| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003 |
- // TODO refactor
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "ggml-opt.h"
- #include <cmath>
- #include <cinttypes>
- #include <cstring>
- #include <random>
- #include <string>
- #include <thread>
- #include <vector>
- #define TEST_LOG(...) printf(__VA_ARGS__)
- static bool almost_equal(const double a, const double b, const double atol) {
- return fabs(a - b) < atol;
- }
- constexpr int64_t ne_datapoint = 2;
- constexpr int64_t ne_label = 1;
- constexpr int64_t ndata = 6;
- struct helper_ctx_data {
- std::vector<ggml_opt_dataset_t> datasets_supervised;
- std::vector<struct ggml_tensor *> data_batch;
- std::vector<struct ggml_tensor *> labels_batch;
- ggml_opt_dataset_t dataset_unsupervised;
- struct ggml_context * ctx_static;
- struct ggml_context * ctx_compute;
- struct ggml_opt_params opt_params;
- ggml_opt_context_t opt_ctx;
- struct ggml_tensor * inputs;
- struct ggml_tensor * weights;
- struct ggml_tensor * outputs;
- ggml_backend_buffer_t buf;
- ggml_opt_result_t result;
- ggml_opt_result_t result2;
- };
- // These default values make it easier to check optimization results vs. expected values.
- static ggml_opt_optimizer_params helper_get_test_opt_pars(void * userdata) {
- ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(userdata);
- result.adamw.alpha = 1.0f;
- result.adamw.beta1 = 0.0f;
- result.adamw.beta2 = 0.0f;
- result.adamw.eps = 0.0f;
- result.adamw.wd = 0.0f;
- result.sgd.wd = 0.0f;
- result.sgd.alpha = 1.0f;
- return result;
- }
- static helper_ctx_data helper_get_ctx_data(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched,
- ggml_backend_t backend,
- const bool init_opt_ctx = true,
- const bool optimizer_defaults = true,
- int64_t nbatch_logical = 1,
- int64_t nbatch_physical = 1,
- enum ggml_opt_loss_type loss_type = GGML_OPT_LOSS_TYPE_SUM) {
- std::vector<ggml_opt_dataset_t> datasets(ndata);
- for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) {
- ggml_opt_dataset_t dataset = ggml_opt_dataset_init(
- GGML_TYPE_F32, GGML_TYPE_F32, ne_datapoint, ne_label, ndata, ndata_shard);
- float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset));
- float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset));
- for (int64_t idata = 0; idata < ndata; ++idata) {
- for (int64_t id = 0; id < ne_datapoint; ++id) {
- data[ idata*ne_datapoint + id] = 16*idata + id;
- }
- for (int64_t il = 0; il < ne_label; ++il) {
- labels[idata*ne_label + il] = 16*(16*idata + il);
- }
- }
- datasets[ndata_shard-1] = dataset;
- }
- ggml_opt_dataset_t dataset_unsupervised = ggml_opt_dataset_init(
- GGML_TYPE_F32, GGML_TYPE_F32, 1, 0, ndata, /*ndata_shard =*/ 1);
- float * data = ggml_get_data_f32(ggml_opt_dataset_data(dataset_unsupervised));
- for (int64_t idata = 0; idata < ndata; ++idata) {
- data[idata] = idata;
- }
- struct ggml_context * ctx_static;
- struct ggml_context * ctx_compute;
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ (2*ndata + 2)*ggml_tensor_overhead(),
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- ctx_static = ggml_init(params);
- }
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(),
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- ctx_compute = ggml_init(params);
- }
- std::vector<struct ggml_tensor *> data_batch(ndata);
- std::vector<struct ggml_tensor *> labels_batch(ndata);
- for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) {
- data_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_datapoint);
- labels_batch[ndata_batch-1] = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, ndata_batch*ne_label);
- }
- struct ggml_tensor * inputs = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, nbatch_physical);
- ggml_set_name(inputs, "inputs");
- struct ggml_tensor * weights = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1);
- ggml_set_name(weights, "weights");
- ggml_set_param(weights);
- struct ggml_tensor * intermediary = ggml_add(ctx_compute, inputs, weights);
- struct ggml_tensor * outputs = ggml_scale(ctx_compute, intermediary, 1.0f);
- ggml_set_name(outputs, "outputs");
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend);
- const float w0 = float(ndata)/2;
- ggml_backend_tensor_set(weights, &w0, 0, sizeof(float));
- GGML_ASSERT(nbatch_logical % nbatch_physical == 0);
- const int32_t opt_period = nbatch_logical / nbatch_physical;
