384. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2385. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2386. else:
  2387. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2388. # default values below are taken from HF tranformers code
  2389. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2390. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2391. del bid, name, n_dims # unused
  2392. if ".patch_embd." in new_name:
  2393. return gguf.GGMLQuantizationType.F16
  2394. if ".position_embd." in new_name:
  2395. return gguf.GGMLQuantizationType.F32
  2396. return False
  2397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2398. del bid # unused
  2399. if name.startswith("visual."):
  2400. # process visual tensors
  2401. # split QKV tensors if needed
  2402. if ".qkv." in name:
  2403. if data_torch.ndim == 2: # weight
  2404. c3, _ = data_torch.shape
  2405. else: # bias
  2406. c3 = data_torch.shape[0]
  2407. assert c3 % 3 == 0
  2408. c = c3 // 3
  2409. wq = data_torch[:c]
  2410. wk = data_torch[c: c * 2]
  2411. wv = data_torch[c * 2:]
  2412. return [
  2413. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2414. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2415. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2416. ]
  2417. elif 'patch_embed.proj.weight' in name:
  2418. # split Conv3D into Conv2Ds
  2419. c1, c2, kt, kh, kw = data_torch.shape
  2420. del c1, c2, kh, kw # unused
  2421. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2422. return [
  2423. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2424. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2425. ]
  2426. else:
  2427. return [(self.map_tensor_name(name), data_torch)]
  2428. return [] # skip other tensors
  2429. @ModelBase.register("Qwen2_5OmniModel")
  2430. class Qwen25OmniModel(Qwen2VLVisionModel):
  2431. has_vision_encoder = True
  2432. has_audio_encoder = True
  2433. def __init__(self, *args, **kwargs):
  2434. super().__init__(*args, **kwargs)
  2435. assert self.hparams_audio is not None
  2436. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2437. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2438. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2439. def set_gguf_parameters(self):
  2440. super().set_gguf_parameters()
  2441. assert self.hparams_audio is not None
  2442. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2443. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2444. def get_vision_config(self) -> dict[str, Any] | None:
  2445. return self.global_config["thinker_config"].get("vision_config")
  2446. def get_audio_config(self) -> dict[str, Any] | None:
  2447. return self.global_config["thinker_config"].get("audio_config")
  2448. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2449. # SinusoidsPositionEmbedding
  2450. assert self.hparams_audio is not None
  2451. max_timescale = 10000
  2452. length = 1500
  2453. channels = self.hparams_audio["hidden_size"]
  2454. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2455. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2456. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2457. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2458. yield ("audio_tower.embed_positions.weight", pos_embd)
  2459. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2460. del bid, new_name, n_dims # unused
  2461. if ".conv" in name and ".weight" in name:
  2462. return gguf.GGMLQuantizationType.F16
  2463. return False
  2464. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2465. if name.startswith("thinker."):
  2466. name = name.replace("thinker.", "")
  2467. if name.startswith("audio_tower"):
  2468. # process audio tensors
  2469. if "conv1.bias" in name or "conv2.bias" in name:
  2470. # transpose conv1 and conv2 bias
  2471. data_torch = data_torch.unsqueeze(-1)
  2472. if "audio_bos_eos_token" in name:
  2473. # this tensor is left unused in transformers code
  2474. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2475. return []
  2476. return [(self.map_tensor_name(name), data_torch)]
  2477. return super().modify_tensors(data_torch, name, bid)
  2478. @ModelBase.register("InternVisionModel")
  2479. class InternVisionModel(MmprojModel):
  2480. def set_gguf_parameters(self):
  2481. super().set_gguf_parameters()
  2482. hparams = self.hparams
  2483. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2484. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2485. # hidden_act
  2486. if hparams["hidden_act"] == "silu":
  2487. self.gguf_writer.add_vision_use_silu(True)
  2488. elif hparams["hidden_act"] == "gelu":
  2489. self.gguf_writer.add_vision_use_gelu(True)
  2490. else:
  2491. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2492. # downsample_ratio
  2493. downsample_ratio = self.global_config.get("downsample_ratio")
  2494. assert downsample_ratio is not None
  2495. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2496. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2497. del bid, name, n_dims # unused
  2498. if ".patch_embd." in new_name:
  2499. return gguf.GGMLQuantizationType.F16
  2500. if ".position_embd." in new_name:
  2501. return gguf.GGMLQuantizationType.F32
  2502. return False
  2503. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2504. del bid # unused
  2505. if name.startswith("vision_model") or name.startswith("mlp"):
  2506. # process visual tensors
  2507. # correct name
  2508. if name.startswith("vision_model"):
  2509. name = "vision_tower." + name
  2510. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2511. name += ".weight"
  2512. # split QKV tensors if needed
  2513. if ".qkv." in name:
  2514. if data_torch.ndim == 2: # weight
  2515. c3, _ = data_torch.shape
  2516. else: # bias
  2517. c3 = data_torch.shape[0]
  2518. assert c3 % 3 == 0
  2519. c = c3 // 3
  2520. wq = data_torch[:c]
  2521. wk = data_torch[c: c * 2]
  2522. wv = data_torch[c * 2:]
  2523. return [
  2524. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2525. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2526. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2527. ]
  2528. return [(self.map_tensor_name(name), data_torch)]
  2529. return [] # skip other tensors
  2530. @ModelBase.register("WavTokenizerDec")
  2531. class WavTokenizerDecModel(TextModel):
  2532. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2533. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2534. del bid # unused
  2535. if \
  2536. name.endswith("codebook.cluster_size") or \
  2537. name.endswith("codebook.embed_avg") or \
  2538. name.endswith("codebook.inited"):
  2539. logger.debug(f"Skipping {name!r}")
  2540. return []
  2541. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2542. return [(self.map_tensor_name(name), data_torch)]
  2543. def set_vocab(self):
  2544. self._set_vocab_none()
  2545. def set_gguf_parameters(self):
  2546. super().set_gguf_parameters()
  2547. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2548. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2549. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2550. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2551. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2552. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2553. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2554. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2555. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2556. self.gguf_writer.add_causal_attention(False)
  2557. @ModelBase.register("Qwen2MoeForCausalLM")
  2558. class Qwen2MoeModel(TextModel):
  2559. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2560. def set_gguf_parameters(self):
  2561. super().set_gguf_parameters()
  2562. if (n_experts := self.hparams.get("num_experts")) is not None:
  2563. self.gguf_writer.add_expert_count(n_experts)
  2564. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2565. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2566. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2567. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2568. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2569. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2570. # YaRN is not enabled by default
  2571. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2572. rope_scaling = self.hparams.get("rope_scaling") or {}
  2573. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2574. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2575. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2576. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2577. _experts: list[dict[str, Tensor]] | None = None
  2578. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2579. # process the experts separately
  2580. if name.find("experts") != -1:
  2581. n_experts = self.hparams["num_experts"]
  2582. assert bid is not None
  2583. if self._experts is None:
  2584. self._experts = [{} for _ in range(self.block_count)]
  2585. self._experts[bid][name] = data_torch
  2586. if len(self._experts[bid]) >= n_experts * 3:
  2587. tensors: list[tuple[str, Tensor]] = []
  2588. # merge the experts into a single 3d tensor
  2589. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2590. datas: list[Tensor] = []
  2591. for xid in range(n_experts):
  2592. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2593. datas.append(self._experts[bid][ename])
  2594. del self._experts[bid][ename]
  2595. data_torch = torch.stack(datas, dim=0)
  2596. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2597. new_name = self.map_tensor_name(merged_name)
  2598. tensors.append((new_name, data_torch))
  2599. return tensors
  2600. else:
  2601. return []
  2602. return [(self.map_tensor_name(name), data_torch)]
  2603. def prepare_tensors(self):
  2604. super().prepare_tensors()
  2605. if self._experts is not None:
  2606. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2607. experts = [k for d in self._experts for k in d.keys()]
  2608. if len(experts) > 0:
  2609. raise ValueError(f"Unprocessed experts: {experts}")
  2610. @ModelBase.register("Qwen3ForCausalLM")
  2611. class Qwen3Model(Qwen2Model):
  2612. model_arch = gguf.MODEL_ARCH.QWEN3
  2613. @ModelBase.register("Qwen3MoeForCausalLM")
  2614. class Qwen3MoeModel(Qwen2MoeModel):
  2615. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2616. @ModelBase.register("GPT2LMHeadModel")
  2617. class GPT2Model(TextModel):
  2618. model_arch = gguf.MODEL_ARCH.GPT2
  2619. def set_gguf_parameters(self):
  2620. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2621. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2622. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2623. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2624. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2625. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2626. self.gguf_writer.add_file_type(self.ftype)
  2627. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2628. del bid # unused
  2629. tensors: list[tuple[str, Tensor]] = []
  2630. # we don't need these
  2631. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2632. return tensors
  2633. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2634. data_torch = data_torch.transpose(1, 0)
  2635. new_name = self.map_tensor_name(name)
  2636. tensors.append((new_name, data_torch))
  2637. return tensors
  2638. @ModelBase.register("PhiForCausalLM")
  2639. class Phi2Model(TextModel):
  2640. model_arch = gguf.MODEL_ARCH.PHI2
  2641. def set_gguf_parameters(self):
  2642. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2643. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2644. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2645. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2646. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2647. self.gguf_writer.add_embedding_length(n_embd)
  2648. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2649. self.gguf_writer.add_block_count(block_count)
  2650. self.gguf_writer.add_head_count(n_head)
  2651. self.gguf_writer.add_head_count_kv(n_head)
  2652. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2653. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2654. self.gguf_writer.add_file_type(self.ftype)
  2655. self.gguf_writer.add_add_bos_token(False)
  2656. @ModelBase.register("Phi3ForCausalLM")
  2657. class Phi3MiniModel(TextModel):
  2658. model_arch = gguf.MODEL_ARCH.PHI3
  2659. def set_vocab(self):
  2660. # Phi-4 model uses GPT2Tokenizer
  2661. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2662. if tokenizer_config_file.is_file():
  2663. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2664. tokenizer_config_json = json.load(f)
  2665. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2666. if tokenizer_class == 'GPT2Tokenizer':
  2667. return self._set_vocab_gpt2()
  2668. from sentencepiece import SentencePieceProcessor
  2669. tokenizer_path = self.dir_model / 'tokenizer.model'
  2670. if not tokenizer_path.is_file():
  2671. raise ValueError(f'Error: Missing {tokenizer_path}')
  2672. tokenizer = SentencePieceProcessor()
  2673. tokenizer.LoadFromFile(str(tokenizer_path))
  2674. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2675. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2676. scores: list[float] = [-10000.0] * vocab_size
  2677. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2678. for token_id in range(tokenizer.vocab_size()):
  2679. piece = tokenizer.IdToPiece(token_id)
  2680. text = piece.encode("utf-8")
  2681. score = tokenizer.GetScore(token_id)
  2682. toktype = SentencePieceTokenTypes.NORMAL
  2683. if tokenizer.IsUnknown(token_id):
  2684. toktype = SentencePieceTokenTypes.UNKNOWN
  2685. elif tokenizer.IsControl(token_id):
  2686. toktype = SentencePieceTokenTypes.CONTROL
  2687. elif tokenizer.IsUnused(token_id):
  2688. toktype = SentencePieceTokenTypes.UNUSED
  2689. elif tokenizer.IsByte(token_id):
  2690. toktype = SentencePieceTokenTypes.BYTE
  2691. tokens[token_id] = text
  2692. scores[token_id] = score
  2693. toktypes[token_id] = toktype
  2694. added_tokens_file = self.dir_model / 'added_tokens.json'
  2695. if added_tokens_file.is_file():
  2696. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2697. added_tokens_json = json.load(f)
  2698. for key in added_tokens_json:
  2699. token_id = added_tokens_json[key]
  2700. if token_id >= vocab_size:
  2701. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2702. continue
  2703. tokens[token_id] = key.encode("utf-8")
  2704. scores[token_id] = -1000.0
  2705. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2706. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2707. if tokenizer_config_file.is_file():
  2708. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2709. tokenizer_config_json = json.load(f)
  2710. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2711. for token_id, foken_data in added_tokens_decoder.items():
  2712. token_id = int(token_id)
  2713. token = foken_data["content"].encode("utf-8")
  2714. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2715. if tokens[token_id] != token:
  2716. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2717. tokens[token_id] = token
  2718. scores[token_id] = -1000.0
  2719. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2720. if foken_data.get("special"):
  2721. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2722. tokenizer_file = self.dir_model / 'tokenizer.json'
  2723. if tokenizer_file.is_file():
  2724. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2725. tokenizer_json = json.load(f)
  2726. added_tokens = tokenizer_json.get("added_tokens", [])
  2727. for foken_data in added_tokens:
  2728. token_id = int(foken_data["id"])
  2729. token = foken_data["content"].encode("utf-8")
  2730. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2731. if tokens[token_id] != token:
  2732. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2733. tokens[token_id] = token
  2734. scores[token_id] = -1000.0
  2735. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2736. if foken_data.get("special"):
  2737. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2738. self.gguf_writer.add_tokenizer_model("llama")
  2739. self.gguf_writer.add_tokenizer_pre("default")
  2740. self.gguf_writer.add_token_list(tokens)
  2741. self.gguf_writer.add_token_scores(scores)
  2742. self.gguf_writer.add_token_types(toktypes)
  2743. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2744. special_vocab.add_to_gguf(self.gguf_writer)
  2745. def set_gguf_parameters(self):
  2746. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2747. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2748. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2749. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2750. rms_eps = self.find_hparam(["rms_norm_eps"])
  2751. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2752. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2753. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2754. rope_dims = int(rot_pct * n_embd) // n_head
  2755. self.gguf_writer.add_context_length(max_pos_embds)
  2756. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2757. self.gguf_writer.add_embedding_length(n_embd)
  2758. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2759. self.gguf_writer.add_block_count(block_count)
  2760. self.gguf_writer.add_head_count(n_head)
  2761. self.gguf_writer.add_head_count_kv(n_head_kv)
  2762. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2763. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2764. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2765. self.gguf_writer.add_file_type(self.ftype)
  2766. sliding_window = self.hparams.get("sliding_window")
  2767. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2768. if sliding_window is None:
  2769. sliding_window = 0
  2770. self.gguf_writer.add_sliding_window(sliding_window)
  2771. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2772. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2773. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2774. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2775. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2776. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2777. rope_dims = int(rot_pct * n_embd) // n_head
  2778. # write rope scaling for long context (128k) model
  2779. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2780. if rope_scaling is None:
  2781. return
  2782. scale = max_pos_embds / orig_max_pos_embds
  2783. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2784. if len(rope_scaling_type) == 0:
  2785. raise KeyError('Missing the required key rope_scaling.type')
  2786. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2787. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2788. elif rope_scaling_type == 'yarn':
  2789. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2790. else:
  2791. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2792. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2793. long_factors = rope_scaling.get('long_factor', None)
  2794. short_factors = rope_scaling.get('short_factor', None)
  2795. if long_factors is None or short_factors is None:
  2796. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2797. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2798. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2799. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2800. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2801. @ModelBase.register("PhiMoEForCausalLM")
  2802. class PhiMoeModel(Phi3MiniModel):
  2803. model_arch = gguf.MODEL_ARCH.PHIMOE
  2804. _experts: list[dict[str, Tensor]] | None = None
  2805. def set_gguf_parameters(self):
  2806. super().set_gguf_parameters()
  2807. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2808. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2810. # process the experts separately
  2811. if name.find("block_sparse_moe.experts") != -1:
  2812. n_experts = self.hparams["num_local_experts"]
  2813. assert bid is not None
  2814. if self._experts is None:
  2815. self._experts = [{} for _ in range(self.block_count)]
  2816. self._experts[bid][name] = data_torch
  2817. if len(self._experts[bid]) >= n_experts * 3:
  2818. tensors: list[tuple[str, Tensor]] = []
  2819. # merge the experts into a single 3d tensor
  2820. for w_name in ["w1", "w2", "w3"]:
  2821. datas: list[Tensor] = []
  2822. for xid in range(n_experts):
  2823. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2824. datas.append(self._experts[bid][ename])
  2825. del self._experts[bid][ename]
  2826. data_torch = torch.stack(datas, dim=0)
  2827. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2828. new_name = self.map_tensor_name(merged_name)
  2829. tensors.append((new_name, data_torch))
  2830. return tensors
  2831. else:
  2832. return []
  2833. return [(self.map_tensor_name(name), data_torch)]
  2834. def prepare_tensors(self):
  2835. super().prepare_tensors()
  2836. if self._experts is not None:
  2837. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2838. experts = [k for d in self._experts for k in d.keys()]
  2839. if len(experts) > 0:
  2840. raise ValueError(f"Unprocessed experts: {experts}")
  2841. @ModelBase.register("PlamoForCausalLM")
  2842. class PlamoModel(TextModel):
  2843. model_arch = gguf.MODEL_ARCH.PLAMO
  2844. def set_vocab(self):
  2845. self._set_vocab_sentencepiece()
  2846. def set_gguf_parameters(self):
  2847. hparams = self.hparams
  2848. block_count = hparams["num_hidden_layers"]
  2849. self.gguf_writer.add_context_length(4096) # not in config.json
  2850. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2851. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2852. self.gguf_writer.add_block_count(block_count)
  2853. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2854. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2855. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2856. self.gguf_writer.add_file_type(self.ftype)
  2857. def shuffle_attn_q_weight(self, data_torch):
  2858. assert data_torch.size() == (5120, 5120)
  2859. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2860. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2861. data_torch = torch.reshape(data_torch, (5120, 5120))
  2862. return data_torch
  2863. def shuffle_attn_output_weight(self, data_torch):
  2864. assert data_torch.size() == (5120, 5120)
  2865. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2866. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2867. data_torch = torch.reshape(data_torch, (5120, 5120))
  2868. return data_torch
  2869. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2870. del bid # unused
  2871. new_name = self.map_tensor_name(name)
  2872. # shuffle for broadcasting of gqa in ggml_mul_mat
  2873. if new_name.endswith("attn_q.weight"):
  2874. data_torch = self.shuffle_attn_q_weight(data_torch)
  2875. elif new_name.endswith("attn_output.weight"):
  2876. data_torch = self.shuffle_attn_output_weight(data_torch)
  2877. return [(new_name, data_torch)]
  2878. @ModelBase.register("CodeShellForCausalLM")
  2879. class CodeShellModel(TextModel):
  2880. model_arch = gguf.MODEL_ARCH.CODESHELL
  2881. def set_gguf_parameters(self):
  2882. block_count = self.hparams["n_layer"]
  2883. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2884. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2885. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2886. self.gguf_writer.add_block_count(block_count)
  2887. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2888. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2889. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2890. self.gguf_writer.add_file_type(self.ftype)
  2891. self.gguf_writer.add_rope_freq_base(10000.0)
  2892. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2893. self.gguf_writer.add_rope_scaling_factor(1.0)
  2894. _has_tok_embd = False
  2895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2896. del bid # unused
  2897. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2898. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2899. new_name = self.map_tensor_name(name)
  2900. # assuming token_embd.weight is seen before output.weight
  2901. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2902. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2903. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2904. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2905. self.tensor_names.remove("transformer.wte.weight")
  2906. elif new_name == tok_embd_name:
  2907. self._has_tok_embd = True
  2908. return [(new_name, data_torch)]
  2909. @ModelBase.register("InternLM2ForCausalLM")
  2910. class InternLM2Model(TextModel):
  2911. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2912. def set_vocab(self):
  2913. # (TODO): Is there a better way?
