clip.cpp 186 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. int32_t proj_scale_factor = 0; // idefics3
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. int32_t spatial_merge_size = 0;
  167. // audio
  168. int32_t n_mel_bins = 0; // whisper preprocessor
  169. int32_t proj_stack_factor = 0; // ultravox
  170. // legacy
  171. bool has_llava_projector = false;
  172. int minicpmv_version = 0;
  173. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  174. };
  175. struct clip_layer {
  176. // attention
  177. ggml_tensor * k_w = nullptr;
  178. ggml_tensor * k_b = nullptr;
  179. ggml_tensor * q_w = nullptr;
  180. ggml_tensor * q_b = nullptr;
  181. ggml_tensor * v_w = nullptr;
  182. ggml_tensor * v_b = nullptr;
  183. ggml_tensor * o_w = nullptr;
  184. ggml_tensor * o_b = nullptr;
  185. ggml_tensor * k_norm = nullptr;
  186. ggml_tensor * q_norm = nullptr;
  187. // layernorm 1
  188. ggml_tensor * ln_1_w = nullptr;
  189. ggml_tensor * ln_1_b = nullptr;
  190. ggml_tensor * ff_up_w = nullptr;
  191. ggml_tensor * ff_up_b = nullptr;
  192. ggml_tensor * ff_gate_w = nullptr;
  193. ggml_tensor * ff_gate_b = nullptr;
  194. ggml_tensor * ff_down_w = nullptr;
  195. ggml_tensor * ff_down_b = nullptr;
  196. // layernorm 2
  197. ggml_tensor * ln_2_w = nullptr;
  198. ggml_tensor * ln_2_b = nullptr;
  199. // layer scale (no bias)
  200. ggml_tensor * ls_1_w = nullptr;
  201. ggml_tensor * ls_2_w = nullptr;
  202. };
  203. struct clip_model {
  204. clip_modality modality = CLIP_MODALITY_VISION;
  205. projector_type proj_type = PROJECTOR_TYPE_MLP;
  206. clip_hparams hparams;
  207. // embeddings
  208. ggml_tensor * class_embedding = nullptr;
  209. ggml_tensor * patch_embeddings_0 = nullptr;
  210. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  211. ggml_tensor * patch_bias = nullptr;
  212. ggml_tensor * position_embeddings = nullptr;
  213. ggml_tensor * pre_ln_w = nullptr;
  214. ggml_tensor * pre_ln_b = nullptr;
  215. std::vector<clip_layer> layers;
  216. ggml_tensor * post_ln_w;
  217. ggml_tensor * post_ln_b;
  218. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  219. ggml_tensor * mm_fc_w;
  220. ggml_tensor * mm_fc_b;
  221. // LLaVA projection
  222. ggml_tensor * mm_input_norm_w = nullptr;
  223. ggml_tensor * mm_input_norm_b = nullptr;
  224. ggml_tensor * mm_0_w = nullptr;
  225. ggml_tensor * mm_0_b = nullptr;
  226. ggml_tensor * mm_2_w = nullptr;
  227. ggml_tensor * mm_2_b = nullptr;
  228. ggml_tensor * image_newline = nullptr;
  229. // Yi type models with mlp+normalization projection
  230. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  231. ggml_tensor * mm_1_b = nullptr;
  232. ggml_tensor * mm_3_w = nullptr;
  233. ggml_tensor * mm_3_b = nullptr;
  234. ggml_tensor * mm_4_w = nullptr;
  235. ggml_tensor * mm_4_b = nullptr;
  236. // GLMV-Edge projection
  237. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  238. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  239. ggml_tensor * mm_glm_tok_boi = nullptr;
  240. ggml_tensor * mm_glm_tok_eoi = nullptr;
  241. // MobileVLM projection
  242. ggml_tensor * mm_model_mlp_1_w = nullptr;
  243. ggml_tensor * mm_model_mlp_1_b = nullptr;
  244. ggml_tensor * mm_model_mlp_3_w = nullptr;
  245. ggml_tensor * mm_model_mlp_3_b = nullptr;
  246. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  247. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  248. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  249. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  250. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  251. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  252. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  253. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  254. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  255. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  256. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  257. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  258. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  259. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  260. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  261. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  262. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  263. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  264. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  265. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  266. // MobileVLM_V2 projection
  267. ggml_tensor * mm_model_mlp_0_w = nullptr;
  268. ggml_tensor * mm_model_mlp_0_b = nullptr;
  269. ggml_tensor * mm_model_mlp_2_w = nullptr;
  270. ggml_tensor * mm_model_mlp_2_b = nullptr;
  271. ggml_tensor * mm_model_peg_0_w = nullptr;
  272. ggml_tensor * mm_model_peg_0_b = nullptr;
  273. // MINICPMV projection
  274. ggml_tensor * mm_model_pos_embed_k = nullptr;
  275. ggml_tensor * mm_model_query = nullptr;
  276. ggml_tensor * mm_model_proj = nullptr;
  277. ggml_tensor * mm_model_kv_proj = nullptr;
  278. ggml_tensor * mm_model_attn_q_w = nullptr;
  279. ggml_tensor * mm_model_attn_q_b = nullptr;
  280. ggml_tensor * mm_model_attn_k_w = nullptr;
  281. ggml_tensor * mm_model_attn_k_b = nullptr;
  282. ggml_tensor * mm_model_attn_v_w = nullptr;
  283. ggml_tensor * mm_model_attn_v_b = nullptr;
  284. ggml_tensor * mm_model_attn_o_w = nullptr;
  285. ggml_tensor * mm_model_attn_o_b = nullptr;
  286. ggml_tensor * mm_model_ln_q_w = nullptr;
  287. ggml_tensor * mm_model_ln_q_b = nullptr;
  288. ggml_tensor * mm_model_ln_kv_w = nullptr;
  289. ggml_tensor * mm_model_ln_kv_b = nullptr;
  290. ggml_tensor * mm_model_ln_post_w = nullptr;
  291. ggml_tensor * mm_model_ln_post_b = nullptr;
  292. // gemma3
  293. ggml_tensor * mm_input_proj_w = nullptr;
  294. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  295. // pixtral
  296. ggml_tensor * token_embd_img_break = nullptr;
  297. ggml_tensor * mm_patch_merger_w = nullptr;
  298. // ultravox / whisper encoder
  299. ggml_tensor * conv1d_1_w = nullptr;
  300. ggml_tensor * conv1d_1_b = nullptr;
  301. ggml_tensor * conv1d_2_w = nullptr;
  302. ggml_tensor * conv1d_2_b = nullptr;
  303. ggml_tensor * mm_norm_pre_w = nullptr;
  304. ggml_tensor * mm_norm_mid_w = nullptr;
  305. bool audio_has_avgpool() const {
  306. return proj_type == PROJECTOR_TYPE_QWEN2A
  307. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  308. }
  309. bool audio_has_stack_frames() const {
  310. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  311. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  312. }
  313. };
  314. struct clip_ctx {
  315. clip_model model;
  316. gguf_context_ptr ctx_gguf;
  317. ggml_context_ptr ctx_data;
  318. std::vector<uint8_t> buf_compute_meta;
  319. std::vector<ggml_backend_t> backend_ptrs;
  320. std::vector<ggml_backend_buffer_type_t> backend_buft;
  321. ggml_backend_t backend = nullptr;
  322. ggml_backend_t backend_cpu = nullptr;
  323. ggml_backend_buffer_ptr buf;
  324. int max_nodes = 8192;
  325. ggml_backend_sched_ptr sched;
  326. // for debugging
  327. bool debug_graph = false;
  328. std::vector<ggml_tensor *> debug_print_tensors;
  329. clip_ctx(clip_context_params & ctx_params) {
  330. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  331. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  332. if (!backend_cpu) {
  333. throw std::runtime_error("failed to initialize CPU backend");
  334. }
  335. if (ctx_params.use_gpu) {
  336. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  337. if (backend_name != nullptr) {
  338. backend = ggml_backend_init_by_name(backend_name, nullptr);
  339. if (!backend) {
  340. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  341. }
  342. }
  343. if (!backend) {
  344. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  345. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  346. }
  347. }
  348. if (backend) {
  349. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  350. backend_ptrs.push_back(backend);
  351. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  352. } else {
  353. backend = backend_cpu;
  354. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  355. }
  356. backend_ptrs.push_back(backend_cpu);
  357. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  358. sched.reset(
  359. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  360. );
  361. }
  362. ~clip_ctx() {
  363. ggml_backend_free(backend);
  364. if (backend != backend_cpu) {
  365. ggml_backend_free(backend_cpu);
  366. }
  367. }
  368. // this function is added so that we don't change too much of the existing code
  369. projector_type proj_type() const {
  370. return model.proj_type;
  371. }
  372. };
  373. struct clip_graph {
  374. clip_ctx * ctx;
  375. const clip_model & model;
  376. const clip_hparams & hparams;
  377. // we only support single image per batch
  378. const clip_image_f32 & img;
  379. const int patch_size;
  380. const int n_patches_x;
  381. const int n_patches_y;
  382. const int n_patches;
  383. const int n_embd;
  384. const int n_head;
  385. const int d_head;
  386. const int n_layer;
  387. const float eps;
  388. const float kq_scale;
  389. ggml_context_ptr ctx0_ptr;
  390. ggml_context * ctx0;
  391. ggml_cgraph * gf;
  392. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  393. ctx(ctx),
  394. model(ctx->model),
  395. hparams(model.hparams),
  396. img(img),
  397. patch_size(hparams.patch_size),
  398. n_patches_x(img.nx / patch_size),
  399. n_patches_y(img.ny / patch_size),
  400. n_patches(n_patches_x * n_patches_y),
  401. n_embd(hparams.n_embd),
  402. n_head(hparams.n_head),
  403. d_head(n_embd / n_head),
  404. n_layer(hparams.n_layer),
  405. eps(hparams.eps),
  406. kq_scale(1.0f / sqrtf((float)d_head)) {
  407. struct ggml_init_params params = {
  408. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  409. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  410. /*.no_alloc =*/ true,
  411. };
  412. ctx0_ptr.reset(ggml_init(params));
  413. ctx0 = ctx0_ptr.get();
  414. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  415. }
  416. ggml_cgraph * build_siglip() {
  417. ggml_tensor * inp = build_inp();
  418. ggml_tensor * learned_pos_embd = model.position_embeddings;
  419. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  420. learned_pos_embd = resize_position_embeddings();
  421. }
  422. ggml_tensor * cur = build_vit(
  423. inp, n_patches,
  424. NORM_TYPE_NORMAL,
  425. hparams.ffn_op,
  426. learned_pos_embd,
  427. nullptr);
  428. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  429. const int batch_size = 1;
  430. GGML_ASSERT(n_patches_x == n_patches_y);
  431. const int patches_per_image = n_patches_x;
  432. const int kernel_size = hparams.proj_scale_factor;
  433. cur = ggml_transpose(ctx0, cur);
  434. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  435. // doing a pool2d to reduce the number of output tokens
  436. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  437. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  438. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  439. // apply norm before projection
  440. cur = ggml_rms_norm(ctx0, cur, eps);
  441. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  442. // apply projection
  443. cur = ggml_mul_mat(ctx0,
  444. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  445. cur);
  446. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  447. // pixel_shuffle
  448. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  449. const int scale_factor = model.hparams.proj_scale_factor;
  450. cur = build_patch_merge_permute(cur, scale_factor);
  451. cur = ggml_mul_mat(ctx0, model.projection, cur);
  452. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  453. // pixel unshuffle block
  454. const int scale_factor = model.hparams.proj_scale_factor;
  455. cur = build_patch_merge_permute(cur, scale_factor);
  456. // projection
  457. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  458. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  459. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  460. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  461. cur = ggml_add(ctx0, cur, model.mm_1_b);
  462. cur = ggml_gelu(ctx0, cur);
  463. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  464. cur = ggml_add(ctx0, cur, model.mm_2_b);
  465. } else {
  466. GGML_ABORT("SigLIP: Unsupported projector type");
  467. }
  468. // build the graph
  469. ggml_build_forward_expand(gf, cur);
  470. return gf;
  471. }
  472. ggml_cgraph * build_pixtral() {
  473. const int n_merge = hparams.spatial_merge_size;
  474. // 2D input positions
  475. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  476. ggml_set_name(pos_h, "pos_h");
  477. ggml_set_input(pos_h);
  478. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  479. ggml_set_name(pos_w, "pos_w");
  480. ggml_set_input(pos_w);
  481. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  482. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  483. };
  484. ggml_tensor * inp = build_inp();
  485. ggml_tensor * cur = build_vit(
  486. inp, n_patches,
  487. NORM_TYPE_RMS,
  488. hparams.ffn_op,
  489. nullptr, // no learned pos embd
  490. add_pos);
  491. // mistral small 3.1 patch merger
  492. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  493. if (model.mm_patch_merger_w) {
  494. GGML_ASSERT(hparams.spatial_merge_size > 0);
  495. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  496. // reshape image tokens to 2D grid
  497. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  498. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  499. cur = ggml_cont(ctx0, cur);
  500. // torch.nn.functional.unfold is just an im2col under the hood
  501. // we just need a dummy kernel to make it work
  502. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  503. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  504. // project to n_embd
  505. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  506. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  507. }
  508. // LlavaMultiModalProjector (always using GELU activation)
  509. {
  510. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  511. if (model.mm_1_b) {
  512. cur = ggml_add(ctx0, cur, model.mm_1_b);
  513. }
  514. cur = ggml_gelu(ctx0, cur);
  515. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  516. if (model.mm_2_b) {
  517. cur = ggml_add(ctx0, cur, model.mm_2_b);
  518. }
  519. }
  520. // arrangement of the [IMG_BREAK] token
  521. {
  522. // not efficient, but works
  523. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  524. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  525. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  526. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  527. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  528. const int p_total = p_x * p_y;
  529. const int n_embd_text = cur->ne[0];
  530. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  531. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  532. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  533. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  534. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  535. tmp = ggml_concat(ctx0, tmp, tok, 1);
  536. cur = ggml_view_2d(ctx0, tmp,
  537. n_embd_text, n_tokens_output,
  538. ggml_row_size(tmp->type, n_embd_text), 0);
  539. }
  540. // build the graph
  541. ggml_build_forward_expand(gf, cur);
  542. return gf;
  543. }
  544. // Qwen2VL and Qwen2.5VL use M-RoPE
  545. ggml_cgraph * build_qwen2vl() {
  546. GGML_ASSERT(model.patch_bias == nullptr);
  547. GGML_ASSERT(model.class_embedding == nullptr);
  548. const int batch_size = 1;
  549. const bool use_window_attn = hparams.n_wa_pattern > 0;
  550. const int n_wa_pattern = hparams.n_wa_pattern;
  551. const int n_pos = n_patches;
  552. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  553. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  554. ? NORM_TYPE_RMS // qwen 2.5 vl
  555. : NORM_TYPE_NORMAL; // qwen 2 vl
  556. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  557. ggml_tensor * inp_raw = build_inp_raw();
  558. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  559. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  560. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  561. // second conv dimension
  562. {
  563. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  564. inp = ggml_add(ctx0, inp, inp_1);
  565. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  566. inp = ggml_cont_4d(
  567. ctx0, inp,
  568. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  569. inp = ggml_reshape_4d(