- struct ggml_opt_params opt_params = ggml_opt_default_params(backend_sched, loss_type);
- opt_params.ctx_compute = ctx_compute;
- opt_params.inputs = inputs;
- opt_params.outputs = outputs;
- opt_params.opt_period = opt_period;
- opt_params.optimizer = optim;
- if (!optimizer_defaults) {
- opt_params.get_opt_pars = helper_get_test_opt_pars;
- }
- GGML_ASSERT(opt_params.get_opt_pars);
- ggml_opt_context_t opt_ctx = init_opt_ctx ? ggml_opt_init(opt_params) : nullptr;
- GGML_ASSERT(!opt_ctx || ggml_opt_context_optimizer_type(opt_ctx) == opt_params.optimizer);
- ggml_opt_result_t result = ggml_opt_result_init();
- ggml_opt_result_t result2 = ggml_opt_result_init();
- return {datasets, data_batch, labels_batch, dataset_unsupervised, ctx_static, ctx_compute, opt_params, opt_ctx, inputs, weights, outputs, buf, result, result2};
- }
- static void helper_free_ctx_data(struct helper_ctx_data ctx_data) {
- ggml_opt_result_free(ctx_data.result);
- ggml_opt_result_free(ctx_data.result2);
- ggml_opt_free(ctx_data.opt_ctx);
- ggml_backend_buffer_free(ctx_data.buf);
- ggml_free(ctx_data.ctx_static);
- ggml_free(ctx_data.ctx_compute);
- for (ggml_opt_dataset_t dataset : ctx_data.datasets_supervised) {
- ggml_opt_dataset_free(dataset);
- }
- ggml_opt_dataset_free(ctx_data.dataset_unsupervised);
- }
- static void print_ok(bool subtest_ok) {
- printf(subtest_ok ? "\033[1;32mOK\033[0m\n" : "\033[1;31mFAIL\033[0m\n");
- }
- static void helper_after_test(
- enum ggml_opt_optimizer_type optim,
- const char * func, const bool high_level, const std::string options,
- const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
- printf(" %s(high_level=%s%s, subtest=%s, optimizer=%s): ",
- func, high_level ? "yes" : "no", options.c_str(), subtest.c_str(), ggml_opt_optimizer_name(optim));
- print_ok(subtest_ok);
- if (subtest_ok)
- npass++;
- ntest++;
- }
- static void print_ok(const char * func, bool subtest_ok, int & npass, int & ntest, const char * args = "") {
- printf(" %s(%s): ", func, args);
- print_ok(subtest_ok);
- if (subtest_ok)
- npass++;
- ++ntest;
- }
- static std::pair<int, int> test_dataset(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool shuffle) {
- int ntest = 0;
- int npass = 0;
- struct helper_ctx_data cd = helper_get_ctx_data(optim, backend_sched, backend);
- for (int64_t ndata_shard = 1; ndata_shard <= ndata; ++ndata_shard) {
- ggml_opt_dataset_t dataset = cd.datasets_supervised[ndata_shard-1];
- if (shuffle) {
- ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
- }
- for (int64_t ndata_batch = 1; ndata_batch <= ndata; ++ndata_batch) {
- if (ndata_batch % ndata_shard != 0) {
- continue;
- }
- bool subtest_ok = true;
- struct ggml_tensor * data_batch = cd.data_batch[ndata_batch-1];
- struct ggml_tensor * labels_batch = cd.labels_batch[ndata_batch-1];
- std::vector<float> data(ggml_nelements( data_batch));
- std::vector<float> labels(ggml_nelements(labels_batch));
- std::vector<int64_t> idata_shuffled;
- const int64_t nbatches = ndata / ndata_batch;
- for (int64_t ibatch = 0; ibatch < nbatches; ++ibatch) {
- ggml_opt_dataset_get_batch(dataset, data_batch, labels_batch, ibatch);
- ggml_backend_tensor_get( data_batch, data.data(), 0, ggml_nbytes( data_batch));
- ggml_backend_tensor_get(labels_batch, labels.data(), 0, ggml_nbytes(labels_batch));
- for (int64_t idata_batch = 0; idata_batch < ndata_batch; ++idata_batch) {
- const int64_t idata = ibatch*ndata_batch + idata_batch;
- const int64_t idata_found = data[idata_batch*ne_datapoint] / 16;
- subtest_ok = subtest_ok && (shuffle || idata_found == idata);
- idata_shuffled.push_back(idata_found);
- for (int64_t id = 0; id < ne_datapoint; ++id) {
- if (data[ idata_batch*ne_datapoint + id] != 16*idata_found + id) {
- subtest_ok = false;
- }
- }
- for (int64_t il = 0; il < ne_label; ++il) {
- if (labels[idata_batch*ne_label + il] != 16*(16*idata_found + il)) {
- subtest_ok = false;
- }
- }
- }
- }
- if (!shuffle || ndata % ndata_batch == 0) {
- const int ndata_max = (ndata / ndata_batch) * ndata_batch;
- for (int64_t idata = 0; subtest_ok && idata < ndata_max; ++idata) {
- int ninstances = 0;
- for (int64_t id : idata_shuffled) {
- ninstances += id == idata;
- }
- if (ninstances != 1) {
- subtest_ok = false;
- }
- }
- }
- printf(" %s(shuffle=%s, ndata_shard=%" PRId64 ", ndata_batch=%" PRId64 "): ",
- __func__, shuffle ? "yes" : "no", ndata_shard, ndata_batch);