  2914. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2915. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2916. # recognized as an empty string in C++.
  2917. from sentencepiece import SentencePieceProcessor
  2918. from sentencepiece import sentencepiece_model_pb2 as model
  2919. tokenizer_path = self.dir_model / 'tokenizer.model'
  2920. tokens: list[bytes] = []
  2921. scores: list[float] = []
  2922. toktypes: list[int] = []
  2923. if not tokenizer_path.is_file():
  2924. logger.error(f'Error: Missing {tokenizer_path}')
  2925. sys.exit(1)
  2926. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2927. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2928. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2929. tokenizer = SentencePieceProcessor()
  2930. tokenizer.LoadFromFile(str(tokenizer_path))
  2931. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2932. for token_id in range(vocab_size):
  2933. piece = tokenizer.IdToPiece(token_id)
  2934. text = piece.encode("utf-8")
  2935. score = tokenizer.GetScore(token_id)
  2936. if text == b"\x00":
  2937. # (TODO): fixme
  2938. # Hack here and replace the \x00 characters.
  2939. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2940. text = "🐉".encode("utf-8")
  2941. toktype = SentencePieceTokenTypes.NORMAL
  2942. if tokenizer.IsUnknown(token_id):
  2943. toktype = SentencePieceTokenTypes.UNKNOWN
  2944. elif tokenizer.IsControl(token_id):
  2945. toktype = SentencePieceTokenTypes.CONTROL
  2946. elif tokenizer.IsUnused(token_id):
  2947. toktype = SentencePieceTokenTypes.UNUSED
  2948. elif tokenizer.IsByte(token_id):
  2949. toktype = SentencePieceTokenTypes.BYTE
  2950. # take care of ununsed raw token
  2951. if piece.startswith('[UNUSED'):
  2952. toktype = SentencePieceTokenTypes.UNUSED
  2953. tokens.append(text)
  2954. scores.append(score)
  2955. toktypes.append(toktype)
  2956. added_tokens_file = self.dir_model / 'added_tokens.json'
  2957. if added_tokens_file.is_file():
  2958. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2959. added_tokens_json = json.load(f)
  2960. for key in added_tokens_json:
  2961. tokens.append(key.encode("utf-8"))
  2962. scores.append(-1000.0)
  2963. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2964. chat_eos_token = '<|im_end|>'
  2965. chat_eos_token_id = None
  2966. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2967. if tokenizer_config_file.is_file():
  2968. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2969. tokenizer_config_json = json.load(f)
  2970. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2971. for token_id, foken_data in added_tokens_decoder.items():
  2972. token_id = int(token_id)
  2973. token = foken_data["content"]
  2974. if token == chat_eos_token:
  2975. chat_eos_token_id = token_id
  2976. token = token.encode("utf-8")
  2977. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2978. if tokens[token_id] != token:
  2979. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2980. tokens[token_id] = token
  2981. scores[token_id] = -1000.0
  2982. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2983. if foken_data.get("special"):
  2984. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2985. tokenizer_file = self.dir_model / 'tokenizer.json'
  2986. if tokenizer_file.is_file():
  2987. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2988. tokenizer_json = json.load(f)
  2989. added_tokens = tokenizer_json.get("added_tokens", [])
  2990. for foken_data in added_tokens:
  2991. token_id = int(foken_data["id"])
  2992. token = foken_data["content"]
  2993. if token == chat_eos_token:
  2994. chat_eos_token_id = token_id
  2995. token = token.encode("utf-8")
  2996. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2997. if tokens[token_id] != token:
  2998. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2999. tokens[token_id] = token
  3000. scores[token_id] = -1000.0
  3001. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3002. if foken_data.get("special"):
  3003. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3004. self.gguf_writer.add_tokenizer_model("llama")
  3005. self.gguf_writer.add_tokenizer_pre("default")
  3006. self.gguf_writer.add_token_list(tokens)
  3007. self.gguf_writer.add_token_scores(scores)
  3008. self.gguf_writer.add_token_types(toktypes)
  3009. self.gguf_writer.add_add_space_prefix(add_prefix)
  3010. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3011. old_eos = special_vocab.special_token_ids["eos"]
  3012. if chat_eos_token_id is not None:
  3013. # For the chat model, we replace the eos with '<|im_end|>'.
  3014. # TODO: this is a hack, should be fixed
  3015. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3016. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3017. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3018. " in chat mode so that the conversation can end normally.")
  3019. special_vocab.add_to_gguf(self.gguf_writer)
  3020. def set_gguf_parameters(self):
  3021. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3022. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3023. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3024. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3025. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3026. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3027. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3028. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3029. self.gguf_writer.add_file_type(self.ftype)
  3030. rope_scaling = self.hparams.get("rope_scaling") or {}
  3031. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3032. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3033. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3034. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3035. num_heads = self.hparams["num_attention_heads"]
  3036. num_kv_heads = self.hparams["num_key_value_heads"]
  3037. n_embd = self.hparams["hidden_size"]
  3038. q_per_kv = num_heads // num_kv_heads
  3039. head_dim = n_embd // num_heads
  3040. num_groups = num_heads // q_per_kv
  3041. name = name.replace("language_model.", "") # InternVL
  3042. if name.startswith("mlp") or name.startswith("vision_model"):
  3043. # skip visual tensors
  3044. return []
  3045. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3046. qkv = data_torch
  3047. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3048. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3049. # The model weights of q and k equire additional reshape.
  3050. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3051. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3052. v = v.reshape((-1, v.shape[-1]))
  3053. return [
  3054. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3055. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3056. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3057. ]
  3058. else:
  3059. return [(self.map_tensor_name(name), data_torch)]
  3060. @ModelBase.register("InternLM3ForCausalLM")
  3061. class InternLM3Model(TextModel):
  3062. model_arch = gguf.MODEL_ARCH.LLAMA
  3063. def set_vocab(self):
  3064. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3065. self.gguf_writer.add_tokenizer_model("llama")
  3066. self.gguf_writer.add_tokenizer_pre("default")
  3067. self.gguf_writer.add_token_list(tokens)
  3068. self.gguf_writer.add_token_scores(scores)
  3069. self.gguf_writer.add_token_types(toktypes)
  3070. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3071. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3072. if tokenizer_config_file.is_file():
  3073. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3074. tokenizer_config_json = json.load(f)
  3075. if "add_prefix_space" in tokenizer_config_json:
  3076. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3077. if "added_tokens_decoder" in tokenizer_config_json:
  3078. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3079. if token_data.get("special"):
  3080. token_id = int(token_id)
  3081. token = token_data["content"]
  3082. special_vocab._set_special_token(token, token_id)
  3083. # update eos token
  3084. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3085. special_vocab.special_token_ids["eos"] = token_id
  3086. special_vocab.add_to_gguf(self.gguf_writer)
  3087. def set_gguf_parameters(self):
  3088. super().set_gguf_parameters()
  3089. hparams = self.hparams
  3090. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3091. if (rope_dim := hparams.get("head_dim")) is None:
  3092. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3093. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3094. rope_scaling = self.hparams.get("rope_scaling") or {}
  3095. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3096. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3097. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3098. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3099. n_head = self.hparams["num_attention_heads"]
  3100. n_kv_head = self.hparams.get("num_key_value_heads")
  3101. name = name.replace("language_model.", "") # InternVL
  3102. if name.startswith("mlp") or name.startswith("vision_model"):
  3103. # skip visual tensors
  3104. return []
  3105. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3106. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3107. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3108. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3109. return [(self.map_tensor_name(name), data_torch)]
  3110. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3111. class BertModel(TextModel):
  3112. model_arch = gguf.MODEL_ARCH.BERT
  3113. def __init__(self, *args, **kwargs):
  3114. super().__init__(*args, **kwargs)
  3115. self.vocab_size = None
  3116. if cls_out_labels := self.hparams.get("id2label"):
  3117. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3118. # Remove dummy labels added by AutoConfig
  3119. cls_out_labels = None
  3120. self.cls_out_labels = cls_out_labels
  3121. def set_gguf_parameters(self):
  3122. super().set_gguf_parameters()
  3123. self.gguf_writer.add_causal_attention(False)
  3124. self._try_set_pooling_type()
  3125. if self.cls_out_labels:
  3126. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3127. def set_vocab(self):
  3128. tokens, toktypes, tokpre = self.get_vocab_base()
  3129. self.vocab_size = len(tokens)
  3130. # we need this to validate the size of the token_type embeddings
  3131. # though currently we are passing all zeros to the token_type embeddings
  3132. # "Sequence A" or "Sequence B"
  3133. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3134. # convert to phantom space vocab
  3135. def phantom(tok):
  3136. if tok.startswith("[") and tok.endswith("]"):
  3137. return tok
  3138. if tok.startswith("##"):
  3139. return tok[2:]
  3140. return "\u2581" + tok
  3141. tokens = list(map(phantom, tokens))
  3142. # add vocab to gguf
  3143. self.gguf_writer.add_tokenizer_model("bert")
  3144. self.gguf_writer.add_tokenizer_pre(tokpre)
  3145. self.gguf_writer.add_token_list(tokens)
  3146. self.gguf_writer.add_token_types(toktypes)
  3147. # handle special tokens
  3148. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3149. special_vocab.add_to_gguf(self.gguf_writer)
  3150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3151. del bid # unused
  3152. if name.startswith("bert."):
  3153. name = name[5:]
  3154. if name.endswith(".gamma"):
  3155. name = name[:-6] + ".weight"
  3156. if name.endswith(".beta"):
  3157. name = name[:-5] + ".bias"
  3158. # we are only using BERT for embeddings so we don't need the pooling layer
  3159. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3160. return [] # we don't need these
  3161. if name.startswith("cls.predictions"):
  3162. return []
  3163. if name.startswith("cls.seq_relationship"):
  3164. return []
  3165. if self.cls_out_labels:
  3166. # For BertForSequenceClassification (direct projection layer)
  3167. if name == "classifier.weight":
  3168. name = "classifier.out_proj.weight"
  3169. if name == "classifier.bias":
  3170. name = "classifier.out_proj.bias"
  3171. return [(self.map_tensor_name(name), data_torch)]
  3172. def _xlmroberta_tokenizer_init(self) -> None:
  3173. # we need the pad_token_id to know how to chop down position_embd matrix
  3174. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3175. self._position_offset = 1 + pad_token_id
  3176. if "max_position_embeddings" in self.hparams:
  3177. self.hparams["max_position_embeddings"] -= self._position_offset
  3178. else:
  3179. self._position_offset = None
  3180. def _xlmroberta_set_vocab(self) -> None:
  3181. # to avoid TypeError: Descriptors cannot be created directly
  3182. # exception when importing sentencepiece_model_pb2
  3183. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3184. from sentencepiece import SentencePieceProcessor
  3185. from sentencepiece import sentencepiece_model_pb2 as model
  3186. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3187. tokenizer_json = {}
  3188. tokenizer_config_json = {}
  3189. if not tokenizer_path.is_file():
  3190. tokenizer_path = self.dir_model / 'tokenizer.json'
  3191. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3192. if not tokenizer_path.is_file():
  3193. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3194. from base64 import b64decode
  3195. from transformers import AutoTokenizer
  3196. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3197. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3198. tokenizer_json = json.load(fp)
  3199. if tokenizer_config_path.is_file():
  3200. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3201. tokenizer_config_json = json.load(fp)
  3202. add_prefix = tokenizer.add_prefix_space
  3203. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3204. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3205. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3206. else:
  3207. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3208. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3209. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3210. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3211. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3212. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3213. tokenizer = SentencePieceProcessor()
  3214. tokenizer.LoadFromFile(str(tokenizer_path))
  3215. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3216. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3217. scores: list[float] = [-10000.0] * vocab_size
  3218. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3219. if isinstance(tokenizer, SentencePieceProcessor):
  3220. for token_id in range(tokenizer.vocab_size()):
  3221. piece = tokenizer.IdToPiece(token_id)
  3222. text = piece.encode("utf-8")
  3223. score = tokenizer.GetScore(token_id)
  3224. toktype = SentencePieceTokenTypes.NORMAL
  3225. if tokenizer.IsUnknown(token_id):
  3226. toktype = SentencePieceTokenTypes.UNKNOWN
  3227. elif tokenizer.IsControl(token_id):
  3228. toktype = SentencePieceTokenTypes.CONTROL
  3229. elif tokenizer.IsUnused(token_id):
  3230. toktype = SentencePieceTokenTypes.UNUSED
  3231. elif tokenizer.IsByte(token_id):
  3232. toktype = SentencePieceTokenTypes.BYTE
  3233. tokens[token_id] = text
  3234. scores[token_id] = score
  3235. toktypes[token_id] = toktype
  3236. else:
  3237. added_vocab = tokenizer.get_added_vocab()
  3238. unk_token = tokenizer_config_json.get("unk_token")
  3239. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3240. for token_id in range(tokenizer.vocab_size):
  3241. piece = tokenizer._convert_id_to_token(token_id)
  3242. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3243. text = piece.encode("utf-8")
  3244. score = tokenizer_json["model"]["vocab"][token_id][1]
  3245. toktype = SentencePieceTokenTypes.NORMAL
  3246. if token_id == unk_token_id:
  3247. toktype = SentencePieceTokenTypes.UNKNOWN
  3248. elif token_id in tokenizer.all_special_ids:
  3249. toktype = SentencePieceTokenTypes.CONTROL
  3250. elif token_id in added_vocab.values():
  3251. toktype = SentencePieceTokenTypes.USER_DEFINED
  3252. # No reliable way to detect this, but jina doesn't have any
  3253. # elif tokenizer.IsByte(token_id):
  3254. # toktype = SentencePieceTokenTypes.BYTE
  3255. tokens[token_id] = text
  3256. scores[token_id] = score
  3257. toktypes[token_id] = toktype
  3258. if isinstance(tokenizer, SentencePieceProcessor):
  3259. # realign tokens (see HF tokenizer code)
  3260. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3261. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3262. toktypes = [
  3263. SentencePieceTokenTypes.CONTROL,
  3264. SentencePieceTokenTypes.CONTROL,
  3265. SentencePieceTokenTypes.CONTROL,
  3266. SentencePieceTokenTypes.UNKNOWN,
  3267. ] + toktypes[3:-1]
  3268. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3269. # Add mask token missing from sentencepiece.bpe.model
  3270. tokens[250001] = b'<mask>'
  3271. scores[250001] = 0.0
  3272. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3273. self.gguf_writer.add_tokenizer_model("t5")
  3274. self.gguf_writer.add_tokenizer_pre("default")
  3275. self.gguf_writer.add_token_list(tokens)
  3276. self.gguf_writer.add_token_scores(scores)
  3277. self.gguf_writer.add_token_types(toktypes)
  3278. self.gguf_writer.add_add_space_prefix(add_prefix)
  3279. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3280. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3281. if precompiled_charsmap:
  3282. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3283. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3284. special_vocab.add_to_gguf(self.gguf_writer)
  3285. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3286. class DistilBertModel(BertModel):
  3287. model_arch = gguf.MODEL_ARCH.BERT
  3288. def set_gguf_parameters(self):
  3289. self.gguf_writer.add_layer_norm_eps(1e-12)
  3290. logger.info("gguf: layer norm epsilon = 1e-12")
  3291. super().set_gguf_parameters()
  3292. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3293. if name.startswith("distilbert."):
  3294. name = name[11:]
  3295. # These layers act as MLM head, so we don't need them
  3296. if name.startswith("vocab_"):
  3297. return []
  3298. return super().modify_tensors(data_torch, name, bid)
  3299. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3300. class RobertaModel(BertModel):
  3301. model_arch = gguf.MODEL_ARCH.BERT
  3302. def __init__(self, *args, **kwargs):
  3303. super().__init__(*args, **kwargs)
  3304. # we need the pad_token_id to know how to chop down position_embd matrix
  3305. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3306. self._position_offset = 1 + pad_token_id
  3307. if "max_position_embeddings" in self.hparams:
  3308. self.hparams["max_position_embeddings"] -= self._position_offset
  3309. else:
  3310. self._position_offset = None
  3311. def set_vocab(self):
  3312. """Support BPE tokenizers for roberta models"""
  3313. bpe_tok_path = self.dir_model / "tokenizer.json"
  3314. if bpe_tok_path.exists():
  3315. self._set_vocab_gpt2()
  3316. # we need this to validate the size of the token_type embeddings
  3317. # though currently we are passing all zeros to the token_type embeddings
  3318. # "Sequence A" or "Sequence B"
  3319. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3320. else:
  3321. return super().set_vocab()
  3322. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3323. # if name starts with "roberta.", remove the prefix
  3324. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3325. if name.startswith("roberta."):
  3326. name = name[8:]
  3327. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3328. if name == "embeddings.position_embeddings.weight":
  3329. if self._position_offset is not None:
  3330. data_torch = data_torch[self._position_offset:,:]
  3331. return super().modify_tensors(data_torch, name, bid)
  3332. @ModelBase.register("NomicBertModel")
  3333. class NomicBertModel(BertModel):
  3334. model_arch = gguf.MODEL_ARCH.BERT
  3335. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3336. hparams = kwargs.pop("hparams", None)
  3337. if hparams is None:
  3338. hparams = ModelBase.load_hparams(dir_model)
  3339. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3340. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3341. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3342. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3343. if self._tokenizer_is_xlmroberta:
  3344. self._xlmroberta_tokenizer_init()
  3345. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3346. if npos == 8192 and mtp == 2048:
  3347. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3348. elif npos == 2048 and mtp == 2048:
  3349. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3350. else:
  3351. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3352. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3353. # this doesn't do anything in the HF version
  3354. assert self.hparams["causal"] is False
  3355. # no bias tensors unless MoE
  3356. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3357. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3358. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3359. # norm at end of layer
  3360. assert self.hparams["prenorm"] is False
  3361. # standard RoPE
  3362. assert self.hparams["rotary_emb_fraction"] == 1.0
  3363. assert self.hparams["rotary_emb_interleaved"] is False
  3364. assert self.hparams["rotary_emb_scale_base"] is None
  3365. def set_vocab(self) -> None:
  3366. if self._tokenizer_is_xlmroberta:
  3367. return self._xlmroberta_set_vocab()
  3368. return super().set_vocab()
  3369. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3370. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3371. if "mlp.experts.bias" in name:
  3372. return [] # Explicitly return an empty list.