  570. ctx0, inp,
  571. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  572. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  573. inp = ggml_cont_3d(
  574. ctx0, inp,
  575. n_embd, n_patches_x * n_patches_y, batch_size);
  576. }
  577. ggml_tensor * inpL = inp;
  578. ggml_tensor * window_mask = nullptr;
  579. ggml_tensor * window_idx = nullptr;
  580. ggml_tensor * inv_window_idx = nullptr;
  581. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  582. ggml_set_name(positions, "positions");
  583. ggml_set_input(positions);
  584. // pre-layernorm
  585. if (model.pre_ln_w) {
  586. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  587. }
  588. if (use_window_attn) {
  589. // handle window attention inputs
  590. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  591. ggml_set_name(inv_window_idx, "inv_window_idx");
  592. ggml_set_input(inv_window_idx);
  593. // mask for window attention
  594. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  595. ggml_set_name(window_mask, "window_mask");
  596. ggml_set_input(window_mask);
  597. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  598. GGML_ASSERT(batch_size == 1);
  599. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  600. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  601. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  602. }
  603. // loop over layers
  604. for (int il = 0; il < n_layer; il++) {
  605. auto & layer = model.layers[il];
  606. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  607. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  608. // layernorm1
  609. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  610. cb(cur, "ln1", il);
  611. // self-attention
  612. {
  613. ggml_tensor * Qcur = ggml_add(ctx0,
  614. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  615. ggml_tensor * Kcur = ggml_add(ctx0,
  616. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  617. ggml_tensor * Vcur = ggml_add(ctx0,
  618. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  619. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  620. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  621. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  622. cb(Qcur, "Qcur", il);
  623. cb(Kcur, "Kcur", il);
  624. cb(Vcur, "Vcur", il);
  625. // apply M-RoPE
  626. Qcur = ggml_rope_multi(
  627. ctx0, Qcur, positions, nullptr,
  628. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  629. Kcur = ggml_rope_multi(
  630. ctx0, Kcur, positions, nullptr,
  631. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  632. cb(Qcur, "Qcur_rope", il);
  633. cb(Kcur, "Kcur_rope", il);
  634. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  635. cur = build_attn(layer.o_w, layer.o_b,
  636. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  637. cb(cur, "attn_out", il);
  638. }
  639. // re-add the layer input, e.g., residual
  640. cur = ggml_add(ctx0, cur, inpL);
  641. inpL = cur; // inpL = residual, cur = hidden_states
  642. cb(cur, "ffn_inp", il);
  643. // layernorm2
  644. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  645. cb(cur, "ffn_inp_normed", il);
  646. // ffn
  647. cur = build_ffn(cur,
  648. layer.ff_up_w, layer.ff_up_b,
  649. layer.ff_gate_w, layer.ff_gate_b,
  650. layer.ff_down_w, layer.ff_down_b,
  651. hparams.ffn_op, il);
  652. cb(cur, "ffn_out", il);
  653. // residual 2
  654. cur = ggml_add(ctx0, inpL, cur);
  655. cb(cur, "layer_out", il);
  656. inpL = cur;
  657. }
  658. // post-layernorm
  659. if (model.post_ln_w) {
  660. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  661. }
  662. // multimodal projection
  663. ggml_tensor * embeddings = inpL;
  664. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  665. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  666. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  667. // GELU activation
  668. embeddings = ggml_gelu(ctx0, embeddings);
  669. // Second linear layer
  670. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  671. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  672. if (use_window_attn) {
  673. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  674. ggml_set_name(window_idx, "window_idx");
  675. ggml_set_input(window_idx);
  676. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  677. GGML_ASSERT(batch_size == 1);
  678. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  679. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  680. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  681. }
  682. // build the graph
  683. ggml_build_forward_expand(gf, embeddings);
  684. return gf;
  685. }
  686. ggml_cgraph * build_minicpmv() {
  687. const int batch_size = 1;
  688. GGML_ASSERT(model.class_embedding == nullptr);
  689. const int n_pos = n_patches;
  690. // position embeddings for the projector (not for ViT)
  691. int n_output_dim = clip_n_mmproj_embd(ctx);
  692. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  693. ggml_set_name(pos_embed, "pos_embed");
  694. ggml_set_input(pos_embed);
  695. // for selecting learned pos embd, used by ViT
  696. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  697. ggml_set_name(positions, "positions");
  698. ggml_set_input(positions);
  699. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  700. ggml_tensor * inp = build_inp();
  701. ggml_tensor * embeddings = build_vit(
  702. inp, n_patches,
  703. NORM_TYPE_NORMAL,
  704. hparams.ffn_op,
  705. learned_pos_embd,
  706. nullptr);
  707. // resampler projector (it is just another transformer)
  708. ggml_tensor * q = model.mm_model_query;
  709. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  710. // norm
  711. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  712. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  713. // k = v + pos_embed
  714. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  715. // attention
  716. {
  717. int n_embd = clip_n_mmproj_embd(ctx);
  718. const int d_head = 128;
  719. int n_head = n_embd/d_head;
  720. // Use actual config value if available, otherwise fall back to hardcoded values
  721. int num_query = ctx->model.hparams.minicpmv_query_num;
  722. ggml_tensor * Q = ggml_add(ctx0,
  723. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  724. model.mm_model_attn_q_b);
  725. ggml_tensor * K = ggml_add(ctx0,
  726. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  727. model.mm_model_attn_k_b);
  728. ggml_tensor * V = ggml_add(ctx0,
  729. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  730. model.mm_model_attn_v_b);
  731. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  732. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  733. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  734. cb(Q, "resampler_Q", -1);
  735. cb(K, "resampler_K", -1);
  736. cb(V, "resampler_V", -1);
  737. embeddings = build_attn(
  738. model.mm_model_attn_o_w,
  739. model.mm_model_attn_o_b,
  740. Q, K, V, nullptr, kq_scale, -1);
  741. cb(embeddings, "resampler_attn_out", -1);
  742. }
  743. // layernorm
  744. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  745. // projection
  746. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  747. // build the graph
  748. ggml_build_forward_expand(gf, embeddings);
  749. return gf;
  750. }
  751. ggml_cgraph * build_internvl() {
  752. GGML_ASSERT(model.class_embedding != nullptr);
  753. GGML_ASSERT(model.position_embeddings != nullptr);
  754. const int n_pos = n_patches + 1;
  755. ggml_tensor * inp = build_inp();
  756. // add CLS token
  757. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  758. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  759. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  760. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  761. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  762. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  763. ggml_tensor * cur = build_vit(
  764. inp, n_pos,
  765. norm_t,
  766. hparams.ffn_op,
  767. model.position_embeddings,
  768. nullptr);
  769. // remove CLS token
  770. cur = ggml_view_2d(ctx0, cur,
  771. n_embd, n_patches,
  772. ggml_row_size(cur->type, n_embd), 0);
  773. // pixel shuffle
  774. {
  775. const int scale_factor = model.hparams.proj_scale_factor;
  776. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  777. const int height = n_patches_y;
  778. const int width = n_patches_x;
  779. GGML_ASSERT(scale_factor > 0);
  780. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  781. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  782. cur = ggml_cont_4d(ctx0, cur,
  783. n_embd * scale_factor * scale_factor,
  784. height / scale_factor,
  785. width / scale_factor,
  786. bsz);
  787. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  788. // flatten to 2D
  789. cur = ggml_cont_2d(ctx0, cur,
  790. n_embd * scale_factor * scale_factor,
  791. cur->ne[1] * cur->ne[2]);
  792. }
  793. // projector (always using GELU activation)
  794. {
  795. // projector LayerNorm uses pytorch's default eps = 1e-5
  796. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  797. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  798. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  799. cur = ggml_add(ctx0, cur, model.mm_1_b);
  800. cur = ggml_gelu(ctx0, cur);
  801. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  802. cur = ggml_add(ctx0, cur, model.mm_3_b);
  803. }
  804. // build the graph
  805. ggml_build_forward_expand(gf, cur);
  806. return gf;
  807. }
  808. ggml_cgraph * build_llama4() {
  809. GGML_ASSERT(model.class_embedding != nullptr);
  810. GGML_ASSERT(model.position_embeddings != nullptr);
  811. const int n_pos = n_patches + 1; // +1 for [CLS]
  812. // 2D input positions
  813. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  814. ggml_set_name(pos_h, "pos_h");
  815. ggml_set_input(pos_h);
  816. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  817. ggml_set_name(pos_w, "pos_w");
  818. ggml_set_input(pos_w);
  819. ggml_tensor * inp = build_inp_raw();
  820. // Llama4UnfoldConvolution
  821. {
  822. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  823. patch_size, patch_size, 3, n_embd);
  824. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  825. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  826. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  827. cb(inp, "patch_conv", -1);
  828. }
  829. // add CLS token
  830. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  831. // build ViT with 2D position embeddings
  832. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  833. // first half is X axis and second half is Y axis
  834. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  835. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  836. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  837. };
  838. ggml_tensor * cur = build_vit(
  839. inp, n_pos,
  840. NORM_TYPE_NORMAL,
  841. hparams.ffn_op,
  842. model.position_embeddings,
  843. add_pos);
  844. // remove CLS token
  845. cur = ggml_view_2d(ctx0, cur,
  846. n_embd, n_patches,
  847. ggml_row_size(cur->type, n_embd), 0);
  848. // pixel shuffle
  849. // based on Llama4VisionPixelShuffleMLP
  850. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  851. {
  852. const int scale_factor = model.hparams.proj_scale_factor;
  853. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  854. GGML_ASSERT(scale_factor > 0);
  855. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  856. cur = ggml_reshape_4d(ctx0, cur,
  857. n_embd * scale_factor,
  858. n_patches_x / scale_factor,
  859. n_patches_y,
  860. bsz);
  861. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  862. cur = ggml_cont_4d(ctx0, cur,
  863. n_embd * scale_factor * scale_factor,
  864. n_patches_x / scale_factor,
  865. n_patches_y / scale_factor,
  866. bsz);
  867. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  868. // flatten to 2D
  869. cur = ggml_cont_2d(ctx0, cur,
  870. n_embd * scale_factor * scale_factor,
  871. n_patches / scale_factor / scale_factor);
  872. cb(cur, "pixel_shuffle", -1);
  873. }
  874. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  875. {
  876. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  877. cur = ggml_gelu(ctx0, cur);
  878. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  879. cur = ggml_gelu(ctx0, cur);
  880. cb(cur, "adapter_mlp", -1);
  881. }
  882. // Llama4MultiModalProjector
  883. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  884. cb(cur, "projected", -1);
  885. // build the graph
  886. ggml_build_forward_expand(gf, cur);
  887. return gf;
  888. }
  889. ggml_cgraph * build_kimivl() {
  890. // 2D input positions
  891. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  892. ggml_set_name(pos_h, "pos_h");
  893. ggml_set_input(pos_h);
  894. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  895. ggml_set_name(pos_w, "pos_w");
  896. ggml_set_input(pos_w);
  897. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  898. // build ViT with 2D position embeddings
  899. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  900. // first half is X axis and second half is Y axis
  901. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  902. };
  903. ggml_tensor * inp = build_inp();
  904. ggml_tensor * cur = build_vit(
  905. inp, n_patches,
  906. NORM_TYPE_NORMAL,
  907. hparams.ffn_op,
  908. learned_pos_embd,
  909. add_pos);
  910. cb(cur, "vit_out", -1);
  911. {
  912. // patch_merger
  913. const int scale_factor = model.hparams.proj_scale_factor;
  914. cur = build_patch_merge_permute(cur, scale_factor);
  915. // projection norm
  916. int proj_inp_dim = cur->ne[0];
  917. cur = ggml_view_2d(ctx0, cur,
  918. n_embd, cur->ne[1] * scale_factor * scale_factor,
  919. ggml_row_size(cur->type, n_embd), 0);
  920. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  921. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  922. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  923. cur = ggml_view_2d(ctx0, cur,
  924. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  925. ggml_row_size(cur->type, proj_inp_dim), 0);
  926. cb(cur, "proj_inp_normed", -1);
  927. // projection mlp
  928. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  929. cur = ggml_add(ctx0, cur, model.mm_1_b);
  930. cur = ggml_gelu(ctx0, cur);
  931. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  932. cur = ggml_add(ctx0, cur, model.mm_2_b);
  933. cb(cur, "proj_out", -1);
  934. }
  935. // build the graph
  936. ggml_build_forward_expand(gf, cur);
  937. return gf;
  938. }
  939. // this graph is used by llava, granite and glm
  940. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  941. ggml_cgraph * build_llava() {
  942. const int batch_size = 1;
  943. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  944. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  945. // Calculate the deepest feature layer based on hparams and projector type
  946. int max_feature_layer = n_layer;
  947. {
  948. // Get the index of the second to last layer; this is the default for models that have a llava projector
  949. int il_last = hparams.n_layer - 1;
  950. int deepest_feature_layer = -1;
  951. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  952. il_last += 1;
  953. }
  954. // If we set explicit vision feature layers, only go up to the deepest one
  955. // NOTE: only used by granite-vision models for now
  956. for (const auto & feature_layer : hparams.vision_feature_layer) {
  957. if (feature_layer > deepest_feature_layer) {
  958. deepest_feature_layer = feature_layer;
  959. }
  960. }
  961. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  962. }
  963. ggml_tensor * inp = build_inp();
  964. // concat class_embeddings and patch_embeddings
  965. if (model.class_embedding) {
  966. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  967. }
  968. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  969. ggml_set_name(positions, "positions");
  970. ggml_set_input(positions);
  971. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  972. ggml_tensor * inpL = inp;
  973. // pre-layernorm
  974. if (model.pre_ln_w) {
  975. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  976. cb(inpL, "pre_ln", -1);
  977. }
  978. std::vector<ggml_tensor *> embedding_stack;
  979. const auto & vision_feature_layer = hparams.vision_feature_layer;
  980. // loop over layers
  981. for (int il = 0; il < max_feature_layer; il++) {
  982. auto & layer = model.layers[il];
  983. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  984. // If this is an embedding feature layer, save the output.
  985. // NOTE: 0 index here refers to the input to the encoder.