- if (subtest_ok) {
- printf("\033[1;32mOK\033[0m\n");
- npass++;
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- ntest++;
- }
- }
- helper_free_ctx_data(cd);
- return std::make_pair(npass, ntest);
- }
- static std::pair<int, int> test_grad(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched, ggml_backend_t backend) {
- int ntest = 0;
- int npass = 0;
- struct helper_ctx_data cd = helper_get_ctx_data(optim, backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false,
- /*nbatch_logical =*/ 999999, /*nbatch_physical =*/ 1);
- std::vector<float> grad_history(ndata);
- for (int64_t idata = 0; idata < ndata; ++idata) {
- grad_history[idata] = NAN;
- }
- for (int idata = 0; idata < ndata; ++idata) {
- const float idataf = idata;
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ true);
- // leaked
- ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
- ggml_opt_eval(cd.opt_ctx, cd.result);
- ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, sizeof(float));
- }
- {
- bool subtest_ok = true;
- for (int idata = 0; idata < ndata; ++idata) {
- if (grad_history[idata] != idata + 1) {
- subtest_ok = false;
- }
- }
- printf(" %s(): ", __func__);
- if (subtest_ok) {
- printf("\033[1;32mOK\033[0m\n");
- npass++;
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- ntest++;
- }
- helper_free_ctx_data(cd);
- return std::make_pair(npass, ntest);
- }
- static void helper_after_test_forward_backward(
- enum ggml_opt_optimizer_type optim,
- const char * func, const bool high_level, const bool shuffle,
- const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
- std::string options = ", shuffle=";
- options += shuffle ? "yes" : "no";
- helper_after_test(optim, func, high_level, options, subtest, subtest_ok, ntest, npass);
- }
- static std::pair<int, int> test_forward_backward(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level, const bool shuffle) {
- int ntest = 0;
- int npass = 0;
- struct helper_ctx_data cd = helper_get_ctx_data(optim, backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false);
- struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx);
- std::vector<float> loss_history(ndata);
- for (int64_t idata = 0; idata < ndata; ++idata) {
- loss_history[idata] = NAN;
- }
- {
- int64_t ndata;
- ggml_opt_result_ndata(cd.result, &ndata);
- double loss;
- double loss_unc;
- ggml_opt_result_loss(cd.result, &loss, &loss_unc);
- double accuracy;
- double accuracy_unc;
- ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
- const bool subtest_ok = ndata == 0 && almost_equal(loss, 0.0, 1e-6) && std::isnan(loss_unc) && std::isnan(accuracy) && std::isnan(accuracy_unc);
- helper_after_test_forward_backward(optim, __func__, high_level, shuffle, "results_initial", subtest_ok, ntest, npass);
- }
- if (high_level) {
- ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
- if (shuffle) {
- ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
- }
- ggml_opt_epoch(cd.opt_ctx, dataset, nullptr, cd.result, 0, nullptr, nullptr);
- } else {
- for (int idata = 0; idata < ndata; ++idata) {
- const float idataf = idata;
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ false);
- ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
- ggml_opt_eval(cd.opt_ctx, cd.result);
- ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
- }
- }
- {
- float weights;
- ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
- const bool subtest_ok = almost_equal(weights, ndata/2, 1e-10);
- helper_after_test_forward_backward(optim, __func__, high_level, shuffle, "weights_after_forward", subtest_ok, ntest, npass);
- }
- {
- constexpr double atol = 1e-10;
- int64_t ndata;
- ggml_opt_result_ndata(cd.result, &ndata);
- bool subtest_ok = ndata == 6;
- double loss;
- double loss_unc;
- ggml_opt_result_loss(cd.result, &loss, &loss_unc);
- subtest_ok = subtest_ok && almost_equal(loss, 33.0, atol) && almost_equal(loss_unc, sqrt(3.5), atol);
- double accuracy;
- double accuracy_unc;
- ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
- subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
- helper_after_test_forward_backward(optim, __func__, high_level, shuffle, "results_after_forward", subtest_ok, ntest, npass);
- }
- float w0;
- ggml_backend_tensor_get(cd.weights, &w0, 0, sizeof(float));
- for (int i = 0; i < 10; ++i) {
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ true);
- // leaked.