  3373. if "mlp.experts.mlp.w1" in name:
  3374. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3375. name += ".weight"
  3376. if "mlp.experts.mlp.w2" in name:
  3377. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3378. data_torch = data_torch.transpose(1, 2)
  3379. name += ".weight"
  3380. return [(self.map_tensor_name(name), data_torch)]
  3381. def set_gguf_parameters(self):
  3382. super().set_gguf_parameters()
  3383. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3384. if self.is_moe:
  3385. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3386. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3387. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3388. def _is_tokenizer_xlmroberta(self) -> bool:
  3389. with open(self.dir_model / "tokenizer.json") as f:
  3390. tokenizer_json = json.load(f)
  3391. toktyp = tokenizer_json["model"]["type"]
  3392. if toktyp == "Unigram":
  3393. return True
  3394. if toktyp == "WordPiece":
  3395. return False
  3396. raise ValueError(f"unknown tokenizer: {toktyp}")
  3397. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3398. class NeoBert(BertModel):
  3399. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3400. def set_gguf_parameters(self):
  3401. super().set_gguf_parameters()
  3402. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3403. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3404. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3405. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3406. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3407. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3408. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3409. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3410. def modify_tensors(self, data_torch, name, bid):
  3411. if name.startswith("decoder."):
  3412. return []
  3413. if name.startswith("model."):
  3414. name = name[6:]
  3415. return super().modify_tensors(data_torch, name, bid)
  3416. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3417. class XLMRobertaModel(BertModel):
  3418. model_arch = gguf.MODEL_ARCH.BERT
  3419. def __init__(self, *args, **kwargs):
  3420. super().__init__(*args, **kwargs)
  3421. self._xlmroberta_tokenizer_init()
  3422. def set_vocab(self):
  3423. self._xlmroberta_set_vocab()
  3424. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3425. # if name starts with "roberta.", remove the prefix
  3426. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3427. if name.startswith("roberta."):
  3428. name = name[8:]
  3429. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3430. if name == "embeddings.position_embeddings.weight":
  3431. if self._position_offset is not None:
  3432. data_torch = data_torch[self._position_offset:,:]
  3433. return super().modify_tensors(data_torch, name, bid)
  3434. @ModelBase.register("GemmaForCausalLM")
  3435. class GemmaModel(TextModel):
  3436. model_arch = gguf.MODEL_ARCH.GEMMA
  3437. def set_vocab(self):
  3438. self._set_vocab_sentencepiece()
  3439. # TODO: these special tokens should be exported only for the CodeGemma family
  3440. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3441. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3442. special_vocab._set_special_token("prefix", 67)
  3443. special_vocab._set_special_token("suffix", 69)
  3444. special_vocab._set_special_token("middle", 68)
  3445. special_vocab._set_special_token("fsep", 70)
  3446. special_vocab._set_special_token("eot", 107)
  3447. special_vocab.chat_template = None # do not add it twice
  3448. special_vocab.add_to_gguf(self.gguf_writer)
  3449. self.gguf_writer.add_add_space_prefix(False)
  3450. def set_gguf_parameters(self):
  3451. hparams = self.hparams
  3452. block_count = hparams["num_hidden_layers"]
  3453. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3454. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3455. self.gguf_writer.add_block_count(block_count)
  3456. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3457. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3458. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3459. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3460. self.gguf_writer.add_key_length(hparams["head_dim"])
  3461. self.gguf_writer.add_value_length(hparams["head_dim"])
  3462. self.gguf_writer.add_file_type(self.ftype)
  3463. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3464. del bid # unused
  3465. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3466. # To prevent errors, skip loading lm_head.weight.
  3467. if name == "lm_head.weight":
  3468. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3469. return []
  3470. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3471. if name.endswith("norm.weight"):
  3472. data_torch = data_torch + 1
  3473. return [(self.map_tensor_name(name), data_torch)]
  3474. @ModelBase.register("Gemma2ForCausalLM")
  3475. class Gemma2Model(TextModel):
  3476. model_arch = gguf.MODEL_ARCH.GEMMA2
  3477. def set_vocab(self):
  3478. self._set_vocab_sentencepiece()
  3479. self.gguf_writer.add_add_space_prefix(False)
  3480. def set_gguf_parameters(self):
  3481. hparams = self.hparams
  3482. block_count = hparams["num_hidden_layers"]
  3483. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3484. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3485. self.gguf_writer.add_block_count(block_count)
  3486. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3487. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3488. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3489. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3490. self.gguf_writer.add_key_length(hparams["head_dim"])
  3491. self.gguf_writer.add_value_length(hparams["head_dim"])
  3492. self.gguf_writer.add_file_type(self.ftype)
  3493. self.gguf_writer.add_attn_logit_softcapping(
  3494. self.hparams["attn_logit_softcapping"]
  3495. )
  3496. self.gguf_writer.add_final_logit_softcapping(
  3497. self.hparams["final_logit_softcapping"]
  3498. )
  3499. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3500. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3501. del bid # unused
  3502. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3503. # To prevent errors, skip loading lm_head.weight.
  3504. if name == "lm_head.weight":
  3505. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3506. return []
  3507. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3508. if name.endswith("norm.weight"):
  3509. data_torch = data_torch + 1
  3510. return [(self.map_tensor_name(name), data_torch)]
  3511. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3512. class Gemma3Model(TextModel):
  3513. model_arch = gguf.MODEL_ARCH.GEMMA3
  3514. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3515. def set_vocab(self):
  3516. self._set_vocab_sentencepiece()
  3517. self.gguf_writer.add_add_space_prefix(False)
  3518. def set_gguf_parameters(self):
  3519. hparams = self.hparams
  3520. block_count = hparams["num_hidden_layers"]
  3521. # some default values are not specified in the hparams
  3522. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3523. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3524. self.gguf_writer.add_block_count(block_count)
  3525. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3526. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3527. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3528. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3529. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3530. self.gguf_writer.add_file_type(self.ftype)
  3531. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3532. # attn_logit_softcapping is removed in Gemma3
  3533. assert hparams.get("attn_logit_softcapping") is None
  3534. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3535. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3536. if hparams.get("rope_scaling") is not None:
  3537. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3538. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3539. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3540. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3542. del bid # unused
  3543. if "language_model." in name:
  3544. name = name.replace("language_model.", "")
  3545. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3546. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3547. return [] # skip vision tensors
  3548. # remove OOV (out-of-vocabulary) rows in token_embd
  3549. if "embed_tokens.weight" in name:
  3550. vocab = self._create_vocab_sentencepiece()
  3551. tokens = vocab[0]
  3552. data_torch = data_torch[:len(tokens)]
  3553. # ref code in Gemma3RMSNorm
  3554. # output = output * (1.0 + self.weight.float())
  3555. # note: this is not the case on gemma3n
  3556. if name.endswith("norm.weight"):
  3557. data_torch = data_torch + self.norm_shift
  3558. return [(self.map_tensor_name(name), data_torch)]
  3559. @ModelBase.register("Gemma3ForConditionalGeneration")
  3560. class Gemma3VisionModel(MmprojModel):
  3561. def set_gguf_parameters(self):
  3562. super().set_gguf_parameters()
  3563. hparams = self.hparams
  3564. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3565. # default values below are taken from HF tranformers code
  3566. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3567. self.gguf_writer.add_vision_use_gelu(True)
  3568. # calculate proj_scale_factor (used by tinygemma3 test model)
  3569. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3570. n_per_side = int(image_seq_length ** 0.5)
  3571. image_size = self.hparams["image_size"]
  3572. patch_size = self.hparams["patch_size"]
  3573. proj_scale_factor = (image_size // patch_size) // n_per_side
  3574. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3575. # we only need to write this if it's not the default value
  3576. # in this case, we are converting a test model
  3577. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3578. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3579. del bid, new_name, n_dims # unused
  3580. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3581. if "input_projection" in name:
  3582. return gguf.GGMLQuantizationType.F16
  3583. if ".embeddings." in name:
  3584. return gguf.GGMLQuantizationType.F32
  3585. return False
  3586. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3587. del bid # unused
  3588. if "vision_model.head." in name:
  3589. return [] # skip redundant tensors for tinygemma3
  3590. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3591. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3592. # process vision tensors
  3593. name = name.replace("_weight", ".weight")
  3594. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3595. # the other norm values are part of SigLIP model, and they are already correct
  3596. # ref code: Gemma3RMSNorm
  3597. if "soft_emb_norm.weight" in name:
  3598. logger.info(f"Correcting norm value for '{name}'")
  3599. data_torch = data_torch + 1
  3600. return [(self.map_tensor_name(name), data_torch)]
  3601. return [] # skip other tensors
  3602. @ModelBase.register("Gemma3nForConditionalGeneration")
  3603. class Gemma3NModel(Gemma3Model):
  3604. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3605. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3606. _altup_proj: list[Tensor] = []
  3607. _altup_unembd: list[Tensor] = []
  3608. def __init__(self, *args, **kwargs):
  3609. super().__init__(*args, **kwargs)
  3610. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3611. self._altup_proj = [
  3612. torch.Tensor(), # to be replaced
  3613. torch.Tensor(), # to be replaced
  3614. torch.Tensor(), # to be replaced
  3615. ]
  3616. self._altup_unembd = [
  3617. torch.Tensor(), # to be replaced
  3618. torch.Tensor(), # to be replaced
  3619. torch.Tensor(), # to be replaced
  3620. ]
  3621. def set_vocab(self):
  3622. super().set_vocab()
  3623. def set_gguf_parameters(self):
  3624. super().set_gguf_parameters()
  3625. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3626. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3627. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3628. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3629. activation_sparsity_scale = []
  3630. for s in self.hparams["activation_sparsity_pattern"]:
  3631. normal_dist = torch.distributions.normal.Normal(0, 1)
  3632. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3633. activation_sparsity_scale.append(std_multiplier.item())
  3634. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3635. sliding_window_pattern = []
  3636. for t in self.hparams["layer_types"]:
  3637. sliding_window_pattern.append(t == "sliding_attention")
  3638. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3639. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3640. has_all = all(m.numel() > 0 for m in matrices)
  3641. if not has_all:
  3642. return None
  3643. else:
  3644. return torch.stack(matrices, dim=0)
  3645. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3646. if name.endswith("_scale"):
  3647. name = name + ".weight"
  3648. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3649. if "language_model." not in name:
  3650. return [] # skip non-language model tensors
  3651. if "altup_unembed_projections" in name:
  3652. data_torch = data_torch.to(device="cpu")
  3653. if ".0." in name:
  3654. self._altup_unembd[0] = data_torch
  3655. elif ".1." in name:
  3656. self._altup_unembd[1] = data_torch
  3657. elif ".2." in name:
  3658. self._altup_unembd[2] = data_torch
  3659. else:
  3660. raise ValueError(f"Unknown name: {name}")
  3661. out = self._stack_matrices(self._altup_unembd)
  3662. if out is not None:
  3663. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3664. else:
  3665. return []
  3666. if "altup_projections" in name:
  3667. data_torch = data_torch.to(device="cpu")
  3668. if ".0." in name:
  3669. self._altup_proj[0] = data_torch
  3670. elif ".1." in name:
  3671. self._altup_proj[1] = data_torch
  3672. elif ".2." in name:
  3673. self._altup_proj[2] = data_torch
  3674. else:
  3675. raise ValueError(f"Unknown name: {name}")
  3676. out = self._stack_matrices(self._altup_proj)
  3677. if out is not None:
  3678. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3679. else:
  3680. return []
  3681. return super().modify_tensors(data_torch, name, bid)
  3682. @ModelBase.register("Starcoder2ForCausalLM")
  3683. class StarCoder2Model(TextModel):
  3684. model_arch = gguf.MODEL_ARCH.STARCODER2
  3685. @ModelBase.register("Rwkv6ForCausalLM")
  3686. class Rwkv6Model(TextModel):
  3687. model_arch = gguf.MODEL_ARCH.RWKV6
  3688. def set_vocab(self):
  3689. self._set_vocab_rwkv_world()
  3690. def set_gguf_parameters(self):
  3691. block_count = self.hparams["num_hidden_layers"]
  3692. head_size = self.hparams["head_size"]
  3693. hidden_size = self.hparams["hidden_size"]
  3694. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3695. rescale_every_n_layers = self.hparams["rescale_every"]
  3696. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3697. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3698. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3699. # RWKV isn't context limited
  3700. self.gguf_writer.add_context_length(1048576)
  3701. self.gguf_writer.add_embedding_length(hidden_size)
  3702. self.gguf_writer.add_block_count(block_count)
  3703. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3704. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3705. self.gguf_writer.add_wkv_head_size(head_size)
  3706. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3707. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3708. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3709. self.gguf_writer.add_file_type(self.ftype)
  3710. # required by llama.cpp, unused
  3711. self.gguf_writer.add_head_count(0)
  3712. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3714. new_name = self.map_tensor_name(name)
  3715. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3716. new_name += ".weight"
  3717. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3718. data_torch = data_torch.transpose(0, 1)
  3719. if new_name.endswith("time_mix_w2.weight"):
  3720. data_torch = data_torch.permute(0, 2, 1)
  3721. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3722. data_torch = data_torch.squeeze()
  3723. try:
  3724. rescale_every_n_layers = self.hparams["rescale_every"]
  3725. if rescale_every_n_layers > 0:
  3726. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3727. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3728. except KeyError:
  3729. pass
  3730. # concat time_mix_lerp weights to reduce some cpu overhead
  3731. # also reduces the number of tensors in the model
  3732. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3733. try:
  3734. self.lerp_weights[bid][new_name] = data_torch
  3735. except KeyError:
  3736. self.lerp_weights[bid] = {new_name: data_torch}
  3737. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3738. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3739. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3740. yield (new_name, data)
  3741. return
  3742. yield (new_name, data_torch)
  3743. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3744. class RWKV6Qwen2Model(Rwkv6Model):
  3745. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3746. def set_vocab(self):
  3747. try:
  3748. self._set_vocab_sentencepiece()
  3749. except FileNotFoundError:
  3750. self._set_vocab_gpt2()
  3751. def set_gguf_parameters(self):
  3752. block_count = self.hparams["num_hidden_layers"]
  3753. num_attention_heads = self.hparams["num_attention_heads"]
  3754. num_key_value_heads = self.hparams["num_key_value_heads"]
  3755. hidden_size = self.hparams["hidden_size"]
  3756. head_size = hidden_size // num_attention_heads
  3757. rms_norm_eps = self.hparams["rms_norm_eps"]