  986. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  987. embedding_stack.push_back(cur);
  988. }
  989. // layernorm1
  990. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  991. cb(cur, "layer_inp_normed", il);
  992. // self-attention
  993. {
  994. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  995. if (layer.q_b) {
  996. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  997. }
  998. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  999. if (layer.k_b) {
  1000. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1001. }
  1002. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1003. if (layer.v_b) {
  1004. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1005. }
  1006. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1007. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1008. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1009. cb(Qcur, "Qcur", il);
  1010. cb(Kcur, "Kcur", il);
  1011. cb(Vcur, "Vcur", il);
  1012. cur = build_attn(layer.o_w, layer.o_b,
  1013. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1014. cb(cur, "attn_out", il);
  1015. }
  1016. // re-add the layer input, e.g., residual
  1017. cur = ggml_add(ctx0, cur, inpL);
  1018. inpL = cur; // inpL = residual, cur = hidden_states
  1019. cb(cur, "ffn_inp", il);
  1020. // layernorm2
  1021. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1022. cb(cur, "ffn_inp_normed", il);
  1023. // ffn
  1024. cur = build_ffn(cur,
  1025. layer.ff_up_w, layer.ff_up_b,
  1026. layer.ff_gate_w, layer.ff_gate_b,
  1027. layer.ff_down_w, layer.ff_down_b,
  1028. hparams.ffn_op, il);
  1029. cb(cur, "ffn_out", il);
  1030. // residual 2
  1031. cur = ggml_add(ctx0, inpL, cur);
  1032. cb(cur, "layer_out", il);
  1033. inpL = cur;
  1034. }
  1035. // post-layernorm
  1036. if (model.post_ln_w) {
  1037. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1038. }
  1039. ggml_tensor * embeddings = inpL;
  1040. // process vision feature layers (used by granite)
  1041. {
  1042. // final layer is a vision feature layer
  1043. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1044. embedding_stack.push_back(inpL);
  1045. }
  1046. // If feature layers are explicitly set, stack them (if we have multiple)
  1047. if (!embedding_stack.empty()) {
  1048. embeddings = embedding_stack[0];
  1049. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1050. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1051. }
  1052. }
  1053. }
  1054. // llava projector (also used by granite)
  1055. if (ctx->model.hparams.has_llava_projector) {
  1056. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1057. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1058. ggml_set_name(patches, "patches");
  1059. ggml_set_input(patches);
  1060. // shape [1, 576, 1024]
  1061. // ne is whcn, ne = [1024, 576, 1, 1]
  1062. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1063. // print_tensor_info(embeddings, "embeddings");
  1064. // llava projector
  1065. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1066. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1067. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1068. embeddings = ggml_gelu(ctx0, embeddings);
  1069. if (model.mm_2_w) {
  1070. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1071. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1072. }
  1073. }
  1074. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1075. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1076. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1077. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1078. // First LayerNorm
  1079. embeddings = ggml_norm(ctx0, embeddings, eps);
  1080. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1081. model.mm_1_b);
  1082. // GELU activation
  1083. embeddings = ggml_gelu(ctx0, embeddings);
  1084. // Second linear layer
  1085. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1086. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1087. // Second LayerNorm
  1088. embeddings = ggml_norm(ctx0, embeddings, eps);
  1089. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1090. model.mm_4_b);
  1091. }
  1092. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1093. // MobileVLM projector
  1094. int n_patch = 24;
  1095. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1096. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1097. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1098. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1099. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1100. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1101. // block 1
  1102. ggml_tensor * block_1 = nullptr;
  1103. {
  1104. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1105. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1106. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1107. // stride = 1, padding = 1, bias is nullptr
  1108. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1109. // layer norm
  1110. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1111. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1112. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1113. block_1 = ggml_norm(ctx0, block_1, eps);
  1114. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1115. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1116. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1117. // hardswish
  1118. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1119. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1120. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1121. // pointwise conv
  1122. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1123. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1124. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1125. block_1 = ggml_relu(ctx0, block_1);
  1126. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1127. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1128. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1129. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1130. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1131. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1132. int w = block_1->ne[0], h = block_1->ne[1];
  1133. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1134. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1135. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1136. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1137. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1138. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1139. block_1 = ggml_norm(ctx0, block_1, eps);
  1140. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1141. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1142. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1143. // residual
  1144. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1145. }
  1146. // block_2
  1147. {
  1148. // stride = 2
  1149. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1150. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1151. // layer norm
  1152. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1153. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1154. block_1 = ggml_norm(ctx0, block_1, eps);
  1155. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1156. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1157. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1158. // hardswish
  1159. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1160. // not sure the parameters is right for globalAvgPooling
  1161. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1162. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1163. // pointwise conv
  1164. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1165. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1166. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1167. block_1 = ggml_relu(ctx0, block_1);
  1168. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1169. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1170. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1171. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1172. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1173. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1174. int w = block_1->ne[0], h = block_1->ne[1];
  1175. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1176. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1177. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1178. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1179. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1180. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1181. block_1 = ggml_norm(ctx0, block_1, eps);
  1182. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1183. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1184. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1185. }
  1186. embeddings = block_1;
  1187. }
  1188. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1189. {
  1190. int n_patch = 24;
  1191. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1192. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1193. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1194. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1195. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1196. // mlp_2 ne = [2048, 576, 1, 1]
  1197. // // AVG Pool Layer 2*2, strides = 2
  1198. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1199. // mlp_2 ne = [576, 2048, 1, 1]
  1200. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1201. // mlp_2 ne [24, 24, 2048, 1]
  1202. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1203. // weight ne = [3, 3, 2048, 1]
  1204. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1205. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1206. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1207. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1208. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1209. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1210. embeddings = peg_0;
  1211. }
  1212. else {
  1213. GGML_ABORT("fatal error");
  1214. }
  1215. }
  1216. // glm projector
  1217. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1218. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1219. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1220. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1221. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1222. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1223. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1224. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1225. // GLU
  1226. {
  1227. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1228. embeddings = ggml_norm(ctx0, embeddings, eps);
  1229. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1230. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1231. ggml_tensor * x = embeddings;
  1232. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1233. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1234. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1235. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1236. }
  1237. // arrangement of BOI/EOI token embeddings
  1238. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1239. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1240. {
  1241. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1242. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1243. }
  1244. }
  1245. else {
  1246. GGML_ABORT("llava: unknown projector type");
  1247. }
  1248. // build the graph
  1249. ggml_build_forward_expand(gf, embeddings);
  1250. return gf;
  1251. }
  1252. // whisper encoder with custom projector
  1253. ggml_cgraph * build_whisper_enc() {
  1254. const int n_frames = img.nx;
  1255. const int n_pos = n_frames / 2;
  1256. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1257. ggml_tensor * inp = build_inp_raw(1);
  1258. // conv1d block
  1259. {
  1260. // convolution + gelu
  1261. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1262. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1263. cur = ggml_gelu_erf(ctx0, cur);
  1264. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1265. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1266. cur = ggml_gelu_erf(ctx0, cur);
  1267. // transpose
  1268. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1269. cb(inp, "after_conv1d", -1);
  1270. }
  1271. // sanity check (only check one layer, but it should be the same for all)
  1272. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1273. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1274. GGML_ASSERT(model.layers[0].q_b);
  1275. GGML_ASSERT(model.layers[0].v_b);
  1276. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1277. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1278. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1279. ctx0, model.position_embeddings,
  1280. model.position_embeddings->ne[0], n_pos,
  1281. model.position_embeddings->nb[1], 0
  1282. );
  1283. ggml_tensor * cur = build_vit(
  1284. inp, n_pos,
  1285. NORM_TYPE_NORMAL,
  1286. hparams.ffn_op,
  1287. pos_embd_selected,
  1288. nullptr);
  1289. cb(cur, "after_transformer", -1);
  1290. if (model.audio_has_stack_frames()) {
  1291. // StackAudioFrames
  1292. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1293. int64_t stride = n_embd * hparams.proj_stack_factor;
  1294. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1295. int64_t pad = padded_len - ggml_nelements(cur);
  1296. if (pad > 0) {
  1297. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1298. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1299. }
  1300. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1301. ggml_row_size(cur->type, stride), 0);
  1302. cb(cur, "after_stacked", -1);
  1303. }
  1304. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1305. // UltravoxProjector
  1306. // pre-norm
  1307. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1308. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1309. // ffn in
  1310. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1311. // swiglu
  1312. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1313. cur = ggml_swiglu_swapped(ctx0, cur);
  1314. // mid-norm
  1315. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1316. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1317. // ffn out
  1318. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1319. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1320. // projector
  1321. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1322. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1323. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1324. // projector
  1325. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1326. cur = ggml_gelu_erf(ctx0, cur);
  1327. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1328. } else {
  1329. GGML_ABORT("%s: unknown projector type", __func__);
  1330. }
  1331. cb(cur, "projected", -1);
  1332. ggml_build_forward_expand(gf, cur);
  1333. return gf;
  1334. }
  1335. private:
  1336. //
  1337. // utility functions
  1338. //
  1339. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1340. if (ctx->debug_graph) {
  1341. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1342. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1343. ggml_set_name(cur, cur_name.c_str());
  1344. ggml_set_output(cur);
  1345. ggml_build_forward_expand(gf, cur);
  1346. ctx->debug_print_tensors.push_back(cur);
  1347. }
  1348. }
  1349. // siglip2 naflex
  1350. ggml_tensor * resize_position_embeddings() {
  1351. ggml_tensor * pos_embd = model.position_embeddings;
  1352. const int height = img.ny / patch_size;
  1353. const int width = img.nx / patch_size;
  1354. const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
  1355. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1356. GGML_ASSERT(pos_embd);
  1357. if (height == n_per_side && width == n_per_side) {
  1358. return pos_embd;
  1359. }
  1360. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1361. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1362. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1363. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1364. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1365. return pos_embd;
  1366. }
  1367. // build vision transformer (ViT) cgraph
  1368. // this function should cover most of the models
  1369. // if your model has specific features, you should probably duplicate this function
  1370. ggml_tensor * build_vit(
  1371. ggml_tensor * inp,
  1372. int64_t n_pos,
  1373. norm_type norm_t,
  1374. ffn_op_type ffn_t,
  1375. ggml_tensor * learned_pos_embd,
  1376. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1377. ) {
  1378. if (learned_pos_embd) {
  1379. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1380. cb(inp, "pos_embed", -1);
  1381. }
  1382. ggml_tensor * inpL = inp;
  1383. // pre-layernorm
  1384. if (model.pre_ln_w) {
  1385. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1386. cb(inpL, "pre_ln", -1);
  1387. }
  1388. // loop over layers
  1389. for (int il = 0; il < n_layer; il++) {
  1390. auto & layer = model.layers[il];
  1391. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1392. // layernorm1
  1393. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1394. cb(cur, "layer_inp_normed", il);
  1395. // self-attention
  1396. {
  1397. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1398. if (layer.q_b) {
  1399. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1400. }
  1401. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1402. if (layer.k_b) {
  1403. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1404. }
  1405. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1406. if (layer.v_b) {
  1407. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1408. }
  1409. if (layer.q_norm) {
  1410. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1411. cb(Qcur, "Qcur_norm", il);
  1412. }
  1413. if (layer.k_norm) {
  1414. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1415. cb(Kcur, "Kcur_norm", il);
  1416. }
  1417. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1418. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1419. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1420. cb(Qcur, "Qcur", il);
  1421. cb(Kcur, "Kcur", il);
  1422. cb(Vcur, "Vcur", il);
  1423. if (add_pos) {
  1424. Qcur = add_pos(Qcur, layer);
  1425. Kcur = add_pos(Kcur, layer);
  1426. cb(Qcur, "Qcur_pos", il);
  1427. cb(Kcur, "Kcur_pos", il);
  1428. }
  1429. cur = build_attn(layer.o_w, layer.o_b,
  1430. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1431. cb(cur, "attn_out", il);
  1432. }
  1433. if (layer.ls_1_w) {
  1434. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1435. cb(cur, "attn_out_scaled", il);
  1436. }
  1437. // re-add the layer input, e.g., residual
  1438. cur = ggml_add(ctx0, cur, inpL);
  1439. inpL = cur; // inpL = residual, cur = hidden_states
  1440. cb(cur, "ffn_inp", il);
  1441. // layernorm2
  1442. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1443. cb(cur, "ffn_inp_normed", il);
  1444. // ffn
  1445. cur = build_ffn(cur,
  1446. layer.ff_up_w, layer.ff_up_b,
  1447. layer.ff_gate_w, layer.ff_gate_b,
  1448. layer.ff_down_w, layer.ff_down_b,
  1449. ffn_t, il);
  1450. cb(cur, "ffn_out", il);
  1451. if (layer.ls_2_w) {
  1452. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1453. cb(cur, "ffn_out_scaled", il);
  1454. }
  1455. // residual 2
  1456. cur = ggml_add(ctx0, inpL, cur);
  1457. cb(cur, "layer_out", il);
  1458. inpL = cur;
  1459. }
  1460. if (ctx->model.audio_has_avgpool()) {
  1461. ggml_tensor * cur = inpL;
  1462. cur = ggml_transpose(ctx0, cur);
  1463. cur = ggml_cont(ctx0, cur);
  1464. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1465. cur = ggml_transpose(ctx0, cur);
  1466. cur = ggml_cont(ctx0, cur);
  1467. inpL = cur;
  1468. }
  1469. // post-layernorm
  1470. if (model.post_ln_w) {
  1471. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1472. }
  1473. return inpL;
  1474. }
  1475. // build the input after conv2d (inp_raw --> patches)
  1476. // returns tensor with shape [n_embd, n_patches]
  1477. ggml_tensor * build_inp() {
  1478. ggml_tensor * inp_raw = build_inp_raw();
  1479. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1480. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1481. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1482. if (model.patch_bias) {
  1483. inp = ggml_add(ctx0, inp, model.patch_bias);
  1484. cb(inp, "patch_bias", -1);
  1485. }
  1486. return inp;
  1487. }
  1488. ggml_tensor * build_inp_raw(int channels = 3) {
  1489. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1490. ggml_set_name(inp_raw, "inp_raw");
  1491. ggml_set_input(inp_raw);
  1492. return inp_raw;
  1493. }
  1494. ggml_tensor * build_norm(
  1495. ggml_tensor * cur,
  1496. ggml_tensor * mw,
  1497. ggml_tensor * mb,
  1498. norm_type type,
  1499. float norm_eps,
  1500. int il) const {
  1501. cur = type == NORM_TYPE_RMS
  1502. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1503. : ggml_norm(ctx0, cur, norm_eps);
  1504. if (mw || mb) {
  1505. cb(cur, "norm", il);
  1506. }
  1507. if (mw) {
  1508. cur = ggml_mul(ctx0, cur, mw);
  1509. if (mb) {
  1510. cb(cur, "norm_w", il);
  1511. }
  1512. }
  1513. if (mb) {
  1514. cur = ggml_add(ctx0, cur, mb);
  1515. }
  1516. return cur;
  1517. }
  1518. ggml_tensor * build_ffn(
  1519. ggml_tensor * cur,
  1520. ggml_tensor * up,
  1521. ggml_tensor * up_b,
  1522. ggml_tensor * gate,
  1523. ggml_tensor * gate_b,
  1524. ggml_tensor * down,
  1525. ggml_tensor * down_b,
  1526. ffn_op_type type_op,
  1527. int il) const {
  1528. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1529. cb(tmp, "ffn_up", il);
  1530. if (up_b) {
  1531. tmp = ggml_add(ctx0, tmp, up_b);
  1532. cb(tmp, "ffn_up_b", il);
  1533. }
  1534. if (gate) {
  1535. cur = ggml_mul_mat(ctx0, gate, cur);
  1536. cb(cur, "ffn_gate", il);
  1537. if (gate_b) {
  1538. cur = ggml_add(ctx0, cur, gate_b);
  1539. cb(cur, "ffn_gate_b", il);
  1540. }
  1541. } else {
  1542. cur = tmp;
  1543. }
  1544. // we only support parallel ffn for now
  1545. switch (type_op) {
  1546. case FFN_SILU:
  1547. if (gate) {
  1548. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1549. cb(cur, "ffn_swiglu", il);
  1550. } else {
  1551. cur = ggml_silu(ctx0, cur);
  1552. cb(cur, "ffn_silu", il);
  1553. } break;
  1554. case FFN_GELU:
  1555. if (gate) {
  1556. cur = ggml_geglu_split(ctx0, cur, tmp);
  1557. cb(cur, "ffn_geglu", il);
  1558. } else {
  1559. cur = ggml_gelu(ctx0, cur);
  1560. cb(cur, "ffn_gelu", il);
  1561. } break;
  1562. case FFN_GELU_ERF:
  1563. if (gate) {
  1564. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1565. cb(cur, "ffn_geglu_erf", il);
  1566. } else {
  1567. cur = ggml_gelu_erf(ctx0, cur);
  1568. cb(cur, "ffn_gelu_erf", il);
  1569. } break;
  1570. case FFN_GELU_QUICK:
  1571. if (gate) {
  1572. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1573. cb(cur, "ffn_geglu_quick", il);
  1574. } else {
  1575. cur = ggml_gelu_quick(ctx0, cur);
  1576. cb(cur, "ffn_gelu_quick", il);
  1577. } break;
  1578. }
  1579. if (down) {
  1580. cur = ggml_mul_mat(ctx0, down, cur);
  1581. }
  1582. if (down_b) {
  1583. cb(cur, "ffn_down", il);
  1584. }
  1585. if (down_b) {
  1586. cur = ggml_add(ctx0, cur, down_b);
  1587. }
  1588. return cur;
  1589. }
  1590. ggml_tensor * build_attn(
  1591. ggml_tensor * wo,
  1592. ggml_tensor * wo_b,
  1593. ggml_tensor * q_cur,
  1594. ggml_tensor * k_cur,
  1595. ggml_tensor * v_cur,
  1596. ggml_tensor * kq_mask,
  1597. float kq_scale,
  1598. int il) const {
  1599. // these nodes are added to the graph together so that they are not reordered
  1600. // by doing so, the number of splits in the graph is reduced
  1601. ggml_build_forward_expand(gf, q_cur);
  1602. ggml_build_forward_expand(gf, k_cur);
  1603. ggml_build_forward_expand(gf, v_cur);
  1604. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1605. //cb(q, "q", il);
  1606. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1607. //cb(k, "k", il);
  1608. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1609. v = ggml_cont(ctx0, v);
  1610. //cb(k, "v", il);
  1611. ggml_tensor * cur;
  1612. // TODO @ngxson : support flash attention
  1613. {
  1614. const auto n_tokens = q->ne[1];
  1615. const auto n_head = q->ne[2];
  1616. // const auto n_kv = k->ne[1]; // for flash attention
  1617. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1618. // F32 may not needed for vision encoders?