- ggml_opt_eval(cd.opt_ctx, cd.result);
- }
- ggml_backend_tensor_set(cd.weights, &w0, 0, sizeof(float));
- ggml_opt_reset(cd.opt_ctx, /*optimizer =*/ false);
- ggml_opt_result_reset(cd.result);
- for (int64_t idata = 0; idata < ndata; ++idata) {
- loss_history[idata] = NAN;
- }
- if (high_level) {
- ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
- if (shuffle) {
- ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
- }
- ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr);
- } else {
- for (int idata = 0; idata < ndata; ++idata) {
- const float idataf = idata;
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ true);
- ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
- ggml_opt_eval(cd.opt_ctx, cd.result);
- ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
- }
- }
- {
- float weights;
- ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
- const bool subtest_ok = almost_equal(weights, -ndata * 0.5, 1e-10);
- helper_after_test_forward_backward(optim, __func__, high_level, shuffle, "weights_after_forward_backward", subtest_ok, ntest, npass);
- }
- {
- int64_t ndata;
- ggml_opt_result_ndata(cd.result, &ndata);
- bool subtest_ok = ndata == 6;
- double loss;
- double loss_unc;
- ggml_opt_result_loss(cd.result, &loss, &loss_unc);
- subtest_ok = subtest_ok && almost_equal(loss, 18.0, 1e-10) && (shuffle || loss_unc == 0.0);
- double accuracy;
- double accuracy_unc;
- ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
- subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
- helper_after_test_forward_backward(optim, __func__, high_level, shuffle, "result_after_forward_backward", subtest_ok, ntest, npass);
- }
- helper_free_ctx_data(cd);
- return std::make_pair(npass, ntest);
- }
- static std::pair<int, int> test_epoch_vs_fit(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched, ggml_backend_t backend) {
- int ntest = 0;
- int npass = 0;
- float weights_epoch;
- float weights_fit;
- {
- struct helper_ctx_data cd = helper_get_ctx_data(optim, backend_sched, backend, /*init_opt_ctx =*/ true);
- ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
- ggml_opt_dataset_shuffle(cd.opt_ctx, dataset, -1);
- ggml_opt_epoch(cd.opt_ctx, dataset, cd.result, nullptr, ndata, nullptr, nullptr);
- // leaked.
- ggml_backend_tensor_get(cd.weights, &weights_epoch, 0, ggml_nbytes(cd.weights));
- helper_free_ctx_data(cd);
- }
- {
- struct helper_ctx_data cd = helper_get_ctx_data(optim, backend_sched, backend, /*init_opt_ctx =*/ false);
- ggml_opt_dataset_t dataset = cd.dataset_unsupervised;
- ggml_opt_fit(backend_sched, cd.ctx_compute, cd.inputs, cd.outputs, dataset, GGML_OPT_LOSS_TYPE_SUM,
- optim, ggml_opt_get_default_optimizer_params, 1, 1, 0.0f, true);
- ggml_backend_tensor_get(cd.weights, &weights_fit, 0, ggml_nbytes(cd.weights));
- helper_free_ctx_data(cd);
- }
- const bool subtest_ok = weights_epoch == weights_fit;
- print_ok(__func__, subtest_ok, npass, ntest);
- return std::make_pair(npass, ntest);
- }
- static void helper_after_test_idata_split(
- enum ggml_opt_optimizer_type optim,
- const char * func, const bool high_level, const int epoch,
- const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
- std::string options = ", epoch=";
- options += std::to_string(epoch);
- helper_after_test(optim, func, high_level, options, subtest, subtest_ok, ntest, npass);
- }
- static std::pair<int, int> test_idata_split(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched, ggml_backend_t backend, const bool high_level) {
- int ntest = 0;
- int npass = 0;
- struct helper_ctx_data cd = helper_get_ctx_data(optim, backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false);
- struct ggml_tensor * loss = ggml_opt_loss(cd.opt_ctx);
- const int idata_split = ndata * 2/3;
- std::vector<float> loss_history(ndata);
- for (int64_t idata = 0; idata < ndata; ++idata) {
- loss_history[idata] = NAN;
- }
- bool const adamw = optim == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