  3758. intermediate_size = self.hparams["intermediate_size"]
  3759. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3760. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3761. # RWKV isn't context limited
  3762. self.gguf_writer.add_context_length(1048576)
  3763. self.gguf_writer.add_embedding_length(hidden_size)
  3764. self.gguf_writer.add_block_count(block_count)
  3765. self.gguf_writer.add_wkv_head_size(head_size)
  3766. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3767. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3768. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3769. self.gguf_writer.add_file_type(self.ftype)
  3770. # special parameters for time_mixing in RWKV6QWEN2
  3771. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3772. self.gguf_writer.add_token_shift_count(1)
  3773. # RWKV6QWEN2 use grouped key/value like GQA
  3774. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3775. # required by llama.cpp, unused
  3776. self.gguf_writer.add_head_count(0)
  3777. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3778. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3779. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3780. data = data.view(5, -1, data.shape[-1])
  3781. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3782. # permute them here to avoid code changes
  3783. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3784. if "w2" in new_name:
  3785. data = data.view(5, -1, data.shape[-1])
  3786. yield (new_name, data)
  3787. continue
  3788. yield (new_name, data)
  3789. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3790. class Rwkv7Model(TextModel):
  3791. model_arch = gguf.MODEL_ARCH.RWKV7
  3792. def set_vocab(self):
  3793. self._set_vocab_rwkv_world()
  3794. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3795. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3796. def set_gguf_parameters(self):
  3797. block_count = self.hparams["num_hidden_layers"]
  3798. try:
  3799. head_size = self.hparams["head_size"]
  3800. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3801. except KeyError:
  3802. head_size = self.hparams["head_dim"]
  3803. layer_norm_eps = self.hparams["norm_eps"]
  3804. hidden_size = self.hparams["hidden_size"]
  3805. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3806. # ICLR: In-Context-Learning-Rate
  3807. try:
  3808. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3809. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3810. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3811. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3812. except KeyError:
  3813. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3814. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3815. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3816. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3817. # RWKV isn't context limited
  3818. self.gguf_writer.add_context_length(1048576)
  3819. self.gguf_writer.add_embedding_length(hidden_size)
  3820. self.gguf_writer.add_block_count(block_count)
  3821. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3822. self.gguf_writer.add_wkv_head_size(head_size)
  3823. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3824. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3825. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3826. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3827. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3828. self.gguf_writer.add_file_type(self.ftype)
  3829. # required by llama.cpp, unused
  3830. self.gguf_writer.add_head_count(0)
  3831. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3832. lora_needs_transpose: bool = True
  3833. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3834. # unify tensor names here to make life easier
  3835. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3836. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3837. name = name.replace("time_mixer.", "")
  3838. # lora layer names in fla-hub's impl
  3839. if "_lora.lora" in name:
  3840. self.lora_needs_transpose = False
  3841. name = name.replace("_lora.lora.0.weight", "1.weight")
  3842. name = name.replace("_lora.lora.2.weight", "2.weight")
  3843. name = name.replace("_lora.lora.2.bias", "0.weight")
  3844. name = name.replace("feed_forward_norm", "ln2")
  3845. name = name.replace("g_norm", "ln_x")
  3846. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3847. # some models have dummy v0/v1/v2 on first layer while others don't
  3848. # ignore them all since they are not used
  3849. return
  3850. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3851. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3852. if bid is not None and "attention.x_" in name:
  3853. if "attention.x_x" in name:
  3854. # already concatenated
  3855. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3856. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3857. yield (new_name, data)
  3858. else:
  3859. try:
  3860. self.lerp_weights[bid][name] = data_torch
  3861. except KeyError:
  3862. self.lerp_weights[bid] = {name: data_torch}
  3863. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3864. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3865. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3866. yield (new_name, data)
  3867. return
  3868. else:
  3869. data_torch = data_torch.squeeze()
  3870. new_name = self.map_tensor_name(name)
  3871. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3872. new_name += ".weight"
  3873. if self.lora_needs_transpose and any(
  3874. new_name.endswith(t) for t in [
  3875. "time_mix_w1.weight", "time_mix_w2.weight",
  3876. "time_mix_a1.weight", "time_mix_a2.weight",
  3877. "time_mix_v1.weight", "time_mix_v2.weight",
  3878. "time_mix_g1.weight", "time_mix_g2.weight",
  3879. ]
  3880. ):
  3881. data_torch = data_torch.transpose(0, 1)
  3882. if 'r_k' in new_name:
  3883. data_torch = data_torch.flatten()
  3884. if bid == 0 and "time_mix_a" in new_name:
  3885. # dummy v0/v1/v2 on first layer
  3886. # easist way to make llama happy
  3887. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3888. yield (new_name, data_torch)
  3889. @ModelBase.register("RwkvHybridForCausalLM")
  3890. class ARwkv7Model(Rwkv7Model):
  3891. model_arch = gguf.MODEL_ARCH.ARWKV7
  3892. def set_vocab(self):
  3893. try:
  3894. self._set_vocab_sentencepiece()
  3895. except FileNotFoundError:
  3896. self._set_vocab_gpt2()
  3897. def set_gguf_parameters(self):
  3898. block_count = self.hparams["num_hidden_layers"]
  3899. hidden_size = self.hparams["hidden_size"]
  3900. head_size = self.hparams["head_size"]
  3901. rms_norm_eps = self.hparams["rms_norm_eps"]
  3902. intermediate_size = self.hparams["intermediate_size"]
  3903. wkv_has_gate = self.hparams["wkv_has_gate"]
  3904. assert self.hparams["wkv_version"] == 7
  3905. # ICLR: In-Context-Learning-Rate
  3906. lora_rank_decay = 64
  3907. lora_rank_iclr = 64
  3908. lora_rank_value_residual_mix = 32
  3909. lora_rank_gate = 128 if wkv_has_gate else 0
  3910. # RWKV isn't context limited
  3911. self.gguf_writer.add_context_length(1048576)
  3912. self.gguf_writer.add_embedding_length(hidden_size)
  3913. self.gguf_writer.add_block_count(block_count)
  3914. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3915. self.gguf_writer.add_wkv_head_size(head_size)
  3916. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3917. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3918. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3919. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3920. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3921. self.gguf_writer.add_file_type(self.ftype)
  3922. self.gguf_writer.add_token_shift_count(1)
  3923. # required by llama.cpp, unused
  3924. self.gguf_writer.add_head_count(0)
  3925. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3926. class MambaModel(TextModel):
  3927. model_arch = gguf.MODEL_ARCH.MAMBA
  3928. def __init__(self, dir_model: Path, *args, **kwargs):
  3929. # Avoid using AutoConfig for hparams
  3930. hparams = kwargs.pop("hparams", None)
  3931. if hparams is None:
  3932. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  3933. hparams = json.load(f)
  3934. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  3935. def set_vocab(self):
  3936. vocab_size = self.hparams["vocab_size"]
  3937. # Round vocab size to next multiple of 8
  3938. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3939. # pad using ceiling division
  3940. # ref: https://stackoverflow.com/a/17511341/22827863
  3941. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3942. self.hparams["vocab_size"] = vocab_size
  3943. if (self.dir_model / "tokenizer.json").is_file():
  3944. self._set_vocab_gpt2()
  3945. elif (self.dir_model / "tokenizer.model").is_file():
  3946. self._set_vocab_sentencepiece()
  3947. else:
  3948. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3949. self._set_vocab_builtin("gpt-neox", vocab_size)
  3950. def set_gguf_parameters(self):
  3951. d_model = self.find_hparam(["hidden_size", "d_model"])
  3952. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3953. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3954. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3955. # ceiling division
  3956. # ref: https://stackoverflow.com/a/17511341/22827863
  3957. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3958. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3959. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3960. use_dt_b_c_norm = False
  3961. # For falconmamba we do apply RMS norm on B / DT and C layers
  3962. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3963. use_dt_b_c_norm = True
  3964. # Fail early for models which don't have a block expansion factor of 2
  3965. assert d_inner == 2 * d_model
  3966. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3967. self.gguf_writer.add_embedding_length(d_model)
  3968. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3969. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3970. self.gguf_writer.add_block_count(self.block_count)
  3971. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3972. self.gguf_writer.add_ssm_inner_size(d_inner)
  3973. self.gguf_writer.add_ssm_state_size(d_state)
  3974. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3975. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3976. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3977. self.gguf_writer.add_file_type(self.ftype)
  3978. _tok_embd = None
  3979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3980. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3981. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3982. new_name = self.map_tensor_name(name)
  3983. if name.endswith(".A_log"):
  3984. logger.debug("A_log --> A ==> " + new_name)
  3985. data_torch = -torch.exp(data_torch)
  3986. # [4 1 8192 1] -> [4 8192 1 1]
  3987. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3988. data_torch = data_torch.squeeze()
  3989. # assuming token_embd.weight is seen before output.weight
  3990. if self._tok_embd is not None and new_name == output_name:
  3991. if torch.equal(self._tok_embd, data_torch):
  3992. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3993. return []
  3994. elif new_name == tok_embd_name:
  3995. self._tok_embd = data_torch
  3996. return [(new_name, data_torch)]
  3997. @ModelBase.register("Mamba2ForCausalLM")
  3998. class Mamba2Model(TextModel):
  3999. model_arch = gguf.MODEL_ARCH.MAMBA2
  4000. def __init__(self, dir_model: Path, *args, **kwargs):
  4001. # Avoid using AutoConfig for hparams
  4002. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4003. hparams = kwargs.pop("hparams", None)
  4004. if hparams is None:
  4005. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4006. hparams = json.load(f)
  4007. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4008. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4009. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4010. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4011. def set_vocab(self):
  4012. vocab_size = self.hparams["vocab_size"]
  4013. # Round vocab size to next multiple of 16
  4014. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4015. # pad using ceiling division
  4016. # ref: https://stackoverflow.com/a/17511341/22827863
  4017. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4018. self.hparams["vocab_size"] = vocab_size
  4019. if (self.dir_model / "tokenizer.model").is_file():
  4020. self._set_vocab_sentencepiece()
  4021. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4022. # mamba-codestral
  4023. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4024. elif (self.dir_model / "tokenizer.json").is_file():
  4025. self._set_vocab_gpt2()
  4026. else:
  4027. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4028. self._set_vocab_builtin("gpt-neox", vocab_size)
  4029. def set_gguf_parameters(self):
  4030. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4031. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4032. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4033. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4034. # Fail early for models which don't have a block expansion factor of 2
  4035. # TODO: does this really matter?
  4036. # skip the assertion for FalconH1 Model
  4037. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4038. assert self.d_inner == 2 * self.d_model
  4039. assert self.d_inner % head_dim == 0
  4040. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4041. self.gguf_writer.add_embedding_length(self.d_model)
  4042. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4043. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4044. self.gguf_writer.add_block_count(self.block_count)
  4045. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4046. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4047. self.gguf_writer.add_ssm_state_size(d_state)
  4048. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4049. self.gguf_writer.add_ssm_group_count(self.n_group)
  4050. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4051. self.gguf_writer.add_file_type(self.ftype)
  4052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4053. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4054. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4055. name = name.removeprefix("model.")
  4056. if name.endswith(".dt_bias"):
  4057. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4058. new_name = self.map_tensor_name(name)
  4059. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4060. data_torch = data_torch.squeeze()
  4061. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4062. gguf.MODEL_TENSOR.SSM_A,
  4063. gguf.MODEL_TENSOR.SSM_D,
  4064. ]):
  4065. # unsqueeze A to use similar shape semantics as Mamba-1
  4066. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4067. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4068. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4069. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4070. if name.endswith(".A_log"):
  4071. logger.debug("A_log --> A ==> " + new_name)
  4072. data_torch = -torch.exp(data_torch)
  4073. yield (new_name, data_torch)
  4074. @ModelBase.register("JambaForCausalLM")
  4075. class JambaModel(TextModel):
  4076. model_arch = gguf.MODEL_ARCH.JAMBA
  4077. def get_vocab_base_pre(self, tokenizer) -> str:
  4078. del tokenizer # unused
  4079. return "gpt-2"
  4080. def set_vocab(self):
  4081. if (self.dir_model / "tokenizer.model").is_file():
  4082. # Using Jamba's tokenizer.json causes errors on model load
  4083. # (something about "byte not found in vocab"),
  4084. # but there's a working tokenizer.model
  4085. self._set_vocab_sentencepiece()
  4086. else:
  4087. # Some Jamba models only have a tokenizer.json, which works.
  4088. self._set_vocab_gpt2()
  4089. def set_gguf_parameters(self):
  4090. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4091. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4092. d_inner = self.hparams["mamba_expand"] * d_model
  4093. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4094. # ceiling division
  4095. # ref: https://stackoverflow.com/a/17511341/22827863
  4096. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4097. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4098. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4099. n_kv_head = self.hparams["num_key_value_heads"]
  4100. attn_offset = self.hparams["attn_layer_offset"]
  4101. attn_period = self.hparams["attn_layer_period"]
  4102. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4103. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4104. ]
  4105. self.gguf_writer.add_block_count(self.block_count)
  4106. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4107. self.gguf_writer.add_embedding_length(d_model)
  4108. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4109. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4110. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4111. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4112. self.gguf_writer.add_ssm_inner_size(d_inner)
  4113. self.gguf_writer.add_ssm_state_size(d_state)
  4114. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4115. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4116. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4117. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4118. self.gguf_writer.add_file_type(self.ftype)
  4119. _experts: list[dict[str, Tensor]] | None = None
  4120. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4121. # Mini-Jamba
  4122. name = name.replace(".moe.", ".feed_forward.")
  4123. if bid is not None:
  4124. moe_offset = self.hparams["expert_layer_offset"]
  4125. moe_period = self.hparams["expert_layer_period"]
  4126. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4127. name = name.replace(".experts.0.", ".")