  1619. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1620. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1621. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1622. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1623. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1624. }
  1625. cb(cur, "kqv_out", il);
  1626. if (wo) {
  1627. cur = ggml_mul_mat(ctx0, wo, cur);
  1628. }
  1629. if (wo_b) {
  1630. cur = ggml_add(ctx0, cur, wo_b);
  1631. }
  1632. return cur;
  1633. }
  1634. // implementation of the 2D RoPE without adding a new op in ggml
  1635. // this is not efficient (use double the memory), but works on all backends
  1636. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1637. static ggml_tensor * build_rope_2d(
  1638. ggml_context * ctx0,
  1639. ggml_tensor * cur,
  1640. ggml_tensor * pos_a, // first half
  1641. ggml_tensor * pos_b, // second half
  1642. const float freq_base,
  1643. const bool interleave_freq
  1644. ) {
  1645. const int64_t n_dim = cur->ne[0];
  1646. const int64_t n_head = cur->ne[1];
  1647. const int64_t n_pos = cur->ne[2];
  1648. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1649. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1650. // first half of cur will use 1e-0, 1e-2 (even)
  1651. // second half of cur will use 1e-1, 1e-3 (odd)
  1652. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1653. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1654. // then for the second half, we use freq_scale to shift the inv_freq
  1655. // ^ why? replace (2i) with (2i+1) in the above equation
  1656. const float freq_scale_odd = interleave_freq
  1657. ? std::pow(freq_base, (float)-2/n_dim)
  1658. : 1.0;
  1659. // first half
  1660. ggml_tensor * first;
  1661. {
  1662. first = ggml_view_3d(ctx0, cur,
  1663. n_dim/2, n_head, n_pos,
  1664. ggml_row_size(cur->type, n_dim),
  1665. ggml_row_size(cur->type, n_dim*n_head),
  1666. 0);
  1667. first = ggml_rope_ext(
  1668. ctx0,
  1669. first,
  1670. pos_a, // positions
  1671. nullptr, // freq factors
  1672. n_dim/2, // n_dims
  1673. 0, 0, freq_base,
  1674. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1675. );
  1676. }
  1677. // second half
  1678. ggml_tensor * second;
  1679. {
  1680. second = ggml_view_3d(ctx0, cur,
  1681. n_dim/2, n_head, n_pos,
  1682. ggml_row_size(cur->type, n_dim),
  1683. ggml_row_size(cur->type, n_dim*n_head),
  1684. n_dim/2 * ggml_element_size(cur));
  1685. second = ggml_rope_ext(
  1686. ctx0,
  1687. second,
  1688. pos_b, // positions
  1689. nullptr, // freq factors
  1690. n_dim/2, // n_dims
  1691. 0, 0, freq_base,
  1692. freq_scale_odd,
  1693. 0.0f, 1.0f, 0.0f, 0.0f
  1694. );
  1695. }
  1696. cur = ggml_concat(ctx0, first, second, 0);
  1697. return cur;
  1698. }
  1699. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  1700. // support dynamic resolution
  1701. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  1702. GGML_ASSERT(scale_factor > 1);
  1703. const int n_embd = cur->ne[0];
  1704. int width = img.nx / patch_size;
  1705. int height = img.ny / patch_size;
  1706. // pad width and height to factor
  1707. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  1708. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  1709. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  1710. if (pad_width || pad_height) {
  1711. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  1712. width += pad_width;
  1713. height += pad_height;
  1714. }
  1715. // unshuffle h
  1716. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  1717. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1718. // unshuffle w
  1719. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  1720. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1721. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  1722. cb(cur, "pixel_shuffle", -1);
  1723. return cur;
  1724. }
  1725. };
  1726. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1727. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1728. clip_graph graph(ctx, *imgs.entries[0]);
  1729. ggml_cgraph * res;
  1730. switch (ctx->proj_type()) {
  1731. case PROJECTOR_TYPE_GEMMA3:
  1732. case PROJECTOR_TYPE_IDEFICS3:
  1733. case PROJECTOR_TYPE_LFM2:
  1734. {
  1735. res = graph.build_siglip();
  1736. } break;
  1737. case PROJECTOR_TYPE_PIXTRAL:
  1738. {
  1739. res = graph.build_pixtral();
  1740. } break;
  1741. case PROJECTOR_TYPE_QWEN2VL:
  1742. case PROJECTOR_TYPE_QWEN25VL:
  1743. {
  1744. res = graph.build_qwen2vl();
  1745. } break;
  1746. case PROJECTOR_TYPE_MINICPMV:
  1747. {
  1748. res = graph.build_minicpmv();
  1749. } break;
  1750. case PROJECTOR_TYPE_INTERNVL:
  1751. {
  1752. res = graph.build_internvl();
  1753. } break;
  1754. case PROJECTOR_TYPE_LLAMA4:
  1755. {
  1756. res = graph.build_llama4();
  1757. } break;
  1758. case PROJECTOR_TYPE_ULTRAVOX:
  1759. case PROJECTOR_TYPE_VOXTRAL:
  1760. case PROJECTOR_TYPE_QWEN2A:
  1761. {
  1762. res = graph.build_whisper_enc();
  1763. } break;
  1764. case PROJECTOR_TYPE_KIMIVL:
  1765. {
  1766. res = graph.build_kimivl();
  1767. } break;
  1768. default:
  1769. {
  1770. res = graph.build_llava();
  1771. } break;
  1772. }
  1773. return res;
  1774. }
  1775. struct clip_model_loader {
  1776. ggml_context_ptr ctx_meta;
  1777. gguf_context_ptr ctx_gguf;
  1778. std::string fname;
  1779. size_t model_size = 0; // in bytes
  1780. bool has_vision = false;
  1781. bool has_audio = false;
  1782. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  1783. clip_model_loader(const char * fname) : fname(fname) {
  1784. struct ggml_context * meta = nullptr;
  1785. struct gguf_init_params params = {
  1786. /*.no_alloc = */ true,
  1787. /*.ctx = */ &meta,
  1788. };
  1789. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1790. if (!ctx_gguf.get()) {
  1791. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1792. }
  1793. ctx_meta.reset(meta);
  1794. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1795. // print gguf info
  1796. {
  1797. std::string name;
  1798. get_string(KEY_NAME, name, false);
  1799. std::string description;
  1800. get_string(KEY_DESCRIPTION, description, false);
  1801. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1802. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1803. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1804. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1805. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1806. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1807. LOG_INF("\n");
  1808. }
  1809. // modalities
  1810. {
  1811. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  1812. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  1813. if (has_vision) {
  1814. LOG_INF("%s: has vision encoder\n", __func__);
  1815. }
  1816. if (has_audio) {
  1817. LOG_INF("%s: has audio encoder\n", __func__);
  1818. }
  1819. }
  1820. // tensors
  1821. {
  1822. for (int i = 0; i < n_tensors; ++i) {
  1823. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1824. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1825. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1826. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1827. size_t tensor_size = ggml_nbytes(cur);
  1828. model_size += tensor_size;
  1829. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1830. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1831. }
  1832. }
  1833. }
  1834. void load_hparams(clip_model & model, clip_modality modality) {
  1835. auto & hparams = model.hparams;
  1836. std::string log_ffn_op; // for logging
  1837. // sanity check
  1838. if (modality == CLIP_MODALITY_VISION) {
  1839. GGML_ASSERT(has_vision);
  1840. } else if (modality == CLIP_MODALITY_AUDIO) {
  1841. GGML_ASSERT(has_audio);
  1842. }
  1843. model.modality = modality;
  1844. // projector type
  1845. std::string proj_type;
  1846. {
  1847. get_string(KEY_PROJ_TYPE, proj_type, false);
  1848. if (!proj_type.empty()) {
  1849. model.proj_type = clip_projector_type_from_string(proj_type);
  1850. }
  1851. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1852. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1853. }
  1854. // correct arch for multimodal models
  1855. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  1856. model.proj_type = modality == CLIP_MODALITY_VISION
  1857. ? PROJECTOR_TYPE_QWEN25VL
  1858. : PROJECTOR_TYPE_QWEN2A;
  1859. }
  1860. }
  1861. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  1862. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  1863. // other hparams
  1864. {
  1865. const char * prefix = is_vision ? "vision" : "audio";
  1866. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  1867. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  1868. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  1869. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  1870. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  1871. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  1872. if (is_vision) {
  1873. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1874. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1875. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1876. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  1877. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  1878. if (hparams.minicpmv_query_num == 0) {
  1879. // Fallback to hardcoded values for legacy models
  1880. if (hparams.minicpmv_version == 3) {
  1881. hparams.minicpmv_query_num = 64;
  1882. } else if (hparams.minicpmv_version == 4) {
  1883. hparams.minicpmv_query_num = 64;
  1884. } else if (hparams.minicpmv_version == 5) {
  1885. hparams.minicpmv_query_num = 64;
  1886. } else if (hparams.minicpmv_version == 6) {
  1887. hparams.minicpmv_query_num = 64;
  1888. } else {
  1889. hparams.minicpmv_query_num = 96;
  1890. }
  1891. }
  1892. } else if (is_audio) {
  1893. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  1894. } else {
  1895. GGML_ASSERT(false && "unknown modality");
  1896. }
  1897. // for pinpoints, we need to convert it into a list of resolution candidates
  1898. {
  1899. std::vector<int> pinpoints;
  1900. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  1901. if (!pinpoints.empty()) {
  1902. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  1903. hparams.image_res_candidates.push_back({
  1904. pinpoints[i],
  1905. pinpoints[i+1],
  1906. });
  1907. }
  1908. }
  1909. }
  1910. // default warmup value
  1911. hparams.warmup_image_size = hparams.image_size;
  1912. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  1913. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1914. || model.proj_type == PROJECTOR_TYPE_LDP
  1915. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  1916. {
  1917. bool use_gelu = false;
  1918. bool use_silu = false;
  1919. get_bool(KEY_USE_GELU, use_gelu, false);
  1920. get_bool(KEY_USE_SILU, use_silu, false);
  1921. if (use_gelu && use_silu) {
  1922. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1923. }
  1924. if (use_gelu) {
  1925. hparams.ffn_op = FFN_GELU;
  1926. log_ffn_op = "gelu";
  1927. } else if (use_silu) {
  1928. hparams.ffn_op = FFN_SILU;
  1929. log_ffn_op = "silu";
  1930. } else {
  1931. hparams.ffn_op = FFN_GELU_QUICK;
  1932. log_ffn_op = "gelu_quick";
  1933. }
  1934. }
  1935. {
  1936. std::string mm_patch_merge_type;
  1937. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1938. if (mm_patch_merge_type == "spatial_unpad") {
  1939. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1940. }
  1941. }
  1942. if (is_vision) {
  1943. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1944. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1945. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1946. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1947. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1948. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1949. for (int i = 0; i < 3; ++i) {
  1950. hparams.image_mean[i] = mean_data[i];
  1951. hparams.image_std[i] = std_data[i];
  1952. }
  1953. }
  1954. // Load the vision feature layer indices if they are explicitly provided;
  1955. // if multiple vision feature layers are present, the values will be concatenated
  1956. // to form the final visual features.