- for (int epoch = 1; epoch <= 4; ++epoch) {
- if (high_level) {
- ggml_opt_epoch(cd.opt_ctx, cd.dataset_unsupervised, cd.result, cd.result2, idata_split, nullptr, nullptr);
- } else {
- int idata = 0;
- for (; idata < idata_split; ++idata) {
- const float idataf = idata;
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ true);
- ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
- ggml_opt_eval(cd.opt_ctx, cd.result);
- ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
- }
- for (; idata < ndata; ++idata) {
- const float idataf = idata;
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ false);
- ggml_backend_tensor_set(cd.inputs, &idataf, 0, ggml_nbytes(cd.inputs));
- ggml_opt_eval(cd.opt_ctx, cd.result2);
- ggml_backend_tensor_get(loss, loss_history.data() + idata, 0, sizeof(float));
- }
- }
- if (adamw) {
- float weights;
- ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
- const bool subtest_ok = almost_equal(weights, ndata/2 - epoch*idata_split, 1e-10);
- helper_after_test_idata_split(optim, __func__, high_level, epoch, "weights", subtest_ok, ntest, npass);
- }
- if (adamw) {
- constexpr double atol = 1e-10;
- int64_t ndata_result;
- ggml_opt_result_ndata(cd.result, &ndata_result);
- bool subtest_ok = ndata_result == idata_split;
- double loss;
- double loss_unc;
- ggml_opt_result_loss(cd.result, &loss, &loss_unc);
- subtest_ok = subtest_ok && almost_equal(loss, 28.0 - epoch*16.0, atol) && almost_equal(loss_unc, 0.0, atol);
- double accuracy;
- double accuracy_unc;
- ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
- subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
- helper_after_test_idata_split(optim, __func__, high_level, epoch, "results_backward", subtest_ok, ntest, npass);
- }
- if (adamw) {
- constexpr double atol = 1e-10;
- int64_t ndata_result;
- ggml_opt_result_ndata(cd.result2, &ndata_result);
- bool subtest_ok = ndata_result == ndata - idata_split;
- double loss;
- double loss_unc;
- ggml_opt_result_loss(cd.result2, &loss, &loss_unc);
- subtest_ok = subtest_ok && almost_equal(loss, 15.0 - epoch*8, atol) && almost_equal(loss_unc, sqrt(0.5), atol);
- double accuracy;
- double accuracy_unc;
- ggml_opt_result_accuracy(cd.result2, &accuracy, &accuracy_unc);
- subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
- helper_after_test_idata_split(optim, __func__, high_level, epoch, "results_forward", subtest_ok, ntest, npass);
- }
- ggml_opt_result_reset(cd.result);
- ggml_opt_result_reset(cd.result2);
- }
- helper_free_ctx_data(cd);
- return std::make_pair(npass, ntest);
- }
- static void helper_after_test_gradient_accumulation(
- enum ggml_opt_optimizer_type optim,
- const char * func, const int nbatch_physical, const enum ggml_opt_loss_type loss_type, const int epoch,
- const std::string subtest, const bool subtest_ok, int & ntest, int & npass) {
- std::string options = ", nbatch_physical=";
- options += std::to_string(nbatch_physical);
- options += ", loss_type=";
- options += loss_type == GGML_OPT_LOSS_TYPE_MEAN ? "mean" : "sum";
- options += ", epoch=";
- options += std::to_string(epoch);
- helper_after_test(optim, func, false, options, subtest, subtest_ok, ntest, npass);
- }
- static std::pair<int, int> test_gradient_accumulation(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched, ggml_backend_t backend, const int32_t nbatch_physical, const enum ggml_opt_loss_type loss_type) {
- int ntest = 0;
- int npass = 0;
- struct helper_ctx_data cd = helper_get_ctx_data(
- optim,
- backend_sched, backend, /*init_opt_ctx =*/ true, /*optimizer_defaults =*/ false, /*nbatch_logical =*/ 6, nbatch_physical, loss_type);
- std::vector<float> grad_history(ndata);
- for (int64_t idata = 0; idata < ndata; ++idata) {
- grad_history[idata] = NAN;
- }
- bool const adamw = optim == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
- if (adamw)
- for (int epoch = 1; epoch <= 4; ++epoch) {
- if (nbatch_physical == 1) {
- for (int idata = 0; idata < ndata; ++idata) {
- const float idataf = idata;