  4128. # process the experts separately
  4129. if ".feed_forward.experts." in name:
  4130. n_experts = self.hparams["num_experts"]
  4131. assert bid is not None
  4132. if self._experts is None:
  4133. self._experts = [{} for _ in range(self.block_count)]
  4134. self._experts[bid][name] = data_torch
  4135. if len(self._experts[bid]) >= n_experts * 3:
  4136. # merge the experts into a single 3d tensor
  4137. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4138. datas: list[Tensor] = []
  4139. for xid in range(n_experts):
  4140. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4141. datas.append(self._experts[bid][ename])
  4142. del self._experts[bid][ename]
  4143. data_torch = torch.stack(datas, dim=0)
  4144. # using the same merged name as qwen2moe
  4145. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4146. new_name = self.map_tensor_name(merged_name)
  4147. yield new_name, data_torch
  4148. return
  4149. new_name = self.map_tensor_name(name)
  4150. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4151. data_torch = data_torch.squeeze()
  4152. if name.endswith(".A_log"):
  4153. logger.debug("A_log --> A ==> " + new_name)
  4154. data_torch = -torch.exp(data_torch)
  4155. yield (new_name, data_torch)
  4156. def prepare_tensors(self):
  4157. super().prepare_tensors()
  4158. if self._experts is not None:
  4159. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4160. experts = [k for d in self._experts for k in d.keys()]
  4161. if len(experts) > 0:
  4162. raise ValueError(f"Unprocessed experts: {experts}")
  4163. @ModelBase.register("CohereForCausalLM")
  4164. class CommandR2Model(TextModel):
  4165. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4166. def __init__(self, *args, **kwargs):
  4167. super().__init__(*args, **kwargs)
  4168. # max_position_embeddings = 8192 in config.json but model was actually
  4169. # trained on 128k context length
  4170. # aya-23 models don't have model_max_length specified
  4171. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4172. def set_gguf_parameters(self):
  4173. super().set_gguf_parameters()
  4174. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4175. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4176. @ModelBase.register("Cohere2ForCausalLM")
  4177. class Cohere2Model(TextModel):
  4178. model_arch = gguf.MODEL_ARCH.COHERE2
  4179. def set_gguf_parameters(self):
  4180. super().set_gguf_parameters()
  4181. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4182. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4183. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4184. rotary_pct = self.hparams["rotary_pct"]
  4185. hidden_size = self.hparams["hidden_size"]
  4186. num_attention_heads = self.hparams["num_attention_heads"]
  4187. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4188. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4189. @ModelBase.register("OlmoForCausalLM")
  4190. @ModelBase.register("OLMoForCausalLM")
  4191. class OlmoModel(TextModel):
  4192. model_arch = gguf.MODEL_ARCH.OLMO
  4193. def set_gguf_parameters(self):
  4194. super().set_gguf_parameters()
  4195. self.gguf_writer.add_layer_norm_eps(1e-5)
  4196. clip_qkv = self.hparams.get("clip_qkv")
  4197. if clip_qkv is not None:
  4198. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4199. # Same as super class, but permuting q_proj, k_proj
  4200. # Copied from: LlamaModel
  4201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4202. del bid # unused
  4203. n_head = self.hparams["num_attention_heads"]
  4204. n_kv_head = self.hparams.get("num_key_value_heads")
  4205. if name.endswith("q_proj.weight"):
  4206. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4207. if name.endswith("k_proj.weight"):
  4208. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4209. return [(self.map_tensor_name(name), data_torch)]
  4210. @ModelBase.register("Olmo2ForCausalLM")
  4211. class Olmo2Model(TextModel):
  4212. model_arch = gguf.MODEL_ARCH.OLMO2
  4213. @ModelBase.register("OlmoeForCausalLM")
  4214. class OlmoeModel(TextModel):
  4215. model_arch = gguf.MODEL_ARCH.OLMOE
  4216. def set_gguf_parameters(self):
  4217. super().set_gguf_parameters()
  4218. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4219. if (n_experts := self.hparams.get("num_experts")) is not None:
  4220. self.gguf_writer.add_expert_count(n_experts)
  4221. _experts: list[dict[str, Tensor]] | None = None
  4222. # Copied from: Qwen2MoeModel
  4223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4224. # process the experts separately
  4225. if name.find("experts") != -1:
  4226. n_experts = self.hparams["num_experts"]
  4227. assert bid is not None
  4228. if self._experts is None:
  4229. self._experts = [{} for _ in range(self.block_count)]
  4230. self._experts[bid][name] = data_torch
  4231. if len(self._experts[bid]) >= n_experts * 3:
  4232. tensors: list[tuple[str, Tensor]] = []
  4233. # merge the experts into a single 3d tensor
  4234. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4235. datas: list[Tensor] = []
  4236. for xid in range(n_experts):
  4237. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4238. datas.append(self._experts[bid][ename])
  4239. del self._experts[bid][ename]
  4240. data_torch = torch.stack(datas, dim=0)
  4241. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4242. new_name = self.map_tensor_name(merged_name)
  4243. tensors.append((new_name, data_torch))
  4244. return tensors
  4245. else:
  4246. return []
  4247. return [(self.map_tensor_name(name), data_torch)]
  4248. # Copied from: Qwen2MoeModel
  4249. def prepare_tensors(self):
  4250. super().prepare_tensors()
  4251. if self._experts is not None:
  4252. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4253. experts = [k for d in self._experts for k in d.keys()]
  4254. if len(experts) > 0:
  4255. raise ValueError(f"Unprocessed experts: {experts}")
  4256. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4257. class JinaBertV2Model(BertModel):
  4258. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4259. def set_vocab(self):
  4260. tokenizer_class = 'BertTokenizer'
  4261. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4262. tokenizer_class = json.load(f)['tokenizer_class']
  4263. if tokenizer_class == 'BertTokenizer':
  4264. super().set_vocab()
  4265. elif tokenizer_class == 'RobertaTokenizer':
  4266. self._set_vocab_gpt2()
  4267. self.gguf_writer.add_token_type_count(2)
  4268. else:
  4269. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4270. @ModelBase.register("OpenELMForCausalLM")
  4271. class OpenELMModel(TextModel):
  4272. model_arch = gguf.MODEL_ARCH.OPENELM
  4273. @staticmethod
  4274. def _make_divisible(v: float | int, divisor: int) -> int:
  4275. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4276. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4277. # Make sure that round down does not go down by more than 10%.
  4278. if new_v < 0.9 * v:
  4279. new_v += divisor
  4280. return new_v
  4281. def __init__(self, *args, **kwargs):
  4282. super().__init__(*args, **kwargs)
  4283. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4284. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4285. self._n_embd: int = self.hparams["model_dim"]
  4286. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4287. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4288. self._ffn_dims: list[int] = [
  4289. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4290. for multiplier in ffn_multipliers
  4291. ]
  4292. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4293. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4294. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4295. def set_vocab(self):
  4296. try:
  4297. self._set_vocab_sentencepiece()
  4298. except FileNotFoundError:
  4299. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4300. def set_gguf_parameters(self):
  4301. n_embd = self._n_embd
  4302. head_dim = self.hparams["head_dim"]
  4303. rot_pct = 1.0
  4304. assert self.block_count == len(self._num_kv_heads)
  4305. assert self.block_count == len(self._num_query_heads)
  4306. assert self.block_count == len(self._ffn_dims)
  4307. self.gguf_writer.add_block_count(self.block_count)
  4308. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4309. self.gguf_writer.add_embedding_length(n_embd)
  4310. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4311. self.gguf_writer.add_head_count(self._num_query_heads)
  4312. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4313. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4314. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4315. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4316. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4317. self.gguf_writer.add_key_length(head_dim)
  4318. self.gguf_writer.add_value_length(head_dim)
  4319. self.gguf_writer.add_file_type(self.ftype)
  4320. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4321. if "n_layers" in keys:
  4322. return self.hparams["num_transformer_layers"]
  4323. return super().find_hparam(keys, optional)
  4324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4325. # split ff
  4326. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4327. ff_dim = self._ffn_dims[bid]
  4328. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4329. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4330. return
  4331. yield (self.map_tensor_name(name), data_torch)
  4332. @ModelBase.register("ArcticForCausalLM")
  4333. class ArcticModel(TextModel):
  4334. model_arch = gguf.MODEL_ARCH.ARCTIC
  4335. def set_vocab(self):
  4336. # The reason for using a custom implementation here is that the
  4337. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4338. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4339. from sentencepiece import SentencePieceProcessor
  4340. tokenizer_path = self.dir_model / 'tokenizer.model'
  4341. if not tokenizer_path.is_file():
  4342. logger.error(f'Error: Missing {tokenizer_path}')
  4343. sys.exit(1)
  4344. # Read the whole vocabulary from the tokenizer.model file
  4345. tokenizer = SentencePieceProcessor()
  4346. tokenizer.LoadFromFile(str(tokenizer_path))
  4347. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4348. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4349. scores: list[float] = [-10000.0] * vocab_size
  4350. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4351. for token_id in range(tokenizer.vocab_size()):
  4352. piece = tokenizer.IdToPiece(token_id)
  4353. text = piece.encode("utf-8")
  4354. score = tokenizer.GetScore(token_id)
  4355. toktype = SentencePieceTokenTypes.NORMAL
  4356. if tokenizer.IsUnknown(token_id):
  4357. toktype = SentencePieceTokenTypes.UNKNOWN
  4358. elif tokenizer.IsControl(token_id):
  4359. toktype = SentencePieceTokenTypes.CONTROL
  4360. elif tokenizer.IsUnused(token_id):
  4361. toktype = SentencePieceTokenTypes.UNUSED
  4362. elif tokenizer.IsByte(token_id):
  4363. toktype = SentencePieceTokenTypes.BYTE
  4364. tokens[token_id] = text
  4365. scores[token_id] = score
  4366. toktypes[token_id] = toktype
  4367. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4368. # of information about added/redefined tokens and modify them accordingly.
  4369. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4370. if tokenizer_config_file.is_file():
  4371. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4372. tokenizer_config_json = json.load(f)
  4373. if "added_tokens_decoder" in tokenizer_config_json:
  4374. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4375. for token_id, token_json in added_tokens_decoder.items():
  4376. token_id = int(token_id)
  4377. if token_id >= vocab_size:
  4378. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4379. continue
  4380. token_content = token_json["content"]
  4381. token_type = SentencePieceTokenTypes.USER_DEFINED
  4382. token_score = -10000.0
  4383. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4384. # Set the score to 0.0 as in the original tokenizer.model
  4385. if ("special" in token_json) and token_json["special"]:
  4386. if token_content == tokenizer_config_json["unk_token"]:
  4387. token_type = SentencePieceTokenTypes.UNKNOWN
  4388. else:
  4389. token_type = SentencePieceTokenTypes.CONTROL
  4390. token_score = 0.0
  4391. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4392. tokens[token_id] = token_content.encode("utf-8")
  4393. toktypes[token_id] = token_type
  4394. scores[token_id] = token_score
  4395. self.gguf_writer.add_tokenizer_model("llama")
  4396. self.gguf_writer.add_tokenizer_pre("default")
  4397. self.gguf_writer.add_token_list(tokens)
  4398. self.gguf_writer.add_token_scores(scores)
  4399. self.gguf_writer.add_token_types(toktypes)
  4400. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4401. special_vocab.add_to_gguf(self.gguf_writer)
  4402. def set_gguf_parameters(self):
  4403. super().set_gguf_parameters()
  4404. hparams = self.hparams
  4405. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4406. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4407. _experts: list[dict[str, Tensor]] | None = None
  4408. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4409. n_head = self.hparams["num_attention_heads"]
  4410. n_kv_head = self.hparams.get("num_key_value_heads")
  4411. if name.endswith("q_proj.weight"):
  4412. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4413. if name.endswith("k_proj.weight"):
  4414. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4415. # process the experts separately
  4416. if name.find("block_sparse_moe.experts") != -1:
  4417. n_experts = self.hparams["num_local_experts"]
  4418. assert bid is not None
  4419. if self._experts is None:
  4420. self._experts = [{} for _ in range(self.block_count)]
  4421. self._experts[bid][name] = data_torch
  4422. if len(self._experts[bid]) >= n_experts * 3:
  4423. tensors: list[tuple[str, Tensor]] = []
  4424. # merge the experts into a single 3d tensor
  4425. for wid in ["w1", "w2", "w3"]:
  4426. datas: list[Tensor] = []
  4427. for xid in range(n_experts):
  4428. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4429. datas.append(self._experts[bid][ename])
  4430. del self._experts[bid][ename]
  4431. data_torch = torch.stack(datas, dim=0)
  4432. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4433. new_name = self.map_tensor_name(merged_name)
  4434. tensors.append((new_name, data_torch))
  4435. return tensors
  4436. else:
  4437. return []
  4438. return [(self.map_tensor_name(name), data_torch)]
  4439. def prepare_tensors(self):
  4440. super().prepare_tensors()
  4441. if self._experts is not None:
  4442. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4443. experts = [k for d in self._experts for k in d.keys()]
  4444. if len(experts) > 0:
  4445. raise ValueError(f"Unprocessed experts: {experts}")
  4446. @ModelBase.register("DeepseekForCausalLM")
  4447. class DeepseekModel(TextModel):
  4448. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4449. def set_vocab(self):
  4450. try:
  4451. self._set_vocab_sentencepiece()
  4452. except FileNotFoundError:
  4453. self._set_vocab_gpt2()
  4454. def set_gguf_parameters(self):
  4455. super().set_gguf_parameters()
  4456. hparams = self.hparams
  4457. if (rope_dim := hparams.get("head_dim")) is None:
  4458. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4459. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4460. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4461. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4462. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4463. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4464. self.gguf_writer.add_expert_weights_scale(1.0)
  4465. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4466. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4467. _experts: list[dict[str, Tensor]] | None = None
  4468. @staticmethod
  4469. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4470. if n_head_kv is not None and n_head != n_head_kv:
  4471. n_head = n_head_kv
  4472. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4473. .swapaxes(1, 2)
  4474. .reshape(weights.shape))
  4475. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4476. n_head = self.hparams["num_attention_heads"]
  4477. n_kv_head = self.hparams.get("num_key_value_heads")
  4478. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4479. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4480. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4481. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4482. # process the experts separately
  4483. if name.find("mlp.experts") != -1:
  4484. n_experts = self.hparams["n_routed_experts"]
  4485. assert bid is not None
  4486. if self._experts is None:
  4487. self._experts = [{} for _ in range(self.block_count)]
  4488. self._experts[bid][name] = data_torch
  4489. if len(self._experts[bid]) >= n_experts * 3:
  4490. tensors: list[tuple[str, Tensor]] = []
  4491. # merge the experts into a single 3d tensor
  4492. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4493. datas: list[Tensor] = []
  4494. for xid in range(n_experts):
  4495. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4496. datas.append(self._experts[bid][ename])
  4497. del self._experts[bid][ename]
  4498. data_torch = torch.stack(datas, dim=0)
  4499. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4500. new_name = self.map_tensor_name(merged_name)
  4501. tensors.append((new_name, data_torch))
  4502. return tensors
  4503. else:
  4504. return []
  4505. return [(self.map_tensor_name(name), data_torch)]
  4506. def prepare_tensors(self):
  4507. super().prepare_tensors()
  4508. if self._experts is not None:
  4509. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4510. experts = [k for d in self._experts for k in d.keys()]
  4511. if len(experts) > 0:
  4512. raise ValueError(f"Unprocessed experts: {experts}")
  4513. @ModelBase.register("DeepseekV2ForCausalLM")
  4514. @ModelBase.register("DeepseekV3ForCausalLM")
  4515. class DeepseekV2Model(TextModel):
  4516. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4517. def set_vocab(self):
  4518. self._set_vocab_gpt2()
  4519. def set_gguf_parameters(self):
  4520. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4521. self.hparams["num_key_value_heads"] = 1
  4522. super().set_gguf_parameters()
  4523. hparams = self.hparams
  4524. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4525. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4526. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4527. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4528. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4529. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4530. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4531. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4532. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4533. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4534. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4535. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4536. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4537. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4538. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4539. if hparams["scoring_func"] == "sigmoid":
  4540. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4541. elif hparams["scoring_func"] == "softmax":
  4542. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4543. else:
  4544. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4545. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4546. rope_scaling = self.hparams.get("rope_scaling") or {}
  4547. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4548. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4549. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4550. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4551. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4552. _experts: list[dict[str, Tensor]] | None = None
  4553. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4554. # rename e_score_correction_bias tensors
  4555. if name.endswith("e_score_correction_bias"):
  4556. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4557. # skip Multi-Token Prediction (MTP) layers
  4558. block_count = self.hparams["num_hidden_layers"]
  4559. match = re.match(r"model.layers.(\d+)", name)
  4560. if match and int(match.group(1)) >= block_count:
  4561. return []
  4562. # process the experts separately
  4563. if name.find("mlp.experts") != -1:
  4564. n_experts = self.hparams["n_routed_experts"]
  4565. assert bid is not None
  4566. if self._experts is None:
  4567. self._experts = [{} for _ in range(self.block_count)]
  4568. self._experts[bid][name] = data_torch
  4569. if len(self._experts[bid]) >= n_experts * 3:
  4570. tensors: list[tuple[str, Tensor]] = []
  4571. # merge the experts into a single 3d tensor
  4572. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4573. datas: list[Tensor] = []
  4574. for xid in range(n_experts):
  4575. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4576. datas.append(self._experts[bid][ename])
  4577. del self._experts[bid][ename]
  4578. data_torch = torch.stack(datas, dim=0)
  4579. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4580. new_name = self.map_tensor_name(merged_name)
  4581. tensors.append((new_name, data_torch))
  4582. return tensors
  4583. else:
  4584. return []
  4585. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4586. if name.endswith("kv_b_proj.weight"):
  4587. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4588. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4589. n_head_kv = self.hparams["num_key_value_heads"]
  4590. v_head_dim = self.hparams["v_head_dim"]
  4591. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4592. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4593. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4594. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4595. k_b = k_b.transpose(1, 2)
  4596. return [
  4597. (self.map_tensor_name(name_kb), k_b),
  4598. (self.map_tensor_name(name_vb), v_b)
  4599. ]
  4600. return [(self.map_tensor_name(name), data_torch)]
  4601. def prepare_tensors(self):
  4602. super().prepare_tensors()
  4603. if self._experts is not None:
  4604. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4605. experts = [k for d in self._experts for k in d.keys()]
  4606. if len(experts) > 0:
  4607. raise ValueError(f"Unprocessed experts: {experts}")
  4608. @ModelBase.register("Dots1ForCausalLM")
  4609. class Dots1Model(Qwen2MoeModel):
  4610. model_arch = gguf.MODEL_ARCH.DOTS1
  4611. def __init__(self, *args, **kwargs):
  4612. super().__init__(*args, **kwargs)
  4613. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4614. def set_gguf_parameters(self):
  4615. super().set_gguf_parameters()
  4616. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4617. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4618. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4619. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4620. if self.hparams["scoring_func"] == "noaux_tc":
  4621. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4622. else:
  4623. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4624. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4625. if name.endswith("e_score_correction_bias"):
  4626. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4627. if "shared_experts" in name:
  4628. return [(self.map_tensor_name(name), data_torch)]
  4629. return super().modify_tensors(data_torch, name, bid)
  4630. @ModelBase.register("PLMForCausalLM")
  4631. class PLMModel(TextModel):
  4632. model_arch = gguf.MODEL_ARCH.PLM
  4633. def set_vocab(self):
  4634. self._set_vocab_gpt2()
  4635. def set_gguf_parameters(self):
  4636. super().set_gguf_parameters()
  4637. hparams = self.hparams
  4638. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4639. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4640. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4641. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4642. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4644. return [(self.map_tensor_name(name), data_torch)]
  4645. def prepare_tensors(self):
  4646. super().prepare_tensors()
  4647. @ModelBase.register("T5WithLMHeadModel")
  4648. @ModelBase.register("T5ForConditionalGeneration")
  4649. @ModelBase.register("MT5ForConditionalGeneration")
  4650. @ModelBase.register("UMT5ForConditionalGeneration")
  4651. class T5Model(TextModel):
  4652. model_arch = gguf.MODEL_ARCH.T5
  4653. def __init__(self, *args, **kwargs):
  4654. super().__init__(*args, **kwargs)
  4655. self.shared_token_embeddings_found = False
  4656. def set_vocab(self):
  4657. # to avoid TypeError: Descriptors cannot be created directly
  4658. # exception when importing sentencepiece_model_pb2
  4659. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4660. from sentencepiece import SentencePieceProcessor
  4661. from sentencepiece import sentencepiece_model_pb2 as model
  4662. tokenizer_path = self.dir_model / 'tokenizer.model'
  4663. # many older models use spiece.model tokenizer model filename
  4664. if not tokenizer_path.is_file():
  4665. tokenizer_path = self.dir_model / 'spiece.model'
  4666. if not tokenizer_path.is_file():
  4667. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4668. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4669. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4670. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4671. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4672. # assure the tokenizer model file name is correct
  4673. assert tokenizer_path.name == 'tokenizer.model'
  4674. return self._set_vocab_sentencepiece()
  4675. else:
  4676. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4677. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4678. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4679. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4680. tokenizer = SentencePieceProcessor()
  4681. tokenizer.LoadFromFile(str(tokenizer_path))
  4682. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4683. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4684. scores: list[float] = [-10000.0] * vocab_size
  4685. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4686. for token_id in range(tokenizer.vocab_size()):
  4687. piece = tokenizer.IdToPiece(token_id)
  4688. text = piece.encode("utf-8")
  4689. score = tokenizer.GetScore(token_id)
  4690. toktype = SentencePieceTokenTypes.NORMAL
  4691. if tokenizer.IsUnknown(token_id):
  4692. toktype = SentencePieceTokenTypes.UNKNOWN
  4693. elif tokenizer.IsControl(token_id):
  4694. toktype = SentencePieceTokenTypes.CONTROL
  4695. elif tokenizer.IsUnused(token_id):
  4696. toktype = SentencePieceTokenTypes.UNUSED
  4697. elif tokenizer.IsByte(token_id):
  4698. toktype = SentencePieceTokenTypes.BYTE
  4699. tokens[token_id] = text
  4700. scores[token_id] = score
  4701. toktypes[token_id] = toktype
  4702. added_tokens_file = self.dir_model / 'added_tokens.json'
  4703. if added_tokens_file.is_file():
  4704. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4705. added_tokens_json = json.load(f)
  4706. for key in added_tokens_json:
  4707. token_id = added_tokens_json[key]
  4708. if token_id >= vocab_size:
  4709. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4710. continue
  4711. tokens[token_id] = key.encode("utf-8")
  4712. scores[token_id] = -1000.0
  4713. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4714. if vocab_size > len(tokens):
  4715. pad_count = vocab_size - len(tokens)
  4716. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4717. for i in range(1, pad_count + 1):
  4718. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4719. scores.append(-1000.0)
  4720. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4721. self.gguf_writer.add_tokenizer_model("t5")
  4722. self.gguf_writer.add_tokenizer_pre("default")
  4723. self.gguf_writer.add_token_list(tokens)
  4724. self.gguf_writer.add_token_scores(scores)
  4725. self.gguf_writer.add_token_types(toktypes)
  4726. self.gguf_writer.add_add_space_prefix(add_prefix)
  4727. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4728. if precompiled_charsmap:
  4729. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4730. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4731. special_vocab.add_to_gguf(self.gguf_writer)
  4732. def set_gguf_parameters(self):
  4733. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4734. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4735. n_ctx = 512
  4736. self.gguf_writer.add_context_length(n_ctx)
  4737. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4738. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4739. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4740. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4741. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4742. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4743. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4744. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4745. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4746. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4747. self.gguf_writer.add_file_type(self.ftype)
  4748. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4749. del bid # unused
  4750. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4751. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4752. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4753. # and decoder and ignore the remaining ones.
