ggml.c 742 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. /*#define GGML_PERF*/
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  252. #include "ggml-opencl.h"
  253. #endif
  254. #elif defined(GGML_USE_OPENBLAS)
  255. #if defined(GGML_BLAS_USE_MKL)
  256. #include <mkl.h>
  257. #else
  258. #include <cblas.h>
  259. #endif
  260. #elif defined(GGML_USE_CLBLAST)
  261. #include "ggml-opencl.h"
  262. #endif
  263. // floating point type used to accumulate sums
  264. typedef double ggml_float;
  265. #undef MIN
  266. #undef MAX
  267. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  268. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  269. //
  270. // global data
  271. //
  272. // precomputed gelu table for f16 (128 KB)
  273. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  274. // precomputed quick gelu table for f16 (128 KB)
  275. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  276. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  277. float ggml_table_f32_f16[1 << 16];
  278. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  279. switch (status) {
  280. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  281. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  282. case GGML_STATUS_SUCCESS: return "GGML status: success";
  283. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  284. }
  285. return "GGML status: unknown";
  286. }
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  289. return GGML_FP16_TO_FP32(x);
  290. }
  291. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  292. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  293. return GGML_FP32_TO_FP16(x);
  294. }
  295. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  296. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  297. return GGML_BF16_TO_FP32(x); // it just left shifts
  298. }
  299. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  300. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  301. return GGML_FP32_TO_BF16(x);
  302. }
  303. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  304. for (int64_t i = 0; i < n; i++) {
  305. y[i] = GGML_FP16_TO_FP32(x[i]);
  306. }
  307. }
  308. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  309. int64_t i = 0;
  310. #if defined(__F16C__)
  311. for (; i + 7 < n; i += 8) {
  312. __m256 x_vec = _mm256_loadu_ps(x + i);
  313. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  314. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  315. }
  316. for(; i + 3 < n; i += 4) {
  317. __m128 x_vec = _mm_loadu_ps(x + i);
  318. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  320. }
  321. #endif
  322. for (; i < n; i++) {
  323. y[i] = GGML_FP32_TO_FP16(x[i]);
  324. }
  325. }
  326. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  327. int64_t i = 0;
  328. #if defined(__AVX512F__)
  329. for (; i + 16 <= n; i += 16) {
  330. _mm512_storeu_ps(y + i,
  331. _mm512_castsi512_ps(
  332. _mm512_slli_epi32(
  333. _mm512_cvtepu16_epi32(
  334. _mm256_loadu_si256(
  335. (const __m256i *)(x + i))),
  336. 16)));
  337. }
  338. #elif defined(__AVX2__)
  339. for (; i + 8 <= n; i += 8) {
  340. _mm256_storeu_ps(y + i,
  341. _mm256_castsi256_ps(
  342. _mm256_slli_epi32(
  343. _mm256_cvtepu16_epi32(
  344. _mm_loadu_si128(
  345. (const __m128i *)(x + i))),
  346. 16)));
  347. }
  348. #endif
  349. for (; i < n; i++) {
  350. y[i] = GGML_BF16_TO_FP32(x[i]);
  351. }
  352. }
  353. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  354. int i = 0;
  355. #if defined(__AVX512BF16__)
  356. for (; i + 32 <= n; i += 32) {
  357. _mm512_storeu_si512(
  358. (__m512i *)(y + i),
  359. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  360. _mm512_loadu_ps(x + i))));
  361. }
  362. #endif
  363. for (; i < n; i++) {
  364. y[i] = GGML_FP32_TO_BF16(x[i]);
  365. }
  366. }
  367. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  368. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  369. }
  370. //
  371. // timing
  372. //
  373. #if defined(_MSC_VER) || defined(__MINGW32__)
  374. static int64_t timer_freq, timer_start;
  375. void ggml_time_init(void) {
  376. LARGE_INTEGER t;
  377. QueryPerformanceFrequency(&t);
  378. timer_freq = t.QuadPart;
  379. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  380. // and the uptime is high enough.
  381. // We subtract the program start time to reduce the likelihood of that happening.
  382. QueryPerformanceCounter(&t);
  383. timer_start = t.QuadPart;
  384. }
  385. int64_t ggml_time_ms(void) {
  386. LARGE_INTEGER t;
  387. QueryPerformanceCounter(&t);
  388. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  389. }
  390. int64_t ggml_time_us(void) {
  391. LARGE_INTEGER t;
  392. QueryPerformanceCounter(&t);
  393. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  394. }
  395. #else
  396. void ggml_time_init(void) {}
  397. int64_t ggml_time_ms(void) {
  398. struct timespec ts;
  399. clock_gettime(CLOCK_MONOTONIC, &ts);
  400. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  401. }
  402. int64_t ggml_time_us(void) {
  403. struct timespec ts;
  404. clock_gettime(CLOCK_MONOTONIC, &ts);
  405. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  406. }
  407. #endif
  408. int64_t ggml_cycles(void) {
  409. return clock();
  410. }
  411. int64_t ggml_cycles_per_ms(void) {
  412. return CLOCKS_PER_SEC/1000;
  413. }
  414. #ifdef GGML_PERF
  415. #define ggml_perf_time_ms() ggml_time_ms()
  416. #define ggml_perf_time_us() ggml_time_us()
  417. #define ggml_perf_cycles() ggml_cycles()
  418. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  419. #else
  420. #define ggml_perf_time_ms() 0
  421. #define ggml_perf_time_us() 0
  422. #define ggml_perf_cycles() 0
  423. #define ggml_perf_cycles_per_ms() 0
  424. #endif
  425. //
  426. // cross-platform UTF-8 file paths
  427. //
  428. #ifdef _WIN32
  429. static wchar_t * ggml_mbstowcs(const char * mbs) {
  430. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  431. if (!wlen) {
  432. errno = EINVAL;
  433. return NULL;
  434. }
  435. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  436. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  437. if (!wlen) {
  438. GGML_FREE(wbuf);
  439. errno = EINVAL;
  440. return NULL;
  441. }
  442. return wbuf;
  443. }
  444. #endif
  445. FILE * ggml_fopen(const char * fname, const char * mode) {
  446. #ifdef _WIN32
  447. FILE * file = NULL;
  448. // convert fname (UTF-8)
  449. wchar_t * wfname = ggml_mbstowcs(fname);
  450. if (wfname) {
  451. // convert mode (ANSI)
  452. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  453. wchar_t * wmode_p = wmode;
  454. do {
  455. *wmode_p++ = (wchar_t)*mode;
  456. } while (*mode++);
  457. // open file
  458. file = _wfopen(wfname, wmode);
  459. GGML_FREE(wfname);
  460. GGML_FREE(wmode);
  461. }
  462. return file;
  463. #else
  464. return fopen(fname, mode);
  465. #endif
  466. }
  467. //
  468. // cache line
  469. //
  470. #if defined(__cpp_lib_hardware_interference_size)
  471. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  472. #else
  473. #if defined(__POWER9_VECTOR__)
  474. #define CACHE_LINE_SIZE 128
  475. #else
  476. #define CACHE_LINE_SIZE 64
  477. #endif
  478. #endif
  479. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  480. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  481. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  482. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  483. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  484. [GGML_TYPE_I8] = {
  485. .type_name = "i8",
  486. .blck_size = 1,
  487. .type_size = sizeof(int8_t),
  488. .is_quantized = false,
  489. },
  490. [GGML_TYPE_I16] = {
  491. .type_name = "i16",
  492. .blck_size = 1,
  493. .type_size = sizeof(int16_t),
  494. .is_quantized = false,
  495. },
  496. [GGML_TYPE_I32] = {
  497. .type_name = "i32",
  498. .blck_size = 1,
  499. .type_size = sizeof(int32_t),
  500. .is_quantized = false,
  501. },
  502. [GGML_TYPE_I64] = {
  503. .type_name = "i64",
  504. .blck_size = 1,
  505. .type_size = sizeof(int64_t),
  506. .is_quantized = false,
  507. },
  508. [GGML_TYPE_F64] = {
  509. .type_name = "f64",
  510. .blck_size = 1,
  511. .type_size = sizeof(double),
  512. .is_quantized = false,
  513. .nrows = 1,
  514. },
  515. [GGML_TYPE_F32] = {
  516. .type_name = "f32",
  517. .blck_size = 1,
  518. .type_size = sizeof(float),
  519. .is_quantized = false,
  520. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  521. .vec_dot_type = GGML_TYPE_F32,
  522. .nrows = 1,
  523. },
  524. [GGML_TYPE_F16] = {
  525. .type_name = "f16",
  526. .blck_size = 1,
  527. .type_size = sizeof(ggml_fp16_t),
  528. .is_quantized = false,
  529. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  530. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  531. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  532. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  533. .vec_dot_type = GGML_TYPE_F16,
  534. .nrows = 1,
  535. },
  536. [GGML_TYPE_Q4_0] = {
  537. .type_name = "q4_0",
  538. .blck_size = QK4_0,
  539. .type_size = sizeof(block_q4_0),
  540. .is_quantized = true,
  541. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  542. .from_float = quantize_row_q4_0,
  543. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  544. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  545. .vec_dot_type = GGML_TYPE_Q8_0,
  546. #if defined (__ARM_FEATURE_MATMUL_INT8)
  547. .nrows = 2,
  548. #else
  549. .nrows = 1,
  550. #endif
  551. },
  552. [GGML_TYPE_Q4_1] = {
  553. .type_name = "q4_1",
  554. .blck_size = QK4_1,
  555. .type_size = sizeof(block_q4_1),
  556. .is_quantized = true,
  557. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  558. .from_float = quantize_row_q4_1,
  559. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  560. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  561. .vec_dot_type = GGML_TYPE_Q8_1,
  562. #if defined (__ARM_FEATURE_MATMUL_INT8)
  563. .nrows = 2,
  564. #else
  565. .nrows = 1,
  566. #endif
  567. },
  568. [4] = { // GGML_TYPE_Q4_2
  569. .type_name = "DEPRECATED",
  570. .blck_size = 0,
  571. .type_size = 0,
  572. .is_quantized = false,
  573. .to_float = NULL,
  574. .from_float = NULL,
  575. .from_float_reference = NULL,
  576. .vec_dot = NULL,
  577. .vec_dot_type = GGML_TYPE_COUNT,
  578. .nrows = 1,
  579. },
  580. [5] = { // GGML_TYPE_Q4_3
  581. .type_name = "DEPRECATED",
  582. .blck_size = 0,
  583. .type_size = 0,
  584. .is_quantized = false,
  585. .to_float = NULL,
  586. .from_float = NULL,
  587. .from_float_reference = NULL,
  588. .vec_dot = NULL,
  589. .vec_dot_type = GGML_TYPE_COUNT,
  590. .nrows = 1,
  591. },
  592. [GGML_TYPE_Q5_0] = {
  593. .type_name = "q5_0",
  594. .blck_size = QK5_0,
  595. .type_size = sizeof(block_q5_0),
  596. .is_quantized = true,
  597. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  598. .from_float = quantize_row_q5_0,
  599. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  600. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  601. .vec_dot_type = GGML_TYPE_Q8_0,
  602. .nrows = 1,
  603. },
  604. [GGML_TYPE_Q5_1] = {
  605. .type_name = "q5_1",
  606. .blck_size = QK5_1,
  607. .type_size = sizeof(block_q5_1),
  608. .is_quantized = true,
  609. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  610. .from_float = quantize_row_q5_1,
  611. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  612. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  613. .vec_dot_type = GGML_TYPE_Q8_1,
  614. .nrows = 1,
  615. },
  616. [GGML_TYPE_Q8_0] = {
  617. .type_name = "q8_0",
  618. .blck_size = QK8_0,
  619. .type_size = sizeof(block_q8_0),
  620. .is_quantized = true,
  621. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  622. .from_float = quantize_row_q8_0,
  623. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  624. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  625. .vec_dot_type = GGML_TYPE_Q8_0,
  626. #if defined (__ARM_FEATURE_MATMUL_INT8)
  627. .nrows = 2,
  628. #else
  629. .nrows = 1,
  630. #endif
  631. },
  632. [GGML_TYPE_Q8_1] = {
  633. .type_name = "q8_1",
  634. .blck_size = QK8_1,
  635. .type_size = sizeof(block_q8_1),
  636. .is_quantized = true,
  637. .from_float = quantize_row_q8_1,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  639. .vec_dot_type = GGML_TYPE_Q8_1,
  640. .nrows = 1,
  641. },
  642. [GGML_TYPE_Q2_K] = {
  643. .type_name = "q2_K",
  644. .blck_size = QK_K,
  645. .type_size = sizeof(block_q2_K),
  646. .is_quantized = true,
  647. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  648. .from_float = quantize_row_q2_K,
  649. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  650. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  651. .vec_dot_type = GGML_TYPE_Q8_K,
  652. .nrows = 1,
  653. },
  654. [GGML_TYPE_Q3_K] = {
  655. .type_name = "q3_K",
  656. .blck_size = QK_K,
  657. .type_size = sizeof(block_q3_K),
  658. .is_quantized = true,
  659. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  660. .from_float = quantize_row_q3_K,
  661. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  662. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  663. .vec_dot_type = GGML_TYPE_Q8_K,
  664. .nrows = 1,
  665. },
  666. [GGML_TYPE_Q4_K] = {
  667. .type_name = "q4_K",
  668. .blck_size = QK_K,
  669. .type_size = sizeof(block_q4_K),
  670. .is_quantized = true,
  671. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  672. .from_float = quantize_row_q4_K,
  673. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  674. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  675. .vec_dot_type = GGML_TYPE_Q8_K,
  676. .nrows = 1,
  677. },
  678. [GGML_TYPE_Q5_K] = {
  679. .type_name = "q5_K",
  680. .blck_size = QK_K,
  681. .type_size = sizeof(block_q5_K),
  682. .is_quantized = true,
  683. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  684. .from_float = quantize_row_q5_K,
  685. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  686. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  687. .vec_dot_type = GGML_TYPE_Q8_K,
  688. .nrows = 1,
  689. },
  690. [GGML_TYPE_Q6_K] = {
  691. .type_name = "q6_K",
  692. .blck_size = QK_K,
  693. .type_size = sizeof(block_q6_K),
  694. .is_quantized = true,
  695. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  696. .from_float = quantize_row_q6_K,
  697. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  698. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  699. .vec_dot_type = GGML_TYPE_Q8_K,
  700. .nrows = 1,
  701. },
  702. [GGML_TYPE_IQ2_XXS] = {
  703. .type_name = "iq2_xxs",
  704. .blck_size = QK_K,
  705. .type_size = sizeof(block_iq2_xxs),
  706. .is_quantized = true,
  707. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  708. .from_float = NULL,
  709. .from_float_reference = NULL,
  710. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  711. .vec_dot_type = GGML_TYPE_Q8_K,
  712. .nrows = 1,
  713. },
  714. [GGML_TYPE_IQ2_XS] = {
  715. .type_name = "iq2_xs",
  716. .blck_size = QK_K,
  717. .type_size = sizeof(block_iq2_xs),
  718. .is_quantized = true,
  719. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  720. .from_float = NULL,
  721. .from_float_reference = NULL,
  722. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  723. .vec_dot_type = GGML_TYPE_Q8_K,
  724. .nrows = 1,
  725. },
  726. [GGML_TYPE_IQ3_XXS] = {
  727. .type_name = "iq3_xxs",
  728. .blck_size = QK_K,
  729. .type_size = sizeof(block_iq3_xxs),
  730. .is_quantized = true,
  731. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  732. .from_float = quantize_row_iq3_xxs,
  733. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  734. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  735. .vec_dot_type = GGML_TYPE_Q8_K,
  736. .nrows = 1,
  737. },
  738. [GGML_TYPE_IQ3_S] = {
  739. .type_name = "iq3_s",
  740. .blck_size = QK_K,
  741. .type_size = sizeof(block_iq3_s),
  742. .is_quantized = true,
  743. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  744. .from_float = quantize_row_iq3_s,
  745. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  746. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  747. .vec_dot_type = GGML_TYPE_Q8_K,
  748. .nrows = 1,
  749. },
  750. [GGML_TYPE_IQ2_S] = {
  751. .type_name = "iq2_s",
  752. .blck_size = QK_K,
  753. .type_size = sizeof(block_iq2_s),
  754. .is_quantized = true,
  755. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  756. .from_float = quantize_row_iq2_s,
  757. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  758. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  759. .vec_dot_type = GGML_TYPE_Q8_K,
  760. .nrows = 1,
  761. },
  762. [GGML_TYPE_IQ1_S] = {
  763. .type_name = "iq1_s",
  764. .blck_size = QK_K,
  765. .type_size = sizeof(block_iq1_s),
  766. .is_quantized = true,
  767. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  768. .from_float = NULL,
  769. .from_float_reference = NULL,
  770. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  771. .vec_dot_type = GGML_TYPE_Q8_K,
  772. .nrows = 1,
  773. },
  774. [GGML_TYPE_IQ1_M] = {
  775. .type_name = "iq1_m",
  776. .blck_size = QK_K,
  777. .type_size = sizeof(block_iq1_m),
  778. .is_quantized = true,
  779. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  780. .from_float = NULL,
  781. .from_float_reference = NULL,
  782. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  783. .vec_dot_type = GGML_TYPE_Q8_K,
  784. .nrows = 1,
  785. },
  786. [GGML_TYPE_IQ4_NL] = {
  787. .type_name = "iq4_nl",
  788. .blck_size = QK4_NL,
  789. .type_size = sizeof(block_iq4_nl),
  790. .is_quantized = true,
  791. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  792. .from_float = quantize_row_iq4_nl,
  793. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  794. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  795. .vec_dot_type = GGML_TYPE_Q8_0,
  796. .nrows = 1,
  797. },
  798. [GGML_TYPE_IQ4_XS] = {
  799. .type_name = "iq4_xs",
  800. .blck_size = QK_K,
  801. .type_size = sizeof(block_iq4_xs),
  802. .is_quantized = true,
  803. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  804. .from_float = quantize_row_iq4_xs,
  805. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  806. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  807. .vec_dot_type = GGML_TYPE_Q8_K,
  808. .nrows = 1,
  809. },
  810. [GGML_TYPE_Q8_K] = {
  811. .type_name = "q8_K",
  812. .blck_size = QK_K,
  813. .type_size = sizeof(block_q8_K),
  814. .is_quantized = true,
  815. .from_float = quantize_row_q8_K,
  816. },
  817. [GGML_TYPE_BF16] = {
  818. .type_name = "bf16",
  819. .blck_size = 1,
  820. .type_size = sizeof(ggml_bf16_t),
  821. .is_quantized = false,
  822. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  823. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  824. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  825. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  826. .vec_dot_type = GGML_TYPE_BF16,
  827. .nrows = 1,
  828. }
  829. };
  830. // For internal test use
  831. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  832. GGML_ASSERT(type < GGML_TYPE_COUNT);
  833. return type_traits[type];
  834. }
  835. //
  836. // simd mappings
  837. //
  838. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  839. // we then implement the fundamental computation operations below using only these macros
  840. // adding support for new architectures requires to define the corresponding SIMD macros
  841. //
  842. // GGML_F32_STEP / GGML_F16_STEP
  843. // number of elements to process in a single step
  844. //
  845. // GGML_F32_EPR / GGML_F16_EPR
  846. // number of elements to fit in a single register
  847. //
  848. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  849. #define GGML_SIMD
  850. // F32 NEON
  851. #define GGML_F32_STEP 16
  852. #define GGML_F32_EPR 4
  853. #define GGML_F32x4 float32x4_t
  854. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  855. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  856. #define GGML_F32x4_LOAD vld1q_f32
  857. #define GGML_F32x4_STORE vst1q_f32
  858. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  859. #define GGML_F32x4_ADD vaddq_f32
  860. #define GGML_F32x4_MUL vmulq_f32
  861. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  862. #define GGML_F32x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F32_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = vaddq_f32(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = vaddq_f32(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = vaddq_f32(x[i], x[offset+i]); \
  875. } \
  876. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  877. }
  878. #define GGML_F32_VEC GGML_F32x4
  879. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  880. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  881. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  882. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  883. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  884. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  885. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  886. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  887. // F16 NEON
  888. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  889. #define GGML_F16_STEP 32
  890. #define GGML_F16_EPR 8
  891. #define GGML_F16x8 float16x8_t
  892. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  893. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  894. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  895. #define GGML_F16x8_STORE vst1q_f16
  896. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  897. #define GGML_F16x8_ADD vaddq_f16
  898. #define GGML_F16x8_MUL vmulq_f16
  899. #define GGML_F16x8_REDUCE(res, x) \
  900. do { \
  901. int offset = GGML_F16_ARR >> 1; \
  902. for (int i = 0; i < offset; ++i) { \
  903. x[i] = vaddq_f16(x[i], x[offset+i]); \
  904. } \
  905. offset >>= 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = vaddq_f16(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = vaddq_f16(x[i], x[offset+i]); \
  912. } \
  913. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  914. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  915. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  916. } while (0)
  917. #define GGML_F16_VEC GGML_F16x8
  918. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  919. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  920. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  922. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  923. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  924. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  925. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  926. #else
  927. // if FP16 vector arithmetic is not supported, we use FP32 instead
  928. // and take advantage of the vcvt_ functions to convert to/from FP16
  929. #define GGML_F16_STEP 16
  930. #define GGML_F16_EPR 4
  931. #define GGML_F32Cx4 float32x4_t
  932. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  933. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  934. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  935. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  936. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  937. #define GGML_F32Cx4_ADD vaddq_f32
  938. #define GGML_F32Cx4_MUL vmulq_f32
  939. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  940. #define GGML_F16_VEC GGML_F32Cx4
  941. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  942. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  943. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  944. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  945. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  946. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  947. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  948. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  949. #endif
  950. #elif defined(__AVX512F__)
  951. #define GGML_SIMD
  952. // F32 AVX512
  953. #define GGML_F32_STEP 64
  954. #define GGML_F32_EPR 16
  955. #define GGML_F32x16 __m512
  956. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  957. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  958. #define GGML_F32x16_LOAD _mm512_loadu_ps
  959. #define GGML_F32x16_STORE _mm512_storeu_ps
  960. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  961. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  962. #define GGML_F32x16_ADD _mm512_add_ps
  963. #define GGML_F32x16_MUL _mm512_mul_ps
  964. #define GGML_F32x16_REDUCE(res, x) \
  965. do { \
  966. int offset = GGML_F32_ARR >> 1; \
  967. for (int i = 0; i < offset; ++i) { \
  968. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  969. } \
  970. offset >>= 1; \
  971. for (int i = 0; i < offset; ++i) { \
  972. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  973. } \
  974. offset >>= 1; \
  975. for (int i = 0; i < offset; ++i) { \
  976. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  977. } \
  978. res = _mm512_reduce_add_ps(x[0]); \
  979. } while (0)
  980. // TODO: is this optimal ?
  981. #define GGML_F32_VEC GGML_F32x16
  982. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  983. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  984. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  985. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  986. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  987. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  988. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  989. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  990. // F16 AVX512
  991. // F16 AVX
  992. #define GGML_F16_STEP 64
  993. #define GGML_F16_EPR 16
  994. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  995. #define GGML_F32Cx16 __m512
  996. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  997. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  998. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  999. // so F16C guard isn't required
  1000. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1001. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1002. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1003. #define GGML_F32Cx16_ADD _mm512_add_ps
  1004. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1005. #define GGML_F32Cx16_REDUCE(res, x) \
  1006. do { \
  1007. int offset = GGML_F32_ARR >> 1; \
  1008. for (int i = 0; i < offset; ++i) { \
  1009. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1010. } \
  1011. offset >>= 1; \
  1012. for (int i = 0; i < offset; ++i) { \
  1013. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1014. } \
  1015. offset >>= 1; \
  1016. for (int i = 0; i < offset; ++i) { \
  1017. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1018. } \
  1019. res = _mm512_reduce_add_ps(x[0]); \
  1020. } while (0)
  1021. #define GGML_F16_VEC GGML_F32Cx16
  1022. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1023. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1024. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1025. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1026. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1027. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1028. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1029. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1030. #elif defined(__AVX__)
  1031. #define GGML_SIMD
  1032. // F32 AVX
  1033. #define GGML_F32_STEP 32
  1034. #define GGML_F32_EPR 8
  1035. #define GGML_F32x8 __m256
  1036. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1037. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1038. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1039. #define GGML_F32x8_STORE _mm256_storeu_ps
  1040. #if defined(__FMA__)
  1041. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1042. #else
  1043. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1044. #endif
  1045. #define GGML_F32x8_ADD _mm256_add_ps
  1046. #define GGML_F32x8_MUL _mm256_mul_ps
  1047. #define GGML_F32x8_REDUCE(res, x) \
  1048. do { \
  1049. int offset = GGML_F32_ARR >> 1; \
  1050. for (int i = 0; i < offset; ++i) { \
  1051. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1052. } \
  1053. offset >>= 1; \
  1054. for (int i = 0; i < offset; ++i) { \
  1055. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1056. } \
  1057. offset >>= 1; \
  1058. for (int i = 0; i < offset; ++i) { \
  1059. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1060. } \
  1061. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1062. _mm256_extractf128_ps(x[0], 1)); \
  1063. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1064. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1065. } while (0)
  1066. // TODO: is this optimal ?
  1067. #define GGML_F32_VEC GGML_F32x8
  1068. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1069. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1070. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1071. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1072. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1073. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1074. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1075. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1076. // F16 AVX
  1077. #define GGML_F16_STEP 32
  1078. #define GGML_F16_EPR 8
  1079. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1080. #define GGML_F32Cx8 __m256
  1081. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1082. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1083. #if defined(__F16C__)
  1084. // the _mm256_cvt intrinsics require F16C
  1085. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1086. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1087. #else
  1088. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1089. float tmp[8];
  1090. for (int i = 0; i < 8; i++) {
  1091. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1092. }
  1093. return _mm256_loadu_ps(tmp);
  1094. }
  1095. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1096. float arr[8];
  1097. _mm256_storeu_ps(arr, y);
  1098. for (int i = 0; i < 8; i++)
  1099. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1100. }
  1101. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1102. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1103. #endif
  1104. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1105. #define GGML_F32Cx8_ADD _mm256_add_ps
  1106. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1107. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1108. #define GGML_F16_VEC GGML_F32Cx8
  1109. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1110. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1111. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1112. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1113. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1114. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1115. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1116. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1117. #elif defined(__POWER9_VECTOR__)
  1118. #define GGML_SIMD
  1119. // F32 POWER9
  1120. #define GGML_F32_STEP 32
  1121. #define GGML_F32_EPR 4
  1122. #define GGML_F32x4 vector float
  1123. #define GGML_F32x4_ZERO 0.0f
  1124. #define GGML_F32x4_SET1 vec_splats
  1125. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1126. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1127. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1128. #define GGML_F32x4_ADD vec_add
  1129. #define GGML_F32x4_MUL vec_mul
  1130. #define GGML_F32x4_REDUCE(res, x) \
  1131. { \
  1132. int offset = GGML_F32_ARR >> 1; \
  1133. for (int i = 0; i < offset; ++i) { \
  1134. x[i] = vec_add(x[i], x[offset+i]); \
  1135. } \
  1136. offset >>= 1; \
  1137. for (int i = 0; i < offset; ++i) { \
  1138. x[i] = vec_add(x[i], x[offset+i]); \
  1139. } \
  1140. offset >>= 1; \
  1141. for (int i = 0; i < offset; ++i) { \
  1142. x[i] = vec_add(x[i], x[offset+i]); \
  1143. } \
  1144. res = vec_extract(x[0], 0) + \
  1145. vec_extract(x[0], 1) + \
  1146. vec_extract(x[0], 2) + \
  1147. vec_extract(x[0], 3); \
  1148. }
  1149. #define GGML_F32_VEC GGML_F32x4
  1150. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1151. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1152. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1153. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1154. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1155. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1156. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1157. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1158. // F16 POWER9
  1159. #define GGML_F16_STEP GGML_F32_STEP
  1160. #define GGML_F16_EPR GGML_F32_EPR
  1161. #define GGML_F16_VEC GGML_F32x4
  1162. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1163. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1164. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1165. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1166. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1167. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1168. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1169. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1170. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1171. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1172. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1173. #define GGML_F16_VEC_STORE(p, r, i) \
  1174. if (i & 0x1) \
  1175. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1176. r[i - GGML_ENDIAN_BYTE(0)]), \
  1177. 0, p - GGML_F16_EPR)
  1178. #elif defined(__wasm_simd128__)
  1179. #define GGML_SIMD
  1180. // F32 WASM
  1181. #define GGML_F32_STEP 16
  1182. #define GGML_F32_EPR 4
  1183. #define GGML_F32x4 v128_t
  1184. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1185. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1186. #define GGML_F32x4_LOAD wasm_v128_load
  1187. #define GGML_F32x4_STORE wasm_v128_store
  1188. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1189. #define GGML_F32x4_ADD wasm_f32x4_add
  1190. #define GGML_F32x4_MUL wasm_f32x4_mul
  1191. #define GGML_F32x4_REDUCE(res, x) \
  1192. { \
  1193. int offset = GGML_F32_ARR >> 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1206. wasm_f32x4_extract_lane(x[0], 1) + \
  1207. wasm_f32x4_extract_lane(x[0], 2) + \
  1208. wasm_f32x4_extract_lane(x[0], 3); \
  1209. }
  1210. #define GGML_F32_VEC GGML_F32x4
  1211. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1212. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1213. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1214. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1215. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1216. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1217. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1218. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1219. // F16 WASM
  1220. #define GGML_F16_STEP 16
  1221. #define GGML_F16_EPR 4
  1222. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1223. float tmp[4];
  1224. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1225. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1226. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1227. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1228. return wasm_v128_load(tmp);
  1229. }
  1230. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1231. float tmp[4];
  1232. wasm_v128_store(tmp, x);
  1233. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1234. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1235. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1236. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1237. }
  1238. #define GGML_F16x4 v128_t
  1239. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1240. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1241. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1242. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1243. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1244. #define GGML_F16x4_ADD wasm_f32x4_add
  1245. #define GGML_F16x4_MUL wasm_f32x4_mul
  1246. #define GGML_F16x4_REDUCE(res, x) \
  1247. { \
  1248. int offset = GGML_F16_ARR >> 1; \
  1249. for (int i = 0; i < offset; ++i) { \
  1250. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1251. } \
  1252. offset >>= 1; \
  1253. for (int i = 0; i < offset; ++i) { \
  1254. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1255. } \
  1256. offset >>= 1; \
  1257. for (int i = 0; i < offset; ++i) { \
  1258. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1259. } \
  1260. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1261. wasm_f32x4_extract_lane(x[0], 1) + \
  1262. wasm_f32x4_extract_lane(x[0], 2) + \
  1263. wasm_f32x4_extract_lane(x[0], 3); \
  1264. }
  1265. #define GGML_F16_VEC GGML_F16x4
  1266. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1267. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1268. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1269. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1270. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1271. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1272. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1273. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1274. #elif defined(__SSE3__)
  1275. #define GGML_SIMD
  1276. // F32 SSE
  1277. #define GGML_F32_STEP 32
  1278. #define GGML_F32_EPR 4
  1279. #define GGML_F32x4 __m128
  1280. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1281. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1282. #define GGML_F32x4_LOAD _mm_loadu_ps
  1283. #define GGML_F32x4_STORE _mm_storeu_ps
  1284. #if defined(__FMA__)
  1285. // TODO: Does this work?
  1286. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1287. #else
  1288. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1289. #endif
  1290. #define GGML_F32x4_ADD _mm_add_ps
  1291. #define GGML_F32x4_MUL _mm_mul_ps
  1292. #define GGML_F32x4_REDUCE(res, x) \
  1293. { \
  1294. int offset = GGML_F32_ARR >> 1; \
  1295. for (int i = 0; i < offset; ++i) { \
  1296. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1297. } \
  1298. offset >>= 1; \
  1299. for (int i = 0; i < offset; ++i) { \
  1300. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1301. } \
  1302. offset >>= 1; \
  1303. for (int i = 0; i < offset; ++i) { \
  1304. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1305. } \
  1306. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1307. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1308. }
  1309. // TODO: is this optimal ?
  1310. #define GGML_F32_VEC GGML_F32x4
  1311. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1312. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1313. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1314. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1315. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1316. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1317. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1318. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1319. // F16 SSE
  1320. #define GGML_F16_STEP 32
  1321. #define GGML_F16_EPR 4
  1322. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1323. float tmp[4];
  1324. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1325. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1326. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1327. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1328. return _mm_loadu_ps(tmp);
  1329. }
  1330. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1331. float arr[4];
  1332. _mm_storeu_ps(arr, y);
  1333. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1334. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1335. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1336. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1337. }
  1338. #define GGML_F32Cx4 __m128
  1339. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1340. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1341. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1342. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1343. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1344. #define GGML_F32Cx4_ADD _mm_add_ps
  1345. #define GGML_F32Cx4_MUL _mm_mul_ps
  1346. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1347. #define GGML_F16_VEC GGML_F32Cx4
  1348. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1349. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1350. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1351. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1352. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1353. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1354. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1355. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1356. #elif defined(__loongarch_asx)
  1357. #define GGML_SIMD
  1358. // F32 LASX
  1359. #define GGML_F32_STEP 32
  1360. #define GGML_F32_EPR 8
  1361. #define GGML_F32x8 __m256
  1362. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1363. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1364. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1365. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1366. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1367. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1368. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1369. #define GGML_F32x8_REDUCE(res, x) \
  1370. do { \
  1371. int offset = GGML_F32_ARR >> 1; \
  1372. for (int i = 0; i < offset; ++i) { \
  1373. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1374. } \
  1375. offset >>= 1; \
  1376. for (int i = 0; i < offset; ++i) { \
  1377. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1378. } \
  1379. offset >>= 1; \
  1380. for (int i = 0; i < offset; ++i) { \
  1381. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1382. } \
  1383. float *tmp_p = (float *)&x[0]; \
  1384. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1385. } while (0)
  1386. // TODO: is this optimal ?
  1387. #define GGML_F32_VEC GGML_F32x8
  1388. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1389. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1390. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1391. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1392. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1393. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1394. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1395. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1396. // F16 LASX
  1397. #define GGML_F16_STEP 32
  1398. #define GGML_F16_EPR 8
  1399. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1400. #define GGML_F32Cx8 __m256
  1401. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1402. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1403. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1404. float tmp[8];
  1405. for (int i = 0; i < 8; i++) {
  1406. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1407. }
  1408. return (__m256)__lasx_xvld(tmp, 0);
  1409. }
  1410. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1411. float arr[8];
  1412. __lasx_xvst(y, arr, 0);
  1413. for (int i = 0; i < 8; i++) {
  1414. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1415. }
  1416. }
  1417. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1418. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1419. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1420. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1421. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1422. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1423. #define GGML_F16_VEC GGML_F32Cx8
  1424. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1425. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1426. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1427. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1428. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1429. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1430. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1431. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1432. #elif defined(__loongarch_sx)
  1433. #define GGML_SIMD
  1434. // F32 LSX
  1435. #define GGML_F32_STEP 32
  1436. #define GGML_F32_EPR 4
  1437. #define GGML_F32x4 __m128
  1438. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1439. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1440. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1441. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1442. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1443. #define GGML_F32x4_ADD __lsx_vfadd_s
  1444. #define GGML_F32x4_MUL __lsx_vfmul_s
  1445. #define GGML_F32x4_REDUCE(res, x) \
  1446. { \
  1447. int offset = GGML_F32_ARR >> 1; \
  1448. for (int i = 0; i < offset; ++i) { \
  1449. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1450. } \
  1451. offset >>= 1; \
  1452. for (int i = 0; i < offset; ++i) { \
  1453. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1454. } \
  1455. offset >>= 1; \
  1456. for (int i = 0; i < offset; ++i) { \
  1457. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1458. } \
  1459. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1460. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1461. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1462. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1463. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1464. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1465. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1466. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1467. }
  1468. #define GGML_F32_VEC GGML_F32x4
  1469. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1470. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1471. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1472. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1473. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1474. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1475. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1476. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1477. // F16 LSX
  1478. #define GGML_F16_STEP 32
  1479. #define GGML_F16_EPR 4
  1480. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1481. float tmp[4];
  1482. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1483. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1484. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1485. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1486. return __lsx_vld(tmp, 0);
  1487. }
  1488. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1489. float arr[4];
  1490. __lsx_vst(y, arr, 0);
  1491. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1492. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1493. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1494. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1495. }
  1496. #define GGML_F32Cx4 __m128
  1497. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1498. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1499. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1500. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1501. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1502. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1503. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1504. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1505. #define GGML_F16_VEC GGML_F32Cx4
  1506. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1507. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1508. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1509. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1510. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1511. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1512. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1513. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1514. #endif
  1515. // GGML_F32_ARR / GGML_F16_ARR
  1516. // number of registers to use per step
  1517. #ifdef GGML_SIMD
  1518. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1519. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1520. #endif
  1521. //
  1522. // ggml context
  1523. //
  1524. struct ggml_context {
  1525. size_t mem_size;
  1526. void* mem_buffer;
  1527. bool mem_buffer_owned;
  1528. bool no_alloc;
  1529. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1530. int n_objects;
  1531. struct ggml_object* objects_begin;
  1532. struct ggml_object* objects_end;
  1533. struct ggml_scratch scratch;
  1534. struct ggml_scratch scratch_save;
  1535. };
  1536. struct ggml_context_container {
  1537. bool used;
  1538. struct ggml_context context;
  1539. };
  1540. struct ggml_compute_state_shared {
  1541. const struct ggml_cgraph* cgraph;
  1542. const struct ggml_cplan* cplan;
  1543. int64_t perf_node_start_cycles;
  1544. int64_t perf_node_start_time_us;
  1545. int n_threads;
  1546. // synchronization primitives
  1547. atomic_int n_active; // num active threads
  1548. atomic_int node_n; // active graph node
  1549. atomic_int node_task; // active graph node task phase
  1550. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1551. void* abort_callback_data;
  1552. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1553. };
  1554. struct ggml_compute_state {
  1555. ggml_thread_t thrd;
  1556. int ith;
  1557. struct ggml_compute_state_shared* shared;
  1558. enum ggml_status ec;
  1559. };
  1560. //
  1561. // fundamental operations
  1562. //
  1563. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1564. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1565. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1566. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1567. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1568. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1569. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1570. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1571. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1572. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1573. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1574. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1575. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1576. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1577. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1578. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1579. assert(nrc == 1);
  1580. UNUSED(nrc);
  1581. UNUSED(bx);
  1582. UNUSED(by);
  1583. UNUSED(bs);
  1584. #if defined(GGML_SIMD)
  1585. float sumf = 0.0f;
  1586. const int np = (n & ~(GGML_F32_STEP - 1));
  1587. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1588. GGML_F32_VEC ax[GGML_F32_ARR];
  1589. GGML_F32_VEC ay[GGML_F32_ARR];
  1590. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1591. for (int j = 0; j < GGML_F32_ARR; j++) {
  1592. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1593. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1594. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1595. }
  1596. }
  1597. // reduce sum0..sum3 to sum0
  1598. GGML_F32_VEC_REDUCE(sumf, sum);
  1599. // leftovers
  1600. for (int i = np; i < n; ++i) {
  1601. sumf += x[i]*y[i];
  1602. }
  1603. #else
  1604. // scalar
  1605. ggml_float sumf = 0.0;
  1606. for (int i = 0; i < n; ++i) {
  1607. sumf += (ggml_float)(x[i]*y[i]);
  1608. }
  1609. #endif
  1610. *s = sumf;
  1611. }
  1612. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1613. assert(nrc == 1);
  1614. UNUSED(nrc);
  1615. UNUSED(bx);
  1616. UNUSED(by);
  1617. UNUSED(bs);
  1618. int i = 0;
  1619. ggml_float sumf = 0;
  1620. #if defined(__AVX512BF16__)
  1621. __m512 c1 = _mm512_setzero_ps();
  1622. __m512 c2 = _mm512_setzero_ps();
  1623. for (; i + 64 <= n; i += 64) {
  1624. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1625. m512bh(_mm512_loadu_si512((y + i))));
  1626. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1627. m512bh(_mm512_loadu_si512((y + i + 32))));
  1628. }
  1629. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1630. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1631. #elif defined(__AVX512F__)
  1632. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1633. __m512 c1 = _mm512_setzero_ps();
  1634. __m512 c2 = _mm512_setzero_ps();
  1635. for (; i + 32 <= n; i += 32) {
  1636. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1637. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1638. }
  1639. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1640. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1641. #undef LOAD
  1642. #elif defined(__AVX2__)
  1643. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1644. __m256 c1 = _mm256_setzero_ps();
  1645. __m256 c2 = _mm256_setzero_ps();
  1646. __m256 c3 = _mm256_setzero_ps();
  1647. __m256 c4 = _mm256_setzero_ps();
  1648. for (; i + 32 <= n; i += 32) {
  1649. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1650. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1651. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1652. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1653. }
  1654. __m128 g;
  1655. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1656. _mm256_add_ps(c2, c4));
  1657. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1658. _mm256_castps256_ps128(c1));
  1659. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1660. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1661. sumf += (ggml_float)_mm_cvtss_f32(g);
  1662. #undef LOAD
  1663. #endif
  1664. for (; i < n; ++i) {
  1665. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1666. GGML_BF16_TO_FP32(y[i]));
  1667. }
  1668. *s = sumf;
  1669. }
  1670. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1671. assert(nrc == 1);
  1672. UNUSED(nrc);
  1673. UNUSED(bx);
  1674. UNUSED(by);
  1675. UNUSED(bs);
  1676. ggml_float sumf = 0.0;
  1677. #if defined(GGML_SIMD)
  1678. const int np = (n & ~(GGML_F16_STEP - 1));
  1679. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1680. GGML_F16_VEC ax[GGML_F16_ARR];
  1681. GGML_F16_VEC ay[GGML_F16_ARR];
  1682. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1683. for (int j = 0; j < GGML_F16_ARR; j++) {
  1684. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1685. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1686. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1687. }
  1688. }
  1689. // reduce sum0..sum3 to sum0
  1690. GGML_F16_VEC_REDUCE(sumf, sum);
  1691. // leftovers
  1692. for (int i = np; i < n; ++i) {
  1693. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1694. }
  1695. #else
  1696. for (int i = 0; i < n; ++i) {
  1697. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1698. }
  1699. #endif
  1700. *s = sumf;
  1701. }
  1702. // compute GGML_VEC_DOT_UNROLL dot products at once
  1703. // xs - x row stride in bytes
  1704. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1705. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1706. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1707. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1708. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1709. }
  1710. #if defined(GGML_SIMD)
  1711. const int np = (n & ~(GGML_F16_STEP - 1));
  1712. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1713. GGML_F16_VEC ax[GGML_F16_ARR];
  1714. GGML_F16_VEC ay[GGML_F16_ARR];
  1715. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1716. for (int j = 0; j < GGML_F16_ARR; j++) {
  1717. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1718. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1719. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1720. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1721. }
  1722. }
  1723. }
  1724. // reduce sum0..sum3 to sum0
  1725. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1726. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1727. }
  1728. // leftovers
  1729. for (int i = np; i < n; ++i) {
  1730. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1731. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1732. }
  1733. }
  1734. #else
  1735. for (int i = 0; i < n; ++i) {
  1736. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1737. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1738. }
  1739. }
  1740. #endif
  1741. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1742. s[i] = sumf[i];
  1743. }
  1744. }
  1745. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1746. #if defined(GGML_SIMD)
  1747. const int np = (n & ~(GGML_F32_STEP - 1));
  1748. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1749. GGML_F32_VEC ax[GGML_F32_ARR];
  1750. GGML_F32_VEC ay[GGML_F32_ARR];
  1751. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1752. for (int j = 0; j < GGML_F32_ARR; j++) {
  1753. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1754. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1755. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1756. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1757. }
  1758. }
  1759. // leftovers
  1760. for (int i = np; i < n; ++i) {
  1761. y[i] += x[i]*v;
  1762. }
  1763. #else
  1764. // scalar
  1765. for (int i = 0; i < n; ++i) {
  1766. y[i] += x[i]*v;
  1767. }
  1768. #endif
  1769. }
  1770. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1771. #if defined(GGML_SIMD)
  1772. const int np = (n & ~(GGML_F16_STEP - 1));
  1773. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1774. GGML_F16_VEC ax[GGML_F16_ARR];
  1775. GGML_F16_VEC ay[GGML_F16_ARR];
  1776. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1777. for (int j = 0; j < GGML_F16_ARR; j++) {
  1778. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1779. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1780. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1781. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1782. }
  1783. }
  1784. // leftovers
  1785. for (int i = np; i < n; ++i) {
  1786. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1787. }
  1788. #else
  1789. // scalar
  1790. for (int i = 0; i < n; ++i) {
  1791. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1792. }
  1793. #endif
  1794. }
  1795. // xs and vs are byte strides of x and v
  1796. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1797. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1798. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1799. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1800. x[i] = (const float *) ((const char *) xv + i*xs);
  1801. v[i] = (const float *) ((const char *) vv + i*vs);
  1802. }
  1803. #if defined(GGML_SIMD)
  1804. const int np = (n & ~(GGML_F32_STEP - 1));
  1805. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1806. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1807. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1808. }
  1809. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1810. GGML_F32_VEC ay[GGML_F32_ARR];
  1811. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1812. for (int j = 0; j < GGML_F32_ARR; j++) {
  1813. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1814. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1815. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1816. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1817. }
  1818. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1819. }
  1820. }
  1821. // leftovers
  1822. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1823. for (int i = np; i < n; ++i) {
  1824. y[i] += x[k][i]*v[k][0];
  1825. }
  1826. }
  1827. #else
  1828. // scalar
  1829. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1830. for (int i = 0; i < n; ++i) {
  1831. y[i] += x[k][i]*v[k][0];
  1832. }
  1833. }
  1834. #endif
  1835. }
  1836. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1837. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1838. #if defined(GGML_USE_ACCELERATE)
  1839. vDSP_vsmul(y, 1, &v, y, 1, n);
  1840. #elif defined(GGML_SIMD)
  1841. const int np = (n & ~(GGML_F32_STEP - 1));
  1842. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1843. GGML_F32_VEC ay[GGML_F32_ARR];
  1844. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1845. for (int j = 0; j < GGML_F32_ARR; j++) {
  1846. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1847. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1848. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1849. }
  1850. }
  1851. // leftovers
  1852. for (int i = np; i < n; ++i) {
  1853. y[i] *= v;
  1854. }
  1855. #else
  1856. // scalar
  1857. for (int i = 0; i < n; ++i) {
  1858. y[i] *= v;
  1859. }
  1860. #endif
  1861. }
  1862. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1863. #if defined(GGML_SIMD)
  1864. const int np = (n & ~(GGML_F16_STEP - 1));
  1865. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1866. GGML_F16_VEC ay[GGML_F16_ARR];
  1867. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1868. for (int j = 0; j < GGML_F16_ARR; j++) {
  1869. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1870. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1871. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1872. }
  1873. }
  1874. // leftovers
  1875. for (int i = np; i < n; ++i) {
  1876. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1877. }
  1878. #else
  1879. // scalar
  1880. for (int i = 0; i < n; ++i) {
  1881. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1882. }
  1883. #endif
  1884. }
  1885. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1886. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1887. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1888. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1889. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1890. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1891. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1892. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1893. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1894. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1895. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1896. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1897. // TODO: optimize performance
  1898. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1899. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1900. static const float GELU_COEF_A = 0.044715f;
  1901. static const float GELU_QUICK_COEF = -1.702f;
  1902. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1903. inline static float ggml_gelu_f32(float x) {
  1904. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1905. }
  1906. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1907. const uint16_t * i16 = (const uint16_t *) x;
  1908. for (int i = 0; i < n; ++i) {
  1909. y[i] = ggml_table_gelu_f16[i16[i]];
  1910. }
  1911. }
  1912. #ifdef GGML_GELU_FP16
  1913. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1914. uint16_t t;
  1915. for (int i = 0; i < n; ++i) {
  1916. if (x[i] <= -10.0f) {
  1917. y[i] = 0.0f;
  1918. } else if (x[i] >= 10.0f) {
  1919. y[i] = x[i];
  1920. } else {
  1921. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1922. memcpy(&t, &fp16, sizeof(uint16_t));
  1923. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1924. }
  1925. }
  1926. }
  1927. #else
  1928. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1929. for (int i = 0; i < n; ++i) {
  1930. y[i] = ggml_gelu_f32(x[i]);
  1931. }
  1932. }
  1933. #endif
  1934. inline static float ggml_gelu_quick_f32(float x) {
  1935. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1936. }
  1937. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1938. // const uint16_t * i16 = (const uint16_t *) x;
  1939. // for (int i = 0; i < n; ++i) {
  1940. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1941. // }
  1942. //}
  1943. #ifdef GGML_GELU_QUICK_FP16
  1944. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1945. uint16_t t;
  1946. for (int i = 0; i < n; ++i) {
  1947. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1948. memcpy(&t, &fp16, sizeof(uint16_t));
  1949. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1950. }
  1951. }
  1952. #else
  1953. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1954. for (int i = 0; i < n; ++i) {
  1955. y[i] = ggml_gelu_quick_f32(x[i]);
  1956. }
  1957. }
  1958. #endif
  1959. // Sigmoid Linear Unit (SiLU) function
  1960. inline static float ggml_silu_f32(float x) {
  1961. return x/(1.0f + expf(-x));
  1962. }
  1963. #if defined(__ARM_NEON) && defined(__aarch64__)
  1964. // adapted from arm limited optimized routine
  1965. // the maximum error is 1.45358 plus 0.5 ulps
  1966. // numbers above 88.38 will flush to infinity
  1967. // numbers beneath -103.97 will flush to zero
  1968. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1969. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1970. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1971. const float32x4_t n = vsubq_f32(z, r);
  1972. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1973. vdupq_n_f32(0x1.7f7d1cp-20f));
  1974. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1975. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1976. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1977. const float32x4_t u = vmulq_f32(b, b);
  1978. const float32x4_t j = vfmaq_f32(
  1979. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1980. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1981. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1982. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1983. return vfmaq_f32(k, j, k);
  1984. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1985. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1986. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1987. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1988. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1989. }
  1990. // computes silu x/(1+exp(-x)) in single precision vector
  1991. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1992. const float32x4_t one = vdupq_n_f32(1.0f);
  1993. const float32x4_t zero = vdupq_n_f32(0.0f);
  1994. const float32x4_t neg_x = vsubq_f32(zero, x);
  1995. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1996. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1997. return vdivq_f32(x, one_plus_exp_neg_x);
  1998. }
  1999. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2000. // adapted from arm limited optimized routine
  2001. // the maximum error is 1.45358 plus 0.5 ulps
  2002. // numbers above 88.38 will flush to infinity
  2003. // numbers beneath -103.97 will flush to zero
  2004. inline static __m512 ggml_v_expf(__m512 x) {
  2005. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2006. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2007. const __m512 n = _mm512_sub_ps(z, r);
  2008. const __m512 b =
  2009. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2010. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2011. const __mmask16 d =
  2012. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2013. const __m512 u = _mm512_mul_ps(b, b);
  2014. const __m512 j = _mm512_fmadd_ps(
  2015. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2016. _mm512_set1_ps(0x1.573e2ep-5f)),
  2017. u,
  2018. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2019. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2020. u,
  2021. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2022. const __m512 res = _mm512_scalef_ps(j, n);
  2023. if (_mm512_kortestz(d, d))
  2024. return res;
  2025. const __m512 zero = _mm512_setzero_ps();
  2026. const __m512 alt = _mm512_mask_blend_ps(
  2027. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2028. return _mm512_mask_blend_ps(d, res, alt);
  2029. }
  2030. // computes silu x/(1+exp(-x)) in single precision vector
  2031. inline static __m512 ggml_v_silu(__m512 x) {
  2032. const __m512 one = _mm512_set1_ps(1);
  2033. const __m512 zero = _mm512_setzero_ps();
  2034. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2035. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2036. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2037. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2038. }
  2039. #elif defined(__AVX2__) && defined(__FMA__)
  2040. // adapted from arm limited optimized routine
  2041. // the maximum error is 1.45358 plus 0.5 ulps
  2042. // numbers above 88.38 will flush to infinity
  2043. // numbers beneath -103.97 will flush to zero
  2044. inline static __m256 ggml_v_expf(__m256 x) {
  2045. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2046. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2047. const __m256 n = _mm256_sub_ps(z, r);
  2048. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2049. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2050. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2051. const __m256 k = _mm256_castsi256_ps(
  2052. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2053. const __m256i c = _mm256_castps_si256(
  2054. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2055. _mm256_set1_ps(126), _CMP_GT_OQ));
  2056. const __m256 u = _mm256_mul_ps(b, b);
  2057. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2058. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2059. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2060. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2061. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2062. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2063. return _mm256_fmadd_ps(j, k, k);
  2064. const __m256i g = _mm256_and_si256(
  2065. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2066. _mm256_set1_epi32(0x82000000u));
  2067. const __m256 s1 =
  2068. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2069. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2070. const __m256i d = _mm256_castps_si256(
  2071. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2072. _mm256_set1_ps(192), _CMP_GT_OQ));
  2073. return _mm256_or_ps(
  2074. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2075. _mm256_andnot_ps(
  2076. _mm256_castsi256_ps(d),
  2077. _mm256_or_ps(
  2078. _mm256_and_ps(_mm256_castsi256_ps(c),
  2079. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2080. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2081. }
  2082. // computes silu x/(1+exp(-x)) in single precision vector
  2083. inline static __m256 ggml_v_silu(__m256 x) {
  2084. const __m256 one = _mm256_set1_ps(1);
  2085. const __m256 zero = _mm256_setzero_ps();
  2086. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2087. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2088. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2089. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2090. }
  2091. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2092. #if defined(__FMA__)
  2093. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2094. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2095. #else
  2096. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2097. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2098. #endif
  2099. // adapted from arm limited optimized routine
  2100. // the maximum error is 1.45358 plus 0.5 ulps
  2101. // numbers above 88.38 will flush to infinity
  2102. // numbers beneath -103.97 will flush to zero
  2103. inline static __m128 ggml_v_expf(__m128 x) {
  2104. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2105. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2106. const __m128 n = _mm_sub_ps(z, r);
  2107. const __m128 b =
  2108. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2109. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2110. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2111. const __m128i c =
  2112. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2113. const __m128 u = _mm_mul_ps(b, b);
  2114. const __m128 j =
  2115. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2116. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2117. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2118. if (!_mm_movemask_epi8(c))
  2119. return MADD128(j, k, k);
  2120. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2121. _mm_set1_epi32(0x82000000u));
  2122. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2123. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2124. const __m128i d =
  2125. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2126. return _mm_or_ps(
  2127. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2128. _mm_andnot_ps(_mm_castsi128_ps(d),
  2129. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2130. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2131. }
  2132. // computes silu x/(1+exp(-x)) in single precision vector
  2133. inline static __m128 ggml_v_silu(__m128 x) {
  2134. const __m128 one = _mm_set1_ps(1);
  2135. const __m128 zero = _mm_setzero_ps();
  2136. const __m128 neg_x = _mm_sub_ps(zero, x);
  2137. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2138. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2139. return _mm_div_ps(x, one_plus_exp_neg_x);
  2140. }
  2141. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2142. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2143. int i = 0;
  2144. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2145. for (; i + 15 < n; i += 16) {
  2146. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2147. }
  2148. #elif defined(__AVX2__) && defined(__FMA__)
  2149. for (; i + 7 < n; i += 8) {
  2150. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2151. }
  2152. #elif defined(__SSE2__)
  2153. for (; i + 3 < n; i += 4) {
  2154. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2155. }
  2156. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2157. for (; i + 3 < n; i += 4) {
  2158. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2159. }
  2160. #endif
  2161. for (; i < n; ++i) {
  2162. y[i] = ggml_silu_f32(x[i]);
  2163. }
  2164. }
  2165. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2166. int i = 0;
  2167. ggml_float sum = 0;
  2168. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2169. for (; i + 15 < n; i += 16) {
  2170. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2171. _mm512_set1_ps(max)));
  2172. _mm512_storeu_ps(y + i, val);
  2173. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2174. }
  2175. #elif defined(__AVX2__) && defined(__FMA__)
  2176. for (; i + 7 < n; i += 8) {
  2177. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2178. _mm256_set1_ps(max)));
  2179. _mm256_storeu_ps(y + i, val);
  2180. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2181. _mm256_castps256_ps128(val));
  2182. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2183. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2184. sum += (ggml_float)_mm_cvtss_f32(val2);
  2185. }
  2186. #elif defined(__SSE2__)
  2187. for (; i + 3 < n; i += 4) {
  2188. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2189. _mm_set1_ps(max)));
  2190. _mm_storeu_ps(y + i, val);
  2191. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2192. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2193. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2194. #else
  2195. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2196. val = _mm_add_ps(val, tmp);
  2197. tmp = _mm_movehl_ps(tmp, val);
  2198. val = _mm_add_ss(val, tmp);
  2199. #endif
  2200. sum += (ggml_float)_mm_cvtss_f32(val);
  2201. }
  2202. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2203. for (; i + 3 < n; i += 4) {
  2204. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2205. vdupq_n_f32(max)));
  2206. vst1q_f32(y + i, val);
  2207. sum += (ggml_float)vaddvq_f32(val);
  2208. }
  2209. #endif
  2210. for (; i < n; ++i) {
  2211. float val = expf(x[i] - max);
  2212. sum += (ggml_float)val;
  2213. y[i] = val;
  2214. }
  2215. return sum;
  2216. }
  2217. inline static float ggml_silu_backward_f32(float x, float dy) {
  2218. const float s = 1.0f/(1.0f + expf(-x));
  2219. return dy*s*(1.0f + x*(1.0f - s));
  2220. }
  2221. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2222. for (int i = 0; i < n; ++i) {
  2223. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2224. }
  2225. }
  2226. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2227. #ifndef GGML_USE_ACCELERATE
  2228. ggml_float sum = 0.0;
  2229. for (int i = 0; i < n; ++i) {
  2230. sum += (ggml_float)x[i];
  2231. }
  2232. *s = sum;
  2233. #else
  2234. vDSP_sve(x, 1, s, n);
  2235. #endif
  2236. }
  2237. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2238. ggml_float sum = 0.0;
  2239. for (int i = 0; i < n; ++i) {
  2240. sum += (ggml_float)x[i];
  2241. }
  2242. *s = sum;
  2243. }
  2244. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2245. float sum = 0.0f;
  2246. for (int i = 0; i < n; ++i) {
  2247. sum += GGML_FP16_TO_FP32(x[i]);
  2248. }
  2249. *s = sum;
  2250. }
  2251. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2252. float sum = 0.0f;
  2253. for (int i = 0; i < n; ++i) {
  2254. sum += GGML_BF16_TO_FP32(x[i]);
  2255. }
  2256. *s = sum;
  2257. }
  2258. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2259. #ifndef GGML_USE_ACCELERATE
  2260. float max = -INFINITY;
  2261. for (int i = 0; i < n; ++i) {
  2262. max = MAX(max, x[i]);
  2263. }
  2264. *s = max;
  2265. #else
  2266. vDSP_maxv(x, 1, s, n);
  2267. #endif
  2268. }
  2269. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2270. ggml_vec_norm_f32(n, s, x);
  2271. *s = 1.f/(*s);
  2272. }
  2273. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2274. float max = -INFINITY;
  2275. int idx = 0;
  2276. for (int i = 0; i < n; ++i) {
  2277. max = MAX(max, x[i]);
  2278. if (max == x[i]) { idx = i; }
  2279. }
  2280. *s = idx;
  2281. }
  2282. //
  2283. // data types
  2284. //
  2285. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2286. "NONE",
  2287. "DUP",
  2288. "ADD",
  2289. "ADD1",
  2290. "ACC",
  2291. "SUB",
  2292. "MUL",
  2293. "DIV",
  2294. "SQR",
  2295. "SQRT",
  2296. "LOG",
  2297. "SUM",
  2298. "SUM_ROWS",
  2299. "MEAN",
  2300. "ARGMAX",
  2301. "REPEAT",
  2302. "REPEAT_BACK",
  2303. "CONCAT",
  2304. "SILU_BACK",
  2305. "NORM",
  2306. "RMS_NORM",
  2307. "RMS_NORM_BACK",
  2308. "GROUP_NORM",
  2309. "MUL_MAT",
  2310. "MUL_MAT_ID",
  2311. "OUT_PROD",
  2312. "SCALE",
  2313. "SET",
  2314. "CPY",
  2315. "CONT",
  2316. "RESHAPE",
  2317. "VIEW",
  2318. "PERMUTE",
  2319. "TRANSPOSE",
  2320. "GET_ROWS",
  2321. "GET_ROWS_BACK",
  2322. "DIAG",
  2323. "DIAG_MASK_INF",
  2324. "DIAG_MASK_ZERO",
  2325. "SOFT_MAX",
  2326. "SOFT_MAX_BACK",
  2327. "ROPE",
  2328. "ROPE_BACK",
  2329. "CLAMP",
  2330. "CONV_TRANSPOSE_1D",
  2331. "IM2COL",
  2332. "CONV_TRANSPOSE_2D",
  2333. "POOL_1D",
  2334. "POOL_2D",
  2335. "UPSCALE",
  2336. "PAD",
  2337. "ARANGE",
  2338. "TIMESTEP_EMBEDDING",
  2339. "ARGSORT",
  2340. "LEAKY_RELU",
  2341. "FLASH_ATTN_EXT",
  2342. "FLASH_ATTN_BACK",
  2343. "SSM_CONV",
  2344. "SSM_SCAN",
  2345. "WIN_PART",
  2346. "WIN_UNPART",
  2347. "GET_REL_POS",
  2348. "ADD_REL_POS",
  2349. "UNARY",
  2350. "MAP_UNARY",
  2351. "MAP_BINARY",
  2352. "MAP_CUSTOM1_F32",
  2353. "MAP_CUSTOM2_F32",
  2354. "MAP_CUSTOM3_F32",
  2355. "MAP_CUSTOM1",
  2356. "MAP_CUSTOM2",
  2357. "MAP_CUSTOM3",
  2358. "CROSS_ENTROPY_LOSS",
  2359. "CROSS_ENTROPY_LOSS_BACK",
  2360. };
  2361. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2362. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2363. "none",
  2364. "x",
  2365. "x+y",
  2366. "x+y",
  2367. "view(x,nb,offset)+=y->x",
  2368. "x-y",
  2369. "x*y",
  2370. "x/y",
  2371. "x^2",
  2372. "√x",
  2373. "log(x)",
  2374. "Σx",
  2375. "Σx_k",
  2376. "Σx/n",
  2377. "argmax(x)",
  2378. "repeat(x)",
  2379. "repeat_back(x)",
  2380. "concat(x, y)",
  2381. "silu_back(x)",
  2382. "norm(x)",
  2383. "rms_norm(x)",
  2384. "rms_norm_back(x)",
  2385. "group_norm(x)",
  2386. "X*Y",
  2387. "X[i]*Y",
  2388. "X*Y",
  2389. "x*v",
  2390. "y-\\>view(x)",
  2391. "x-\\>y",
  2392. "cont(x)",
  2393. "reshape(x)",
  2394. "view(x)",
  2395. "permute(x)",
  2396. "transpose(x)",
  2397. "get_rows(x)",
  2398. "get_rows_back(x)",
  2399. "diag(x)",
  2400. "diag_mask_inf(x)",
  2401. "diag_mask_zero(x)",
  2402. "soft_max(x)",
  2403. "soft_max_back(x)",
  2404. "rope(x)",
  2405. "rope_back(x)",
  2406. "clamp(x)",
  2407. "conv_transpose_1d(x)",
  2408. "im2col(x)",
  2409. "conv_transpose_2d(x)",
  2410. "pool_1d(x)",
  2411. "pool_2d(x)",
  2412. "upscale(x)",
  2413. "pad(x)",
  2414. "arange(start, stop, step)",
  2415. "timestep_embedding(timesteps, dim, max_period)",
  2416. "argsort(x)",
  2417. "leaky_relu(x)",
  2418. "flash_attn_ext(x)",
  2419. "flash_attn_back(x)",
  2420. "ssm_conv(x)",
  2421. "ssm_scan(x)",
  2422. "win_part(x)",
  2423. "win_unpart(x)",
  2424. "get_rel_pos(x)",
  2425. "add_rel_pos(x)",
  2426. "unary(x)",
  2427. "f(x)",
  2428. "f(x,y)",
  2429. "custom_f32(x)",
  2430. "custom_f32(x,y)",
  2431. "custom_f32(x,y,z)",
  2432. "custom(x)",
  2433. "custom(x,y)",
  2434. "custom(x,y,z)",
  2435. "cross_entropy_loss(x,y)",
  2436. "cross_entropy_loss_back(x,y)",
  2437. };
  2438. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2439. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2440. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2441. "ABS",
  2442. "SGN",
  2443. "NEG",
  2444. "STEP",
  2445. "TANH",
  2446. "ELU",
  2447. "RELU",
  2448. "SIGMOID",
  2449. "GELU",
  2450. "GELU_QUICK",
  2451. "SILU",
  2452. "HARDSWISH",
  2453. "HARDSIGMOID",
  2454. };
  2455. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2456. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2457. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2458. // WARN:
  2459. // Mis-configuration can lead to problem that's hard to reason about:
  2460. // * At best it crash or talks nosense.