  1957. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1958. // be non-negative, since we use -1 to mark values as unset here.
  1959. std::vector<int> vision_feature_layer;
  1960. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1961. // convert std::vector to std::unordered_set
  1962. for (auto & layer : vision_feature_layer) {
  1963. hparams.vision_feature_layer.insert(layer);
  1964. }
  1965. // model-specific params
  1966. switch (model.proj_type) {
  1967. case PROJECTOR_TYPE_MINICPMV:
  1968. {
  1969. if (hparams.minicpmv_version == 0) {
  1970. hparams.minicpmv_version = 2; // default to 2 if not set
  1971. }
  1972. } break;
  1973. case PROJECTOR_TYPE_IDEFICS3:
  1974. case PROJECTOR_TYPE_LFM2:
  1975. case PROJECTOR_TYPE_INTERNVL:
  1976. {
  1977. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1978. } break;
  1979. case PROJECTOR_TYPE_PIXTRAL:
  1980. {
  1981. hparams.rope_theta = 10000.0f;
  1982. hparams.warmup_image_size = hparams.patch_size * 8;
  1983. // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
  1984. // ref: https://github.com/ggml-org/llama.cpp/issues/14310
  1985. hparams.image_size = 1024;
  1986. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1987. } break;
  1988. case PROJECTOR_TYPE_KIMIVL:
  1989. {
  1990. hparams.rope_theta = 10000.0f;
  1991. hparams.warmup_image_size = hparams.patch_size * 8;
  1992. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1993. } break;
  1994. case PROJECTOR_TYPE_GEMMA3:
  1995. {
  1996. // default value (used by all model sizes in gemma 3 family)
  1997. // number of patches for each **side** is reduced by a factor of 4
  1998. hparams.proj_scale_factor = 4;
  1999. // test model (tinygemma3) has a different value, we optionally read it
  2000. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  2001. } break;
  2002. case PROJECTOR_TYPE_QWEN2VL:
  2003. {
  2004. // max image size = sqrt(max_pixels) = 3584
  2005. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  2006. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  2007. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  2008. hparams.image_size = 1024;
  2009. hparams.warmup_image_size = hparams.patch_size * 8;
  2010. } break;
  2011. case PROJECTOR_TYPE_QWEN25VL:
  2012. {
  2013. // max image size = sqrt(max_pixels)
  2014. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2015. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  2016. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  2017. hparams.image_size = 1024;
  2018. hparams.warmup_image_size = hparams.patch_size * 8;
  2019. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  2020. } break;
  2021. case PROJECTOR_TYPE_LLAMA4:
  2022. {
  2023. hparams.rope_theta = 10000.0f;
  2024. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  2025. set_llava_uhd_res_candidates(model, 3);
  2026. } break;
  2027. case PROJECTOR_TYPE_ULTRAVOX:
  2028. case PROJECTOR_TYPE_QWEN2A:
  2029. case PROJECTOR_TYPE_VOXTRAL:
  2030. {
  2031. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2032. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2033. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2034. if (hparams.n_mel_bins != 128) {
  2035. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2036. }
  2037. hparams.ffn_op = FFN_GELU_ERF;
  2038. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2039. } break;
  2040. default:
  2041. break;
  2042. }
  2043. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2044. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2045. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2046. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2047. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2048. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2049. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2050. if (is_vision) {
  2051. LOG_INF("\n--- vision hparams ---\n");
  2052. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2053. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2054. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2055. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2056. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  2057. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2058. } else if (is_audio) {
  2059. LOG_INF("\n--- audio hparams ---\n");
  2060. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2061. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2062. }
  2063. LOG_INF("\n");
  2064. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2065. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2066. }
  2067. }
  2068. void load_tensors(clip_ctx & ctx_clip) {
  2069. auto & model = ctx_clip.model;
  2070. auto & hparams = model.hparams;
  2071. std::map<std::string, size_t> tensor_offset;
  2072. std::vector<ggml_tensor *> tensors_to_load;
  2073. // TODO @ngxson : support both audio and video in the future
  2074. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2075. // get offsets
  2076. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2077. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2078. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2079. }
  2080. // create data context
  2081. struct ggml_init_params params = {
  2082. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2083. /*.mem_buffer =*/ NULL,
  2084. /*.no_alloc =*/ true,
  2085. };
  2086. ctx_clip.ctx_data.reset(ggml_init(params));
  2087. if (!ctx_clip.ctx_data) {
  2088. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2089. }
  2090. // helper function
  2091. auto get_tensor = [&](const std::string & name, bool required = true) {
  2092. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2093. if (!cur && required) {
  2094. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2095. }
  2096. if (cur) {
  2097. tensors_to_load.push_back(cur);
  2098. // add tensors to context
  2099. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2100. ggml_set_name(data_tensor, cur->name);
  2101. cur = data_tensor;
  2102. }
  2103. return cur;
  2104. };
  2105. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2106. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2107. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2108. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2109. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2110. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2111. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2112. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2113. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2114. // layers
  2115. model.layers.resize(hparams.n_layer);
  2116. for (int il = 0; il < hparams.n_layer; ++il) {
  2117. auto & layer = model.layers[il];
  2118. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
  2119. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
  2120. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
  2121. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2122. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2123. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2124. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2125. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2126. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2127. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2128. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2129. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2130. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2131. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2132. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2133. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2134. // ffn
  2135. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2136. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2137. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2138. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2139. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2140. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2141. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2142. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2143. bool is_ffn_swapped = (
  2144. // only old models need this fix
  2145. model.proj_type == PROJECTOR_TYPE_MLP
  2146. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2147. || model.proj_type == PROJECTOR_TYPE_LDP
  2148. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2149. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2150. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2151. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2152. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2153. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2154. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2155. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2156. if (is_ffn_swapped) {
  2157. // swap up and down weights
  2158. ggml_tensor * tmp = layer.ff_up_w;
  2159. layer.ff_up_w = layer.ff_down_w;
  2160. layer.ff_down_w = tmp;
  2161. // swap up and down biases
  2162. tmp = layer.ff_up_b;
  2163. layer.ff_up_b = layer.ff_down_b;
  2164. layer.ff_down_b = tmp;
  2165. if (il == 0) {
  2166. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2167. }
  2168. }
  2169. }
  2170. switch (model.proj_type) {
  2171. case PROJECTOR_TYPE_MLP:
  2172. case PROJECTOR_TYPE_MLP_NORM:
  2173. {
  2174. // LLaVA projection
  2175. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2176. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2177. // Yi-type llava
  2178. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2179. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2180. // missing in Yi-type llava
  2181. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2182. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2183. // Yi-type llava
  2184. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2185. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2186. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2187. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2188. if (model.mm_3_w) {
  2189. // TODO: this is a hack to support Yi-type llava
  2190. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2191. }
  2192. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2193. } break;
  2194. case PROJECTOR_TYPE_LDP:
  2195. {
  2196. // MobileVLM projection
  2197. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2198. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2199. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2200. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2201. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2202. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2203. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2204. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2205. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2206. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2207. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2208. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2209. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2210. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2211. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2212. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2213. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2214. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2215. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2216. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2217. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2218. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2219. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2220. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2221. } break;
  2222. case PROJECTOR_TYPE_LDPV2:
  2223. {
  2224. // MobilVLM_V2 projection
  2225. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2226. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2227. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2228. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2229. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2230. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2231. } break;
  2232. case PROJECTOR_TYPE_MINICPMV:
  2233. {
  2234. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2235. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2236. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2237. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2238. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2239. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2240. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2241. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2242. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2243. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2244. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2245. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2246. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2247. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2248. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2249. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2250. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2251. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2252. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2253. } break;
  2254. case PROJECTOR_TYPE_GLM_EDGE:
  2255. {
  2256. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2257. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2258. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2259. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2260. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2261. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2262. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2263. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2264. model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2265. model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2266. } break;
  2267. case PROJECTOR_TYPE_QWEN2VL:
  2268. case PROJECTOR_TYPE_QWEN25VL:
  2269. {
  2270. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2271. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2272. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2273. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2274. } break;
  2275. case PROJECTOR_TYPE_GEMMA3:
  2276. {
  2277. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2278. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2279. } break;
  2280. case PROJECTOR_TYPE_IDEFICS3:
  2281. {
  2282. model.projection = get_tensor(TN_MM_PROJECTOR);
  2283. } break;
  2284. case PROJECTOR_TYPE_LFM2:
  2285. case PROJECTOR_TYPE_KIMIVL:
  2286. {
  2287. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2288. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2289. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2290. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2291. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2292. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2293. } break;
  2294. case PROJECTOR_TYPE_PIXTRAL:
  2295. {
  2296. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2297. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2298. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2299. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2300. // [IMG_BREAK] token embedding
  2301. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2302. // for mistral small 3.1
  2303. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2304. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2305. } break;
  2306. case PROJECTOR_TYPE_ULTRAVOX:
  2307. {
  2308. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2309. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2310. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2311. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2312. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2313. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2314. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2315. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2316. } break;
  2317. case PROJECTOR_TYPE_QWEN2A:
  2318. {
  2319. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2320. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2321. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2322. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2323. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2324. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2325. } break;
  2326. case PROJECTOR_TYPE_VOXTRAL:
  2327. {
  2328. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2329. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2330. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2331. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2332. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2333. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2334. } break;
  2335. case PROJECTOR_TYPE_INTERNVL:
  2336. {
  2337. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2338. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2339. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2340. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2341. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2342. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2343. } break;
  2344. case PROJECTOR_TYPE_LLAMA4:
  2345. {
  2346. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2347. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2348. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2349. } break;
  2350. default:
  2351. GGML_ASSERT(false && "unknown projector type");
  2352. }
  2353. // load data
  2354. {
  2355. std::vector<uint8_t> read_buf;
  2356. auto fin = std::ifstream(fname, std::ios::binary);
  2357. if (!fin) {
  2358. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2359. }
  2360. // alloc memory and offload data
  2361. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2362. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2363. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2364. for (auto & t : tensors_to_load) {
  2365. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2366. const size_t offset = tensor_offset[t->name];
  2367. fin.seekg(offset, std::ios::beg);
  2368. if (!fin) {
  2369. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2370. }
  2371. size_t num_bytes = ggml_nbytes(cur);
  2372. if (ggml_backend_buft_is_host(buft)) {
  2373. // for the CPU and Metal backend, we can read directly into the tensor
  2374. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2375. } else {
  2376. // read into a temporary buffer first, then copy to device memory
  2377. read_buf.resize(num_bytes);
  2378. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2379. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2380. }
  2381. }
  2382. fin.close();
  2383. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2384. }
  2385. }
  2386. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2387. const auto & hparams = ctx_clip.model.hparams;
  2388. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2389. // create a fake batch
  2390. clip_image_f32_batch batch;
  2391. clip_image_f32_ptr img(clip_image_f32_init());
  2392. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2393. img->nx = hparams.warmup_image_size;
  2394. img->ny = hparams.warmup_image_size;
  2395. } else {
  2396. img->nx = hparams.warmup_audio_size;
  2397. img->ny = hparams.n_mel_bins;
  2398. }
  2399. batch.entries.push_back(std::move(img));
  2400. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2401. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2402. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2403. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2404. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2405. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2406. if (size > 1) {
  2407. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2408. ggml_backend_buft_name(buft),
  2409. size / 1024.0 / 1024.0);