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ true);
- ggml_backend_tensor_set(cd.inputs, &idataf, 0, 1*sizeof(float));
- ggml_opt_eval(cd.opt_ctx, cd.result);
- ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata, 0, 1*sizeof(float));
- }
- } else if (nbatch_physical == 2) {
- for (int idata = 0; idata < ndata; idata += 2) {
- const float idataf[2] = {float(idata + 0), float(idata + 1)};
- ggml_opt_alloc(cd.opt_ctx, /*backward =*/ true);
- ggml_backend_tensor_set(cd.inputs, idataf, 0, 2*sizeof(float));
- ggml_opt_eval(cd.opt_ctx, cd.result);
- grad_history[idata + 0] = 0.0f;
- ggml_backend_tensor_get(ggml_opt_grad_acc(cd.opt_ctx, cd.weights), grad_history.data() + idata + 1, 0, 1*sizeof(float));
- }
- } else {
- GGML_ASSERT(false);
- }
- {
- GGML_ASSERT(ndata == 6);
- constexpr double atol = 1e-6;
- bool subtest_ok = true;
- if (loss_type == GGML_OPT_LOSS_TYPE_SUM) {
- if (nbatch_physical == 1) {
- subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0, atol);
- } else {
- subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0, atol);
- }
- subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[5], 6.0, atol);
- } else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) {
- if (nbatch_physical == 1) {
- subtest_ok = subtest_ok && almost_equal(grad_history[0], 1.0/ndata, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[2], 3.0/ndata, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[4], 5.0/ndata, atol);
- } else {
- subtest_ok = subtest_ok && almost_equal(grad_history[0], 0.0/ndata, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[2], 0.0/ndata, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[4], 0.0/ndata, atol);
- }
- subtest_ok = subtest_ok && almost_equal(grad_history[1], 2.0/ndata, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[3], 4.0/ndata, atol);
- subtest_ok = subtest_ok && almost_equal(grad_history[5], 6.0/ndata, atol);
- } else {
- GGML_ASSERT(false);
- }
- helper_after_test_gradient_accumulation(optim, __func__, nbatch_physical, loss_type, epoch, "grads", subtest_ok, ntest, npass);
- }
- bool const adamw = optim == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
- if (adamw) {
- constexpr double atol = 1e-6;
- float weights;
- ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
- const bool subtest_ok = almost_equal(weights, (ndata/2) - epoch, atol);
- helper_after_test_gradient_accumulation(optim, __func__, nbatch_physical, loss_type, epoch, "weights", subtest_ok, ntest, npass);
- }
- {
- constexpr double atol = 1e-6;
- int64_t ndata_result;
- ggml_opt_result_ndata(cd.result, &ndata_result);
- bool subtest_ok = almost_equal(ndata_result, ndata/nbatch_physical, atol);
- double loss;
- ggml_opt_result_loss(cd.result, &loss, /*loss_unc =*/ nullptr);
- if (loss_type == GGML_OPT_LOSS_TYPE_SUM) {
- subtest_ok = subtest_ok && almost_equal(loss, (39.0 - epoch*6.0), atol);
- } else if (loss_type == GGML_OPT_LOSS_TYPE_MEAN) {
- subtest_ok = subtest_ok && almost_equal(loss, (39.0 - epoch*6.0) / ndata, atol);
- } else {
- GGML_ASSERT(false);
- }
- double accuracy;
- double accuracy_unc;
- ggml_opt_result_accuracy(cd.result, &accuracy, &accuracy_unc);
- subtest_ok = subtest_ok && std::isnan(accuracy) && std::isnan(accuracy_unc);
- helper_after_test_gradient_accumulation(optim, __func__, nbatch_physical, loss_type, epoch, "results", subtest_ok, ntest, npass);
- }
- ggml_opt_result_reset(cd.result);
- }
- helper_free_ctx_data(cd);
- return std::make_pair(npass, ntest);
- }
- float constexpr g_sgd_lr = 1e-4f;
- int constexpr g_sgd_epochs = 900;
- static ggml_opt_optimizer_params helper_get_regression_opt_pars(void * userdata) {
- int64_t epoch = *(int64_t*)userdata;
- ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
- result.adamw.alpha = 0.1f;
- result.sgd.alpha = g_sgd_lr * std::pow(.99, 1000 * (double)epoch / g_sgd_epochs);
- result.sgd.wd = 1e-10;
- return result;
- }
- static std::pair<int, int> test_regression(
- enum ggml_opt_optimizer_type optim,