  2461. // * At worst it talks slightly difference but hard to perceive.
  2462. //
  2463. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2464. // Take care about compile options (e.g., GGML_USE_xxx).
  2465. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2466. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2467. static void ggml_setup_op_has_task_pass(void) {
  2468. { // INIT
  2469. bool * p = GGML_OP_HAS_INIT;
  2470. p[GGML_OP_ACC ] = true;
  2471. p[GGML_OP_MUL_MAT ] = true;
  2472. p[GGML_OP_MUL_MAT_ID ] = true;
  2473. p[GGML_OP_OUT_PROD ] = true;
  2474. p[GGML_OP_SET ] = true;
  2475. p[GGML_OP_GET_ROWS_BACK ] = true;
  2476. p[GGML_OP_DIAG_MASK_INF ] = true;
  2477. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2478. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2479. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2480. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2481. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2482. p[GGML_OP_ADD_REL_POS ] = true;
  2483. }
  2484. { // FINALIZE
  2485. bool * p = GGML_OP_HAS_FINALIZE;
  2486. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2487. }
  2488. }
  2489. //
  2490. // NUMA support
  2491. //
  2492. #define GGML_NUMA_MAX_NODES 8
  2493. #define GGML_NUMA_MAX_CPUS 512
  2494. struct ggml_numa_node {
  2495. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2496. uint32_t n_cpus;
  2497. };
  2498. struct ggml_numa_nodes {
  2499. enum ggml_numa_strategy numa_strategy;
  2500. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2501. uint32_t n_nodes;
  2502. uint32_t total_cpus; // hardware threads on system
  2503. uint32_t current_node; // node on which main process is execting
  2504. #if defined(__gnu_linux__)
  2505. cpu_set_t cpuset; // cpuset from numactl
  2506. #else
  2507. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2508. #endif
  2509. };
  2510. //
  2511. // ggml state
  2512. //
  2513. struct ggml_state {
  2514. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2515. struct ggml_numa_nodes numa;
  2516. };
  2517. // global state
  2518. static struct ggml_state g_state;
  2519. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2520. // barrier via spin lock
  2521. inline static void ggml_critical_section_start(void) {
  2522. while (atomic_flag_test_and_set(&g_state_critical)) {
  2523. // spin
  2524. sched_yield();
  2525. }
  2526. }
  2527. // TODO: make this somehow automatically executed
  2528. // some sort of "sentry" mechanism
  2529. inline static void ggml_critical_section_end(void) {
  2530. atomic_flag_clear(&g_state_critical);
  2531. }
  2532. #if defined(__gnu_linux__)
  2533. static cpu_set_t ggml_get_numa_affinity(void) {
  2534. cpu_set_t cpuset;
  2535. pthread_t thread;
  2536. thread = pthread_self();
  2537. CPU_ZERO(&cpuset);
  2538. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2539. return cpuset;
  2540. }
  2541. #else
  2542. static uint32_t ggml_get_numa_affinity(void) {
  2543. return 0; // no NUMA support
  2544. }
  2545. #endif
  2546. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2547. if (g_state.numa.n_nodes > 0) {
  2548. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2549. return;
  2550. }
  2551. #if defined(__gnu_linux__)
  2552. struct stat st;
  2553. char path[256];
  2554. int rv;
  2555. // set numa scheme
  2556. g_state.numa.numa_strategy = numa_flag;
  2557. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2558. g_state.numa.cpuset = ggml_get_numa_affinity();
  2559. // enumerate nodes
  2560. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2561. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2562. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2563. if (stat(path, &st) != 0) { break; }
  2564. ++g_state.numa.n_nodes;
  2565. }
  2566. // enumerate CPUs
  2567. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2568. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2569. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2570. if (stat(path, &st) != 0) { break; }
  2571. ++g_state.numa.total_cpus;
  2572. }
  2573. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2574. // figure out which node we're on
  2575. uint current_cpu;
  2576. int getcpu_ret = 0;
  2577. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2578. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2579. #else
  2580. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2581. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2582. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2583. # endif
  2584. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2585. #endif
  2586. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2587. g_state.numa.n_nodes = 0;
  2588. return;
  2589. }
  2590. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2591. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2592. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2593. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2594. node->n_cpus = 0;
  2595. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2596. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2597. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2598. if (stat(path, &st) == 0) {
  2599. node->cpus[node->n_cpus++] = c;
  2600. GGML_PRINT_DEBUG(" %u", c);
  2601. }
  2602. }
  2603. GGML_PRINT_DEBUG("\n");
  2604. }
  2605. if (ggml_is_numa()) {
  2606. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2607. if (fptr != NULL) {
  2608. char buf[42];
  2609. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2610. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2611. }
  2612. fclose(fptr);
  2613. }
  2614. }
  2615. #else
  2616. GGML_UNUSED(numa_flag);
  2617. // TODO
  2618. #endif
  2619. }
  2620. bool ggml_is_numa(void) {
  2621. return g_state.numa.n_nodes > 1;
  2622. }
  2623. ////////////////////////////////////////////////////////////////////////////////
  2624. void ggml_print_object(const struct ggml_object * obj) {
  2625. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2626. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2627. }
  2628. void ggml_print_objects(const struct ggml_context * ctx) {
  2629. struct ggml_object * obj = ctx->objects_begin;
  2630. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2631. while (obj != NULL) {
  2632. ggml_print_object(obj);
  2633. obj = obj->next;
  2634. }
  2635. GGML_PRINT("%s: --- end ---\n", __func__);
  2636. }
  2637. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2638. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2639. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2640. }
  2641. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2642. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2643. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2644. }
  2645. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2646. size_t nbytes;
  2647. size_t blck_size = ggml_blck_size(tensor->type);
  2648. if (blck_size == 1) {
  2649. nbytes = ggml_type_size(tensor->type);
  2650. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2651. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2652. }
  2653. }
  2654. else {
  2655. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2656. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2657. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2658. }
  2659. }
  2660. return nbytes;
  2661. }
  2662. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2663. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2664. }
  2665. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2666. return type_traits[type].blck_size;
  2667. }
  2668. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2669. return type_traits[type].type_size;
  2670. }
  2671. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2672. assert(ne % ggml_blck_size(type) == 0);
  2673. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2674. }
  2675. double ggml_type_sizef(enum ggml_type type) {
  2676. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2677. }
  2678. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2679. return type_traits[type].type_name;
  2680. }
  2681. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2682. return type_traits[type].is_quantized;
  2683. }
  2684. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2685. return GGML_OP_NAME[op];
  2686. }
  2687. const char * ggml_op_symbol(enum ggml_op op) {
  2688. return GGML_OP_SYMBOL[op];
  2689. }
  2690. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2691. return GGML_UNARY_OP_NAME[op];
  2692. }
  2693. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2694. if (t->op == GGML_OP_UNARY) {
  2695. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2696. return ggml_unary_op_name(uop);
  2697. }
  2698. else {
  2699. return ggml_op_name(t->op);
  2700. }
  2701. }
  2702. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2703. return ggml_type_size(tensor->type);
  2704. }
  2705. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2707. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2708. }
  2709. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2711. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2712. }
  2713. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2715. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2716. }
  2717. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2718. return tensor->ne[3] == 1;
  2719. }
  2720. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2721. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2722. if (tensor->ne[i] > 1) {
  2723. return i + 1;
  2724. }
  2725. }
  2726. return 1;
  2727. }
  2728. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2729. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2730. return (t0->ne[0] == t1->ne[0]) &&
  2731. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2732. (t1->ne[3]%t0->ne[3] == 0);
  2733. }
  2734. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2735. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2736. return (t0->ne[1] == t1->ne[1]) &&
  2737. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2738. (t1->ne[3]%t0->ne[3] == 0);
  2739. }
  2740. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2741. enum ggml_type wtype = GGML_TYPE_COUNT;
  2742. switch (ftype) {
  2743. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2744. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2745. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2746. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2747. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2748. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2749. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2750. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2751. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2752. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2753. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2754. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2755. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2756. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2757. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2758. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2759. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2760. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2761. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2762. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2763. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2764. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2765. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2766. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2767. }
  2768. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2769. return wtype;
  2770. }
  2771. size_t ggml_tensor_overhead(void) {
  2772. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2773. }
  2774. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2775. return tensor->nb[0] > tensor->nb[1];
  2776. }
  2777. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2778. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2779. return
  2780. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2781. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2782. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2783. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2784. }
  2785. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2786. return ggml_is_contiguous(tensor);
  2787. }
  2788. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2789. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2790. return
  2791. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2792. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2793. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2794. }
  2795. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2796. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2797. return
  2798. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2799. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2800. }
  2801. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2802. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2803. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2804. }
  2805. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2806. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2807. return
  2808. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2809. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2810. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2811. }
  2812. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2813. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2814. if (tensor->ne[i] == 0) {
  2815. // empty if any dimension has no elements
  2816. return true;
  2817. }
  2818. }
  2819. return false;
  2820. }
  2821. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2823. return
  2824. (t0->ne[0] == t1->ne[0] ) &&
  2825. (t0->ne[1] == t1->ne[1] ) &&
  2826. (t0->ne[2] == t1->ne[2] ) &&
  2827. (t0->ne[3] == t1->ne[3] );
  2828. }
  2829. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2830. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2831. return
  2832. (t0->nb[0] == t1->nb[0] ) &&
  2833. (t0->nb[1] == t1->nb[1] ) &&
  2834. (t0->nb[2] == t1->nb[2] ) &&
  2835. (t0->nb[3] == t1->nb[3] );
  2836. }
  2837. // check if t1 can be represented as a repeatition of t0
  2838. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2839. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2840. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2841. (t1->ne[0]%t0->ne[0] == 0) &&
  2842. (t1->ne[1]%t0->ne[1] == 0) &&
  2843. (t1->ne[2]%t0->ne[2] == 0) &&
  2844. (t1->ne[3]%t0->ne[3] == 0);
  2845. }
  2846. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2848. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2849. }
  2850. static inline int ggml_up32(int n) {
  2851. return (n + 31) & ~31;
  2852. }
  2853. //static inline int ggml_up64(int n) {
  2854. // return (n + 63) & ~63;
  2855. //}
  2856. static inline int ggml_up(int n, int m) {
  2857. // assert m is a power of 2
  2858. GGML_ASSERT((m & (m - 1)) == 0);
  2859. return (n + m - 1) & ~(m - 1);
  2860. }
  2861. // assert that pointer is aligned to GGML_MEM_ALIGN
  2862. #define ggml_assert_aligned(ptr) \
  2863. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2864. ////////////////////////////////////////////////////////////////////////////////
  2865. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2866. // make this function thread safe
  2867. ggml_critical_section_start();
  2868. static bool is_first_call = true;
  2869. if (is_first_call) {
  2870. // initialize time system (required on Windows)
  2871. ggml_time_init();
  2872. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2873. {
  2874. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2875. for (int i = 0; i < (1 << 16); ++i) {
  2876. union {
  2877. uint16_t u16;
  2878. ggml_fp16_t fp16;
  2879. } u = {i};
  2880. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2881. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2882. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2883. }
  2884. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2885. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2886. }
  2887. // initialize g_state
  2888. {
  2889. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2890. g_state = (struct ggml_state) {
  2891. /*.contexts =*/ { { 0 } },
  2892. /*.numa =*/ {
  2893. .n_nodes = 0,
  2894. .total_cpus = 0,
  2895. },
  2896. };
  2897. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2898. g_state.contexts[i].used = false;
  2899. }
  2900. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2901. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2902. }
  2903. #if defined(GGML_USE_CLBLAST)
  2904. ggml_cl_init();
  2905. #endif
  2906. ggml_setup_op_has_task_pass();
  2907. is_first_call = false;
  2908. }
  2909. // find non-used context in g_state
  2910. struct ggml_context * ctx = NULL;
  2911. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2912. if (!g_state.contexts[i].used) {
  2913. g_state.contexts[i].used = true;
  2914. ctx = &g_state.contexts[i].context;
  2915. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2916. break;
  2917. }
  2918. }
  2919. if (ctx == NULL) {
  2920. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2921. ggml_critical_section_end();
  2922. return NULL;
  2923. }
  2924. // allow to call ggml_init with 0 size
  2925. if (params.mem_size == 0) {
  2926. params.mem_size = GGML_MEM_ALIGN;
  2927. }
  2928. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2929. *ctx = (struct ggml_context) {
  2930. /*.mem_size =*/ mem_size,
  2931. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2932. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2933. /*.no_alloc =*/ params.no_alloc,
  2934. /*.no_alloc_save =*/ params.no_alloc,
  2935. /*.n_objects =*/ 0,
  2936. /*.objects_begin =*/ NULL,
  2937. /*.objects_end =*/ NULL,
  2938. /*.scratch =*/ { 0, 0, NULL, },
  2939. /*.scratch_save =*/ { 0, 0, NULL, },
  2940. };
  2941. GGML_ASSERT(ctx->mem_buffer != NULL);
  2942. ggml_assert_aligned(ctx->mem_buffer);
  2943. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2944. ggml_critical_section_end();
  2945. return ctx;
  2946. }
  2947. void ggml_free(struct ggml_context * ctx) {
  2948. if (ctx == NULL) {
  2949. return;
  2950. }
  2951. // make this function thread safe
  2952. ggml_critical_section_start();
  2953. bool found = false;
  2954. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2955. if (&g_state.contexts[i].context == ctx) {
  2956. g_state.contexts[i].used = false;
  2957. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2958. __func__, i, ggml_used_mem(ctx));
  2959. if (ctx->mem_buffer_owned) {
  2960. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2961. }
  2962. found = true;
  2963. break;
  2964. }
  2965. }
  2966. if (!found) {
  2967. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2968. }
  2969. ggml_critical_section_end();
  2970. }
  2971. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2972. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2973. }
  2974. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2975. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2976. ctx->scratch = scratch;
  2977. return result;
  2978. }
  2979. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2980. return ctx->no_alloc;
  2981. }
  2982. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2983. ctx->no_alloc = no_alloc;
  2984. }
  2985. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2986. return ctx->mem_buffer;
  2987. }
  2988. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2989. return ctx->mem_size;
  2990. }
  2991. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2992. size_t max_size = 0;
  2993. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2994. size_t bytes = ggml_nbytes(tensor);
  2995. max_size = MAX(max_size, bytes);
  2996. }
  2997. return max_size;
  2998. }
  2999. // IMPORTANT:
  3000. // when creating "opt" tensors, always save and load the scratch buffer
  3001. // this is an error prone process, but it is necessary to support inplace
  3002. // operators when using scratch buffers
  3003. // TODO: implement a better way
  3004. static void ggml_scratch_save(struct ggml_context * ctx) {
  3005. // this is needed to allow opt tensors to store their data
  3006. // TODO: again, need to find a better way
  3007. ctx->no_alloc_save = ctx->no_alloc;
  3008. ctx->no_alloc = false;
  3009. ctx->scratch_save = ctx->scratch;
  3010. ctx->scratch.data = NULL;
  3011. }
  3012. static void ggml_scratch_load(struct ggml_context * ctx) {
  3013. ctx->no_alloc = ctx->no_alloc_save;
  3014. ctx->scratch = ctx->scratch_save;
  3015. }
  3016. ////////////////////////////////////////////////////////////////////////////////
  3017. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3018. // always insert objects at the end of the context's memory pool
  3019. struct ggml_object * obj_cur = ctx->objects_end;
  3020. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3021. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3022. const size_t cur_end = cur_offs + cur_size;
  3023. // align to GGML_MEM_ALIGN
  3024. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3025. char * const mem_buffer = ctx->mem_buffer;
  3026. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3027. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3028. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3029. __func__, cur_end + size_needed, ctx->mem_size);
  3030. assert(false);
  3031. return NULL;
  3032. }
  3033. *obj_new = (struct ggml_object) {
  3034. .offs = cur_end + GGML_OBJECT_SIZE,
  3035. .size = size_needed,
  3036. .next = NULL,
  3037. .type = type,
  3038. };
  3039. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3040. if (obj_cur != NULL) {
  3041. obj_cur->next = obj_new;
  3042. } else {
  3043. // this is the first object in this context
  3044. ctx->objects_begin = obj_new;
  3045. }
  3046. ctx->objects_end = obj_new;
  3047. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3048. return obj_new;
  3049. }
  3050. static struct ggml_tensor * ggml_new_tensor_impl(
  3051. struct ggml_context * ctx,
  3052. enum ggml_type type,
  3053. int n_dims,
  3054. const int64_t * ne,
  3055. struct ggml_tensor * view_src,
  3056. size_t view_offs) {
  3057. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3058. // find the base tensor and absolute offset
  3059. if (view_src != NULL && view_src->view_src != NULL) {
  3060. view_offs += view_src->view_offs;
  3061. view_src = view_src->view_src;
  3062. }
  3063. size_t data_size = ggml_row_size(type, ne[0]);
  3064. for (int i = 1; i < n_dims; i++) {
  3065. data_size *= ne[i];
  3066. }
  3067. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3068. void * data = view_src != NULL ? view_src->data : NULL;
  3069. if (data != NULL) {
  3070. data = (char *) data + view_offs;
  3071. }
  3072. size_t obj_alloc_size = 0;
  3073. if (view_src == NULL && !ctx->no_alloc) {
  3074. if (ctx->scratch.data != NULL) {
  3075. // allocate tensor data in the scratch buffer
  3076. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3077. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3078. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3079. assert(false);
  3080. return NULL;
  3081. }
  3082. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3083. ctx->scratch.offs += data_size;
  3084. } else {
  3085. // allocate tensor data in the context's memory pool
  3086. obj_alloc_size = data_size;
  3087. }
  3088. }
  3089. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3090. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3091. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3092. #ifdef __clang__
  3093. // temporary until ggml_tensor::backend is removed
  3094. #pragma clang diagnostic push
  3095. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3096. #endif
  3097. *result = (struct ggml_tensor) {
  3098. /*.type =*/ type,
  3099. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3100. /*.buffer =*/ NULL,
  3101. /*.ne =*/ { 1, 1, 1, 1 },
  3102. /*.nb =*/ { 0, 0, 0, 0 },
  3103. /*.op =*/ GGML_OP_NONE,
  3104. /*.op_params =*/ { 0 },
  3105. /*.flags =*/ 0,
  3106. /*.grad =*/ NULL,
  3107. /*.src =*/ { NULL },
  3108. /*.perf_runs =*/ 0,
  3109. /*.perf_cycles =*/ 0,
  3110. /*.perf_time_us =*/ 0,
  3111. /*.view_src =*/ view_src,
  3112. /*.view_offs =*/ view_offs,
  3113. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3114. /*.name =*/ { 0 },
  3115. /*.extra =*/ NULL,
  3116. /*.padding =*/ { 0 },
  3117. };
  3118. #ifdef __clang__
  3119. #pragma clang diagnostic pop
  3120. #endif
  3121. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3122. //ggml_assert_aligned(result->data);
  3123. for (int i = 0; i < n_dims; i++) {
  3124. result->ne[i] = ne[i];
  3125. }
  3126. result->nb[0] = ggml_type_size(type);
  3127. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3128. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3129. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3130. }
  3131. ctx->n_objects++;
  3132. return result;
  3133. }
  3134. struct ggml_tensor * ggml_new_tensor(
  3135. struct ggml_context * ctx,
  3136. enum ggml_type type,
  3137. int n_dims,
  3138. const int64_t * ne) {
  3139. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3140. }
  3141. struct ggml_tensor * ggml_new_tensor_1d(
  3142. struct ggml_context * ctx,
  3143. enum ggml_type type,
  3144. int64_t ne0) {
  3145. return ggml_new_tensor(ctx, type, 1, &ne0);
  3146. }
  3147. struct ggml_tensor * ggml_new_tensor_2d(
  3148. struct ggml_context * ctx,
  3149. enum ggml_type type,
  3150. int64_t ne0,
  3151. int64_t ne1) {
  3152. const int64_t ne[2] = { ne0, ne1 };
  3153. return ggml_new_tensor(ctx, type, 2, ne);
  3154. }
  3155. struct ggml_tensor * ggml_new_tensor_3d(
  3156. struct ggml_context * ctx,
  3157. enum ggml_type type,
  3158. int64_t ne0,
  3159. int64_t ne1,
  3160. int64_t ne2) {
  3161. const int64_t ne[3] = { ne0, ne1, ne2 };
  3162. return ggml_new_tensor(ctx, type, 3, ne);
  3163. }
  3164. struct ggml_tensor * ggml_new_tensor_4d(
  3165. struct ggml_context * ctx,
  3166. enum ggml_type type,
  3167. int64_t ne0,
  3168. int64_t ne1,
  3169. int64_t ne2,
  3170. int64_t ne3) {
  3171. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3172. return ggml_new_tensor(ctx, type, 4, ne);
  3173. }
  3174. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3175. ggml_scratch_save(ctx);
  3176. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3177. ggml_scratch_load(ctx);
  3178. ggml_set_i32(result, value);
  3179. return result;
  3180. }
  3181. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3182. ggml_scratch_save(ctx);
  3183. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3184. ggml_scratch_load(ctx);
  3185. ggml_set_f32(result, value);
  3186. return result;
  3187. }
  3188. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3189. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3190. }
  3191. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3192. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3193. assert(params_size <= GGML_MAX_OP_PARAMS);
  3194. memcpy(tensor->op_params, params, params_size);
  3195. }
  3196. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3197. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3198. return ((const int32_t *)(tensor->op_params))[i];
  3199. }
  3200. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3201. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3202. return ((const float *)(tensor->op_params))[i];
  3203. }
  3204. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3205. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3206. ((int32_t *)(tensor->op_params))[i] = value;
  3207. }
  3208. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3209. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3210. ((float *)(tensor->op_params))[i] = value;
  3211. }
  3212. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3213. memset(tensor->data, 0, ggml_nbytes(tensor));
  3214. return tensor;
  3215. }
  3216. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3217. const int n = ggml_nrows(tensor);
  3218. const int nc = tensor->ne[0];
  3219. const size_t n1 = tensor->nb[1];
  3220. char * const data = tensor->data;
  3221. switch (tensor->type) {
  3222. case GGML_TYPE_I8:
  3223. {
  3224. assert(tensor->nb[0] == sizeof(int8_t));
  3225. for (int i = 0; i < n; i++) {
  3226. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3227. }
  3228. } break;
  3229. case GGML_TYPE_I16:
  3230. {
  3231. assert(tensor->nb[0] == sizeof(int16_t));
  3232. for (int i = 0; i < n; i++) {
  3233. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3234. }
  3235. } break;
  3236. case GGML_TYPE_I32:
  3237. {
  3238. assert(tensor->nb[0] == sizeof(int32_t));
  3239. for (int i = 0; i < n; i++) {
  3240. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3241. }
  3242. } break;
  3243. case GGML_TYPE_F16:
  3244. {
  3245. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3246. for (int i = 0; i < n; i++) {
  3247. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3248. }
  3249. } break;
  3250. case GGML_TYPE_BF16:
  3251. {
  3252. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3253. for (int i = 0; i < n; i++) {
  3254. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3255. }
  3256. } break;
  3257. case GGML_TYPE_F32:
  3258. {
  3259. assert(tensor->nb[0] == sizeof(float));
  3260. for (int i = 0; i < n; i++) {
  3261. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3262. }
  3263. } break;
  3264. default:
  3265. {
  3266. GGML_ASSERT(false);
  3267. } break;
  3268. }
  3269. return tensor;
  3270. }
  3271. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3272. const int n = ggml_nrows(tensor);
  3273. const int nc = tensor->ne[0];
  3274. const size_t n1 = tensor->nb[1];
  3275. char * const data = tensor->data;
  3276. switch (tensor->type) {
  3277. case GGML_TYPE_I8:
  3278. {
  3279. assert(tensor->nb[0] == sizeof(int8_t));
  3280. for (int i = 0; i < n; i++) {
  3281. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3282. }
  3283. } break;
  3284. case GGML_TYPE_I16:
  3285. {
  3286. assert(tensor->nb[0] == sizeof(int16_t));
  3287. for (int i = 0; i < n; i++) {
  3288. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3289. }
  3290. } break;
  3291. case GGML_TYPE_I32:
  3292. {
  3293. assert(tensor->nb[0] == sizeof(int32_t));
  3294. for (int i = 0; i < n; i++) {
  3295. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3296. }
  3297. } break;
  3298. case GGML_TYPE_F16:
  3299. {
  3300. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3301. for (int i = 0; i < n; i++) {
  3302. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3303. }
  3304. } break;
  3305. case GGML_TYPE_BF16:
  3306. {
  3307. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3308. for (int i = 0; i < n; i++) {
  3309. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3310. }
  3311. } break;
  3312. case GGML_TYPE_F32:
  3313. {
  3314. assert(tensor->nb[0] == sizeof(float));
  3315. for (int i = 0; i < n; i++) {
  3316. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3317. }
  3318. } break;
  3319. default:
  3320. {
  3321. GGML_ASSERT(false);
  3322. } break;
  3323. }
  3324. return tensor;
  3325. }
  3326. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3327. const int64_t ne2 = tensor->ne[2];
  3328. const int64_t ne1 = tensor->ne[1];
  3329. const int64_t ne0 = tensor->ne[0];
  3330. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3331. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3332. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3333. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3334. if (i0) {
  3335. * i0 = i0_;
  3336. }
  3337. if (i1) {
  3338. * i1 = i1_;
  3339. }
  3340. if (i2) {
  3341. * i2 = i2_;
  3342. }
  3343. if (i3) {
  3344. * i3 = i3_;
  3345. }
  3346. }
  3347. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3348. if (!ggml_is_contiguous(tensor)) {
  3349. int64_t id[4] = { 0, 0, 0, 0 };
  3350. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3351. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3352. }
  3353. switch (tensor->type) {
  3354. case GGML_TYPE_I8:
  3355. {
  3356. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3357. return ((int8_t *)(tensor->data))[i];
  3358. }
  3359. case GGML_TYPE_I16:
  3360. {
  3361. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3362. return ((int16_t *)(tensor->data))[i];
  3363. }
  3364. case GGML_TYPE_I32:
  3365. {
  3366. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3367. return ((int32_t *)(tensor->data))[i];
  3368. }
  3369. case GGML_TYPE_F16:
  3370. {
  3371. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3372. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3373. }
  3374. case GGML_TYPE_BF16:
  3375. {
  3376. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3377. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3378. }
  3379. case GGML_TYPE_F32:
  3380. {
  3381. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3382. return ((float *)(tensor->data))[i];
  3383. }
  3384. default:
  3385. {
  3386. GGML_ASSERT(false);
  3387. }
  3388. }
  3389. return 0.0f;
  3390. }
  3391. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3392. if (!ggml_is_contiguous(tensor)) {
  3393. int64_t id[4] = { 0, 0, 0, 0 };
  3394. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3395. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3396. return;
  3397. }
  3398. switch (tensor->type) {
  3399. case GGML_TYPE_I8:
  3400. {
  3401. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3402. ((int8_t *)(tensor->data))[i] = value;
  3403. } break;
  3404. case GGML_TYPE_I16:
  3405. {
  3406. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3407. ((int16_t *)(tensor->data))[i] = value;
  3408. } break;
  3409. case GGML_TYPE_I32:
  3410. {
  3411. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3412. ((int32_t *)(tensor->data))[i] = value;
  3413. } break;
  3414. case GGML_TYPE_F16:
  3415. {
  3416. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3417. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3418. } break;
  3419. case GGML_TYPE_BF16:
  3420. {
  3421. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3422. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3423. } break;
  3424. case GGML_TYPE_F32:
  3425. {
  3426. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3427. ((float *)(tensor->data))[i] = value;
  3428. } break;
  3429. default:
  3430. {
  3431. GGML_ASSERT(false);
  3432. } break;
  3433. }
  3434. }
  3435. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3436. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3437. switch (tensor->type) {
  3438. case GGML_TYPE_I8:
  3439. return ((int8_t *) data)[0];
  3440. case GGML_TYPE_I16:
  3441. return ((int16_t *) data)[0];
  3442. case GGML_TYPE_I32:
  3443. return ((int32_t *) data)[0];
  3444. case GGML_TYPE_F16:
  3445. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3446. case GGML_TYPE_BF16:
  3447. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3448. case GGML_TYPE_F32:
  3449. return ((float *) data)[0];
  3450. default:
  3451. GGML_ASSERT(false);
  3452. }
  3453. return 0.0f;
  3454. }
  3455. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3456. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3457. switch (tensor->type) {
  3458. case GGML_TYPE_I8:
  3459. {
  3460. ((int8_t *)(data))[0] = value;
  3461. } break;
  3462. case GGML_TYPE_I16:
  3463. {
  3464. ((int16_t *)(data))[0] = value;
  3465. } break;
  3466. case GGML_TYPE_I32:
  3467. {
  3468. ((int32_t *)(data))[0] = value;
  3469. } break;
  3470. case GGML_TYPE_F16:
  3471. {
  3472. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3473. } break;
  3474. case GGML_TYPE_BF16:
  3475. {
  3476. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3477. } break;
  3478. case GGML_TYPE_F32:
  3479. {
  3480. ((float *)(data))[0] = value;
  3481. } break;
  3482. default:
  3483. {
  3484. GGML_ASSERT(false);
  3485. } break;
  3486. }
  3487. }
  3488. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3489. if (!ggml_is_contiguous(tensor)) {
  3490. int64_t id[4] = { 0, 0, 0, 0 };
  3491. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3492. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3493. }
  3494. switch (tensor->type) {
  3495. case GGML_TYPE_I8:
  3496. {
  3497. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3498. return ((int8_t *)(tensor->data))[i];
  3499. }
  3500. case GGML_TYPE_I16:
  3501. {
  3502. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3503. return ((int16_t *)(tensor->data))[i];
  3504. }
  3505. case GGML_TYPE_I32:
  3506. {
  3507. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3508. return ((int32_t *)(tensor->data))[i];
  3509. }
  3510. case GGML_TYPE_F16:
  3511. {
  3512. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3513. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3514. }
  3515. case GGML_TYPE_BF16:
  3516. {
  3517. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3518. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3519. }
  3520. case GGML_TYPE_F32:
  3521. {
  3522. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3523. return ((float *)(tensor->data))[i];
  3524. }
  3525. default:
  3526. {
  3527. GGML_ASSERT(false);
  3528. }
  3529. }
  3530. return 0.0f;
  3531. }
  3532. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3533. if (!ggml_is_contiguous(tensor)) {
  3534. int64_t id[4] = { 0, 0, 0, 0 };
  3535. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3536. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3537. return;
  3538. }
  3539. switch (tensor->type) {
  3540. case GGML_TYPE_I8:
  3541. {
  3542. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3543. ((int8_t *)(tensor->data))[i] = value;
  3544. } break;
  3545. case GGML_TYPE_I16:
  3546. {
  3547. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3548. ((int16_t *)(tensor->data))[i] = value;
  3549. } break;
  3550. case GGML_TYPE_I32:
  3551. {
  3552. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3553. ((int32_t *)(tensor->data))[i] = value;
  3554. } break;
  3555. case GGML_TYPE_F16:
  3556. {
  3557. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3558. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3559. } break;
  3560. case GGML_TYPE_BF16:
  3561. {
  3562. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3563. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3564. } break;
  3565. case GGML_TYPE_F32:
  3566. {
  3567. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3568. ((float *)(tensor->data))[i] = value;
  3569. } break;
  3570. default:
  3571. {
  3572. GGML_ASSERT(false);
  3573. } break;
  3574. }
  3575. }
  3576. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3577. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3578. switch (tensor->type) {
  3579. case GGML_TYPE_I8:
  3580. return ((int8_t *) data)[0];
  3581. case GGML_TYPE_I16:
  3582. return ((int16_t *) data)[0];
  3583. case GGML_TYPE_I32:
  3584. return ((int32_t *) data)[0];
  3585. case GGML_TYPE_F16:
  3586. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3587. case GGML_TYPE_BF16:
  3588. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3589. case GGML_TYPE_F32:
  3590. return ((float *) data)[0];
  3591. default:
  3592. GGML_ASSERT(false);
  3593. }
  3594. return 0.0f;
  3595. }
  3596. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3597. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3598. switch (tensor->type) {
  3599. case GGML_TYPE_I8:
  3600. {
  3601. ((int8_t *)(data))[0] = value;
  3602. } break;
  3603. case GGML_TYPE_I16:
  3604. {
  3605. ((int16_t *)(data))[0] = value;
  3606. } break;
  3607. case GGML_TYPE_I32:
  3608. {
  3609. ((int32_t *)(data))[0] = value;
  3610. } break;
  3611. case GGML_TYPE_F16:
  3612. {
  3613. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3614. } break;
  3615. case GGML_TYPE_BF16:
  3616. {
  3617. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3618. } break;
  3619. case GGML_TYPE_F32:
  3620. {
  3621. ((float *)(data))[0] = value;
  3622. } break;
  3623. default:
  3624. {
  3625. GGML_ASSERT(false);
  3626. } break;
  3627. }
  3628. }
  3629. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3630. return tensor->data;
  3631. }
  3632. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3633. assert(tensor->type == GGML_TYPE_F32);
  3634. return (float *)(tensor->data);
  3635. }
  3636. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3637. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3638. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3639. }
  3640. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3641. return tensor->name;
  3642. }
  3643. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3644. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3645. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3646. return tensor;
  3647. }
  3648. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3649. va_list args;
  3650. va_start(args, fmt);
  3651. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3652. va_end(args);
  3653. return tensor;
  3654. }
  3655. struct ggml_tensor * ggml_view_tensor(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * src) {
  3658. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3659. ggml_format_name(result, "%s (view)", src->name);
  3660. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3661. result->nb[i] = src->nb[i];
  3662. }
  3663. return result;
  3664. }
  3665. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3666. struct ggml_object * obj = ctx->objects_begin;
  3667. char * const mem_buffer = ctx->mem_buffer;
  3668. while (obj != NULL) {
  3669. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3670. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3671. }
  3672. obj = obj->next;
  3673. }
  3674. return NULL;
  3675. }
  3676. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3677. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3678. obj = obj->next;
  3679. char * const mem_buffer = ctx->mem_buffer;
  3680. while (obj != NULL) {
  3681. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3682. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3683. }
  3684. obj = obj->next;
  3685. }
  3686. return NULL;
  3687. }
  3688. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3689. struct ggml_object * obj = ctx->objects_begin;
  3690. char * const mem_buffer = ctx->mem_buffer;
  3691. while (obj != NULL) {
  3692. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3693. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3694. if (strcmp(cur->name, name) == 0) {
  3695. return cur;
  3696. }
  3697. }
  3698. obj = obj->next;
  3699. }
  3700. return NULL;
  3701. }
  3702. ////////////////////////////////////////////////////////////////////////////////
  3703. // ggml_dup
  3704. static struct ggml_tensor * ggml_dup_impl(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a,
  3707. bool inplace) {
  3708. bool is_node = false;
  3709. if (!inplace && (a->grad)) {
  3710. is_node = true;
  3711. }
  3712. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3713. result->op = GGML_OP_DUP;
  3714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3715. result->src[0] = a;
  3716. return result;
  3717. }
  3718. struct ggml_tensor * ggml_dup(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a) {
  3721. return ggml_dup_impl(ctx, a, false);
  3722. }
  3723. struct ggml_tensor * ggml_dup_inplace(
  3724. struct ggml_context * ctx,
  3725. struct ggml_tensor * a) {
  3726. return ggml_dup_impl(ctx, a, true);
  3727. }
  3728. // ggml_add
  3729. static struct ggml_tensor * ggml_add_impl(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a,
  3732. struct ggml_tensor * b,
  3733. bool inplace) {
  3734. GGML_ASSERT(ggml_can_repeat(b, a));
  3735. bool is_node = false;
  3736. if (!inplace && (a->grad || b->grad)) {
  3737. // TODO: support backward pass for broadcasting
  3738. GGML_ASSERT(ggml_are_same_shape(a, b));
  3739. is_node = true;
  3740. }
  3741. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3742. result->op = GGML_OP_ADD;
  3743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3744. result->src[0] = a;
  3745. result->src[1] = b;
  3746. return result;
  3747. }
  3748. struct ggml_tensor * ggml_add(
  3749. struct ggml_context * ctx,
  3750. struct ggml_tensor * a,
  3751. struct ggml_tensor * b) {
  3752. return ggml_add_impl(ctx, a, b, false);
  3753. }
  3754. struct ggml_tensor * ggml_add_inplace(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. struct ggml_tensor * b) {
  3758. return ggml_add_impl(ctx, a, b, true);
  3759. }
  3760. // ggml_add_cast
  3761. static struct ggml_tensor * ggml_add_cast_impl(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a,
  3764. struct ggml_tensor * b,
  3765. enum ggml_type type) {
  3766. // TODO: support less-strict constraint
  3767. // GGML_ASSERT(ggml_can_repeat(b, a));
  3768. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3769. // currently only supported for quantized input and f16
  3770. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3771. a->type == GGML_TYPE_F16 ||
  3772. a->type == GGML_TYPE_BF16);
  3773. bool is_node = false;
  3774. if (a->grad || b->grad) {
  3775. // TODO: support backward pass for broadcasting
  3776. GGML_ASSERT(ggml_are_same_shape(a, b));
  3777. is_node = true;
  3778. }
  3779. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3780. result->op = GGML_OP_ADD;
  3781. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3782. result->src[0] = a;
  3783. result->src[1] = b;
  3784. return result;
  3785. }
  3786. struct ggml_tensor * ggml_add_cast(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. struct ggml_tensor * b,
  3790. enum ggml_type type) {
  3791. return ggml_add_cast_impl(ctx, a, b, type);
  3792. }
  3793. // ggml_add1
  3794. static struct ggml_tensor * ggml_add1_impl(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a,
  3797. struct ggml_tensor * b,
  3798. bool inplace) {
  3799. GGML_ASSERT(ggml_is_scalar(b));
  3800. GGML_ASSERT(ggml_is_padded_1d(a));
  3801. bool is_node = false;
  3802. if (a->grad || b->grad) {
  3803. is_node = true;
  3804. }
  3805. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3806. result->op = GGML_OP_ADD1;
  3807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3808. result->src[0] = a;
  3809. result->src[1] = b;
  3810. return result;
  3811. }
  3812. struct ggml_tensor * ggml_add1(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. struct ggml_tensor * b) {
  3816. return ggml_add1_impl(ctx, a, b, false);
  3817. }
  3818. struct ggml_tensor * ggml_add1_inplace(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b) {
  3822. return ggml_add1_impl(ctx, a, b, true);
  3823. }
  3824. // ggml_acc
  3825. static struct ggml_tensor * ggml_acc_impl(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. struct ggml_tensor * b,
  3829. size_t nb1,
  3830. size_t nb2,
  3831. size_t nb3,
  3832. size_t offset,
  3833. bool inplace) {
  3834. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3835. GGML_ASSERT(ggml_is_contiguous(a));
  3836. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3837. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3838. bool is_node = false;
  3839. if (!inplace && (a->grad || b->grad)) {
  3840. is_node = true;
  3841. }
  3842. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3843. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3844. ggml_set_op_params(result, params, sizeof(params));
  3845. result->op = GGML_OP_ACC;
  3846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3847. result->src[0] = a;
  3848. result->src[1] = b;
  3849. return result;
  3850. }
  3851. struct ggml_tensor * ggml_acc(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a,
  3854. struct ggml_tensor * b,
  3855. size_t nb1,
  3856. size_t nb2,
  3857. size_t nb3,
  3858. size_t offset) {
  3859. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3860. }
  3861. struct ggml_tensor * ggml_acc_inplace(
  3862. struct ggml_context * ctx,
  3863. struct ggml_tensor * a,
  3864. struct ggml_tensor * b,
  3865. size_t nb1,
  3866. size_t nb2,
  3867. size_t nb3,
  3868. size_t offset) {
  3869. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3870. }
  3871. // ggml_sub
  3872. static struct ggml_tensor * ggml_sub_impl(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. struct ggml_tensor * b,
  3876. bool inplace) {
  3877. GGML_ASSERT(ggml_are_same_shape(a, b));
  3878. bool is_node = false;
  3879. if (!inplace && (a->grad || b->grad)) {
  3880. is_node = true;
  3881. }
  3882. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3883. result->op = GGML_OP_SUB;
  3884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3885. result->src[0] = a;
  3886. result->src[1] = b;
  3887. return result;
  3888. }
  3889. struct ggml_tensor * ggml_sub(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. struct ggml_tensor * b) {
  3893. return ggml_sub_impl(ctx, a, b, false);
  3894. }
  3895. struct ggml_tensor * ggml_sub_inplace(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. struct ggml_tensor * b) {
  3899. return ggml_sub_impl(ctx, a, b, true);
  3900. }
  3901. // ggml_mul
  3902. static struct ggml_tensor * ggml_mul_impl(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. struct ggml_tensor * b,
  3906. bool inplace) {
  3907. GGML_ASSERT(ggml_can_repeat(b, a));
  3908. bool is_node = false;
  3909. if (!inplace && (a->grad || b->grad)) {
  3910. // TODO: support backward pass for broadcasting
  3911. GGML_ASSERT(ggml_are_same_shape(a, b));
  3912. is_node = true;
  3913. }
  3914. if (inplace) {
  3915. GGML_ASSERT(!is_node);
  3916. }
  3917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3918. result->op = GGML_OP_MUL;
  3919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3920. result->src[0] = a;
  3921. result->src[1] = b;
  3922. return result;
  3923. }
  3924. struct ggml_tensor * ggml_mul(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b) {
  3928. return ggml_mul_impl(ctx, a, b, false);
  3929. }
  3930. struct ggml_tensor * ggml_mul_inplace(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b) {
  3934. return ggml_mul_impl(ctx, a, b, true);
  3935. }
  3936. // ggml_div
  3937. static struct ggml_tensor * ggml_div_impl(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b,
  3941. bool inplace) {
  3942. GGML_ASSERT(ggml_can_repeat(b, a));
  3943. bool is_node = false;
  3944. if (!inplace && (a->grad || b->grad)) {
  3945. is_node = true;
  3946. }
  3947. if (inplace) {
  3948. GGML_ASSERT(!is_node);
  3949. }
  3950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3951. result->op = GGML_OP_DIV;
  3952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3953. result->src[0] = a;
  3954. result->src[1] = b;
  3955. return result;
  3956. }
  3957. struct ggml_tensor * ggml_div(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b) {
  3961. return ggml_div_impl(ctx, a, b, false);
  3962. }
  3963. struct ggml_tensor * ggml_div_inplace(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. struct ggml_tensor * b) {
  3967. return ggml_div_impl(ctx, a, b, true);
  3968. }
  3969. // ggml_sqr
  3970. static struct ggml_tensor * ggml_sqr_impl(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. bool inplace) {
  3974. bool is_node = false;
  3975. if (!inplace && (a->grad)) {
  3976. is_node = true;
  3977. }
  3978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3979. result->op = GGML_OP_SQR;
  3980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3981. result->src[0] = a;
  3982. return result;
  3983. }
  3984. struct ggml_tensor * ggml_sqr(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a) {
  3987. return ggml_sqr_impl(ctx, a, false);
  3988. }
  3989. struct ggml_tensor * ggml_sqr_inplace(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a) {
  3992. return ggml_sqr_impl(ctx, a, true);
  3993. }
  3994. // ggml_sqrt
  3995. static struct ggml_tensor * ggml_sqrt_impl(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a,
  3998. bool inplace) {
  3999. bool is_node = false;
  4000. if (!inplace && (a->grad)) {
  4001. is_node = true;
  4002. }
  4003. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4004. result->op = GGML_OP_SQRT;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src[0] = a;
  4007. return result;
  4008. }
  4009. struct ggml_tensor * ggml_sqrt(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. return ggml_sqrt_impl(ctx, a, false);
  4013. }
  4014. struct ggml_tensor * ggml_sqrt_inplace(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. return ggml_sqrt_impl(ctx, a, true);
  4018. }
  4019. // ggml_log
  4020. static struct ggml_tensor * ggml_log_impl(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a,
  4023. bool inplace) {
  4024. bool is_node = false;
  4025. if (!inplace && (a->grad)) {
  4026. is_node = true;
  4027. }
  4028. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4029. result->op = GGML_OP_LOG;
  4030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4031. result->src[0] = a;
  4032. return result;
  4033. }
  4034. struct ggml_tensor * ggml_log(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a) {
  4037. return ggml_log_impl(ctx, a, false);
  4038. }
  4039. struct ggml_tensor * ggml_log_inplace(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a) {
  4042. return ggml_log_impl(ctx, a, true);
  4043. }
  4044. // ggml_sum
  4045. struct ggml_tensor * ggml_sum(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a) {
  4048. bool is_node = false;
  4049. if (a->grad) {
  4050. is_node = true;
  4051. }
  4052. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4053. result->op = GGML_OP_SUM;
  4054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4055. result->src[0] = a;
  4056. return result;
  4057. }
  4058. // ggml_sum_rows
  4059. struct ggml_tensor * ggml_sum_rows(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a) {
  4062. bool is_node = false;
  4063. if (a->grad) {
  4064. is_node = true;
  4065. }
  4066. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4067. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4068. ne[i] = a->ne[i];
  4069. }
  4070. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4071. result->op = GGML_OP_SUM_ROWS;
  4072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4073. result->src[0] = a;
  4074. return result;
  4075. }
  4076. // ggml_mean
  4077. struct ggml_tensor * ggml_mean(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a) {
  4080. bool is_node = false;
  4081. if (a->grad) {
  4082. GGML_ASSERT(false); // TODO: implement
  4083. is_node = true;
  4084. }
  4085. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4086. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4087. result->op = GGML_OP_MEAN;
  4088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4089. result->src[0] = a;
  4090. return result;
  4091. }
  4092. // ggml_argmax
  4093. struct ggml_tensor * ggml_argmax(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a) {
  4096. GGML_ASSERT(ggml_is_matrix(a));
  4097. bool is_node = false;
  4098. if (a->grad) {
  4099. GGML_ASSERT(false);
  4100. is_node = true;
  4101. }
  4102. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4103. result->op = GGML_OP_ARGMAX;
  4104. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4105. result->src[0] = a;
  4106. return result;
  4107. }
  4108. // ggml_repeat
  4109. struct ggml_tensor * ggml_repeat(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. struct ggml_tensor * b) {
  4113. GGML_ASSERT(ggml_can_repeat(a, b));
  4114. bool is_node = false;
  4115. if (a->grad) {
  4116. is_node = true;
  4117. }
  4118. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4119. result->op = GGML_OP_REPEAT;
  4120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4121. result->src[0] = a;
  4122. return result;
  4123. }
  4124. // ggml_repeat_back
  4125. struct ggml_tensor * ggml_repeat_back(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. struct ggml_tensor * b) {
  4129. GGML_ASSERT(ggml_can_repeat(b, a));
  4130. bool is_node = false;
  4131. if (a->grad) {
  4132. is_node = true;
  4133. }
  4134. if (ggml_are_same_shape(a, b) && !is_node) {
  4135. return a;
  4136. }
  4137. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4138. result->op = GGML_OP_REPEAT_BACK;
  4139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4140. result->src[0] = a;
  4141. return result;
  4142. }
  4143. // ggml_concat
  4144. struct ggml_tensor * ggml_concat(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. struct ggml_tensor * b,
  4148. int dim) {
  4149. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4150. int64_t ne[GGML_MAX_DIMS];
  4151. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4152. if (d == dim) {
  4153. ne[d] = a->ne[d] + b->ne[d];
  4154. continue;
  4155. }
  4156. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4157. ne[d] = a->ne[d];
  4158. }
  4159. bool is_node = false;
  4160. if (a->grad || b->grad) {
  4161. is_node = true;
  4162. }
  4163. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4164. ggml_set_op_params_i32(result, 0, dim);
  4165. result->op = GGML_OP_CONCAT;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src[0] = a;
  4168. result->src[1] = b;
  4169. return result;
  4170. }
  4171. // ggml_abs
  4172. struct ggml_tensor * ggml_abs(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a) {
  4175. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4176. }
  4177. struct ggml_tensor * ggml_abs_inplace(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a) {
  4180. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4181. }
  4182. // ggml_sgn
  4183. struct ggml_tensor * ggml_sgn(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a) {
  4186. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4187. }
  4188. struct ggml_tensor * ggml_sgn_inplace(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a) {
  4191. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4192. }
  4193. // ggml_neg
  4194. struct ggml_tensor * ggml_neg(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a) {
  4197. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4198. }
  4199. struct ggml_tensor * ggml_neg_inplace(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a) {
  4202. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4203. }
  4204. // ggml_step
  4205. struct ggml_tensor * ggml_step(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a) {
  4208. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4209. }
  4210. struct ggml_tensor * ggml_step_inplace(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a) {
  4213. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4214. }
  4215. // ggml_tanh
  4216. struct ggml_tensor * ggml_tanh(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a) {
  4219. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4220. }
  4221. struct ggml_tensor * ggml_tanh_inplace(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a) {
  4224. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4225. }
  4226. // ggml_elu
  4227. struct ggml_tensor * ggml_elu(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a) {
  4230. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4231. }
  4232. struct ggml_tensor * ggml_elu_inplace(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a) {
  4235. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4236. }
  4237. // ggml_relu
  4238. struct ggml_tensor * ggml_relu(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4242. }
  4243. struct ggml_tensor * ggml_relu_inplace(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a) {
  4246. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4247. }
  4248. // ggml_leaky_relu
  4249. struct ggml_tensor * ggml_leaky_relu(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4252. bool is_node = false;
  4253. if (!inplace && (a->grad)) {
  4254. is_node = true;
  4255. }
  4256. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4257. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4258. result->op = GGML_OP_LEAKY_RELU;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src[0] = a;
  4261. return result;
  4262. }
  4263. // ggml_sigmoid
  4264. struct ggml_tensor * ggml_sigmoid(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a) {
  4267. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4268. }
  4269. struct ggml_tensor * ggml_sigmoid_inplace(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a) {
  4272. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4273. }
  4274. // ggml_gelu
  4275. struct ggml_tensor * ggml_gelu(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a) {
  4278. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4279. }
  4280. struct ggml_tensor * ggml_gelu_inplace(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a) {
  4283. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4284. }
  4285. // ggml_gelu_quick
  4286. struct ggml_tensor * ggml_gelu_quick(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a) {
  4289. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4290. }
  4291. struct ggml_tensor * ggml_gelu_quick_inplace(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4295. }
  4296. // ggml_silu
  4297. struct ggml_tensor * ggml_silu(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4301. }
  4302. struct ggml_tensor * ggml_silu_inplace(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4306. }
  4307. // ggml_silu_back
  4308. struct ggml_tensor * ggml_silu_back(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a,
  4311. struct ggml_tensor * b) {
  4312. bool is_node = false;
  4313. if (a->grad || b->grad) {
  4314. // TODO: implement backward
  4315. is_node = true;
  4316. }
  4317. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_SILU_BACK;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = b;
  4322. return result;
  4323. }
  4324. // ggml hardswish
  4325. struct ggml_tensor * ggml_hardswish(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a) {
  4328. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4329. }
  4330. // ggml hardsigmoid
  4331. struct ggml_tensor * ggml_hardsigmoid(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a) {
  4334. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4335. }
  4336. // ggml_norm
  4337. static struct ggml_tensor * ggml_norm_impl(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. float eps,
  4341. bool inplace) {
  4342. bool is_node = false;
  4343. if (!inplace && (a->grad)) {
  4344. GGML_ASSERT(false); // TODO: implement backward
  4345. is_node = true;
  4346. }
  4347. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4348. ggml_set_op_params(result, &eps, sizeof(eps));
  4349. result->op = GGML_OP_NORM;
  4350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4351. result->src[0] = a;
  4352. return result;
  4353. }
  4354. struct ggml_tensor * ggml_norm(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. float eps) {
  4358. return ggml_norm_impl(ctx, a, eps, false);
  4359. }
  4360. struct ggml_tensor * ggml_norm_inplace(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. float eps) {
  4364. return ggml_norm_impl(ctx, a, eps, true);
  4365. }
  4366. // ggml_rms_norm
  4367. static struct ggml_tensor * ggml_rms_norm_impl(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. float eps,
  4371. bool inplace) {
  4372. bool is_node = false;
  4373. if (!inplace && (a->grad)) {
  4374. is_node = true;
  4375. }
  4376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4377. ggml_set_op_params(result, &eps, sizeof(eps));
  4378. result->op = GGML_OP_RMS_NORM;
  4379. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4380. result->src[0] = a;
  4381. return result;
  4382. }
  4383. struct ggml_tensor * ggml_rms_norm(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. float eps) {
  4387. return ggml_rms_norm_impl(ctx, a, eps, false);
  4388. }
  4389. struct ggml_tensor * ggml_rms_norm_inplace(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. float eps) {
  4393. return ggml_rms_norm_impl(ctx, a, eps, true);