  2410. }
  2411. }
  2412. }
  2413. void get_bool(const std::string & key, bool & output, bool required = true) {
  2414. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2415. if (i < 0) {
  2416. if (required) throw std::runtime_error("Key not found: " + key);
  2417. return;
  2418. }
  2419. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2420. }
  2421. void get_i32(const std::string & key, int & output, bool required = true) {
  2422. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2423. if (i < 0) {
  2424. if (required) throw std::runtime_error("Key not found: " + key);
  2425. return;
  2426. }
  2427. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2428. }
  2429. void get_u32(const std::string & key, int & output, bool required = true) {
  2430. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2431. if (i < 0) {
  2432. if (required) throw std::runtime_error("Key not found: " + key);
  2433. return;
  2434. }
  2435. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2436. }
  2437. void get_f32(const std::string & key, float & output, bool required = true) {
  2438. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2439. if (i < 0) {
  2440. if (required) throw std::runtime_error("Key not found: " + key);
  2441. return;
  2442. }
  2443. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2444. }
  2445. void get_string(const std::string & key, std::string & output, bool required = true) {
  2446. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2447. if (i < 0) {
  2448. if (required) throw std::runtime_error("Key not found: " + key);
  2449. return;
  2450. }
  2451. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2452. }
  2453. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2454. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2455. if (i < 0) {
  2456. if (required) throw std::runtime_error("Key not found: " + key);
  2457. return;
  2458. }
  2459. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2460. output.resize(n);
  2461. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2462. for (int i = 0; i < n; ++i) {
  2463. output[i] = values[i];
  2464. }
  2465. }
  2466. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2467. auto & hparams = model.hparams;
  2468. for (int x = 1; x <= max_patches_per_side; x++) {
  2469. for (int y = 1; y <= max_patches_per_side; y++) {
  2470. if (x == 1 && y == 1) {
  2471. continue; // skip the first point
  2472. }
  2473. hparams.image_res_candidates.push_back(clip_image_size{
  2474. x*hparams.image_size,
  2475. y*hparams.image_size,
  2476. });
  2477. }
  2478. }
  2479. }
  2480. };
  2481. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2482. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2483. clip_ctx * ctx_vision = nullptr;
  2484. clip_ctx * ctx_audio = nullptr;
  2485. try {
  2486. clip_model_loader loader(fname);
  2487. if (loader.has_vision) {
  2488. ctx_vision = new clip_ctx(ctx_params);
  2489. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2490. loader.load_tensors(*ctx_vision);
  2491. loader.alloc_compute_meta(*ctx_vision);
  2492. }
  2493. if (loader.has_audio) {
  2494. ctx_audio = new clip_ctx(ctx_params);
  2495. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2496. loader.load_tensors(*ctx_audio);
  2497. loader.alloc_compute_meta(*ctx_audio);
  2498. }
  2499. } catch (const std::exception & e) {
  2500. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2501. if (ctx_vision) {
  2502. delete ctx_vision;
  2503. }
  2504. if (ctx_audio) {
  2505. delete ctx_audio;
  2506. }
  2507. return {nullptr, nullptr};
  2508. }
  2509. return {ctx_vision, ctx_audio};
  2510. }
  2511. struct clip_image_size * clip_image_size_init() {
  2512. struct clip_image_size * load_image_size = new struct clip_image_size();
  2513. load_image_size->width = 448;
  2514. load_image_size->height = 448;
  2515. return load_image_size;
  2516. }
  2517. struct clip_image_u8 * clip_image_u8_init() {
  2518. return new clip_image_u8();
  2519. }
  2520. struct clip_image_f32 * clip_image_f32_init() {
  2521. return new clip_image_f32();
  2522. }
  2523. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2524. return new clip_image_f32_batch();
  2525. }
  2526. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2527. if (nx) *nx = img->nx;
  2528. if (ny) *ny = img->ny;
  2529. return img->buf.data();
  2530. }
  2531. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2532. if (load_image_size == nullptr) {
  2533. return;
  2534. }
  2535. delete load_image_size;
  2536. }
  2537. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2538. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2539. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2540. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2541. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2542. return batch->entries.size();
  2543. }
  2544. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2545. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2546. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2547. return 0;
  2548. }
  2549. return batch->entries[idx]->nx;
  2550. }
  2551. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2552. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2553. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2554. return 0;
  2555. }
  2556. return batch->entries[idx]->ny;
  2557. }
  2558. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2559. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2560. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2561. return nullptr;
  2562. }
  2563. return batch->entries[idx].get();
  2564. }
  2565. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2566. img->nx = nx;
  2567. img->ny = ny;
  2568. img->buf.resize(3 * nx * ny);
  2569. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2570. }
  2571. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2572. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2573. dst.nx = src.nx;
  2574. dst.ny = src.ny;
  2575. dst.buf.resize(src.buf.size());
  2576. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2577. for (size_t i = 0; i < src.buf.size(); ++i) {
  2578. int c = i % 3; // rgb
  2579. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2580. }
  2581. }
  2582. // set of tools to manupulate images
  2583. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2584. struct image_manipulation {
  2585. // Bilinear resize function
  2586. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2587. dst.nx = target_width;
  2588. dst.ny = target_height;
  2589. dst.buf.resize(3 * target_width * target_height);
  2590. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2591. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2592. for (int y = 0; y < target_height; y++) {
  2593. for (int x = 0; x < target_width; x++) {
  2594. float px = x_ratio * x;
  2595. float py = y_ratio * y;
  2596. int x_floor = static_cast<int>(px);
  2597. int y_floor = static_cast<int>(py);
  2598. float x_lerp = px - x_floor;
  2599. float y_lerp = py - y_floor;
  2600. for (int c = 0; c < 3; c++) {
  2601. float top = lerp(
  2602. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2603. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2604. x_lerp
  2605. );
  2606. float bottom = lerp(
  2607. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2608. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2609. x_lerp
  2610. );
  2611. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2612. }
  2613. }
  2614. }
  2615. }
  2616. // Bicubic resize function
  2617. // part of image will be cropped if the aspect ratio is different
  2618. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2619. const int nx = img.nx;
  2620. const int ny = img.ny;
  2621. dst.nx = target_width;
  2622. dst.ny = target_height;
  2623. dst.buf.resize(3 * target_width * target_height);
  2624. float Cc;
  2625. float C[5];
  2626. float d0, d2, d3, a0, a1, a2, a3;
  2627. int i, j, k, jj;
  2628. int x, y;
  2629. float dx, dy;
  2630. float tx, ty;
  2631. tx = (float)nx / (float)target_width;
  2632. ty = (float)ny / (float)target_height;
  2633. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2634. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2635. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2636. for (i = 0; i < target_height; i++) {
  2637. for (j = 0; j < target_width; j++) {
  2638. x = (int)(tx * j);
  2639. y = (int)(ty * i);
  2640. dx = tx * j - x;
  2641. dy = ty * i - y;
  2642. for (k = 0; k < 3; k++) {
  2643. for (jj = 0; jj <= 3; jj++) {
  2644. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2645. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2646. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2647. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2648. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2649. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2650. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2651. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2652. d0 = C[0] - C[1];
  2653. d2 = C[2] - C[1];
  2654. d3 = C[3] - C[1];
  2655. a0 = C[1];
  2656. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2657. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2658. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2659. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2660. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2661. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2662. }
  2663. }
  2664. }
  2665. }
  2666. return true;
  2667. }
  2668. // llava-1.6 type of resize_and_pad
  2669. // if the ratio is not 1:1, padding with pad_color will be applied
  2670. // pad_color is single channel, default is 0 (black)
  2671. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2672. int target_width = target_resolution.width;
  2673. int target_height = target_resolution.height;
  2674. float scale_w = static_cast<float>(target_width) / image.nx;
  2675. float scale_h = static_cast<float>(target_height) / image.ny;
  2676. int new_width, new_height;
  2677. if (scale_w < scale_h) {
  2678. new_width = target_width;
  2679. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2680. } else {
  2681. new_height = target_height;
  2682. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2683. }
  2684. clip_image_u8 resized_image;
  2685. bicubic_resize(image, resized_image, new_width, new_height);
  2686. clip_image_u8 padded_image;
  2687. padded_image.nx = target_width;
  2688. padded_image.ny = target_height;
  2689. padded_image.buf.resize(3 * target_width * target_height);
  2690. // Fill the padded image with the fill color
  2691. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2692. padded_image.buf[i] = pad_color[0];
  2693. padded_image.buf[i + 1] = pad_color[1];
  2694. padded_image.buf[i + 2] = pad_color[2];
  2695. }
  2696. // Calculate padding offsets
  2697. int pad_x = (target_width - new_width) / 2;
  2698. int pad_y = (target_height - new_height) / 2;
  2699. // Copy the resized image into the center of the padded buffer
  2700. for (int y = 0; y < new_height; ++y) {
  2701. for (int x = 0; x < new_width; ++x) {
  2702. for (int c = 0; c < 3; ++c) {
  2703. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2704. }
  2705. }
  2706. }
  2707. dst = std::move(padded_image);
  2708. }
  2709. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2710. dst.nx = w;
  2711. dst.ny = h;
  2712. dst.buf.resize(3 * w * h);
  2713. for (int i = 0; i < h; ++i) {
  2714. for (int j = 0; j < w; ++j) {
  2715. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2716. int dst_idx = 3 * (i*w + j);
  2717. dst.buf[dst_idx] = image.buf[src_idx];
  2718. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2719. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2720. }
  2721. }
  2722. }
  2723. // calculate the size of the **resized** image, while preserving the aspect ratio
  2724. // the calculated size will be aligned to the nearest multiple of align_size
  2725. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2726. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2727. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2728. return {0, 0};
  2729. }
  2730. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2731. static_cast<float>(max_dimension) / inp_size.height));
  2732. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2733. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2734. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2735. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2736. return {aligned_width, aligned_height};
  2737. }
  2738. private:
  2739. static inline int clip(int x, int lower, int upper) {
  2740. return std::max(lower, std::min(x, upper));
  2741. }
  2742. // Linear interpolation between two points
  2743. static inline float lerp(float s, float e, float t) {
  2744. return s + (e - s) * t;
  2745. }
  2746. };
  2747. /**
  2748. * implementation of LLaVA-UHD:
  2749. * - https://arxiv.org/pdf/2403.11703
  2750. * - https://github.com/thunlp/LLaVA-UHD
  2751. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2752. *
  2753. * overview:
  2754. * - an image always have a single overview (downscaled image)
  2755. * - an image can have 0 or multiple slices, depending on the image size
  2756. * - each slice can then be considered as a separate image
  2757. *
  2758. * for example:
  2759. *
  2760. * [overview] --> [slice 1] --> [slice 2]
  2761. * | |
  2762. * +--> [slice 3] --> [slice 4]
  2763. */
  2764. struct llava_uhd {
  2765. struct slice_coordinates {
  2766. int x;
  2767. int y;
  2768. clip_image_size size;
  2769. };
  2770. struct slice_instructions {
  2771. clip_image_size overview_size; // size of downscaled image
  2772. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2773. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2774. std::vector<slice_coordinates> slices;
  2775. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2776. };
  2777. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2778. slice_instructions res;
  2779. const int patch_size = clip_get_patch_size(ctx);
  2780. const int slice_size = clip_get_image_size(ctx);
  2781. const int original_width = original_size.width;
  2782. const int original_height = original_size.height;
  2783. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  2784. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  2785. if (!has_slices) {
  2786. // skip slicing logic
  2787. res.overview_size = clip_image_size{slice_size, slice_size};
  2788. res.refined_size = clip_image_size{0, 0};
  2789. res.grid_size = clip_image_size{0, 0};
  2790. return res;
  2791. }
  2792. if (has_pinpoints) {
  2793. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2794. auto refine_size = llava_uhd::select_best_resolution(
  2795. original_size,
  2796. ctx->model.hparams.image_res_candidates);
  2797. res.overview_size = clip_image_size{slice_size, slice_size};
  2798. res.refined_size = refine_size;
  2799. res.grid_size = clip_image_size{0, 0};
  2800. res.padding_refined = true;
  2801. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  2802. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  2803. __func__, original_width, original_height,
  2804. res.overview_size.width, res.overview_size.height,
  2805. res.refined_size.width, res.refined_size.height);
  2806. for (int y = 0; y < refine_size.height; y += slice_size) {
  2807. for (int x = 0; x < refine_size.width; x += slice_size) {
  2808. slice_coordinates slice;
  2809. slice.x = x;
  2810. slice.y = y;
  2811. slice.size.width = std::min(slice_size, refine_size.width - x);
  2812. slice.size.height = std::min(slice_size, refine_size.height - y);
  2813. res.slices.push_back(slice);
  2814. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2815. __func__, (int)res.slices.size() - 1,
  2816. slice.x, slice.y, slice.size.width, slice.size.height);
  2817. }
  2818. }
  2819. res.grid_size.height = refine_size.height / slice_size;
  2820. res.grid_size.width = refine_size.width / slice_size;
  2821. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2822. return res;
  2823. }
  2824. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2825. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2826. res.overview_size = best_size;
  2827. {
  2828. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2829. const float log_ratio = log((float)original_width / original_height);
  2830. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2831. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2832. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2833. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2834. res.grid_size = best_grid;
  2835. res.refined_size = refine_size;
  2836. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2837. __func__, original_width, original_height,
  2838. res.overview_size.width, res.overview_size.height,
  2839. res.refined_size.width, res.refined_size.height,
  2840. res.grid_size.width, res.grid_size.height);
  2841. int width = refine_size.width;
  2842. int height = refine_size.height;
  2843. int grid_x = int(width / best_grid.width);
  2844. int grid_y = int(height / best_grid.height);
  2845. for (int patches_y = 0, ic = 0;
  2846. patches_y < refine_size.height && ic < best_grid.height;
  2847. patches_y += grid_y, ic += 1) {
  2848. for (int patches_x = 0, jc = 0;
  2849. patches_x < refine_size.width && jc < best_grid.width;
  2850. patches_x += grid_x, jc += 1) {
  2851. slice_coordinates slice;
  2852. slice.x = patches_x;
  2853. slice.y = patches_y;
  2854. slice.size.width = grid_x;
  2855. slice.size.height = grid_y;
  2856. res.slices.push_back(slice);
  2857. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2858. __func__, (int)res.slices.size() - 1,
  2859. slice.x, slice.y, slice.size.width, slice.size.height);
  2860. }
  2861. }
  2862. }
  2863. return res;
  2864. }
  2865. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2866. std::vector<clip_image_u8_ptr> output;
  2867. // resize to overview size
  2868. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2869. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2870. output.push_back(std::move(resized_img));
  2871. if (inst.slices.empty()) {
  2872. // no slices, just return the resized image
  2873. return output;
  2874. }
  2875. // resize to refined size
  2876. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2877. if (inst.padding_refined) {
  2878. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2879. } else {
  2880. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2881. }
  2882. // create slices
  2883. for (const auto & slice : inst.slices) {
  2884. int x = slice.x;
  2885. int y = slice.y;
  2886. int w = slice.size.width;
  2887. int h = slice.size.height;
  2888. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2889. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2890. output.push_back(std::move(img_slice));
  2891. }
  2892. return output;
  2893. }
  2894. private:
  2895. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2896. int width = original_size.width;
  2897. int height = original_size.height;
  2898. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2899. float r = static_cast<float>(width) / height;
  2900. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2901. width = static_cast<int>(height * r);
  2902. }
  2903. clip_image_size res;
  2904. res.width = ensure_divide(width, patch_size);
  2905. res.height = ensure_divide(height, patch_size);
  2906. return res;
  2907. }
  2908. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2909. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2910. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2911. float scale = std::min(scale_width, scale_height);
  2912. return clip_image_size{
  2913. static_cast<int>(orig.width * scale),
  2914. static_cast<int>(orig.height * scale),
  2915. };
  2916. }
  2917. /**
  2918. * Selects the best resolution from a list of possible resolutions based on the original size.