- ggml_backend_sched_t backend_sched, ggml_backend_t backend) {
- int ntest = 0;
- int npass = 0;
- // Test for simple regression with f(x) = a*x + b
- constexpr int64_t ndata_regression = 201;
- constexpr float a_true = 1.2f;
- constexpr float b_true = 3.4f;
- std::mt19937 gen(12345);
- std::normal_distribution<float> nd{0.0f, 0.1f};
- ggml_opt_dataset_t dataset = ggml_opt_dataset_init(
- GGML_TYPE_F32, GGML_TYPE_F32, 1, 1, ndata_regression, ndata_regression);
- float * data = ggml_get_data_f32(ggml_opt_dataset_data( dataset));
- float * labels = ggml_get_data_f32(ggml_opt_dataset_labels(dataset));
- constexpr float x_min = -100.0f;
- constexpr float x_max = 100.0f;
- for (int64_t idata = 0; idata < ndata_regression; ++idata) {
- const float x = x_min + (x_max - x_min) * idata/(ndata_regression-1);
- const float y = a_true*x + b_true + nd(gen);
- data[idata] = x;
- labels[idata] = y;
- }
- struct ggml_context * ctx_static;
- struct ggml_context * ctx_compute;
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ 3*ggml_tensor_overhead(),
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- ctx_static = ggml_init(params);
- }
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE*ggml_tensor_overhead() + 3*ggml_graph_overhead(),
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- ctx_compute = ggml_init(params);
- }
- // The first dimension is the dimension of the datapoints, the second dimension is the number of datapoints.
- struct ggml_tensor * x = ggml_new_tensor_2d(ctx_static, GGML_TYPE_F32, 1, ndata_regression);
- ggml_set_name(x, "x");
- struct ggml_tensor * a = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1);
- ggml_set_name(a, "a");
- ggml_set_param(a);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx_static, GGML_TYPE_F32, 1);
- ggml_set_name(b, "b");
- ggml_set_param(b);
- struct ggml_tensor * f = ggml_add(ctx_compute, ggml_mul(ctx_compute, x, a), b);
- ggml_set_name(f, "f");
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx_static, backend);
- const float a0 = 1.0f;
- const float b0 = 3.0f;
- ggml_backend_tensor_set(a, &a0, 0, sizeof(float));
- ggml_backend_tensor_set(b, &b0, 0, sizeof(float));
- bool const adamw = optim == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
- int64_t const n_epoch = adamw ? 100 : g_sgd_epochs;
- ggml_opt_fit(backend_sched, ctx_compute, x, f, dataset, GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR, optim,
- helper_get_regression_opt_pars, n_epoch, ndata_regression, 0.0f, true);
- {
- float a_fit;
- ggml_backend_tensor_get(a, &a_fit, 0, sizeof(float));
- float b_fit;
- ggml_backend_tensor_get(b, &b_fit, 0, sizeof(float));
- float tol = adamw ? 1e-2 : 5e-2;
- const bool aok = almost_equal(a_fit, a_true, tol);
- const bool bok = almost_equal(b_fit, b_true, tol);
- const bool subtest_ok = aok && bok;
- print_ok(__func__, adamw ? subtest_ok : true, npass, ntest, "subtest=weights");
- }
- ggml_backend_buffer_free(buf);
- ggml_free(ctx_static);
- ggml_opt_dataset_free(dataset);
- return std::make_pair(npass, ntest);
- }
- static std::pair<int, int> test_backend(
- ggml_backend_sched_t backend_sched, ggml_backend_t backend, enum ggml_opt_optimizer_type optim) {
- int npass = 0;
- int ntest = 0;
- for (bool shuffle : {false, true}) {
- std::pair<int, int> partial = test_dataset(optim, backend_sched, backend, shuffle);
- npass += partial.first;
- ntest += partial.second;
- }
- {
- std::pair<int, int> partial = test_grad(optim, backend_sched, backend);
- npass += partial.first;
- ntest += partial.second;
- }
- for (bool high_level : {false, true}){
- for (bool shuffle : {false, true}) {
- if (!high_level && shuffle) {
- continue;
- }
- std::pair<int, int> partial = test_forward_backward(optim, backend_sched, backend, high_level, shuffle);
- npass += partial.first;
- ntest += partial.second;
- }
- }
- {
- std::pair<int, int> partial = test_epoch_vs_fit(optim, backend_sched, backend);
- npass += partial.first;
- ntest += partial.second;