  4394. }
  4395. // ggml_rms_norm_back
  4396. struct ggml_tensor * ggml_rms_norm_back(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. struct ggml_tensor * b,
  4400. float eps) {
  4401. bool is_node = false;
  4402. if (a->grad) {
  4403. // TODO: implement backward
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4407. ggml_set_op_params(result, &eps, sizeof(eps));
  4408. result->op = GGML_OP_RMS_NORM_BACK;
  4409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4410. result->src[0] = a;
  4411. result->src[1] = b;
  4412. return result;
  4413. }
  4414. // ggml_group_norm
  4415. static struct ggml_tensor * ggml_group_norm_impl(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. int n_groups,
  4419. bool inplace) {
  4420. bool is_node = false;
  4421. if (!inplace && (a->grad)) {
  4422. GGML_ASSERT(false); // TODO: implement backward
  4423. is_node = true;
  4424. }
  4425. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4426. result->op_params[0] = n_groups;
  4427. result->op = GGML_OP_GROUP_NORM;
  4428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4429. result->src[0] = a;
  4430. return result;
  4431. }
  4432. struct ggml_tensor * ggml_group_norm(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. int n_groups) {
  4436. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4437. }
  4438. struct ggml_tensor * ggml_group_norm_inplace(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. int n_groups) {
  4442. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4443. }
  4444. // ggml_mul_mat
  4445. struct ggml_tensor * ggml_mul_mat(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. struct ggml_tensor * b) {
  4449. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4450. GGML_ASSERT(!ggml_is_transposed(a));
  4451. bool is_node = false;
  4452. if (a->grad || b->grad) {
  4453. is_node = true;
  4454. }
  4455. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4456. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4457. result->op = GGML_OP_MUL_MAT;
  4458. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4459. result->src[0] = a;
  4460. result->src[1] = b;
  4461. return result;
  4462. }
  4463. void ggml_mul_mat_set_prec(
  4464. struct ggml_tensor * a,
  4465. enum ggml_prec prec) {
  4466. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4467. const int32_t prec_i32 = (int32_t) prec;
  4468. ggml_set_op_params_i32(a, 0, prec_i32);
  4469. }
  4470. // ggml_mul_mat_id
  4471. /*
  4472. c = ggml_mul_mat_id(ctx, as, b, ids);
  4473. as -> [cols, rows, n_expert]
  4474. ids -> [n_experts_used, n_tokens] (i32)
  4475. b -> [cols, n_expert_used, n_tokens]
  4476. c -> [cols, n_expert_used, n_tokens]
  4477. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4478. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4479. */
  4480. struct ggml_tensor * ggml_mul_mat_id(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * as,
  4483. struct ggml_tensor * b,
  4484. struct ggml_tensor * ids) {
  4485. GGML_ASSERT(!ggml_is_transposed(as));
  4486. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4487. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4488. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4489. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4490. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4491. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4492. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4493. bool is_node = false;
  4494. if (as->grad || b->grad) {
  4495. is_node = true;
  4496. }
  4497. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4498. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4499. result->op = GGML_OP_MUL_MAT_ID;
  4500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4501. result->src[0] = as;
  4502. result->src[1] = b;
  4503. result->src[2] = ids;
  4504. return result;
  4505. }
  4506. // ggml_out_prod
  4507. struct ggml_tensor * ggml_out_prod(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. struct ggml_tensor * b) {
  4511. GGML_ASSERT(ggml_can_out_prod(a, b));
  4512. GGML_ASSERT(!ggml_is_transposed(a));
  4513. bool is_node = false;
  4514. if (a->grad || b->grad) {
  4515. is_node = true;
  4516. }
  4517. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4518. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4519. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4520. result->op = GGML_OP_OUT_PROD;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. result->src[1] = b;
  4524. return result;
  4525. }
  4526. // ggml_scale
  4527. static struct ggml_tensor * ggml_scale_impl(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. float s,
  4531. bool inplace) {
  4532. GGML_ASSERT(ggml_is_padded_1d(a));
  4533. bool is_node = false;
  4534. if (a->grad) {
  4535. is_node = true;
  4536. }
  4537. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4538. ggml_set_op_params(result, &s, sizeof(s));
  4539. result->op = GGML_OP_SCALE;
  4540. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4541. result->src[0] = a;
  4542. return result;
  4543. }
  4544. struct ggml_tensor * ggml_scale(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. float s) {
  4548. return ggml_scale_impl(ctx, a, s, false);
  4549. }
  4550. struct ggml_tensor * ggml_scale_inplace(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. float s) {
  4554. return ggml_scale_impl(ctx, a, s, true);
  4555. }
  4556. // ggml_set
  4557. static struct ggml_tensor * ggml_set_impl(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. struct ggml_tensor * b,
  4561. size_t nb1,
  4562. size_t nb2,
  4563. size_t nb3,
  4564. size_t offset,
  4565. bool inplace) {
  4566. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4567. bool is_node = false;
  4568. if (a->grad || b->grad) {
  4569. is_node = true;
  4570. }
  4571. // make a view of the destination
  4572. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4573. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4574. ggml_set_op_params(result, params, sizeof(params));
  4575. result->op = GGML_OP_SET;
  4576. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4577. result->src[0] = a;
  4578. result->src[1] = b;
  4579. return result;
  4580. }
  4581. struct ggml_tensor * ggml_set(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a,
  4584. struct ggml_tensor * b,
  4585. size_t nb1,
  4586. size_t nb2,
  4587. size_t nb3,
  4588. size_t offset) {
  4589. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4590. }
  4591. struct ggml_tensor * ggml_set_inplace(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a,
  4594. struct ggml_tensor * b,
  4595. size_t nb1,
  4596. size_t nb2,
  4597. size_t nb3,
  4598. size_t offset) {
  4599. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4600. }
  4601. struct ggml_tensor * ggml_set_1d(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. struct ggml_tensor * b,
  4605. size_t offset) {
  4606. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4607. }
  4608. struct ggml_tensor * ggml_set_1d_inplace(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a,
  4611. struct ggml_tensor * b,
  4612. size_t offset) {
  4613. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4614. }
  4615. struct ggml_tensor * ggml_set_2d(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. struct ggml_tensor * b,
  4619. size_t nb1,
  4620. size_t offset) {
  4621. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4622. }
  4623. struct ggml_tensor * ggml_set_2d_inplace(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a,
  4626. struct ggml_tensor * b,
  4627. size_t nb1,
  4628. size_t offset) {
  4629. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4630. }
  4631. // ggml_cpy
  4632. static struct ggml_tensor * ggml_cpy_impl(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a,
  4635. struct ggml_tensor * b) {
  4636. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4637. bool is_node = false;
  4638. if (a->grad || b->grad) {
  4639. // inplace is false and either one have a grad
  4640. is_node = true;
  4641. }
  4642. // make a view of the destination
  4643. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4644. if (strlen(b->name) > 0) {
  4645. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4646. } else {
  4647. ggml_format_name(result, "%s (copy)", a->name);
  4648. }
  4649. result->op = GGML_OP_CPY;
  4650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4651. result->src[0] = a;
  4652. result->src[1] = b;
  4653. return result;
  4654. }
  4655. struct ggml_tensor * ggml_cpy(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. struct ggml_tensor * b) {
  4659. return ggml_cpy_impl(ctx, a, b);
  4660. }
  4661. struct ggml_tensor * ggml_cast(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a,
  4664. enum ggml_type type) {
  4665. bool is_node = false;
  4666. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4667. ggml_format_name(result, "%s (copy)", a->name);
  4668. result->op = GGML_OP_CPY;
  4669. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4670. result->src[0] = a;
  4671. result->src[1] = result;
  4672. return result;
  4673. }
  4674. // ggml_cont
  4675. static struct ggml_tensor * ggml_cont_impl(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a) {
  4678. bool is_node = false;
  4679. if (a->grad) {
  4680. is_node = true;
  4681. }
  4682. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4683. ggml_format_name(result, "%s (cont)", a->name);
  4684. result->op = GGML_OP_CONT;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = a;
  4687. return result;
  4688. }
  4689. struct ggml_tensor * ggml_cont(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a) {
  4692. return ggml_cont_impl(ctx, a);
  4693. }
  4694. // make contiguous, with new shape
  4695. GGML_API struct ggml_tensor * ggml_cont_1d(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. int64_t ne0) {
  4699. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4700. }
  4701. GGML_API struct ggml_tensor * ggml_cont_2d(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. int64_t ne0,
  4705. int64_t ne1) {
  4706. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4707. }
  4708. GGML_API struct ggml_tensor * ggml_cont_3d(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. int64_t ne0,
  4712. int64_t ne1,
  4713. int64_t ne2) {
  4714. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4715. }
  4716. struct ggml_tensor * ggml_cont_4d(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. int64_t ne0,
  4720. int64_t ne1,
  4721. int64_t ne2,
  4722. int64_t ne3) {
  4723. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4724. bool is_node = false;
  4725. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4726. ggml_format_name(result, "%s (cont)", a->name);
  4727. result->op = GGML_OP_CONT;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src[0] = a;
  4730. return result;
  4731. }
  4732. // ggml_reshape
  4733. struct ggml_tensor * ggml_reshape(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a,
  4736. struct ggml_tensor * b) {
  4737. GGML_ASSERT(ggml_is_contiguous(a));
  4738. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4739. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4740. bool is_node = false;
  4741. if (a->grad) {
  4742. is_node = true;
  4743. }
  4744. if (b->grad) {
  4745. // gradient propagation is not supported
  4746. //GGML_ASSERT(false);
  4747. }
  4748. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4749. ggml_format_name(result, "%s (reshaped)", a->name);
  4750. result->op = GGML_OP_RESHAPE;
  4751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4752. result->src[0] = a;
  4753. return result;
  4754. }
  4755. struct ggml_tensor * ggml_reshape_1d(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a,
  4758. int64_t ne0) {
  4759. GGML_ASSERT(ggml_is_contiguous(a));
  4760. GGML_ASSERT(ggml_nelements(a) == ne0);
  4761. bool is_node = false;
  4762. if (a->grad) {
  4763. is_node = true;
  4764. }
  4765. const int64_t ne[1] = { ne0 };
  4766. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4767. ggml_format_name(result, "%s (reshaped)", a->name);
  4768. result->op = GGML_OP_RESHAPE;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src[0] = a;
  4771. return result;
  4772. }
  4773. struct ggml_tensor * ggml_reshape_2d(
  4774. struct ggml_context * ctx,
  4775. struct ggml_tensor * a,
  4776. int64_t ne0,
  4777. int64_t ne1) {
  4778. GGML_ASSERT(ggml_is_contiguous(a));
  4779. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4780. bool is_node = false;
  4781. if (a->grad) {
  4782. is_node = true;
  4783. }
  4784. const int64_t ne[2] = { ne0, ne1 };
  4785. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4786. ggml_format_name(result, "%s (reshaped)", a->name);
  4787. result->op = GGML_OP_RESHAPE;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. return result;
  4791. }
  4792. struct ggml_tensor * ggml_reshape_3d(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a,
  4795. int64_t ne0,
  4796. int64_t ne1,
  4797. int64_t ne2) {
  4798. GGML_ASSERT(ggml_is_contiguous(a));
  4799. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4800. bool is_node = false;
  4801. if (a->grad) {
  4802. is_node = true;
  4803. }
  4804. const int64_t ne[3] = { ne0, ne1, ne2 };
  4805. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4806. ggml_format_name(result, "%s (reshaped)", a->name);
  4807. result->op = GGML_OP_RESHAPE;
  4808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4809. result->src[0] = a;
  4810. return result;
  4811. }
  4812. struct ggml_tensor * ggml_reshape_4d(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. int64_t ne0,
  4816. int64_t ne1,
  4817. int64_t ne2,
  4818. int64_t ne3) {
  4819. GGML_ASSERT(ggml_is_contiguous(a));
  4820. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4821. bool is_node = false;
  4822. if (a->grad) {
  4823. is_node = true;
  4824. }
  4825. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4826. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4827. ggml_format_name(result, "%s (reshaped)", a->name);
  4828. result->op = GGML_OP_RESHAPE;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src[0] = a;
  4831. return result;
  4832. }
  4833. static struct ggml_tensor * ggml_view_impl(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a,
  4836. int n_dims,
  4837. const int64_t * ne,
  4838. size_t offset) {
  4839. bool is_node = false;
  4840. if (a->grad) {
  4841. is_node = true;
  4842. }
  4843. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4844. ggml_format_name(result, "%s (view)", a->name);
  4845. ggml_set_op_params(result, &offset, sizeof(offset));
  4846. result->op = GGML_OP_VIEW;
  4847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4848. result->src[0] = a;
  4849. return result;
  4850. }
  4851. // ggml_view_1d
  4852. struct ggml_tensor * ggml_view_1d(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. int64_t ne0,
  4856. size_t offset) {
  4857. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4858. return result;
  4859. }
  4860. // ggml_view_2d
  4861. struct ggml_tensor * ggml_view_2d(
  4862. struct ggml_context * ctx,
  4863. struct ggml_tensor * a,
  4864. int64_t ne0,
  4865. int64_t ne1,
  4866. size_t nb1,
  4867. size_t offset) {
  4868. const int64_t ne[2] = { ne0, ne1 };
  4869. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4870. result->nb[1] = nb1;
  4871. result->nb[2] = result->nb[1]*ne1;
  4872. result->nb[3] = result->nb[2];
  4873. return result;
  4874. }
  4875. // ggml_view_3d
  4876. struct ggml_tensor * ggml_view_3d(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. int64_t ne0,
  4880. int64_t ne1,
  4881. int64_t ne2,
  4882. size_t nb1,
  4883. size_t nb2,
  4884. size_t offset) {
  4885. const int64_t ne[3] = { ne0, ne1, ne2 };
  4886. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4887. result->nb[1] = nb1;
  4888. result->nb[2] = nb2;
  4889. result->nb[3] = result->nb[2]*ne2;
  4890. return result;
  4891. }
  4892. // ggml_view_4d
  4893. struct ggml_tensor * ggml_view_4d(
  4894. struct ggml_context * ctx,
  4895. struct ggml_tensor * a,
  4896. int64_t ne0,
  4897. int64_t ne1,
  4898. int64_t ne2,
  4899. int64_t ne3,
  4900. size_t nb1,
  4901. size_t nb2,
  4902. size_t nb3,
  4903. size_t offset) {
  4904. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4905. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4906. result->nb[1] = nb1;
  4907. result->nb[2] = nb2;
  4908. result->nb[3] = nb3;
  4909. return result;
  4910. }
  4911. // ggml_permute
  4912. struct ggml_tensor * ggml_permute(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. int axis0,
  4916. int axis1,
  4917. int axis2,
  4918. int axis3) {
  4919. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4920. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4921. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4922. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4923. GGML_ASSERT(axis0 != axis1);
  4924. GGML_ASSERT(axis0 != axis2);
  4925. GGML_ASSERT(axis0 != axis3);
  4926. GGML_ASSERT(axis1 != axis2);
  4927. GGML_ASSERT(axis1 != axis3);
  4928. GGML_ASSERT(axis2 != axis3);
  4929. bool is_node = false;
  4930. if (a->grad) {
  4931. is_node = true;
  4932. }
  4933. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4934. ggml_format_name(result, "%s (permuted)", a->name);
  4935. int ne[GGML_MAX_DIMS];
  4936. int nb[GGML_MAX_DIMS];
  4937. ne[axis0] = a->ne[0];
  4938. ne[axis1] = a->ne[1];
  4939. ne[axis2] = a->ne[2];
  4940. ne[axis3] = a->ne[3];
  4941. nb[axis0] = a->nb[0];
  4942. nb[axis1] = a->nb[1];
  4943. nb[axis2] = a->nb[2];
  4944. nb[axis3] = a->nb[3];
  4945. result->ne[0] = ne[0];
  4946. result->ne[1] = ne[1];
  4947. result->ne[2] = ne[2];
  4948. result->ne[3] = ne[3];
  4949. result->nb[0] = nb[0];
  4950. result->nb[1] = nb[1];
  4951. result->nb[2] = nb[2];
  4952. result->nb[3] = nb[3];
  4953. result->op = GGML_OP_PERMUTE;
  4954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4955. result->src[0] = a;
  4956. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4957. ggml_set_op_params(result, params, sizeof(params));
  4958. return result;
  4959. }
  4960. // ggml_transpose
  4961. struct ggml_tensor * ggml_transpose(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a) {
  4964. bool is_node = false;
  4965. if (a->grad) {
  4966. is_node = true;
  4967. }
  4968. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4969. ggml_format_name(result, "%s (transposed)", a->name);
  4970. result->ne[0] = a->ne[1];
  4971. result->ne[1] = a->ne[0];
  4972. result->nb[0] = a->nb[1];
  4973. result->nb[1] = a->nb[0];
  4974. result->op = GGML_OP_TRANSPOSE;
  4975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4976. result->src[0] = a;
  4977. return result;
  4978. }
  4979. // ggml_get_rows
  4980. struct ggml_tensor * ggml_get_rows(
  4981. struct ggml_context * ctx,
  4982. struct ggml_tensor * a,
  4983. struct ggml_tensor * b) {
  4984. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4985. GGML_ASSERT(b->ne[3] == 1);
  4986. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4987. bool is_node = false;
  4988. if (a->grad || b->grad) {
  4989. is_node = true;
  4990. }
  4991. // TODO: implement non F32 return
  4992. enum ggml_type type = GGML_TYPE_F32;
  4993. if (a->type == GGML_TYPE_I32) {
  4994. type = a->type;
  4995. }
  4996. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4997. result->op = GGML_OP_GET_ROWS;
  4998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4999. result->src[0] = a;
  5000. result->src[1] = b;
  5001. return result;
  5002. }
  5003. // ggml_get_rows_back
  5004. struct ggml_tensor * ggml_get_rows_back(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. struct ggml_tensor * b,
  5008. struct ggml_tensor * c) {
  5009. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5010. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5011. bool is_node = false;
  5012. if (a->grad || b->grad) {
  5013. is_node = true;
  5014. }
  5015. // TODO: implement non F32 return
  5016. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5017. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5018. result->op = GGML_OP_GET_ROWS_BACK;
  5019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5020. result->src[0] = a;
  5021. result->src[1] = b;
  5022. return result;
  5023. }
  5024. // ggml_diag
  5025. struct ggml_tensor * ggml_diag(
  5026. struct ggml_context * ctx,
  5027. struct ggml_tensor * a) {
  5028. GGML_ASSERT(a->ne[1] == 1);
  5029. bool is_node = false;
  5030. if (a->grad) {
  5031. is_node = true;
  5032. }
  5033. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5034. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5035. result->op = GGML_OP_DIAG;
  5036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5037. result->src[0] = a;
  5038. return result;
  5039. }
  5040. // ggml_diag_mask_inf
  5041. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a,
  5044. int n_past,
  5045. bool inplace) {
  5046. bool is_node = false;
  5047. if (a->grad) {
  5048. is_node = true;
  5049. }
  5050. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5051. int32_t params[] = { n_past };
  5052. ggml_set_op_params(result, params, sizeof(params));
  5053. result->op = GGML_OP_DIAG_MASK_INF;
  5054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5055. result->src[0] = a;
  5056. return result;
  5057. }
  5058. struct ggml_tensor * ggml_diag_mask_inf(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. int n_past) {
  5062. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5063. }
  5064. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5065. struct ggml_context * ctx,
  5066. struct ggml_tensor * a,
  5067. int n_past) {
  5068. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5069. }
  5070. // ggml_diag_mask_zero
  5071. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a,
  5074. int n_past,
  5075. bool inplace) {
  5076. bool is_node = false;
  5077. if (a->grad) {
  5078. is_node = true;
  5079. }
  5080. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5081. int32_t params[] = { n_past };
  5082. ggml_set_op_params(result, params, sizeof(params));
  5083. result->op = GGML_OP_DIAG_MASK_ZERO;
  5084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5085. result->src[0] = a;
  5086. return result;
  5087. }
  5088. struct ggml_tensor * ggml_diag_mask_zero(
  5089. struct ggml_context * ctx,
  5090. struct ggml_tensor * a,
  5091. int n_past) {
  5092. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5093. }
  5094. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. int n_past) {
  5098. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5099. }
  5100. // ggml_soft_max
  5101. static struct ggml_tensor * ggml_soft_max_impl(
  5102. struct ggml_context * ctx,
  5103. struct ggml_tensor * a,
  5104. struct ggml_tensor * mask,
  5105. float scale,
  5106. float max_bias,
  5107. bool inplace) {
  5108. GGML_ASSERT(ggml_is_contiguous(a));
  5109. if (mask) {
  5110. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5111. GGML_ASSERT(ggml_is_contiguous(mask));
  5112. GGML_ASSERT(ggml_is_matrix(mask));
  5113. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5114. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5115. }
  5116. if (max_bias > 0.0f) {
  5117. GGML_ASSERT(mask);
  5118. }
  5119. bool is_node = false;
  5120. if (a->grad) {
  5121. is_node = true;
  5122. }
  5123. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5124. float params[] = { scale, max_bias };
  5125. ggml_set_op_params(result, params, sizeof(params));
  5126. result->op = GGML_OP_SOFT_MAX;
  5127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5128. result->src[0] = a;
  5129. result->src[1] = mask;
  5130. return result;
  5131. }
  5132. struct ggml_tensor * ggml_soft_max(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * a) {
  5135. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5136. }
  5137. struct ggml_tensor * ggml_soft_max_inplace(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a) {
  5140. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5141. }
  5142. struct ggml_tensor * ggml_soft_max_ext(
  5143. struct ggml_context * ctx,
  5144. struct ggml_tensor * a,
  5145. struct ggml_tensor * mask,
  5146. float scale,
  5147. float max_bias) {
  5148. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5149. }
  5150. // ggml_soft_max_back
  5151. static struct ggml_tensor * ggml_soft_max_back_impl(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b,
  5155. bool inplace) {
  5156. bool is_node = false;
  5157. if (a->grad || b->grad) {
  5158. is_node = true; // TODO : implement backward pass
  5159. }
  5160. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5161. result->op = GGML_OP_SOFT_MAX_BACK;
  5162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5163. result->src[0] = a;
  5164. result->src[1] = b;
  5165. return result;
  5166. }
  5167. struct ggml_tensor * ggml_soft_max_back(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. struct ggml_tensor * b) {
  5171. return ggml_soft_max_back_impl(ctx, a, b, false);
  5172. }
  5173. struct ggml_tensor * ggml_soft_max_back_inplace(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. struct ggml_tensor * b) {
  5177. return ggml_soft_max_back_impl(ctx, a, b, true);
  5178. }
  5179. // ggml_rope
  5180. static struct ggml_tensor * ggml_rope_impl(
  5181. struct ggml_context * ctx,
  5182. struct ggml_tensor * a,
  5183. struct ggml_tensor * b,
  5184. struct ggml_tensor * c,
  5185. int n_dims,
  5186. int mode,
  5187. int n_ctx,
  5188. int n_orig_ctx,
  5189. float freq_base,
  5190. float freq_scale,
  5191. float ext_factor,
  5192. float attn_factor,
  5193. float beta_fast,
  5194. float beta_slow,
  5195. float xpos_base,
  5196. bool xpos_down,
  5197. bool inplace) {
  5198. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5199. GGML_ASSERT(ggml_is_vector(b));
  5200. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5201. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5202. if (c) {
  5203. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5204. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5205. }
  5206. bool is_node = false;
  5207. if (a->grad) {
  5208. is_node = true;
  5209. }
  5210. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5211. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5212. memcpy(params + 5, &freq_base, sizeof(float));
  5213. memcpy(params + 6, &freq_scale, sizeof(float));
  5214. memcpy(params + 7, &ext_factor, sizeof(float));
  5215. memcpy(params + 8, &attn_factor, sizeof(float));
  5216. memcpy(params + 9, &beta_fast, sizeof(float));
  5217. memcpy(params + 10, &beta_slow, sizeof(float));
  5218. memcpy(params + 11, &xpos_base, sizeof(float));
  5219. memcpy(params + 12, &xpos_down, sizeof(bool));
  5220. ggml_set_op_params(result, params, sizeof(params));
  5221. result->op = GGML_OP_ROPE;
  5222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5223. result->src[0] = a;
  5224. result->src[1] = b;
  5225. result->src[2] = c;
  5226. return result;
  5227. }
  5228. struct ggml_tensor * ggml_rope(
  5229. struct ggml_context * ctx,
  5230. struct ggml_tensor * a,
  5231. struct ggml_tensor * b,
  5232. int n_dims,
  5233. int mode,
  5234. int n_ctx) {
  5235. return ggml_rope_impl(
  5236. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5237. );
  5238. }
  5239. struct ggml_tensor * ggml_rope_inplace(
  5240. struct ggml_context * ctx,
  5241. struct ggml_tensor * a,
  5242. struct ggml_tensor * b,
  5243. int n_dims,
  5244. int mode,
  5245. int n_ctx) {
  5246. return ggml_rope_impl(
  5247. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5248. );
  5249. }
  5250. struct ggml_tensor * ggml_rope_ext(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a,
  5253. struct ggml_tensor * b,
  5254. struct ggml_tensor * c,
  5255. int n_dims,
  5256. int mode,
  5257. int n_ctx,
  5258. int n_orig_ctx,
  5259. float freq_base,
  5260. float freq_scale,
  5261. float ext_factor,
  5262. float attn_factor,
  5263. float beta_fast,
  5264. float beta_slow) {
  5265. return ggml_rope_impl(
  5266. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5267. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5268. );
  5269. }
  5270. struct ggml_tensor * ggml_rope_ext_inplace(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. struct ggml_tensor * b,
  5274. struct ggml_tensor * c,
  5275. int n_dims,
  5276. int mode,
  5277. int n_ctx,
  5278. int n_orig_ctx,
  5279. float freq_base,
  5280. float freq_scale,
  5281. float ext_factor,
  5282. float attn_factor,
  5283. float beta_fast,
  5284. float beta_slow) {
  5285. return ggml_rope_impl(
  5286. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5287. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5288. );
  5289. }
  5290. struct ggml_tensor * ggml_rope_custom(
  5291. struct ggml_context * ctx,
  5292. struct ggml_tensor * a,
  5293. struct ggml_tensor * b,
  5294. int n_dims,
  5295. int mode,
  5296. int n_ctx,
  5297. int n_orig_ctx,
  5298. float freq_base,
  5299. float freq_scale,
  5300. float ext_factor,
  5301. float attn_factor,
  5302. float beta_fast,
  5303. float beta_slow) {
  5304. return ggml_rope_impl(
  5305. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5306. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5307. );
  5308. }
  5309. struct ggml_tensor * ggml_rope_custom_inplace(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. struct ggml_tensor * b,
  5313. int n_dims,
  5314. int mode,
  5315. int n_ctx,
  5316. int n_orig_ctx,
  5317. float freq_base,
  5318. float freq_scale,
  5319. float ext_factor,
  5320. float attn_factor,
  5321. float beta_fast,
  5322. float beta_slow) {
  5323. return ggml_rope_impl(
  5324. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5325. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5326. );
  5327. }
  5328. struct ggml_tensor * ggml_rope_xpos_inplace(
  5329. struct ggml_context * ctx,
  5330. struct ggml_tensor * a,
  5331. struct ggml_tensor * b,
  5332. int n_dims,
  5333. float base,
  5334. bool down) {
  5335. return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5336. }
  5337. // ggml_rope_back
  5338. struct ggml_tensor * ggml_rope_back(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * a,
  5341. struct ggml_tensor * b,
  5342. struct ggml_tensor * c,
  5343. int n_dims,
  5344. int mode,
  5345. int n_ctx,
  5346. int n_orig_ctx,
  5347. float freq_base,
  5348. float freq_scale,
  5349. float ext_factor,
  5350. float attn_factor,
  5351. float beta_fast,
  5352. float beta_slow,
  5353. float xpos_base,
  5354. bool xpos_down) {
  5355. GGML_ASSERT(ggml_is_vector(b));
  5356. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5357. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5358. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5359. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5360. bool is_node = false;
  5361. if (a->grad) {
  5362. is_node = false; // TODO: implement backward
  5363. }
  5364. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5365. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5366. memcpy(params + 5, &freq_base, sizeof(float));
  5367. memcpy(params + 6, &freq_scale, sizeof(float));
  5368. memcpy(params + 7, &ext_factor, sizeof(float));
  5369. memcpy(params + 8, &attn_factor, sizeof(float));
  5370. memcpy(params + 9, &beta_fast, sizeof(float));
  5371. memcpy(params + 10, &beta_slow, sizeof(float));
  5372. memcpy(params + 11, &xpos_base, sizeof(float));
  5373. memcpy(params + 12, &xpos_down, sizeof(bool));
  5374. ggml_set_op_params(result, params, sizeof(params));
  5375. result->op = GGML_OP_ROPE_BACK;
  5376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5377. result->src[0] = a;
  5378. result->src[1] = b;
  5379. return result;
  5380. }
  5381. // ggml_clamp
  5382. struct ggml_tensor * ggml_clamp(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. float min,
  5386. float max) {
  5387. bool is_node = false;
  5388. if (a->grad) {
  5389. GGML_ASSERT(false); // TODO: implement backward
  5390. is_node = true;
  5391. }
  5392. // TODO: when implement backward, fix this:
  5393. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5394. float params[] = { min, max };
  5395. ggml_set_op_params(result, params, sizeof(params));
  5396. result->op = GGML_OP_CLAMP;
  5397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5398. result->src[0] = a;
  5399. return result;
  5400. }
  5401. // ggml_conv_1d
  5402. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5403. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5404. }
  5405. GGML_API struct ggml_tensor * ggml_conv_1d(
  5406. struct ggml_context * ctx,
  5407. struct ggml_tensor * a,
  5408. struct ggml_tensor * b,
  5409. int s0,
  5410. int p0,
  5411. int d0) {
  5412. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5413. struct ggml_tensor * result =
  5414. ggml_mul_mat(ctx,
  5415. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5416. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5417. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5418. return result;
  5419. }
  5420. // ggml_conv_1d_ph
  5421. struct ggml_tensor* ggml_conv_1d_ph(
  5422. struct ggml_context * ctx,
  5423. struct ggml_tensor * a,
  5424. struct ggml_tensor * b,
  5425. int s,
  5426. int d) {
  5427. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5428. }
  5429. // ggml_conv_transpose_1d
  5430. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5431. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5432. }
  5433. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5434. struct ggml_context * ctx,
  5435. struct ggml_tensor * a,
  5436. struct ggml_tensor * b,
  5437. int s0,
  5438. int p0,
  5439. int d0) {
  5440. GGML_ASSERT(ggml_is_matrix(b));
  5441. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5442. GGML_ASSERT(a->ne[3] == 1);
  5443. GGML_ASSERT(p0 == 0);
  5444. GGML_ASSERT(d0 == 1);
  5445. bool is_node = false;
  5446. if (a->grad || b->grad) {
  5447. GGML_ASSERT(false); // TODO: implement backward
  5448. is_node = true;
  5449. }
  5450. const int64_t ne[4] = {
  5451. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5452. a->ne[1], b->ne[2], 1,
  5453. };
  5454. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5455. int32_t params[] = { s0, p0, d0 };
  5456. ggml_set_op_params(result, params, sizeof(params));
  5457. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5458. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5459. result->src[0] = a;
  5460. result->src[1] = b;
  5461. return result;
  5462. }
  5463. // ggml_conv_depthwise
  5464. struct ggml_tensor * ggml_conv_depthwise_2d(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. struct ggml_tensor * b,
  5468. int s0,
  5469. int s1,
  5470. int p0,
  5471. int p1,
  5472. int d0,
  5473. int d1) {
  5474. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5475. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5476. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5477. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5478. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5479. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5480. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5481. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5482. return result;
  5483. }
  5484. // ggml_conv_2d
  5485. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5486. // a: [OC,IC, KH, KW]
  5487. // b: [N, IC, IH, IW]
  5488. // result: [N, OH, OW, IC*KH*KW]
  5489. struct ggml_tensor * ggml_im2col(
  5490. struct ggml_context * ctx,
  5491. struct ggml_tensor * a,
  5492. struct ggml_tensor * b,
  5493. int s0,
  5494. int s1,
  5495. int p0,
  5496. int p1,
  5497. int d0,
  5498. int d1,
  5499. bool is_2D,
  5500. enum ggml_type dst_type) {
  5501. if(is_2D) {
  5502. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5503. } else {
  5504. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5505. }
  5506. bool is_node = false;
  5507. if (a->grad || b->grad) {
  5508. GGML_ASSERT(false); // TODO: implement backward
  5509. is_node = true;
  5510. }
  5511. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5512. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5513. const int64_t ne[4] = {
  5514. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5515. OW,
  5516. is_2D ? OH : b->ne[2],
  5517. is_2D ? b->ne[3] : 1,
  5518. };
  5519. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5520. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5521. ggml_set_op_params(result, params, sizeof(params));
  5522. result->op = GGML_OP_IM2COL;
  5523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5524. result->src[0] = a;
  5525. result->src[1] = b;
  5526. return result;
  5527. }
  5528. // a: [OC,IC, KH, KW]
  5529. // b: [N, IC, IH, IW]
  5530. // result: [N, OC, OH, OW]
  5531. struct ggml_tensor * ggml_conv_2d(
  5532. struct ggml_context * ctx,
  5533. struct ggml_tensor * a,
  5534. struct ggml_tensor * b,
  5535. int s0,
  5536. int s1,
  5537. int p0,
  5538. int p1,
  5539. int d0,
  5540. int d1) {
  5541. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5542. struct ggml_tensor * result =
  5543. ggml_mul_mat(ctx,
  5544. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5545. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5546. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5547. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5548. return result;
  5549. }
  5550. // ggml_conv_2d_sk_p0
  5551. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5552. struct ggml_context * ctx,
  5553. struct ggml_tensor * a,
  5554. struct ggml_tensor * b) {
  5555. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5556. }
  5557. // ggml_conv_2d_s1_ph
  5558. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. struct ggml_tensor * b) {
  5562. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5563. }
  5564. // ggml_conv_transpose_2d_p0
  5565. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5566. return (ins - 1) * s - 2 * p + ks;
  5567. }
  5568. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. struct ggml_tensor * b,
  5572. int stride) {
  5573. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5574. bool is_node = false;
  5575. if (a->grad || b->grad) {
  5576. GGML_ASSERT(false); // TODO: implement backward
  5577. is_node = true;
  5578. }
  5579. const int64_t ne[4] = {
  5580. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5581. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5582. a->ne[2], b->ne[3],
  5583. };
  5584. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5585. ggml_set_op_params_i32(result, 0, stride);
  5586. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5588. result->src[0] = a;
  5589. result->src[1] = b;
  5590. return result;
  5591. }
  5592. // ggml_pool_*
  5593. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5594. return (ins + 2 * p - ks) / s + 1;
  5595. }
  5596. // ggml_pool_1d
  5597. struct ggml_tensor * ggml_pool_1d(
  5598. struct ggml_context * ctx,
  5599. struct ggml_tensor * a,
  5600. enum ggml_op_pool op,
  5601. int k0,
  5602. int s0,
  5603. int p0) {
  5604. bool is_node = false;
  5605. if (a->grad) {
  5606. GGML_ASSERT(false); // TODO: implement backward
  5607. is_node = true;
  5608. }
  5609. const int64_t ne[4] = {
  5610. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5611. a->ne[1],
  5612. a->ne[2],
  5613. a->ne[3],
  5614. };
  5615. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5616. int32_t params[] = { op, k0, s0, p0 };
  5617. ggml_set_op_params(result, params, sizeof(params));
  5618. result->op = GGML_OP_POOL_1D;
  5619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5620. result->src[0] = a;
  5621. return result;
  5622. }
  5623. // ggml_pool_2d
  5624. struct ggml_tensor * ggml_pool_2d(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * a,
  5627. enum ggml_op_pool op,
  5628. int k0,
  5629. int k1,
  5630. int s0,
  5631. int s1,
  5632. float p0,
  5633. float p1) {
  5634. bool is_node = false;
  5635. if (a->grad) {
  5636. GGML_ASSERT(false); // TODO: implement backward
  5637. is_node = true;
  5638. }
  5639. struct ggml_tensor * result;
  5640. const int64_t ne[3] = {
  5641. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5642. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5643. a->ne[2],
  5644. };
  5645. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5646. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5647. ggml_set_op_params(result, params, sizeof(params));
  5648. result->op = GGML_OP_POOL_2D;
  5649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5650. result->src[0] = a;
  5651. return result;
  5652. }
  5653. // ggml_upscale
  5654. static struct ggml_tensor * ggml_upscale_impl(
  5655. struct ggml_context * ctx,
  5656. struct ggml_tensor * a,
  5657. int ne0,
  5658. int ne1,
  5659. int ne2,
  5660. int ne3) {
  5661. bool is_node = false;
  5662. if (a->grad) {
  5663. GGML_ASSERT(false); // TODO: implement backward
  5664. is_node = true;
  5665. }
  5666. GGML_ASSERT(a->ne[0] <= ne0);
  5667. GGML_ASSERT(a->ne[1] <= ne1);
  5668. GGML_ASSERT(a->ne[2] <= ne2);
  5669. GGML_ASSERT(a->ne[3] <= ne3);
  5670. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5671. ne0,
  5672. ne1,
  5673. ne2,
  5674. ne3
  5675. );
  5676. result->op = GGML_OP_UPSCALE;
  5677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5678. result->src[0] = a;
  5679. return result;
  5680. }
  5681. struct ggml_tensor * ggml_upscale(
  5682. struct ggml_context * ctx,
  5683. struct ggml_tensor * a,
  5684. int scale_factor) {
  5685. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5686. }
  5687. struct ggml_tensor * ggml_upscale_ext(
  5688. struct ggml_context * ctx,
  5689. struct ggml_tensor * a,
  5690. int ne0,
  5691. int ne1,
  5692. int ne2,
  5693. int ne3) {
  5694. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5695. }
  5696. // ggml_pad
  5697. struct ggml_tensor * ggml_pad(
  5698. struct ggml_context * ctx,
  5699. struct ggml_tensor * a,
  5700. int p0, int p1, int p2, int p3) {
  5701. bool is_node = false;
  5702. if (a->grad) {
  5703. GGML_ASSERT(false); // TODO: implement backward
  5704. is_node = true;
  5705. }
  5706. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5707. a->ne[0] + p0,
  5708. a->ne[1] + p1,
  5709. a->ne[2] + p2,
  5710. a->ne[3] + p3);
  5711. result->op = GGML_OP_PAD;
  5712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5713. result->src[0] = a;
  5714. return result;
  5715. }
  5716. // ggml_arange
  5717. struct ggml_tensor * ggml_arange(
  5718. struct ggml_context * ctx,
  5719. float start,
  5720. float stop,
  5721. float step) {
  5722. GGML_ASSERT(stop > start);
  5723. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5724. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5725. result->op = GGML_OP_ARANGE;
  5726. ggml_set_op_params_f32(result, 0, start);
  5727. ggml_set_op_params_f32(result, 1, stop);
  5728. ggml_set_op_params_f32(result, 2, step);
  5729. return result;
  5730. }
  5731. // ggml_timestep_embedding
  5732. struct ggml_tensor * ggml_timestep_embedding(
  5733. struct ggml_context * ctx,
  5734. struct ggml_tensor * timesteps,
  5735. int dim,
  5736. int max_period) {
  5737. bool is_node = false;
  5738. if (timesteps->grad) {
  5739. GGML_ASSERT(false); // TODO: implement backward
  5740. is_node = true;
  5741. }
  5742. int actual_dim = dim;
  5743. if (dim % 2 != 0) {
  5744. actual_dim = dim + 1;
  5745. }
  5746. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5747. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5748. ggml_set_op_params_i32(result, 0, dim);
  5749. ggml_set_op_params_i32(result, 1, max_period);
  5750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5751. result->src[0] = timesteps;
  5752. return result;
  5753. }
  5754. // ggml_argsort
  5755. struct ggml_tensor * ggml_argsort(
  5756. struct ggml_context * ctx,
  5757. struct ggml_tensor * a,
  5758. enum ggml_sort_order order) {
  5759. bool is_node = false;
  5760. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5761. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5762. result->op = GGML_OP_ARGSORT;
  5763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5764. result->src[0] = a;
  5765. return result;
  5766. }
  5767. // ggml_top_k
  5768. struct ggml_tensor * ggml_top_k(
  5769. struct ggml_context * ctx,
  5770. struct ggml_tensor * a,
  5771. int k) {
  5772. GGML_ASSERT(a->ne[0] >= k);
  5773. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5774. result = ggml_view_4d(ctx, result,
  5775. k, result->ne[1], result->ne[2], result->ne[3],
  5776. result->nb[1], result->nb[2], result->nb[3],
  5777. 0);
  5778. return result;
  5779. }
  5780. // ggml_flash_attn_ext
  5781. struct ggml_tensor * ggml_flash_attn_ext(
  5782. struct ggml_context * ctx,
  5783. struct ggml_tensor * q,
  5784. struct ggml_tensor * k,
  5785. struct ggml_tensor * v,
  5786. struct ggml_tensor * mask,
  5787. float scale,
  5788. float max_bias) {
  5789. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5790. // TODO: check if vT can be multiplied by (k*qT)
  5791. if (mask) {
  5792. GGML_ASSERT(ggml_is_contiguous(mask));
  5793. GGML_ASSERT(mask->ne[2] == 1);
  5794. GGML_ASSERT(mask->ne[3] == 1);
  5795. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5796. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5797. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5798. }
  5799. if (max_bias > 0.0f) {
  5800. GGML_ASSERT(mask);
  5801. }
  5802. bool is_node = false;
  5803. if (q->grad || k->grad || v->grad) {
  5804. is_node = true;
  5805. }
  5806. // permute(0, 2, 1, 3)
  5807. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5808. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5809. float params[] = { scale, max_bias };
  5810. ggml_set_op_params(result, params, sizeof(params));
  5811. result->op = GGML_OP_FLASH_ATTN_EXT;
  5812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5813. result->src[0] = q;
  5814. result->src[1] = k;
  5815. result->src[2] = v;
  5816. result->src[3] = mask;
  5817. return result;
  5818. }
  5819. void ggml_flash_attn_ext_set_prec(
  5820. struct ggml_tensor * a,
  5821. enum ggml_prec prec) {
  5822. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5823. const int32_t prec_i32 = (int32_t) prec;
  5824. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5825. }
  5826. // ggml_flash_attn_back
  5827. struct ggml_tensor * ggml_flash_attn_back(
  5828. struct ggml_context * ctx,
  5829. struct ggml_tensor * q,
  5830. struct ggml_tensor * k,
  5831. struct ggml_tensor * v,
  5832. struct ggml_tensor * d,
  5833. bool masked) {
  5834. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5835. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5836. // TODO: check if vT can be multiplied by (k*qT)
  5837. // d shape [D,N,ne2,ne3]
  5838. // q shape [D,N,ne2,ne3]
  5839. // k shape [D,M,kvne2,ne3]
  5840. // v shape [M,D,kvne2,ne3]
  5841. const int64_t D = q->ne[0];
  5842. const int64_t N = q->ne[1];
  5843. const int64_t M = k->ne[1];
  5844. const int64_t ne2 = q->ne[2];
  5845. const int64_t ne3 = q->ne[3];
  5846. const int64_t kvne2 = k->ne[2];
  5847. GGML_ASSERT(k->ne[0] == D);
  5848. GGML_ASSERT(v->ne[0] == M);
  5849. GGML_ASSERT(v->ne[1] == D);
  5850. GGML_ASSERT(d->ne[0] == D);
  5851. GGML_ASSERT(d->ne[1] == N);
  5852. GGML_ASSERT(k->ne[2] == kvne2);
  5853. GGML_ASSERT(k->ne[3] == ne3);
  5854. GGML_ASSERT(v->ne[2] == kvne2);
  5855. GGML_ASSERT(v->ne[3] == ne3);
  5856. GGML_ASSERT(d->ne[2] == ne2);
  5857. GGML_ASSERT(d->ne[3] == ne3);
  5858. GGML_ASSERT(ne2 % kvne2 == 0);
  5859. bool is_node = false;
  5860. if (q->grad || k->grad || v->grad) {
  5861. // when using this operation (in backwards pass) these grads are set.
  5862. // we don't want to create (big) grad of our result, so is_node is false.
  5863. is_node = false;
  5864. }
  5865. // store gradients of q, k and v as continuous tensors concatenated in result.
  5866. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5867. const int64_t elem_q = ggml_nelements(q);
  5868. const int64_t elem_k = ggml_nelements(k);
  5869. const int64_t elem_v = ggml_nelements(v);
  5870. enum ggml_type result_type = GGML_TYPE_F32;
  5871. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5872. const size_t tsize = ggml_type_size(result_type);
  5873. const size_t offs_q = 0;
  5874. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5875. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5876. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5877. const size_t nelements = (end + tsize - 1)/tsize;
  5878. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5879. int32_t masked_i = masked ? 1 : 0;
  5880. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5881. result->op = GGML_OP_FLASH_ATTN_BACK;
  5882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5883. result->src[0] = q;
  5884. result->src[1] = k;
  5885. result->src[2] = v;
  5886. result->src[3] = d;
  5887. return result;
  5888. }
  5889. // ggml_ssm_conv
  5890. struct ggml_tensor * ggml_ssm_conv(
  5891. struct ggml_context * ctx,
  5892. struct ggml_tensor * s,
  5893. struct ggml_tensor * x,
  5894. struct ggml_tensor * c,
  5895. struct ggml_tensor * sq) {
  5896. GGML_ASSERT(ggml_is_3d(s));
  5897. GGML_ASSERT(ggml_is_matrix(x));
  5898. GGML_ASSERT(ggml_is_matrix(c));
  5899. GGML_ASSERT(ggml_is_matrix(sq));
  5900. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5901. const int64_t d_conv = c->ne[0];
  5902. const int64_t d_inner = c->ne[1];
  5903. const int64_t n_tokens = x->ne[1];
  5904. const int64_t n_kv = s->ne[2];
  5905. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5906. GGML_ASSERT( s->ne[1] == d_inner);
  5907. GGML_ASSERT( x->ne[0] == d_inner);
  5908. GGML_ASSERT(sq->ne[0] == n_kv);
  5909. GGML_ASSERT(sq->ne[1] == n_tokens);
  5910. bool is_node = false;
  5911. if (s->grad || x->grad || c->grad || sq->grad) {
  5912. GGML_ASSERT(false); // TODO: implement
  5913. is_node = true;
  5914. }
  5915. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5916. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5917. result->op = GGML_OP_SSM_CONV;
  5918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5919. result->src[0] = s;
  5920. result->src[1] = x;
  5921. result->src[2] = c;
  5922. result->src[3] = sq;
  5923. return result;
  5924. }
  5925. // ggml_ssm_scan
  5926. struct ggml_tensor * ggml_ssm_scan(
  5927. struct ggml_context * ctx,
  5928. struct ggml_tensor * s,
  5929. struct ggml_tensor * x,
  5930. struct ggml_tensor * dt,
  5931. struct ggml_tensor * A,
  5932. struct ggml_tensor * B,
  5933. struct ggml_tensor * C,
  5934. struct ggml_tensor * sq) {
  5935. GGML_ASSERT(ggml_is_contiguous(s));
  5936. GGML_ASSERT(ggml_is_contiguous(x));
  5937. GGML_ASSERT(ggml_is_contiguous(dt));
  5938. GGML_ASSERT(ggml_is_contiguous(A));
  5939. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5940. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5941. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5942. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5943. {
  5944. const int64_t d_state = s->ne[0];
  5945. const int64_t d_inner = s->ne[1];
  5946. const int64_t n_tokens = x->ne[1];
  5947. GGML_ASSERT(x->ne[0] == d_inner);
  5948. GGML_ASSERT(A->ne[0] == d_state);
  5949. GGML_ASSERT(A->ne[1] == d_inner);
  5950. GGML_ASSERT(B->ne[0] == d_state);
  5951. GGML_ASSERT(B->ne[1] == n_tokens);
  5952. GGML_ASSERT(C->ne[0] == d_state);
  5953. GGML_ASSERT(C->ne[1] == n_tokens);
  5954. }
  5955. bool is_node = false;
  5956. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5957. GGML_ASSERT(false); // TODO: implement
  5958. is_node = true;
  5959. }
  5960. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5961. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5962. result->op = GGML_OP_SSM_SCAN;
  5963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5964. result->src[0] = s;
  5965. result->src[1] = x;
  5966. result->src[2] = dt;
  5967. result->src[3] = A;
  5968. result->src[4] = B;
  5969. result->src[5] = C;
  5970. result->src[6] = sq;
  5971. return result;
  5972. }
  5973. // ggml_win_part
  5974. struct ggml_tensor * ggml_win_part(
  5975. struct ggml_context * ctx,
  5976. struct ggml_tensor * a,
  5977. int w) {
  5978. GGML_ASSERT(a->ne[3] == 1);
  5979. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5980. bool is_node = false;
  5981. if (a->grad) {
  5982. GGML_ASSERT(false); // TODO: implement backward
  5983. is_node = true;
  5984. }
  5985. // padding
  5986. const int px = (w - a->ne[1]%w)%w;
  5987. const int py = (w - a->ne[2]%w)%w;
  5988. const int npx = (px + a->ne[1])/w;
  5989. const int npy = (py + a->ne[2])/w;
  5990. const int np = npx*npy;
  5991. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5992. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5993. int32_t params[] = { npx, npy, w };
  5994. ggml_set_op_params(result, params, sizeof(params));
  5995. result->op = GGML_OP_WIN_PART;
  5996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5997. result->src[0] = a;
  5998. return result;
  5999. }
  6000. // ggml_win_unpart
  6001. struct ggml_tensor * ggml_win_unpart(
  6002. struct ggml_context * ctx,
  6003. struct ggml_tensor * a,
  6004. int w0,
  6005. int h0,
  6006. int w) {
  6007. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6008. bool is_node = false;
  6009. if (a->grad) {
  6010. GGML_ASSERT(false); // TODO: implement backward
  6011. is_node = true;
  6012. }
  6013. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6014. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6015. int32_t params[] = { w };
  6016. ggml_set_op_params(result, params, sizeof(params));
  6017. result->op = GGML_OP_WIN_UNPART;
  6018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6019. result->src[0] = a;
  6020. return result;
  6021. }
  6022. // ggml_get_rel_pos
  6023. struct ggml_tensor * ggml_get_rel_pos(
  6024. struct ggml_context * ctx,
  6025. struct ggml_tensor * a,
  6026. int qh,
  6027. int kh) {
  6028. GGML_ASSERT(qh == kh);
  6029. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6030. bool is_node = false;
  6031. if (a->grad) {
  6032. GGML_ASSERT(false); // TODO: implement backward
  6033. is_node = true;
  6034. }
  6035. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6036. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6037. result->op = GGML_OP_GET_REL_POS;
  6038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6039. result->src[0] = a;
  6040. return result;
  6041. }
  6042. // ggml_add_rel_pos
  6043. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6044. struct ggml_context * ctx,
  6045. struct ggml_tensor * a,
  6046. struct ggml_tensor * pw,
  6047. struct ggml_tensor * ph,
  6048. bool inplace) {
  6049. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6050. GGML_ASSERT(ggml_is_contiguous(a));
  6051. GGML_ASSERT(ggml_is_contiguous(pw));
  6052. GGML_ASSERT(ggml_is_contiguous(ph));
  6053. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6054. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6055. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6056. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6057. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6058. bool is_node = false;
  6059. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6060. is_node = true;
  6061. }
  6062. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6063. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6064. result->op = GGML_OP_ADD_REL_POS;
  6065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6066. result->src[0] = a;
  6067. result->src[1] = pw;
  6068. result->src[2] = ph;
  6069. return result;
  6070. }
  6071. struct ggml_tensor * ggml_add_rel_pos(
  6072. struct ggml_context * ctx,
  6073. struct ggml_tensor * a,
  6074. struct ggml_tensor * pw,
  6075. struct ggml_tensor * ph) {
  6076. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6077. }
  6078. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6079. struct ggml_context * ctx,
  6080. struct ggml_tensor * a,
  6081. struct ggml_tensor * pw,
  6082. struct ggml_tensor * ph) {
  6083. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6084. }
  6085. // gmml_unary
  6086. static struct ggml_tensor * ggml_unary_impl(
  6087. struct ggml_context * ctx,
  6088. struct ggml_tensor * a,
  6089. enum ggml_unary_op op,
  6090. bool inplace) {
  6091. bool is_node = false;
  6092. if (!inplace && (a->grad)) {
  6093. is_node = true;
  6094. }
  6095. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6096. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6097. result->op = GGML_OP_UNARY;
  6098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6099. result->src[0] = a;
  6100. return result;
  6101. }
  6102. struct ggml_tensor * ggml_unary(
  6103. struct ggml_context * ctx,
  6104. struct ggml_tensor * a,
  6105. enum ggml_unary_op op) {
  6106. return ggml_unary_impl(ctx, a, op, false);
  6107. }
  6108. struct ggml_tensor * ggml_unary_inplace(
  6109. struct ggml_context * ctx,
  6110. struct ggml_tensor * a,
  6111. enum ggml_unary_op op) {
  6112. return ggml_unary_impl(ctx, a, op, true);
  6113. }
  6114. // ggml_map_unary
  6115. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6116. struct ggml_context * ctx,
  6117. struct ggml_tensor * a,
  6118. const ggml_unary_op_f32_t fun,
  6119. bool inplace) {
  6120. bool is_node = false;
  6121. if (!inplace && a->grad) {
  6122. is_node = true;
  6123. }
  6124. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6125. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6126. result->op = GGML_OP_MAP_UNARY;
  6127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6128. result->src[0] = a;
  6129. return result;
  6130. }
  6131. struct ggml_tensor * ggml_map_unary_f32(
  6132. struct ggml_context * ctx,
  6133. struct ggml_tensor * a,
  6134. const ggml_unary_op_f32_t fun) {
  6135. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6136. }
  6137. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6138. struct ggml_context * ctx,
  6139. struct ggml_tensor * a,
  6140. const ggml_unary_op_f32_t fun) {
  6141. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6142. }
  6143. // ggml_map_binary
  6144. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6145. struct ggml_context * ctx,
  6146. struct ggml_tensor * a,
  6147. struct ggml_tensor * b,
  6148. const ggml_binary_op_f32_t fun,
  6149. bool inplace) {
  6150. GGML_ASSERT(ggml_are_same_shape(a, b));
  6151. bool is_node = false;
  6152. if (!inplace && (a->grad || b->grad)) {
  6153. is_node = true;
  6154. }
  6155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6156. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6157. result->op = GGML_OP_MAP_BINARY;
  6158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6159. result->src[0] = a;
  6160. result->src[1] = b;
  6161. return result;
  6162. }
  6163. struct ggml_tensor * ggml_map_binary_f32(
  6164. struct ggml_context * ctx,
  6165. struct ggml_tensor * a,
  6166. struct ggml_tensor * b,
  6167. const ggml_binary_op_f32_t fun) {
  6168. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6169. }
  6170. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6171. struct ggml_context * ctx,
  6172. struct ggml_tensor * a,
  6173. struct ggml_tensor * b,
  6174. const ggml_binary_op_f32_t fun) {
  6175. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6176. }
  6177. // ggml_map_custom1_f32
  6178. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6179. struct ggml_context * ctx,
  6180. struct ggml_tensor * a,
  6181. const ggml_custom1_op_f32_t fun,
  6182. bool inplace) {
  6183. bool is_node = false;
  6184. if (!inplace && a->grad) {
  6185. is_node = true;
  6186. }
  6187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6188. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6189. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6191. result->src[0] = a;
  6192. return result;
  6193. }
  6194. struct ggml_tensor * ggml_map_custom1_f32(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * a,
  6197. const ggml_custom1_op_f32_t fun) {
  6198. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6199. }
  6200. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6201. struct ggml_context * ctx,
  6202. struct ggml_tensor * a,
  6203. const ggml_custom1_op_f32_t fun) {
  6204. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6205. }
  6206. // ggml_map_custom2_f32
  6207. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6208. struct ggml_context * ctx,
  6209. struct ggml_tensor * a,
  6210. struct ggml_tensor * b,
  6211. const ggml_custom2_op_f32_t fun,
  6212. bool inplace) {
  6213. bool is_node = false;
  6214. if (!inplace && (a->grad || b->grad)) {
  6215. is_node = true;
  6216. }
  6217. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6218. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6219. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6221. result->src[0] = a;
  6222. result->src[1] = b;
  6223. return result;
  6224. }
  6225. struct ggml_tensor * ggml_map_custom2_f32(
  6226. struct ggml_context * ctx,
  6227. struct ggml_tensor * a,
  6228. struct ggml_tensor * b,
  6229. const ggml_custom2_op_f32_t fun) {
  6230. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6231. }
  6232. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6233. struct ggml_context * ctx,
  6234. struct ggml_tensor * a,
  6235. struct ggml_tensor * b,
  6236. const ggml_custom2_op_f32_t fun) {
  6237. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6238. }
  6239. // ggml_map_custom3_f32
  6240. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6241. struct ggml_context * ctx,
  6242. struct ggml_tensor * a,
  6243. struct ggml_tensor * b,
  6244. struct ggml_tensor * c,
  6245. const ggml_custom3_op_f32_t fun,
  6246. bool inplace) {
  6247. bool is_node = false;
  6248. if (!inplace && (a->grad || b->grad || c->grad)) {
  6249. is_node = true;
  6250. }
  6251. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6252. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6253. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6255. result->src[0] = a;
  6256. result->src[1] = b;
  6257. result->src[2] = c;
  6258. return result;
  6259. }
  6260. struct ggml_tensor * ggml_map_custom3_f32(
  6261. struct ggml_context * ctx,
  6262. struct ggml_tensor * a,
  6263. struct ggml_tensor * b,
  6264. struct ggml_tensor * c,
  6265. const ggml_custom3_op_f32_t fun) {
  6266. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6267. }
  6268. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6269. struct ggml_context * ctx,
  6270. struct ggml_tensor * a,
  6271. struct ggml_tensor * b,
  6272. struct ggml_tensor * c,
  6273. const ggml_custom3_op_f32_t fun) {
  6274. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6275. }
  6276. // ggml_map_custom1
  6277. struct ggml_map_custom1_op_params {
  6278. ggml_custom1_op_t fun;
  6279. int n_tasks;
  6280. void * userdata;
  6281. };
  6282. static struct ggml_tensor * ggml_map_custom1_impl(
  6283. struct ggml_context * ctx,
  6284. struct ggml_tensor * a,
  6285. const ggml_custom1_op_t fun,
  6286. int n_tasks,
  6287. void * userdata,
  6288. bool inplace) {
  6289. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6290. bool is_node = false;
  6291. if (!inplace && a->grad) {
  6292. is_node = true;
  6293. }
  6294. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6295. struct ggml_map_custom1_op_params params = {
  6296. /*.fun =*/ fun,
  6297. /*.n_tasks =*/ n_tasks,
  6298. /*.userdata =*/ userdata
  6299. };
  6300. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6301. result->op = GGML_OP_MAP_CUSTOM1;
  6302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6303. result->src[0] = a;
  6304. return result;
  6305. }
  6306. struct ggml_tensor * ggml_map_custom1(
  6307. struct ggml_context * ctx,
  6308. struct ggml_tensor * a,
  6309. const ggml_custom1_op_t fun,
  6310. int n_tasks,
  6311. void * userdata) {
  6312. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6313. }
  6314. struct ggml_tensor * ggml_map_custom1_inplace(
  6315. struct ggml_context * ctx,
  6316. struct ggml_tensor * a,