  2919. *
  2920. * For example, when given a list of resolutions:
  2921. * - 100x100
  2922. * - 200x100
  2923. * - 100x200
  2924. * - 200x200
  2925. *
  2926. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2927. *
  2928. * @param original_size The original size of the image
  2929. * @param possible_resolutions A list of possible resolutions
  2930. * @return The best fit resolution
  2931. */
  2932. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2933. clip_image_size best_fit;
  2934. int min_wasted_area = std::numeric_limits<int>::max();
  2935. int max_effective_resolution = 0;
  2936. for (const clip_image_size & candidate : possible_resolutions) {
  2937. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2938. int effective_resolution = std::min(
  2939. target_size.width * target_size.height,
  2940. original_size.width * original_size.height);
  2941. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2942. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2943. max_effective_resolution = effective_resolution;
  2944. min_wasted_area = wasted_area;
  2945. best_fit = candidate;
  2946. }
  2947. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2948. }
  2949. return best_fit;
  2950. }
  2951. static int ensure_divide(int length, int patch_size) {
  2952. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2953. }
  2954. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2955. int width = original_size.width;
  2956. int height = original_size.height;
  2957. int grid_x = grid.width;
  2958. int grid_y = grid.height;
  2959. int refine_width = ensure_divide(width, grid_x);
  2960. int refine_height = ensure_divide(height, grid_y);
  2961. clip_image_size grid_size;
  2962. grid_size.width = refine_width / grid_x;
  2963. grid_size.height = refine_height / grid_y;
  2964. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2965. int best_grid_width = best_grid_size.width;
  2966. int best_grid_height = best_grid_size.height;
  2967. clip_image_size refine_size;
  2968. refine_size.width = best_grid_width * grid_x;
  2969. refine_size.height = best_grid_height * grid_y;
  2970. return refine_size;
  2971. }
  2972. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2973. std::vector<int> candidate_split_grids_nums;
  2974. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2975. if (i == 1 || i > max_slice_nums) {
  2976. continue;
  2977. }
  2978. candidate_split_grids_nums.push_back(i);
  2979. }
  2980. std::vector<clip_image_size> candidate_grids;
  2981. for (int split_grids_nums : candidate_split_grids_nums) {
  2982. int m = 1;
  2983. while (m <= split_grids_nums) {
  2984. if (split_grids_nums % m == 0) {
  2985. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2986. }
  2987. ++m;
  2988. }
  2989. }
  2990. clip_image_size best_grid{1, 1};
  2991. float min_error = std::numeric_limits<float>::infinity();
  2992. for (const auto& grid : candidate_grids) {
  2993. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2994. if (error < min_error) {
  2995. best_grid = grid;
  2996. min_error = error;
  2997. }
  2998. }
  2999. return best_grid;
  3000. }
  3001. };
  3002. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3003. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3004. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3005. clip_image_size original_size{img->nx, img->ny};
  3006. bool pad_to_square = true;
  3007. auto & params = ctx->model.hparams;
  3008. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3009. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  3010. pad_to_square = false;
  3011. }
  3012. if (clip_is_minicpmv(ctx)) {
  3013. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3014. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3015. for (size_t i = 0; i < imgs.size(); ++i) {
  3016. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3017. clip_image_f32_ptr res(clip_image_f32_init());
  3018. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3019. res_imgs->entries.push_back(std::move(res));
  3020. }
  3021. res_imgs->grid_x = inst.grid_size.width;
  3022. res_imgs->grid_y = inst.grid_size.height;
  3023. return true;
  3024. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3025. clip_image_u8 resized;
  3026. auto patch_size = params.patch_size * 2;
  3027. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  3028. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  3029. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3030. // clip_image_f32_ptr res(clip_image_f32_init());
  3031. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3032. // res_imgs->data[0] = *res;
  3033. res_imgs->entries.push_back(std::move(img_f32));
  3034. return true;
  3035. }
  3036. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
  3037. || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
  3038. || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
  3039. || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  3040. ) {
  3041. clip_image_u8 resized_image;
  3042. int sz = params.image_size;
  3043. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  3044. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3045. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3046. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3047. res_imgs->entries.push_back(std::move(img_f32));
  3048. return true;
  3049. } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
  3050. clip_image_u8 resized_image;
  3051. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  3052. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  3053. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3054. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3055. res_imgs->entries.push_back(std::move(img_f32));
  3056. return true;
  3057. } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
  3058. GGML_ASSERT(!params.image_res_candidates.empty());
  3059. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3060. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3061. for (size_t i = 0; i < imgs.size(); ++i) {
  3062. clip_image_f32_ptr res(clip_image_f32_init());
  3063. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3064. res_imgs->entries.push_back(std::move(res));
  3065. }
  3066. res_imgs->grid_x = inst.grid_size.width;
  3067. res_imgs->grid_y = inst.grid_size.height;
  3068. return true;
  3069. } else if ( ctx->proj_type() == PROJECTOR_TYPE_LFM2
  3070. || ctx->proj_type() == PROJECTOR_TYPE_KIMIVL
  3071. ) {
  3072. GGML_ASSERT(params.proj_scale_factor);
  3073. // smart resize
  3074. const int width = img->nx;
  3075. const int height = img->ny;
  3076. const int total_factor = params.patch_size * params.proj_scale_factor;
  3077. constexpr int min_image_tokens = 64;
  3078. constexpr int max_image_tokens = 1024;
  3079. const float min_pixels = min_image_tokens * total_factor * total_factor;
  3080. const float max_pixels = max_image_tokens * total_factor * total_factor;
  3081. auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
  3082. auto ceil_by_factor = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3083. auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3084. int h_bar = std::max(total_factor, round_by_factor(height));
  3085. int w_bar = std::max(total_factor, round_by_factor(width));
  3086. if (h_bar * w_bar > max_pixels) {
  3087. const auto beta = std::sqrt((height * width) / max_pixels);
  3088. h_bar = std::max(total_factor, floor_by_factor(height / beta));
  3089. w_bar = std::max(total_factor, floor_by_factor(width / beta));
  3090. } else if (h_bar * w_bar < min_pixels) {
  3091. const auto beta = std::sqrt(min_pixels / (height * width));
  3092. h_bar = ceil_by_factor(height * beta);
  3093. w_bar = ceil_by_factor(width * beta);
  3094. }
  3095. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3096. clip_image_u8 resized_img;
  3097. image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
  3098. clip_image_f32_ptr res(clip_image_f32_init());
  3099. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3100. res_imgs->entries.push_back(std::move(res));
  3101. return true;
  3102. }
  3103. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3104. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3105. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3106. if (pad_to_square) {
  3107. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3108. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3109. const int longer_side = std::max(img->nx, img->ny);
  3110. temp->nx = longer_side;
  3111. temp->ny = longer_side;
  3112. temp->buf.resize(3 * longer_side * longer_side);
  3113. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3114. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3115. // resize the image to the target_size
  3116. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  3117. clip_image_f32_ptr res(clip_image_f32_init());
  3118. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3119. res_imgs->entries.push_back(std::move(res));
  3120. return true;
  3121. } else if (!params.image_res_candidates.empty()) {
  3122. // "spatial_unpad" with "anyres" processing for llava-1.6
  3123. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3124. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3125. for (size_t i = 0; i < imgs.size(); ++i) {
  3126. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3127. clip_image_f32_ptr res(clip_image_f32_init());
  3128. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3129. res_imgs->entries.push_back(std::move(res));
  3130. }
  3131. return true;
  3132. } else {
  3133. GGML_ABORT("Unknown image preprocessing type");
  3134. }
  3135. }
  3136. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3137. return ctx->model.image_newline;
  3138. }
  3139. void clip_free(clip_ctx * ctx) {
  3140. if (ctx == nullptr) {
  3141. return;
  3142. }
  3143. delete ctx;
  3144. }
  3145. // deprecated
  3146. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3147. const int32_t nx = ctx->model.hparams.image_size;
  3148. const int32_t ny = ctx->model.hparams.image_size;
  3149. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3150. }
  3151. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3152. clip_image_f32 img;
  3153. img.nx = img_w;
  3154. img.ny = img_h;
  3155. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3156. }
  3157. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3158. return ctx->model.hparams.image_size;
  3159. }
  3160. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3161. return ctx->model.hparams.patch_size;
  3162. }
  3163. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3164. return ctx->model.hparams.n_embd;
  3165. }
  3166. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3167. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3168. }
  3169. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3170. const auto & params = ctx->model.hparams;
  3171. const int n_total = clip_n_output_tokens(ctx, img);
  3172. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3173. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  3174. }
  3175. return n_total;
  3176. }
  3177. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3178. const auto & params = ctx->model.hparams;
  3179. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3180. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  3181. }
  3182. return 1;
  3183. }
  3184. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3185. const auto & params = ctx->model.hparams;
  3186. // for models with fixed size image, the input image is already pre-processed and resized to square
  3187. int patch_size = params.patch_size;
  3188. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3189. projector_type proj = ctx->proj_type();
  3190. switch (proj) {
  3191. case PROJECTOR_TYPE_MLP:
  3192. case PROJECTOR_TYPE_MLP_NORM:
  3193. {
  3194. // do nothing
  3195. } break;
  3196. case PROJECTOR_TYPE_LDP:
  3197. case PROJECTOR_TYPE_LDPV2:
  3198. case PROJECTOR_TYPE_GLM_EDGE:
  3199. {
  3200. n_patches /= 4;
  3201. if (ctx->model.mm_glm_tok_boi) {
  3202. n_patches += 2; // for BOI and EOI token embeddings
  3203. }
  3204. } break;
  3205. case PROJECTOR_TYPE_MINICPMV:
  3206. {
  3207. // Use actual config value if available, otherwise fall back to hardcoded values
  3208. if (params.minicpmv_query_num > 0) {
  3209. n_patches = params.minicpmv_query_num;
  3210. } else {
  3211. // Fallback to hardcoded values for legacy models
  3212. if (params.minicpmv_version == 2) {
  3213. n_patches = 96;
  3214. } else if (params.minicpmv_version == 3) {
  3215. n_patches = 64;
  3216. } else if (params.minicpmv_version == 4) {
  3217. n_patches = 64;
  3218. } else if (params.minicpmv_version == 5) {
  3219. // MiniCPM-V 4.0
  3220. n_patches = 64;
  3221. } else if (params.minicpmv_version == 6) {
  3222. // MiniCPM-V 4.5
  3223. n_patches = 64;
  3224. } else {
  3225. GGML_ABORT("Unknown minicpmv version");
  3226. }
  3227. }
  3228. } break;
  3229. case PROJECTOR_TYPE_QWEN2VL:
  3230. case PROJECTOR_TYPE_QWEN25VL:
  3231. {
  3232. // dynamic size (2 conv, so double patch size)
  3233. int patch_size = params.patch_size * 2;
  3234. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  3235. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  3236. n_patches = x_patch * y_patch;
  3237. } break;
  3238. case PROJECTOR_TYPE_GEMMA3:
  3239. case PROJECTOR_TYPE_IDEFICS3:
  3240. case PROJECTOR_TYPE_INTERNVL:
  3241. case PROJECTOR_TYPE_LLAMA4:
  3242. {
  3243. // both X and Y are downscaled by the scale factor
  3244. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3245. n_patches /= (scale_factor * scale_factor);
  3246. } break;
  3247. case PROJECTOR_TYPE_LFM2:
  3248. case PROJECTOR_TYPE_KIMIVL:
  3249. {
  3250. // dynamic size
  3251. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3252. int out_patch_size = params.patch_size * scale_factor;
  3253. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3254. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3255. n_patches = x_patch * y_patch;
  3256. } break;
  3257. case PROJECTOR_TYPE_PIXTRAL:
  3258. {
  3259. // dynamic size
  3260. int n_merge = params.spatial_merge_size;
  3261. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3262. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3263. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3264. } break;
  3265. case PROJECTOR_TYPE_VOXTRAL:
  3266. case PROJECTOR_TYPE_ULTRAVOX:
  3267. case PROJECTOR_TYPE_QWEN2A:
  3268. {
  3269. n_patches = img->nx;
  3270. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3271. if (ctx->model.audio_has_stack_frames()) {
  3272. GGML_ASSERT(proj_stack_factor > 0);
  3273. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3274. n_patches = n_len / proj_stack_factor;
  3275. }
  3276. // whisper downscales input token by half after conv1d
  3277. n_patches /= 2;
  3278. if (ctx->model.audio_has_avgpool()) {
  3279. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3280. n_patches /= 2;
  3281. }
  3282. } break;
  3283. default:
  3284. GGML_ABORT("unsupported projector type");
  3285. }
  3286. return n_patches;
  3287. }
  3288. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3289. assert(embed_dim % 2 == 0);
  3290. int H = pos.size();
  3291. int W = pos[0].size();
  3292. std::vector<float> omega(embed_dim / 2);
  3293. for (int i = 0; i < embed_dim / 2; ++i) {
  3294. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3295. }
  3296. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3297. for (int h = 0; h < H; ++h) {
  3298. for (int w = 0; w < W; ++w) {
  3299. for (int d = 0; d < embed_dim / 2; ++d) {
  3300. float out_value = pos[h][w] * omega[d];
  3301. emb[h][w][d] = sin(out_value);
  3302. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3303. }
  3304. }
  3305. }
  3306. return emb;
  3307. }
  3308. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3309. assert(embed_dim % 2 == 0);
  3310. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3311. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3312. int H = emb_h.size();
  3313. int W = emb_h[0].size();
  3314. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3315. for (int h = 0; h < H; ++h) {
  3316. for (int w = 0; w < W; ++w) {
  3317. for (int d = 0; d < embed_dim / 2; ++d) {
  3318. emb[h][w][d] = emb_h[h][w][d];
  3319. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3320. }
  3321. }
  3322. }
  3323. return emb;
  3324. }
  3325. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3326. int grid_h_size = image_size.first;
  3327. int grid_w_size = image_size.second;
  3328. std::vector<float> grid_h(grid_h_size);
  3329. std::vector<float> grid_w(grid_w_size);
  3330. for (int i = 0; i < grid_h_size; ++i) {
  3331. grid_h[i] = static_cast<float>(i);
  3332. }
  3333. for (int i = 0; i < grid_w_size; ++i) {
  3334. grid_w[i] = static_cast<float>(i);
  3335. }
  3336. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3337. for (int h = 0; h < grid_h_size; ++h) {
  3338. for (int w = 0; w < grid_w_size; ++w) {
  3339. grid[h][w] = grid_w[w];
  3340. }
  3341. }
  3342. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3343. for (int h = 0; h < grid_h_size; ++h) {
  3344. for (int w = 0; w < grid_w_size; ++w) {