  4754. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4755. if not self.shared_token_embeddings_found:
  4756. name = "shared.weight"
  4757. self.shared_token_embeddings_found = True
  4758. else:
  4759. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4760. return []
  4761. return [(self.map_tensor_name(name), data_torch)]
  4762. @ModelBase.register("T5EncoderModel")
  4763. class T5EncoderModel(TextModel):
  4764. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4765. def __init__(self, *args, **kwargs):
  4766. super().__init__(*args, **kwargs)
  4767. self.shared_token_embeddings_found = False
  4768. def set_vocab(self):
  4769. # to avoid TypeError: Descriptors cannot be created directly
  4770. # exception when importing sentencepiece_model_pb2
  4771. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4772. from sentencepiece import SentencePieceProcessor
  4773. from sentencepiece import sentencepiece_model_pb2 as model
  4774. tokenizer_path = self.dir_model / 'tokenizer.model'
  4775. # many older models use spiece.model tokenizer model filename
  4776. if not tokenizer_path.is_file():
  4777. tokenizer_path = self.dir_model / 'spiece.model'
  4778. if not tokenizer_path.is_file():
  4779. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4780. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4781. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4782. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4783. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4784. # assure the tokenizer model file name is correct
  4785. assert tokenizer_path.name == 'tokenizer.model'
  4786. return self._set_vocab_sentencepiece()
  4787. else:
  4788. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4789. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4790. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4791. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4792. tokenizer = SentencePieceProcessor()
  4793. tokenizer.LoadFromFile(str(tokenizer_path))
  4794. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4795. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4796. scores: list[float] = [-10000.0] * vocab_size
  4797. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4798. for token_id in range(tokenizer.vocab_size()):
  4799. piece = tokenizer.IdToPiece(token_id)
  4800. text = piece.encode("utf-8")
  4801. score = tokenizer.GetScore(token_id)
  4802. toktype = SentencePieceTokenTypes.NORMAL
  4803. if tokenizer.IsUnknown(token_id):
  4804. toktype = SentencePieceTokenTypes.UNKNOWN
  4805. elif tokenizer.IsControl(token_id):
  4806. toktype = SentencePieceTokenTypes.CONTROL
  4807. elif tokenizer.IsUnused(token_id):
  4808. toktype = SentencePieceTokenTypes.UNUSED
  4809. elif tokenizer.IsByte(token_id):
  4810. toktype = SentencePieceTokenTypes.BYTE
  4811. tokens[token_id] = text
  4812. scores[token_id] = score
  4813. toktypes[token_id] = toktype
  4814. added_tokens_file = self.dir_model / 'added_tokens.json'
  4815. if added_tokens_file.is_file():
  4816. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4817. added_tokens_json = json.load(f)
  4818. for key in added_tokens_json:
  4819. token_id = added_tokens_json[key]
  4820. if token_id >= vocab_size:
  4821. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4822. continue
  4823. tokens[token_id] = key.encode("utf-8")
  4824. scores[token_id] = -1000.0
  4825. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4826. if vocab_size > len(tokens):
  4827. pad_count = vocab_size - len(tokens)
  4828. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4829. for i in range(1, pad_count + 1):
  4830. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4831. scores.append(-1000.0)
  4832. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4833. self.gguf_writer.add_tokenizer_model("t5")
  4834. self.gguf_writer.add_tokenizer_pre("default")
  4835. self.gguf_writer.add_token_list(tokens)
  4836. self.gguf_writer.add_token_scores(scores)
  4837. self.gguf_writer.add_token_types(toktypes)
  4838. self.gguf_writer.add_add_space_prefix(add_prefix)
  4839. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4840. if precompiled_charsmap:
  4841. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4842. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4843. special_vocab.add_to_gguf(self.gguf_writer)
  4844. def set_gguf_parameters(self):
  4845. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4846. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4847. n_ctx = 512
  4848. self.gguf_writer.add_context_length(n_ctx)
  4849. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4850. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4851. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4852. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4853. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4854. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4855. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4856. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4857. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4858. self.gguf_writer.add_file_type(self.ftype)
  4859. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4860. del bid # unused
  4861. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4862. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4863. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4864. # and decoder and ignore the remaining ones.
  4865. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4866. if not self.shared_token_embeddings_found:
  4867. name = "shared.weight"
  4868. self.shared_token_embeddings_found = True
  4869. else:
  4870. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4871. return []
  4872. return [(self.map_tensor_name(name), data_torch)]
  4873. @ModelBase.register("JAISLMHeadModel")
  4874. class JaisModel(TextModel):
  4875. model_arch = gguf.MODEL_ARCH.JAIS
  4876. def __init__(self, *args, **kwargs):
  4877. super().__init__(*args, **kwargs)
  4878. # SwigLU activation
  4879. assert self.hparams["activation_function"] == "swiglu"
  4880. # ALiBi position embedding
  4881. assert self.hparams["position_embedding_type"] == "alibi"
  4882. # Embeddings scale
  4883. self.embeddings_scale = 1.0
  4884. if 'mup_embeddings_scale' in self.hparams:
  4885. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4886. elif 'embeddings_scale' in self.hparams:
  4887. self.embeddings_scale = self.hparams['embeddings_scale']
  4888. else:
  4889. assert False
  4890. self.width_scale = 1.0
  4891. if 'mup_output_alpha' in self.hparams:
  4892. assert 'mup_width_scale' in self.hparams
  4893. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4894. elif 'width_scale' in self.hparams:
  4895. self.width_scale = self.hparams['width_scale']
  4896. else:
  4897. assert False
  4898. self.max_alibi_bias = 8.0
  4899. def set_vocab(self):
  4900. self._set_vocab_gpt2()
  4901. def set_gguf_parameters(self):
  4902. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4903. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4904. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4905. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4906. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4907. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4908. self.gguf_writer.add_file_type(self.ftype)
  4909. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4910. del bid # unused
  4911. tensors: list[tuple[str, Tensor]] = []
  4912. # we don't need these
  4913. if name.endswith((".attn.bias")):
  4914. return tensors
  4915. if name.endswith(("relative_pe.slopes")):
  4916. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4917. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4918. # but Jais's PyTorch model simply precalculates the slope values and places them
  4919. # in relative_pes.slopes
  4920. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4921. first_val = float(data_torch[0].item())
  4922. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4923. return tensors
  4924. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4925. data_torch = data_torch.transpose(1, 0)
  4926. new_name = self.map_tensor_name(name)
  4927. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4928. tensors.append((new_name, data_torch * self.embeddings_scale))
  4929. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4930. tensors.append((new_name, data_torch * self.width_scale))
  4931. else:
  4932. tensors.append((new_name, data_torch))
  4933. return tensors
  4934. def prepare_tensors(self):
  4935. super().prepare_tensors()
  4936. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4937. @ModelBase.register("Glm4ForCausalLM")
  4938. class Glm4Model(TextModel):
  4939. model_arch = gguf.MODEL_ARCH.GLM4
  4940. def set_vocab(self):
  4941. from transformers import AutoTokenizer
  4942. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4943. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4944. tokens, toktypes, tokpre = self.get_vocab_base()
  4945. self.gguf_writer.add_tokenizer_model("gpt2")
  4946. self.gguf_writer.add_tokenizer_pre(tokpre)
  4947. self.gguf_writer.add_token_list(tokens)
  4948. self.gguf_writer.add_token_types(toktypes)
  4949. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4950. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4951. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4952. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4953. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4954. special_vocab.add_to_gguf(self.gguf_writer)
  4955. def set_gguf_parameters(self):
  4956. super().set_gguf_parameters()
  4957. rope_dim = self.hparams["head_dim"]
  4958. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4959. rope_scaling = self.hparams.get("rope_scaling") or {}
  4960. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4961. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4962. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4963. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4964. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4965. class ChatGLMModel(TextModel):
  4966. model_arch = gguf.MODEL_ARCH.CHATGLM
  4967. def set_vocab_chatglm3(self):
  4968. dir_model = self.dir_model
  4969. hparams = self.hparams
  4970. tokens: list[bytes] = []
  4971. toktypes: list[int] = []
  4972. scores: list[float] = []
  4973. from transformers import AutoTokenizer
  4974. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4975. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4976. assert max(tokenizer.get_vocab().values()) < vocab_size
  4977. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4978. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4979. for token_id in range(vocab_size):
  4980. piece = tokenizer._convert_id_to_token(token_id)
  4981. if token_id == 0:
  4982. piece = "<unk>"
  4983. elif token_id == 1:
  4984. piece = "<bos>"
  4985. elif token_id == 2:
  4986. piece = "<eos>"
  4987. text = piece.encode("utf-8")
  4988. score = 0.0
  4989. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4990. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4991. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4992. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4993. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4994. if piece in special_tokens:
  4995. toktype = SentencePieceTokenTypes.CONTROL
  4996. elif len(piece) == 0:
  4997. text = f"[PAD{token_id}]".encode("utf-8")
  4998. toktype = SentencePieceTokenTypes.UNUSED
  4999. else:
  5000. toktype = SentencePieceTokenTypes.USER_DEFINED
  5001. tokens.append(text)
  5002. scores.append(score)
  5003. toktypes.append(toktype)
  5004. continue
  5005. toktype = SentencePieceTokenTypes.NORMAL
  5006. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5007. toktype = SentencePieceTokenTypes.UNKNOWN
  5008. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5009. toktype = SentencePieceTokenTypes.CONTROL
  5010. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5011. toktype = SentencePieceTokenTypes.UNUSED
  5012. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5013. toktype = SentencePieceTokenTypes.BYTE
  5014. tokens.append(text)
  5015. scores.append(score)
  5016. toktypes.append(toktype)
  5017. self.gguf_writer.add_tokenizer_model("llama")
  5018. # glm3 needs prefix and suffix formatted as:
  5019. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5020. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5021. self.gguf_writer.add_token_list(tokens)
  5022. self.gguf_writer.add_token_scores(scores)
  5023. self.gguf_writer.add_token_types(toktypes)
  5024. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5025. special_vocab.add_to_gguf(self.gguf_writer)
  5026. @staticmethod
  5027. def token_bytes_to_string(b):
  5028. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5029. byte_encoder = bytes_to_unicode()
  5030. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5031. @staticmethod
  5032. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5033. parts = [bytes([b]) for b in token]
  5034. while True:
  5035. min_idx = None
  5036. min_rank = None
  5037. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5038. rank = mergeable_ranks.get(pair[0] + pair[1])
  5039. if rank is not None and (min_rank is None or rank < min_rank):
  5040. min_idx = i
  5041. min_rank = rank
  5042. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5043. break
  5044. assert min_idx is not None
  5045. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5046. return parts
  5047. def set_vocab(self):
  5048. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5049. self.set_vocab_chatglm3()
  5050. return
  5051. dir_model = self.dir_model
  5052. hparams = self.hparams
  5053. tokens: list[str] = []
  5054. toktypes: list[int] = []
  5055. from transformers import AutoTokenizer
  5056. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5057. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5058. assert max(tokenizer.get_vocab().values()) < vocab_size
  5059. tokens, toktypes, tokpre = self.get_vocab_base()
  5060. self.gguf_writer.add_tokenizer_model("gpt2")
  5061. self.gguf_writer.add_tokenizer_pre(tokpre)
  5062. self.gguf_writer.add_token_list(tokens)
  5063. self.gguf_writer.add_token_types(toktypes)
  5064. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5065. # only add special tokens when they were not already loaded from config.json
  5066. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5067. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5068. # this one is usually not in config.json anyway
  5069. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5070. special_vocab.add_to_gguf(self.gguf_writer)
  5071. def set_gguf_parameters(self):
  5072. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5073. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5074. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5075. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5076. self.gguf_writer.add_embedding_length(n_embed)
  5077. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5078. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5079. self.gguf_writer.add_head_count(n_head)
  5080. self.gguf_writer.add_head_count_kv(n_head_kv)
  5081. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5082. self.gguf_writer.add_file_type(self.ftype)
  5083. if "attention_dim" in self.hparams:
  5084. rope_dim = self.hparams["attention_dim"]
  5085. else:
  5086. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5087. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5088. self.gguf_writer.add_add_bos_token(False)
  5089. rope_freq = 10000
  5090. if "rope_ratio" in self.hparams:
  5091. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5092. self.gguf_writer.add_rope_freq_base(rope_freq)
  5093. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5094. del bid # unused
  5095. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5096. return []
  5097. name = name.removeprefix("transformer.")