  6317. const ggml_custom1_op_t fun,
  6318. int n_tasks,
  6319. void * userdata) {
  6320. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6321. }
  6322. // ggml_map_custom2
  6323. struct ggml_map_custom2_op_params {
  6324. ggml_custom2_op_t fun;
  6325. int n_tasks;
  6326. void * userdata;
  6327. };
  6328. static struct ggml_tensor * ggml_map_custom2_impl(
  6329. struct ggml_context * ctx,
  6330. struct ggml_tensor * a,
  6331. struct ggml_tensor * b,
  6332. const ggml_custom2_op_t fun,
  6333. int n_tasks,
  6334. void * userdata,
  6335. bool inplace) {
  6336. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6337. bool is_node = false;
  6338. if (!inplace && (a->grad || b->grad)) {
  6339. is_node = true;
  6340. }
  6341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6342. struct ggml_map_custom2_op_params params = {
  6343. /*.fun =*/ fun,
  6344. /*.n_tasks =*/ n_tasks,
  6345. /*.userdata =*/ userdata
  6346. };
  6347. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6348. result->op = GGML_OP_MAP_CUSTOM2;
  6349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6350. result->src[0] = a;
  6351. result->src[1] = b;
  6352. return result;
  6353. }
  6354. struct ggml_tensor * ggml_map_custom2(
  6355. struct ggml_context * ctx,
  6356. struct ggml_tensor * a,
  6357. struct ggml_tensor * b,
  6358. const ggml_custom2_op_t fun,
  6359. int n_tasks,
  6360. void * userdata) {
  6361. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6362. }
  6363. struct ggml_tensor * ggml_map_custom2_inplace(
  6364. struct ggml_context * ctx,
  6365. struct ggml_tensor * a,
  6366. struct ggml_tensor * b,
  6367. const ggml_custom2_op_t fun,
  6368. int n_tasks,
  6369. void * userdata) {
  6370. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6371. }
  6372. // ggml_map_custom3
  6373. struct ggml_map_custom3_op_params {
  6374. ggml_custom3_op_t fun;
  6375. int n_tasks;
  6376. void * userdata;
  6377. };
  6378. static struct ggml_tensor * ggml_map_custom3_impl(
  6379. struct ggml_context * ctx,
  6380. struct ggml_tensor * a,
  6381. struct ggml_tensor * b,
  6382. struct ggml_tensor * c,
  6383. const ggml_custom3_op_t fun,
  6384. int n_tasks,
  6385. void * userdata,
  6386. bool inplace) {
  6387. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6388. bool is_node = false;
  6389. if (!inplace && (a->grad || b->grad || c->grad)) {
  6390. is_node = true;
  6391. }
  6392. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6393. struct ggml_map_custom3_op_params params = {
  6394. /*.fun =*/ fun,
  6395. /*.n_tasks =*/ n_tasks,
  6396. /*.userdata =*/ userdata
  6397. };
  6398. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6399. result->op = GGML_OP_MAP_CUSTOM3;
  6400. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6401. result->src[0] = a;
  6402. result->src[1] = b;
  6403. result->src[2] = c;
  6404. return result;
  6405. }
  6406. struct ggml_tensor * ggml_map_custom3(
  6407. struct ggml_context * ctx,
  6408. struct ggml_tensor * a,
  6409. struct ggml_tensor * b,
  6410. struct ggml_tensor * c,
  6411. const ggml_custom3_op_t fun,
  6412. int n_tasks,
  6413. void * userdata) {
  6414. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6415. }
  6416. struct ggml_tensor * ggml_map_custom3_inplace(
  6417. struct ggml_context * ctx,
  6418. struct ggml_tensor * a,
  6419. struct ggml_tensor * b,
  6420. struct ggml_tensor * c,
  6421. const ggml_custom3_op_t fun,
  6422. int n_tasks,
  6423. void * userdata) {
  6424. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6425. }
  6426. // ggml_cross_entropy_loss
  6427. struct ggml_tensor * ggml_cross_entropy_loss(
  6428. struct ggml_context * ctx,
  6429. struct ggml_tensor * a,
  6430. struct ggml_tensor * b) {
  6431. GGML_ASSERT(ggml_are_same_shape(a, b));
  6432. bool is_node = false;
  6433. if (a->grad || b->grad) {
  6434. is_node = true;
  6435. }
  6436. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6437. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6439. result->src[0] = a;
  6440. result->src[1] = b;
  6441. return result;
  6442. }
  6443. // ggml_cross_entropy_loss_back
  6444. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6445. struct ggml_context * ctx,
  6446. struct ggml_tensor * a,
  6447. struct ggml_tensor * b,
  6448. struct ggml_tensor * c) {
  6449. GGML_ASSERT(ggml_are_same_shape(a, b));
  6450. GGML_ASSERT(ggml_is_scalar(c));
  6451. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6452. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6453. result->grad = NULL;
  6454. result->src[0] = a;
  6455. result->src[1] = b;
  6456. result->src[2] = c;
  6457. return result;
  6458. }
  6459. ////////////////////////////////////////////////////////////////////////////////
  6460. void ggml_set_param(
  6461. struct ggml_context * ctx,
  6462. struct ggml_tensor * tensor) {
  6463. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6464. GGML_ASSERT(tensor->grad == NULL);
  6465. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6466. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6467. }
  6468. // ggml_compute_forward_dup
  6469. static void ggml_compute_forward_dup_same_cont(
  6470. const struct ggml_compute_params * params,
  6471. struct ggml_tensor * dst) {
  6472. const struct ggml_tensor * src0 = dst->src[0];
  6473. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6474. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6475. GGML_ASSERT(src0->type == dst->type);
  6476. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6477. return;
  6478. }
  6479. const size_t nb00 = src0->nb[0];
  6480. const size_t nb0 = dst->nb[0];
  6481. const int ith = params->ith; // thread index
  6482. const int nth = params->nth; // number of threads
  6483. // parallelize by elements
  6484. const int ne = ggml_nelements(dst);
  6485. const int dr = (ne + nth - 1) / nth;
  6486. const int ie0 = dr * ith;
  6487. const int ie1 = MIN(ie0 + dr, ne);
  6488. if (ie0 < ie1) {
  6489. memcpy(
  6490. ((char *) dst->data + ie0*nb0),
  6491. ((char *) src0->data + ie0*nb00),
  6492. (ie1 - ie0) * ggml_type_size(src0->type));
  6493. }
  6494. }
  6495. static void ggml_compute_forward_dup_f16(
  6496. const struct ggml_compute_params * params,
  6497. struct ggml_tensor * dst) {
  6498. const struct ggml_tensor * src0 = dst->src[0];
  6499. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6500. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6501. return;
  6502. }
  6503. GGML_TENSOR_UNARY_OP_LOCALS
  6504. const int ith = params->ith; // thread index
  6505. const int nth = params->nth; // number of threads
  6506. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6507. ggml_compute_forward_dup_same_cont(params, dst);
  6508. return;
  6509. }
  6510. // parallelize by rows
  6511. const int nr = ne01;
  6512. // number of rows per thread
  6513. const int dr = (nr + nth - 1) / nth;
  6514. // row range for this thread
  6515. const int ir0 = dr * ith;
  6516. const int ir1 = MIN(ir0 + dr, nr);
  6517. if (src0->type == dst->type &&
  6518. ne00 == ne0 &&
  6519. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6520. // copy by rows
  6521. const size_t rs = ne00*nb00;
  6522. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6523. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6524. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6525. memcpy(
  6526. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6527. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6528. rs);
  6529. }
  6530. }
  6531. }
  6532. return;
  6533. }
  6534. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6535. if (ggml_is_contiguous(dst)) {
  6536. if (nb00 == sizeof(ggml_fp16_t)) {
  6537. if (dst->type == GGML_TYPE_F16) {
  6538. size_t id = 0;
  6539. const size_t rs = ne00 * nb00;
  6540. char * dst_ptr = (char *) dst->data;
  6541. for (int i03 = 0; i03 < ne03; i03++) {
  6542. for (int i02 = 0; i02 < ne02; i02++) {
  6543. id += rs * ir0;
  6544. for (int i01 = ir0; i01 < ir1; i01++) {
  6545. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6546. memcpy(dst_ptr + id, src0_ptr, rs);
  6547. id += rs;
  6548. }
  6549. id += rs * (ne01 - ir1);
  6550. }
  6551. }
  6552. } else if (dst->type == GGML_TYPE_F32) {
  6553. size_t id = 0;
  6554. float * dst_ptr = (float *) dst->data;
  6555. for (int i03 = 0; i03 < ne03; i03++) {
  6556. for (int i02 = 0; i02 < ne02; i02++) {
  6557. id += ne00 * ir0;
  6558. for (int i01 = ir0; i01 < ir1; i01++) {
  6559. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6560. for (int i00 = 0; i00 < ne00; i00++) {
  6561. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6562. id++;
  6563. }
  6564. }
  6565. id += ne00 * (ne01 - ir1);
  6566. }
  6567. }
  6568. } else if (type_traits[dst->type].from_float) {
  6569. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6570. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6571. size_t id = 0;
  6572. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6573. char * dst_ptr = (char *) dst->data;
  6574. for (int i03 = 0; i03 < ne03; i03++) {
  6575. for (int i02 = 0; i02 < ne02; i02++) {
  6576. id += rs * ir0;
  6577. for (int i01 = ir0; i01 < ir1; i01++) {
  6578. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6579. for (int i00 = 0; i00 < ne00; i00++) {
  6580. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6581. }
  6582. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6583. id += rs;
  6584. }
  6585. id += rs * (ne01 - ir1);
  6586. }
  6587. }
  6588. } else {
  6589. GGML_ASSERT(false); // TODO: implement
  6590. }
  6591. } else {
  6592. //printf("%s: this is not optimal - fix me\n", __func__);
  6593. if (dst->type == GGML_TYPE_F32) {
  6594. size_t id = 0;
  6595. float * dst_ptr = (float *) dst->data;
  6596. for (int i03 = 0; i03 < ne03; i03++) {
  6597. for (int i02 = 0; i02 < ne02; i02++) {
  6598. id += ne00 * ir0;
  6599. for (int i01 = ir0; i01 < ir1; i01++) {
  6600. for (int i00 = 0; i00 < ne00; i00++) {
  6601. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6602. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6603. id++;
  6604. }
  6605. }
  6606. id += ne00 * (ne01 - ir1);
  6607. }
  6608. }
  6609. } else if (dst->type == GGML_TYPE_F16) {
  6610. size_t id = 0;
  6611. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6612. for (int i03 = 0; i03 < ne03; i03++) {
  6613. for (int i02 = 0; i02 < ne02; i02++) {
  6614. id += ne00 * ir0;
  6615. for (int i01 = ir0; i01 < ir1; i01++) {
  6616. for (int i00 = 0; i00 < ne00; i00++) {
  6617. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6618. dst_ptr[id] = *src0_ptr;
  6619. id++;
  6620. }
  6621. }
  6622. id += ne00 * (ne01 - ir1);
  6623. }
  6624. }
  6625. } else {
  6626. GGML_ASSERT(false); // TODO: implement
  6627. }
  6628. }
  6629. return;
  6630. }
  6631. // dst counters
  6632. int64_t i10 = 0;
  6633. int64_t i11 = 0;
  6634. int64_t i12 = 0;
  6635. int64_t i13 = 0;
  6636. if (dst->type == GGML_TYPE_F16) {
  6637. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6638. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6639. i10 += ne00 * ir0;
  6640. while (i10 >= ne0) {
  6641. i10 -= ne0;
  6642. if (++i11 == ne1) {
  6643. i11 = 0;
  6644. if (++i12 == ne2) {
  6645. i12 = 0;
  6646. if (++i13 == ne3) {
  6647. i13 = 0;
  6648. }
  6649. }
  6650. }
  6651. }
  6652. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6653. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6654. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6655. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6656. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6657. if (++i10 == ne00) {
  6658. i10 = 0;
  6659. if (++i11 == ne01) {
  6660. i11 = 0;
  6661. if (++i12 == ne02) {
  6662. i12 = 0;
  6663. if (++i13 == ne03) {
  6664. i13 = 0;
  6665. }
  6666. }
  6667. }
  6668. }
  6669. }
  6670. }
  6671. i10 += ne00 * (ne01 - ir1);
  6672. while (i10 >= ne0) {
  6673. i10 -= ne0;
  6674. if (++i11 == ne1) {
  6675. i11 = 0;
  6676. if (++i12 == ne2) {
  6677. i12 = 0;
  6678. if (++i13 == ne3) {
  6679. i13 = 0;
  6680. }
  6681. }
  6682. }
  6683. }
  6684. }
  6685. }
  6686. } else if (dst->type == GGML_TYPE_F32) {
  6687. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6688. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6689. i10 += ne00 * ir0;
  6690. while (i10 >= ne0) {
  6691. i10 -= ne0;
  6692. if (++i11 == ne1) {
  6693. i11 = 0;
  6694. if (++i12 == ne2) {
  6695. i12 = 0;
  6696. if (++i13 == ne3) {
  6697. i13 = 0;
  6698. }
  6699. }
  6700. }
  6701. }
  6702. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6703. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6704. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6705. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6706. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6707. if (++i10 == ne0) {
  6708. i10 = 0;
  6709. if (++i11 == ne1) {
  6710. i11 = 0;
  6711. if (++i12 == ne2) {
  6712. i12 = 0;
  6713. if (++i13 == ne3) {
  6714. i13 = 0;
  6715. }
  6716. }
  6717. }
  6718. }
  6719. }
  6720. }
  6721. i10 += ne00 * (ne01 - ir1);
  6722. while (i10 >= ne0) {
  6723. i10 -= ne0;
  6724. if (++i11 == ne1) {
  6725. i11 = 0;
  6726. if (++i12 == ne2) {
  6727. i12 = 0;
  6728. if (++i13 == ne3) {
  6729. i13 = 0;
  6730. }
  6731. }
  6732. }
  6733. }
  6734. }
  6735. }
  6736. } else {
  6737. GGML_ASSERT(false); // TODO: implement
  6738. }
  6739. }
  6740. static void ggml_compute_forward_dup_bf16(
  6741. const struct ggml_compute_params * params,
  6742. struct ggml_tensor * dst) {
  6743. const struct ggml_tensor * src0 = dst->src[0];
  6744. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6745. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6746. return;
  6747. }
  6748. GGML_TENSOR_UNARY_OP_LOCALS
  6749. const int ith = params->ith; // thread index
  6750. const int nth = params->nth; // number of threads
  6751. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6752. ggml_compute_forward_dup_same_cont(params, dst);
  6753. return;
  6754. }
  6755. // parallelize by rows
  6756. const int nr = ne01;
  6757. // number of rows per thread
  6758. const int dr = (nr + nth - 1) / nth;
  6759. // row range for this thread
  6760. const int ir0 = dr * ith;
  6761. const int ir1 = MIN(ir0 + dr, nr);
  6762. if (src0->type == dst->type &&
  6763. ne00 == ne0 &&
  6764. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6765. // copy by rows
  6766. const size_t rs = ne00*nb00;
  6767. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6768. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6769. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6770. memcpy(
  6771. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6772. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6773. rs);
  6774. }
  6775. }
  6776. }
  6777. return;
  6778. }
  6779. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6780. if (ggml_is_contiguous(dst)) {
  6781. if (nb00 == sizeof(ggml_bf16_t)) {
  6782. if (dst->type == GGML_TYPE_BF16) {
  6783. size_t id = 0;
  6784. const size_t rs = ne00 * nb00;
  6785. char * dst_ptr = (char *) dst->data;
  6786. for (int i03 = 0; i03 < ne03; i03++) {
  6787. for (int i02 = 0; i02 < ne02; i02++) {
  6788. id += rs * ir0;
  6789. for (int i01 = ir0; i01 < ir1; i01++) {
  6790. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6791. memcpy(dst_ptr + id, src0_ptr, rs);
  6792. id += rs;
  6793. }
  6794. id += rs * (ne01 - ir1);
  6795. }
  6796. }
  6797. } else if (dst->type == GGML_TYPE_F16) {
  6798. size_t id = 0;
  6799. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6800. for (int i03 = 0; i03 < ne03; i03++) {
  6801. for (int i02 = 0; i02 < ne02; i02++) {
  6802. id += ne00 * ir0;
  6803. for (int i01 = ir0; i01 < ir1; i01++) {
  6804. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6805. for (int i00 = 0; i00 < ne00; i00++) {
  6806. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6807. id++;
  6808. }
  6809. }
  6810. id += ne00 * (ne01 - ir1);
  6811. }
  6812. }
  6813. } else if (dst->type == GGML_TYPE_F32) {
  6814. size_t id = 0;
  6815. float * dst_ptr = (float *) dst->data;
  6816. for (int i03 = 0; i03 < ne03; i03++) {
  6817. for (int i02 = 0; i02 < ne02; i02++) {
  6818. id += ne00 * ir0;
  6819. for (int i01 = ir0; i01 < ir1; i01++) {
  6820. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6821. for (int i00 = 0; i00 < ne00; i00++) {
  6822. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6823. id++;
  6824. }
  6825. }
  6826. id += ne00 * (ne01 - ir1);
  6827. }
  6828. }
  6829. } else if (type_traits[dst->type].from_float) {
  6830. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6831. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6832. size_t id = 0;
  6833. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6834. char * dst_ptr = (char *) dst->data;
  6835. for (int i03 = 0; i03 < ne03; i03++) {
  6836. for (int i02 = 0; i02 < ne02; i02++) {
  6837. id += rs * ir0;
  6838. for (int i01 = ir0; i01 < ir1; i01++) {
  6839. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6840. for (int i00 = 0; i00 < ne00; i00++) {
  6841. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6842. }
  6843. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6844. id += rs;
  6845. }
  6846. id += rs * (ne01 - ir1);
  6847. }
  6848. }
  6849. } else {
  6850. GGML_ASSERT(false); // TODO: implement
  6851. }
  6852. } else {
  6853. //printf("%s: this is not optimal - fix me\n", __func__);
  6854. if (dst->type == GGML_TYPE_F32) {
  6855. size_t id = 0;
  6856. float * dst_ptr = (float *) dst->data;
  6857. for (int i03 = 0; i03 < ne03; i03++) {
  6858. for (int i02 = 0; i02 < ne02; i02++) {
  6859. id += ne00 * ir0;
  6860. for (int i01 = ir0; i01 < ir1; i01++) {
  6861. for (int i00 = 0; i00 < ne00; i00++) {
  6862. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6863. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6864. id++;
  6865. }
  6866. }
  6867. id += ne00 * (ne01 - ir1);
  6868. }
  6869. }
  6870. } else if (dst->type == GGML_TYPE_BF16) {
  6871. size_t id = 0;
  6872. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6873. for (int i03 = 0; i03 < ne03; i03++) {
  6874. for (int i02 = 0; i02 < ne02; i02++) {
  6875. id += ne00 * ir0;
  6876. for (int i01 = ir0; i01 < ir1; i01++) {
  6877. for (int i00 = 0; i00 < ne00; i00++) {
  6878. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6879. dst_ptr[id] = *src0_ptr;
  6880. id++;
  6881. }
  6882. }
  6883. id += ne00 * (ne01 - ir1);
  6884. }
  6885. }
  6886. } else if (dst->type == GGML_TYPE_F16) {
  6887. size_t id = 0;
  6888. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6889. for (int i03 = 0; i03 < ne03; i03++) {
  6890. for (int i02 = 0; i02 < ne02; i02++) {
  6891. id += ne00 * ir0;
  6892. for (int i01 = ir0; i01 < ir1; i01++) {
  6893. for (int i00 = 0; i00 < ne00; i00++) {
  6894. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6895. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6896. id++;
  6897. }
  6898. }
  6899. id += ne00 * (ne01 - ir1);
  6900. }
  6901. }
  6902. } else {
  6903. GGML_ASSERT(false); // TODO: implement
  6904. }
  6905. }
  6906. return;
  6907. }
  6908. // dst counters
  6909. int64_t i10 = 0;
  6910. int64_t i11 = 0;
  6911. int64_t i12 = 0;
  6912. int64_t i13 = 0;
  6913. if (dst->type == GGML_TYPE_BF16) {
  6914. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6915. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6916. i10 += ne00 * ir0;
  6917. while (i10 >= ne0) {
  6918. i10 -= ne0;
  6919. if (++i11 == ne1) {
  6920. i11 = 0;
  6921. if (++i12 == ne2) {
  6922. i12 = 0;
  6923. if (++i13 == ne3) {
  6924. i13 = 0;
  6925. }
  6926. }
  6927. }
  6928. }
  6929. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6930. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6931. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6932. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6933. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6934. if (++i10 == ne00) {
  6935. i10 = 0;
  6936. if (++i11 == ne01) {
  6937. i11 = 0;
  6938. if (++i12 == ne02) {
  6939. i12 = 0;
  6940. if (++i13 == ne03) {
  6941. i13 = 0;
  6942. }
  6943. }
  6944. }
  6945. }
  6946. }
  6947. }
  6948. i10 += ne00 * (ne01 - ir1);
  6949. while (i10 >= ne0) {
  6950. i10 -= ne0;
  6951. if (++i11 == ne1) {
  6952. i11 = 0;
  6953. if (++i12 == ne2) {
  6954. i12 = 0;
  6955. if (++i13 == ne3) {
  6956. i13 = 0;
  6957. }
  6958. }
  6959. }
  6960. }
  6961. }
  6962. }
  6963. } else if (dst->type == GGML_TYPE_F16) {
  6964. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6965. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6966. i10 += ne00 * ir0;
  6967. while (i10 >= ne0) {
  6968. i10 -= ne0;
  6969. if (++i11 == ne1) {
  6970. i11 = 0;
  6971. if (++i12 == ne2) {
  6972. i12 = 0;
  6973. if (++i13 == ne3) {
  6974. i13 = 0;
  6975. }
  6976. }
  6977. }
  6978. }
  6979. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6980. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6981. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6982. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6983. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6984. if (++i10 == ne0) {
  6985. i10 = 0;
  6986. if (++i11 == ne1) {
  6987. i11 = 0;
  6988. if (++i12 == ne2) {
  6989. i12 = 0;
  6990. if (++i13 == ne3) {
  6991. i13 = 0;
  6992. }
  6993. }
  6994. }
  6995. }
  6996. }
  6997. }
  6998. i10 += ne00 * (ne01 - ir1);
  6999. while (i10 >= ne0) {
  7000. i10 -= ne0;
  7001. if (++i11 == ne1) {
  7002. i11 = 0;
  7003. if (++i12 == ne2) {
  7004. i12 = 0;
  7005. if (++i13 == ne3) {
  7006. i13 = 0;
  7007. }
  7008. }
  7009. }
  7010. }
  7011. }
  7012. }
  7013. } else if (dst->type == GGML_TYPE_F32) {
  7014. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7015. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7016. i10 += ne00 * ir0;
  7017. while (i10 >= ne0) {
  7018. i10 -= ne0;
  7019. if (++i11 == ne1) {
  7020. i11 = 0;
  7021. if (++i12 == ne2) {
  7022. i12 = 0;
  7023. if (++i13 == ne3) {
  7024. i13 = 0;
  7025. }
  7026. }
  7027. }
  7028. }
  7029. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7030. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7031. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7032. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7033. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7034. if (++i10 == ne0) {
  7035. i10 = 0;
  7036. if (++i11 == ne1) {
  7037. i11 = 0;
  7038. if (++i12 == ne2) {
  7039. i12 = 0;
  7040. if (++i13 == ne3) {
  7041. i13 = 0;
  7042. }
  7043. }
  7044. }
  7045. }
  7046. }
  7047. }
  7048. i10 += ne00 * (ne01 - ir1);
  7049. while (i10 >= ne0) {
  7050. i10 -= ne0;
  7051. if (++i11 == ne1) {
  7052. i11 = 0;
  7053. if (++i12 == ne2) {
  7054. i12 = 0;
  7055. if (++i13 == ne3) {
  7056. i13 = 0;
  7057. }
  7058. }
  7059. }
  7060. }
  7061. }
  7062. }
  7063. } else {
  7064. GGML_ASSERT(false); // TODO: implement
  7065. }
  7066. }
  7067. static void ggml_compute_forward_dup_f32(
  7068. const struct ggml_compute_params * params,
  7069. struct ggml_tensor * dst) {
  7070. const struct ggml_tensor * src0 = dst->src[0];
  7071. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7072. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7073. return;
  7074. }
  7075. GGML_TENSOR_UNARY_OP_LOCALS
  7076. const int ith = params->ith; // thread index
  7077. const int nth = params->nth; // number of threads
  7078. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7079. ggml_compute_forward_dup_same_cont(params, dst);
  7080. return;
  7081. }
  7082. // parallelize by rows
  7083. const int nr = ne01;
  7084. // number of rows per thread
  7085. const int dr = (nr + nth - 1) / nth;
  7086. // row range for this thread
  7087. const int ir0 = dr * ith;
  7088. const int ir1 = MIN(ir0 + dr, nr);
  7089. if (src0->type == dst->type &&
  7090. ne00 == ne0 &&
  7091. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7092. // copy by rows
  7093. const size_t rs = ne00*nb00;
  7094. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7095. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7096. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7097. memcpy(
  7098. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7099. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7100. rs);
  7101. }
  7102. }
  7103. }
  7104. return;
  7105. }
  7106. if (ggml_is_contiguous(dst)) {
  7107. // TODO: simplify
  7108. if (nb00 == sizeof(float)) {
  7109. if (dst->type == GGML_TYPE_F32) {
  7110. size_t id = 0;
  7111. const size_t rs = ne00 * nb00;
  7112. char * dst_ptr = (char *) dst->data;
  7113. for (int i03 = 0; i03 < ne03; i03++) {
  7114. for (int i02 = 0; i02 < ne02; i02++) {
  7115. id += rs * ir0;
  7116. for (int i01 = ir0; i01 < ir1; i01++) {
  7117. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7118. memcpy(dst_ptr + id, src0_ptr, rs);
  7119. id += rs;
  7120. }
  7121. id += rs * (ne01 - ir1);
  7122. }
  7123. }
  7124. } else if (type_traits[dst->type].from_float) {
  7125. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7126. size_t id = 0;
  7127. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7128. char * dst_ptr = (char *) dst->data;
  7129. for (int i03 = 0; i03 < ne03; i03++) {
  7130. for (int i02 = 0; i02 < ne02; i02++) {
  7131. id += rs * ir0;
  7132. for (int i01 = ir0; i01 < ir1; i01++) {
  7133. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7134. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7135. id += rs;
  7136. }
  7137. id += rs * (ne01 - ir1);
  7138. }
  7139. }
  7140. } else {
  7141. GGML_ASSERT(false); // TODO: implement
  7142. }
  7143. } else {
  7144. //printf("%s: this is not optimal - fix me\n", __func__);
  7145. if (dst->type == GGML_TYPE_F32) {
  7146. size_t id = 0;
  7147. float * dst_ptr = (float *) dst->data;
  7148. for (int i03 = 0; i03 < ne03; i03++) {
  7149. for (int i02 = 0; i02 < ne02; i02++) {
  7150. id += ne00 * ir0;
  7151. for (int i01 = ir0; i01 < ir1; i01++) {
  7152. for (int i00 = 0; i00 < ne00; i00++) {
  7153. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7154. dst_ptr[id] = *src0_ptr;
  7155. id++;
  7156. }
  7157. }
  7158. id += ne00 * (ne01 - ir1);
  7159. }
  7160. }
  7161. } else if (dst->type == GGML_TYPE_F16) {
  7162. size_t id = 0;
  7163. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7164. for (int i03 = 0; i03 < ne03; i03++) {
  7165. for (int i02 = 0; i02 < ne02; i02++) {
  7166. id += ne00 * ir0;
  7167. for (int i01 = ir0; i01 < ir1; i01++) {
  7168. for (int i00 = 0; i00 < ne00; i00++) {
  7169. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7170. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7171. id++;
  7172. }
  7173. }
  7174. id += ne00 * (ne01 - ir1);
  7175. }
  7176. }
  7177. } else if (dst->type == GGML_TYPE_BF16) {
  7178. size_t id = 0;
  7179. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7180. for (int i03 = 0; i03 < ne03; i03++) {
  7181. for (int i02 = 0; i02 < ne02; i02++) {
  7182. id += ne00 * ir0;
  7183. for (int i01 = ir0; i01 < ir1; i01++) {
  7184. for (int i00 = 0; i00 < ne00; i00++) {
  7185. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7186. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7187. id++;
  7188. }
  7189. }
  7190. id += ne00 * (ne01 - ir1);
  7191. }
  7192. }
  7193. } else {
  7194. GGML_ASSERT(false); // TODO: implement
  7195. }
  7196. }
  7197. return;
  7198. }
  7199. // dst counters
  7200. int64_t i10 = 0;
  7201. int64_t i11 = 0;
  7202. int64_t i12 = 0;
  7203. int64_t i13 = 0;
  7204. if (dst->type == GGML_TYPE_F32) {
  7205. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7206. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7207. i10 += ne00 * ir0;
  7208. while (i10 >= ne0) {
  7209. i10 -= ne0;
  7210. if (++i11 == ne1) {
  7211. i11 = 0;
  7212. if (++i12 == ne2) {
  7213. i12 = 0;
  7214. if (++i13 == ne3) {
  7215. i13 = 0;
  7216. }
  7217. }
  7218. }
  7219. }
  7220. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7221. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7222. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7223. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7224. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7225. if (++i10 == ne0) {
  7226. i10 = 0;
  7227. if (++i11 == ne1) {
  7228. i11 = 0;
  7229. if (++i12 == ne2) {
  7230. i12 = 0;
  7231. if (++i13 == ne3) {
  7232. i13 = 0;
  7233. }
  7234. }
  7235. }
  7236. }
  7237. }
  7238. }
  7239. i10 += ne00 * (ne01 - ir1);
  7240. while (i10 >= ne0) {
  7241. i10 -= ne0;
  7242. if (++i11 == ne1) {
  7243. i11 = 0;
  7244. if (++i12 == ne2) {
  7245. i12 = 0;
  7246. if (++i13 == ne3) {
  7247. i13 = 0;
  7248. }
  7249. }
  7250. }
  7251. }
  7252. }
  7253. }
  7254. } else if (dst->type == GGML_TYPE_F16) {
  7255. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7256. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7257. i10 += ne00 * ir0;
  7258. while (i10 >= ne0) {
  7259. i10 -= ne0;
  7260. if (++i11 == ne1) {
  7261. i11 = 0;
  7262. if (++i12 == ne2) {
  7263. i12 = 0;
  7264. if (++i13 == ne3) {
  7265. i13 = 0;
  7266. }
  7267. }
  7268. }
  7269. }
  7270. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7271. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7272. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7273. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7274. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7275. if (++i10 == ne0) {
  7276. i10 = 0;
  7277. if (++i11 == ne1) {
  7278. i11 = 0;
  7279. if (++i12 == ne2) {
  7280. i12 = 0;
  7281. if (++i13 == ne3) {
  7282. i13 = 0;
  7283. }
  7284. }
  7285. }
  7286. }
  7287. }
  7288. }
  7289. i10 += ne00 * (ne01 - ir1);
  7290. while (i10 >= ne0) {
  7291. i10 -= ne0;
  7292. if (++i11 == ne1) {
  7293. i11 = 0;
  7294. if (++i12 == ne2) {
  7295. i12 = 0;
  7296. if (++i13 == ne3) {
  7297. i13 = 0;
  7298. }
  7299. }
  7300. }
  7301. }
  7302. }
  7303. }
  7304. } else if (dst->type == GGML_TYPE_BF16) {
  7305. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7306. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7307. i10 += ne00 * ir0;
  7308. while (i10 >= ne0) {
  7309. i10 -= ne0;
  7310. if (++i11 == ne1) {
  7311. i11 = 0;
  7312. if (++i12 == ne2) {
  7313. i12 = 0;
  7314. if (++i13 == ne3) {
  7315. i13 = 0;
  7316. }
  7317. }
  7318. }
  7319. }
  7320. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7321. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7322. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7323. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7324. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7325. if (++i10 == ne0) {
  7326. i10 = 0;
  7327. if (++i11 == ne1) {
  7328. i11 = 0;
  7329. if (++i12 == ne2) {
  7330. i12 = 0;
  7331. if (++i13 == ne3) {
  7332. i13 = 0;
  7333. }
  7334. }
  7335. }
  7336. }
  7337. }
  7338. }
  7339. i10 += ne00 * (ne01 - ir1);
  7340. while (i10 >= ne0) {
  7341. i10 -= ne0;
  7342. if (++i11 == ne1) {
  7343. i11 = 0;
  7344. if (++i12 == ne2) {
  7345. i12 = 0;
  7346. if (++i13 == ne3) {
  7347. i13 = 0;
  7348. }
  7349. }
  7350. }
  7351. }
  7352. }
  7353. }
  7354. } else {
  7355. GGML_ASSERT(false); // TODO: implement
  7356. }
  7357. }
  7358. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7359. static void ggml_compute_forward_dup_bytes(
  7360. const struct ggml_compute_params * params,
  7361. struct ggml_tensor * dst) {
  7362. const struct ggml_tensor * src0 = dst->src[0];
  7363. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7364. GGML_ASSERT(src0->type == dst->type);
  7365. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7366. return;
  7367. }
  7368. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7369. ggml_compute_forward_dup_same_cont(params, dst);
  7370. return;
  7371. }
  7372. GGML_TENSOR_UNARY_OP_LOCALS;
  7373. const size_t type_size = ggml_type_size(src0->type);
  7374. const int ith = params->ith; // thread index
  7375. const int nth = params->nth; // number of threads
  7376. // parallelize by rows
  7377. const int nr = ne01;
  7378. // number of rows per thread
  7379. const int dr = (nr + nth - 1) / nth;
  7380. // row range for this thread
  7381. const int ir0 = dr * ith;
  7382. const int ir1 = MIN(ir0 + dr, nr);
  7383. if (src0->type == dst->type &&
  7384. ne00 == ne0 &&
  7385. nb00 == type_size && nb0 == type_size) {
  7386. // copy by rows
  7387. const size_t rs = ne00 * type_size;
  7388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7390. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7391. memcpy(
  7392. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7393. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7394. rs);
  7395. }
  7396. }
  7397. }
  7398. return;
  7399. }
  7400. if (ggml_is_contiguous(dst)) {
  7401. size_t id = 0;
  7402. char * dst_ptr = (char *) dst->data;
  7403. const size_t rs = ne00 * type_size;
  7404. if (nb00 == type_size) {
  7405. // src0 is contigous on first dimension, copy by rows
  7406. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7408. id += rs * ir0;
  7409. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7410. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7411. memcpy(dst_ptr + id, src0_ptr, rs);
  7412. id += rs;
  7413. }
  7414. id += rs * (ne01 - ir1);
  7415. }
  7416. }
  7417. } else {
  7418. //printf("%s: this is not optimal - fix me\n", __func__);
  7419. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7420. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7421. id += rs * ir0;
  7422. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7423. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7424. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7425. memcpy(dst_ptr + id, src0_ptr, type_size);
  7426. id += type_size;
  7427. }
  7428. }
  7429. id += rs * (ne01 - ir1);
  7430. }
  7431. }
  7432. }
  7433. return;
  7434. }
  7435. // dst counters
  7436. int64_t i10 = 0;
  7437. int64_t i11 = 0;
  7438. int64_t i12 = 0;
  7439. int64_t i13 = 0;
  7440. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7441. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7442. i10 += ne00 * ir0;
  7443. while (i10 >= ne0) {
  7444. i10 -= ne0;
  7445. if (++i11 == ne1) {
  7446. i11 = 0;
  7447. if (++i12 == ne2) {
  7448. i12 = 0;
  7449. if (++i13 == ne3) {
  7450. i13 = 0;
  7451. }
  7452. }
  7453. }
  7454. }
  7455. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7456. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7457. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7458. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7459. memcpy(dst_ptr, src0_ptr, type_size);
  7460. if (++i10 == ne0) {
  7461. i10 = 0;
  7462. if (++i11 == ne1) {
  7463. i11 = 0;
  7464. if (++i12 == ne2) {
  7465. i12 = 0;
  7466. if (++i13 == ne3) {
  7467. i13 = 0;
  7468. }
  7469. }
  7470. }
  7471. }
  7472. }
  7473. }
  7474. i10 += ne00 * (ne01 - ir1);
  7475. while (i10 >= ne0) {
  7476. i10 -= ne0;
  7477. if (++i11 == ne1) {
  7478. i11 = 0;
  7479. if (++i12 == ne2) {
  7480. i12 = 0;
  7481. if (++i13 == ne3) {
  7482. i13 = 0;
  7483. }
  7484. }
  7485. }
  7486. }
  7487. }
  7488. }
  7489. }
  7490. static void ggml_compute_forward_dup(
  7491. const struct ggml_compute_params * params,
  7492. struct ggml_tensor * dst) {
  7493. const struct ggml_tensor * src0 = dst->src[0];
  7494. if (src0->type == dst->type) {
  7495. ggml_compute_forward_dup_bytes(params, dst);
  7496. return;
  7497. }
  7498. switch (src0->type) {
  7499. case GGML_TYPE_F16:
  7500. {
  7501. ggml_compute_forward_dup_f16(params, dst);
  7502. } break;
  7503. case GGML_TYPE_BF16:
  7504. {
  7505. ggml_compute_forward_dup_bf16(params, dst);
  7506. } break;
  7507. case GGML_TYPE_F32:
  7508. {
  7509. ggml_compute_forward_dup_f32(params, dst);
  7510. } break;
  7511. default:
  7512. {
  7513. GGML_ASSERT(false);
  7514. } break;
  7515. }
  7516. }
  7517. // ggml_compute_forward_add
  7518. static void ggml_compute_forward_add_f32(
  7519. const struct ggml_compute_params * params,
  7520. struct ggml_tensor * dst) {
  7521. const struct ggml_tensor * src0 = dst->src[0];
  7522. const struct ggml_tensor * src1 = dst->src[1];
  7523. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7524. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7525. return;
  7526. }
  7527. const int ith = params->ith;
  7528. const int nth = params->nth;
  7529. #ifdef GGML_USE_CLBLAST
  7530. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7531. // TODO: OpenCL kernel support full broadcast
  7532. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7533. if (ith == 0) {
  7534. ggml_cl_add(src0, src1, dst);
  7535. }
  7536. return;
  7537. }
  7538. #endif
  7539. const int nr = ggml_nrows(src0);
  7540. GGML_TENSOR_BINARY_OP_LOCALS
  7541. GGML_ASSERT( nb0 == sizeof(float));
  7542. GGML_ASSERT(nb00 == sizeof(float));
  7543. // rows per thread
  7544. const int dr = (nr + nth - 1)/nth;
  7545. // row range for this thread
  7546. const int ir0 = dr*ith;
  7547. const int ir1 = MIN(ir0 + dr, nr);
  7548. if (nb10 == sizeof(float)) {
  7549. for (int ir = ir0; ir < ir1; ++ir) {
  7550. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7551. const int64_t i03 = ir/(ne02*ne01);
  7552. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7553. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7554. const int64_t i13 = i03 % ne13;
  7555. const int64_t i12 = i02 % ne12;
  7556. const int64_t i11 = i01 % ne11;
  7557. const int64_t nr0 = ne00 / ne10;
  7558. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7559. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7560. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7561. for (int64_t r = 0; r < nr0; ++r) {
  7562. #ifdef GGML_USE_ACCELERATE
  7563. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7564. #else
  7565. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7566. #endif
  7567. }
  7568. }
  7569. } else {
  7570. // src1 is not contiguous
  7571. for (int ir = ir0; ir < ir1; ++ir) {
  7572. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7573. const int64_t i03 = ir/(ne02*ne01);
  7574. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7575. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7576. const int64_t i13 = i03 % ne13;
  7577. const int64_t i12 = i02 % ne12;
  7578. const int64_t i11 = i01 % ne11;
  7579. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7580. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7581. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7582. const int64_t i10 = i0 % ne10;
  7583. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7584. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7585. }
  7586. }
  7587. }
  7588. }
  7589. static void ggml_compute_forward_add_f16_f32(
  7590. const struct ggml_compute_params * params,
  7591. struct ggml_tensor * dst) {
  7592. const struct ggml_tensor * src0 = dst->src[0];
  7593. const struct ggml_tensor * src1 = dst->src[1];
  7594. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7595. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7596. return;
  7597. }
  7598. const int ith = params->ith;
  7599. const int nth = params->nth;
  7600. const int nr = ggml_nrows(src0);
  7601. GGML_TENSOR_BINARY_OP_LOCALS
  7602. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7603. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7604. if (dst->type == GGML_TYPE_F32) {
  7605. GGML_ASSERT( nb0 == sizeof(float));
  7606. }
  7607. else {
  7608. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7609. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7610. }
  7611. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7612. // rows per thread
  7613. const int dr = (nr + nth - 1)/nth;
  7614. // row range for this thread
  7615. const int ir0 = dr*ith;
  7616. const int ir1 = MIN(ir0 + dr, nr);
  7617. if (nb10 == sizeof(float)) {
  7618. if (dst->type == GGML_TYPE_F16) {
  7619. for (int ir = ir0; ir < ir1; ++ir) {
  7620. // src0, src1 and dst are same shape => same indices
  7621. const int i3 = ir/(ne2*ne1);
  7622. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7623. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7624. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7625. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7626. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7627. for (int i = 0; i < ne0; i++) {
  7628. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7629. }
  7630. }
  7631. } else {
  7632. for (int ir = ir0; ir < ir1; ++ir) {
  7633. // src0, src1 and dst are same shape => same indices
  7634. const int i3 = ir/(ne2*ne1);
  7635. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7636. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7637. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7638. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7639. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7640. for (int i = 0; i < ne0; i++) {
  7641. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7642. }
  7643. }
  7644. }
  7645. }
  7646. else {
  7647. // src1 is not contiguous
  7648. GGML_ASSERT(false);
  7649. }
  7650. }
  7651. static void ggml_compute_forward_add_bf16_f32(
  7652. const struct ggml_compute_params * params,
  7653. struct ggml_tensor * dst) {
  7654. const struct ggml_tensor * src0 = dst->src[0];
  7655. const struct ggml_tensor * src1 = dst->src[1];
  7656. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7657. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7658. return;
  7659. }
  7660. const int ith = params->ith;
  7661. const int nth = params->nth;
  7662. const int nr = ggml_nrows(src0);
  7663. GGML_TENSOR_BINARY_OP_LOCALS
  7664. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7665. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7666. if (dst->type == GGML_TYPE_F32) {
  7667. GGML_ASSERT( nb0 == sizeof(float));
  7668. }
  7669. else {
  7670. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7671. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7672. }
  7673. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7674. // rows per thread
  7675. const int dr = (nr + nth - 1)/nth;
  7676. // row range for this thread
  7677. const int ir0 = dr*ith;
  7678. const int ir1 = MIN(ir0 + dr, nr);
  7679. if (nb10 == sizeof(float)) {
  7680. if (dst->type == GGML_TYPE_BF16) {
  7681. for (int ir = ir0; ir < ir1; ++ir) {
  7682. // src0, src1 and dst are same shape => same indices
  7683. const int i3 = ir/(ne2*ne1);
  7684. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7685. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7686. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7687. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7688. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7689. for (int i = 0; i < ne0; i++) {
  7690. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7691. }
  7692. }
  7693. } else {
  7694. for (int ir = ir0; ir < ir1; ++ir) {
  7695. // src0, src1 and dst are same shape => same indices
  7696. const int i3 = ir/(ne2*ne1);
  7697. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7698. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7699. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7700. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7701. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7702. for (int i = 0; i < ne0; i++) {
  7703. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7704. }
  7705. }
  7706. }
  7707. }
  7708. else {
  7709. // src1 is not contiguous
  7710. GGML_ASSERT(false);
  7711. }
  7712. }
  7713. static void ggml_compute_forward_add_f16_f16(
  7714. const struct ggml_compute_params * params,
  7715. struct ggml_tensor * dst) {
  7716. const struct ggml_tensor * src0 = dst->src[0];
  7717. const struct ggml_tensor * src1 = dst->src[1];
  7718. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7719. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7720. return;
  7721. }
  7722. const int ith = params->ith;
  7723. const int nth = params->nth;
  7724. const int nr = ggml_nrows(src0);
  7725. GGML_TENSOR_BINARY_OP_LOCALS
  7726. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7727. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7728. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7729. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7730. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7731. // rows per thread
  7732. const int dr = (nr + nth - 1)/nth;
  7733. // row range for this thread
  7734. const int ir0 = dr*ith;
  7735. const int ir1 = MIN(ir0 + dr, nr);
  7736. if (nb10 == sizeof(ggml_fp16_t)) {
  7737. for (int ir = ir0; ir < ir1; ++ir) {
  7738. // src0, src1 and dst are same shape => same indices
  7739. const int i3 = ir/(ne2*ne1);
  7740. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7741. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7742. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7743. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7744. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7745. for (int i = 0; i < ne0; i++) {
  7746. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7747. }
  7748. }
  7749. }
  7750. else {
  7751. // src1 is not contiguous
  7752. GGML_ASSERT(false);
  7753. }
  7754. }
  7755. static void ggml_compute_forward_add_bf16_bf16(
  7756. const struct ggml_compute_params * params,
  7757. struct ggml_tensor * dst) {
  7758. const struct ggml_tensor * src0 = dst->src[0];
  7759. const struct ggml_tensor * src1 = dst->src[1];
  7760. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7761. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7762. return;
  7763. }
  7764. const int ith = params->ith;
  7765. const int nth = params->nth;
  7766. const int nr = ggml_nrows(src0);
  7767. GGML_TENSOR_BINARY_OP_LOCALS
  7768. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7769. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7770. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7771. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7772. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7773. // rows per thread
  7774. const int dr = (nr + nth - 1)/nth;
  7775. // row range for this thread
  7776. const int ir0 = dr*ith;
  7777. const int ir1 = MIN(ir0 + dr, nr);
  7778. if (nb10 == sizeof(ggml_bf16_t)) {
  7779. for (int ir = ir0; ir < ir1; ++ir) {
  7780. // src0, src1 and dst are same shape => same indices
  7781. const int i3 = ir/(ne2*ne1);
  7782. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7783. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7784. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7785. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7786. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7787. for (int i = 0; i < ne0; i++) {
  7788. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7789. }
  7790. }
  7791. }
  7792. else {
  7793. // src1 is not contiguous
  7794. GGML_ASSERT(false);
  7795. }
  7796. }
  7797. static void ggml_compute_forward_add_q_f32(
  7798. const struct ggml_compute_params * params,
  7799. struct ggml_tensor * dst) {
  7800. const struct ggml_tensor * src0 = dst->src[0];
  7801. const struct ggml_tensor * src1 = dst->src[1];
  7802. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7804. return;
  7805. }
  7806. const int nr = ggml_nrows(src0);
  7807. GGML_TENSOR_BINARY_OP_LOCALS
  7808. const int ith = params->ith;
  7809. const int nth = params->nth;
  7810. const enum ggml_type type = src0->type;
  7811. const enum ggml_type dtype = dst->type;
  7812. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7813. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7814. // we don't support permuted src0 or src1
  7815. GGML_ASSERT(nb00 == ggml_type_size(type));
  7816. GGML_ASSERT(nb10 == sizeof(float));
  7817. // dst cannot be transposed or permuted
  7818. GGML_ASSERT(nb0 <= nb1);
  7819. GGML_ASSERT(nb1 <= nb2);
  7820. GGML_ASSERT(nb2 <= nb3);
  7821. GGML_ASSERT(ggml_is_quantized(src0->type));
  7822. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7823. // rows per thread
  7824. const int dr = (nr + nth - 1)/nth;
  7825. // row range for this thread
  7826. const int ir0 = dr*ith;
  7827. const int ir1 = MIN(ir0 + dr, nr);
  7828. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7829. for (int ir = ir0; ir < ir1; ++ir) {
  7830. // src0 indices
  7831. const int i03 = ir/(ne02*ne01);
  7832. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7833. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7834. // src1 and dst are same shape as src0 => same indices
  7835. const int i13 = i03;
  7836. const int i12 = i02;
  7837. const int i11 = i01;
  7838. const int i3 = i03;
  7839. const int i2 = i02;
  7840. const int i1 = i01;
  7841. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7842. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7843. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7844. assert(ne00 % 32 == 0);
  7845. // unquantize row from src0 to temp buffer
  7846. dequantize_row_q(src0_row, wdata, ne00);
  7847. // add src1
  7848. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7849. // quantize row to dst
  7850. if (quantize_row_q != NULL) {
  7851. quantize_row_q(wdata, dst_row, ne00);
  7852. } else {
  7853. memcpy(dst_row, wdata, ne0*nb0);
  7854. }
  7855. }
  7856. }
  7857. static void ggml_compute_forward_add(
  7858. const struct ggml_compute_params * params,
  7859. struct ggml_tensor * dst) {
  7860. const struct ggml_tensor * src0 = dst->src[0];
  7861. const struct ggml_tensor * src1 = dst->src[1];
  7862. switch (src0->type) {
  7863. case GGML_TYPE_F32:
  7864. {
  7865. if (src1->type == GGML_TYPE_F32) {
  7866. ggml_compute_forward_add_f32(params, dst);
  7867. }
  7868. else {
  7869. GGML_ASSERT(false);
  7870. }
  7871. } break;
  7872. case GGML_TYPE_F16:
  7873. {
  7874. if (src1->type == GGML_TYPE_F16) {
  7875. ggml_compute_forward_add_f16_f16(params, dst);
  7876. }
  7877. else if (src1->type == GGML_TYPE_F32) {
  7878. ggml_compute_forward_add_f16_f32(params, dst);
  7879. }
  7880. else {
  7881. GGML_ASSERT(false);
  7882. }
  7883. } break;
  7884. case GGML_TYPE_BF16:
  7885. {
  7886. if (src1->type == GGML_TYPE_BF16) {
  7887. ggml_compute_forward_add_bf16_bf16(params, dst);
  7888. }
  7889. else if (src1->type == GGML_TYPE_F32) {
  7890. ggml_compute_forward_add_bf16_f32(params, dst);
  7891. }
  7892. else {
  7893. GGML_ASSERT(false);
  7894. }
  7895. } break;
  7896. case GGML_TYPE_Q4_0:
  7897. case GGML_TYPE_Q4_1:
  7898. case GGML_TYPE_Q5_0:
  7899. case GGML_TYPE_Q5_1:
  7900. case GGML_TYPE_Q8_0:
  7901. case GGML_TYPE_Q2_K:
  7902. case GGML_TYPE_Q3_K:
  7903. case GGML_TYPE_Q4_K:
  7904. case GGML_TYPE_Q5_K:
  7905. case GGML_TYPE_Q6_K:
  7906. case GGML_TYPE_IQ2_XXS:
  7907. case GGML_TYPE_IQ2_XS:
  7908. case GGML_TYPE_IQ3_XXS:
  7909. case GGML_TYPE_IQ1_S:
  7910. case GGML_TYPE_IQ1_M:
  7911. case GGML_TYPE_IQ4_NL:
  7912. case GGML_TYPE_IQ4_XS:
  7913. case GGML_TYPE_IQ3_S:
  7914. case GGML_TYPE_IQ2_S:
  7915. {
  7916. ggml_compute_forward_add_q_f32(params, dst);
  7917. } break;
  7918. default:
  7919. {
  7920. GGML_ASSERT(false);
  7921. } break;
  7922. }
  7923. }
  7924. // ggml_compute_forward_add1
  7925. static void ggml_compute_forward_add1_f32(
  7926. const struct ggml_compute_params * params,
  7927. struct ggml_tensor * dst) {
  7928. const struct ggml_tensor * src0 = dst->src[0];
  7929. const struct ggml_tensor * src1 = dst->src[1];
  7930. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7931. GGML_ASSERT(ggml_is_scalar(src1));
  7932. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7933. return;
  7934. }
  7935. const int ith = params->ith;
  7936. const int nth = params->nth;
  7937. const int nr = ggml_nrows(src0);
  7938. GGML_TENSOR_UNARY_OP_LOCALS
  7939. GGML_ASSERT( nb0 == sizeof(float));
  7940. GGML_ASSERT(nb00 == sizeof(float));
  7941. // rows per thread
  7942. const int dr = (nr + nth - 1)/nth;
  7943. // row range for this thread
  7944. const int ir0 = dr*ith;
  7945. const int ir1 = MIN(ir0 + dr, nr);
  7946. for (int ir = ir0; ir < ir1; ++ir) {
  7947. // src0 and dst are same shape => same indices
  7948. const int i3 = ir/(ne2*ne1);
  7949. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7950. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7951. #ifdef GGML_USE_ACCELERATE
  7952. UNUSED(ggml_vec_add1_f32);
  7953. vDSP_vadd(
  7954. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7955. (float *) ((char *) src1->data), 0,
  7956. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7957. ne0);
  7958. #else
  7959. ggml_vec_add1_f32(ne0,
  7960. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7961. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7962. *(float *) src1->data);
  7963. #endif
  7964. }
  7965. }
  7966. static void ggml_compute_forward_add1_f16_f32(
  7967. const struct ggml_compute_params * params,
  7968. struct ggml_tensor * dst) {
  7969. const struct ggml_tensor * src0 = dst->src[0];
  7970. const struct ggml_tensor * src1 = dst->src[1];
  7971. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7972. GGML_ASSERT(ggml_is_scalar(src1));
  7973. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7974. return;
  7975. }
  7976. // scalar to add
  7977. const float v = *(float *) src1->data;
  7978. const int ith = params->ith;
  7979. const int nth = params->nth;
  7980. const int nr = ggml_nrows(src0);
  7981. GGML_TENSOR_UNARY_OP_LOCALS
  7982. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7983. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7984. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7985. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7986. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7987. // rows per thread
  7988. const int dr = (nr + nth - 1)/nth;
  7989. // row range for this thread
  7990. const int ir0 = dr*ith;
  7991. const int ir1 = MIN(ir0 + dr, nr);
  7992. for (int ir = ir0; ir < ir1; ++ir) {
  7993. // src0 and dst are same shape => same indices
  7994. const int i3 = ir/(ne2*ne1);
  7995. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7996. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7997. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7998. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7999. for (int i = 0; i < ne0; i++) {
  8000. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8001. }
  8002. }
  8003. }
  8004. static void ggml_compute_forward_add1_f16_f16(
  8005. const struct ggml_compute_params * params,
  8006. struct ggml_tensor * dst) {
  8007. const struct ggml_tensor * src0 = dst->src[0];
  8008. const struct ggml_tensor * src1 = dst->src[1];
  8009. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8010. GGML_ASSERT(ggml_is_scalar(src1));
  8011. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8012. return;
  8013. }
  8014. // scalar to add
  8015. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8016. const int ith = params->ith;
  8017. const int nth = params->nth;
  8018. const int nr = ggml_nrows(src0);
  8019. GGML_TENSOR_UNARY_OP_LOCALS
  8020. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8021. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8022. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8023. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8024. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8025. // rows per thread
  8026. const int dr = (nr + nth - 1)/nth;
  8027. // row range for this thread
  8028. const int ir0 = dr*ith;
  8029. const int ir1 = MIN(ir0 + dr, nr);
  8030. for (int ir = ir0; ir < ir1; ++ir) {
  8031. // src0 and dst are same shape => same indices
  8032. const int i3 = ir/(ne2*ne1);
  8033. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8034. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8035. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8036. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8037. for (int i = 0; i < ne0; i++) {
  8038. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8039. }
  8040. }
  8041. }
  8042. static void ggml_compute_forward_add1_q_f32(
  8043. const struct ggml_compute_params * params,
  8044. struct ggml_tensor * dst) {
  8045. const struct ggml_tensor * src0 = dst->src[0];
  8046. const struct ggml_tensor * src1 = dst->src[1];
  8047. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8048. GGML_ASSERT(ggml_is_scalar(src1));
  8049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8050. return;
  8051. }
  8052. // scalar to add
  8053. const float v = *(float *) src1->data;
  8054. const int ith = params->ith;
  8055. const int nth = params->nth;
  8056. const int nr = ggml_nrows(src0);
  8057. GGML_TENSOR_UNARY_OP_LOCALS
  8058. const enum ggml_type type = src0->type;
  8059. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8060. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8061. // we don't support permuted src0
  8062. GGML_ASSERT(nb00 == ggml_type_size(type));
  8063. // dst cannot be transposed or permuted
  8064. GGML_ASSERT(nb0 <= nb1);
  8065. GGML_ASSERT(nb1 <= nb2);
  8066. GGML_ASSERT(nb2 <= nb3);
  8067. GGML_ASSERT(ggml_is_quantized(src0->type));
  8068. GGML_ASSERT(dst->type == src0->type);
  8069. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8070. // rows per thread
  8071. const int dr = (nr + nth - 1)/nth;
  8072. // row range for this thread
  8073. const int ir0 = dr*ith;
  8074. const int ir1 = MIN(ir0 + dr, nr);
  8075. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8076. for (int ir = ir0; ir < ir1; ++ir) {
  8077. // src0 and dst are same shape => same indices
  8078. const int i3 = ir/(ne2*ne1);
  8079. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8080. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8081. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8082. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8083. assert(ne0 % 32 == 0);
  8084. // unquantize row from src0 to temp buffer
  8085. dequantize_row_q(src0_row, wdata, ne0);
  8086. // add src1
  8087. ggml_vec_acc1_f32(ne0, wdata, v);
  8088. // quantize row to dst
  8089. quantize_row_q(wdata, dst_row, ne0);
  8090. }
  8091. }
  8092. static void ggml_compute_forward_add1_bf16_f32(
  8093. const struct ggml_compute_params * params,
  8094. struct ggml_tensor * dst) {
  8095. const struct ggml_tensor * src0 = dst->src[0];
  8096. const struct ggml_tensor * src1 = dst->src[1];
  8097. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8098. GGML_ASSERT(ggml_is_scalar(src1));
  8099. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8100. return;
  8101. }
  8102. // scalar to add
  8103. const float v = *(float *) src1->data;
  8104. const int ith = params->ith;
  8105. const int nth = params->nth;
  8106. const int nr = ggml_nrows(src0);
  8107. GGML_TENSOR_UNARY_OP_LOCALS
  8108. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8109. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8110. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8111. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8112. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8113. // rows per thread
  8114. const int dr = (nr + nth - 1)/nth;
  8115. // row range for this thread
  8116. const int ir0 = dr*ith;
  8117. const int ir1 = MIN(ir0 + dr, nr);
  8118. for (int ir = ir0; ir < ir1; ++ir) {
  8119. // src0 and dst are same shape => same indices
  8120. const int i3 = ir/(ne2*ne1);
  8121. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8122. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8123. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8124. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8125. for (int i = 0; i < ne0; i++) {
  8126. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8127. }
  8128. }
  8129. }
  8130. static void ggml_compute_forward_add1_bf16_bf16(
  8131. const struct ggml_compute_params * params,
  8132. struct ggml_tensor * dst) {
  8133. const struct ggml_tensor * src0 = dst->src[0];
  8134. const struct ggml_tensor * src1 = dst->src[1];
  8135. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8136. GGML_ASSERT(ggml_is_scalar(src1));
  8137. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8138. return;
  8139. }
  8140. // scalar to add
  8141. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8142. const int ith = params->ith;
  8143. const int nth = params->nth;
  8144. const int nr = ggml_nrows(src0);
  8145. GGML_TENSOR_UNARY_OP_LOCALS
  8146. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8147. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8148. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8149. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8150. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8151. // rows per thread
  8152. const int dr = (nr + nth - 1)/nth;
  8153. // row range for this thread
  8154. const int ir0 = dr*ith;
  8155. const int ir1 = MIN(ir0 + dr, nr);
  8156. for (int ir = ir0; ir < ir1; ++ir) {
  8157. // src0 and dst are same shape => same indices
  8158. const int i3 = ir/(ne2*ne1);
  8159. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8160. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8161. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8162. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8163. for (int i = 0; i < ne0; i++) {
  8164. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8165. }
  8166. }
  8167. }
  8168. static void ggml_compute_forward_add1(
  8169. const struct ggml_compute_params * params,
  8170. struct ggml_tensor * dst) {
  8171. const struct ggml_tensor * src0 = dst->src[0];
  8172. const struct ggml_tensor * src1 = dst->src[1];
  8173. switch (src0->type) {
  8174. case GGML_TYPE_F32:
  8175. {
  8176. ggml_compute_forward_add1_f32(params, dst);
  8177. } break;
  8178. case GGML_TYPE_F16:
  8179. {
  8180. if (src1->type == GGML_TYPE_F16) {
  8181. ggml_compute_forward_add1_f16_f16(params, dst);
  8182. }
  8183. else if (src1->type == GGML_TYPE_F32) {
  8184. ggml_compute_forward_add1_f16_f32(params, dst);
  8185. }
  8186. else {
  8187. GGML_ASSERT(false);
  8188. }
  8189. } break;
  8190. case GGML_TYPE_BF16:
  8191. {
  8192. if (src1->type == GGML_TYPE_BF16) {
  8193. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8194. }
  8195. else if (src1->type == GGML_TYPE_F32) {
  8196. ggml_compute_forward_add1_bf16_f32(params, dst);
  8197. }
  8198. else {
  8199. GGML_ASSERT(false);
  8200. }
  8201. } break;
  8202. case GGML_TYPE_Q4_0:
  8203. case GGML_TYPE_Q4_1:
  8204. case GGML_TYPE_Q5_0:
  8205. case GGML_TYPE_Q5_1:
  8206. case GGML_TYPE_Q8_0:
  8207. case GGML_TYPE_Q8_1:
  8208. case GGML_TYPE_Q2_K:
  8209. case GGML_TYPE_Q3_K:
  8210. case GGML_TYPE_Q4_K:
  8211. case GGML_TYPE_Q5_K:
  8212. case GGML_TYPE_Q6_K:
  8213. case GGML_TYPE_IQ2_XXS:
  8214. case GGML_TYPE_IQ2_XS:
  8215. case GGML_TYPE_IQ3_XXS:
  8216. case GGML_TYPE_IQ1_S:
  8217. case GGML_TYPE_IQ1_M:
  8218. case GGML_TYPE_IQ4_NL:
  8219. case GGML_TYPE_IQ4_XS:
  8220. case GGML_TYPE_IQ3_S:
  8221. case GGML_TYPE_IQ2_S:
  8222. {
  8223. ggml_compute_forward_add1_q_f32(params, dst);
  8224. } break;
  8225. default:
  8226. {
  8227. GGML_ASSERT(false);
  8228. } break;
  8229. }
  8230. }
  8231. // ggml_compute_forward_acc
  8232. static void ggml_compute_forward_acc_f32(
  8233. const struct ggml_compute_params * params,
  8234. struct ggml_tensor * dst) {
  8235. const struct ggml_tensor * src0 = dst->src[0];
  8236. const struct ggml_tensor * src1 = dst->src[1];
  8237. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8238. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8239. // view src0 and dst with these strides and data offset inbytes during acc
  8240. // nb0 is implicitly element_size because src0 and dst are contiguous
  8241. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8242. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8243. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8244. size_t offset = ((int32_t *) dst->op_params)[3];
  8245. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8246. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8247. if (params->ith != 0) {
  8248. return;
  8249. }
  8250. // memcpy needs to be synchronized across threads to avoid race conditions.