- }
- for (bool high_level : {false, true}){
- std::pair<int, int> partial = test_idata_split(optim, backend_sched, backend, high_level);
- npass += partial.first;
- ntest += partial.second;
- }
- bool const adamw = optim == GGML_OPT_OPTIMIZER_TYPE_ADAMW;
- if (adamw) {
- for (int32_t nbatch_physical : { 2, 1 }) {
- for (enum ggml_opt_loss_type loss_type : { GGML_OPT_LOSS_TYPE_SUM, GGML_OPT_LOSS_TYPE_MEAN }) {
- std::pair<int, int> partial =
- test_gradient_accumulation(optim, backend_sched, backend, nbatch_physical, loss_type);
- npass += partial.first;
- ntest += partial.second;
- }
- }
- }
- {
- std::pair<int, int> partial = test_regression(optim, backend_sched, backend);
- npass += partial.first;
- ntest += partial.second;
- }
- return std::make_pair(npass, ntest);
- }
- int main(void) {
- ggml_log_set(nullptr, nullptr);
- ggml_backend_load_all();
- const size_t dev_count = ggml_backend_dev_count();
- printf("Testing %zu devices\n\n", dev_count);
- size_t n_ok = 0;
- std::vector<ggml_backend_dev_t> devs;
- std::vector<ggml_backend_t> backends;
- for (size_t i = 0; i < dev_count; ++i) {
- devs.push_back(ggml_backend_dev_get(i));
- ggml_backend_t backend = ggml_backend_dev_init(devs[i], NULL);
- GGML_ASSERT(backend != NULL);
- auto * reg = ggml_backend_dev_backend_reg(devs[i]);
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
- if (ggml_backend_set_n_threads_fn) {
- ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency() / 2);
- }
- backends.push_back(backend);
- }
- size_t n_total = 0;
- for (enum ggml_opt_optimizer_type optim : { GGML_OPT_OPTIMIZER_TYPE_ADAMW, GGML_OPT_OPTIMIZER_TYPE_SGD }) {
- for (size_t i = 0; i < dev_count; ++i) {
- // Put the backend to be tested in front so that it's prioritized:
- std::vector<ggml_backend_t> backends_modded = { backends[i] };
- backends_modded.insert(backends_modded.end(), backends.begin(), backends.end());
- ggml_backend_sched_t backend_sched = ggml_backend_sched_new(
- backends_modded.data(), nullptr, backends_modded.size(), GGML_DEFAULT_GRAPH_SIZE, false, true);
- char const* devname = ggml_backend_dev_name(devs[i]);
- printf("Backend %zu/%zu: %s\n", i + 1, dev_count, devname);
- printf(" Device description: %s\n", ggml_backend_dev_description(devs[i]));
- size_t free, total; // NOLINT
- ggml_backend_dev_memory(devs[i], &free, &total);
- printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
- printf("\n");
- bool skip;
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ 6*ggml_tensor_overhead(),
- /*.mem_buffer =*/ nullptr,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_set_param(a);
- ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_tensor * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_tensor * t = nullptr;
- switch (optim) {
- case GGML_OPT_OPTIMIZER_TYPE_ADAMW: {
- ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
- t = ggml_opt_step_adamw(ctx, a, b, c, d, p);
- } break;
- case GGML_OPT_OPTIMIZER_TYPE_SGD: {
- ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
- t = ggml_opt_step_sgd(ctx, a, b, p);
- } break;
- case GGML_OPT_OPTIMIZER_TYPE_COUNT: {
- GGML_ABORT("fatal error");
- }
- }
- skip = !ggml_backend_supports_op(backends[i], t);
- ggml_free(ctx);
- }
- std::pair<int, int> result;
- if (!skip) {
- result = test_backend(backend_sched, backends[i], optim);
- printf(" %d/%d tests passed\n", result.first, result.second);
- }
- printf(" Backend %s %s: ", ggml_backend_name(backends[i]), ggml_opt_optimizer_name(optim));
- if (skip) {
- printf("\033[0;33mSKIPPED\033[0m\n");
- n_ok++;
- } else if (result.first == result.second) {
- printf("\033[1;32mOK\033[0m\n");
- n_ok++;
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- ++n_total;
- printf("\n");
- ggml_backend_sched_free(backend_sched);
- }
- }
- for (ggml_backend_t backend : backends) {
- ggml_backend_free(backend);
- }
- printf("%zu/%zu backend*optimizer passed\n", n_ok, n_total);
- bool ok = n_ok == n_total;
- print_ok(ok);
- return ok ? 0 : 1;
- }
|