  5098. return [(self.map_tensor_name(name), data_torch)]
  5099. @ModelBase.register("NemotronForCausalLM")
  5100. class NemotronModel(TextModel):
  5101. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5102. def set_vocab(self):
  5103. self._set_vocab_sentencepiece()
  5104. self.gguf_writer.add_pad_token_id(0)
  5105. self.gguf_writer.add_unk_token_id(1)
  5106. def set_gguf_parameters(self):
  5107. super().set_gguf_parameters()
  5108. hparams = self.hparams
  5109. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5110. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5111. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5112. # * Partial RoPE
  5113. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5114. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5115. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5116. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5117. # * RopeScaling for Nemotron
  5118. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5119. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5120. else:
  5121. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5122. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5123. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5124. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5125. # model.layers.{l}.input_layernorm.weight
  5126. # model.layers.{l}.post_attention_layernorm.weight
  5127. # model.norm.weight
  5128. if name.endswith("norm.weight"):
  5129. data_torch = data_torch + 1
  5130. return [(self.map_tensor_name(name), data_torch)]
  5131. @ModelBase.register("ExaoneForCausalLM")
  5132. class ExaoneModel(TextModel):
  5133. model_arch = gguf.MODEL_ARCH.EXAONE
  5134. def set_gguf_parameters(self):
  5135. hparams = self.hparams
  5136. assert (hparams["activation_function"] == "silu")
  5137. max_position_embeddings = hparams["max_position_embeddings"]
  5138. embed_dim = hparams["hidden_size"]
  5139. num_heads = hparams["num_attention_heads"]
  5140. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5141. layer_norm_eps = hparams["layer_norm_epsilon"]
  5142. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5143. num_layers = hparams["num_layers"]
  5144. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5145. # attention_dropout_rate = hparams["attention_dropout"]
  5146. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5147. # embed_dropout_rate = hparams["embed_dropout"]
  5148. self.gguf_writer.add_embedding_length(embed_dim)
  5149. self.gguf_writer.add_head_count(num_heads)
  5150. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5151. self.gguf_writer.add_context_length(max_position_embeddings)
  5152. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5153. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5154. self.gguf_writer.add_block_count(num_layers)
  5155. self.gguf_writer.add_file_type(self.ftype)
  5156. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5157. self.gguf_writer.add_rope_freq_base(rope_theta)
  5158. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5159. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5160. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5161. rope_scaling = self.hparams.get("rope_scaling") or {}
  5162. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5163. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5164. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5165. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5166. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5167. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5168. base = self.hparams.get("rope_theta", 10000.0)
  5169. if (dim := self.hparams.get("head_dim")) is None:
  5170. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5171. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5172. factor = rope_scaling.get("factor", 8.0)
  5173. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5174. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5175. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5176. low_freq_wavelen = old_context_len / low_freq_factor
  5177. high_freq_wavelen = old_context_len / high_freq_factor
  5178. assert low_freq_wavelen != high_freq_wavelen
  5179. rope_factors = []
  5180. for freq in freqs:
  5181. wavelen = 2 * math.pi / freq
  5182. if wavelen < high_freq_wavelen:
  5183. rope_factors.append(1)
  5184. elif wavelen > low_freq_wavelen:
  5185. rope_factors.append(factor)
  5186. else:
  5187. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5188. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5189. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5190. @ModelBase.register("GraniteForCausalLM")
  5191. class GraniteModel(LlamaModel):
  5192. """Conversion for IBM's GraniteForCausalLM"""
  5193. model_arch = gguf.MODEL_ARCH.GRANITE
  5194. def set_gguf_parameters(self):
  5195. """Granite uses standard llama parameters with the following differences:
  5196. - No head_dim support
  5197. - New multiplier params:
  5198. - attention_scale
  5199. - embedding_scale
  5200. - residual_scale
  5201. - logits_scaling
  5202. """
  5203. if head_dim := self.hparams.pop("head_dim", None):
  5204. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5205. super().set_gguf_parameters()
  5206. # NOTE: Convert _multiplier params to _scale params for naming
  5207. # consistency
  5208. if attention_scale := self.hparams.get("attention_multiplier"):
  5209. self.gguf_writer.add_attention_scale(attention_scale)
  5210. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5211. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5212. self.gguf_writer.add_embedding_scale(embedding_scale)
  5213. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5214. if residual_scale := self.hparams.get("residual_multiplier"):
  5215. self.gguf_writer.add_residual_scale(residual_scale)
  5216. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5217. if logits_scale := self.hparams.get("logits_scaling"):
  5218. self.gguf_writer.add_logit_scale(logits_scale)
  5219. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5220. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5221. class GraniteMoeModel(GraniteModel):
  5222. """Conversion for IBM's GraniteMoeForCausalLM"""
  5223. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5224. def set_gguf_parameters(self):
  5225. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5226. - shared_intermediate_size
  5227. """
  5228. super().set_gguf_parameters()
  5229. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5230. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5231. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5233. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5234. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5235. the hidden size that is then split during forward. To keep compatibility
  5236. with existing mixtral support, we pull them apart here.
  5237. """
  5238. if name.endswith("block_sparse_moe.input_linear.weight"):
  5239. ffn_dim = self.hparams["intermediate_size"]
  5240. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5241. gate, up = data_torch.split(ffn_dim, dim=-2)
  5242. return [
  5243. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5244. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5245. ]
  5246. has_experts = bool(self.hparams.get('num_local_experts'))
  5247. if name.endswith("shared_mlp.input_linear.weight"):
  5248. ffn_dim = self.hparams["shared_intermediate_size"]
  5249. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5250. gate, up = data_torch.split(ffn_dim, dim=-2)
  5251. if has_experts:
  5252. return [
  5253. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5254. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5255. ]
  5256. return [
  5257. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5258. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5259. ]
  5260. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5261. return [
  5262. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5263. ]
  5264. return super().modify_tensors(data_torch, name, bid)
  5265. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5266. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5267. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5268. layers and optionally uses MoE w/ a shared expert"""
  5269. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5270. undo_permute = True
  5271. def __init__(self, *args, **kwargs):
  5272. # Hybrid mamba models use a prefix for the mamba-specific params.
  5273. # TODO: Extend this if the prefix(es) need to be configurable
  5274. self.hparam_prefixes = ["mamba"]
  5275. super().__init__(*args, **kwargs)
  5276. # Lists of which layers use ssm vs attention
  5277. self._attn_layers = self.get_attn_layers()
  5278. self._ssm_layers = [
  5279. i for i in range(self.block_count)
  5280. if i not in self._attn_layers
  5281. ]
  5282. # n_group and d_inner are used during reshape_tensors for mamba2
  5283. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5284. self.n_group = self.find_hparam(["n_groups"])
  5285. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5286. def get_attn_layers(self):
  5287. # Explicit list of layer type names
  5288. if layer_types := self.hparams.get("layer_types"):
  5289. return [
  5290. i for i, typ in enumerate(layer_types)
  5291. if typ == "attention"
  5292. ]
  5293. # Layer types indicated by index or period
  5294. attn_layers = self.hparams.get("attn_layer_indices", [])
  5295. if not attn_layers:
  5296. attn_period = self.hparams.get("attn_layer_period")
  5297. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5298. attn_offset = self.hparams.get("attn_layer_offset")
  5299. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5300. attn_layers = [
  5301. i for i in range(self.block_count)
  5302. if i % attn_period == attn_offset
  5303. ]
  5304. return attn_layers
  5305. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5306. prefixed = []
  5307. for pfx in self.hparam_prefixes:
  5308. prefixed.extend(
  5309. "_".join([pfx, k])
  5310. for k in keys
  5311. )
  5312. keys = list(keys) + prefixed
  5313. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5314. def modify_tensors(
  5315. self, data_torch: Tensor, name: str, bid: int | None
  5316. ) -> Iterable[tuple[str, Tensor]]:
  5317. if (
  5318. name.endswith("block_sparse_moe.input_linear.weight")
  5319. or "shared_mlp" in name
  5320. ):
  5321. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5322. # Determine whether this is a mamba layer or an attention layer
  5323. if bid in self._ssm_layers:
  5324. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5325. elif bid in self._attn_layers:
  5326. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5327. return [(self.map_tensor_name(name), data_torch)]
  5328. def set_gguf_parameters(self):
  5329. """This method merges params from both parents and some that are
  5330. specific to this model. The result is some duplication of how the params
  5331. get set. The following warnings are expected during conversion:
  5332. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5333. WARNING:Duplicated key name 'granitehybrid.context_length'
  5334. """
  5335. GraniteMoeModel.set_gguf_parameters(self)
  5336. ## Mamba mixer params ##
  5337. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5338. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5339. self.gguf_writer.add_ssm_group_count(self.n_group)
  5340. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5341. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5342. # in llama.cpp
  5343. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5344. ## Attention params ##
  5345. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5346. head_count_kv_vec = [
  5347. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5348. ]
  5349. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5350. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5351. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5352. ## If Bamba, use rope, otherwise don't
  5353. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5354. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5355. if not use_rope:
  5356. self.gguf_writer.add_context_length(2**20)
  5357. ## Validation ##
  5358. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5359. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5360. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5361. def set_vocab(self):
  5362. self.hparams["pad_vocab_size_multiple"] = 8
  5363. Mamba2Model.set_vocab(self)
  5364. @ModelBase.register("BailingMoeForCausalLM")
  5365. class BailingMoeModel(TextModel):
  5366. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5367. def set_vocab(self):
  5368. self._set_vocab_gpt2()
  5369. def set_gguf_parameters(self):
  5370. super().set_gguf_parameters()
  5371. hparams = self.hparams
  5372. if (rope_dim := hparams.get("head_dim")) is None:
  5373. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5374. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5375. rope_scaling = self.hparams.get("rope_scaling") or {}
  5376. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5377. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5378. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5379. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5380. else:
  5381. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5382. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5383. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5384. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5385. self.gguf_writer.add_expert_weights_scale(1.0)
  5386. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5387. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5388. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5389. _experts: list[dict[str, Tensor]] | None = None
  5390. @staticmethod
  5391. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5392. if n_head_kv is not None and n_head != n_head_kv:
  5393. n_head = n_head_kv
  5394. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5395. .swapaxes(1, 2)
  5396. .reshape(weights.shape))
  5397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5398. n_head = self.hparams["num_attention_heads"]
  5399. n_kv_head = self.hparams.get("num_key_value_heads")
  5400. n_embd = self.hparams["hidden_size"]
  5401. if (head_dim := self.hparams.get("head_dim")) is None:
  5402. head_dim = n_embd // n_head
  5403. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5404. if name.endswith("attention.dense.weight"):
  5405. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5406. elif name.endswith("query_key_value.weight"):
  5407. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5408. return [
  5409. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5410. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5411. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5412. ]
  5413. elif name.find("mlp.experts") != -1:
  5414. n_experts = self.hparams["num_experts"]
  5415. assert bid is not None
  5416. tensors: list[tuple[str, Tensor]] = []
  5417. if self._experts is None:
  5418. self._experts = [{} for _ in range(self.block_count)]
  5419. self._experts[bid][name] = data_torch
  5420. if len(self._experts[bid]) >= n_experts * 3:
  5421. # merge the experts into a single 3d tensor
  5422. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5423. datas: list[Tensor] = []
  5424. for xid in range(n_experts):
  5425. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5426. datas.append(self._experts[bid][ename])
  5427. del self._experts[bid][ename]
  5428. data_torch = torch.stack(datas, dim=0)
  5429. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5430. new_name = self.map_tensor_name(merged_name)
  5431. tensors.append((new_name, data_torch))
  5432. return tensors
  5433. new_name = self.map_tensor_name(name)
  5434. if new_name == output_name and self.hparams.get("norm_head"):
  5435. data_torch = data_torch.float()
  5436. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5437. return [(new_name, data_torch)]
  5438. def prepare_tensors(self):
  5439. super().prepare_tensors()
  5440. if self._experts is not None:
  5441. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5442. experts = [k for d in self._experts for k in d.keys()]
  5443. if len(experts) > 0:
  5444. raise ValueError(f"Unprocessed experts: {experts}")
  5445. @ModelBase.register("ChameleonForConditionalGeneration")
  5446. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5447. class ChameleonModel(TextModel):
  5448. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5449. def set_gguf_parameters(self):
  5450. super().set_gguf_parameters()
  5451. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5452. def set_vocab(self):
  5453. self._set_vocab_gpt2()
  5454. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5455. # ignore image tokenizer for now
  5456. # TODO: remove this once image support is implemented for Chameleon
  5457. if name.startswith("model.vqmodel"):
  5458. return []
  5459. n_head = self.hparams["num_attention_heads"]
  5460. n_kv_head = self.hparams.get("num_key_value_heads")
  5461. hidden_dim = self.hparams.get("hidden_size")
  5462. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5463. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5464. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5465. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5466. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5467. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5468. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5469. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5470. return [(self.map_tensor_name(name), data_torch)]
  5471. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5472. @staticmethod
  5473. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5474. head_dim = hidden_dim // n_heads
  5475. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5476. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5477. return data_torch
  5478. @ModelBase.register("UltravoxModel")
  5479. class UltravoxModel(TextModel):
  5480. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5481. def __init__(self, *args, **kwargs):
  5482. super().__init__(*args, **kwargs)
  5483. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5484. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5485. class WhisperEncoderModel(MmprojModel):
  5486. has_vision_encoder = False # no vision encoder
  5487. has_audio_encoder = True
  5488. def __init__(self, *args, **kwargs):
  5489. super().__init__(*args, **kwargs)
  5490. self.hparams["hidden_size"] = self.hparams["d_model"]
  5491. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5492. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5493. def set_gguf_parameters(self):
  5494. super().set_gguf_parameters()
  5495. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5496. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5497. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5498. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5499. del bid, new_name, n_dims # unused
  5500. if ".conv" in name and ".weight" in name:
  5501. return gguf.GGMLQuantizationType.F16
  5502. return False
  5503. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5504. del bid # unused
  5505. if name.startswith("language_model."):
  5506. # skip language model tensors
  5507. return []
  5508. # prevent clash naming with vision tensors
  5509. if name.startswith("multi_modal_projector"):
  5510. name = "audio." + name
  5511. if "conv1.bias" in name or "conv2.bias" in name:
  5512. # transpose conv1 and conv2 bias
  5513. data_torch = data_torch.unsqueeze(-1)
  5514. return [(self.map_tensor_name(name), data_torch)]
  5515. @ModelBase.register("UltravoxModel")
  5516. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5517. has_vision_encoder = False # no vision encoder
  5518. has_audio_encoder = True
  5519. def set_gguf_parameters(self):
  5520. super().set_gguf_parameters()
  5521. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5522. @ModelBase.register("FalconH1ForCausalLM")
  5523. class FalconH1Model(Mamba2Model):
  5524. model_arch = gguf.MODEL_ARCH.FALCON_H1
  5525. def __init__(self, *args, **kwargs):
  5526. # Set the hparam prefixes for Falcon Mamba2
  5527. self.hparam_prefixes = ["mamba"]
  5528. # Initialize the base Mamba2Model
  5529. super().__init__(*args, **kwargs)
  5530. # Use Llama conversion for attention
  5531. self._transformer_model_class = LlamaModel
  5532. # n_group and d_inner are used during reshape_tensors for mamba2
  5533. self.n_group = self.find_hparam(["n_groups"])
  5534. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  5535. self.d_head = self.find_hparam(["d_head"])
  5536. # Initialize any Falcon Mamba2 specific attributes
  5537. self.has_attention = True # Falcon Mamba2 has attention components
  5538. # Load Falcon-H1 multipliers from hyperparameters
  5539. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  5540. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  5541. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  5542. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  5543. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  5544. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  5545. self.intermediate_size = self.find_hparam(["intermediate_size"])
  5546. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  5547. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5548. prefixed = []
  5549. for pfx in self.hparam_prefixes:
  5550. prefixed.extend(
  5551. "_".join([pfx, k])
  5552. for k in keys
  5553. )
  5554. keys = list(keys) + prefixed
  5555. return super().find_hparam(keys, *args, **kwargs)
  5556. def set_vocab(self):
  5557. self._set_vocab_gpt2()
  5558. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5559. tensors = list(super().modify_tensors(data_torch, name, bid))
  5560. tensor = tensors[0][1]
  5561. if "down_proj" in name:
  5562. tensor = tensor * self.mlp_multipliers[1]
  5563. elif "gate_proj" in name:
  5564. tensor = tensor * self.mlp_multipliers[0]
  5565. elif "k_proj" in name:
  5566. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  5567. elif "q_proj" in name:
  5568. tensor = tensor * self.attention_in_multiplier
  5569. elif "v_proj" in name:
  5570. tensor = tensor * self.attention_in_multiplier
  5571. elif "o_proj" in name:
  5572. tensor = tensor * self.attention_out_multiplier
  5573. elif "out_proj" in name:
  5574. tensor = tensor * self.ssm_out_multiplier
  5575. elif "in_proj" in name:
  5576. tensor = tensor * self.ssm_in_multiplier
  5577. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  5578. intermediate_size = self.hparams["mamba_d_ssm"]
  5579. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  5580. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  5581. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  5582. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  5583. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  5584. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  5585. elif "lm_head" in name:
  5586. tensor = tensor * self.hparams["lm_head_multiplier"]
  5587. elif "embed_tokens" in name:
  5588. tensor = tensor * self.hparams["embedding_multiplier"]
  5589. elif "mamba.norm" in name:
  5590. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  5591. tensors = [(tensors[0][0], tensor)]
  5592. return tensors
  5593. def set_gguf_parameters(self):
  5594. super().set_gguf_parameters()
  5595. ## General Params ##
  5596. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5597. # Override some Mamba2 defaults
  5598. self.gguf_writer.add_block_count(self.block_count)
  5599. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  5600. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5601. ## Attention params ##
  5602. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  5603. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  5604. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  5605. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  5606. ## Validation ##
  5607. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5608. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  5609. # Add any other Falcon Mamba2 specific configuration
  5610. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  5611. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  5612. class HunYuanMoEModel(TextModel):
  5613. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  5614. def __init__(self, *args, **kwargs):
  5615. super().__init__(*args, **kwargs)
  5616. # For handling tied embeddings
  5617. self._tok_embd = None
  5618. def set_vocab(self):
  5619. from transformers import AutoTokenizer
  5620. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5621. # 1. Get the pre-tokenizer identifier hash
  5622. tokpre = self.get_vocab_base_pre(tokenizer)
  5623. # 2. Reverse-engineer the merges list from mergeable_ranks
  5624. merges = []
  5625. vocab = {}
  5626. mergeable_ranks = tokenizer.mergeable_ranks
  5627. for token, rank in mergeable_ranks.items():
  5628. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5629. if len(token) == 1:
  5630. continue
  5631. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5632. if len(merged) == 2: # todo this is an assert in Qwen, why?