  8251. // => do it in INIT phase
  8252. memcpy(
  8253. ((char *) dst->data),
  8254. ((char *) src0->data),
  8255. ggml_nbytes(dst));
  8256. }
  8257. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8258. return;
  8259. }
  8260. const int ith = params->ith;
  8261. const int nth = params->nth;
  8262. const int nr = ggml_nrows(src1);
  8263. const int nc = src1->ne[0];
  8264. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8265. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8266. // src0 and dst as viewed during acc
  8267. const size_t nb0 = ggml_element_size(src0);
  8268. const size_t nb00 = nb0;
  8269. const size_t nb01 = nb1;
  8270. const size_t nb02 = nb2;
  8271. const size_t nb03 = nb3;
  8272. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8273. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8274. GGML_ASSERT(nb10 == sizeof(float));
  8275. // rows per thread
  8276. const int dr = (nr + nth - 1)/nth;
  8277. // row range for this thread
  8278. const int ir0 = dr*ith;
  8279. const int ir1 = MIN(ir0 + dr, nr);
  8280. for (int ir = ir0; ir < ir1; ++ir) {
  8281. // src0 and dst are viewed with shape of src1 and offset
  8282. // => same indices
  8283. const int i3 = ir/(ne12*ne11);
  8284. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8285. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8286. #ifdef GGML_USE_ACCELERATE
  8287. vDSP_vadd(
  8288. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8289. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8290. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8291. #else
  8292. ggml_vec_add_f32(nc,
  8293. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8294. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8295. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8296. #endif
  8297. }
  8298. }
  8299. static void ggml_compute_forward_acc(
  8300. const struct ggml_compute_params * params,
  8301. struct ggml_tensor * dst) {
  8302. const struct ggml_tensor * src0 = dst->src[0];
  8303. switch (src0->type) {
  8304. case GGML_TYPE_F32:
  8305. {
  8306. ggml_compute_forward_acc_f32(params, dst);
  8307. } break;
  8308. case GGML_TYPE_F16:
  8309. case GGML_TYPE_BF16:
  8310. case GGML_TYPE_Q4_0:
  8311. case GGML_TYPE_Q4_1:
  8312. case GGML_TYPE_Q5_0:
  8313. case GGML_TYPE_Q5_1:
  8314. case GGML_TYPE_Q8_0:
  8315. case GGML_TYPE_Q8_1:
  8316. case GGML_TYPE_Q2_K:
  8317. case GGML_TYPE_Q3_K:
  8318. case GGML_TYPE_Q4_K:
  8319. case GGML_TYPE_Q5_K:
  8320. case GGML_TYPE_Q6_K:
  8321. case GGML_TYPE_IQ2_XXS:
  8322. case GGML_TYPE_IQ2_XS:
  8323. case GGML_TYPE_IQ3_XXS:
  8324. case GGML_TYPE_IQ1_S:
  8325. case GGML_TYPE_IQ1_M:
  8326. case GGML_TYPE_IQ4_NL:
  8327. case GGML_TYPE_IQ4_XS:
  8328. case GGML_TYPE_IQ3_S:
  8329. case GGML_TYPE_IQ2_S:
  8330. default:
  8331. {
  8332. GGML_ASSERT(false);
  8333. } break;
  8334. }
  8335. }
  8336. // ggml_compute_forward_sub
  8337. static void ggml_compute_forward_sub_f32(
  8338. const struct ggml_compute_params * params,
  8339. struct ggml_tensor * dst) {
  8340. const struct ggml_tensor * src0 = dst->src[0];
  8341. const struct ggml_tensor * src1 = dst->src[1];
  8342. assert(params->ith == 0);
  8343. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8344. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8345. return;
  8346. }
  8347. const int nr = ggml_nrows(src0);
  8348. GGML_TENSOR_BINARY_OP_LOCALS
  8349. GGML_ASSERT( nb0 == sizeof(float));
  8350. GGML_ASSERT(nb00 == sizeof(float));
  8351. if (nb10 == sizeof(float)) {
  8352. for (int ir = 0; ir < nr; ++ir) {
  8353. // src0, src1 and dst are same shape => same indices
  8354. const int i3 = ir/(ne2*ne1);
  8355. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8356. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8357. #ifdef GGML_USE_ACCELERATE
  8358. vDSP_vsub(
  8359. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8360. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8361. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8362. ne0);
  8363. #else
  8364. ggml_vec_sub_f32(ne0,
  8365. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8366. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8367. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8368. #endif
  8369. // }
  8370. // }
  8371. }
  8372. } else {
  8373. // src1 is not contiguous
  8374. for (int ir = 0; ir < nr; ++ir) {
  8375. // src0, src1 and dst are same shape => same indices
  8376. const int i3 = ir/(ne2*ne1);
  8377. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8378. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8379. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8380. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8381. for (int i0 = 0; i0 < ne0; i0++) {
  8382. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8383. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8384. }
  8385. }
  8386. }
  8387. }
  8388. static void ggml_compute_forward_sub(
  8389. const struct ggml_compute_params * params,
  8390. struct ggml_tensor * dst) {
  8391. const struct ggml_tensor * src0 = dst->src[0];
  8392. switch (src0->type) {
  8393. case GGML_TYPE_F32:
  8394. {
  8395. ggml_compute_forward_sub_f32(params, dst);
  8396. } break;
  8397. default:
  8398. {
  8399. GGML_ASSERT(false);
  8400. } break;
  8401. }
  8402. }
  8403. // ggml_compute_forward_mul
  8404. static void ggml_compute_forward_mul_f32(
  8405. const struct ggml_compute_params * params,
  8406. struct ggml_tensor * dst) {
  8407. const struct ggml_tensor * src0 = dst->src[0];
  8408. const struct ggml_tensor * src1 = dst->src[1];
  8409. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8410. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8411. return;
  8412. }
  8413. const int ith = params->ith;
  8414. const int nth = params->nth;
  8415. #if defined(GGML_USE_CLBLAST)
  8416. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8417. // TODO: OpenCL kernel support full broadcast
  8418. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8419. if (ith == 0) {
  8420. ggml_cl_mul(src0, src1, dst);
  8421. }
  8422. return;
  8423. }
  8424. #endif
  8425. const int64_t nr = ggml_nrows(src0);
  8426. GGML_TENSOR_BINARY_OP_LOCALS
  8427. GGML_ASSERT( nb0 == sizeof(float));
  8428. GGML_ASSERT(nb00 == sizeof(float));
  8429. if (nb10 == sizeof(float)) {
  8430. for (int64_t ir = ith; ir < nr; ir += nth) {
  8431. // src0 and dst are same shape => same indices
  8432. const int64_t i03 = ir/(ne02*ne01);
  8433. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8434. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8435. const int64_t i13 = i03 % ne13;
  8436. const int64_t i12 = i02 % ne12;
  8437. const int64_t i11 = i01 % ne11;
  8438. const int64_t nr0 = ne00 / ne10;
  8439. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8440. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8441. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8442. for (int64_t r = 0 ; r < nr0; ++r) {
  8443. #ifdef GGML_USE_ACCELERATE
  8444. UNUSED(ggml_vec_mul_f32);
  8445. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8446. #else
  8447. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8448. #endif
  8449. }
  8450. }
  8451. } else {
  8452. // src1 is not contiguous
  8453. for (int64_t ir = ith; ir < nr; ir += nth) {
  8454. // src0 and dst are same shape => same indices
  8455. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8456. const int64_t i03 = ir/(ne02*ne01);
  8457. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8458. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8459. const int64_t i13 = i03 % ne13;
  8460. const int64_t i12 = i02 % ne12;
  8461. const int64_t i11 = i01 % ne11;
  8462. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8463. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8464. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8465. const int64_t i10 = i0 % ne10;
  8466. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8467. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8468. }
  8469. }
  8470. }
  8471. }
  8472. static void ggml_compute_forward_mul(
  8473. const struct ggml_compute_params * params,
  8474. struct ggml_tensor * dst) {
  8475. const struct ggml_tensor * src0 = dst->src[0];
  8476. const struct ggml_tensor * src1 = dst->src[1];
  8477. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8478. switch (src0->type) {
  8479. case GGML_TYPE_F32:
  8480. {
  8481. ggml_compute_forward_mul_f32(params, dst);
  8482. } break;
  8483. default:
  8484. {
  8485. GGML_ASSERT(false);
  8486. } break;
  8487. }
  8488. }
  8489. // ggml_compute_forward_div
  8490. static void ggml_compute_forward_div_f32(
  8491. const struct ggml_compute_params * params,
  8492. struct ggml_tensor * dst) {
  8493. const struct ggml_tensor * src0 = dst->src[0];
  8494. const struct ggml_tensor * src1 = dst->src[1];
  8495. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8496. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8497. return;
  8498. }
  8499. const int ith = params->ith;
  8500. const int nth = params->nth;
  8501. const int64_t nr = ggml_nrows(src0);
  8502. GGML_TENSOR_BINARY_OP_LOCALS
  8503. GGML_ASSERT( nb0 == sizeof(float));
  8504. GGML_ASSERT(nb00 == sizeof(float));
  8505. if (nb10 == sizeof(float)) {
  8506. for (int64_t ir = ith; ir < nr; ir += nth) {
  8507. // src0 and dst are same shape => same indices
  8508. const int64_t i03 = ir/(ne02*ne01);
  8509. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8510. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8511. const int64_t i13 = i03 % ne13;
  8512. const int64_t i12 = i02 % ne12;
  8513. const int64_t i11 = i01 % ne11;
  8514. const int64_t nr0 = ne00 / ne10;
  8515. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8516. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8517. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8518. for (int64_t r = 0; r < nr0; ++r) {
  8519. #ifdef GGML_USE_ACCELERATE
  8520. UNUSED(ggml_vec_div_f32);
  8521. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8522. #else
  8523. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8524. #endif
  8525. }
  8526. }
  8527. } else {
  8528. // src1 is not contiguous
  8529. for (int64_t ir = ith; ir < nr; ir += nth) {
  8530. // src0 and dst are same shape => same indices
  8531. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8532. const int64_t i03 = ir/(ne02*ne01);
  8533. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8534. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8535. const int64_t i13 = i03 % ne13;
  8536. const int64_t i12 = i02 % ne12;
  8537. const int64_t i11 = i01 % ne11;
  8538. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8539. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8540. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8541. const int64_t i10 = i0 % ne10;
  8542. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8543. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8544. }
  8545. }
  8546. }
  8547. }
  8548. static void ggml_compute_forward_div(
  8549. const struct ggml_compute_params * params,
  8550. struct ggml_tensor * dst) {
  8551. const struct ggml_tensor * src0 = dst->src[0];
  8552. switch (src0->type) {
  8553. case GGML_TYPE_F32:
  8554. {
  8555. ggml_compute_forward_div_f32(params, dst);
  8556. } break;
  8557. default:
  8558. {
  8559. GGML_ASSERT(false);
  8560. } break;
  8561. }
  8562. }
  8563. // ggml_compute_forward_sqr
  8564. static void ggml_compute_forward_sqr_f32(
  8565. const struct ggml_compute_params * params,
  8566. struct ggml_tensor * dst) {
  8567. const struct ggml_tensor * src0 = dst->src[0];
  8568. assert(params->ith == 0);
  8569. assert(ggml_are_same_shape(src0, dst));
  8570. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8571. return;
  8572. }
  8573. const int n = ggml_nrows(src0);
  8574. const int nc = src0->ne[0];
  8575. assert( dst->nb[0] == sizeof(float));
  8576. assert(src0->nb[0] == sizeof(float));
  8577. for (int i = 0; i < n; i++) {
  8578. ggml_vec_sqr_f32(nc,
  8579. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8580. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8581. }
  8582. }
  8583. static void ggml_compute_forward_sqr(
  8584. const struct ggml_compute_params * params,
  8585. struct ggml_tensor * dst) {
  8586. const struct ggml_tensor * src0 = dst->src[0];
  8587. switch (src0->type) {
  8588. case GGML_TYPE_F32:
  8589. {
  8590. ggml_compute_forward_sqr_f32(params, dst);
  8591. } break;
  8592. default:
  8593. {
  8594. GGML_ASSERT(false);
  8595. } break;
  8596. }
  8597. }
  8598. // ggml_compute_forward_sqrt
  8599. static void ggml_compute_forward_sqrt_f32(
  8600. const struct ggml_compute_params * params,
  8601. struct ggml_tensor * dst) {
  8602. const struct ggml_tensor * src0 = dst->src[0];
  8603. assert(params->ith == 0);
  8604. assert(ggml_are_same_shape(src0, dst));
  8605. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8606. return;
  8607. }
  8608. const int n = ggml_nrows(src0);
  8609. const int nc = src0->ne[0];
  8610. assert( dst->nb[0] == sizeof(float));
  8611. assert(src0->nb[0] == sizeof(float));
  8612. for (int i = 0; i < n; i++) {
  8613. ggml_vec_sqrt_f32(nc,
  8614. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8615. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8616. }
  8617. }
  8618. static void ggml_compute_forward_sqrt(
  8619. const struct ggml_compute_params * params,
  8620. struct ggml_tensor * dst) {
  8621. const struct ggml_tensor * src0 = dst->src[0];
  8622. switch (src0->type) {
  8623. case GGML_TYPE_F32:
  8624. {
  8625. ggml_compute_forward_sqrt_f32(params, dst);
  8626. } break;
  8627. default:
  8628. {
  8629. GGML_ASSERT(false);
  8630. } break;
  8631. }
  8632. }
  8633. // ggml_compute_forward_log
  8634. static void ggml_compute_forward_log_f32(
  8635. const struct ggml_compute_params * params,
  8636. struct ggml_tensor * dst) {
  8637. const struct ggml_tensor * src0 = dst->src[0];
  8638. GGML_ASSERT(params->ith == 0);
  8639. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8640. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8641. return;
  8642. }
  8643. const int n = ggml_nrows(src0);
  8644. const int nc = src0->ne[0];
  8645. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8646. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8647. for (int i = 0; i < n; i++) {
  8648. ggml_vec_log_f32(nc,
  8649. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8650. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8651. }
  8652. }
  8653. static void ggml_compute_forward_log(
  8654. const struct ggml_compute_params * params,
  8655. struct ggml_tensor * dst) {
  8656. const struct ggml_tensor * src0 = dst->src[0];
  8657. switch (src0->type) {
  8658. case GGML_TYPE_F32:
  8659. {
  8660. ggml_compute_forward_log_f32(params, dst);
  8661. } break;
  8662. default:
  8663. {
  8664. GGML_ASSERT(false);
  8665. } break;
  8666. }
  8667. }
  8668. // ggml_compute_forward_sum
  8669. static void ggml_compute_forward_sum_f32(
  8670. const struct ggml_compute_params * params,
  8671. struct ggml_tensor * dst) {
  8672. const struct ggml_tensor * src0 = dst->src[0];
  8673. assert(params->ith == 0);
  8674. assert(ggml_is_scalar(dst));
  8675. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8676. return;
  8677. }
  8678. assert(ggml_is_scalar(dst));
  8679. assert(src0->nb[0] == sizeof(float));
  8680. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8681. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8682. ggml_float sum = 0;
  8683. ggml_float row_sum = 0;
  8684. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8685. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8686. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8687. ggml_vec_sum_f32_ggf(ne00,
  8688. &row_sum,
  8689. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8690. sum += row_sum;
  8691. }
  8692. }
  8693. }
  8694. ((float *) dst->data)[0] = sum;
  8695. }
  8696. static void ggml_compute_forward_sum_f16(
  8697. const struct ggml_compute_params * params,
  8698. struct ggml_tensor * dst) {
  8699. const struct ggml_tensor * src0 = dst->src[0];
  8700. assert(params->ith == 0);
  8701. assert(ggml_is_scalar(dst));
  8702. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8703. return;
  8704. }
  8705. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8706. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8707. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8708. float sum = 0;
  8709. float row_sum = 0;
  8710. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8711. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8712. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8713. ggml_vec_sum_f16_ggf(ne00,
  8714. &row_sum,
  8715. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8716. sum += row_sum;
  8717. }
  8718. }
  8719. }
  8720. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8721. }
  8722. static void ggml_compute_forward_sum_bf16(
  8723. const struct ggml_compute_params * params,
  8724. struct ggml_tensor * dst) {
  8725. const struct ggml_tensor * src0 = dst->src[0];
  8726. assert(params->ith == 0);
  8727. assert(ggml_is_scalar(dst));
  8728. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8729. return;
  8730. }
  8731. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8732. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8733. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8734. float sum = 0;
  8735. float row_sum = 0;
  8736. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8738. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8739. ggml_vec_sum_bf16_ggf(ne00,
  8740. &row_sum,
  8741. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8742. sum += row_sum;
  8743. }
  8744. }
  8745. }
  8746. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8747. }
  8748. static void ggml_compute_forward_sum(
  8749. const struct ggml_compute_params * params,
  8750. struct ggml_tensor * dst) {
  8751. const struct ggml_tensor * src0 = dst->src[0];
  8752. switch (src0->type) {
  8753. case GGML_TYPE_F32:
  8754. {
  8755. ggml_compute_forward_sum_f32(params, dst);
  8756. } break;
  8757. case GGML_TYPE_F16:
  8758. {
  8759. ggml_compute_forward_sum_f16(params, dst);
  8760. } break;
  8761. case GGML_TYPE_BF16:
  8762. {
  8763. ggml_compute_forward_sum_bf16(params, dst);
  8764. } break;
  8765. default:
  8766. {
  8767. GGML_ASSERT(false);
  8768. } break;
  8769. }
  8770. }
  8771. // ggml_compute_forward_sum_rows
  8772. static void ggml_compute_forward_sum_rows_f32(
  8773. const struct ggml_compute_params * params,
  8774. struct ggml_tensor * dst) {
  8775. const struct ggml_tensor * src0 = dst->src[0];
  8776. GGML_ASSERT(params->ith == 0);
  8777. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8778. return;
  8779. }
  8780. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8781. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8782. GGML_TENSOR_UNARY_OP_LOCALS
  8783. GGML_ASSERT(ne0 == 1);
  8784. GGML_ASSERT(ne1 == ne01);
  8785. GGML_ASSERT(ne2 == ne02);
  8786. GGML_ASSERT(ne3 == ne03);
  8787. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8788. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8789. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8790. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8791. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8792. float row_sum = 0;
  8793. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8794. dst_row[0] = row_sum;
  8795. }
  8796. }
  8797. }
  8798. }
  8799. static void ggml_compute_forward_sum_rows(
  8800. const struct ggml_compute_params * params,
  8801. struct ggml_tensor * dst) {
  8802. const struct ggml_tensor * src0 = dst->src[0];
  8803. switch (src0->type) {
  8804. case GGML_TYPE_F32:
  8805. {
  8806. ggml_compute_forward_sum_rows_f32(params, dst);
  8807. } break;
  8808. default:
  8809. {
  8810. GGML_ASSERT(false);
  8811. } break;
  8812. }
  8813. }
  8814. // ggml_compute_forward_mean
  8815. static void ggml_compute_forward_mean_f32(
  8816. const struct ggml_compute_params * params,
  8817. struct ggml_tensor * dst) {
  8818. const struct ggml_tensor * src0 = dst->src[0];
  8819. assert(params->ith == 0);
  8820. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8821. return;
  8822. }
  8823. assert(src0->nb[0] == sizeof(float));
  8824. GGML_TENSOR_UNARY_OP_LOCALS
  8825. assert(ne0 == 1);
  8826. assert(ne1 == ne01);
  8827. assert(ne2 == ne02);
  8828. assert(ne3 == ne03);
  8829. UNUSED(ne0);
  8830. UNUSED(ne1);
  8831. UNUSED(ne2);
  8832. UNUSED(ne3);
  8833. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8834. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8835. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8836. ggml_vec_sum_f32(ne00,
  8837. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8838. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8839. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8840. }
  8841. }
  8842. }
  8843. }
  8844. static void ggml_compute_forward_mean(
  8845. const struct ggml_compute_params * params,
  8846. struct ggml_tensor * dst) {
  8847. const struct ggml_tensor * src0 = dst->src[0];
  8848. switch (src0->type) {
  8849. case GGML_TYPE_F32:
  8850. {
  8851. ggml_compute_forward_mean_f32(params, dst);
  8852. } break;
  8853. default:
  8854. {
  8855. GGML_ASSERT(false);
  8856. } break;
  8857. }
  8858. }
  8859. // ggml_compute_forward_argmax
  8860. static void ggml_compute_forward_argmax_f32(
  8861. const struct ggml_compute_params * params,
  8862. struct ggml_tensor * dst) {
  8863. const struct ggml_tensor * src0 = dst->src[0];
  8864. assert(params->ith == 0);
  8865. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8866. return;
  8867. }
  8868. assert(src0->nb[0] == sizeof(float));
  8869. assert(dst->nb[0] == sizeof(float));
  8870. const int64_t ne00 = src0->ne[0];
  8871. const int64_t ne01 = src0->ne[1];
  8872. const size_t nb01 = src0->nb[1];
  8873. const size_t nb0 = dst->nb[0];
  8874. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8875. float * src = (float *) ((char *) src0->data + i1*nb01);
  8876. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8877. int v = 0;
  8878. ggml_vec_argmax_f32(ne00, &v, src);
  8879. dst_[0] = v;
  8880. }
  8881. }
  8882. static void ggml_compute_forward_argmax(
  8883. const struct ggml_compute_params * params,
  8884. struct ggml_tensor * dst) {
  8885. const struct ggml_tensor * src0 = dst->src[0];
  8886. switch (src0->type) {
  8887. case GGML_TYPE_F32:
  8888. {
  8889. ggml_compute_forward_argmax_f32(params, dst);
  8890. } break;
  8891. default:
  8892. {
  8893. GGML_ASSERT(false);
  8894. } break;
  8895. }
  8896. }
  8897. // ggml_compute_forward_repeat
  8898. static void ggml_compute_forward_repeat_f32(
  8899. const struct ggml_compute_params * params,
  8900. struct ggml_tensor * dst) {
  8901. const struct ggml_tensor * src0 = dst->src[0];
  8902. GGML_ASSERT(params->ith == 0);
  8903. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8904. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8905. return;
  8906. }
  8907. GGML_TENSOR_UNARY_OP_LOCALS
  8908. // guaranteed to be an integer due to the check in ggml_can_repeat
  8909. const int nr0 = (int)(ne0/ne00);
  8910. const int nr1 = (int)(ne1/ne01);
  8911. const int nr2 = (int)(ne2/ne02);
  8912. const int nr3 = (int)(ne3/ne03);
  8913. // TODO: support for transposed / permuted tensors
  8914. GGML_ASSERT(nb0 == sizeof(float));
  8915. GGML_ASSERT(nb00 == sizeof(float));
  8916. // TODO: maybe this is not optimal?
  8917. for (int i3 = 0; i3 < nr3; i3++) {
  8918. for (int k3 = 0; k3 < ne03; k3++) {
  8919. for (int i2 = 0; i2 < nr2; i2++) {
  8920. for (int k2 = 0; k2 < ne02; k2++) {
  8921. for (int i1 = 0; i1 < nr1; i1++) {
  8922. for (int k1 = 0; k1 < ne01; k1++) {
  8923. for (int i0 = 0; i0 < nr0; i0++) {
  8924. ggml_vec_cpy_f32(ne00,
  8925. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8926. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8927. }
  8928. }
  8929. }
  8930. }
  8931. }
  8932. }
  8933. }
  8934. }
  8935. static void ggml_compute_forward_repeat_f16(
  8936. const struct ggml_compute_params * params,
  8937. struct ggml_tensor * dst) {
  8938. const struct ggml_tensor * src0 = dst->src[0];
  8939. GGML_ASSERT(params->ith == 0);
  8940. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8941. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8942. return;
  8943. }
  8944. GGML_TENSOR_UNARY_OP_LOCALS
  8945. // guaranteed to be an integer due to the check in ggml_can_repeat
  8946. const int nr0 = (int)(ne0/ne00);
  8947. const int nr1 = (int)(ne1/ne01);
  8948. const int nr2 = (int)(ne2/ne02);
  8949. const int nr3 = (int)(ne3/ne03);
  8950. // TODO: support for transposed / permuted tensors
  8951. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8952. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8953. // TODO: maybe this is not optimal?
  8954. for (int i3 = 0; i3 < nr3; i3++) {
  8955. for (int k3 = 0; k3 < ne03; k3++) {
  8956. for (int i2 = 0; i2 < nr2; i2++) {
  8957. for (int k2 = 0; k2 < ne02; k2++) {
  8958. for (int i1 = 0; i1 < nr1; i1++) {
  8959. for (int k1 = 0; k1 < ne01; k1++) {
  8960. for (int i0 = 0; i0 < nr0; i0++) {
  8961. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8962. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8963. // ggml_vec_cpy_f16(ne00, y, x)
  8964. for (int i = 0; i < ne00; ++i) {
  8965. y[i] = x[i];
  8966. }
  8967. }
  8968. }
  8969. }
  8970. }
  8971. }
  8972. }
  8973. }
  8974. }
  8975. static void ggml_compute_forward_repeat(
  8976. const struct ggml_compute_params * params,
  8977. struct ggml_tensor * dst) {
  8978. const struct ggml_tensor * src0 = dst->src[0];
  8979. switch (src0->type) {
  8980. case GGML_TYPE_F16:
  8981. case GGML_TYPE_BF16:
  8982. case GGML_TYPE_I16:
  8983. {
  8984. ggml_compute_forward_repeat_f16(params, dst);
  8985. } break;
  8986. case GGML_TYPE_F32:
  8987. case GGML_TYPE_I32:
  8988. {
  8989. ggml_compute_forward_repeat_f32(params, dst);
  8990. } break;
  8991. default:
  8992. {
  8993. GGML_ASSERT(false);
  8994. } break;
  8995. }
  8996. }
  8997. // ggml_compute_forward_repeat_back
  8998. static void ggml_compute_forward_repeat_back_f32(
  8999. const struct ggml_compute_params * params,
  9000. struct ggml_tensor * dst) {
  9001. const struct ggml_tensor * src0 = dst->src[0];
  9002. GGML_ASSERT(params->ith == 0);
  9003. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9004. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9005. return;
  9006. }
  9007. GGML_TENSOR_UNARY_OP_LOCALS
  9008. // guaranteed to be an integer due to the check in ggml_can_repeat
  9009. const int nr0 = (int)(ne00/ne0);
  9010. const int nr1 = (int)(ne01/ne1);
  9011. const int nr2 = (int)(ne02/ne2);
  9012. const int nr3 = (int)(ne03/ne3);
  9013. // TODO: support for transposed / permuted tensors
  9014. GGML_ASSERT(nb0 == sizeof(float));
  9015. GGML_ASSERT(nb00 == sizeof(float));
  9016. if (ggml_is_contiguous(dst)) {
  9017. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9018. } else {
  9019. for (int k3 = 0; k3 < ne3; k3++) {
  9020. for (int k2 = 0; k2 < ne2; k2++) {
  9021. for (int k1 = 0; k1 < ne1; k1++) {
  9022. ggml_vec_set_f32(ne0,
  9023. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9024. 0);
  9025. }
  9026. }
  9027. }
  9028. }
  9029. // TODO: maybe this is not optimal?
  9030. for (int i3 = 0; i3 < nr3; i3++) {
  9031. for (int k3 = 0; k3 < ne3; k3++) {
  9032. for (int i2 = 0; i2 < nr2; i2++) {
  9033. for (int k2 = 0; k2 < ne2; k2++) {
  9034. for (int i1 = 0; i1 < nr1; i1++) {
  9035. for (int k1 = 0; k1 < ne1; k1++) {
  9036. for (int i0 = 0; i0 < nr0; i0++) {
  9037. ggml_vec_acc_f32(ne0,
  9038. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9039. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9040. }
  9041. }
  9042. }
  9043. }
  9044. }
  9045. }
  9046. }
  9047. }
  9048. static void ggml_compute_forward_repeat_back(
  9049. const struct ggml_compute_params * params,
  9050. struct ggml_tensor * dst) {
  9051. const struct ggml_tensor * src0 = dst->src[0];
  9052. switch (src0->type) {
  9053. case GGML_TYPE_F32:
  9054. {
  9055. ggml_compute_forward_repeat_back_f32(params, dst);
  9056. } break;
  9057. default:
  9058. {
  9059. GGML_ASSERT(false);
  9060. } break;
  9061. }
  9062. }
  9063. // ggml_compute_forward_concat
  9064. static void ggml_compute_forward_concat_f32(
  9065. const struct ggml_compute_params * params,
  9066. struct ggml_tensor * dst) {
  9067. const struct ggml_tensor * src0 = dst->src[0];
  9068. const struct ggml_tensor * src1 = dst->src[1];
  9069. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9070. return;
  9071. }
  9072. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9073. const int ith = params->ith;
  9074. const int nth = params->nth;
  9075. GGML_TENSOR_BINARY_OP_LOCALS
  9076. // TODO: support for transposed / permuted tensors
  9077. GGML_ASSERT(nb0 == sizeof(float));
  9078. GGML_ASSERT(nb00 == sizeof(float));
  9079. GGML_ASSERT(nb10 == sizeof(float));
  9080. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9081. GGML_ASSERT(dim >= 0 && dim < 4);
  9082. int64_t o[4] = {0, 0, 0, 0};
  9083. o[dim] = src0->ne[dim];
  9084. const float * x;
  9085. // TODO: smarter multi-theading
  9086. for (int i3 = 0; i3 < ne3; i3++) {
  9087. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9088. for (int i1 = 0; i1 < ne1; i1++) {
  9089. for (int i0 = 0; i0 < ne0; i0++) {
  9090. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9091. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9092. } else {
  9093. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9094. }
  9095. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9096. *y = *x;
  9097. }
  9098. }
  9099. }
  9100. }
  9101. }
  9102. static void ggml_compute_forward_concat(
  9103. const struct ggml_compute_params * params,
  9104. struct ggml_tensor * dst) {
  9105. const struct ggml_tensor * src0 = dst->src[0];
  9106. switch (src0->type) {
  9107. case GGML_TYPE_F32:
  9108. case GGML_TYPE_I32:
  9109. {
  9110. ggml_compute_forward_concat_f32(params, dst);
  9111. } break;
  9112. default:
  9113. {
  9114. GGML_ASSERT(false);
  9115. } break;
  9116. }
  9117. }
  9118. // ggml_compute_forward_abs
  9119. static void ggml_compute_forward_abs_f32(
  9120. const struct ggml_compute_params * params,
  9121. struct ggml_tensor * dst) {
  9122. const struct ggml_tensor * src0 = dst->src[0];
  9123. assert(params->ith == 0);
  9124. assert(ggml_are_same_shape(src0, dst));
  9125. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9126. return;
  9127. }
  9128. const int n = ggml_nrows(src0);
  9129. const int nc = src0->ne[0];
  9130. assert(dst->nb[0] == sizeof(float));
  9131. assert(src0->nb[0] == sizeof(float));
  9132. for (int i = 0; i < n; i++) {
  9133. ggml_vec_abs_f32(nc,
  9134. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9135. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9136. }
  9137. }
  9138. static void ggml_compute_forward_abs(
  9139. const struct ggml_compute_params * params,
  9140. struct ggml_tensor * dst) {
  9141. const struct ggml_tensor * src0 = dst->src[0];
  9142. switch (src0->type) {
  9143. case GGML_TYPE_F32:
  9144. {
  9145. ggml_compute_forward_abs_f32(params, dst);
  9146. } break;
  9147. default:
  9148. {
  9149. GGML_ASSERT(false);
  9150. } break;
  9151. }
  9152. }
  9153. // ggml_compute_forward_sgn
  9154. static void ggml_compute_forward_sgn_f32(
  9155. const struct ggml_compute_params * params,
  9156. struct ggml_tensor * dst) {
  9157. const struct ggml_tensor * src0 = dst->src[0];
  9158. assert(params->ith == 0);
  9159. assert(ggml_are_same_shape(src0, dst));
  9160. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9161. return;
  9162. }
  9163. const int n = ggml_nrows(src0);
  9164. const int nc = src0->ne[0];
  9165. assert(dst->nb[0] == sizeof(float));
  9166. assert(src0->nb[0] == sizeof(float));
  9167. for (int i = 0; i < n; i++) {
  9168. ggml_vec_sgn_f32(nc,
  9169. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9170. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9171. }
  9172. }
  9173. static void ggml_compute_forward_sgn(
  9174. const struct ggml_compute_params * params,
  9175. struct ggml_tensor * dst) {
  9176. const struct ggml_tensor * src0 = dst->src[0];
  9177. switch (src0->type) {
  9178. case GGML_TYPE_F32:
  9179. {
  9180. ggml_compute_forward_sgn_f32(params, dst);
  9181. } break;
  9182. default:
  9183. {
  9184. GGML_ASSERT(false);
  9185. } break;
  9186. }
  9187. }
  9188. // ggml_compute_forward_neg
  9189. static void ggml_compute_forward_neg_f32(
  9190. const struct ggml_compute_params * params,
  9191. struct ggml_tensor * dst) {
  9192. const struct ggml_tensor * src0 = dst->src[0];
  9193. assert(params->ith == 0);
  9194. assert(ggml_are_same_shape(src0, dst));
  9195. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9196. return;
  9197. }
  9198. const int n = ggml_nrows(src0);
  9199. const int nc = src0->ne[0];
  9200. assert(dst->nb[0] == sizeof(float));
  9201. assert(src0->nb[0] == sizeof(float));
  9202. for (int i = 0; i < n; i++) {
  9203. ggml_vec_neg_f32(nc,
  9204. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9205. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9206. }
  9207. }
  9208. static void ggml_compute_forward_neg(
  9209. const struct ggml_compute_params * params,
  9210. struct ggml_tensor * dst) {
  9211. const struct ggml_tensor * src0 = dst->src[0];
  9212. switch (src0->type) {
  9213. case GGML_TYPE_F32:
  9214. {
  9215. ggml_compute_forward_neg_f32(params, dst);
  9216. } break;
  9217. default:
  9218. {
  9219. GGML_ASSERT(false);
  9220. } break;
  9221. }
  9222. }
  9223. // ggml_compute_forward_step
  9224. static void ggml_compute_forward_step_f32(
  9225. const struct ggml_compute_params * params,
  9226. struct ggml_tensor * dst) {
  9227. const struct ggml_tensor * src0 = dst->src[0];
  9228. assert(params->ith == 0);
  9229. assert(ggml_are_same_shape(src0, dst));
  9230. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9231. return;
  9232. }
  9233. const int n = ggml_nrows(src0);
  9234. const int nc = src0->ne[0];
  9235. assert(dst->nb[0] == sizeof(float));
  9236. assert(src0->nb[0] == sizeof(float));
  9237. for (int i = 0; i < n; i++) {
  9238. ggml_vec_step_f32(nc,
  9239. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9240. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9241. }
  9242. }
  9243. static void ggml_compute_forward_step(
  9244. const struct ggml_compute_params * params,
  9245. struct ggml_tensor * dst) {
  9246. const struct ggml_tensor * src0 = dst->src[0];
  9247. switch (src0->type) {
  9248. case GGML_TYPE_F32:
  9249. {
  9250. ggml_compute_forward_step_f32(params, dst);
  9251. } break;
  9252. default:
  9253. {
  9254. GGML_ASSERT(false);
  9255. } break;
  9256. }
  9257. }
  9258. // ggml_compute_forward_tanh
  9259. static void ggml_compute_forward_tanh_f32(
  9260. const struct ggml_compute_params * params,
  9261. struct ggml_tensor * dst) {
  9262. const struct ggml_tensor * src0 = dst->src[0];
  9263. assert(params->ith == 0);
  9264. assert(ggml_are_same_shape(src0, dst));
  9265. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9266. return;
  9267. }
  9268. const int n = ggml_nrows(src0);
  9269. const int nc = src0->ne[0];
  9270. assert(dst->nb[0] == sizeof(float));
  9271. assert(src0->nb[0] == sizeof(float));
  9272. for (int i = 0; i < n; i++) {
  9273. ggml_vec_tanh_f32(nc,
  9274. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9275. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9276. }
  9277. }
  9278. static void ggml_compute_forward_tanh(
  9279. const struct ggml_compute_params * params,
  9280. struct ggml_tensor * dst) {
  9281. const struct ggml_tensor * src0 = dst->src[0];
  9282. switch (src0->type) {
  9283. case GGML_TYPE_F32:
  9284. {
  9285. ggml_compute_forward_tanh_f32(params, dst);
  9286. } break;
  9287. default:
  9288. {
  9289. GGML_ASSERT(false);
  9290. } break;
  9291. }
  9292. }
  9293. // ggml_compute_forward_elu
  9294. static void ggml_compute_forward_elu_f32(
  9295. const struct ggml_compute_params * params,
  9296. struct ggml_tensor * dst) {
  9297. const struct ggml_tensor * src0 = dst->src[0];
  9298. assert(params->ith == 0);
  9299. assert(ggml_are_same_shape(src0, dst));
  9300. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9301. return;
  9302. }
  9303. const int n = ggml_nrows(src0);
  9304. const int nc = src0->ne[0];
  9305. assert(dst->nb[0] == sizeof(float));
  9306. assert(src0->nb[0] == sizeof(float));
  9307. for (int i = 0; i < n; i++) {
  9308. ggml_vec_elu_f32(nc,
  9309. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9310. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9311. }
  9312. }
  9313. static void ggml_compute_forward_elu(
  9314. const struct ggml_compute_params * params,
  9315. struct ggml_tensor * dst) {
  9316. const struct ggml_tensor * src0 = dst->src[0];
  9317. switch (src0->type) {
  9318. case GGML_TYPE_F32:
  9319. {
  9320. ggml_compute_forward_elu_f32(params, dst);
  9321. } break;
  9322. default:
  9323. {
  9324. GGML_ASSERT(false);
  9325. } break;
  9326. }
  9327. }
  9328. // ggml_compute_forward_relu
  9329. static void ggml_compute_forward_relu_f32(
  9330. const struct ggml_compute_params * params,
  9331. struct ggml_tensor * dst) {
  9332. const struct ggml_tensor * src0 = dst->src[0];
  9333. assert(params->ith == 0);
  9334. assert(ggml_are_same_shape(src0, dst));
  9335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9336. return;
  9337. }
  9338. const int n = ggml_nrows(src0);
  9339. const int nc = src0->ne[0];
  9340. assert(dst->nb[0] == sizeof(float));
  9341. assert(src0->nb[0] == sizeof(float));
  9342. for (int i = 0; i < n; i++) {
  9343. ggml_vec_relu_f32(nc,
  9344. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9345. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9346. }
  9347. }
  9348. static void ggml_compute_forward_relu(
  9349. const struct ggml_compute_params * params,
  9350. struct ggml_tensor * dst) {
  9351. const struct ggml_tensor * src0 = dst->src[0];
  9352. switch (src0->type) {
  9353. case GGML_TYPE_F32:
  9354. {
  9355. ggml_compute_forward_relu_f32(params, dst);
  9356. } break;
  9357. default:
  9358. {
  9359. GGML_ASSERT(false);
  9360. } break;
  9361. }
  9362. }
  9363. // ggml_compute_forward_sigmoid
  9364. static void ggml_compute_forward_sigmoid_f32(
  9365. const struct ggml_compute_params * params,
  9366. struct ggml_tensor * dst) {
  9367. const struct ggml_tensor * src0 = dst->src[0];
  9368. assert(params->ith == 0);
  9369. assert(ggml_are_same_shape(src0, dst));
  9370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9371. return;
  9372. }
  9373. const int n = ggml_nrows(src0);
  9374. const int nc = src0->ne[0];
  9375. assert(dst->nb[0] == sizeof(float));
  9376. assert(src0->nb[0] == sizeof(float));
  9377. for (int i = 0; i < n; i++) {
  9378. ggml_vec_sigmoid_f32(nc,
  9379. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9380. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9381. }
  9382. }
  9383. static void ggml_compute_forward_sigmoid(
  9384. const struct ggml_compute_params * params,
  9385. struct ggml_tensor * dst) {
  9386. const struct ggml_tensor * src0 = dst->src[0];
  9387. switch (src0->type) {
  9388. case GGML_TYPE_F32:
  9389. {
  9390. ggml_compute_forward_sigmoid_f32(params, dst);
  9391. } break;
  9392. default:
  9393. {
  9394. GGML_ASSERT(false);
  9395. } break;
  9396. }
  9397. }
  9398. // ggml_compute_forward_gelu
  9399. static void ggml_compute_forward_gelu_f32(
  9400. const struct ggml_compute_params * params,
  9401. struct ggml_tensor * dst) {
  9402. const struct ggml_tensor * src0 = dst->src[0];
  9403. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9404. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9405. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9406. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9407. return;
  9408. }
  9409. const int ith = params->ith;
  9410. const int nth = params->nth;
  9411. const int nc = src0->ne[0];
  9412. const int nr = ggml_nrows(src0);
  9413. // rows per thread
  9414. const int dr = (nr + nth - 1)/nth;
  9415. // row range for this thread
  9416. const int ir0 = dr*ith;
  9417. const int ir1 = MIN(ir0 + dr, nr);
  9418. for (int i1 = ir0; i1 < ir1; i1++) {
  9419. ggml_vec_gelu_f32(nc,
  9420. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9421. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9422. #ifndef NDEBUG
  9423. for (int k = 0; k < nc; k++) {
  9424. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9425. UNUSED(x);
  9426. assert(!isnan(x));
  9427. assert(!isinf(x));
  9428. }
  9429. #endif
  9430. }
  9431. }
  9432. static void ggml_compute_forward_gelu(
  9433. const struct ggml_compute_params * params,
  9434. struct ggml_tensor * dst) {
  9435. const struct ggml_tensor * src0 = dst->src[0];
  9436. switch (src0->type) {
  9437. case GGML_TYPE_F32:
  9438. {
  9439. ggml_compute_forward_gelu_f32(params, dst);
  9440. } break;
  9441. default:
  9442. {
  9443. GGML_ASSERT(false);
  9444. } break;
  9445. }
  9446. }
  9447. // ggml_compute_forward_gelu_quick
  9448. static void ggml_compute_forward_gelu_quick_f32(
  9449. const struct ggml_compute_params * params,
  9450. struct ggml_tensor * dst) {
  9451. const struct ggml_tensor * src0 = dst->src[0];
  9452. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9453. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9454. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9455. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9456. return;
  9457. }
  9458. const int ith = params->ith;
  9459. const int nth = params->nth;
  9460. const int nc = src0->ne[0];
  9461. const int nr = ggml_nrows(src0);
  9462. // rows per thread
  9463. const int dr = (nr + nth - 1)/nth;
  9464. // row range for this thread
  9465. const int ir0 = dr*ith;
  9466. const int ir1 = MIN(ir0 + dr, nr);
  9467. for (int i1 = ir0; i1 < ir1; i1++) {
  9468. ggml_vec_gelu_quick_f32(nc,
  9469. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9470. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9471. #ifndef NDEBUG
  9472. for (int k = 0; k < nc; k++) {
  9473. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9474. UNUSED(x);
  9475. assert(!isnan(x));
  9476. assert(!isinf(x));
  9477. }
  9478. #endif
  9479. }
  9480. }
  9481. static void ggml_compute_forward_gelu_quick(
  9482. const struct ggml_compute_params * params,
  9483. struct ggml_tensor * dst) {
  9484. const struct ggml_tensor * src0 = dst->src[0];
  9485. switch (src0->type) {
  9486. case GGML_TYPE_F32:
  9487. {
  9488. ggml_compute_forward_gelu_quick_f32(params, dst);
  9489. } break;
  9490. default:
  9491. {
  9492. GGML_ASSERT(false);
  9493. } break;
  9494. }
  9495. }
  9496. // ggml_compute_forward_silu
  9497. static void ggml_compute_forward_silu_f32(
  9498. const struct ggml_compute_params * params,
  9499. struct ggml_tensor * dst) {
  9500. const struct ggml_tensor * src0 = dst->src[0];
  9501. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9502. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9503. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9504. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9505. return;
  9506. }
  9507. const int ith = params->ith;
  9508. const int nth = params->nth;
  9509. const int nc = src0->ne[0];
  9510. const int nr = ggml_nrows(src0);
  9511. // rows per thread
  9512. const int dr = (nr + nth - 1)/nth;
  9513. // row range for this thread
  9514. const int ir0 = dr*ith;
  9515. const int ir1 = MIN(ir0 + dr, nr);
  9516. for (int i1 = ir0; i1 < ir1; i1++) {
  9517. ggml_vec_silu_f32(nc,
  9518. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9519. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9520. #ifndef NDEBUG
  9521. for (int k = 0; k < nc; k++) {
  9522. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9523. UNUSED(x);
  9524. assert(!isnan(x));
  9525. assert(!isinf(x));
  9526. }
  9527. #endif
  9528. }
  9529. }
  9530. static void ggml_compute_forward_silu(
  9531. const struct ggml_compute_params * params,
  9532. struct ggml_tensor * dst) {
  9533. const struct ggml_tensor * src0 = dst->src[0];
  9534. switch (src0->type) {
  9535. case GGML_TYPE_F32:
  9536. {
  9537. ggml_compute_forward_silu_f32(params, dst);
  9538. } break;
  9539. default:
  9540. {
  9541. GGML_ASSERT(false);
  9542. } break;
  9543. }
  9544. }
  9545. // ggml_compute_forward_leaky_relu
  9546. static void ggml_compute_forward_leaky_relu_f32(
  9547. const struct ggml_compute_params * params,
  9548. struct ggml_tensor * dst) {
  9549. const struct ggml_tensor * src0 = dst->src[0];
  9550. assert(params->ith == 0);
  9551. assert(ggml_are_same_shape(src0, dst));
  9552. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9553. return;
  9554. }
  9555. const int n = ggml_nrows(src0);
  9556. const int nc = src0->ne[0];
  9557. float negative_slope;
  9558. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9559. assert(dst->nb[0] == sizeof(float));
  9560. assert(src0->nb[0] == sizeof(float));
  9561. for (int i = 0; i < n; i++) {
  9562. ggml_vec_leaky_relu_f32(nc,
  9563. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9564. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9565. }
  9566. }
  9567. static void ggml_compute_forward_leaky_relu(
  9568. const struct ggml_compute_params * params,
  9569. struct ggml_tensor * dst) {
  9570. const struct ggml_tensor * src0 = dst->src[0];
  9571. switch (src0->type) {
  9572. case GGML_TYPE_F32:
  9573. {
  9574. ggml_compute_forward_leaky_relu_f32(params, dst);
  9575. } break;
  9576. default:
  9577. {
  9578. GGML_ASSERT(false);
  9579. } break;
  9580. }
  9581. }
  9582. // ggml_compute_forward_silu_back
  9583. static void ggml_compute_forward_silu_back_f32(
  9584. const struct ggml_compute_params * params,
  9585. struct ggml_tensor * dst) {
  9586. const struct ggml_tensor * src0 = dst->src[0];
  9587. const struct ggml_tensor * grad = dst->src[1];
  9588. GGML_ASSERT(ggml_is_contiguous_1(grad));
  9589. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9590. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9591. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9592. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9593. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9594. return;
  9595. }
  9596. const int ith = params->ith;
  9597. const int nth = params->nth;
  9598. const int nc = src0->ne[0];
  9599. const int nr = ggml_nrows(src0);
  9600. // rows per thread
  9601. const int dr = (nr + nth - 1)/nth;
  9602. // row range for this thread
  9603. const int ir0 = dr*ith;
  9604. const int ir1 = MIN(ir0 + dr, nr);
  9605. for (int i1 = ir0; i1 < ir1; i1++) {
  9606. ggml_vec_silu_backward_f32(nc,
  9607. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9608. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9609. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9610. #ifndef NDEBUG
  9611. for (int k = 0; k < nc; k++) {
  9612. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9613. UNUSED(x);
  9614. assert(!isnan(x));
  9615. assert(!isinf(x));
  9616. }
  9617. #endif
  9618. }
  9619. }
  9620. static void ggml_compute_forward_silu_back(
  9621. const struct ggml_compute_params * params,
  9622. struct ggml_tensor * dst) {
  9623. const struct ggml_tensor * src0 = dst->src[0];
  9624. switch (src0->type) {
  9625. case GGML_TYPE_F32:
  9626. {
  9627. ggml_compute_forward_silu_back_f32(params, dst);
  9628. } break;
  9629. default:
  9630. {
  9631. GGML_ASSERT(false);
  9632. } break;
  9633. }
  9634. }
  9635. static void ggml_compute_forward_hardswish_f32(
  9636. const struct ggml_compute_params * params,
  9637. struct ggml_tensor * dst) {
  9638. const struct ggml_tensor * src0 = dst->src[0];
  9639. assert(params->ith == 0);
  9640. assert(ggml_are_same_shape(src0, dst));
  9641. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9642. return;
  9643. }
  9644. const int n = ggml_nrows(src0);
  9645. const int nc = src0->ne[0];
  9646. assert(dst->nb[0] == sizeof(float));
  9647. assert(src0->nb[0] == sizeof(float));
  9648. for (int i = 0; i < n; i++) {
  9649. ggml_vec_hardswish_f32(nc,
  9650. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9651. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9652. }
  9653. }
  9654. static void ggml_compute_forward_hardswish(
  9655. const struct ggml_compute_params * params,
  9656. struct ggml_tensor * dst) {
  9657. const struct ggml_tensor * src0 = dst->src[0];
  9658. switch (src0->type) {
  9659. case GGML_TYPE_F32:
  9660. {
  9661. ggml_compute_forward_hardswish_f32(params, dst);
  9662. } break;
  9663. default:
  9664. {
  9665. GGML_ASSERT(false);
  9666. } break;
  9667. }
  9668. }
  9669. static void ggml_compute_forward_hardsigmoid_f32(
  9670. const struct ggml_compute_params * params,
  9671. struct ggml_tensor * dst) {
  9672. const struct ggml_tensor * src0 = dst->src[0];
  9673. assert(params->ith == 0);
  9674. assert(ggml_are_same_shape(src0, dst));
  9675. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9676. return;
  9677. }
  9678. const int n = ggml_nrows(src0);
  9679. const int nc = src0->ne[0];
  9680. assert(dst->nb[0] == sizeof(float));
  9681. assert(src0->nb[0] == sizeof(float));
  9682. for (int i = 0; i < n; i++) {
  9683. ggml_vec_hardsigmoid_f32(nc,
  9684. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9685. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9686. }
  9687. }
  9688. static void ggml_compute_forward_hardsigmoid(
  9689. const struct ggml_compute_params * params,
  9690. struct ggml_tensor * dst) {
  9691. const struct ggml_tensor * src0 = dst->src[0];
  9692. switch (src0->type) {
  9693. case GGML_TYPE_F32:
  9694. {
  9695. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9696. } break;
  9697. default:
  9698. {
  9699. GGML_ASSERT(false);
  9700. } break;
  9701. }
  9702. }
  9703. // ggml_compute_forward_norm
  9704. static void ggml_compute_forward_norm_f32(
  9705. const struct ggml_compute_params * params,
  9706. struct ggml_tensor * dst) {
  9707. const struct ggml_tensor * src0 = dst->src[0];
  9708. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9709. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9710. return;
  9711. }
  9712. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9713. const int ith = params->ith;
  9714. const int nth = params->nth;
  9715. GGML_TENSOR_UNARY_OP_LOCALS
  9716. float eps;
  9717. memcpy(&eps, dst->op_params, sizeof(float));
  9718. GGML_ASSERT(eps > 0.0f);
  9719. // TODO: optimize
  9720. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9721. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9722. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9723. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9724. ggml_float sum = 0.0;
  9725. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9726. sum += (ggml_float)x[i00];
  9727. }
  9728. float mean = sum/ne00;
  9729. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9730. ggml_float sum2 = 0.0;
  9731. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9732. float v = x[i00] - mean;
  9733. y[i00] = v;
  9734. sum2 += (ggml_float)(v*v);
  9735. }
  9736. float variance = sum2/ne00;
  9737. const float scale = 1.0f/sqrtf(variance + eps);
  9738. ggml_vec_scale_f32(ne00, y, scale);
  9739. }
  9740. }
  9741. }
  9742. }
  9743. static void ggml_compute_forward_norm(
  9744. const struct ggml_compute_params * params,
  9745. struct ggml_tensor * dst) {
  9746. const struct ggml_tensor * src0 = dst->src[0];
  9747. switch (src0->type) {
  9748. case GGML_TYPE_F32:
  9749. {
  9750. ggml_compute_forward_norm_f32(params, dst);
  9751. } break;
  9752. default:
  9753. {
  9754. GGML_ASSERT(false);
  9755. } break;
  9756. }
  9757. }
  9758. // ggml_compute_forward_group_rms_norm
  9759. static void ggml_compute_forward_rms_norm_f32(
  9760. const struct ggml_compute_params * params,
  9761. struct ggml_tensor * dst) {
  9762. const struct ggml_tensor * src0 = dst->src[0];
  9763. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9765. return;
  9766. }
  9767. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9768. const int ith = params->ith;
  9769. const int nth = params->nth;
  9770. GGML_TENSOR_UNARY_OP_LOCALS
  9771. float eps;
  9772. memcpy(&eps, dst->op_params, sizeof(float));
  9773. GGML_ASSERT(eps > 0.0f);
  9774. // TODO: optimize
  9775. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9776. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9777. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9778. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9779. ggml_float sum = 0.0;
  9780. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9781. sum += (ggml_float)(x[i00] * x[i00]);
  9782. }
  9783. const float mean = sum/ne00;
  9784. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9785. memcpy(y, x, ne00 * sizeof(float));
  9786. // for (int i00 = 0; i00 < ne00; i00++) {
  9787. // y[i00] = x[i00];
  9788. // }
  9789. const float scale = 1.0f/sqrtf(mean + eps);
  9790. ggml_vec_scale_f32(ne00, y, scale);
  9791. }
  9792. }
  9793. }
  9794. }
  9795. static void ggml_compute_forward_rms_norm(
  9796. const struct ggml_compute_params * params,
  9797. struct ggml_tensor * dst) {
  9798. const struct ggml_tensor * src0 = dst->src[0];
  9799. switch (src0->type) {
  9800. case GGML_TYPE_F32:
  9801. {
  9802. ggml_compute_forward_rms_norm_f32(params, dst);
  9803. } break;
  9804. default:
  9805. {
  9806. GGML_ASSERT(false);
  9807. } break;
  9808. }
  9809. }
  9810. static void ggml_compute_forward_rms_norm_back_f32(
  9811. const struct ggml_compute_params * params,
  9812. struct ggml_tensor * dst) {
  9813. const struct ggml_tensor * src0 = dst->src[0];
  9814. const struct ggml_tensor * src1 = dst->src[1];
  9815. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9816. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9817. return;
  9818. }
  9819. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9820. const int ith = params->ith;
  9821. const int nth = params->nth;
  9822. GGML_TENSOR_BINARY_OP_LOCALS
  9823. float eps;
  9824. memcpy(&eps, dst->op_params, sizeof(float));
  9825. // TODO: optimize
  9826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9828. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9829. // src1 is same shape as src0 => same indices
  9830. const int64_t i11 = i01;
  9831. const int64_t i12 = i02;
  9832. const int64_t i13 = i03;
  9833. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9834. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9835. ggml_float sum_xx = 0.0;
  9836. ggml_float sum_xdz = 0.0;
  9837. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9838. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9839. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9840. }
  9841. //const float mean = (float)(sum_xx)/ne00;
  9842. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9843. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9844. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9845. // we could cache rms from forward pass to improve performance.
  9846. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9847. //const float rms = sqrtf(mean_eps);
  9848. const float rrms = 1.0f / sqrtf(mean_eps);
  9849. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9850. {
  9851. // z = rms_norm(x)
  9852. //
  9853. // rms_norm(src0) =
  9854. // scale(
  9855. // src0,
  9856. // div(
  9857. // 1,
  9858. // sqrt(
  9859. // add(
  9860. // scale(
  9861. // sum(
  9862. // sqr(
  9863. // src0)),
  9864. // (1.0/N)),
  9865. // eps))));
  9866. // postorder:
  9867. // ## op args grad
  9868. // 00 param src0 grad[#00]
  9869. // 01 const 1
  9870. // 02 sqr (#00) grad[#02]
  9871. // 03 sum (#02) grad[#03]
  9872. // 04 const 1/N
  9873. // 05 scale (#03, #04) grad[#05]
  9874. // 06 const eps
  9875. // 07 add (#05, #06) grad[#07]
  9876. // 08 sqrt (#07) grad[#08]
  9877. // 09 div (#01,#08) grad[#09]
  9878. // 10 scale (#00,#09) grad[#10]
  9879. //
  9880. // backward pass, given grad[#10]
  9881. // #10: scale
  9882. // grad[#00] += scale(grad[#10],#09)
  9883. // grad[#09] += sum(mul(grad[#10],#00))
  9884. // #09: div
  9885. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9886. // #08: sqrt
  9887. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9888. // #07: add
  9889. // grad[#05] += grad[#07]
  9890. // #05: scale
  9891. // grad[#03] += scale(grad[#05],#04)
  9892. // #03: sum
  9893. // grad[#02] += repeat(grad[#03], #02)
  9894. // #02:
  9895. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9896. //
  9897. // substitute and simplify:
  9898. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9899. // grad[#02] = repeat(grad[#03], #02)
  9900. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9901. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9902. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9903. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9904. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9905. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9906. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9907. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9908. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9909. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9910. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9911. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9912. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9913. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9914. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9915. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9916. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9917. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9918. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9919. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9920. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9921. // a = b*c + d*e
  9922. // a = b*c*f/f + d*e*f/f
  9923. // a = (b*c*f + d*e*f)*(1/f)
  9924. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9925. // a = (b + d*e/c)*c
  9926. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9927. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9928. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9929. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9930. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9931. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9932. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9933. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9934. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9935. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9936. }
  9937. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9938. // post-order:
  9939. // dx := x
  9940. // dx := scale(dx,-mean_xdz/mean_eps)
  9941. // dx := add(dx, dz)
  9942. // dx := scale(dx, rrms)
  9943. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9944. ggml_vec_cpy_f32 (ne00, dx, x);
  9945. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9946. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9947. ggml_vec_acc_f32 (ne00, dx, dz);
  9948. ggml_vec_scale_f32(ne00, dx, rrms);
  9949. }
  9950. }
  9951. }
  9952. }
  9953. static void ggml_compute_forward_rms_norm_back(
  9954. const struct ggml_compute_params * params,
  9955. struct ggml_tensor * dst) {
  9956. const struct ggml_tensor * src0 = dst->src[0];
  9957. switch (src0->type) {
  9958. case GGML_TYPE_F32:
  9959. {
  9960. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9961. } break;
  9962. default:
  9963. {
  9964. GGML_ASSERT(false);
  9965. } break;
  9966. }
  9967. }
  9968. // ggml_compute_forward_group_norm
  9969. static void ggml_compute_forward_group_norm_f32(
  9970. const struct ggml_compute_params * params,
  9971. struct ggml_tensor * dst) {
  9972. const struct ggml_tensor * src0 = dst->src[0];
  9973. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9974. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9975. return;
  9976. }
  9977. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9978. const int ith = params->ith;
  9979. const int nth = params->nth;
  9980. GGML_TENSOR_UNARY_OP_LOCALS
  9981. const float eps = 1e-6f; // TODO: make this a parameter
  9982. // TODO: optimize
  9983. int n_channels = src0->ne[2];
  9984. int n_groups = dst->op_params[0];
  9985. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9986. for (int i = ith; i < n_groups; i += nth) {
  9987. int start = i * n_channels_per_group;
  9988. int end = start + n_channels_per_group;
  9989. if (end > n_channels) {
  9990. end = n_channels;
  9991. }
  9992. int step = end - start;
  9993. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9994. ggml_float sum = 0.0;
  9995. for (int64_t i02 = start; i02 < end; i02++) {
  9996. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9997. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9998. ggml_float sumr = 0.0;
  9999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10000. sumr += (ggml_float)x[i00];
  10001. }
  10002. sum += sumr;
  10003. }
  10004. }
  10005. const float mean = sum / (ne00 * ne01 * step);
  10006. ggml_float sum2 = 0.0;
  10007. for (int64_t i02 = start; i02 < end; i02++) {
  10008. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10009. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10010. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10011. ggml_float sumr = 0.0;
  10012. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10013. float v = x[i00] - mean;
  10014. y[i00] = v;
  10015. sumr += (ggml_float)(v * v);
  10016. }
  10017. sum2 += sumr;
  10018. }
  10019. }
  10020. const float variance = sum2 / (ne00 * ne01 * step);
  10021. const float scale = 1.0f / sqrtf(variance + eps);
  10022. for (int64_t i02 = start; i02 < end; i02++) {
  10023. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10024. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10025. ggml_vec_scale_f32(ne00, y, scale);
  10026. }
  10027. }
  10028. }
  10029. }
  10030. }
  10031. static void ggml_compute_forward_group_norm(
  10032. const struct ggml_compute_params * params,
  10033. struct ggml_tensor * dst) {
  10034. const struct ggml_tensor * src0 = dst->src[0];
  10035. switch (src0->type) {
  10036. case GGML_TYPE_F32:
  10037. {
  10038. ggml_compute_forward_group_norm_f32(params, dst);
  10039. } break;
  10040. default:
  10041. {
  10042. GGML_ASSERT(false);
  10043. } break;
  10044. }
  10045. }
  10046. // ggml_compute_forward_mul_mat
  10047. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10048. // helper function to determine if it is better to use BLAS or not
  10049. // for large matrices, BLAS is faster
  10050. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10051. const struct ggml_tensor * src0 = dst->src[0];
  10052. const struct ggml_tensor * src1 = dst->src[1];
  10053. //const int64_t ne00 = src0->ne[0];
  10054. //const int64_t ne01 = src0->ne[1];
  10055. const int64_t ne10 = src1->ne[0];
  10056. const int64_t ne0 = dst->ne[0];
  10057. const int64_t ne1 = dst->ne[1];
  10058. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10059. // all the experts for each batch element and the processing would become incredibly slow
  10060. // TODO: find the optimal values for these
  10061. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10062. ggml_is_contiguous(src0) &&
  10063. ggml_is_contiguous(src1) &&
  10064. //src0->type == GGML_TYPE_F32 &&
  10065. src1->type == GGML_TYPE_F32 &&
  10066. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10067. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10068. return true;
  10069. }
  10070. return false;
  10071. }
  10072. #endif
  10073. static void ggml_compute_forward_mul_mat_one_chunk(
  10074. const struct ggml_compute_params * params,
  10075. struct ggml_tensor * dst,
  10076. const int64_t num_rows_per_vec_dot,
  10077. const int64_t ir0_start,
  10078. const int64_t ir0_end,
  10079. const int64_t ir1_start,
  10080. const int64_t ir1_end) {
  10081. const struct ggml_tensor * src0 = dst->src[0];
  10082. const struct ggml_tensor * src1 = dst->src[1];
  10083. GGML_TENSOR_BINARY_OP_LOCALS
  10084. const enum ggml_type type = src0->type;
  10085. const bool src1_cont = ggml_is_contiguous(src1);
  10086. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10087. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10088. // broadcast factors
  10089. const int64_t r2 = ne12 / ne02;
  10090. const int64_t r3 = ne13 / ne03;
  10091. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10092. // threads with no work simply yield (not sure if it helps)
  10093. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10094. return;
  10095. }
  10096. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10097. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10098. assert(ne12 % ne02 == 0);
  10099. assert(ne13 % ne03 == 0);
  10100. // block-tiling attempt
  10101. const int64_t blck_0 = 16;
  10102. const int64_t blck_1 = 16;
  10103. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10104. // attempt to reduce false-sharing (does not seem to make a difference)
  10105. // 16 * 2, accounting for mmla kernels
  10106. float tmp[32];
  10107. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10108. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10109. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10110. const int64_t i13 = (ir1 / (ne12 * ne1));
  10111. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10112. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10113. // broadcast src0 into src1
  10114. const int64_t i03 = i13 / r3;
  10115. const int64_t i02 = i12 / r2;
  10116. const int64_t i1 = i11;
  10117. const int64_t i2 = i12;
  10118. const int64_t i3 = i13;
  10119. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10120. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10121. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10122. // the original src1 data pointer, so we should index using the indices directly
  10123. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10124. const char * src1_col = (const char*)wdata +
  10125. (src1_cont || src1->type != vec_dot_type
  10126. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10127. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10128. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10129. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10130. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10131. //}
  10132. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10133. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10134. }
  10135. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10136. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10137. }
  10138. }
  10139. }
  10140. }
  10141. }
  10142. static void ggml_compute_forward_mul_mat(
  10143. const struct ggml_compute_params * params,
  10144. struct ggml_tensor * dst,
  10145. struct ggml_compute_state * state) {
  10146. const struct ggml_tensor * src0 = dst->src[0];
  10147. const struct ggml_tensor * src1 = dst->src[1];
  10148. int64_t t0 = ggml_perf_time_us();
  10149. UNUSED(t0);
  10150. GGML_TENSOR_BINARY_OP_LOCALS
  10151. const int ith = params->ith;
  10152. const int nth = params->nth;
  10153. const enum ggml_type type = src0->type;
  10154. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10155. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10156. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10157. GGML_ASSERT(ne0 == ne01);
  10158. GGML_ASSERT(ne1 == ne11);
  10159. GGML_ASSERT(ne2 == ne12);
  10160. GGML_ASSERT(ne3 == ne13);
  10161. // we don't support permuted src0 or src1
  10162. GGML_ASSERT(nb00 == ggml_type_size(type));
  10163. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10164. // dst cannot be transposed or permuted
  10165. GGML_ASSERT(nb0 == sizeof(float));
  10166. GGML_ASSERT(nb0 <= nb1);
  10167. GGML_ASSERT(nb1 <= nb2);
  10168. GGML_ASSERT(nb2 <= nb3);
  10169. // broadcast factors
  10170. const int64_t r2 = ne12 / ne02;
  10171. const int64_t r3 = ne13 / ne03;
  10172. UNUSED(r2);
  10173. UNUSED(r3);
  10174. // nb01 >= nb00 - src0 is not transposed
  10175. // compute by src0 rows
  10176. #if defined(GGML_USE_CLBLAST)
  10177. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10178. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10179. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10180. }
  10181. return;
  10182. }
  10183. #endif
  10184. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10185. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10186. const int64_t ne_plane = ne01*ne00;
  10187. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10188. UNUSED(desired_wsize);
  10189. if (params->type == GGML_TASK_TYPE_INIT) {
  10190. if (type != GGML_TYPE_F32) {
  10191. assert(params->wsize >= desired_wsize);
  10192. // parallelize by src0 rows
  10193. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10194. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10195. // broadcast src0 into src1 across 2nd,3rd dimension
  10196. const int64_t i03 = i13/r3;
  10197. const int64_t i02 = i12/r2;
  10198. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10199. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10200. ggml_to_float_t const to_float = type_traits[type].to_float;
  10201. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10202. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10203. }
  10204. }
  10205. }
  10206. }
  10207. return;
  10208. }
  10209. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10210. return;
  10211. }
  10212. // perform sgemm, parallelization controlled by blas lib
  10213. if (ith != 0) {
  10214. return;
  10215. }
  10216. //const int64_t tgemm0 = ggml_perf_time_us();
  10217. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10218. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10219. const int64_t i03 = i13/r3;
  10220. const int64_t i02 = i12/r2;
  10221. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10222. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10223. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10224. if (type != GGML_TYPE_F32) {
  10225. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10226. }
  10227. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10228. ne1, ne01, ne10,
  10229. 1.0f, y, ne10,
  10230. x, ne00,
  10231. 0.0f, d, ne01);
  10232. }
  10233. }
  10234. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10235. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10236. return;
  10237. }
  10238. #endif
  10239. #if GGML_USE_LLAMAFILE
  10240. const bool src1_cont = ggml_is_contiguous(src1);
  10241. if (src1_cont) {
  10242. for (int64_t i13 = 0; i13 < ne13; i13++)
  10243. for (int64_t i12 = 0; i12 < ne12; i12++)
  10244. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10245. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10246. nb01/ggml_type_size(src0->type),
  10247. (const char *)src1->data + i12*nb12 + i13*nb13,
  10248. nb11/ggml_type_size(src1->type),
  10249. (char *)dst->data + i12*nb2 + i13*nb3,
  10250. nb1/ggml_type_size(dst->type),
  10251. ith, nth,
  10252. params->type,
  10253. src0->type,
  10254. src1->type,
  10255. dst->type))
  10256. goto UseGgmlGemm1;
  10257. return;
  10258. }
  10259. UseGgmlGemm1:;
  10260. #endif
  10261. if (params->type == GGML_TASK_TYPE_INIT) {
  10262. if (ith != 0) {
  10263. return;
  10264. }
  10265. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10266. atomic_store(&state->shared->current_chunk, nth);
  10267. if (src1->type != vec_dot_type) {
  10268. char * wdata = params->wdata;
  10269. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10270. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10271. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10272. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10273. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10274. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10275. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10276. wdata += row_size;
  10277. }
  10278. }
  10279. }
  10280. }
  10281. return;
  10282. }
  10283. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10284. return;
  10285. }
  10286. #if GGML_USE_LLAMAFILE
  10287. if (src1->type != vec_dot_type) {
  10288. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10289. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10290. for (int64_t i13 = 0; i13 < ne13; i13++)
  10291. for (int64_t i12 = 0; i12 < ne12; i12++)
  10292. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10293. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10294. nb01/ggml_type_size(src0->type),
  10295. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10296. row_size/ggml_type_size(vec_dot_type),
  10297. (char *)dst->data + i12*nb2 + i13*nb3,
  10298. nb1/ggml_type_size(dst->type),
  10299. ith, nth,
  10300. params->type,
  10301. src0->type,
  10302. vec_dot_type,
  10303. dst->type))
  10304. goto UseGgmlGemm2;
  10305. return;
  10306. }
  10307. UseGgmlGemm2:;
  10308. #endif
  10309. #ifdef GGML_PERF
  10310. int chunks_executed = 0;
  10311. UNUSED(chunks_executed);
  10312. #endif
  10313. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10314. const int64_t nr0 = ne0;
  10315. // This is the size of the rest of the dimensions of the result
  10316. const int64_t nr1 = ne1 * ne2 * ne3;
  10317. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10318. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10319. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10320. // this check can be removed once they are extended to support odd numbered rows/cols too
  10321. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10322. num_rows_per_vec_dot = 1;
  10323. }
  10324. // Now select a reasonable chunk size.
  10325. int chunk_size = 16;
  10326. // We need to step up the size if it's small
  10327. if (nr0 == 1 || nr1 == 1) {
  10328. chunk_size = 64;
  10329. }
  10330. // distribute the work across the inner or outer loop based on which one is larger
  10331. // The number of chunks in the 0/1 dim.
  10332. // CEIL(nr0/chunk_size)
  10333. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10334. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10335. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10336. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10337. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10338. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10339. // distribute the thread work across the inner or outer loop based on which one is larger
  10340. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10341. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10342. }
  10343. // The number of elements in each chunk
  10344. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10345. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10346. //if (ith == 0)
  10347. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10348. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10349. int current_chunk = ith;
  10350. while (current_chunk < nchunk0 * nchunk1) {
  10351. const int64_t ith0 = current_chunk % nchunk0;
  10352. const int64_t ith1 = current_chunk / nchunk0;
  10353. const int64_t ir0_start = dr0 * ith0;
  10354. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10355. const int64_t ir1_start = dr1 * ith1;
  10356. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10357. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10358. #ifdef GGML_PERF
  10359. chunks_executed++;
  10360. #endif
  10361. if (nth >= nchunk0 * nchunk1) {
  10362. break;
  10363. }
  10364. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10365. }
  10366. #ifdef GGML_PERF
  10367. // These numbers are useful when trying to measure how well the threading scheduling works.