  3345. grid_2d[0][h][w] = grid_h[h];
  3346. grid_2d[1][h][w] = grid_w[w];
  3347. }
  3348. }
  3349. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3350. int H = image_size.first;
  3351. int W = image_size.second;
  3352. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3353. for (int h = 0; h < H; ++h) {
  3354. for (int w = 0; w < W; ++w) {
  3355. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3356. }
  3357. }
  3358. return pos_embed_2d;
  3359. }
  3360. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3361. clip_image_f32_batch imgs;
  3362. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3363. *img_copy = *img;
  3364. imgs.entries.push_back(std::move(img_copy));
  3365. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3366. }
  3367. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3368. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3369. int batch_size = imgs.entries.size();
  3370. // TODO @ngxson : implement batch size > 1 as a loop
  3371. // we don't need true batching support because the cgraph will gonna be big anyway
  3372. if (batch_size != 1) {
  3373. return false; // only support batch size of 1
  3374. }
  3375. // build the inference graph
  3376. ctx->debug_print_tensors.clear();
  3377. ggml_backend_sched_reset(ctx->sched.get());
  3378. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3379. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3380. // set inputs
  3381. const auto & model = ctx->model;
  3382. const auto & hparams = model.hparams;
  3383. const int image_size_width = imgs.entries[0]->nx;
  3384. const int image_size_height = imgs.entries[0]->ny;
  3385. const int patch_size = hparams.patch_size;
  3386. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3387. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3388. const int pos_w = image_size_width / patch_size;
  3389. const int pos_h = image_size_height / patch_size;
  3390. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3391. auto get_inp_tensor = [&gf](const char * name) {
  3392. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3393. if (inp == nullptr) {
  3394. GGML_ABORT("Failed to get tensor %s", name);
  3395. }
  3396. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3397. GGML_ABORT("Tensor %s is not an input tensor", name);
  3398. }
  3399. return inp;
  3400. };
  3401. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3402. ggml_tensor * cur = get_inp_tensor(name);
  3403. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3404. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3405. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3406. };
  3407. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3408. ggml_tensor * cur = get_inp_tensor(name);
  3409. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3410. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3411. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3412. };
  3413. // set input pixel values
  3414. if (!imgs.is_audio) {
  3415. size_t nelem = 0;
  3416. for (const auto & img : imgs.entries) {
  3417. nelem += img->nx * img->ny * 3;
  3418. }
  3419. std::vector<float> inp_raw(nelem);
  3420. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3421. //
  3422. // ┌──W──┐
  3423. // │ H │ channel = R
  3424. // ├─────┤ │
  3425. // │ H │ channel = G
  3426. // ├─────┤ │
  3427. // │ H │ channel = B
  3428. // └─────┘ │
  3429. // ──────┘ x B
  3430. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3431. const int nx = imgs.entries[i]->nx;
  3432. const int ny = imgs.entries[i]->ny;
  3433. const int n = nx * ny;
  3434. for (int b = 0; b < batch_size; b++) {
  3435. float * batch_entry = inp_raw.data() + b * (3*n);
  3436. for (int y = 0; y < ny; y++) {
  3437. for (int x = 0; x < nx; x++) {
  3438. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3439. size_t base_dst = y * nx + x; // idx of the first channel
  3440. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3441. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3442. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3443. }
  3444. }
  3445. }
  3446. }
  3447. set_input_f32("inp_raw", inp_raw);
  3448. } else {
  3449. // audio input
  3450. GGML_ASSERT(imgs.entries.size() == 1);
  3451. const auto & mel_inp = imgs.entries[0];
  3452. const int n_step = mel_inp->nx;
  3453. const int n_mel = mel_inp->ny;
  3454. std::vector<float> inp_raw(n_step * n_mel);
  3455. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3456. set_input_f32("inp_raw", inp_raw);
  3457. }
  3458. // set input per projector
  3459. switch (ctx->model.proj_type) {
  3460. case PROJECTOR_TYPE_MINICPMV:
  3461. {
  3462. // inspired from siglip:
  3463. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3464. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3465. std::vector<int32_t> positions(pos_h * pos_w);
  3466. int bucket_coords_h[1024];
  3467. int bucket_coords_w[1024];
  3468. for (int i = 0; i < pos_h; i++){
  3469. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3470. }
  3471. for (int i = 0; i < pos_w; i++){
  3472. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3473. }
  3474. for (int i = 0, id = 0; i < pos_h; i++){
  3475. for (int j = 0; j < pos_w; j++){
  3476. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3477. }
  3478. }
  3479. set_input_i32("positions", positions);
  3480. // inspired from resampler of Qwen-VL:
  3481. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3482. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3483. int embed_dim = clip_n_mmproj_embd(ctx);
  3484. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3485. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3486. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3487. for(int i = 0; i < pos_w * pos_h; ++i){
  3488. for(int j = 0; j < embed_dim; ++j){
  3489. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3490. }
  3491. }
  3492. set_input_f32("pos_embed", pos_embed);
  3493. } break;
  3494. case PROJECTOR_TYPE_QWEN2VL:
  3495. {
  3496. const int merge_ratio = 2;
  3497. const int pw = image_size_width / patch_size;
  3498. const int ph = image_size_height / patch_size;
  3499. std::vector<int> positions(n_pos * 4);
  3500. int ptr = 0;
  3501. for (int y = 0; y < ph; y += merge_ratio) {
  3502. for (int x = 0; x < pw; x += merge_ratio) {
  3503. for (int dy = 0; dy < 2; dy++) {
  3504. for (int dx = 0; dx < 2; dx++) {
  3505. positions[ ptr] = y + dy;
  3506. positions[ num_patches + ptr] = x + dx;
  3507. positions[2 * num_patches + ptr] = y + dy;
  3508. positions[3 * num_patches + ptr] = x + dx;
  3509. ptr++;
  3510. }
  3511. }
  3512. }
  3513. }
  3514. set_input_i32("positions", positions);
  3515. } break;
  3516. case PROJECTOR_TYPE_QWEN25VL:
  3517. {
  3518. // pw * ph = number of tokens output by ViT after apply patch merger
  3519. // ipw * ipw = number of vision token been processed inside ViT
  3520. const int merge_ratio = 2;
  3521. const int pw = image_size_width / patch_size / merge_ratio;
  3522. const int ph = image_size_height / patch_size / merge_ratio;
  3523. const int ipw = image_size_width / patch_size;
  3524. const int iph = image_size_height / patch_size;
  3525. std::vector<int> idx (ph * pw);
  3526. std::vector<int> inv_idx(ph * pw);
  3527. if (use_window_attn) {
  3528. const int attn_window_size = 112;
  3529. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3530. int dst = 0;
  3531. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3532. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3533. int mask_row = 0;
  3534. for (int y = 0; y < ph; y += grid_window) {
  3535. for (int x = 0; x < pw; x += grid_window) {
  3536. const int win_h = std::min(grid_window, ph - y);
  3537. const int win_w = std::min(grid_window, pw - x);
  3538. const int dst_0 = dst;
  3539. // group all tokens belong to the same window togather (to a continue range)
  3540. for (int dy = 0; dy < win_h; dy++) {
  3541. for (int dx = 0; dx < win_w; dx++) {
  3542. const int src = (y + dy) * pw + (x + dx);
  3543. GGML_ASSERT(src < (int)idx.size());
  3544. GGML_ASSERT(dst < (int)inv_idx.size());
  3545. idx [src] = dst;
  3546. inv_idx[dst] = src;
  3547. dst++;
  3548. }
  3549. }
  3550. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3551. int row_offset = mask_row * (ipw * iph);
  3552. std::fill(
  3553. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3554. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3555. 0.0);
  3556. mask_row++;
  3557. }
  3558. }
  3559. }
  3560. set_input_i32("window_idx", idx);
  3561. set_input_i32("inv_window_idx", inv_idx);
  3562. set_input_f32("window_mask", mask);
  3563. } else {
  3564. for (int i = 0; i < ph * pw; i++) {
  3565. idx[i] = i;
  3566. }
  3567. }
  3568. const int mpow = merge_ratio * merge_ratio;
  3569. std::vector<int> positions(n_pos * 4);
  3570. int ptr = 0;
  3571. for (int y = 0; y < iph; y += merge_ratio) {
  3572. for (int x = 0; x < ipw; x += merge_ratio) {
  3573. for (int dy = 0; dy < 2; dy++) {
  3574. for (int dx = 0; dx < 2; dx++) {
  3575. auto remap = idx[ptr / mpow];
  3576. remap = (remap * mpow) + (ptr % mpow);
  3577. positions[ remap] = y + dy;
  3578. positions[ num_patches + remap] = x + dx;
  3579. positions[2 * num_patches + remap] = y + dy;
  3580. positions[3 * num_patches + remap] = x + dx;
  3581. ptr++;
  3582. }
  3583. }
  3584. }
  3585. }
  3586. set_input_i32("positions", positions);
  3587. } break;
  3588. case PROJECTOR_TYPE_PIXTRAL:
  3589. case PROJECTOR_TYPE_KIMIVL:
  3590. {
  3591. // set the 2D positions
  3592. int n_patches_per_col = image_size_width / patch_size;
  3593. std::vector<int> pos_data(n_pos);
  3594. // dimension H
  3595. for (int i = 0; i < n_pos; i++) {
  3596. pos_data[i] = i / n_patches_per_col;
  3597. }
  3598. set_input_i32("pos_h", pos_data);
  3599. // dimension W
  3600. for (int i = 0; i < n_pos; i++) {
  3601. pos_data[i] = i % n_patches_per_col;
  3602. }
  3603. set_input_i32("pos_w", pos_data);
  3604. } break;
  3605. case PROJECTOR_TYPE_GLM_EDGE:
  3606. {
  3607. // llava and other models
  3608. std::vector<int32_t> positions(n_pos);
  3609. for (int i = 0; i < n_pos; i++) {
  3610. positions[i] = i;
  3611. }
  3612. set_input_i32("positions", positions);
  3613. } break;
  3614. case PROJECTOR_TYPE_MLP:
  3615. case PROJECTOR_TYPE_MLP_NORM:
  3616. case PROJECTOR_TYPE_LDP:
  3617. case PROJECTOR_TYPE_LDPV2:
  3618. {
  3619. // llava and other models
  3620. std::vector<int32_t> positions(n_pos);
  3621. for (int i = 0; i < n_pos; i++) {
  3622. positions[i] = i;
  3623. }
  3624. set_input_i32("positions", positions);
  3625. // The patches vector is used to get rows to index into the embeds with;
  3626. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3627. // when retrieving the rows.
  3628. int patch_offset = model.class_embedding ? 1 : 0;
  3629. std::vector<int32_t> patches(num_patches);
  3630. for (int i = 0; i < num_patches; i++) {
  3631. patches[i] = i + patch_offset;
  3632. }
  3633. set_input_i32("patches", patches);
  3634. } break;
  3635. case PROJECTOR_TYPE_GEMMA3:
  3636. case PROJECTOR_TYPE_IDEFICS3:
  3637. case PROJECTOR_TYPE_INTERNVL:
  3638. case PROJECTOR_TYPE_QWEN2A:
  3639. case PROJECTOR_TYPE_ULTRAVOX:
  3640. case PROJECTOR_TYPE_LFM2:
  3641. case PROJECTOR_TYPE_VOXTRAL:
  3642. {
  3643. // do nothing
  3644. } break;
  3645. case PROJECTOR_TYPE_LLAMA4:
  3646. {
  3647. // set the 2D positions
  3648. int n_patches_per_col = image_size_width / patch_size;
  3649. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  3650. // last pos is always kept 0, it's for CLS
  3651. // dimension H
  3652. for (int i = 0; i < num_patches; i++) {
  3653. pos_data[i] = (i / n_patches_per_col) + 1;
  3654. }
  3655. set_input_i32("pos_h", pos_data);
  3656. // dimension W
  3657. for (int i = 0; i < num_patches; i++) {
  3658. pos_data[i] = (i % n_patches_per_col) + 1;
  3659. }
  3660. set_input_i32("pos_w", pos_data);
  3661. } break;
  3662. default:
  3663. GGML_ABORT("Unknown projector type");
  3664. }
  3665. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3666. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3667. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3668. if (reg) {
  3669. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3670. if (ggml_backend_set_n_threads_fn) {
  3671. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3672. }
  3673. }
  3674. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3675. if (status != GGML_STATUS_SUCCESS) {
  3676. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3677. return false;
  3678. }
  3679. // print debug nodes
  3680. if (ctx->debug_graph) {
  3681. LOG_INF("\n\n---\n\n");
  3682. LOG_INF("\n\nDebug graph:\n\n");
  3683. for (ggml_tensor * t : ctx->debug_print_tensors) {
  3684. std::vector<uint8_t> data(ggml_nbytes(t));
  3685. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  3686. print_tensor_shape(t);
  3687. print_tensor_data(t, data.data(), 3);
  3688. }
  3689. }
  3690. // the last node is the embedding tensor
  3691. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3692. // sanity check (only support batch size of 1 for now)
  3693. const int n_tokens_out = embeddings->ne[1];
  3694. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3695. if (n_tokens_out != expected_n_tokens_out) {
  3696. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3697. GGML_ABORT("Invalid number of output tokens");
  3698. }
  3699. // copy the embeddings to the location passed by the user
  3700. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3701. return true;
  3702. }
  3703. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3704. switch (ctx->model.proj_type) {
  3705. case PROJECTOR_TYPE_LDP:
  3706. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  3707. case PROJECTOR_TYPE_LDPV2:
  3708. return ctx->model.mm_model_peg_0_b->ne[0];
  3709. case PROJECTOR_TYPE_MLP:
  3710. case PROJECTOR_TYPE_PIXTRAL:
  3711. return ctx->model.mm_2_w->ne[1];
  3712. case PROJECTOR_TYPE_MLP_NORM:
  3713. return ctx->model.mm_3_b->ne[0];
  3714. case PROJECTOR_TYPE_MINICPMV:
  3715. return ctx->model.mm_model_proj->ne[0];
  3716. case PROJECTOR_TYPE_GLM_EDGE:
  3717. return ctx->model.mm_model_mlp_3_w->ne[1];
  3718. case PROJECTOR_TYPE_QWEN2VL:
  3719. case PROJECTOR_TYPE_QWEN25VL:
  3720. return ctx->model.mm_1_b->ne[0];
  3721. case PROJECTOR_TYPE_GEMMA3:
  3722. return ctx->model.mm_input_proj_w->ne[0];
  3723. case PROJECTOR_TYPE_IDEFICS3:
  3724. return ctx->model.projection->ne[1];
  3725. case PROJECTOR_TYPE_ULTRAVOX:
  3726. case PROJECTOR_TYPE_VOXTRAL:
  3727. return ctx->model.mm_2_w->ne[1];
  3728. case PROJECTOR_TYPE_INTERNVL:
  3729. return ctx->model.mm_3_w->ne[1];
  3730. case PROJECTOR_TYPE_LLAMA4:
  3731. return ctx->model.mm_model_proj->ne[1];
  3732. case PROJECTOR_TYPE_QWEN2A:
  3733. return ctx->model.mm_fc_w->ne[1];
  3734. case PROJECTOR_TYPE_LFM2:
  3735. case PROJECTOR_TYPE_KIMIVL:
  3736. return ctx->model.mm_2_w->ne[1];
  3737. default:
  3738. GGML_ABORT("Unknown projector type");
  3739. }
  3740. }
  3741. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3742. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  3743. return ctx->model.hparams.minicpmv_version;
  3744. }
  3745. return 0;
  3746. }
  3747. bool clip_is_glm(const struct clip_ctx * ctx) {
  3748. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  3749. }
  3750. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3751. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  3752. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
  3753. }
  3754. bool clip_is_llava(const struct clip_ctx * ctx) {
  3755. return ctx->model.hparams.has_llava_projector;
  3756. }
  3757. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3758. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  3759. }
  3760. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3761. return ctx->model.modality == CLIP_MODALITY_VISION;
  3762. }
  3763. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3764. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  3765. }
  3766. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3767. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  3768. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  3769. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  3770. }
  3771. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3772. clip_image_f32 clip_img;
  3773. clip_img.buf.resize(h * w * 3);
  3774. for (int i = 0; i < h*w*3; i++)
  3775. {
  3776. clip_img.buf[i] = img[i];
  3777. }
  3778. clip_img.nx = w;
  3779. clip_img.ny = h;
  3780. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3781. return true;
  3782. }
  3783. //
  3784. // API used internally with mtmd
  3785. //
  3786. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3787. return ctx->proj_type();
  3788. }
  3789. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3790. clip_image_f32 * audio = new clip_image_f32;
  3791. audio->nx = n_frames;
  3792. audio->ny = n_mel;
  3793. audio->buf.resize(n_frames * n_mel);
  3794. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3795. batch->entries.push_back(clip_image_f32_ptr(audio));
  3796. batch->is_audio = true;
  3797. }