  5633. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5634. # 3. Generate the tokens and toktypes lists
  5635. vocab_size = self.hparams["vocab_size"]
  5636. assert tokenizer.vocab_size == vocab_size
  5637. special_tokens = tokenizer.special_tokens
  5638. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5639. tokens: list[str] = []
  5640. toktypes: list[int] = []
  5641. for i in range(vocab_size):
  5642. if i not in reverse_vocab:
  5643. tokens.append(f"[PAD{i}]")
  5644. toktypes.append(gguf.TokenType.UNUSED)
  5645. else:
  5646. token = reverse_vocab[i]
  5647. tokens.append(token)
  5648. if i in special_tokens.values():
  5649. toktypes.append(gguf.TokenType.CONTROL)
  5650. else:
  5651. toktypes.append(gguf.TokenType.NORMAL)
  5652. # 4. Write all vocab-related fields to the GGUF writer
  5653. self.gguf_writer.add_tokenizer_model("gpt2")
  5654. self.gguf_writer.add_tokenizer_pre(tokpre)
  5655. self.gguf_writer.add_token_list(tokens)
  5656. self.gguf_writer.add_token_types(toktypes)
  5657. self.gguf_writer.add_token_merges(merges)
  5658. # 5. Add special tokens and chat templates
  5659. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5660. special_vocab.add_to_gguf(self.gguf_writer)
  5661. # FIX for BOS token: Overwrite incorrect id read from config.json
  5662. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  5663. def set_gguf_parameters(self):
  5664. super().set_gguf_parameters()
  5665. hparams = self.hparams
  5666. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5667. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  5668. moe_intermediate_size = hparams["moe_intermediate_size"]
  5669. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  5670. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  5671. moe_topk = hparams["moe_topk"]
  5672. assert all(topk == moe_topk[0] for topk in moe_topk)
  5673. self.gguf_writer.add_expert_used_count(moe_topk[0])
  5674. moe_shared_expert = hparams["num_shared_expert"]
  5675. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  5676. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  5677. # Rope
  5678. rope_scaling = hparams.get("rope_scaling", {})
  5679. if rope_scaling.get("type") == "dynamic":
  5680. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  5681. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  5682. alpha = rope_scaling.get("alpha", 1000)
  5683. base = hparams.get("rope_theta", 10000.0)
  5684. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  5685. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  5686. self.gguf_writer.add_rope_freq_base(scaled_base)
  5687. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5688. self.gguf_writer.add_rope_scaling_factor(1)
  5689. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  5690. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  5691. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  5692. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  5693. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  5694. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  5695. _experts: list[dict[str, Tensor]] | None = None
  5696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5697. if name == "model.embed_tokens.weight":
  5698. self._tok_embd = data_torch.clone()
  5699. if name == "lm_head.weight":
  5700. if self.hparams.get("tie_word_embeddings", False):
  5701. logger.info("Skipping tied output layer 'lm_head.weight'")
  5702. return []
  5703. if name.find("mlp.experts") != -1:
  5704. n_experts = self.hparams["num_experts"]
  5705. assert bid is not None
  5706. if self._experts is None:
  5707. self._experts = [{} for _ in range(self.block_count)]
  5708. self._experts[bid][name] = data_torch
  5709. if len(self._experts[bid]) >= n_experts * 3:
  5710. # merge the experts into a single 3d tensor
  5711. tensors: list[tuple[str, Tensor]] = []
  5712. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5713. datas: list[Tensor] = []
  5714. for xid in range(n_experts):
  5715. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5716. datas.append(self._experts[bid][ename])
  5717. del self._experts[bid][ename]
  5718. data_torch = torch.stack(datas, dim=0)
  5719. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5720. new_name = self.map_tensor_name(merged_name)
  5721. tensors.append((new_name, data_torch))
  5722. return tensors
  5723. else:
  5724. return []
  5725. return [(self.map_tensor_name(name), data_torch)]
  5726. def prepare_tensors(self):
  5727. super().prepare_tensors()
  5728. if self._experts is not None:
  5729. experts = [k for d in self._experts for k in d.keys()]
  5730. if len(experts) > 0:
  5731. raise ValueError(f"Unprocessed experts: {experts}")
  5732. @ModelBase.register("SmolLM3ForCausalLM")
  5733. class SmolLM3Model(LlamaModel):
  5734. model_arch = gguf.MODEL_ARCH.SMOLLM3
  5735. def set_vocab(self):
  5736. super().set_vocab()
  5737. # remove unsupported array slicing in chat template
  5738. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  5739. from transformers import AutoTokenizer
  5740. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5741. if tokenizer.chat_template is not None:
  5742. chat_template = tokenizer.chat_template.replace("[:]", "")
  5743. self.gguf_writer.add_chat_template(chat_template)
  5744. @ModelBase.register("Lfm2ForCausalLM")
  5745. @ModelBase.register("LFM2ForCausalLM")
  5746. class LFM2Model(TextModel):
  5747. model_arch = gguf.MODEL_ARCH.LFM2
  5748. def _add_feed_forward_length(self):
  5749. ff_dim = self.hparams["block_ff_dim"]
  5750. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  5751. ff_dim = self.hparams["block_ff_dim"]
  5752. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  5753. multiple_of = self.hparams["block_multiple_of"]
  5754. if auto_adjust_ff_dim:
  5755. ff_dim = int(2 * ff_dim / 3)
  5756. # custom dim factor multiplier
  5757. if ffn_dim_multiplier is not None:
  5758. ff_dim = int(ffn_dim_multiplier * ff_dim)
  5759. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  5760. self.gguf_writer.add_feed_forward_length(ff_dim)
  5761. def set_gguf_parameters(self):
  5762. # set num_key_value_heads only for attention layers
  5763. self.hparams["num_key_value_heads"] = [
  5764. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  5765. for layer_type in self.hparams["layer_types"]
  5766. ]
  5767. super().set_gguf_parameters()
  5768. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5769. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  5770. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  5771. self._add_feed_forward_length()
  5772. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5773. # conv op requires 2d tensor
  5774. if 'conv.conv' in name:
  5775. data_torch = data_torch.squeeze(1)
  5776. return [(self.map_tensor_name(name), data_torch)]
  5777. ###### CONVERSION LOGIC ######
  5778. # tree of lazy tensors
  5779. class LazyTorchTensor(gguf.LazyBase):
  5780. _tensor_type = torch.Tensor
  5781. # to keep the type-checker happy
  5782. dtype: torch.dtype
  5783. shape: torch.Size
  5784. # only used when converting a torch.Tensor to a np.ndarray
  5785. _dtype_map: dict[torch.dtype, type] = {
  5786. torch.float16: np.float16,
  5787. torch.float32: np.float32,
  5788. }
  5789. # used for safetensors slices
  5790. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  5791. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  5792. _dtype_str_map: dict[str, torch.dtype] = {
  5793. "F64": torch.float64,
  5794. "F32": torch.float32,
  5795. "BF16": torch.bfloat16,
  5796. "F16": torch.float16,
  5797. # "U64": torch.uint64,
  5798. "I64": torch.int64,
  5799. # "U32": torch.uint32,
  5800. "I32": torch.int32,
  5801. # "U16": torch.uint16,
  5802. "I16": torch.int16,
  5803. "U8": torch.uint8,
  5804. "I8": torch.int8,
  5805. "BOOL": torch.bool,
  5806. "F8_E4M3": torch.float8_e4m3fn,
  5807. "F8_E5M2": torch.float8_e5m2,
  5808. }
  5809. def numpy(self) -> gguf.LazyNumpyTensor:
  5810. dtype = self._dtype_map[self.dtype]
  5811. return gguf.LazyNumpyTensor(
  5812. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  5813. args=(self,),
  5814. func=(lambda s: s.numpy())
  5815. )
  5816. @classmethod
  5817. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  5818. return torch.empty(size=shape, dtype=dtype, device="meta")
  5819. @classmethod
  5820. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  5821. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  5822. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  5823. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  5824. return cast(torch.Tensor, lazy)
  5825. @classmethod
  5826. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  5827. dtype = cls._dtype_str_map[remote_tensor.dtype]
  5828. shape = remote_tensor.shape
  5829. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  5830. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  5831. return cast(torch.Tensor, lazy)
  5832. @classmethod
  5833. def __torch_function__(cls, func, types, args=(), kwargs=None):
  5834. del types # unused
  5835. if kwargs is None:
  5836. kwargs = {}
  5837. if func is torch.Tensor.numpy:
  5838. return args[0].numpy()
  5839. return cls._wrap_fn(func)(*args, **kwargs)
  5840. def parse_args() -> argparse.Namespace:
  5841. parser = argparse.ArgumentParser(
  5842. description="Convert a huggingface model to a GGML compatible file")
  5843. parser.add_argument(
  5844. "--vocab-only", action="store_true",
  5845. help="extract only the vocab",
  5846. )
  5847. parser.add_argument(
  5848. "--outfile", type=Path,
  5849. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  5850. )
  5851. parser.add_argument(
  5852. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  5853. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  5854. )
  5855. parser.add_argument(
  5856. "--bigendian", action="store_true",
  5857. help="model is executed on big endian machine",
  5858. )
  5859. parser.add_argument(
  5860. "model", type=str,
  5861. help="directory containing model file or huggingface repository ID (if --remote)",
  5862. nargs="?",
  5863. )
  5864. parser.add_argument(
  5865. "--use-temp-file", action="store_true",
  5866. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  5867. )
  5868. parser.add_argument(
  5869. "--no-lazy", action="store_true",
  5870. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  5871. )
  5872. parser.add_argument(
  5873. "--model-name", type=str, default=None,
  5874. help="name of the model",
  5875. )
  5876. parser.add_argument(
  5877. "--verbose", action="store_true",
  5878. help="increase output verbosity",
  5879. )
  5880. parser.add_argument(
  5881. "--split-max-tensors", type=int, default=0,
  5882. help="max tensors in each split",
  5883. )
  5884. parser.add_argument(
  5885. "--split-max-size", type=str, default="0",
  5886. help="max size per split N(M|G)",
  5887. )
  5888. parser.add_argument(
  5889. "--dry-run", action="store_true",
  5890. help="only print out a split plan and exit, without writing any new files",
  5891. )
  5892. parser.add_argument(
  5893. "--no-tensor-first-split", action="store_true",
  5894. help="do not add tensors to the first split (disabled by default)"
  5895. )
  5896. parser.add_argument(
  5897. "--metadata", type=Path,
  5898. help="Specify the path for an authorship metadata override file"
  5899. )
  5900. parser.add_argument(
  5901. "--print-supported-models", action="store_true",
  5902. help="Print the supported models"
  5903. )
  5904. parser.add_argument(
  5905. "--remote", action="store_true",
  5906. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5907. )
  5908. parser.add_argument(
  5909. "--mmproj", action="store_true",
  5910. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5911. )
  5912. args = parser.parse_args()
  5913. if not args.print_supported_models and args.model is None:
  5914. parser.error("the following arguments are required: model")
  5915. return args
  5916. def split_str_to_n_bytes(split_str: str) -> int:
  5917. if split_str.endswith("K"):
  5918. n = int(split_str[:-1]) * 1000
  5919. elif split_str.endswith("M"):
  5920. n = int(split_str[:-1]) * 1000 * 1000
  5921. elif split_str.endswith("G"):
  5922. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5923. elif split_str.isnumeric():
  5924. n = int(split_str)
  5925. else:
  5926. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5927. if n < 0:
  5928. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5929. return n
  5930. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5931. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5932. # maybe we should fallback to text model's arch in that case, since not many models have both
  5933. text_config = hparams.get("text_config", {})
  5934. vision_config = hparams.get("vision_config", {})
  5935. arch = None
  5936. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  5937. arch = arches[0]
  5938. elif "ssm_cfg" in hparams:
  5939. # For non-hf Mamba and Mamba2 models
  5940. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  5941. # if "architectures" is found in the sub-config, use that instead
  5942. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5943. arch = text_config["architectures"][0]
  5944. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5945. arch = vision_config["architectures"][0]
  5946. if arch is None:
  5947. raise ValueError("Failed to detect model architecture")
  5948. return arch
  5949. def main() -> None:
  5950. args = parse_args()
  5951. if args.print_supported_models:
  5952. logger.error("Supported models:")
  5953. ModelBase.print_registered_models()
  5954. sys.exit(0)
  5955. if args.verbose:
  5956. logging.basicConfig(level=logging.DEBUG)
  5957. else:
  5958. logging.basicConfig(level=logging.INFO)
  5959. if args.remote:
  5960. hf_repo_id = args.model
  5961. from huggingface_hub import snapshot_download
  5962. local_dir = snapshot_download(
  5963. repo_id=hf_repo_id,
  5964. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5965. dir_model = Path(local_dir)
  5966. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5967. else:
  5968. hf_repo_id = None
  5969. dir_model = Path(args.model)
  5970. if not dir_model.is_dir():
  5971. logger.error(f'Error: {dir_model} is not a directory')
  5972. sys.exit(1)
  5973. ftype_map: dict[str, gguf.LlamaFileType] = {
  5974. "f32": gguf.LlamaFileType.ALL_F32,
  5975. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5976. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5977. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5978. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5979. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5980. "auto": gguf.LlamaFileType.GUESSED,
  5981. }
  5982. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5983. if args.use_temp_file and is_split:
  5984. logger.error("Error: Cannot use temp file when splitting")
  5985. sys.exit(1)
  5986. if args.outfile is not None:
  5987. fname_out = args.outfile
  5988. elif hf_repo_id:
  5989. # if remote, use the model ID as the output file name
  5990. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  5991. else:
  5992. fname_out = dir_model
  5993. logger.info(f"Loading model: {dir_model.name}")
  5994. if args.mmproj:
  5995. if "mmproj" not in fname_out.name:
  5996. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5997. with torch.inference_mode():
  5998. output_type = ftype_map[args.outtype]
  5999. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6000. hparams = ModelBase.load_hparams(dir_model)
  6001. model_architecture = get_model_architecture(hparams, model_type)
  6002. logger.info(f"Model architecture: {model_architecture}")
  6003. try:
  6004. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6005. except NotImplementedError:
  6006. logger.error(f"Model {model_architecture} is not supported")
  6007. sys.exit(1)
  6008. model_instance = model_class(dir_model, output_type, fname_out,
  6009. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6010. eager=args.no_lazy,
  6011. metadata_override=args.metadata, model_name=args.model_name,
  6012. split_max_tensors=args.split_max_tensors,
  6013. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6014. small_first_shard=args.no_tensor_first_split,
  6015. remote_hf_model_id=hf_repo_id)
  6016. if args.vocab_only:
  6017. logger.info("Exporting model vocab...")
  6018. model_instance.write_vocab()
  6019. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6020. else:
  6021. logger.info("Exporting model...")
  6022. model_instance.write()
  6023. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6024. logger.info(f"Model successfully exported to {out_path}")
  6025. if __name__ == '__main__':
  6026. main()