  10368. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10369. //float time = (ggml_perf_time_us() - t0);
  10370. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10371. #endif
  10372. }
  10373. // ggml_compute_forward_mul_mat_id
  10374. static void ggml_compute_forward_mul_mat_id(
  10375. const struct ggml_compute_params * params,
  10376. struct ggml_tensor * dst) {
  10377. const struct ggml_tensor * src0 = dst->src[0];
  10378. const struct ggml_tensor * src1 = dst->src[1];
  10379. const struct ggml_tensor * ids = dst->src[2];
  10380. GGML_TENSOR_BINARY_OP_LOCALS
  10381. const int ith = params->ith;
  10382. const int nth = params->nth;
  10383. const enum ggml_type type = src0->type;
  10384. const bool src1_cont = ggml_is_contiguous(src1);
  10385. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10386. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10387. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10388. // we don't support permuted src0 or src1
  10389. GGML_ASSERT(nb00 == ggml_type_size(type));
  10390. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10391. // dst cannot be transposed or permuted
  10392. GGML_ASSERT(nb0 == sizeof(float));
  10393. GGML_ASSERT(nb0 <= nb1);
  10394. GGML_ASSERT(nb1 <= nb2);
  10395. GGML_ASSERT(nb2 <= nb3);
  10396. // row groups
  10397. const int n_ids = ids->ne[0]; // n_expert_used
  10398. const int n_as = ne02; // n_expert
  10399. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10400. (char *) params->wdata :
  10401. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10402. struct mmid_row_mapping {
  10403. int32_t i1;
  10404. int32_t i2;
  10405. };
  10406. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10407. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10408. if (params->type == GGML_TASK_TYPE_INIT) {
  10409. if (ith != 0) {
  10410. return;
  10411. }
  10412. char * wdata = params->wdata;
  10413. if (src1->type != vec_dot_type) {
  10414. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10415. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10416. assert(src1->type == GGML_TYPE_F32);
  10417. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10418. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10419. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10420. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10421. wdata += row_size;
  10422. }
  10423. }
  10424. }
  10425. }
  10426. // initialize matrix_row_counts
  10427. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10428. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10429. // group rows by src0 matrix
  10430. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10431. for (int id = 0; id < n_ids; ++id) {
  10432. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10433. assert(i02 >= 0 && i02 < n_as);
  10434. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10435. matrix_row_counts[i02] += 1;
  10436. }
  10437. }
  10438. return;
  10439. }
  10440. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10441. return;
  10442. }
  10443. // compute each matrix multiplication in sequence
  10444. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10445. const int64_t cne1 = matrix_row_counts[cur_a];
  10446. if (cne1 == 0) {
  10447. continue;
  10448. }
  10449. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10450. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10451. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10452. const int64_t nr0 = ne01; // src0 rows
  10453. const int64_t nr1 = cne1; // src1 rows
  10454. // distribute the thread work across the inner or outer loop based on which one is larger
  10455. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10456. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10457. const int64_t ith0 = ith % nth0;
  10458. const int64_t ith1 = ith / nth0;
  10459. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10460. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10461. const int64_t ir010 = dr0*ith0;
  10462. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10463. const int64_t ir110 = dr1*ith1;
  10464. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10465. // threads with no work simply yield (not sure if it helps)
  10466. //if (ir010 >= ir011 || ir110 >= ir111) {
  10467. // sched_yield();
  10468. // continue;
  10469. //}
  10470. // block-tiling attempt
  10471. const int64_t blck_0 = 16;
  10472. const int64_t blck_1 = 16;
  10473. // attempt to reduce false-sharing (does not seem to make a difference)
  10474. float tmp[16];
  10475. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10476. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10477. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10478. const int64_t _i12 = ir1; // logical row index for this expert
  10479. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10480. const int id = row_mapping.i1; // selected expert index
  10481. const int64_t i11 = id % ne11;
  10482. const int64_t i12 = row_mapping.i2; // row index in src1
  10483. const int64_t i1 = id; // selected expert index
  10484. const int64_t i2 = i12; // row
  10485. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10486. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10487. // the original src1 data pointer, so we should index using the indices directly
  10488. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10489. const char * src1_col = (const char *) wdata +
  10490. (src1_cont || src1->type != vec_dot_type
  10491. ? (i11 + i12*ne11)*row_size
  10492. : (i11*nb11 + i12*nb12));
  10493. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10494. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10495. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10496. //}
  10497. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10498. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10499. }
  10500. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10501. }
  10502. }
  10503. }
  10504. }
  10505. #undef MMID_MATRIX_ROW
  10506. }
  10507. // ggml_compute_forward_out_prod
  10508. static void ggml_compute_forward_out_prod_f32(
  10509. const struct ggml_compute_params * params,
  10510. struct ggml_tensor * dst) {
  10511. const struct ggml_tensor * src0 = dst->src[0];
  10512. const struct ggml_tensor * src1 = dst->src[1];
  10513. // int64_t t0 = ggml_perf_time_us();
  10514. // UNUSED(t0);
  10515. GGML_TENSOR_BINARY_OP_LOCALS
  10516. const int ith = params->ith;
  10517. const int nth = params->nth;
  10518. GGML_ASSERT(ne0 == ne00);
  10519. GGML_ASSERT(ne1 == ne10);
  10520. GGML_ASSERT(ne2 == ne02);
  10521. GGML_ASSERT(ne02 == ne12);
  10522. GGML_ASSERT(ne3 == ne13);
  10523. GGML_ASSERT(ne03 == ne13);
  10524. // we don't support permuted src0 or src1
  10525. GGML_ASSERT(nb00 == sizeof(float));
  10526. // dst cannot be transposed or permuted
  10527. GGML_ASSERT(nb0 == sizeof(float));
  10528. // GGML_ASSERT(nb0 <= nb1);
  10529. // GGML_ASSERT(nb1 <= nb2);
  10530. // GGML_ASSERT(nb2 <= nb3);
  10531. // nb01 >= nb00 - src0 is not transposed
  10532. // compute by src0 rows
  10533. // TODO: #if defined(GGML_USE_CLBLAST)
  10534. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10535. bool use_blas = ggml_is_matrix(src0) &&
  10536. ggml_is_matrix(src1) &&
  10537. ggml_is_contiguous(src0) &&
  10538. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10539. #endif
  10540. if (params->type == GGML_TASK_TYPE_INIT) {
  10541. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10542. if (use_blas) {
  10543. return;
  10544. }
  10545. #endif
  10546. if (ith != 0) {
  10547. return;
  10548. }
  10549. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10550. return;
  10551. }
  10552. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10553. return;
  10554. }
  10555. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10556. if (use_blas) {
  10557. if (params->ith != 0) { // All threads other than the first do no work.
  10558. return;
  10559. }
  10560. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10561. // src0: (k,n)
  10562. // src1: (k,m)
  10563. // dst: (m,n)
  10564. //
  10565. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10566. // Also expressed as (major,minor)
  10567. // a: (m,k): so src1 transposed
  10568. // b: (k,n): so src0
  10569. // c: (m,n)
  10570. //
  10571. // However, if ggml_is_transposed(src1) is true, then
  10572. // src1->data already contains a transposed version, so sgemm mustn't
  10573. // transpose it further.
  10574. int n = src0->ne[0];
  10575. int k = src0->ne[1];
  10576. int m = src1->ne[0];
  10577. int transposeA, lda;
  10578. if (!ggml_is_transposed(src1)) {
  10579. transposeA = CblasTrans;
  10580. lda = m;
  10581. } else {
  10582. transposeA = CblasNoTrans;
  10583. lda = k;
  10584. }
  10585. float * a = (float *) ((char *) src1->data);
  10586. float * b = (float *) ((char *) src0->data);
  10587. float * c = (float *) ((char *) dst->data);
  10588. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10589. return;
  10590. }
  10591. #endif
  10592. // dst[:,:,:,:] = 0
  10593. // for i2,i3:
  10594. // for i1:
  10595. // for i01:
  10596. // for i0:
  10597. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10598. // parallelize by last three dimensions
  10599. // total rows in dst
  10600. const int64_t nr = ne1*ne2*ne3;
  10601. // rows per thread
  10602. const int64_t dr = (nr + nth - 1)/nth;
  10603. // row range for this thread
  10604. const int64_t ir0 = dr*ith;
  10605. const int64_t ir1 = MIN(ir0 + dr, nr);
  10606. // block-tiling attempt
  10607. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10608. const int64_t blck_1 = 16;
  10609. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10610. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10611. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10612. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10613. for (int64_t ir = bir; ir < bir1; ++ir) {
  10614. // dst indices
  10615. const int64_t i3 = ir/(ne2*ne1);
  10616. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10617. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10618. const int64_t i02 = i2;
  10619. const int64_t i03 = i3;
  10620. //const int64_t i10 = i1;
  10621. const int64_t i12 = i2;
  10622. const int64_t i13 = i3;
  10623. #if GGML_VEC_MAD_UNROLL > 2
  10624. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10625. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10626. const int64_t i11 = i01;
  10627. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10628. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10629. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10630. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10631. }
  10632. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10633. const int64_t i11 = i01;
  10634. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10635. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10636. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10637. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10638. }
  10639. #else
  10640. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10641. const int64_t i11 = i01;
  10642. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10643. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10644. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10645. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10646. }
  10647. #endif
  10648. }
  10649. }
  10650. }
  10651. //int64_t t1 = ggml_perf_time_us();
  10652. //static int64_t acc = 0;
  10653. //acc += t1 - t0;
  10654. //if (t1 - t0 > 10) {
  10655. // printf("\n");
  10656. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10657. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10658. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10659. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10660. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10661. //}
  10662. }
  10663. static void ggml_compute_forward_out_prod_q_f32(
  10664. const struct ggml_compute_params * params,
  10665. struct ggml_tensor * dst) {
  10666. const struct ggml_tensor * src0 = dst->src[0];
  10667. const struct ggml_tensor * src1 = dst->src[1];
  10668. // int64_t t0 = ggml_perf_time_us();
  10669. // UNUSED(t0);
  10670. GGML_TENSOR_BINARY_OP_LOCALS;
  10671. const int ith = params->ith;
  10672. const int nth = params->nth;
  10673. const enum ggml_type type = src0->type;
  10674. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10675. GGML_ASSERT(ne02 == ne12);
  10676. GGML_ASSERT(ne03 == ne13);
  10677. GGML_ASSERT(ne2 == ne12);
  10678. GGML_ASSERT(ne3 == ne13);
  10679. // we don't support permuted src0 dim0
  10680. GGML_ASSERT(nb00 == ggml_type_size(type));
  10681. // dst dim0 cannot be transposed or permuted
  10682. GGML_ASSERT(nb0 == sizeof(float));
  10683. // GGML_ASSERT(nb0 <= nb1);
  10684. // GGML_ASSERT(nb1 <= nb2);
  10685. // GGML_ASSERT(nb2 <= nb3);
  10686. GGML_ASSERT(ne0 == ne00);
  10687. GGML_ASSERT(ne1 == ne10);
  10688. GGML_ASSERT(ne2 == ne02);
  10689. GGML_ASSERT(ne3 == ne03);
  10690. // nb01 >= nb00 - src0 is not transposed
  10691. // compute by src0 rows
  10692. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10693. if (params->type == GGML_TASK_TYPE_INIT) {
  10694. if (ith != 0) {
  10695. return;
  10696. }
  10697. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10698. return;
  10699. }
  10700. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10701. return;
  10702. }
  10703. // parallelize by last three dimensions
  10704. // total rows in dst
  10705. const int64_t nr = ne1*ne2*ne3;
  10706. // rows per thread
  10707. const int64_t dr = (nr + nth - 1)/nth;
  10708. // row range for this thread
  10709. const int64_t ir0 = dr*ith;
  10710. const int64_t ir1 = MIN(ir0 + dr, nr);
  10711. // dst[:,:,:,:] = 0
  10712. // for i2,i3:
  10713. // for i1:
  10714. // for i01:
  10715. // for i0:
  10716. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10717. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10718. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10719. // dst indices
  10720. const int64_t i3 = ir/(ne2*ne1);
  10721. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10722. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10723. const int64_t i02 = i2;
  10724. const int64_t i03 = i3;
  10725. //const int64_t i10 = i1;
  10726. const int64_t i12 = i2;
  10727. const int64_t i13 = i3;
  10728. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10729. const int64_t i11 = i01;
  10730. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10731. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10732. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10733. dequantize_row_q(s0, wdata, ne0);
  10734. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10735. }
  10736. }
  10737. //int64_t t1 = ggml_perf_time_us();
  10738. //static int64_t acc = 0;
  10739. //acc += t1 - t0;
  10740. //if (t1 - t0 > 10) {
  10741. // printf("\n");
  10742. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10743. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10744. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10745. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10746. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10747. //}
  10748. }
  10749. static void ggml_compute_forward_out_prod(
  10750. const struct ggml_compute_params * params,
  10751. struct ggml_tensor * dst) {
  10752. const struct ggml_tensor * src0 = dst->src[0];
  10753. switch (src0->type) {
  10754. case GGML_TYPE_Q4_0:
  10755. case GGML_TYPE_Q4_1:
  10756. case GGML_TYPE_Q5_0:
  10757. case GGML_TYPE_Q5_1:
  10758. case GGML_TYPE_Q8_0:
  10759. case GGML_TYPE_Q2_K:
  10760. case GGML_TYPE_Q3_K:
  10761. case GGML_TYPE_Q4_K:
  10762. case GGML_TYPE_Q5_K:
  10763. case GGML_TYPE_Q6_K:
  10764. case GGML_TYPE_IQ2_XXS:
  10765. case GGML_TYPE_IQ2_XS:
  10766. case GGML_TYPE_IQ3_XXS:
  10767. case GGML_TYPE_IQ1_S:
  10768. case GGML_TYPE_IQ1_M:
  10769. case GGML_TYPE_IQ4_NL:
  10770. case GGML_TYPE_IQ4_XS:
  10771. case GGML_TYPE_IQ3_S:
  10772. case GGML_TYPE_IQ2_S:
  10773. {
  10774. ggml_compute_forward_out_prod_q_f32(params, dst);
  10775. } break;
  10776. case GGML_TYPE_F16:
  10777. {
  10778. GGML_ASSERT(false); // todo
  10779. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10780. } break;
  10781. case GGML_TYPE_F32:
  10782. {
  10783. ggml_compute_forward_out_prod_f32(params, dst);
  10784. } break;
  10785. default:
  10786. {
  10787. GGML_ASSERT(false);
  10788. } break;
  10789. }
  10790. }
  10791. // ggml_compute_forward_scale
  10792. static void ggml_compute_forward_scale_f32(
  10793. const struct ggml_compute_params * params,
  10794. struct ggml_tensor * dst) {
  10795. const struct ggml_tensor * src0 = dst->src[0];
  10796. GGML_ASSERT(ggml_is_contiguous(src0));
  10797. GGML_ASSERT(ggml_is_contiguous(dst));
  10798. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10799. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10800. return;
  10801. }
  10802. // scale factor
  10803. float v;
  10804. memcpy(&v, dst->op_params, sizeof(float));
  10805. const int ith = params->ith;
  10806. const int nth = params->nth;
  10807. const int nc = src0->ne[0];
  10808. const int nr = ggml_nrows(src0);
  10809. // rows per thread
  10810. const int dr = (nr + nth - 1)/nth;
  10811. // row range for this thread
  10812. const int ir0 = dr*ith;
  10813. const int ir1 = MIN(ir0 + dr, nr);
  10814. const size_t nb01 = src0->nb[1];
  10815. const size_t nb1 = dst->nb[1];
  10816. for (int i1 = ir0; i1 < ir1; i1++) {
  10817. if (dst->data != src0->data) {
  10818. // src0 is same shape as dst => same indices
  10819. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10820. }
  10821. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10822. }
  10823. }
  10824. static void ggml_compute_forward_scale(
  10825. const struct ggml_compute_params * params,
  10826. struct ggml_tensor * dst) {
  10827. const struct ggml_tensor * src0 = dst->src[0];
  10828. switch (src0->type) {
  10829. case GGML_TYPE_F32:
  10830. {
  10831. ggml_compute_forward_scale_f32(params, dst);
  10832. } break;
  10833. default:
  10834. {
  10835. GGML_ASSERT(false);
  10836. } break;
  10837. }
  10838. }
  10839. // ggml_compute_forward_set
  10840. static void ggml_compute_forward_set_f32(
  10841. const struct ggml_compute_params * params,
  10842. struct ggml_tensor * dst) {
  10843. const struct ggml_tensor * src0 = dst->src[0];
  10844. const struct ggml_tensor * src1 = dst->src[1];
  10845. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10846. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10847. // view src0 and dst with these strides and data offset inbytes during set
  10848. // nb0 is implicitly element_size because src0 and dst are contiguous
  10849. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10850. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10851. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10852. size_t offset = ((int32_t *) dst->op_params)[3];
  10853. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10854. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10855. if (params->ith != 0) {
  10856. return;
  10857. }
  10858. // memcpy needs to be synchronized across threads to avoid race conditions.
  10859. // => do it in INIT phase
  10860. memcpy(
  10861. ((char *) dst->data),
  10862. ((char *) src0->data),
  10863. ggml_nbytes(dst));
  10864. }
  10865. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10866. return;
  10867. }
  10868. const int ith = params->ith;
  10869. const int nth = params->nth;
  10870. const int nr = ggml_nrows(src1);
  10871. const int nc = src1->ne[0];
  10872. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10873. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10874. // src0 and dst as viewed during set
  10875. const size_t nb0 = ggml_element_size(src0);
  10876. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10877. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10878. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10879. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10880. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10881. GGML_ASSERT(nb10 == sizeof(float));
  10882. // rows per thread
  10883. const int dr = (nr + nth - 1)/nth;
  10884. // row range for this thread
  10885. const int ir0 = dr*ith;
  10886. const int ir1 = MIN(ir0 + dr, nr);
  10887. for (int ir = ir0; ir < ir1; ++ir) {
  10888. // src0 and dst are viewed with shape of src1 and offset
  10889. // => same indices
  10890. const int i3 = ir/(ne12*ne11);
  10891. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10892. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10893. ggml_vec_cpy_f32(nc,
  10894. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10895. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10896. }
  10897. }
  10898. static void ggml_compute_forward_set(
  10899. const struct ggml_compute_params * params,
  10900. struct ggml_tensor * dst) {
  10901. const struct ggml_tensor * src0 = dst->src[0];
  10902. switch (src0->type) {
  10903. case GGML_TYPE_F32:
  10904. {
  10905. ggml_compute_forward_set_f32(params, dst);
  10906. } break;
  10907. case GGML_TYPE_F16:
  10908. case GGML_TYPE_BF16:
  10909. case GGML_TYPE_Q4_0:
  10910. case GGML_TYPE_Q4_1:
  10911. case GGML_TYPE_Q5_0:
  10912. case GGML_TYPE_Q5_1:
  10913. case GGML_TYPE_Q8_0:
  10914. case GGML_TYPE_Q8_1:
  10915. case GGML_TYPE_Q2_K:
  10916. case GGML_TYPE_Q3_K:
  10917. case GGML_TYPE_Q4_K:
  10918. case GGML_TYPE_Q5_K:
  10919. case GGML_TYPE_Q6_K:
  10920. case GGML_TYPE_IQ2_XXS:
  10921. case GGML_TYPE_IQ2_XS:
  10922. case GGML_TYPE_IQ3_XXS:
  10923. case GGML_TYPE_IQ1_S:
  10924. case GGML_TYPE_IQ1_M:
  10925. case GGML_TYPE_IQ4_NL:
  10926. case GGML_TYPE_IQ4_XS:
  10927. case GGML_TYPE_IQ3_S:
  10928. case GGML_TYPE_IQ2_S:
  10929. default:
  10930. {
  10931. GGML_ASSERT(false);
  10932. } break;
  10933. }
  10934. }
  10935. // ggml_compute_forward_cpy
  10936. static void ggml_compute_forward_cpy(
  10937. const struct ggml_compute_params * params,
  10938. struct ggml_tensor * dst) {
  10939. ggml_compute_forward_dup(params, dst);
  10940. }
  10941. // ggml_compute_forward_cont
  10942. static void ggml_compute_forward_cont(
  10943. const struct ggml_compute_params * params,
  10944. struct ggml_tensor * dst) {
  10945. ggml_compute_forward_dup(params, dst);
  10946. }
  10947. // ggml_compute_forward_reshape
  10948. static void ggml_compute_forward_reshape(
  10949. const struct ggml_compute_params * params,
  10950. struct ggml_tensor * dst) {
  10951. // NOP
  10952. UNUSED(params);
  10953. UNUSED(dst);
  10954. }
  10955. // ggml_compute_forward_view
  10956. static void ggml_compute_forward_view(
  10957. const struct ggml_compute_params * params,
  10958. const struct ggml_tensor * dst) {
  10959. // NOP
  10960. UNUSED(params);
  10961. UNUSED(dst);
  10962. }
  10963. // ggml_compute_forward_permute
  10964. static void ggml_compute_forward_permute(
  10965. const struct ggml_compute_params * params,
  10966. const struct ggml_tensor * dst) {
  10967. // NOP
  10968. UNUSED(params);
  10969. UNUSED(dst);
  10970. }
  10971. // ggml_compute_forward_transpose
  10972. static void ggml_compute_forward_transpose(
  10973. const struct ggml_compute_params * params,
  10974. const struct ggml_tensor * dst) {
  10975. // NOP
  10976. UNUSED(params);
  10977. UNUSED(dst);
  10978. }
  10979. // ggml_compute_forward_get_rows
  10980. static void ggml_compute_forward_get_rows_q(
  10981. const struct ggml_compute_params * params,
  10982. struct ggml_tensor * dst) {
  10983. const struct ggml_tensor * src0 = dst->src[0];
  10984. const struct ggml_tensor * src1 = dst->src[1];
  10985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10986. return;
  10987. }
  10988. GGML_TENSOR_BINARY_OP_LOCALS
  10989. const int64_t nc = ne00;
  10990. const int64_t nr = ggml_nelements(src1);
  10991. const enum ggml_type type = src0->type;
  10992. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10993. assert(ne0 == nc);
  10994. assert(ne02 == ne11);
  10995. assert(nb00 == ggml_type_size(type));
  10996. assert(ggml_nrows(dst) == nr);
  10997. const int ith = params->ith;
  10998. const int nth = params->nth;
  10999. // rows per thread
  11000. const int dr = (nr + nth - 1)/nth;
  11001. // row range for this thread
  11002. const int ir0 = dr*ith;
  11003. const int ir1 = MIN(ir0 + dr, nr);
  11004. for (int64_t i = ir0; i < ir1; ++i) {
  11005. const int64_t i12 = i/(ne11*ne10);
  11006. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11007. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11008. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11009. dequantize_row_q(
  11010. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11011. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11012. }
  11013. }
  11014. static void ggml_compute_forward_get_rows_f16(
  11015. const struct ggml_compute_params * params,
  11016. struct ggml_tensor * dst) {
  11017. const struct ggml_tensor * src0 = dst->src[0];
  11018. const struct ggml_tensor * src1 = dst->src[1];
  11019. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11020. return;
  11021. }
  11022. GGML_TENSOR_BINARY_OP_LOCALS
  11023. const int64_t nc = ne00;
  11024. const int64_t nr = ggml_nelements(src1);
  11025. assert(ne0 == nc);
  11026. assert(ne02 == ne11);
  11027. assert(nb00 == sizeof(ggml_fp16_t));
  11028. assert(ggml_nrows(dst) == nr);
  11029. const int ith = params->ith;
  11030. const int nth = params->nth;
  11031. // rows per thread
  11032. const int dr = (nr + nth - 1)/nth;
  11033. // row range for this thread
  11034. const int ir0 = dr*ith;
  11035. const int ir1 = MIN(ir0 + dr, nr);
  11036. for (int64_t i = ir0; i < ir1; ++i) {
  11037. const int64_t i12 = i/(ne11*ne10);
  11038. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11039. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11040. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11041. ggml_fp16_to_fp32_row(
  11042. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11043. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11044. }
  11045. }
  11046. static void ggml_compute_forward_get_rows_bf16(
  11047. const struct ggml_compute_params * params,
  11048. struct ggml_tensor * dst) {
  11049. const struct ggml_tensor * src0 = dst->src[0];
  11050. const struct ggml_tensor * src1 = dst->src[1];
  11051. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11052. return;
  11053. }
  11054. GGML_TENSOR_BINARY_OP_LOCALS
  11055. const int64_t nc = ne00;
  11056. const int64_t nr = ggml_nelements(src1);
  11057. assert(ne0 == nc);
  11058. assert(ne02 == ne11);
  11059. assert(nb00 == sizeof(ggml_bf16_t));
  11060. assert(ggml_nrows(dst) == nr);
  11061. const int ith = params->ith;
  11062. const int nth = params->nth;
  11063. // rows per thread
  11064. const int dr = (nr + nth - 1)/nth;
  11065. // row range for this thread
  11066. const int ir0 = dr*ith;
  11067. const int ir1 = MIN(ir0 + dr, nr);
  11068. for (int64_t i = ir0; i < ir1; ++i) {
  11069. const int64_t i12 = i/(ne11*ne10);
  11070. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11071. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11072. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11073. ggml_bf16_to_fp32_row(
  11074. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11075. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11076. }
  11077. }
  11078. static void ggml_compute_forward_get_rows_f32(
  11079. const struct ggml_compute_params * params,
  11080. struct ggml_tensor * dst) {
  11081. const struct ggml_tensor * src0 = dst->src[0];
  11082. const struct ggml_tensor * src1 = dst->src[1];
  11083. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11084. return;
  11085. }
  11086. GGML_TENSOR_BINARY_OP_LOCALS
  11087. const int64_t nc = ne00;
  11088. const int64_t nr = ggml_nelements(src1);
  11089. assert(ne0 == nc);
  11090. assert(ne02 == ne11);
  11091. assert(nb00 == sizeof(float));
  11092. assert(ggml_nrows(dst) == nr);
  11093. const int ith = params->ith;
  11094. const int nth = params->nth;
  11095. // rows per thread
  11096. const int dr = (nr + nth - 1)/nth;
  11097. // row range for this thread
  11098. const int ir0 = dr*ith;
  11099. const int ir1 = MIN(ir0 + dr, nr);
  11100. for (int64_t i = ir0; i < ir1; ++i) {
  11101. const int64_t i12 = i/(ne11*ne10);
  11102. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11103. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11104. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11105. ggml_vec_cpy_f32(nc,
  11106. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11107. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11108. }
  11109. }
  11110. static void ggml_compute_forward_get_rows(
  11111. const struct ggml_compute_params * params,
  11112. struct ggml_tensor * dst) {
  11113. const struct ggml_tensor * src0 = dst->src[0];
  11114. switch (src0->type) {
  11115. case GGML_TYPE_Q4_0:
  11116. case GGML_TYPE_Q4_1:
  11117. case GGML_TYPE_Q5_0:
  11118. case GGML_TYPE_Q5_1:
  11119. case GGML_TYPE_Q8_0:
  11120. case GGML_TYPE_Q8_1:
  11121. case GGML_TYPE_Q2_K:
  11122. case GGML_TYPE_Q3_K:
  11123. case GGML_TYPE_Q4_K:
  11124. case GGML_TYPE_Q5_K:
  11125. case GGML_TYPE_Q6_K:
  11126. case GGML_TYPE_IQ2_XXS:
  11127. case GGML_TYPE_IQ2_XS:
  11128. case GGML_TYPE_IQ3_XXS:
  11129. case GGML_TYPE_IQ1_S:
  11130. case GGML_TYPE_IQ1_M:
  11131. case GGML_TYPE_IQ4_NL:
  11132. case GGML_TYPE_IQ4_XS:
  11133. case GGML_TYPE_IQ3_S:
  11134. case GGML_TYPE_IQ2_S:
  11135. {
  11136. ggml_compute_forward_get_rows_q(params, dst);
  11137. } break;
  11138. case GGML_TYPE_F16:
  11139. {
  11140. ggml_compute_forward_get_rows_f16(params, dst);
  11141. } break;
  11142. case GGML_TYPE_BF16:
  11143. {
  11144. ggml_compute_forward_get_rows_bf16(params, dst);
  11145. } break;
  11146. case GGML_TYPE_F32:
  11147. case GGML_TYPE_I32:
  11148. {
  11149. ggml_compute_forward_get_rows_f32(params, dst);
  11150. } break;
  11151. default:
  11152. {
  11153. GGML_ASSERT(false);
  11154. } break;
  11155. }
  11156. //static bool first = true;
  11157. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11158. //if (first) {
  11159. // first = false;
  11160. //} else {
  11161. // for (int k = 0; k < dst->ne[1]; ++k) {
  11162. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11163. // for (int i = 0; i < 16; ++i) {
  11164. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11165. // }
  11166. // printf("\n");
  11167. // }
  11168. // printf("\n");
  11169. // }
  11170. // printf("\n");
  11171. // exit(0);
  11172. //}
  11173. }
  11174. // ggml_compute_forward_get_rows_back
  11175. static void ggml_compute_forward_get_rows_back_f32_f16(
  11176. const struct ggml_compute_params * params,
  11177. struct ggml_tensor * dst) {
  11178. const struct ggml_tensor * src0 = dst->src[0];
  11179. const struct ggml_tensor * src1 = dst->src[1];
  11180. GGML_ASSERT(params->ith == 0);
  11181. GGML_ASSERT(ggml_is_contiguous(dst));
  11182. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11183. if (params->type == GGML_TASK_TYPE_INIT) {
  11184. if (params->ith != 0) {
  11185. return;
  11186. }
  11187. memset(dst->data, 0, ggml_nbytes(dst));
  11188. }
  11189. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11190. return;
  11191. }
  11192. const int nc = src0->ne[0];
  11193. const int nr = ggml_nelements(src1);
  11194. GGML_ASSERT( dst->ne[0] == nc);
  11195. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11196. for (int i = 0; i < nr; ++i) {
  11197. const int r = ((int32_t *) src1->data)[i];
  11198. for (int j = 0; j < nc; ++j) {
  11199. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11200. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11201. }
  11202. }
  11203. }
  11204. static void ggml_compute_forward_get_rows_back_f32(
  11205. const struct ggml_compute_params * params,
  11206. struct ggml_tensor * dst) {
  11207. const struct ggml_tensor * src0 = dst->src[0];
  11208. const struct ggml_tensor * src1 = dst->src[1];
  11209. GGML_ASSERT(params->ith == 0);
  11210. GGML_ASSERT(ggml_is_contiguous(dst));
  11211. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11212. if (params->type == GGML_TASK_TYPE_INIT) {
  11213. if (params->ith != 0) {
  11214. return;
  11215. }
  11216. memset(dst->data, 0, ggml_nbytes(dst));
  11217. }
  11218. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11219. return;
  11220. }
  11221. const int nc = src0->ne[0];
  11222. const int nr = ggml_nelements(src1);
  11223. GGML_ASSERT( dst->ne[0] == nc);
  11224. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11225. for (int i = 0; i < nr; ++i) {
  11226. const int r = ((int32_t *) src1->data)[i];
  11227. ggml_vec_add_f32(nc,
  11228. (float *) ((char *) dst->data + r*dst->nb[1]),
  11229. (float *) ((char *) dst->data + r*dst->nb[1]),
  11230. (float *) ((char *) src0->data + i*src0->nb[1]));
  11231. }
  11232. }
  11233. static void ggml_compute_forward_get_rows_back(
  11234. const struct ggml_compute_params * params,
  11235. struct ggml_tensor * dst) {
  11236. const struct ggml_tensor * src0 = dst->src[0];
  11237. switch (src0->type) {
  11238. case GGML_TYPE_F16:
  11239. {
  11240. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11241. } break;
  11242. case GGML_TYPE_F32:
  11243. {
  11244. ggml_compute_forward_get_rows_back_f32(params, dst);
  11245. } break;
  11246. default:
  11247. {
  11248. GGML_ASSERT(false);
  11249. } break;
  11250. }
  11251. //static bool first = true;
  11252. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11253. //if (first) {
  11254. // first = false;
  11255. //} else {
  11256. // for (int k = 0; k < dst->ne[1]; ++k) {
  11257. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11258. // for (int i = 0; i < 16; ++i) {
  11259. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11260. // }
  11261. // printf("\n");
  11262. // }
  11263. // printf("\n");
  11264. // }
  11265. // printf("\n");
  11266. // exit(0);
  11267. //}
  11268. }
  11269. // ggml_compute_forward_diag
  11270. static void ggml_compute_forward_diag_f32(
  11271. const struct ggml_compute_params * params,
  11272. struct ggml_tensor * dst) {
  11273. const struct ggml_tensor * src0 = dst->src[0];
  11274. GGML_ASSERT(params->ith == 0);
  11275. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11276. return;
  11277. }
  11278. // TODO: handle transposed/permuted matrices
  11279. GGML_TENSOR_UNARY_OP_LOCALS
  11280. GGML_ASSERT(ne00 == ne0);
  11281. GGML_ASSERT(ne00 == ne1);
  11282. GGML_ASSERT(ne01 == 1);
  11283. GGML_ASSERT(ne02 == ne2);
  11284. GGML_ASSERT(ne03 == ne3);
  11285. GGML_ASSERT(nb00 == sizeof(float));
  11286. GGML_ASSERT(nb0 == sizeof(float));
  11287. for (int i3 = 0; i3 < ne3; i3++) {
  11288. for (int i2 = 0; i2 < ne2; i2++) {
  11289. for (int i1 = 0; i1 < ne1; i1++) {
  11290. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11291. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11292. for (int i0 = 0; i0 < i1; i0++) {
  11293. d[i0] = 0;
  11294. }
  11295. d[i1] = s[i1];
  11296. for (int i0 = i1+1; i0 < ne0; i0++) {
  11297. d[i0] = 0;
  11298. }
  11299. }
  11300. }
  11301. }
  11302. }
  11303. static void ggml_compute_forward_diag(
  11304. const struct ggml_compute_params * params,
  11305. struct ggml_tensor * dst) {
  11306. const struct ggml_tensor * src0 = dst->src[0];
  11307. switch (src0->type) {
  11308. case GGML_TYPE_F32:
  11309. {
  11310. ggml_compute_forward_diag_f32(params, dst);
  11311. } break;
  11312. default:
  11313. {
  11314. GGML_ASSERT(false);
  11315. } break;
  11316. }
  11317. }
  11318. // ggml_compute_forward_diag_mask_inf
  11319. static void ggml_compute_forward_diag_mask_f32(
  11320. const struct ggml_compute_params * params,
  11321. struct ggml_tensor * dst,
  11322. const float value) {
  11323. const struct ggml_tensor * src0 = dst->src[0];
  11324. const int ith = params->ith;
  11325. const int nth = params->nth;
  11326. const int n_past = ((int32_t *) dst->op_params)[0];
  11327. const bool inplace = src0->data == dst->data;
  11328. GGML_ASSERT(n_past >= 0);
  11329. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11330. if (ith != 0) {
  11331. return;
  11332. }
  11333. // memcpy needs to be synchronized across threads to avoid race conditions.
  11334. // => do it in INIT phase
  11335. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11336. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11337. memcpy(
  11338. ((char *) dst->data),
  11339. ((char *) src0->data),
  11340. ggml_nbytes(dst));
  11341. }
  11342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11343. return;
  11344. }
  11345. // TODO: handle transposed/permuted matrices
  11346. const int n = ggml_nrows(src0);
  11347. const int nc = src0->ne[0];
  11348. const int nr = src0->ne[1];
  11349. const int nz = n/nr;
  11350. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11351. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11352. for (int k = 0; k < nz; k++) {
  11353. for (int j = ith; j < nr; j += nth) {
  11354. for (int i = n_past; i < nc; i++) {
  11355. if (i > n_past + j) {
  11356. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11357. }
  11358. }
  11359. }
  11360. }
  11361. }
  11362. static void ggml_compute_forward_diag_mask_inf(
  11363. const struct ggml_compute_params * params,
  11364. struct ggml_tensor * dst) {
  11365. const struct ggml_tensor * src0 = dst->src[0];
  11366. switch (src0->type) {
  11367. case GGML_TYPE_F32:
  11368. {
  11369. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11370. } break;
  11371. default:
  11372. {
  11373. GGML_ASSERT(false);
  11374. } break;
  11375. }
  11376. }
  11377. static void ggml_compute_forward_diag_mask_zero(
  11378. const struct ggml_compute_params * params,
  11379. struct ggml_tensor * dst) {
  11380. const struct ggml_tensor * src0 = dst->src[0];
  11381. switch (src0->type) {
  11382. case GGML_TYPE_F32:
  11383. {
  11384. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11385. } break;
  11386. default:
  11387. {
  11388. GGML_ASSERT(false);
  11389. } break;
  11390. }
  11391. }
  11392. // ggml_compute_forward_soft_max
  11393. static void ggml_compute_forward_soft_max_f32(
  11394. const struct ggml_compute_params * params,
  11395. struct ggml_tensor * dst) {
  11396. const struct ggml_tensor * src0 = dst->src[0];
  11397. const struct ggml_tensor * src1 = dst->src[1];
  11398. assert(ggml_is_contiguous(dst));
  11399. assert(ggml_are_same_shape(src0, dst));
  11400. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11401. return;
  11402. }
  11403. float scale = 1.0f;
  11404. float max_bias = 0.0f;
  11405. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11406. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11407. // TODO: handle transposed/permuted matrices
  11408. const int ith = params->ith;
  11409. const int nth = params->nth;
  11410. GGML_TENSOR_UNARY_OP_LOCALS
  11411. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11412. // TODO: is this supposed to be ceil instead of floor?
  11413. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11414. const uint32_t n_head = ne02;
  11415. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11416. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11417. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11418. const int nc = src0->ne[0];
  11419. const int nr = ggml_nrows(src0);
  11420. // rows per thread
  11421. const int dr = (nr + nth - 1)/nth;
  11422. // row range for this thread
  11423. const int ir0 = dr*ith;
  11424. const int ir1 = MIN(ir0 + dr, nr);
  11425. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11426. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11427. for (int i1 = ir0; i1 < ir1; i1++) {
  11428. // ALiBi
  11429. const uint32_t h = (i1/ne01)%ne02; // head
  11430. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11431. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11432. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11433. // broadcast the mask across rows
  11434. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11435. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11436. ggml_vec_cpy_f32 (nc, wp, sp);
  11437. ggml_vec_scale_f32(nc, wp, scale);
  11438. if (mp_f32) {
  11439. if (use_f16) {
  11440. for (int i = 0; i < nc; ++i) {
  11441. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11442. }
  11443. } else {
  11444. for (int i = 0; i < nc; ++i) {
  11445. wp[i] += slope*mp_f32[i];
  11446. }
  11447. }
  11448. }
  11449. #ifndef NDEBUG
  11450. for (int i = 0; i < nc; ++i) {
  11451. //printf("p[%d] = %f\n", i, p[i]);
  11452. assert(!isnan(wp[i]));
  11453. }
  11454. #endif
  11455. float max = -INFINITY;
  11456. ggml_vec_max_f32(nc, &max, wp);
  11457. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11458. assert(sum > 0.0);
  11459. sum = 1.0/sum;
  11460. ggml_vec_scale_f32(nc, dp, sum);
  11461. #ifndef NDEBUG
  11462. for (int i = 0; i < nc; ++i) {
  11463. assert(!isnan(dp[i]));
  11464. assert(!isinf(dp[i]));
  11465. }
  11466. #endif
  11467. }
  11468. }
  11469. static void ggml_compute_forward_soft_max(
  11470. const struct ggml_compute_params * params,
  11471. struct ggml_tensor * dst) {
  11472. const struct ggml_tensor * src0 = dst->src[0];
  11473. switch (src0->type) {
  11474. case GGML_TYPE_F32:
  11475. {
  11476. ggml_compute_forward_soft_max_f32(params, dst);
  11477. } break;
  11478. default:
  11479. {
  11480. GGML_ASSERT(false);
  11481. } break;
  11482. }
  11483. }
  11484. // ggml_compute_forward_soft_max_back
  11485. static void ggml_compute_forward_soft_max_back_f32(
  11486. const struct ggml_compute_params * params,
  11487. struct ggml_tensor * dst) {
  11488. const struct ggml_tensor * src0 = dst->src[0];
  11489. const struct ggml_tensor * src1 = dst->src[1];
  11490. GGML_ASSERT(ggml_is_contiguous(src0));
  11491. GGML_ASSERT(ggml_is_contiguous(src1));
  11492. GGML_ASSERT(ggml_is_contiguous(dst));
  11493. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11494. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11495. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11496. return;
  11497. }
  11498. // TODO: handle transposed/permuted matrices
  11499. const int ith = params->ith;
  11500. const int nth = params->nth;
  11501. const int nc = src0->ne[0];
  11502. const int nr = ggml_nrows(src0);
  11503. // rows per thread
  11504. const int dr = (nr + nth - 1)/nth;
  11505. // row range for this thread
  11506. const int ir0 = dr*ith;
  11507. const int ir1 = MIN(ir0 + dr, nr);
  11508. for (int i1 = ir0; i1 < ir1; i1++) {
  11509. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11510. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11511. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11512. #ifndef NDEBUG
  11513. for (int i = 0; i < nc; ++i) {
  11514. //printf("p[%d] = %f\n", i, p[i]);
  11515. assert(!isnan(dy[i]));
  11516. assert(!isnan(y[i]));
  11517. }
  11518. #endif
  11519. // Jii = yi - yi*yi
  11520. // Jij = -yi*yj
  11521. // J = diag(y)-y.T*y
  11522. // dx = J * dy
  11523. // dxk = sum_i(Jki * dyi)
  11524. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11525. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11526. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11527. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11528. // dxk = -yk * dot(y, dy) + yk*dyk
  11529. // dxk = yk * (- dot(y, dy) + dyk)
  11530. // dxk = yk * (dyk - dot(y, dy))
  11531. //
  11532. // post-order:
  11533. // dot_y_dy := dot(y, dy)
  11534. // dx := dy
  11535. // dx := dx - dot_y_dy
  11536. // dx := dx * y
  11537. // linear runtime, no additional memory
  11538. float dot_y_dy = 0;
  11539. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11540. ggml_vec_cpy_f32 (nc, dx, dy);
  11541. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11542. ggml_vec_mul_f32 (nc, dx, dx, y);
  11543. #ifndef NDEBUG
  11544. for (int i = 0; i < nc; ++i) {
  11545. assert(!isnan(dx[i]));
  11546. assert(!isinf(dx[i]));
  11547. }
  11548. #endif
  11549. }
  11550. }
  11551. static void ggml_compute_forward_soft_max_back(
  11552. const struct ggml_compute_params * params,
  11553. struct ggml_tensor * dst) {
  11554. const struct ggml_tensor * src0 = dst->src[0];
  11555. switch (src0->type) {
  11556. case GGML_TYPE_F32:
  11557. {
  11558. ggml_compute_forward_soft_max_back_f32(params, dst);
  11559. } break;
  11560. default:
  11561. {
  11562. GGML_ASSERT(false);
  11563. } break;
  11564. }
  11565. }
  11566. // ggml_compute_forward_clamp
  11567. static void ggml_compute_forward_clamp_f32(
  11568. const struct ggml_compute_params * params,
  11569. struct ggml_tensor * dst) {
  11570. const struct ggml_tensor * src0 = dst->src[0];
  11571. assert(params->ith == 0);
  11572. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11573. return;
  11574. }
  11575. float min;
  11576. float max;
  11577. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11578. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11579. const int ith = params->ith;
  11580. const int nth = params->nth;
  11581. const int n = ggml_nrows(src0);
  11582. const int nc = src0->ne[0];
  11583. const size_t nb00 = src0->nb[0];
  11584. const size_t nb01 = src0->nb[1];
  11585. const size_t nb0 = dst->nb[0];
  11586. const size_t nb1 = dst->nb[1];
  11587. GGML_ASSERT( nb0 == sizeof(float));
  11588. GGML_ASSERT(nb00 == sizeof(float));
  11589. for (int j = ith; j < n; j += nth) {
  11590. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11591. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11592. for (int i = 0; i < nc; i++) {
  11593. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11594. }
  11595. }
  11596. }
  11597. static void ggml_compute_forward_clamp(
  11598. const struct ggml_compute_params * params,
  11599. struct ggml_tensor * dst) {
  11600. const struct ggml_tensor * src0 = dst->src[0];
  11601. switch (src0->type) {
  11602. case GGML_TYPE_F32:
  11603. {
  11604. ggml_compute_forward_clamp_f32(params, dst);
  11605. } break;
  11606. case GGML_TYPE_F16:
  11607. case GGML_TYPE_BF16:
  11608. case GGML_TYPE_Q4_0:
  11609. case GGML_TYPE_Q4_1:
  11610. case GGML_TYPE_Q5_0:
  11611. case GGML_TYPE_Q5_1:
  11612. case GGML_TYPE_Q8_0:
  11613. case GGML_TYPE_Q8_1:
  11614. case GGML_TYPE_Q2_K:
  11615. case GGML_TYPE_Q3_K:
  11616. case GGML_TYPE_Q4_K:
  11617. case GGML_TYPE_Q5_K:
  11618. case GGML_TYPE_Q6_K:
  11619. case GGML_TYPE_IQ2_XXS:
  11620. case GGML_TYPE_IQ2_XS:
  11621. case GGML_TYPE_IQ3_XXS:
  11622. case GGML_TYPE_IQ1_S:
  11623. case GGML_TYPE_IQ1_M:
  11624. case GGML_TYPE_IQ4_NL:
  11625. case GGML_TYPE_IQ4_XS:
  11626. case GGML_TYPE_IQ3_S:
  11627. case GGML_TYPE_IQ2_S:
  11628. case GGML_TYPE_Q8_K:
  11629. case GGML_TYPE_I8:
  11630. case GGML_TYPE_I16:
  11631. case GGML_TYPE_I32:
  11632. case GGML_TYPE_I64:
  11633. case GGML_TYPE_F64:
  11634. case GGML_TYPE_COUNT:
  11635. {
  11636. GGML_ASSERT(false);
  11637. } break;
  11638. }
  11639. }
  11640. // ggml_compute_forward_rope
  11641. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11642. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11643. return 1 - MIN(1, MAX(0, y));
  11644. }
  11645. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11646. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11647. static void rope_yarn(
  11648. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11649. float * cos_theta, float * sin_theta
  11650. ) {
  11651. // Get n-d rotational scaling corrected for extrapolation
  11652. float theta_interp = freq_scale * theta_extrap;
  11653. float theta = theta_interp;
  11654. if (ext_factor != 0.0f) {
  11655. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11656. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11657. // Get n-d magnitude scaling corrected for interpolation
  11658. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11659. }
  11660. *cos_theta = cosf(theta) * mscale;
  11661. *sin_theta = sinf(theta) * mscale;
  11662. }
  11663. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11664. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11665. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11666. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11667. }
  11668. static void ggml_rope_cache_init(
  11669. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11670. float * cache, float sin_sign, float theta_scale
  11671. ) {
  11672. float theta = theta_base;
  11673. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11674. rope_yarn(
  11675. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11676. );
  11677. cache[i0 + 1] *= sin_sign;
  11678. theta *= theta_scale;
  11679. }
  11680. }
  11681. GGML_CALL void ggml_rope_yarn_corr_dims(
  11682. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11683. ) {
  11684. // start and end correction dims
  11685. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11686. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11687. dims[0] = MAX(0, start);
  11688. dims[1] = MIN(n_dims - 1, end);
  11689. }
  11690. static void ggml_compute_forward_rope_f32(
  11691. const struct ggml_compute_params * params,
  11692. struct ggml_tensor * dst,
  11693. const bool forward) {
  11694. const struct ggml_tensor * src0 = dst->src[0];
  11695. const struct ggml_tensor * src1 = dst->src[1];
  11696. const struct ggml_tensor * src2 = dst->src[2];
  11697. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11698. return;
  11699. }
  11700. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11701. // these two only relevant for xPos RoPE:
  11702. float xpos_base;
  11703. bool xpos_down;
  11704. //const int n_past = ((int32_t *) dst->op_params)[0];
  11705. const int n_dims = ((int32_t *) dst->op_params)[1];
  11706. const int mode = ((int32_t *) dst->op_params)[2];
  11707. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11708. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11709. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11710. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11711. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11712. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11713. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11714. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11715. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11716. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11717. GGML_TENSOR_UNARY_OP_LOCALS
  11718. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11719. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11720. GGML_ASSERT(nb00 == sizeof(float));
  11721. const int ith = params->ith;
  11722. const int nth = params->nth;
  11723. const int nr = ggml_nrows(dst);
  11724. GGML_ASSERT(n_dims <= ne0);
  11725. GGML_ASSERT(n_dims % 2 == 0);
  11726. // rows per thread
  11727. const int dr = (nr + nth - 1)/nth;
  11728. // row range for this thread
  11729. const int ir0 = dr*ith;
  11730. const int ir1 = MIN(ir0 + dr, nr);
  11731. // row index used to determine which thread to use
  11732. int ir = 0;
  11733. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11734. float corr_dims[2];
  11735. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11736. const bool is_neox = mode & 2;
  11737. const bool is_glm = mode & 4;
  11738. const float * freq_factors = NULL;
  11739. if (is_neox) {
  11740. if (src2 != NULL) {
  11741. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11742. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11743. freq_factors = (const float *) src2->data;
  11744. }
  11745. } else {
  11746. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11747. }
  11748. // backward process uses inverse rotation by cos and sin.
  11749. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11750. // this essentially just switches the sign of sin.
  11751. const float sin_sign = forward ? 1.0f : -1.0f;
  11752. const int32_t * pos = (const int32_t *) src1->data;
  11753. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11754. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11755. const int64_t p = pos[i2];
  11756. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11757. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11758. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11759. }
  11760. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11761. if (ir++ < ir0) continue;
  11762. if (ir > ir1) break;
  11763. float theta_base = (float)p;
  11764. if (is_glm) {
  11765. theta_base = MIN(p, n_ctx - 2);
  11766. float block_theta = MAX(p - (n_ctx - 2), 0);
  11767. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11768. const float cos_theta = cosf(theta_base);
  11769. const float sin_theta = sinf(theta_base) * sin_sign;
  11770. const float cos_block_theta = cosf(block_theta);
  11771. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11772. theta_base *= theta_scale;
  11773. block_theta *= theta_scale;
  11774. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11775. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11776. const float x0 = src[0];
  11777. const float x1 = src[n_dims/2];
  11778. const float x2 = src[n_dims];
  11779. const float x3 = src[n_dims/2*3];
  11780. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11781. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11782. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11783. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11784. }
  11785. } else if (!is_neox) {
  11786. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11787. const float cos_theta = cache[i0 + 0];
  11788. const float sin_theta = cache[i0 + 1];
  11789. // zeta scaling for xPos only:
  11790. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11791. if (xpos_down) zeta = 1.0f / zeta;
  11792. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11793. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11794. const float x0 = src[0];
  11795. const float x1 = src[1];
  11796. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11797. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11798. }
  11799. } else {
  11800. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11801. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11802. if (ic < n_dims) {
  11803. const int64_t i0 = ic/2;
  11804. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11805. float cos_theta, sin_theta;
  11806. rope_yarn(
  11807. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11808. &cos_theta, &sin_theta
  11809. );
  11810. sin_theta *= sin_sign;
  11811. theta_base *= theta_scale;
  11812. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11813. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11814. const float x0 = src[0];
  11815. const float x1 = src[n_dims/2];
  11816. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11817. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11818. } else {
  11819. const int64_t i0 = ic;
  11820. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11821. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11822. dst_data[0] = src[0];
  11823. dst_data[1] = src[1];
  11824. }
  11825. }
  11826. }
  11827. }
  11828. }
  11829. }
  11830. }
  11831. // TODO: deduplicate f16/f32 code
  11832. static void ggml_compute_forward_rope_f16(
  11833. const struct ggml_compute_params * params,
  11834. struct ggml_tensor * dst,
  11835. const bool forward) {
  11836. const struct ggml_tensor * src0 = dst->src[0];
  11837. const struct ggml_tensor * src1 = dst->src[1];
  11838. const struct ggml_tensor * src2 = dst->src[2];
  11839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11840. return;
  11841. }
  11842. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11843. //const int n_past = ((int32_t *) dst->op_params)[0];
  11844. const int n_dims = ((int32_t *) dst->op_params)[1];
  11845. const int mode = ((int32_t *) dst->op_params)[2];
  11846. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11847. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11848. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11849. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11850. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11851. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11852. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11853. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11854. GGML_TENSOR_UNARY_OP_LOCALS
  11855. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11856. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11857. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11858. const int ith = params->ith;
  11859. const int nth = params->nth;
  11860. const int nr = ggml_nrows(dst);
  11861. GGML_ASSERT(n_dims <= ne0);
  11862. GGML_ASSERT(n_dims % 2 == 0);
  11863. // rows per thread
  11864. const int dr = (nr + nth - 1)/nth;
  11865. // row range for this thread
  11866. const int ir0 = dr*ith;
  11867. const int ir1 = MIN(ir0 + dr, nr);
  11868. // row index used to determine which thread to use
  11869. int ir = 0;
  11870. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11871. float corr_dims[2];
  11872. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11873. const bool is_neox = mode & 2;
  11874. const bool is_glm = mode & 4;
  11875. const float * freq_factors = NULL;
  11876. if (is_neox) {
  11877. if (src2 != NULL) {
  11878. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11879. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11880. freq_factors = (const float *) src2->data;
  11881. }
  11882. } else {
  11883. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11884. }
  11885. // backward process uses inverse rotation by cos and sin.
  11886. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11887. // this essentially just switches the sign of sin.
  11888. const float sin_sign = forward ? 1.0f : -1.0f;
  11889. const int32_t * pos = (const int32_t *) src1->data;
  11890. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11891. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11892. const int64_t p = pos[i2];
  11893. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11894. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11895. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11896. }
  11897. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11898. if (ir++ < ir0) continue;
  11899. if (ir > ir1) break;
  11900. float theta_base = (float)p;
  11901. if (is_glm) {
  11902. theta_base = MIN(p, n_ctx - 2);
  11903. float block_theta = MAX(p - (n_ctx - 2), 0);
  11904. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11905. const float cos_theta = cosf(theta_base);
  11906. const float sin_theta = sinf(theta_base) * sin_sign;
  11907. const float cos_block_theta = cosf(block_theta);
  11908. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11909. theta_base *= theta_scale;
  11910. block_theta *= theta_scale;
  11911. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11912. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11913. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11914. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11915. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11916. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11917. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11918. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11919. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11920. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11921. }
  11922. } else if (!is_neox) {
  11923. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11924. const float cos_theta = cache[i0 + 0];
  11925. const float sin_theta = cache[i0 + 1];
  11926. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11927. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11928. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11929. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11930. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11931. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11932. }
  11933. } else {
  11934. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11935. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11936. if (ic < n_dims) {
  11937. const int64_t i0 = ic/2;
  11938. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11939. float cos_theta, sin_theta;
  11940. rope_yarn(
  11941. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11942. &cos_theta, &sin_theta
  11943. );
  11944. sin_theta *= sin_sign;
  11945. theta_base *= theta_scale;
  11946. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11947. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11948. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11949. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11950. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11951. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11952. } else {
  11953. const int64_t i0 = ic;
  11954. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11955. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11956. dst_data[0] = src[0];
  11957. dst_data[1] = src[1];
  11958. }
  11959. }
  11960. }
  11961. }
  11962. }
  11963. }
  11964. }
  11965. static void ggml_compute_forward_rope(
  11966. const struct ggml_compute_params * params,
  11967. struct ggml_tensor * dst) {
  11968. const struct ggml_tensor * src0 = dst->src[0];
  11969. switch (src0->type) {
  11970. case GGML_TYPE_F16:
  11971. {
  11972. ggml_compute_forward_rope_f16(params, dst, true);
  11973. } break;
  11974. case GGML_TYPE_F32:
  11975. {
  11976. ggml_compute_forward_rope_f32(params, dst, true);
  11977. } break;
  11978. default:
  11979. {
  11980. GGML_ASSERT(false);
  11981. } break;
  11982. }
  11983. }
  11984. // ggml_compute_forward_rope_back
  11985. static void ggml_compute_forward_rope_back(
  11986. const struct ggml_compute_params * params,
  11987. struct ggml_tensor * dst) {
  11988. const struct ggml_tensor * src0 = dst->src[0];
  11989. switch (src0->type) {
  11990. case GGML_TYPE_F16:
  11991. {
  11992. ggml_compute_forward_rope_f16(params, dst, false);
  11993. } break;
  11994. case GGML_TYPE_F32:
  11995. {
  11996. ggml_compute_forward_rope_f32(params, dst, false);
  11997. } break;
  11998. default:
  11999. {
  12000. GGML_ASSERT(false);
  12001. } break;
  12002. }
  12003. }
  12004. // ggml_compute_forward_conv_transpose_1d
  12005. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12006. const struct ggml_compute_params * params,
  12007. struct ggml_tensor * dst) {
  12008. const struct ggml_tensor * src0 = dst->src[0];
  12009. const struct ggml_tensor * src1 = dst->src[1];
  12010. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12011. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12012. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12013. int64_t t0 = ggml_perf_time_us();
  12014. UNUSED(t0);
  12015. GGML_TENSOR_BINARY_OP_LOCALS
  12016. const int ith = params->ith;
  12017. const int nth = params->nth;
  12018. const int nk = ne00*ne01*ne02;
  12019. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12020. GGML_ASSERT(nb10 == sizeof(float));
  12021. if (params->type == GGML_TASK_TYPE_INIT) {
  12022. if (ith != 0) {
  12023. return;
  12024. }
  12025. memset(params->wdata, 0, params->wsize);
  12026. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12027. {
  12028. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12029. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12030. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12031. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12032. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12033. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12034. dst_data[i00*ne02 + i02] = src[i00];
  12035. }
  12036. }
  12037. }
  12038. }
  12039. // permute source data (src1) from (L x Cin) to (Cin x L)
  12040. {
  12041. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12042. ggml_fp16_t * dst_data = wdata;
  12043. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12044. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12045. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12046. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12047. }
  12048. }
  12049. }
  12050. // need to zero dst since we are accumulating into it
  12051. memset(dst->data, 0, ggml_nbytes(dst));
  12052. return;
  12053. }
  12054. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12055. return;
  12056. }
  12057. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12058. // total rows in dst
  12059. const int nr = ne1;
  12060. // rows per thread
  12061. const int dr = (nr + nth - 1)/nth;
  12062. // row range for this thread
  12063. const int ir0 = dr*ith;
  12064. const int ir1 = MIN(ir0 + dr, nr);
  12065. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12066. ggml_fp16_t * const wdata_src = wdata + nk;
  12067. for (int i1 = ir0; i1 < ir1; i1++) {
  12068. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12069. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12070. for (int i10 = 0; i10 < ne10; i10++) {
  12071. const int i1n = i10*ne11;
  12072. for (int i00 = 0; i00 < ne00; i00++) {
  12073. float v = 0;
  12074. ggml_vec_dot_f16(ne02, &v, 0,
  12075. (ggml_fp16_t *) wdata_src + i1n, 0,
  12076. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12077. dst_data[i10*s0 + i00] += v;
  12078. }
  12079. }
  12080. }
  12081. }
  12082. static void ggml_compute_forward_conv_transpose_1d_f32(
  12083. const struct ggml_compute_params * params,
  12084. struct ggml_tensor * dst) {
  12085. const struct ggml_tensor * src0 = dst->src[0];
  12086. const struct ggml_tensor * src1 = dst->src[1];
  12087. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12088. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12089. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12090. int64_t t0 = ggml_perf_time_us();
  12091. UNUSED(t0);
  12092. GGML_TENSOR_BINARY_OP_LOCALS
  12093. const int ith = params->ith;
  12094. const int nth = params->nth;
  12095. const int nk = ne00*ne01*ne02;
  12096. GGML_ASSERT(nb00 == sizeof(float));
  12097. GGML_ASSERT(nb10 == sizeof(float));
  12098. if (params->type == GGML_TASK_TYPE_INIT) {
  12099. if (ith != 0) {
  12100. return;
  12101. }
  12102. memset(params->wdata, 0, params->wsize);
  12103. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12104. {
  12105. float * const wdata = (float *) params->wdata + 0;
  12106. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12107. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12108. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12109. float * dst_data = wdata + i01*ne00*ne02;
  12110. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12111. dst_data[i00*ne02 + i02] = src[i00];
  12112. }
  12113. }
  12114. }
  12115. }
  12116. // prepare source data (src1)
  12117. {
  12118. float * const wdata = (float *) params->wdata + nk;
  12119. float * dst_data = wdata;
  12120. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12121. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12122. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12123. dst_data[i10*ne11 + i11] = src[i10];
  12124. }
  12125. }
  12126. }
  12127. // need to zero dst since we are accumulating into it
  12128. memset(dst->data, 0, ggml_nbytes(dst));
  12129. return;
  12130. }
  12131. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12132. return;
  12133. }
  12134. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12135. // total rows in dst
  12136. const int nr = ne1;
  12137. // rows per thread
  12138. const int dr = (nr + nth - 1)/nth;
  12139. // row range for this thread
  12140. const int ir0 = dr*ith;
  12141. const int ir1 = MIN(ir0 + dr, nr);
  12142. float * const wdata = (float *) params->wdata + 0;
  12143. float * const wdata_src = wdata + nk;
  12144. for (int i1 = ir0; i1 < ir1; i1++) {
  12145. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12146. float * wdata_kernel = wdata + i1*ne02*ne00;
  12147. for (int i10 = 0; i10 < ne10; i10++) {
  12148. const int i1n = i10*ne11;
  12149. for (int i00 = 0; i00 < ne00; i00++) {
  12150. float v = 0;
  12151. ggml_vec_dot_f32(ne02, &v, 0,
  12152. wdata_src + i1n, 0,
  12153. wdata_kernel + i00*ne02, 0, 1);
  12154. dst_data[i10*s0 + i00] += v;
  12155. }
  12156. }
  12157. }
  12158. }
  12159. static void ggml_compute_forward_conv_transpose_1d(
  12160. const struct ggml_compute_params * params,
  12161. struct ggml_tensor * dst) {
  12162. const struct ggml_tensor * src0 = dst->src[0];
  12163. switch (src0->type) {
  12164. case GGML_TYPE_F16:
  12165. {
  12166. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12167. } break;
  12168. case GGML_TYPE_F32:
  12169. {
  12170. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12171. } break;
  12172. default:
  12173. {
  12174. GGML_ASSERT(false);
  12175. } break;
  12176. }
  12177. }
  12178. // src0: kernel [OC, IC, KH, KW]
  12179. // src1: image [N, IC, IH, IW]
  12180. // dst: result [N, OH, OW, IC*KH*KW]
  12181. static void ggml_compute_forward_im2col_f32(
  12182. const struct ggml_compute_params * params,
  12183. struct ggml_tensor * dst) {
  12184. const struct ggml_tensor * src0 = dst->src[0];
  12185. const struct ggml_tensor * src1 = dst->src[1];
  12186. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12187. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12188. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12189. int64_t t0 = ggml_perf_time_us();
  12190. UNUSED(t0);
  12191. GGML_TENSOR_BINARY_OP_LOCALS;
  12192. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12193. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12194. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12195. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12196. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12197. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12198. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12199. const int ith = params->ith;
  12200. const int nth = params->nth;
  12201. const int64_t N = is_2D ? ne13 : ne12;
  12202. const int64_t IC = is_2D ? ne12 : ne11;
  12203. const int64_t IH = is_2D ? ne11 : 1;
  12204. const int64_t IW = ne10;
  12205. const int64_t KH = is_2D ? ne01 : 1;
  12206. const int64_t KW = ne00;
  12207. const int64_t OH = is_2D ? ne2 : 1;
  12208. const int64_t OW = ne1;
  12209. int ofs0 = is_2D ? nb13 : nb12;
  12210. int ofs1 = is_2D ? nb12 : nb11;
  12211. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12212. GGML_ASSERT(nb10 == sizeof(float));
  12213. if (params->type == GGML_TASK_TYPE_INIT) {
  12214. return;
  12215. }
  12216. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12217. return;
  12218. }
  12219. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12220. {
  12221. float * const wdata = (float *) dst->data;
  12222. for (int64_t in = 0; in < N; in++) {
  12223. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12224. for (int64_t iow = 0; iow < OW; iow++) {
  12225. for (int64_t iic = ith; iic < IC; iic += nth) {
  12226. // micro kernel
  12227. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12228. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12229. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12230. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12231. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12232. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12233. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12234. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12235. } else {
  12236. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12237. }
  12238. }
  12239. }
  12240. }
  12241. }
  12242. }
  12243. }
  12244. }
  12245. }
  12246. // src0: kernel [OC, IC, KH, KW]
  12247. // src1: image [N, IC, IH, IW]
  12248. // dst: result [N, OH, OW, IC*KH*KW]
  12249. static void ggml_compute_forward_im2col_f16(
  12250. const struct ggml_compute_params * params,
  12251. struct ggml_tensor * dst) {
  12252. const struct ggml_tensor * src0 = dst->src[0];
  12253. const struct ggml_tensor * src1 = dst->src[1];
  12254. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12255. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12256. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12257. int64_t t0 = ggml_perf_time_us();
  12258. UNUSED(t0);
  12259. GGML_TENSOR_BINARY_OP_LOCALS;
  12260. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12261. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12262. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12263. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12264. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12265. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12266. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12267. const int ith = params->ith;
  12268. const int nth = params->nth;
  12269. const int64_t N = is_2D ? ne13 : ne12;
  12270. const int64_t IC = is_2D ? ne12 : ne11;
  12271. const int64_t IH = is_2D ? ne11 : 1;
  12272. const int64_t IW = ne10;
  12273. const int64_t KH = is_2D ? ne01 : 1;
  12274. const int64_t KW = ne00;
  12275. const int64_t OH = is_2D ? ne2 : 1;
  12276. const int64_t OW = ne1;
  12277. int ofs0 = is_2D ? nb13 : nb12;
  12278. int ofs1 = is_2D ? nb12 : nb11;
  12279. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12280. GGML_ASSERT(nb10 == sizeof(float));
  12281. if (params->type == GGML_TASK_TYPE_INIT) {
  12282. return;
  12283. }
  12284. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12285. return;
  12286. }
  12287. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12288. {
  12289. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12290. for (int64_t in = 0; in < N; in++) {
  12291. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12292. for (int64_t iow = 0; iow < OW; iow++) {
  12293. for (int64_t iic = ith; iic < IC; iic += nth) {
  12294. // micro kernel
  12295. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12296. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12297. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12298. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12299. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12300. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12301. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12302. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12303. } else {
  12304. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12305. }
  12306. }
  12307. }
  12308. }
  12309. }
  12310. }
  12311. }
  12312. }
  12313. }
  12314. static void ggml_compute_forward_im2col(
  12315. const struct ggml_compute_params * params,
  12316. struct ggml_tensor * dst) {
  12317. switch (dst->type) {
  12318. case GGML_TYPE_F16:
  12319. {
  12320. ggml_compute_forward_im2col_f16(params, dst);
  12321. } break;
  12322. case GGML_TYPE_F32:
  12323. {
  12324. ggml_compute_forward_im2col_f32(params, dst);
  12325. } break;
  12326. default:
  12327. {
  12328. GGML_ASSERT(false);
  12329. } break;
  12330. }
  12331. }
  12332. // ggml_compute_forward_conv_transpose_2d
  12333. static void ggml_compute_forward_conv_transpose_2d(
  12334. const struct ggml_compute_params * params,
  12335. struct ggml_tensor * dst) {
  12336. const struct ggml_tensor * src0 = dst->src[0];
  12337. const struct ggml_tensor * src1 = dst->src[1];
  12338. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12339. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12340. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12341. int64_t t0 = ggml_perf_time_us();
  12342. UNUSED(t0);
  12343. GGML_TENSOR_BINARY_OP_LOCALS
  12344. const int ith = params->ith;
  12345. const int nth = params->nth;
  12346. const int nk = ne00*ne01*ne02*ne03;
  12347. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12348. GGML_ASSERT(nb10 == sizeof(float));
  12349. if (params->type == GGML_TASK_TYPE_INIT) {
  12350. if (ith != 0) {
  12351. return;
  12352. }
  12353. memset(params->wdata, 0, params->wsize);
  12354. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12355. {
  12356. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12357. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12358. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12359. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12360. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12361. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12362. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12363. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12364. }
  12365. }
  12366. }
  12367. }
  12368. }
  12369. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12370. {
  12371. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12372. for (int i12 = 0; i12 < ne12; i12++) {
  12373. for (int i11 = 0; i11 < ne11; i11++) {
  12374. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12375. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12376. for (int i10 = 0; i10 < ne10; i10++) {
  12377. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12378. }
  12379. }
  12380. }
  12381. }
  12382. memset(dst->data, 0, ggml_nbytes(dst));
  12383. return;
  12384. }
  12385. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12386. return;
  12387. }
  12388. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12389. // total patches in dst
  12390. const int np = ne2;
  12391. // patches per thread
  12392. const int dp = (np + nth - 1)/nth;
  12393. // patch range for this thread
  12394. const int ip0 = dp*ith;
  12395. const int ip1 = MIN(ip0 + dp, np);
  12396. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12397. ggml_fp16_t * const wdata_src = wdata + nk;
  12398. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12399. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12400. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12401. for (int i11 = 0; i11 < ne11; i11++) {
  12402. for (int i10 = 0; i10 < ne10; i10++) {
  12403. const int i1n = i11*ne10*ne12 + i10*ne12;
  12404. for (int i01 = 0; i01 < ne01; i01++) {
  12405. for (int i00 = 0; i00 < ne00; i00++) {
  12406. float v = 0;
  12407. ggml_vec_dot_f16(ne03, &v, 0,
  12408. wdata_src + i1n, 0,
  12409. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12410. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12411. }
  12412. }
  12413. }
  12414. }
  12415. }
  12416. }
  12417. // ggml_compute_forward_pool_1d_sk_p0
  12418. static void ggml_compute_forward_pool_1d_sk_p0(
  12419. const struct ggml_compute_params * params,
  12420. const enum ggml_op_pool op,
  12421. const int k,
  12422. struct ggml_tensor * dst) {
  12423. const struct ggml_tensor * src = dst->src[0];
  12424. assert(src->type == GGML_TYPE_F32);
  12425. assert(params->ith == 0);
  12426. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12427. return;
  12428. }
  12429. const char * cdata = (const char *)src->data;
  12430. const char * const data_end = cdata + ggml_nbytes(src);
  12431. float * drow = (float *)dst->data;
  12432. const int64_t rs = dst->ne[0];
  12433. while (cdata < data_end) {
  12434. const float * const srow = (const float *)cdata;
  12435. int j = 0;
  12436. for (int64_t i = 0; i < rs; ++i) {
  12437. switch (op) {
  12438. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12439. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12440. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12441. }
  12442. for (int ki = 0; ki < k; ++ki) {
  12443. switch (op) {
  12444. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12445. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12446. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12447. }
  12448. ++j;
  12449. }
  12450. switch (op) {
  12451. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12452. case GGML_OP_POOL_MAX: break;
  12453. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12454. }
  12455. }
  12456. cdata += src->nb[1];
  12457. drow += rs;
  12458. }
  12459. }
  12460. // ggml_compute_forward_pool_1d
  12461. static void ggml_compute_forward_pool_1d(
  12462. const struct ggml_compute_params * params,
  12463. struct ggml_tensor * dst) {
  12464. const int32_t * opts = (const int32_t *)dst->op_params;
  12465. enum ggml_op_pool op = opts[0];
  12466. const int k0 = opts[1];
  12467. const int s0 = opts[2];
  12468. const int p0 = opts[3];
  12469. GGML_ASSERT(p0 == 0); // padding not supported
  12470. GGML_ASSERT(k0 == s0); // only s = k supported
  12471. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12472. }
  12473. // ggml_compute_forward_pool_2d
  12474. static void ggml_compute_forward_pool_2d(
  12475. const struct ggml_compute_params * params,
  12476. struct ggml_tensor * dst) {
  12477. const struct ggml_tensor * src = dst->src[0];
  12478. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12479. GGML_ASSERT(params->ith == 0);
  12480. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12481. return;
  12482. }
  12483. const int32_t * opts = (const int32_t *)dst->op_params;
  12484. enum ggml_op_pool op = opts[0];
  12485. const int k0 = opts[1];
  12486. const int k1 = opts[2];
  12487. const int s0 = opts[3];
  12488. const int s1 = opts[4];
  12489. const int p0 = opts[5];
  12490. const int p1 = opts[6];
  12491. const char * cdata = (const char*)src->data;
  12492. const char * const data_end = cdata + ggml_nbytes(src);
  12493. const int64_t px = dst->ne[0];
  12494. const int64_t py = dst->ne[1];
  12495. const int64_t pa = px * py;
  12496. float * dplane = (float *)dst->data;
  12497. const int ka = k0 * k1;
  12498. const int offset0 = -p0;
  12499. const int offset1 = -p1;
  12500. while (cdata < data_end) {
  12501. for (int oy = 0; oy < py; ++oy) {
  12502. float * const drow = dplane + oy * px;
  12503. for (int ox = 0; ox < px; ++ox) {
  12504. float * const out = drow + ox;
  12505. switch (op) {
  12506. case GGML_OP_POOL_AVG: *out = 0; break;
  12507. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12508. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12509. }
  12510. const int ix = offset0 + ox * s0;
  12511. const int iy = offset1 + oy * s1;
  12512. for (int ky = 0; ky < k1; ++ky) {
  12513. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12514. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12515. for (int kx = 0; kx < k0; ++kx) {
  12516. int j = ix + kx;
  12517. if (j < 0 || j >= src->ne[0]) continue;
  12518. switch (op) {
  12519. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12520. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12521. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12522. }
  12523. }
  12524. }
  12525. switch (op) {
  12526. case GGML_OP_POOL_AVG: *out /= ka; break;
  12527. case GGML_OP_POOL_MAX: break;
  12528. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12529. }
  12530. }
  12531. }
  12532. cdata += src->nb[2];
  12533. dplane += pa;
  12534. }
  12535. }
  12536. // ggml_compute_forward_upscale
  12537. static void ggml_compute_forward_upscale_f32(
  12538. const struct ggml_compute_params * params,
  12539. struct ggml_tensor * dst) {
  12540. const struct ggml_tensor * src0 = dst->src[0];
  12541. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12542. return;
  12543. }
  12544. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12545. const int ith = params->ith;
  12546. const int nth = params->nth;
  12547. GGML_TENSOR_UNARY_OP_LOCALS
  12548. const float sf0 = (float)ne0/src0->ne[0];
  12549. const float sf1 = (float)ne1/src0->ne[1];
  12550. const float sf2 = (float)ne2/src0->ne[2];
  12551. const float sf3 = (float)ne3/src0->ne[3];
  12552. // TODO: optimize
  12553. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12554. const int64_t i03 = i3 / sf3;
  12555. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12556. const int64_t i02 = i2 / sf2;
  12557. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12558. const int64_t i01 = i1 / sf1;
  12559. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12560. const int64_t i00 = i0 / sf0;
  12561. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12562. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12563. *y = *x;
  12564. }
  12565. }
  12566. }
  12567. }
  12568. }
  12569. static void ggml_compute_forward_upscale(
  12570. const struct ggml_compute_params * params,
  12571. struct ggml_tensor * dst) {
  12572. const struct ggml_tensor * src0 = dst->src[0];
  12573. switch (src0->type) {
  12574. case GGML_TYPE_F32:
  12575. {
  12576. ggml_compute_forward_upscale_f32(params, dst);
  12577. } break;
  12578. default:
  12579. {
  12580. GGML_ASSERT(false);
  12581. } break;
  12582. }
  12583. }
  12584. // ggml_compute_forward_pad
  12585. static void ggml_compute_forward_pad_f32(
  12586. const struct ggml_compute_params * params,
  12587. struct ggml_tensor * dst) {
  12588. const struct ggml_tensor * src0 = dst->src[0];
  12589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12590. return;
  12591. }
  12592. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12593. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12594. const int ith = params->ith;
  12595. const int nth = params->nth;
  12596. GGML_TENSOR_UNARY_OP_LOCALS
  12597. float * dst_ptr = (float *) dst->data;
  12598. // TODO: optimize
  12599. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12600. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12601. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12602. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12603. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12604. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12605. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12606. dst_ptr[dst_idx] = *src_ptr;
  12607. } else {
  12608. dst_ptr[dst_idx] = 0;
  12609. }
  12610. }
  12611. }
  12612. }
  12613. }
  12614. }
  12615. static void ggml_compute_forward_pad(
  12616. const struct ggml_compute_params * params,
  12617. struct ggml_tensor * dst) {
  12618. const struct ggml_tensor * src0 = dst->src[0];
  12619. switch (src0->type) {
  12620. case GGML_TYPE_F32:
  12621. {
  12622. ggml_compute_forward_pad_f32(params, dst);
  12623. } break;
  12624. default:
  12625. {
  12626. GGML_ASSERT(false);
  12627. } break;
  12628. }
  12629. }
  12630. // ggml_compute_forward_arange
  12631. static void ggml_compute_forward_arange_f32(
  12632. const struct ggml_compute_params * params,
  12633. struct ggml_tensor * dst) {
  12634. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12635. return;
  12636. }
  12637. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12638. const int ith = params->ith;
  12639. const int nth = params->nth;
  12640. const float start = ggml_get_op_params_f32(dst, 0);
  12641. const float stop = ggml_get_op_params_f32(dst, 1);
  12642. const float step = ggml_get_op_params_f32(dst, 2);
  12643. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12644. GGML_ASSERT(ggml_nelements(dst) == steps);
  12645. for (int64_t i = ith; i < steps; i+= nth) {
  12646. float value = start + step * i;
  12647. ((float *)dst->data)[i] = value;
  12648. }
  12649. }
  12650. static void ggml_compute_forward_arange(
  12651. const struct ggml_compute_params * params,
  12652. struct ggml_tensor * dst) {
  12653. switch (dst->type) {
  12654. case GGML_TYPE_F32:
  12655. {
  12656. ggml_compute_forward_arange_f32(params, dst);
  12657. } break;
  12658. default:
  12659. {
  12660. GGML_ASSERT(false);
  12661. } break;
  12662. }
  12663. }
  12664. static void ggml_compute_forward_timestep_embedding_f32(
  12665. const struct ggml_compute_params * params,
  12666. struct ggml_tensor * dst) {
  12667. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12668. return;
  12669. }
  12670. const struct ggml_tensor * src0 = dst->src[0];
  12671. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12672. const int ith = params->ith;
  12673. const int nth = params->nth;
  12674. GGML_TENSOR_UNARY_OP_LOCALS
  12675. const int dim = ggml_get_op_params_i32(dst, 0);
  12676. const int max_period = ggml_get_op_params_i32(dst, 1);
  12677. int half = dim / 2;
  12678. for (int64_t i = 0; i < ne00; i++) {
  12679. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12680. for (int64_t j = ith; j < half; j += nth) {
  12681. float timestep = ((float *)src0->data)[i];
  12682. float freq = (float)expf(-logf(max_period) * j / half);
  12683. float arg = timestep * freq;
  12684. embed_data[j] = cosf(arg);
  12685. embed_data[j + half] = sinf(arg);
  12686. }
  12687. if (dim % 2 != 0 && ith == 0) {
  12688. embed_data[dim] = 0.f;
  12689. }
  12690. }
  12691. }
  12692. static void ggml_compute_forward_timestep_embedding(
  12693. const struct ggml_compute_params * params,
  12694. struct ggml_tensor * dst) {
  12695. const struct ggml_tensor * src0 = dst->src[0];
  12696. switch (src0->type) {
  12697. case GGML_TYPE_F32:
  12698. {
  12699. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12700. } break;
  12701. default:
  12702. {
  12703. GGML_ASSERT(false);
  12704. } break;
  12705. }
  12706. }
  12707. // ggml_compute_forward_argsort
  12708. static void ggml_compute_forward_argsort_f32(
  12709. const struct ggml_compute_params * params,
  12710. struct ggml_tensor * dst) {
  12711. const struct ggml_tensor * src0 = dst->src[0];
  12712. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12713. return;
  12714. }
  12715. GGML_TENSOR_UNARY_OP_LOCALS
  12716. GGML_ASSERT(nb0 == sizeof(float));
  12717. const int ith = params->ith;
  12718. const int nth = params->nth;
  12719. const int64_t nr = ggml_nrows(src0);
  12720. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12721. for (int64_t i = ith; i < nr; i += nth) {
  12722. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12723. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12724. for (int64_t j = 0; j < ne0; j++) {
  12725. dst_data[j] = j;
  12726. }
  12727. // C doesn't have a functional sort, so we do a bubble sort instead
  12728. for (int64_t j = 0; j < ne0; j++) {
  12729. for (int64_t k = j + 1; k < ne0; k++) {
  12730. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12731. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12732. int32_t tmp = dst_data[j];
  12733. dst_data[j] = dst_data[k];
  12734. dst_data[k] = tmp;
  12735. }
  12736. }
  12737. }
  12738. }
  12739. }
  12740. static void ggml_compute_forward_argsort(
  12741. const struct ggml_compute_params * params,
  12742. struct ggml_tensor * dst) {
  12743. const struct ggml_tensor * src0 = dst->src[0];
  12744. switch (src0->type) {
  12745. case GGML_TYPE_F32:
  12746. {
  12747. ggml_compute_forward_argsort_f32(params, dst);
  12748. } break;
  12749. default:
  12750. {
  12751. GGML_ASSERT(false);
  12752. } break;
  12753. }
  12754. }
  12755. // ggml_compute_forward_flash_attn_ext
  12756. static void ggml_compute_forward_flash_attn_ext_f16(
  12757. const struct ggml_compute_params * params,
  12758. const struct ggml_tensor * q,
  12759. const struct ggml_tensor * k,
  12760. const struct ggml_tensor * v,
  12761. const struct ggml_tensor * mask,
  12762. struct ggml_tensor * dst) {
  12763. int64_t t0 = ggml_perf_time_us();
  12764. UNUSED(t0);
  12765. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12766. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12767. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12768. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12769. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12770. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12771. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12772. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12773. const int ith = params->ith;
  12774. const int nth = params->nth;
  12775. const int64_t D = neq0;
  12776. const int64_t N = neq1;
  12777. GGML_ASSERT(ne0 == D);
  12778. GGML_ASSERT(ne2 == N);
  12779. // input tensor rows must be contiguous
  12780. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12781. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12782. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12783. GGML_ASSERT(neq0 == D);
  12784. GGML_ASSERT(nek0 == D);
  12785. GGML_ASSERT(nev0 == D);
  12786. GGML_ASSERT(neq1 == N);
  12787. GGML_ASSERT(nev0 == D);
  12788. // dst cannot be transposed or permuted
  12789. GGML_ASSERT(nb0 == sizeof(float));
  12790. GGML_ASSERT(nb0 <= nb1);
  12791. GGML_ASSERT(nb1 <= nb2);
  12792. GGML_ASSERT(nb2 <= nb3);
  12793. // broadcast factors
  12794. const int64_t rk2 = neq2/nek2;
  12795. const int64_t rk3 = neq3/nek3;
  12796. const int64_t rv2 = neq2/nev2;
  12797. const int64_t rv3 = neq3/nev3;
  12798. if (params->type == GGML_TASK_TYPE_INIT) {
  12799. return;
  12800. }
  12801. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12802. return;
  12803. }
  12804. // parallelize by q rows using ggml_vec_dot_f32
  12805. // total rows in q
  12806. const int nr = neq1*neq2*neq3;
  12807. // rows per thread
  12808. const int dr = (nr + nth - 1)/nth;
  12809. // row range for this thread
  12810. const int ir0 = dr*ith;
  12811. const int ir1 = MIN(ir0 + dr, nr);
  12812. float scale = 1.0f;
  12813. float max_bias = 0.0f;
  12814. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12815. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12816. const uint32_t n_head = neq2;
  12817. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12818. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12819. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12820. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12821. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12822. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12823. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12824. // loop over n_batch and n_head
  12825. for (int ir = ir0; ir < ir1; ++ir) {
  12826. // q indices
  12827. const int iq3 = ir/(neq2*neq1);
  12828. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12829. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12830. const uint32_t h = iq2; // head index
  12831. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12832. float S = 0.0f; // sum
  12833. float M = -INFINITY; // maximum KQ value
  12834. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12835. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12836. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12837. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12838. if (v->type == GGML_TYPE_F16) {
  12839. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12840. } else {
  12841. memset(VKQ32, 0, D*sizeof(float));
  12842. }
  12843. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12844. // k indices
  12845. const int ik3 = iq3 / rk3;
  12846. const int ik2 = iq2 / rk2;
  12847. // v indices
  12848. const int iv3 = iq3 / rv3;
  12849. const int iv2 = iq2 / rv2;
  12850. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12851. q_to_vec_dot(pq, Q_q, D);
  12852. // online softmax / attention
  12853. // loop over n_kv and n_head_kv
  12854. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12855. for (int64_t ic = 0; ic < nek1; ++ic) {
  12856. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12857. if (mv == -INFINITY) {
  12858. continue;
  12859. }
  12860. float s; // KQ value
  12861. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12862. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12863. s = s*scale + mv; // scale KQ value and apply mask
  12864. const float Mold = M;
  12865. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12866. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12867. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12868. if (v->type== GGML_TYPE_F16) {
  12869. if (s > M) {
  12870. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12871. M = s;
  12872. ms = expf(Mold - M);
  12873. // V = V*expf(Mold - M)
  12874. ggml_vec_scale_f16(D, VKQ16, ms);
  12875. } else {
  12876. // no new maximum, ms == 1.0f, vs != 1.0f
  12877. vs = expf(s - M);
  12878. }
  12879. // V += v*expf(s - M)
  12880. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12881. } else {
  12882. if (s > M) {
  12883. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12884. M = s;
  12885. ms = expf(Mold - M);
  12886. // V = V*expf(Mold - M)
  12887. ggml_vec_scale_f32(D, VKQ32, ms);
  12888. } else {
  12889. // no new maximum, ms == 1.0f, vs != 1.0f
  12890. vs = expf(s - M);
  12891. }
  12892. v_to_float(v_data, V32, D);
  12893. // V += v*expf(s - M)
  12894. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12895. }
  12896. S = S*ms + vs; // scale and increment sum with partial sum
  12897. }
  12898. if (v->type == GGML_TYPE_F16) {
  12899. for (int64_t d = 0; d < D; ++d) {
  12900. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12901. }
  12902. }
  12903. // V /= S
  12904. const float S_inv = 1.0f/S;
  12905. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12906. // dst indices
  12907. const int i1 = iq1;
  12908. const int i2 = iq2;
  12909. const int i3 = iq3;
  12910. // original
  12911. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12912. // permute(0, 2, 1, 3)
  12913. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12914. }
  12915. }
  12916. static void ggml_compute_forward_flash_attn_ext(
  12917. const struct ggml_compute_params * params,
  12918. const struct ggml_tensor * q,
  12919. const struct ggml_tensor * k,
  12920. const struct ggml_tensor * v,
  12921. const struct ggml_tensor * mask,
  12922. struct ggml_tensor * dst) {
  12923. switch (dst->op_params[2]) {
  12924. case GGML_PREC_DEFAULT:
  12925. case GGML_PREC_F32:
  12926. {
  12927. // uses F32 accumulators
  12928. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12929. } break;
  12930. default:
  12931. {
  12932. GGML_ASSERT(false);
  12933. } break;
  12934. }
  12935. }
  12936. // ggml_compute_forward_flash_attn_back
  12937. static void ggml_compute_forward_flash_attn_back_f32(
  12938. const struct ggml_compute_params * params,
  12939. const bool masked,
  12940. struct ggml_tensor * dst) {
  12941. const struct ggml_tensor * q = dst->src[0];
  12942. const struct ggml_tensor * k = dst->src[1];
  12943. const struct ggml_tensor * v = dst->src[2];
  12944. const struct ggml_tensor * d = dst->src[3];
  12945. int64_t t0 = ggml_perf_time_us();
  12946. UNUSED(t0);
  12947. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12948. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12949. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12950. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12951. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12952. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12953. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12954. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12955. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12956. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12957. const int ith = params->ith;
  12958. const int nth = params->nth;
  12959. const int64_t D = neq0;
  12960. const int64_t N = neq1;
  12961. const int64_t P = nek1 - N;
  12962. const int64_t M = P + N;
  12963. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12964. const int mxDM = MAX(D, Mup);
  12965. // GGML_ASSERT(ne0 == D);
  12966. // GGML_ASSERT(ne1 == N);
  12967. GGML_ASSERT(P >= 0);
  12968. GGML_ASSERT(nbq0 == sizeof(float));
  12969. GGML_ASSERT(nbk0 == sizeof(float));
  12970. GGML_ASSERT(nbv0 == sizeof(float));
  12971. GGML_ASSERT(neq0 == D);
  12972. GGML_ASSERT(nek0 == D);
  12973. GGML_ASSERT(nev1 == D);
  12974. GGML_ASSERT(ned0 == D);
  12975. GGML_ASSERT(neq1 == N);
  12976. GGML_ASSERT(nek1 == N + P);
  12977. GGML_ASSERT(nev1 == D);
  12978. GGML_ASSERT(ned1 == N);
  12979. // dst cannot be transposed or permuted
  12980. GGML_ASSERT(nb0 == sizeof(float));
  12981. GGML_ASSERT(nb0 <= nb1);
  12982. GGML_ASSERT(nb1 <= nb2);
  12983. GGML_ASSERT(nb2 <= nb3);
  12984. if (params->type == GGML_TASK_TYPE_INIT) {
  12985. if (ith == 0) {
  12986. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12987. }
  12988. return;
  12989. }
  12990. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12991. return;
  12992. }
  12993. const int64_t elem_q = ggml_nelements(q);
  12994. const int64_t elem_k = ggml_nelements(k);
  12995. enum ggml_type result_type = dst->type;
  12996. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12997. const size_t tsize = ggml_type_size(result_type);
  12998. const size_t offs_q = 0;
  12999. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13000. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13001. void * grad_q = (char *) dst->data;
  13002. void * grad_k = (char *) dst->data + offs_k;
  13003. void * grad_v = (char *) dst->data + offs_v;
  13004. const size_t nbgq1 = nb0*neq0;
  13005. const size_t nbgq2 = nb0*neq0*neq1;
  13006. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13007. const size_t nbgk1 = nb0*nek0;
  13008. const size_t nbgk2 = nb0*nek0*nek1;
  13009. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13010. const size_t nbgv1 = nb0*nev0;
  13011. const size_t nbgv2 = nb0*nev0*nev1;
  13012. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13013. // parallelize by k rows using ggml_vec_dot_f32
  13014. // total rows in k
  13015. const int nr = nek2*nek3;
  13016. // rows per thread
  13017. const int dr = (nr + nth - 1)/nth;
  13018. // row range for this thread
  13019. const int ir0 = dr*ith;
  13020. const int ir1 = MIN(ir0 + dr, nr);
  13021. const float scale = 1.0f/sqrtf(D);
  13022. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13023. // how often k2 (and v2) is repeated in q2
  13024. int nrep = neq2/nek2;
  13025. for (int ir = ir0; ir < ir1; ++ir) {
  13026. // q indices
  13027. const int ik3 = ir/(nek2);
  13028. const int ik2 = ir - ik3*nek2;
  13029. const int iq3 = ik3;
  13030. const int id3 = ik3;
  13031. const int iv3 = ik3;
  13032. const int iv2 = ik2;
  13033. for (int irep = 0; irep < nrep; ++irep) {
  13034. const int iq2 = ik2 + irep*nek2;
  13035. const int id2 = iq2;
  13036. // (ik2 + irep*nek2) % nek2 == ik2
  13037. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13038. const int id1 = iq1;
  13039. // not sure about CACHE_LINE_SIZE_F32..
  13040. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13041. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13042. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13043. for (int i = M; i < Mup; ++i) {
  13044. S[i] = -INFINITY;
  13045. }
  13046. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13047. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13048. // k indices
  13049. const int ik1 = ic;
  13050. // S indices
  13051. const int i1 = ik1;
  13052. ggml_vec_dot_f32(neq0,
  13053. S + i1, 0,
  13054. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13055. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13056. }
  13057. // scale
  13058. ggml_vec_scale_f32(masked_begin, S, scale);
  13059. for (int64_t i = masked_begin; i < M; i++) {
  13060. S[i] = -INFINITY;
  13061. }
  13062. // softmax
  13063. // exclude known -INF S[..] values from max and loop
  13064. // dont forget to set their SM values to zero
  13065. {
  13066. float max = -INFINITY;
  13067. ggml_vec_max_f32(masked_begin, &max, S);
  13068. ggml_float sum = 0.0;
  13069. {
  13070. #ifdef GGML_SOFT_MAX_ACCELERATE
  13071. max = -max;
  13072. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13073. vvexpf(SM, SM, &Mup);
  13074. ggml_vec_sum_f32(Mup, &sum, SM);
  13075. #else
  13076. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13077. #endif
  13078. }
  13079. assert(sum > 0.0);
  13080. sum = 1.0/sum;
  13081. ggml_vec_scale_f32(masked_begin, SM, sum);
  13082. }
  13083. // step-by-step explanation
  13084. {
  13085. // forward-process shape grads from backward process
  13086. // parallel_for ik2,ik3:
  13087. // for irep:
  13088. // iq2 = ik2 + irep*nek2
  13089. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13090. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13091. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13092. // for iq1:
  13093. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13094. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13095. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13096. // S0 = -Inf [D,1,1,1]
  13097. // ~S1[i] = dot(kcur[:D,i], qcur)
  13098. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13099. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13100. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13101. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13102. // ~S5[i] = dot(vcur[:,i], S4)
  13103. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13104. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13105. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13106. // dst backward-/ grad[dst] = d
  13107. //
  13108. // output gradients with their dependencies:
  13109. //
  13110. // grad[kcur] = grad[S1].T @ qcur
  13111. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13112. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13113. // grad[S4] = grad[S5] @ vcur
  13114. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13115. // grad[qcur] = grad[S1] @ kcur
  13116. // grad[vcur] = grad[S5].T @ S4
  13117. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13118. //
  13119. // in post-order:
  13120. //
  13121. // S1 = qcur @ kcur.T
  13122. // S2 = S1 * scale
  13123. // S3 = diag_mask_inf(S2, P)
  13124. // S4 = softmax(S3)
  13125. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13126. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13127. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13128. // grad[qcur] = grad[S1] @ kcur
  13129. // grad[kcur] = grad[S1].T @ qcur
  13130. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13131. //
  13132. // using less variables (SM=S4):
  13133. //
  13134. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13135. // SM = softmax(S)
  13136. // S = d[:D,iq1,iq2,iq3] @ vcur
  13137. // dot_SM_gradSM = dot(SM, S)
  13138. // S = SM * (S - dot(SM, S))
  13139. // S = diag_mask_zero(S, P) * scale
  13140. //
  13141. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13142. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13143. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13144. }
  13145. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13146. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13147. // for ic:
  13148. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13149. // exclude known future zero S[..] values from operation
  13150. ggml_vec_set_f32(masked_begin, S, 0);
  13151. for (int64_t ic = 0; ic < D; ++ic) {
  13152. ggml_vec_mad_f32(masked_begin,
  13153. S,
  13154. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13155. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13156. }
  13157. // S = SM * (S - dot(SM, S))
  13158. float dot_SM_gradSM = 0;
  13159. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13160. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13161. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13162. // S = diag_mask_zero(S, P) * scale
  13163. // already done by above ggml_vec_set_f32
  13164. // exclude known zero S[..] values from operation
  13165. ggml_vec_scale_f32(masked_begin, S, scale);
  13166. // S shape [M,1]
  13167. // SM shape [M,1]
  13168. // kcur shape [D,M]
  13169. // qcur shape [D,1]
  13170. // vcur shape [M,D]
  13171. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13172. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13173. // for ic:
  13174. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13175. // exclude known zero S[..] values from loop
  13176. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13177. ggml_vec_mad_f32(D,
  13178. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13179. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13180. S[ic]);
  13181. }
  13182. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13183. // for ic:
  13184. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13185. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13186. // exclude known zero S[..] values from loop
  13187. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13188. ggml_vec_mad_f32(D,
  13189. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13190. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13191. S[ic]);
  13192. }
  13193. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13194. // for ic:
  13195. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13196. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13197. // exclude known zero SM[..] values from mad
  13198. for (int64_t ic = 0; ic < D; ++ic) {
  13199. ggml_vec_mad_f32(masked_begin,
  13200. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13201. SM,
  13202. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13203. }
  13204. }
  13205. }
  13206. }
  13207. }
  13208. static void ggml_compute_forward_flash_attn_back(
  13209. const struct ggml_compute_params * params,
  13210. const bool masked,
  13211. struct ggml_tensor * dst) {
  13212. const struct ggml_tensor * q = dst->src[0];
  13213. switch (q->type) {
  13214. case GGML_TYPE_F32:
  13215. {
  13216. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13217. } break;
  13218. default:
  13219. {
  13220. GGML_ASSERT(false);
  13221. } break;
  13222. }
  13223. }
  13224. // ggml_compute_forward_ssm_conv
  13225. static void ggml_compute_forward_ssm_conv_f32(
  13226. const struct ggml_compute_params * params,
  13227. struct ggml_tensor * dst) {
  13228. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13229. return;
  13230. }
  13231. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13232. const struct ggml_tensor * src1 = dst->src[1]; // x
  13233. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13234. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13235. const int ith = params->ith;
  13236. const int nth = params->nth;
  13237. const int nc = src2->ne[0]; // d_conv
  13238. const int nr = src0->ne[1]; // d_inner
  13239. const int n_t = src1->ne[1]; // n_tokens
  13240. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13241. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13242. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13243. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13244. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13245. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13246. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13247. // for use with the destination state offset between sequences
  13248. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13249. // rows per thread
  13250. const int dr = (nr + nth - 1)/nth;
  13251. // row range for this thread
  13252. const int ir0 = dr*ith;
  13253. const int ir1 = MIN(ir0 + dr, nr);
  13254. const int ir = ir1 - ir0;
  13255. if (n_kv > 1) {
  13256. // multiple sequences means it's hard to know when it's the first time a state is read,
  13257. // so copy them all over to the destination, just to be sure.
  13258. for (int i3 = 0; i3 < n_kv; ++i3) {
  13259. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13260. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13261. // can't use memcpy because of d_conv vs d_conv - 1
  13262. for (int i1 = 0; i1 < ir; ++i1) {
  13263. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13264. // copy s0 to last (d_conv - 1) columns of s
  13265. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13266. }
  13267. }
  13268. }
  13269. }
  13270. for (int i2 = 0; i2 < n_t; ++i2) {
  13271. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13272. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13273. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13274. float * s0; // {d_conv - 1, d_inner, n_kv}
  13275. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13276. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13277. int ne0s0;
  13278. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13279. // avoid needing to copy the state for the first token
  13280. if (i2 == 0) {
  13281. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13282. ne0s0 = src0->ne[0];
  13283. } else {
  13284. // the source is the last (d_conv - 1) columns of the destination
  13285. s0 = s + 1;
  13286. ne0s0 = nc;
  13287. }
  13288. // d_inner
  13289. for (int i1 = 0; i1 < ir; ++i1) {
  13290. // shift state left
  13291. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13292. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13293. }
  13294. // insert x on the last column
  13295. s[(nc - 1) + i1*nc] = x0[i1];
  13296. }
  13297. // handle copies when there are multiple output states
  13298. for (int i3 = 1; i3 < n_kv; ++i3) {
  13299. int32_t seq = sq[i3];
  13300. if (0 <= seq && seq < n_kv) {
  13301. float * s1 = s + (seq - sq[0])*nc*nr;
  13302. memcpy(s1, s, nc*ir*sizeof(float));
  13303. } else {
  13304. // stop at negative or too big seq_ids
  13305. break;
  13306. }
  13307. }
  13308. // it seems a little faster when this is separate from the state shift
  13309. for (int i1 = 0; i1 < ir; ++i1) {
  13310. // rowwise dot product
  13311. float sumf = 0.0f;
  13312. for (int i0 = 0; i0 < nc; ++i0) {
  13313. int i = i0 + i1*nc;
  13314. sumf += s[i] * c[i];
  13315. }
  13316. x[i1] = sumf;
  13317. }
  13318. }
  13319. }
  13320. static void ggml_compute_forward_ssm_conv(
  13321. const struct ggml_compute_params * params,
  13322. struct ggml_tensor * dst) {
  13323. switch (dst->src[0]->type) {
  13324. case GGML_TYPE_F32:
  13325. {
  13326. ggml_compute_forward_ssm_conv_f32(params, dst);
  13327. } break;
  13328. default:
  13329. {
  13330. GGML_ASSERT(false);
  13331. } break;
  13332. }
  13333. }
  13334. // ggml_compute_forward_ssm_scan
  13335. static void ggml_compute_forward_ssm_scan_f32(
  13336. const struct ggml_compute_params * params,
  13337. struct ggml_tensor * dst) {
  13338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13339. return;
  13340. }
  13341. const struct ggml_tensor * src0 = dst->src[0]; // s
  13342. const struct ggml_tensor * src1 = dst->src[1]; // x
  13343. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13344. const struct ggml_tensor * src3 = dst->src[3]; // A
  13345. const struct ggml_tensor * src4 = dst->src[4]; // B
  13346. const struct ggml_tensor * src5 = dst->src[5]; // C
  13347. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13348. const int ith = params->ith;
  13349. const int nth = params->nth;
  13350. const int64_t nc = src0->ne[0]; // d_state
  13351. const int64_t nr = src0->ne[1]; // d_inner
  13352. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13353. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13354. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13355. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13356. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13357. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13358. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13359. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13360. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13361. // required for the dot product between s and C, and when copying the states
  13362. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13363. // required for per-sequence offsets for states
  13364. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13365. // required to get correct offset for state destination (i.e. src1->nb[2])
  13366. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13367. // rows per thread
  13368. const int dr = (nr + nth - 1)/nth;
  13369. // row range for this thread
  13370. const int ir0 = dr*ith;
  13371. const int ir1 = MIN(ir0 + dr, nr);
  13372. const int ir = ir1 - ir0;
  13373. if (n_kv > 1) {
  13374. // it's hard to know if the source states have already been copied
  13375. // when there are multiple, so copy them already.
  13376. for (int i3 = 0; i3 < n_kv; ++i3) {
  13377. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13378. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13379. memcpy(s, s0, nc*ir*sizeof(float));
  13380. }
  13381. }
  13382. for (int i2 = 0; i2 < n_t; ++i2) {
  13383. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13384. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13385. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13386. float * s0;
  13387. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13388. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13389. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13390. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13391. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13392. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13393. // avoid needing to copy the state for the first token
  13394. if (i2 == 0) {
  13395. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13396. } else {
  13397. // otherwise the source is the same as the destination
  13398. s0 = s;
  13399. }
  13400. // d_inner
  13401. for (int i1 = 0; i1 < ir; ++i1) {
  13402. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13403. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13404. float x_dt = x[i1] * dt_soft_plus;
  13405. float sumf = 0.0f;
  13406. // d_state
  13407. for (int i0 = 0; i0 < nc; ++i0) {
  13408. int i = i0 + i1*nc;
  13409. // state = prev_state * dA + dB * x
  13410. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13411. // y = rowwise_dotprod(state, C)
  13412. sumf += state * C[i0];
  13413. s[i] = state;
  13414. }
  13415. y[i1] = sumf;
  13416. }
  13417. // handle copies when there are multiple output states
  13418. for (int i3 = 1; i3 < n_kv; ++i3) {
  13419. int32_t seq = sq[i3];
  13420. if (0 <= seq && seq < n_kv) {
  13421. float * s1 = s + (seq - sq[0])*nc*nr;
  13422. memcpy(s1, s, nc*ir*sizeof(float));
  13423. } else {
  13424. // stop at negative or too big seq_ids
  13425. break;
  13426. }
  13427. }
  13428. }
  13429. }
  13430. static void ggml_compute_forward_ssm_scan(
  13431. const struct ggml_compute_params * params,
  13432. struct ggml_tensor * dst) {
  13433. switch (dst->src[0]->type) {
  13434. case GGML_TYPE_F32:
  13435. {
  13436. ggml_compute_forward_ssm_scan_f32(params, dst);
  13437. } break;
  13438. default:
  13439. {
  13440. GGML_ASSERT(false);
  13441. } break;
  13442. }
  13443. }
  13444. // ggml_compute_forward_win_part
  13445. static void ggml_compute_forward_win_part_f32(
  13446. const struct ggml_compute_params * params,
  13447. struct ggml_tensor * dst) {
  13448. const struct ggml_tensor * src0 = dst->src[0];
  13449. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13450. return;
  13451. }
  13452. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13453. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13454. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13455. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13456. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13457. assert(ne00 == ne0);
  13458. assert(ne3 == nep0*nep1);
  13459. // TODO: optimize / multi-thread
  13460. for (int py = 0; py < nep1; ++py) {
  13461. for (int px = 0; px < nep0; ++px) {
  13462. const int64_t i3 = py*nep0 + px;
  13463. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13464. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13465. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13466. const int64_t i02 = py*w + i2;
  13467. const int64_t i01 = px*w + i1;
  13468. const int64_t i00 = i0;
  13469. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13470. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13471. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13472. ((float *) dst->data)[i] = 0.0f;
  13473. } else {
  13474. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13475. }
  13476. }
  13477. }
  13478. }
  13479. }
  13480. }
  13481. }
  13482. static void ggml_compute_forward_win_part(
  13483. const struct ggml_compute_params * params,
  13484. struct ggml_tensor * dst) {
  13485. const struct ggml_tensor * src0 = dst->src[0];
  13486. switch (src0->type) {
  13487. case GGML_TYPE_F32:
  13488. {
  13489. ggml_compute_forward_win_part_f32(params, dst);
  13490. } break;
  13491. default:
  13492. {
  13493. GGML_ASSERT(false);
  13494. } break;
  13495. }
  13496. }
  13497. // ggml_compute_forward_win_unpart
  13498. static void ggml_compute_forward_win_unpart_f32(
  13499. const struct ggml_compute_params * params,
  13500. struct ggml_tensor * dst) {
  13501. const struct ggml_tensor * src0 = dst->src[0];
  13502. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13503. return;
  13504. }
  13505. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13506. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13507. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13508. // padding
  13509. const int px = (w - ne1%w)%w;
  13510. //const int py = (w - ne2%w)%w;
  13511. const int npx = (px + ne1)/w;
  13512. //const int npy = (py + ne2)/w;
  13513. assert(ne0 == ne00);
  13514. // TODO: optimize / multi-thread
  13515. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13516. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13517. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13518. const int ip2 = i2/w;
  13519. const int ip1 = i1/w;
  13520. const int64_t i02 = i2%w;
  13521. const int64_t i01 = i1%w;
  13522. const int64_t i00 = i0;
  13523. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13524. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13525. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13526. }
  13527. }
  13528. }
  13529. }
  13530. static void ggml_compute_forward_win_unpart(
  13531. const struct ggml_compute_params * params,
  13532. struct ggml_tensor * dst) {
  13533. const struct ggml_tensor * src0 = dst->src[0];
  13534. switch (src0->type) {
  13535. case GGML_TYPE_F32:
  13536. {
  13537. ggml_compute_forward_win_unpart_f32(params, dst);
  13538. } break;
  13539. default:
  13540. {
  13541. GGML_ASSERT(false);
  13542. } break;
  13543. }
  13544. }
  13545. //gmml_compute_forward_unary
  13546. static void ggml_compute_forward_unary(
  13547. const struct ggml_compute_params * params,
  13548. struct ggml_tensor * dst) {
  13549. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13550. switch (op) {
  13551. case GGML_UNARY_OP_ABS:
  13552. {
  13553. ggml_compute_forward_abs(params, dst);
  13554. } break;
  13555. case GGML_UNARY_OP_SGN:
  13556. {
  13557. ggml_compute_forward_sgn(params, dst);
  13558. } break;
  13559. case GGML_UNARY_OP_NEG:
  13560. {
  13561. ggml_compute_forward_neg(params, dst);
  13562. } break;
  13563. case GGML_UNARY_OP_STEP:
  13564. {
  13565. ggml_compute_forward_step(params, dst);
  13566. } break;
  13567. case GGML_UNARY_OP_TANH:
  13568. {
  13569. ggml_compute_forward_tanh(params, dst);
  13570. } break;
  13571. case GGML_UNARY_OP_ELU:
  13572. {
  13573. ggml_compute_forward_elu(params, dst);
  13574. } break;
  13575. case GGML_UNARY_OP_RELU:
  13576. {
  13577. ggml_compute_forward_relu(params, dst);
  13578. } break;
  13579. case GGML_UNARY_OP_SIGMOID:
  13580. {
  13581. ggml_compute_forward_sigmoid(params, dst);
  13582. } break;
  13583. case GGML_UNARY_OP_GELU:
  13584. {
  13585. ggml_compute_forward_gelu(params, dst);
  13586. } break;
  13587. case GGML_UNARY_OP_GELU_QUICK:
  13588. {
  13589. ggml_compute_forward_gelu_quick(params, dst);
  13590. } break;
  13591. case GGML_UNARY_OP_SILU:
  13592. {
  13593. ggml_compute_forward_silu(params, dst);
  13594. } break;
  13595. case GGML_UNARY_OP_HARDSWISH:
  13596. {
  13597. ggml_compute_forward_hardswish(params, dst);
  13598. } break;
  13599. case GGML_UNARY_OP_HARDSIGMOID:
  13600. {
  13601. ggml_compute_forward_hardsigmoid(params, dst);
  13602. } break;
  13603. default:
  13604. {
  13605. GGML_ASSERT(false);
  13606. } break;
  13607. }
  13608. }
  13609. // ggml_compute_forward_get_rel_pos
  13610. static void ggml_compute_forward_get_rel_pos_f16(
  13611. const struct ggml_compute_params * params,
  13612. struct ggml_tensor * dst) {
  13613. const struct ggml_tensor * src0 = dst->src[0];
  13614. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13615. return;
  13616. }
  13617. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13618. GGML_TENSOR_UNARY_OP_LOCALS
  13619. const int64_t w = ne1;
  13620. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13621. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13622. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13623. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13624. const int64_t pos = (w - i1 - 1) + i2;
  13625. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13626. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13627. }
  13628. }
  13629. }
  13630. }
  13631. static void ggml_compute_forward_get_rel_pos(
  13632. const struct ggml_compute_params * params,
  13633. struct ggml_tensor * dst) {
  13634. const struct ggml_tensor * src0 = dst->src[0];
  13635. switch (src0->type) {
  13636. case GGML_TYPE_F16:
  13637. case GGML_TYPE_BF16:
  13638. {
  13639. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13640. } break;
  13641. default:
  13642. {
  13643. GGML_ASSERT(false);
  13644. } break;
  13645. }
  13646. }
  13647. // ggml_compute_forward_add_rel_pos
  13648. static void ggml_compute_forward_add_rel_pos_f32(
  13649. const struct ggml_compute_params * params,
  13650. struct ggml_tensor * dst) {
  13651. const struct ggml_tensor * src0 = dst->src[0];
  13652. const struct ggml_tensor * src1 = dst->src[1];
  13653. const struct ggml_tensor * src2 = dst->src[2];
  13654. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13655. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13656. if (params->ith != 0) {
  13657. return;
  13658. }
  13659. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13660. return;
  13661. }
  13662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13663. return;
  13664. }
  13665. int64_t t0 = ggml_perf_time_us();
  13666. UNUSED(t0);
  13667. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13668. float * src1_data = (float *) src1->data;
  13669. float * src2_data = (float *) src2->data;
  13670. float * dst_data = (float *) dst->data;
  13671. const int64_t ne10 = src1->ne[0];
  13672. const int64_t ne11 = src1->ne[1];
  13673. const int64_t ne12 = src1->ne[2];
  13674. const int64_t ne13 = src1->ne[3];
  13675. const int ith = params->ith;
  13676. const int nth = params->nth;
  13677. // total patches in dst
  13678. const int np = ne13;
  13679. // patches per thread
  13680. const int dp = (np + nth - 1)/nth;
  13681. // patch range for this thread
  13682. const int ip0 = dp*ith;
  13683. const int ip1 = MIN(ip0 + dp, np);
  13684. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13685. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13686. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13687. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13688. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13689. const int64_t jp0 = jp1 + i10;
  13690. const float src1_e = src1_data[jp0];
  13691. const float src2_e = src2_data[jp0];
  13692. const int64_t jdh = jp0 * ne10;
  13693. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13694. for (int64_t j = 0; j < ne10; ++j) {
  13695. dst_data[jdh + j ] += src2_e;
  13696. dst_data[jdw + j*ne10] += src1_e;
  13697. }
  13698. }
  13699. }
  13700. }
  13701. }
  13702. }
  13703. static void ggml_compute_forward_add_rel_pos(
  13704. const struct ggml_compute_params * params,
  13705. struct ggml_tensor * dst) {
  13706. const struct ggml_tensor * src0 = dst->src[0];
  13707. switch (src0->type) {
  13708. case GGML_TYPE_F32:
  13709. {
  13710. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13711. } break;
  13712. default:
  13713. {
  13714. GGML_ASSERT(false);
  13715. } break;
  13716. }
  13717. }
  13718. // ggml_compute_forward_map_unary
  13719. static void ggml_compute_forward_map_unary_f32(
  13720. const struct ggml_compute_params * params,
  13721. struct ggml_tensor * dst,
  13722. const ggml_unary_op_f32_t fun) {
  13723. const struct ggml_tensor * src0 = dst->src[0];
  13724. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13725. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13726. return;
  13727. }
  13728. const int n = ggml_nrows(src0);
  13729. const int nc = src0->ne[0];
  13730. assert( dst->nb[0] == sizeof(float));
  13731. assert(src0->nb[0] == sizeof(float));
  13732. for (int i = 0; i < n; i++) {
  13733. fun(nc,
  13734. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13735. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13736. }
  13737. }
  13738. static void ggml_compute_forward_map_unary(
  13739. const struct ggml_compute_params * params,
  13740. struct ggml_tensor * dst,
  13741. const ggml_unary_op_f32_t fun) {
  13742. const struct ggml_tensor * src0 = dst->src[0];
  13743. switch (src0->type) {
  13744. case GGML_TYPE_F32:
  13745. {
  13746. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13747. } break;
  13748. default:
  13749. {
  13750. GGML_ASSERT(false);
  13751. } break;
  13752. }
  13753. }
  13754. // ggml_compute_forward_map_binary
  13755. static void ggml_compute_forward_map_binary_f32(
  13756. const struct ggml_compute_params * params,
  13757. struct ggml_tensor * dst,
  13758. const ggml_binary_op_f32_t fun) {
  13759. const struct ggml_tensor * src0 = dst->src[0];
  13760. const struct ggml_tensor * src1 = dst->src[1];
  13761. assert(params->ith == 0);
  13762. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13763. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13764. return;
  13765. }
  13766. const int n = ggml_nrows(src0);
  13767. const int nc = src0->ne[0];
  13768. assert( dst->nb[0] == sizeof(float));
  13769. assert(src0->nb[0] == sizeof(float));
  13770. assert(src1->nb[0] == sizeof(float));
  13771. for (int i = 0; i < n; i++) {
  13772. fun(nc,
  13773. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13774. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13775. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13776. }
  13777. }
  13778. static void ggml_compute_forward_map_binary(
  13779. const struct ggml_compute_params * params,
  13780. struct ggml_tensor * dst,
  13781. const ggml_binary_op_f32_t fun) {
  13782. const struct ggml_tensor * src0 = dst->src[0];
  13783. switch (src0->type) {
  13784. case GGML_TYPE_F32:
  13785. {
  13786. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13787. } break;
  13788. default:
  13789. {
  13790. GGML_ASSERT(false);
  13791. } break;
  13792. }
  13793. }
  13794. // ggml_compute_forward_map_custom1
  13795. static void ggml_compute_forward_map_custom1_f32(
  13796. const struct ggml_compute_params * params,
  13797. struct ggml_tensor * dst,
  13798. const ggml_custom1_op_f32_t fun) {
  13799. const struct ggml_tensor * a = dst->src[0];
  13800. assert(params->ith == 0);
  13801. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13802. return;
  13803. }
  13804. fun(dst, a);
  13805. }
  13806. // ggml_compute_forward_map_custom2
  13807. static void ggml_compute_forward_map_custom2_f32(
  13808. const struct ggml_compute_params * params,
  13809. struct ggml_tensor * dst,
  13810. const ggml_custom2_op_f32_t fun) {
  13811. const struct ggml_tensor * a = dst->src[0];
  13812. const struct ggml_tensor * b = dst->src[1];
  13813. assert(params->ith == 0);
  13814. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13815. return;
  13816. }
  13817. fun(dst, a, b);
  13818. }
  13819. // ggml_compute_forward_map_custom3
  13820. static void ggml_compute_forward_map_custom3_f32(
  13821. const struct ggml_compute_params * params,
  13822. struct ggml_tensor * dst,
  13823. const ggml_custom3_op_f32_t fun) {
  13824. const struct ggml_tensor * a = dst->src[0];
  13825. const struct ggml_tensor * b = dst->src[1];
  13826. const struct ggml_tensor * c = dst->src[1];
  13827. assert(params->ith == 0);
  13828. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13829. return;
  13830. }
  13831. fun(dst, a, b, c);
  13832. }
  13833. // ggml_compute_forward_map_custom1
  13834. static void ggml_compute_forward_map_custom1(
  13835. const struct ggml_compute_params * params,
  13836. struct ggml_tensor * dst) {
  13837. const struct ggml_tensor * a = dst->src[0];
  13838. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13839. return;
  13840. }
  13841. struct ggml_map_custom1_op_params p;
  13842. memcpy(&p, dst->op_params, sizeof(p));
  13843. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13844. }
  13845. // ggml_compute_forward_map_custom2
  13846. static void ggml_compute_forward_map_custom2(
  13847. const struct ggml_compute_params * params,
  13848. struct ggml_tensor * dst) {
  13849. const struct ggml_tensor * a = dst->src[0];
  13850. const struct ggml_tensor * b = dst->src[1];
  13851. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13852. return;
  13853. }
  13854. struct ggml_map_custom2_op_params p;
  13855. memcpy(&p, dst->op_params, sizeof(p));
  13856. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13857. }
  13858. // ggml_compute_forward_map_custom3
  13859. static void ggml_compute_forward_map_custom3(
  13860. const struct ggml_compute_params * params,
  13861. struct ggml_tensor * dst) {
  13862. const struct ggml_tensor * a = dst->src[0];
  13863. const struct ggml_tensor * b = dst->src[1];
  13864. const struct ggml_tensor * c = dst->src[2];
  13865. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13866. return;
  13867. }
  13868. struct ggml_map_custom3_op_params p;
  13869. memcpy(&p, dst->op_params, sizeof(p));
  13870. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13871. }
  13872. // ggml_compute_forward_cross_entropy_loss
  13873. static void ggml_compute_forward_cross_entropy_loss_f32(
  13874. const struct ggml_compute_params * params,
  13875. struct ggml_tensor * dst) {
  13876. const struct ggml_tensor * src0 = dst->src[0];
  13877. const struct ggml_tensor * src1 = dst->src[1];
  13878. GGML_ASSERT(ggml_is_contiguous(src0));
  13879. GGML_ASSERT(ggml_is_contiguous(src1));
  13880. GGML_ASSERT(ggml_is_scalar(dst));
  13881. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13882. const int ith = params->ith;
  13883. const int nth = params->nth;
  13884. float * sums = (float *) params->wdata;
  13885. // TODO: handle transposed/permuted matrices
  13886. const int nc = src0->ne[0];
  13887. const int nr = ggml_nrows(src0);
  13888. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13889. if (params->type == GGML_TASK_TYPE_INIT) {
  13890. if (ith == 0) {
  13891. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13892. }
  13893. return;
  13894. }
  13895. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13896. if (ith == 0) {
  13897. float * dp = (float *) dst->data;
  13898. ggml_vec_sum_f32(nth, dp, sums);
  13899. dp[0] *= -1.0f / (float) nr;
  13900. }
  13901. return;
  13902. }
  13903. const double eps = 1e-9;
  13904. // rows per thread
  13905. const int dr = (nr + nth - 1)/nth;
  13906. // row range for this thread
  13907. const int ir0 = dr*ith;
  13908. const int ir1 = MIN(ir0 + dr, nr);
  13909. for (int i1 = ir0; i1 < ir1; i1++) {
  13910. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13911. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13912. float * st = ((float *) params->wdata) + nth + ith*nc;
  13913. #ifndef NDEBUG
  13914. for (int i = 0; i < nc; ++i) {
  13915. //printf("p[%d] = %f\n", i, p[i]);
  13916. assert(!isnan(s0[i]));
  13917. assert(!isnan(s1[i]));
  13918. }
  13919. #endif
  13920. // soft_max
  13921. float max = -INFINITY;
  13922. ggml_vec_max_f32(nc, &max, s0);
  13923. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13924. assert(sum > 0.0);
  13925. sum = (1.0 - eps) / sum;
  13926. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13927. ggml_vec_scale_f32(nc, st, sum);
  13928. ggml_vec_add1_f32(nc, st, st, eps);
  13929. ggml_vec_log_f32(nc, st, st);
  13930. ggml_vec_mul_f32(nc, st, st, s1);
  13931. float st_sum = 0;
  13932. ggml_vec_sum_f32(nc, &st_sum, st);
  13933. sums[ith] += st_sum;
  13934. #ifndef NDEBUG
  13935. for (int i = 0; i < nc; ++i) {
  13936. assert(!isnan(st[i]));
  13937. assert(!isinf(st[i]));
  13938. }
  13939. #endif
  13940. }
  13941. }
  13942. static void ggml_compute_forward_cross_entropy_loss(
  13943. const struct ggml_compute_params * params,
  13944. struct ggml_tensor * dst) {
  13945. const struct ggml_tensor * src0 = dst->src[0];
  13946. switch (src0->type) {
  13947. case GGML_TYPE_F32:
  13948. {
  13949. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13950. } break;
  13951. default:
  13952. {
  13953. GGML_ASSERT(false);
  13954. } break;
  13955. }
  13956. }
  13957. // ggml_compute_forward_cross_entropy_loss_back
  13958. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13959. const struct ggml_compute_params * params,
  13960. struct ggml_tensor * dst) {
  13961. const struct ggml_tensor * src0 = dst->src[0];
  13962. const struct ggml_tensor * src1 = dst->src[1];
  13963. const struct ggml_tensor * opt0 = dst->src[2];
  13964. GGML_ASSERT(ggml_is_contiguous(dst));
  13965. GGML_ASSERT(ggml_is_contiguous(src0));
  13966. GGML_ASSERT(ggml_is_contiguous(src1));
  13967. GGML_ASSERT(ggml_is_contiguous(opt0));
  13968. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13969. const int64_t ith = params->ith;
  13970. const int64_t nth = params->nth;
  13971. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13972. return;
  13973. }
  13974. const double eps = 1e-9;
  13975. // TODO: handle transposed/permuted matrices
  13976. const int64_t nc = src0->ne[0];
  13977. const int64_t nr = ggml_nrows(src0);
  13978. // rows per thread
  13979. const int64_t dr = (nr + nth - 1)/nth;
  13980. // row range for this thread
  13981. const int64_t ir0 = dr*ith;
  13982. const int64_t ir1 = MIN(ir0 + dr, nr);
  13983. float * d = (float *) opt0->data;
  13984. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13985. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13986. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13987. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13988. #ifndef NDEBUG
  13989. for (int i = 0; i < nc; ++i) {
  13990. //printf("p[%d] = %f\n", i, p[i]);
  13991. assert(!isnan(s0[i]));
  13992. assert(!isnan(s1[i]));
  13993. }
  13994. #endif
  13995. // soft_max
  13996. float max = -INFINITY;
  13997. ggml_vec_max_f32(nc, &max, s0);
  13998. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13999. assert(sum > 0.0);
  14000. sum = (1.0 - eps) / sum;
  14001. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14002. ggml_vec_scale_f32(nc, ds0, sum);
  14003. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14004. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14005. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14006. #ifndef NDEBUG
  14007. for (int i = 0; i < nc; ++i) {
  14008. assert(!isnan(ds0[i]));
  14009. assert(!isinf(ds0[i]));
  14010. }
  14011. #endif
  14012. }
  14013. }
  14014. static void ggml_compute_forward_cross_entropy_loss_back(
  14015. const struct ggml_compute_params * params,
  14016. struct ggml_tensor * dst) {
  14017. const struct ggml_tensor * src0 = dst->src[0];
  14018. switch (src0->type) {
  14019. case GGML_TYPE_F32:
  14020. {
  14021. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14022. } break;
  14023. default:
  14024. {
  14025. GGML_ASSERT(false);
  14026. } break;
  14027. }
  14028. }
  14029. /////////////////////////////////
  14030. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14031. GGML_ASSERT(params);
  14032. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14033. return;
  14034. }
  14035. switch (tensor->op) {
  14036. case GGML_OP_DUP:
  14037. {
  14038. ggml_compute_forward_dup(params, tensor);
  14039. } break;
  14040. case GGML_OP_ADD:
  14041. {
  14042. ggml_compute_forward_add(params, tensor);
  14043. } break;
  14044. case GGML_OP_ADD1:
  14045. {
  14046. ggml_compute_forward_add1(params, tensor);
  14047. } break;
  14048. case GGML_OP_ACC:
  14049. {
  14050. ggml_compute_forward_acc(params, tensor);
  14051. } break;
  14052. case GGML_OP_SUB:
  14053. {
  14054. ggml_compute_forward_sub(params, tensor);
  14055. } break;
  14056. case GGML_OP_MUL:
  14057. {
  14058. ggml_compute_forward_mul(params, tensor);
  14059. } break;
  14060. case GGML_OP_DIV:
  14061. {
  14062. ggml_compute_forward_div(params, tensor);
  14063. } break;
  14064. case GGML_OP_SQR:
  14065. {
  14066. ggml_compute_forward_sqr(params, tensor);
  14067. } break;
  14068. case GGML_OP_SQRT:
  14069. {
  14070. ggml_compute_forward_sqrt(params, tensor);
  14071. } break;
  14072. case GGML_OP_LOG:
  14073. {
  14074. ggml_compute_forward_log(params, tensor);
  14075. } break;
  14076. case GGML_OP_SUM:
  14077. {
  14078. ggml_compute_forward_sum(params, tensor);
  14079. } break;
  14080. case GGML_OP_SUM_ROWS:
  14081. {
  14082. ggml_compute_forward_sum_rows(params, tensor);
  14083. } break;
  14084. case GGML_OP_MEAN:
  14085. {
  14086. ggml_compute_forward_mean(params, tensor);
  14087. } break;
  14088. case GGML_OP_ARGMAX:
  14089. {
  14090. ggml_compute_forward_argmax(params, tensor);
  14091. } break;
  14092. case GGML_OP_REPEAT:
  14093. {
  14094. ggml_compute_forward_repeat(params, tensor);
  14095. } break;
  14096. case GGML_OP_REPEAT_BACK:
  14097. {
  14098. ggml_compute_forward_repeat_back(params, tensor);
  14099. } break;
  14100. case GGML_OP_CONCAT:
  14101. {
  14102. ggml_compute_forward_concat(params, tensor);
  14103. } break;
  14104. case GGML_OP_SILU_BACK:
  14105. {
  14106. ggml_compute_forward_silu_back(params, tensor);
  14107. } break;
  14108. case GGML_OP_NORM:
  14109. {
  14110. ggml_compute_forward_norm(params, tensor);
  14111. } break;
  14112. case GGML_OP_RMS_NORM:
  14113. {
  14114. ggml_compute_forward_rms_norm(params, tensor);
  14115. } break;
  14116. case GGML_OP_RMS_NORM_BACK:
  14117. {
  14118. ggml_compute_forward_rms_norm_back(params, tensor);
  14119. } break;
  14120. case GGML_OP_GROUP_NORM:
  14121. {
  14122. ggml_compute_forward_group_norm(params, tensor);
  14123. } break;
  14124. case GGML_OP_MUL_MAT:
  14125. {
  14126. ggml_compute_forward_mul_mat(params, tensor, state);
  14127. } break;
  14128. case GGML_OP_MUL_MAT_ID:
  14129. {
  14130. ggml_compute_forward_mul_mat_id(params, tensor);
  14131. } break;
  14132. case GGML_OP_OUT_PROD:
  14133. {
  14134. ggml_compute_forward_out_prod(params, tensor);
  14135. } break;
  14136. case GGML_OP_SCALE:
  14137. {
  14138. ggml_compute_forward_scale(params, tensor);
  14139. } break;
  14140. case GGML_OP_SET:
  14141. {
  14142. ggml_compute_forward_set(params, tensor);
  14143. } break;
  14144. case GGML_OP_CPY:
  14145. {
  14146. ggml_compute_forward_cpy(params, tensor);
  14147. } break;
  14148. case GGML_OP_CONT:
  14149. {
  14150. ggml_compute_forward_cont(params, tensor);
  14151. } break;
  14152. case GGML_OP_RESHAPE:
  14153. {
  14154. ggml_compute_forward_reshape(params, tensor);
  14155. } break;
  14156. case GGML_OP_VIEW:
  14157. {
  14158. ggml_compute_forward_view(params, tensor);
  14159. } break;
  14160. case GGML_OP_PERMUTE:
  14161. {
  14162. ggml_compute_forward_permute(params, tensor);
  14163. } break;
  14164. case GGML_OP_TRANSPOSE:
  14165. {
  14166. ggml_compute_forward_transpose(params, tensor);
  14167. } break;
  14168. case GGML_OP_GET_ROWS:
  14169. {
  14170. ggml_compute_forward_get_rows(params, tensor);
  14171. } break;
  14172. case GGML_OP_GET_ROWS_BACK:
  14173. {
  14174. ggml_compute_forward_get_rows_back(params, tensor);
  14175. } break;
  14176. case GGML_OP_DIAG:
  14177. {
  14178. ggml_compute_forward_diag(params, tensor);
  14179. } break;
  14180. case GGML_OP_DIAG_MASK_INF:
  14181. {
  14182. ggml_compute_forward_diag_mask_inf(params, tensor);
  14183. } break;
  14184. case GGML_OP_DIAG_MASK_ZERO:
  14185. {
  14186. ggml_compute_forward_diag_mask_zero(params, tensor);
  14187. } break;
  14188. case GGML_OP_SOFT_MAX:
  14189. {
  14190. ggml_compute_forward_soft_max(params, tensor);
  14191. } break;
  14192. case GGML_OP_SOFT_MAX_BACK:
  14193. {
  14194. ggml_compute_forward_soft_max_back(params, tensor);
  14195. } break;
  14196. case GGML_OP_ROPE:
  14197. {
  14198. ggml_compute_forward_rope(params, tensor);
  14199. } break;
  14200. case GGML_OP_ROPE_BACK:
  14201. {
  14202. ggml_compute_forward_rope_back(params, tensor);
  14203. } break;
  14204. case GGML_OP_CLAMP:
  14205. {
  14206. ggml_compute_forward_clamp(params, tensor);
  14207. } break;
  14208. case GGML_OP_CONV_TRANSPOSE_1D:
  14209. {
  14210. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14211. } break;
  14212. case GGML_OP_IM2COL:
  14213. {
  14214. ggml_compute_forward_im2col(params, tensor);
  14215. } break;
  14216. case GGML_OP_CONV_TRANSPOSE_2D:
  14217. {
  14218. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14219. } break;
  14220. case GGML_OP_POOL_1D:
  14221. {
  14222. ggml_compute_forward_pool_1d(params, tensor);
  14223. } break;
  14224. case GGML_OP_POOL_2D:
  14225. {
  14226. ggml_compute_forward_pool_2d(params, tensor);
  14227. } break;
  14228. case GGML_OP_UPSCALE:
  14229. {
  14230. ggml_compute_forward_upscale(params, tensor);
  14231. } break;
  14232. case GGML_OP_PAD:
  14233. {
  14234. ggml_compute_forward_pad(params, tensor);
  14235. } break;
  14236. case GGML_OP_ARANGE:
  14237. {
  14238. ggml_compute_forward_arange(params, tensor);
  14239. } break;
  14240. case GGML_OP_TIMESTEP_EMBEDDING:
  14241. {
  14242. ggml_compute_forward_timestep_embedding(params, tensor);
  14243. } break;
  14244. case GGML_OP_ARGSORT:
  14245. {
  14246. ggml_compute_forward_argsort(params, tensor);
  14247. } break;
  14248. case GGML_OP_LEAKY_RELU:
  14249. {
  14250. ggml_compute_forward_leaky_relu(params, tensor);
  14251. } break;
  14252. case GGML_OP_FLASH_ATTN_EXT:
  14253. {
  14254. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14255. } break;
  14256. case GGML_OP_FLASH_ATTN_BACK:
  14257. {
  14258. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14259. GGML_ASSERT(t == 0 || t == 1);
  14260. bool masked = t != 0;
  14261. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14262. } break;
  14263. case GGML_OP_SSM_CONV:
  14264. {
  14265. ggml_compute_forward_ssm_conv(params, tensor);
  14266. } break;
  14267. case GGML_OP_SSM_SCAN:
  14268. {
  14269. ggml_compute_forward_ssm_scan(params, tensor);
  14270. } break;
  14271. case GGML_OP_WIN_PART:
  14272. {
  14273. ggml_compute_forward_win_part(params, tensor);
  14274. } break;
  14275. case GGML_OP_WIN_UNPART:
  14276. {
  14277. ggml_compute_forward_win_unpart(params, tensor);
  14278. } break;
  14279. case GGML_OP_UNARY:
  14280. {
  14281. ggml_compute_forward_unary(params, tensor);
  14282. } break;
  14283. case GGML_OP_GET_REL_POS:
  14284. {
  14285. ggml_compute_forward_get_rel_pos(params, tensor);
  14286. } break;
  14287. case GGML_OP_ADD_REL_POS:
  14288. {
  14289. ggml_compute_forward_add_rel_pos(params, tensor);
  14290. } break;
  14291. case GGML_OP_MAP_UNARY:
  14292. {
  14293. ggml_unary_op_f32_t fun;
  14294. memcpy(&fun, tensor->op_params, sizeof(fun));
  14295. ggml_compute_forward_map_unary(params, tensor, fun);
  14296. }
  14297. break;
  14298. case GGML_OP_MAP_BINARY:
  14299. {
  14300. ggml_binary_op_f32_t fun;
  14301. memcpy(&fun, tensor->op_params, sizeof(fun));
  14302. ggml_compute_forward_map_binary(params, tensor, fun);
  14303. }
  14304. break;
  14305. case GGML_OP_MAP_CUSTOM1_F32:
  14306. {
  14307. ggml_custom1_op_f32_t fun;
  14308. memcpy(&fun, tensor->op_params, sizeof(fun));
  14309. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14310. }
  14311. break;
  14312. case GGML_OP_MAP_CUSTOM2_F32:
  14313. {
  14314. ggml_custom2_op_f32_t fun;
  14315. memcpy(&fun, tensor->op_params, sizeof(fun));
  14316. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14317. }
  14318. break;
  14319. case GGML_OP_MAP_CUSTOM3_F32:
  14320. {
  14321. ggml_custom3_op_f32_t fun;
  14322. memcpy(&fun, tensor->op_params, sizeof(fun));
  14323. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14324. }
  14325. break;
  14326. case GGML_OP_MAP_CUSTOM1:
  14327. {
  14328. ggml_compute_forward_map_custom1(params, tensor);
  14329. }
  14330. break;
  14331. case GGML_OP_MAP_CUSTOM2:
  14332. {
  14333. ggml_compute_forward_map_custom2(params, tensor);
  14334. }
  14335. break;
  14336. case GGML_OP_MAP_CUSTOM3:
  14337. {
  14338. ggml_compute_forward_map_custom3(params, tensor);
  14339. }
  14340. break;
  14341. case GGML_OP_CROSS_ENTROPY_LOSS:
  14342. {
  14343. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14344. }
  14345. break;
  14346. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14347. {
  14348. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14349. }
  14350. break;
  14351. case GGML_OP_NONE:
  14352. {
  14353. // nop
  14354. } break;
  14355. case GGML_OP_COUNT:
  14356. {
  14357. GGML_ASSERT(false);
  14358. } break;
  14359. }
  14360. }
  14361. ////////////////////////////////////////////////////////////////////////////////
  14362. static size_t ggml_hash_size(size_t min_sz) {
  14363. // next primes after powers of two
  14364. static const size_t primes[] = {
  14365. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14366. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14367. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14368. 16777259, 33554467, 67108879, 134217757, 268435459,
  14369. 536870923, 1073741827, 2147483659
  14370. };
  14371. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14372. // find the smallest prime that is larger or equal to min_sz
  14373. size_t l = 0;
  14374. size_t r = n_primes;
  14375. while (l < r) {
  14376. size_t m = (l + r)/2;
  14377. if (primes[m] < min_sz) {
  14378. l = m + 1;
  14379. } else {
  14380. r = m;
  14381. }
  14382. }
  14383. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14384. return sz;
  14385. }
  14386. static size_t ggml_hash(const void * p) {
  14387. return (size_t)p;
  14388. }
  14389. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14390. size_t h = ggml_hash(key) % hash_set.size;
  14391. // linear probing
  14392. size_t i = h;
  14393. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14394. i = (i + 1) % hash_set.size;
  14395. if (i == h) {
  14396. // visited all hash table entries -> not found
  14397. return GGML_HASHTABLE_FULL;
  14398. }
  14399. }
  14400. return i;
  14401. }
  14402. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14403. size_t i = ggml_hash_find(hash_set, key);
  14404. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14405. }
  14406. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14407. size_t i = ggml_hash_find(hash_set, key);
  14408. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14409. if (hash_set.keys[i] == key) {
  14410. return GGML_HASHTABLE_ALREADY_EXISTS;
  14411. }
  14412. // insert
  14413. GGML_ASSERT(hash_set.keys[i] == NULL);
  14414. hash_set.keys[i] = key;
  14415. return i;
  14416. }
  14417. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14418. size_t i = ggml_hash_find(hash_set, key);
  14419. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14420. hash_set.keys[i] = key;
  14421. return i;
  14422. }
  14423. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14424. size = ggml_hash_size(size);
  14425. struct ggml_hash_set result;
  14426. result.size = size;
  14427. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14428. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14429. return result;
  14430. }
  14431. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14432. GGML_FREE(hash_set.keys);
  14433. }
  14434. struct hash_map {
  14435. struct ggml_hash_set set;
  14436. struct ggml_tensor ** vals;
  14437. };
  14438. static struct hash_map * ggml_new_hash_map(size_t size) {
  14439. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14440. result->set = ggml_hash_set_new(size);
  14441. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14442. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14443. return result;
  14444. }
  14445. static void ggml_hash_map_free(struct hash_map * map) {
  14446. ggml_hash_set_free(map->set);
  14447. GGML_FREE(map->vals);
  14448. GGML_FREE(map);
  14449. }
  14450. // gradient checkpointing
  14451. static struct ggml_tensor * ggml_recompute_graph_node(
  14452. struct ggml_context * ctx,
  14453. struct ggml_cgraph * graph,
  14454. struct hash_map * replacements,
  14455. struct ggml_tensor * node) {
  14456. if (node == NULL) {
  14457. return NULL;
  14458. }
  14459. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14460. return node;
  14461. }
  14462. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14463. return node;
  14464. }
  14465. int count_children = 0;
  14466. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14467. if (node->src[k]) {
  14468. ++count_children;
  14469. }
  14470. }
  14471. if (count_children == 0) {
  14472. return node;
  14473. }
  14474. size_t i = ggml_hash_find(replacements->set, node);
  14475. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14476. if (replacements->set.keys[i] == node) {
  14477. return replacements->vals[i];
  14478. }
  14479. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14480. // insert clone into replacements
  14481. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14482. replacements->set.keys[i] = node;
  14483. replacements->vals[i] = clone;
  14484. clone->op = node->op;
  14485. clone->grad = node->grad;
  14486. clone->flags = node->flags;
  14487. clone->extra = node->extra;
  14488. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14489. clone->nb[k] = node->nb[k];
  14490. }
  14491. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14492. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14493. }
  14494. if (node->view_src != NULL) {
  14495. clone->data = (node->view_src->data == NULL)
  14496. ? NULL // view_src not yet allocated
  14497. : (char *) node->view_src->data // view_src already allocated
  14498. + node->view_offs;
  14499. clone->view_src = node->view_src;
  14500. clone->view_offs = node->view_offs;
  14501. }
  14502. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14503. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14504. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14505. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14506. return clone;
  14507. }
  14508. void ggml_build_backward_gradient_checkpointing(
  14509. struct ggml_context * ctx,
  14510. struct ggml_cgraph * gf,
  14511. struct ggml_cgraph * gb,
  14512. struct ggml_cgraph * gb_tmp,
  14513. struct ggml_tensor * * checkpoints,
  14514. int n_checkpoints) {
  14515. ggml_graph_cpy(gf, gb_tmp);
  14516. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14517. if (n_checkpoints <= 0) {
  14518. ggml_graph_cpy(gb_tmp, gb);
  14519. return;
  14520. }
  14521. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14522. // insert checkpoints in replacements
  14523. for (int i = 0; i < n_checkpoints; ++i) {
  14524. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14525. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14526. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14527. replacements->set.keys[k] = checkpoints[i];
  14528. replacements->vals[k] = checkpoints[i];
  14529. }
  14530. ggml_graph_cpy(gf, gb);
  14531. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14532. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14533. // by recomputing them from checkpoints
  14534. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14535. struct ggml_tensor * node = gb_tmp->nodes[i];
  14536. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14537. // insert new tensors recomputing src, reusing already made replacements,
  14538. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14539. // recurse for input tensors,
  14540. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14541. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14542. }
  14543. // insert rewritten backward node with replacements made into resulting backward graph gb
  14544. ggml_build_forward_expand(gb, node);
  14545. }
  14546. ggml_hash_map_free(replacements);
  14547. }
  14548. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14549. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14550. if (ggml_hash_contains(zero_table, a)) {
  14551. return b;
  14552. } else {
  14553. return ggml_add_impl(ctx, a, b, false);
  14554. }
  14555. }
  14556. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14557. if (ggml_hash_contains(zero_table, a)) {
  14558. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14559. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14560. } else {
  14561. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14562. }
  14563. }
  14564. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14565. if (ggml_hash_contains(zero_table, a)) {
  14566. return ggml_repeat(ctx, b, a);
  14567. } else {
  14568. return ggml_add1_impl(ctx, a, b, false);
  14569. }
  14570. }
  14571. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14572. if (ggml_hash_contains(zero_table, a)) {
  14573. return ggml_neg(ctx, b);
  14574. } else {
  14575. return ggml_sub_impl(ctx, a, b, false);
  14576. }
  14577. }
  14578. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14579. struct ggml_tensor * src0 = tensor->src[0];
  14580. struct ggml_tensor * src1 = tensor->src[1];
  14581. struct ggml_tensor * src2 = tensor->src[2];
  14582. switch (tensor->op) {
  14583. case GGML_OP_DUP:
  14584. {
  14585. if (src0->grad) {
  14586. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14587. }
  14588. } break;
  14589. case GGML_OP_ADD:
  14590. {
  14591. if (src0->grad) {
  14592. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14593. }
  14594. if (src1->grad) {
  14595. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14596. }
  14597. } break;
  14598. case GGML_OP_ADD1:
  14599. {
  14600. if (src0->grad) {
  14601. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14602. }
  14603. if (src1->grad) {
  14604. src1->grad = ggml_add_or_set(ctx,
  14605. src1->grad,
  14606. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14607. zero_table);
  14608. }
  14609. } break;
  14610. case GGML_OP_ACC:
  14611. {
  14612. if (src0->grad) {
  14613. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14614. }
  14615. if (src1->grad) {
  14616. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14617. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14618. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14619. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14620. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14621. tensor->grad,
  14622. src1->grad->ne[0],
  14623. src1->grad->ne[1],
  14624. src1->grad->ne[2],
  14625. src1->grad->ne[3],
  14626. nb1, nb2, nb3, offset);
  14627. src1->grad =
  14628. ggml_add_or_set(ctx,
  14629. src1->grad,
  14630. ggml_reshape(ctx,
  14631. ggml_cont(ctx, tensor_grad_view),
  14632. src1->grad),
  14633. zero_table);
  14634. }
  14635. } break;
  14636. case GGML_OP_SUB:
  14637. {
  14638. if (src0->grad) {
  14639. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14640. }
  14641. if (src1->grad) {
  14642. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14643. }
  14644. } break;
  14645. case GGML_OP_MUL:
  14646. {
  14647. if (src0->grad) {
  14648. src0->grad =
  14649. ggml_add_or_set(ctx,
  14650. src0->grad,
  14651. ggml_mul(ctx, src1, tensor->grad),
  14652. zero_table);
  14653. }
  14654. if (src1->grad) {
  14655. src1->grad =
  14656. ggml_add_or_set(ctx,
  14657. src1->grad,
  14658. ggml_mul(ctx, src0, tensor->grad),
  14659. zero_table);
  14660. }
  14661. } break;
  14662. case GGML_OP_DIV:
  14663. {
  14664. if (src0->grad) {
  14665. src0->grad =
  14666. ggml_add_or_set(ctx,
  14667. src0->grad,
  14668. ggml_div(ctx, tensor->grad, src1),
  14669. zero_table);
  14670. }
  14671. if (src1->grad) {
  14672. src1->grad =
  14673. ggml_sub_or_set(ctx,
  14674. src1->grad,
  14675. ggml_mul(ctx,
  14676. tensor->grad,
  14677. ggml_div(ctx, tensor, src1)),
  14678. zero_table);
  14679. }
  14680. } break;
  14681. case GGML_OP_SQR:
  14682. {
  14683. if (src0->grad) {
  14684. src0->grad =
  14685. ggml_add_or_set(ctx,
  14686. src0->grad,
  14687. ggml_scale(ctx,
  14688. ggml_mul(ctx, src0, tensor->grad),
  14689. 2.0f),
  14690. zero_table);
  14691. }
  14692. } break;
  14693. case GGML_OP_SQRT:
  14694. {
  14695. if (src0->grad) {
  14696. src0->grad =
  14697. ggml_add_or_set(ctx,
  14698. src0->grad,
  14699. ggml_scale(ctx,
  14700. ggml_div(ctx,
  14701. tensor->grad,
  14702. tensor),
  14703. 0.5f),
  14704. zero_table);
  14705. }
  14706. } break;
  14707. case GGML_OP_LOG:
  14708. {
  14709. if (src0->grad) {
  14710. src0->grad =
  14711. ggml_add_or_set(ctx,
  14712. src0->grad,
  14713. ggml_div(ctx,
  14714. tensor->grad,
  14715. src0),
  14716. zero_table);
  14717. }
  14718. } break;
  14719. case GGML_OP_SUM:
  14720. {
  14721. if (src0->grad) {
  14722. src0->grad =
  14723. ggml_add1_or_set(ctx,
  14724. src0->grad,
  14725. tensor->grad,
  14726. zero_table);
  14727. }
  14728. } break;
  14729. case GGML_OP_SUM_ROWS:
  14730. {
  14731. if (src0->grad) {
  14732. src0->grad =
  14733. ggml_add_or_set(ctx,
  14734. src0->grad,
  14735. ggml_repeat(ctx,
  14736. tensor->grad,
  14737. src0->grad),
  14738. zero_table);
  14739. }
  14740. } break;
  14741. case GGML_OP_MEAN:
  14742. case GGML_OP_ARGMAX:
  14743. {
  14744. GGML_ASSERT(false); // TODO: implement
  14745. } break;
  14746. case GGML_OP_REPEAT:
  14747. {
  14748. // necessary for llama
  14749. if (src0->grad) {
  14750. src0->grad = ggml_add_or_set(ctx,
  14751. src0->grad,
  14752. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14753. zero_table);
  14754. }
  14755. } break;
  14756. case GGML_OP_REPEAT_BACK:
  14757. {
  14758. if (src0->grad) {
  14759. // TODO: test this
  14760. src0->grad = ggml_add_or_set(ctx,
  14761. src0->grad,
  14762. ggml_repeat(ctx, tensor->grad, src0->grad),
  14763. zero_table);
  14764. }
  14765. } break;
  14766. case GGML_OP_CONCAT:
  14767. {
  14768. GGML_ASSERT(false); // TODO: implement
  14769. } break;
  14770. case GGML_OP_SILU_BACK:
  14771. {
  14772. GGML_ASSERT(false); // TODO: not implemented
  14773. } break;
  14774. case GGML_OP_NORM:
  14775. {
  14776. GGML_ASSERT(false); // TODO: not implemented
  14777. } break;
  14778. case GGML_OP_RMS_NORM:
  14779. {
  14780. // necessary for llama
  14781. if (src0->grad) {
  14782. float eps;
  14783. memcpy(&eps, tensor->op_params, sizeof(float));
  14784. src0->grad = ggml_add_or_set(ctx,
  14785. src0->grad,
  14786. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14787. zero_table);
  14788. }
  14789. } break;
  14790. case GGML_OP_RMS_NORM_BACK:
  14791. {
  14792. GGML_ASSERT(false); // TODO: not implemented
  14793. } break;
  14794. case GGML_OP_GROUP_NORM:
  14795. {
  14796. GGML_ASSERT(false); // TODO: not implemented
  14797. } break;
  14798. case GGML_OP_MUL_MAT:
  14799. {
  14800. // https://cs231n.github.io/optimization-2/#staged
  14801. // # forward pass
  14802. // s0 = np.random.randn(5, 10)
  14803. // s1 = np.random.randn(10, 3)
  14804. // t = s0.dot(s1)
  14805. // # now suppose we had the gradient on t from above in the circuit
  14806. // dt = np.random.randn(*t.shape) # same shape as t
  14807. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14808. // ds1 = t.T.dot(dt)
  14809. // tensor.shape [m,p,qq,rr]
  14810. // src0.shape [n,m,q1,r1]
  14811. // src1.shape [n,p,qq,rr]
  14812. // necessary for llama
  14813. if (src0->grad) {
  14814. struct ggml_tensor * s1_tg =
  14815. ggml_out_prod(ctx, // [n,m,qq,rr]
  14816. src1, // [n,p,qq,rr]
  14817. tensor->grad); // [m,p,qq,rr]
  14818. const int64_t qq = s1_tg->ne[2];
  14819. const int64_t rr = s1_tg->ne[3];
  14820. const int64_t q1 = src0->ne[2];
  14821. const int64_t r1 = src0->ne[3];
  14822. const bool ne2_broadcasted = qq > q1;
  14823. const bool ne3_broadcasted = rr > r1;
  14824. if (ne2_broadcasted || ne3_broadcasted) {
  14825. // sum broadcast repetitions of s1_tg into shape of src0
  14826. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14827. }
  14828. src0->grad =
  14829. ggml_add_or_set(ctx,
  14830. src0->grad, // [n,m,q1,r1]
  14831. s1_tg, // [n,m,q1,r1]
  14832. zero_table);
  14833. }
  14834. if (src1->grad) {
  14835. src1->grad =
  14836. ggml_add_or_set(ctx,
  14837. src1->grad, // [n,p,qq,rr]
  14838. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14839. // ggml_cont(ctx, // [m,n,q1,r1]
  14840. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14841. // tensor->grad), // [m,p,qq,rr]
  14842. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14843. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14844. // // and then use ggml_out_prod
  14845. ggml_out_prod(ctx, // [n,p,qq,rr]
  14846. src0, // [n,m,q1,r1]
  14847. ggml_transpose(ctx, // [p,m,qq,rr]
  14848. tensor->grad)), // [m,p,qq,rr]
  14849. zero_table);
  14850. }
  14851. } break;
  14852. case GGML_OP_MUL_MAT_ID:
  14853. {
  14854. GGML_ASSERT(false); // TODO: not implemented
  14855. } break;
  14856. case GGML_OP_OUT_PROD:
  14857. {
  14858. GGML_ASSERT(false); // TODO: not implemented
  14859. } break;
  14860. case GGML_OP_SCALE:
  14861. {
  14862. // necessary for llama
  14863. if (src0->grad) {
  14864. float s;
  14865. memcpy(&s, tensor->op_params, sizeof(float));
  14866. src0->grad =
  14867. ggml_add_or_set(ctx,
  14868. src0->grad,
  14869. ggml_scale_impl(ctx, tensor->grad, s, false),
  14870. zero_table);
  14871. }
  14872. } break;
  14873. case GGML_OP_SET:
  14874. {
  14875. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14876. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14877. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14878. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14879. struct ggml_tensor * tensor_grad_view = NULL;
  14880. if (src0->grad || src1->grad) {
  14881. GGML_ASSERT(src0->type == tensor->type);
  14882. GGML_ASSERT(tensor->grad->type == tensor->type);
  14883. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14884. tensor_grad_view = ggml_view_4d(ctx,
  14885. tensor->grad,
  14886. src1->grad->ne[0],
  14887. src1->grad->ne[1],
  14888. src1->grad->ne[2],
  14889. src1->grad->ne[3],
  14890. nb1, nb2, nb3, offset);
  14891. }
  14892. if (src0->grad) {
  14893. src0->grad = ggml_add_or_set(ctx,
  14894. src0->grad,
  14895. ggml_acc_impl(ctx,
  14896. tensor->grad,
  14897. ggml_neg(ctx, tensor_grad_view),
  14898. nb1, nb2, nb3, offset, false),
  14899. zero_table);
  14900. }
  14901. if (src1->grad) {
  14902. src1->grad =
  14903. ggml_add_or_set(ctx,
  14904. src1->grad,
  14905. ggml_reshape(ctx,
  14906. ggml_cont(ctx, tensor_grad_view),
  14907. src1->grad),
  14908. zero_table);
  14909. }
  14910. } break;
  14911. case GGML_OP_CPY:
  14912. {
  14913. // necessary for llama
  14914. // cpy overwrites value of src1 by src0 and returns view(src1)
  14915. // the overwriting is mathematically equivalent to:
  14916. // tensor = src0 * 1 + src1 * 0
  14917. if (src0->grad) {
  14918. // dsrc0 = dtensor * 1
  14919. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14920. }
  14921. if (src1->grad) {
  14922. // dsrc1 = dtensor * 0 -> noop
  14923. }
  14924. } break;
  14925. case GGML_OP_CONT:
  14926. {
  14927. // same as cpy
  14928. if (src0->grad) {
  14929. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14930. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14931. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14932. }
  14933. } break;
  14934. case GGML_OP_RESHAPE:
  14935. {
  14936. // necessary for llama
  14937. if (src0->grad) {
  14938. src0->grad =
  14939. ggml_add_or_set(ctx, src0->grad,
  14940. ggml_reshape(ctx,
  14941. ggml_is_contiguous(tensor->grad)
  14942. ? tensor->grad
  14943. : ggml_cont(ctx, tensor->grad),
  14944. src0->grad),
  14945. zero_table);
  14946. }
  14947. } break;
  14948. case GGML_OP_VIEW:
  14949. {
  14950. // necessary for llama
  14951. if (src0->grad) {
  14952. size_t offset;
  14953. memcpy(&offset, tensor->op_params, sizeof(offset));
  14954. size_t nb1 = tensor->nb[1];
  14955. size_t nb2 = tensor->nb[2];
  14956. size_t nb3 = tensor->nb[3];
  14957. if (src0->type != src0->grad->type) {
  14958. // gradient is typically F32, but src0 could be other type
  14959. size_t ng = ggml_element_size(src0->grad);
  14960. size_t n0 = ggml_element_size(src0);
  14961. GGML_ASSERT(offset % n0 == 0);
  14962. GGML_ASSERT(nb1 % n0 == 0);
  14963. GGML_ASSERT(nb2 % n0 == 0);
  14964. GGML_ASSERT(nb3 % n0 == 0);
  14965. offset = (offset / n0) * ng;
  14966. nb1 = (nb1 / n0) * ng;
  14967. nb2 = (nb2 / n0) * ng;
  14968. nb3 = (nb3 / n0) * ng;
  14969. }
  14970. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14971. }
  14972. } break;
  14973. case GGML_OP_PERMUTE:
  14974. {
  14975. // necessary for llama
  14976. if (src0->grad) {
  14977. int32_t * axes = (int32_t *) tensor->op_params;
  14978. int axis0 = axes[0] & 0x3;
  14979. int axis1 = axes[1] & 0x3;
  14980. int axis2 = axes[2] & 0x3;
  14981. int axis3 = axes[3] & 0x3;
  14982. int axes_backward[4] = {0,0,0,0};
  14983. axes_backward[axis0] = 0;
  14984. axes_backward[axis1] = 1;
  14985. axes_backward[axis2] = 2;
  14986. axes_backward[axis3] = 3;
  14987. src0->grad =
  14988. ggml_add_or_set(ctx, src0->grad,
  14989. ggml_permute(ctx,
  14990. tensor->grad,
  14991. axes_backward[0],
  14992. axes_backward[1],
  14993. axes_backward[2],
  14994. axes_backward[3]),
  14995. zero_table);
  14996. }
  14997. } break;
  14998. case GGML_OP_TRANSPOSE:
  14999. {
  15000. // necessary for llama
  15001. if (src0->grad) {
  15002. src0->grad =
  15003. ggml_add_or_set(ctx, src0->grad,
  15004. ggml_transpose(ctx, tensor->grad),
  15005. zero_table);
  15006. }
  15007. } break;
  15008. case GGML_OP_GET_ROWS:
  15009. {
  15010. // necessary for llama (only for tokenizer)
  15011. if (src0->grad) {
  15012. src0->grad =
  15013. ggml_add_or_set(ctx, src0->grad,
  15014. // last ggml_get_rows_back argument src0->grad is only
  15015. // necessary to setup correct output shape
  15016. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15017. zero_table);
  15018. }
  15019. if (src1->grad) {
  15020. // noop
  15021. }
  15022. } break;
  15023. case GGML_OP_GET_ROWS_BACK:
  15024. {
  15025. GGML_ASSERT(false); // TODO: not implemented
  15026. } break;
  15027. case GGML_OP_DIAG:
  15028. {
  15029. GGML_ASSERT(false); // TODO: not implemented
  15030. } break;
  15031. case GGML_OP_DIAG_MASK_INF:
  15032. {
  15033. // necessary for llama
  15034. if (src0->grad) {
  15035. const int n_past = ((int32_t *) tensor->op_params)[0];
  15036. src0->grad =
  15037. ggml_add_or_set(ctx, src0->grad,
  15038. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15039. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15040. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15041. zero_table);
  15042. }
  15043. } break;
  15044. case GGML_OP_DIAG_MASK_ZERO:
  15045. {
  15046. // necessary for llama
  15047. if (src0->grad) {
  15048. const int n_past = ((int32_t *) tensor->op_params)[0];
  15049. src0->grad =
  15050. ggml_add_or_set(ctx, src0->grad,
  15051. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15052. zero_table);
  15053. }
  15054. } break;
  15055. case GGML_OP_SOFT_MAX:
  15056. {
  15057. // necessary for llama
  15058. if (src0->grad) {
  15059. src0->grad =
  15060. ggml_add_or_set(ctx, src0->grad,
  15061. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15062. zero_table);
  15063. }
  15064. } break;
  15065. case GGML_OP_SOFT_MAX_BACK:
  15066. {
  15067. GGML_ASSERT(false); // TODO: not implemented
  15068. } break;
  15069. case GGML_OP_ROPE:
  15070. {
  15071. // necessary for llama
  15072. if (src0->grad) {
  15073. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15074. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15075. const int mode = ((int32_t *) tensor->op_params)[2];
  15076. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15077. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15078. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15079. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15080. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15081. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15082. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15083. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15084. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15085. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15086. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15087. src0->grad = ggml_add_or_set(ctx,
  15088. src0->grad,
  15089. ggml_rope_back(ctx,
  15090. tensor->grad,
  15091. src1,
  15092. src2,
  15093. n_dims,
  15094. mode,
  15095. n_ctx,
  15096. n_orig_ctx,
  15097. freq_base,
  15098. freq_scale,
  15099. ext_factor,
  15100. attn_factor,
  15101. beta_fast,
  15102. beta_slow,
  15103. xpos_base,
  15104. xpos_down),
  15105. zero_table);
  15106. }
  15107. } break;
  15108. case GGML_OP_ROPE_BACK:
  15109. {
  15110. if (src0->grad) {
  15111. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15112. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15113. const int mode = ((int32_t *) tensor->op_params)[2];
  15114. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15115. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15116. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15117. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15118. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15119. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15120. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15121. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15122. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15123. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15124. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15125. src0->grad = ggml_add_or_set(ctx,
  15126. src0->grad,
  15127. ggml_rope_impl(ctx,
  15128. tensor->grad,
  15129. src1,
  15130. src2,
  15131. n_dims,
  15132. mode,
  15133. n_ctx,
  15134. n_orig_ctx,
  15135. freq_base,
  15136. freq_scale,
  15137. ext_factor,
  15138. attn_factor,
  15139. beta_fast,
  15140. beta_slow,
  15141. xpos_base,
  15142. xpos_down,
  15143. false),
  15144. zero_table);
  15145. }
  15146. } break;
  15147. case GGML_OP_CLAMP:
  15148. {
  15149. GGML_ASSERT(false); // TODO: not implemented
  15150. } break;
  15151. case GGML_OP_CONV_TRANSPOSE_1D:
  15152. {
  15153. GGML_ASSERT(false); // TODO: not implemented
  15154. } break;
  15155. case GGML_OP_IM2COL:
  15156. {
  15157. GGML_ASSERT(false); // TODO: not implemented
  15158. } break;
  15159. case GGML_OP_CONV_TRANSPOSE_2D:
  15160. {
  15161. GGML_ASSERT(false); // TODO: not implemented
  15162. } break;
  15163. case GGML_OP_POOL_1D:
  15164. {
  15165. GGML_ASSERT(false); // TODO: not implemented
  15166. } break;
  15167. case GGML_OP_POOL_2D:
  15168. {
  15169. GGML_ASSERT(false); // TODO: not implemented
  15170. } break;
  15171. case GGML_OP_UPSCALE:
  15172. {
  15173. GGML_ASSERT(false); // TODO: not implemented
  15174. } break;
  15175. case GGML_OP_PAD:
  15176. {
  15177. GGML_ASSERT(false); // TODO: not implemented
  15178. } break;
  15179. case GGML_OP_ARANGE:
  15180. {
  15181. GGML_ASSERT(false); // TODO: not implemented
  15182. } break;
  15183. case GGML_OP_TIMESTEP_EMBEDDING:
  15184. {
  15185. GGML_ASSERT(false); // TODO: not implemented
  15186. } break;
  15187. case GGML_OP_ARGSORT:
  15188. {
  15189. GGML_ASSERT(false); // TODO: not implemented
  15190. } break;
  15191. case GGML_OP_LEAKY_RELU:
  15192. {
  15193. GGML_ASSERT(false); // TODO: not implemented
  15194. } break;
  15195. case GGML_OP_FLASH_ATTN_EXT:
  15196. {
  15197. struct ggml_tensor * flash_grad = NULL;
  15198. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15199. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15200. GGML_ASSERT(t == 0 || t == 1);
  15201. bool masked = t != 0;
  15202. flash_grad =
  15203. ggml_flash_attn_back(ctx,
  15204. src0,
  15205. src1,
  15206. tensor->src[2],
  15207. tensor->grad,
  15208. masked);
  15209. }
  15210. const int64_t elem_q = ggml_nelements(src0);
  15211. const int64_t elem_k = ggml_nelements(src1);
  15212. const int64_t elem_v = ggml_nelements(src2);
  15213. enum ggml_type result_type = flash_grad->type;
  15214. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15215. const size_t tsize = ggml_type_size(result_type);
  15216. const size_t offs_q = 0;
  15217. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15218. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15219. if (src0->grad) {
  15220. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15221. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15222. src0->grad = ggml_add_or_set(ctx,
  15223. src0->grad,
  15224. grad_q,
  15225. zero_table);
  15226. }
  15227. if (src1->grad) {
  15228. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15229. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15230. src1->grad = ggml_add_or_set(ctx,
  15231. src1->grad,
  15232. grad_k,
  15233. zero_table);
  15234. }
  15235. if (src2->grad) {
  15236. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15237. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15238. src2->grad = ggml_add_or_set(ctx,
  15239. src2->grad,
  15240. grad_v,
  15241. zero_table);
  15242. }
  15243. } break;
  15244. case GGML_OP_FLASH_ATTN_BACK:
  15245. {
  15246. GGML_ASSERT(false); // not supported
  15247. } break;
  15248. case GGML_OP_SSM_CONV:
  15249. case GGML_OP_SSM_SCAN:
  15250. {
  15251. GGML_ASSERT(false); // TODO: not implemented
  15252. } break;
  15253. case GGML_OP_WIN_PART:
  15254. case GGML_OP_WIN_UNPART:
  15255. case GGML_OP_UNARY:
  15256. {
  15257. switch (ggml_get_unary_op(tensor)) {
  15258. case GGML_UNARY_OP_ABS:
  15259. {
  15260. if (src0->grad) {
  15261. src0->grad =
  15262. ggml_add_or_set(ctx,
  15263. src0->grad,
  15264. ggml_mul(ctx,
  15265. ggml_sgn(ctx, src0),
  15266. tensor->grad),
  15267. zero_table);
  15268. }
  15269. } break;
  15270. case GGML_UNARY_OP_SGN:
  15271. {
  15272. if (src0->grad) {
  15273. // noop
  15274. }
  15275. } break;
  15276. case GGML_UNARY_OP_NEG:
  15277. {
  15278. if (src0->grad) {
  15279. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15280. }
  15281. } break;
  15282. case GGML_UNARY_OP_STEP:
  15283. {
  15284. if (src0->grad) {
  15285. // noop
  15286. }
  15287. } break;
  15288. case GGML_UNARY_OP_TANH:
  15289. {
  15290. GGML_ASSERT(false); // TODO: not implemented
  15291. } break;
  15292. case GGML_UNARY_OP_ELU:
  15293. {
  15294. GGML_ASSERT(false); // TODO: not implemented
  15295. } break;
  15296. case GGML_UNARY_OP_RELU:
  15297. {
  15298. if (src0->grad) {
  15299. src0->grad = ggml_add_or_set(ctx,
  15300. src0->grad,
  15301. ggml_mul(ctx,
  15302. ggml_step(ctx, src0),
  15303. tensor->grad),
  15304. zero_table);
  15305. }
  15306. } break;
  15307. case GGML_UNARY_OP_SIGMOID:
  15308. {
  15309. GGML_ASSERT(false); // TODO: not implemented
  15310. } break;
  15311. case GGML_UNARY_OP_GELU:
  15312. {
  15313. GGML_ASSERT(false); // TODO: not implemented
  15314. } break;
  15315. case GGML_UNARY_OP_GELU_QUICK:
  15316. {
  15317. GGML_ASSERT(false); // TODO: not implemented
  15318. } break;
  15319. case GGML_UNARY_OP_SILU:
  15320. {
  15321. // necessary for llama
  15322. if (src0->grad) {
  15323. src0->grad = ggml_add_or_set(ctx,
  15324. src0->grad,
  15325. ggml_silu_back(ctx, src0, tensor->grad),
  15326. zero_table);
  15327. }
  15328. } break;
  15329. default:
  15330. GGML_ASSERT(false);
  15331. }
  15332. } break;
  15333. case GGML_OP_GET_REL_POS:
  15334. case GGML_OP_ADD_REL_POS:
  15335. case GGML_OP_MAP_UNARY:
  15336. case GGML_OP_MAP_BINARY:
  15337. case GGML_OP_MAP_CUSTOM1_F32:
  15338. case GGML_OP_MAP_CUSTOM2_F32:
  15339. case GGML_OP_MAP_CUSTOM3_F32:
  15340. case GGML_OP_MAP_CUSTOM1:
  15341. case GGML_OP_MAP_CUSTOM2:
  15342. case GGML_OP_MAP_CUSTOM3:
  15343. {
  15344. GGML_ASSERT(false); // not supported
  15345. } break;
  15346. case GGML_OP_CROSS_ENTROPY_LOSS:
  15347. {
  15348. if (src0->grad) {
  15349. src0->grad = ggml_add_or_set(ctx,
  15350. src0->grad,
  15351. ggml_cross_entropy_loss_back(ctx,
  15352. src0,
  15353. src1,
  15354. tensor->grad),
  15355. zero_table);
  15356. }
  15357. } break;
  15358. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15359. {
  15360. GGML_ASSERT(false); // not supported
  15361. } break;
  15362. case GGML_OP_NONE:
  15363. {
  15364. // nop
  15365. } break;
  15366. case GGML_OP_COUNT:
  15367. {
  15368. GGML_ASSERT(false);
  15369. } break;
  15370. }
  15371. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15372. if (tensor->src[i] && tensor->src[i]->grad) {
  15373. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15374. }
  15375. }
  15376. }
  15377. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15378. if (node->grad == NULL) {
  15379. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15380. // it can also happen during forward pass, if the user performs computations with constants
  15381. if (node->op != GGML_OP_NONE) {
  15382. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15383. }
  15384. }
  15385. // check if already visited
  15386. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15387. return;
  15388. }
  15389. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15390. const int k =
  15391. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15392. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15393. /* unknown order, just fall back to using i*/ i;
  15394. if (node->src[k]) {
  15395. ggml_visit_parents(cgraph, node->src[k]);
  15396. }
  15397. }
  15398. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15399. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15400. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15401. if (strlen(node->name) == 0) {
  15402. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15403. }
  15404. cgraph->leafs[cgraph->n_leafs] = node;
  15405. cgraph->n_leafs++;
  15406. } else {
  15407. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15408. if (strlen(node->name) == 0) {
  15409. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15410. }
  15411. cgraph->nodes[cgraph->n_nodes] = node;
  15412. if (cgraph->grads) {
  15413. cgraph->grads[cgraph->n_nodes] = node->grad;
  15414. }
  15415. cgraph->n_nodes++;
  15416. }
  15417. }
  15418. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15419. if (!expand) {
  15420. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15421. ggml_graph_clear(cgraph);
  15422. }
  15423. const int n0 = cgraph->n_nodes;
  15424. UNUSED(n0);
  15425. ggml_visit_parents(cgraph, tensor);
  15426. const int n_new = cgraph->n_nodes - n0;
  15427. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15428. if (n_new > 0) {
  15429. // the last added node should always be starting point
  15430. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15431. }
  15432. }
  15433. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15434. ggml_build_forward_impl(cgraph, tensor, true);
  15435. }
  15436. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15437. GGML_ASSERT(gf->n_nodes > 0);
  15438. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15439. if (keep) {
  15440. for (int i = 0; i < gf->n_nodes; i++) {
  15441. struct ggml_tensor * node = gf->nodes[i];
  15442. if (node->grad) {
  15443. node->grad = ggml_dup_tensor(ctx, node);
  15444. gf->grads[i] = node->grad;
  15445. }
  15446. }
  15447. }
  15448. // remember original gradients which start with zero values
  15449. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15450. for (int i = 0; i < gf->n_nodes; i++) {
  15451. if (gf->grads[i]) {
  15452. ggml_hash_insert(zero_table, gf->grads[i]);
  15453. }
  15454. }
  15455. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15456. struct ggml_tensor * node = gf->nodes[i];
  15457. // inplace operations to add gradients are not created by ggml_compute_backward
  15458. // use allocator to automatically make inplace operations
  15459. if (node->grad) {
  15460. ggml_compute_backward(ctx, node, zero_table);
  15461. }
  15462. }
  15463. for (int i = 0; i < gf->n_nodes; i++) {
  15464. struct ggml_tensor * node = gf->nodes[i];
  15465. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15466. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15467. ggml_build_forward_expand(gb, node->grad);
  15468. }
  15469. }
  15470. ggml_hash_set_free(zero_table);
  15471. }
  15472. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15473. size_t nbytes = sizeof(struct ggml_cgraph);
  15474. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15475. if (grads) {
  15476. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15477. }
  15478. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15479. return nbytes;
  15480. }
  15481. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15482. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15483. }
  15484. size_t ggml_graph_overhead(void) {
  15485. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15486. }
  15487. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15488. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15489. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15490. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15491. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15492. size_t hash_size = ggml_hash_size(size * 2);
  15493. struct ggml_tensor ** nodes_ptr = data_start;
  15494. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15495. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15496. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15497. // check that we allocated the correct amount of memory
  15498. assert(obj_size == (size_t) (
  15499. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15500. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15501. *cgraph = (struct ggml_cgraph) {
  15502. /*.size =*/ size,
  15503. /*.n_nodes =*/ 0,
  15504. /*.n_leafs =*/ 0,
  15505. /*.nodes =*/ nodes_ptr,
  15506. /*.grads =*/ grads_ptr,
  15507. /*.leafs =*/ leafs_ptr,
  15508. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15509. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15510. /*.perf_runs =*/ 0,
  15511. /*.perf_cycles =*/ 0,
  15512. /*.perf_time_us =*/ 0,
  15513. };
  15514. return cgraph;
  15515. }
  15516. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15517. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15518. }
  15519. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15520. struct ggml_cgraph cgraph = {
  15521. /*.size =*/ 0,
  15522. /*.n_nodes =*/ i1 - i0,
  15523. /*.n_leafs =*/ 0,
  15524. /*.nodes =*/ cgraph0->nodes + i0,
  15525. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15526. /*.leafs =*/ NULL,
  15527. /*.hash_table =*/ { 0, NULL },
  15528. /*.order =*/ cgraph0->order,
  15529. /*.perf_runs =*/ 0,
  15530. /*.perf_cycles =*/ 0,
  15531. /*.perf_time_us =*/ 0,
  15532. };
  15533. return cgraph;
  15534. }
  15535. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15536. GGML_ASSERT(dst->size >= src->n_leafs);
  15537. GGML_ASSERT(dst->size >= src->n_nodes);
  15538. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15539. dst->n_leafs = src->n_leafs;
  15540. dst->n_nodes = src->n_nodes;
  15541. dst->order = src->order;
  15542. for (int i = 0; i < src->n_leafs; ++i) {
  15543. dst->leafs[i] = src->leafs[i];
  15544. }
  15545. for (int i = 0; i < src->n_nodes; ++i) {
  15546. dst->nodes[i] = src->nodes[i];
  15547. }
  15548. if (src->grads) {
  15549. GGML_ASSERT(dst->grads != NULL);
  15550. for (int i = 0; i < src->n_nodes; ++i) {
  15551. dst->grads[i] = src->grads[i];
  15552. }
  15553. }
  15554. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15555. if (src->visited_hash_table.keys[i]) {
  15556. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15557. }
  15558. }
  15559. }
  15560. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15561. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15562. ggml_graph_cpy(cgraph, result);
  15563. return result;
  15564. }
  15565. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15566. GGML_ASSERT(cgraph->grads != NULL);
  15567. for (int i = 0; i < cgraph->n_nodes; i++) {
  15568. struct ggml_tensor * grad = cgraph->grads[i];
  15569. if (grad) {
  15570. ggml_set_zero(grad);
  15571. }
  15572. }
  15573. }
  15574. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15575. cgraph->n_leafs = 0;
  15576. cgraph->n_nodes = 0;
  15577. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15578. }
  15579. //
  15580. // thread data
  15581. //
  15582. // synchronization is done via busy loops
  15583. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15584. //
  15585. #ifdef __APPLE__
  15586. //#include <os/lock.h>
  15587. //
  15588. //typedef os_unfair_lock ggml_lock_t;
  15589. //
  15590. //#define ggml_lock_init(x) UNUSED(x)
  15591. //#define ggml_lock_destroy(x) UNUSED(x)
  15592. //#define ggml_lock_lock os_unfair_lock_lock
  15593. //#define ggml_lock_unlock os_unfair_lock_unlock
  15594. //
  15595. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15596. typedef int ggml_lock_t;
  15597. #define ggml_lock_init(x) UNUSED(x)
  15598. #define ggml_lock_destroy(x) UNUSED(x)
  15599. #define ggml_lock_lock(x) UNUSED(x)
  15600. #define ggml_lock_unlock(x) UNUSED(x)
  15601. #define GGML_LOCK_INITIALIZER 0
  15602. #define ggml_thread_create pthread_create
  15603. #define ggml_thread_join pthread_join
  15604. #else
  15605. //typedef pthread_spinlock_t ggml_lock_t;
  15606. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15607. //#define ggml_lock_destroy pthread_spin_destroy
  15608. //#define ggml_lock_lock pthread_spin_lock
  15609. //#define ggml_lock_unlock pthread_spin_unlock
  15610. typedef int ggml_lock_t;
  15611. #define ggml_lock_init(x) UNUSED(x)
  15612. #define ggml_lock_destroy(x) UNUSED(x)
  15613. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15614. #define ggml_lock_lock(x) _mm_pause()
  15615. #else
  15616. #define ggml_lock_lock(x) UNUSED(x)
  15617. #endif
  15618. #define ggml_lock_unlock(x) UNUSED(x)
  15619. #define GGML_LOCK_INITIALIZER 0
  15620. #define ggml_thread_create pthread_create
  15621. #define ggml_thread_join pthread_join
  15622. #endif
  15623. // Android's libc implementation "bionic" does not support setting affinity
  15624. #if defined(__gnu_linux__)
  15625. static void set_numa_thread_affinity(int thread_n) {
  15626. if (!ggml_is_numa()) {
  15627. return;
  15628. }
  15629. int node_num;
  15630. int rv;
  15631. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15632. switch(g_state.numa.numa_strategy) {
  15633. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15634. // run thread on node_num thread_n / (threads per node)
  15635. node_num = thread_n % g_state.numa.n_nodes;
  15636. break;
  15637. case GGML_NUMA_STRATEGY_ISOLATE:
  15638. // run thread on current_node
  15639. node_num = g_state.numa.current_node;
  15640. break;
  15641. case GGML_NUMA_STRATEGY_NUMACTL:
  15642. // use the cpuset that numactl gave us
  15643. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15644. if (rv) {
  15645. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15646. }
  15647. return;
  15648. default:
  15649. return;
  15650. }
  15651. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15652. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15653. CPU_ZERO_S(setsize, cpus);
  15654. for (size_t i = 0; i < node->n_cpus; ++i) {
  15655. CPU_SET_S(node->cpus[i], setsize, cpus);
  15656. }
  15657. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15658. if (rv) {
  15659. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15660. }
  15661. CPU_FREE(cpus);
  15662. }
  15663. static void clear_numa_thread_affinity(void) {
  15664. if (!ggml_is_numa()) {
  15665. return;
  15666. }
  15667. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15668. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15669. CPU_ZERO_S(setsize, cpus);
  15670. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15671. CPU_SET_S(i, setsize, cpus);
  15672. }
  15673. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15674. if (rv) {
  15675. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15676. }
  15677. CPU_FREE(cpus);
  15678. }
  15679. #else
  15680. // TODO: Windows etc.
  15681. // (the linux implementation may also work on BSD, someone should test)
  15682. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15683. static void clear_numa_thread_affinity(void) {}
  15684. #endif
  15685. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15686. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15687. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15688. node->perf_runs++;
  15689. node->perf_cycles += cycles_cur;
  15690. node->perf_time_us += time_us_cur;
  15691. }
  15692. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15693. int n_tasks = 0;
  15694. if (ggml_is_empty(node)) {
  15695. // no need to multi-thread a no-op
  15696. n_tasks = 1;
  15697. return n_tasks;
  15698. }
  15699. switch (node->op) {
  15700. case GGML_OP_CPY:
  15701. case GGML_OP_DUP:
  15702. case GGML_OP_ADD:
  15703. case GGML_OP_ADD1:
  15704. case GGML_OP_ACC:
  15705. {
  15706. n_tasks = n_threads;
  15707. } break;
  15708. case GGML_OP_SUB:
  15709. case GGML_OP_SQR:
  15710. case GGML_OP_SQRT:
  15711. case GGML_OP_LOG:
  15712. case GGML_OP_SUM:
  15713. case GGML_OP_SUM_ROWS:
  15714. case GGML_OP_MEAN:
  15715. case GGML_OP_ARGMAX:
  15716. case GGML_OP_REPEAT:
  15717. case GGML_OP_REPEAT_BACK:
  15718. case GGML_OP_LEAKY_RELU:
  15719. {
  15720. n_tasks = 1;
  15721. } break;
  15722. case GGML_OP_UNARY:
  15723. switch (ggml_get_unary_op(node)) {
  15724. case GGML_UNARY_OP_ABS:
  15725. case GGML_UNARY_OP_SGN:
  15726. case GGML_UNARY_OP_NEG:
  15727. case GGML_UNARY_OP_STEP:
  15728. case GGML_UNARY_OP_TANH:
  15729. case GGML_UNARY_OP_ELU:
  15730. case GGML_UNARY_OP_RELU:
  15731. case GGML_UNARY_OP_SIGMOID:
  15732. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15733. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15734. {
  15735. n_tasks = 1;
  15736. } break;
  15737. case GGML_UNARY_OP_GELU:
  15738. case GGML_UNARY_OP_GELU_QUICK:
  15739. case GGML_UNARY_OP_SILU:
  15740. {
  15741. n_tasks = n_threads;
  15742. } break;
  15743. default:
  15744. GGML_ASSERT(false);
  15745. }
  15746. break;
  15747. case GGML_OP_SILU_BACK:
  15748. case GGML_OP_MUL:
  15749. case GGML_OP_DIV:
  15750. case GGML_OP_NORM:
  15751. case GGML_OP_RMS_NORM:
  15752. case GGML_OP_RMS_NORM_BACK:
  15753. case GGML_OP_GROUP_NORM:
  15754. case GGML_OP_CONCAT:
  15755. {
  15756. n_tasks = n_threads;
  15757. } break;
  15758. case GGML_OP_MUL_MAT:
  15759. {
  15760. n_tasks = n_threads;
  15761. // TODO: use different scheduling for different matrix sizes
  15762. //const int nr0 = ggml_nrows(node->src[0]);
  15763. //const int nr1 = ggml_nrows(node->src[1]);
  15764. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15765. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15766. } break;
  15767. case GGML_OP_MUL_MAT_ID:
  15768. {
  15769. n_tasks = n_threads;
  15770. } break;
  15771. case GGML_OP_OUT_PROD:
  15772. {
  15773. n_tasks = n_threads;
  15774. } break;
  15775. case GGML_OP_GET_ROWS:
  15776. {
  15777. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15778. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15779. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15780. } break;
  15781. case GGML_OP_SCALE:
  15782. case GGML_OP_SET:
  15783. case GGML_OP_CONT:
  15784. case GGML_OP_RESHAPE:
  15785. case GGML_OP_VIEW:
  15786. case GGML_OP_PERMUTE:
  15787. case GGML_OP_TRANSPOSE:
  15788. case GGML_OP_GET_ROWS_BACK:
  15789. case GGML_OP_DIAG:
  15790. {
  15791. n_tasks = 1;
  15792. } break;
  15793. case GGML_OP_DIAG_MASK_ZERO:
  15794. case GGML_OP_DIAG_MASK_INF:
  15795. case GGML_OP_SOFT_MAX_BACK:
  15796. case GGML_OP_ROPE:
  15797. case GGML_OP_ROPE_BACK:
  15798. case GGML_OP_ADD_REL_POS:
  15799. {
  15800. n_tasks = n_threads;
  15801. } break;
  15802. case GGML_OP_CLAMP:
  15803. {
  15804. n_tasks = 1; //TODO
  15805. } break;
  15806. case GGML_OP_SOFT_MAX:
  15807. {
  15808. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15809. } break;
  15810. case GGML_OP_CONV_TRANSPOSE_1D:
  15811. {
  15812. n_tasks = n_threads;
  15813. } break;
  15814. case GGML_OP_IM2COL:
  15815. {
  15816. n_tasks = n_threads;
  15817. } break;
  15818. case GGML_OP_CONV_TRANSPOSE_2D:
  15819. {
  15820. n_tasks = n_threads;
  15821. } break;
  15822. case GGML_OP_POOL_1D:
  15823. case GGML_OP_POOL_2D:
  15824. {
  15825. n_tasks = 1;
  15826. } break;
  15827. case GGML_OP_UPSCALE:
  15828. {
  15829. n_tasks = n_threads;
  15830. } break;
  15831. case GGML_OP_PAD:
  15832. {
  15833. n_tasks = n_threads;
  15834. } break;
  15835. case GGML_OP_ARANGE:
  15836. {
  15837. n_tasks = n_threads;
  15838. } break;
  15839. case GGML_OP_TIMESTEP_EMBEDDING:
  15840. {
  15841. n_tasks = n_threads;
  15842. } break;
  15843. case GGML_OP_ARGSORT:
  15844. {
  15845. n_tasks = n_threads;
  15846. } break;
  15847. case GGML_OP_FLASH_ATTN_EXT:
  15848. {
  15849. n_tasks = n_threads;
  15850. } break;
  15851. case GGML_OP_FLASH_ATTN_BACK:
  15852. {
  15853. n_tasks = n_threads;
  15854. } break;
  15855. case GGML_OP_SSM_CONV:
  15856. case GGML_OP_SSM_SCAN:
  15857. {
  15858. n_tasks = n_threads;
  15859. } break;
  15860. case GGML_OP_WIN_PART:
  15861. case GGML_OP_WIN_UNPART:
  15862. case GGML_OP_GET_REL_POS:
  15863. case GGML_OP_MAP_UNARY:
  15864. case GGML_OP_MAP_BINARY:
  15865. case GGML_OP_MAP_CUSTOM1_F32:
  15866. case GGML_OP_MAP_CUSTOM2_F32:
  15867. case GGML_OP_MAP_CUSTOM3_F32:
  15868. {
  15869. n_tasks = 1;
  15870. } break;
  15871. case GGML_OP_MAP_CUSTOM1:
  15872. {
  15873. struct ggml_map_custom1_op_params p;
  15874. memcpy(&p, node->op_params, sizeof(p));
  15875. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15876. n_tasks = n_threads;
  15877. } else {
  15878. n_tasks = MIN(p.n_tasks, n_threads);
  15879. }
  15880. } break;
  15881. case GGML_OP_MAP_CUSTOM2:
  15882. {
  15883. struct ggml_map_custom2_op_params p;
  15884. memcpy(&p, node->op_params, sizeof(p));
  15885. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15886. n_tasks = n_threads;
  15887. } else {
  15888. n_tasks = MIN(p.n_tasks, n_threads);
  15889. }
  15890. } break;
  15891. case GGML_OP_MAP_CUSTOM3:
  15892. {
  15893. struct ggml_map_custom3_op_params p;
  15894. memcpy(&p, node->op_params, sizeof(p));
  15895. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15896. n_tasks = n_threads;
  15897. } else {
  15898. n_tasks = MIN(p.n_tasks, n_threads);
  15899. }
  15900. } break;
  15901. case GGML_OP_CROSS_ENTROPY_LOSS:
  15902. {
  15903. n_tasks = n_threads;
  15904. } break;
  15905. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15906. {
  15907. n_tasks = n_threads;
  15908. } break;
  15909. case GGML_OP_NONE:
  15910. {
  15911. n_tasks = 1;
  15912. } break;
  15913. case GGML_OP_COUNT:
  15914. {
  15915. GGML_ASSERT(false);
  15916. } break;
  15917. default:
  15918. {
  15919. fprintf(stderr, "%s: op not implemented: ", __func__);
  15920. if (node->op < GGML_OP_COUNT) {
  15921. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15922. } else {
  15923. fprintf(stderr, "%d\n", node->op);
  15924. }
  15925. GGML_ASSERT(false);
  15926. } break;
  15927. }
  15928. assert(n_tasks > 0);
  15929. return n_tasks;
  15930. }
  15931. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15932. // wait for other threads to finish
  15933. const int last_node_n = * node_n;
  15934. while (true) {
  15935. if (do_yield) {
  15936. sched_yield();
  15937. }
  15938. * node_n = atomic_load(&state->shared->node_n);
  15939. if (* node_n != last_node_n) break;
  15940. #if defined(__SSE3__)
  15941. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15942. _mm_pause();
  15943. #endif
  15944. }
  15945. }
  15946. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15947. // wait for other threads to finish
  15948. const int last_task_phase = * task_phase;
  15949. while (true) {
  15950. if (do_yield) {
  15951. sched_yield();
  15952. }
  15953. * task_phase = atomic_load(&state->shared->node_task);
  15954. if (* task_phase != last_task_phase) break;
  15955. #if defined(__SSE3__)
  15956. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15957. _mm_pause();
  15958. #endif
  15959. }
  15960. }
  15961. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15962. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15963. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15964. const struct ggml_cplan * cplan = state->shared->cplan;
  15965. const int n_threads = state->shared->n_threads;
  15966. set_numa_thread_affinity(state->ith);
  15967. int node_n = -1;
  15968. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15969. while (true) {
  15970. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15971. state->shared->node_n += 1;
  15972. state->ec = GGML_STATUS_ABORTED;
  15973. return 0;
  15974. }
  15975. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15976. // all other threads are finished and spinning
  15977. // do finalize and init here so we don't have synchronize again
  15978. struct ggml_compute_params params = {
  15979. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15980. /*.ith =*/ 0,
  15981. /*.nth =*/ 0,
  15982. /*.wsize =*/ cplan->work_size,
  15983. /*.wdata =*/ cplan->work_data,
  15984. };
  15985. if (node_n != -1) {
  15986. /* FINALIZE */
  15987. struct ggml_tensor * node = cgraph->nodes[node_n];
  15988. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15989. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15990. ggml_compute_forward(&params, node, state);
  15991. }
  15992. ggml_graph_compute_perf_stats_node(node, state->shared);
  15993. }
  15994. // distribute new work or execute it direct if 1T
  15995. while (++node_n < cgraph->n_nodes) {
  15996. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15997. struct ggml_tensor * node = cgraph->nodes[node_n];
  15998. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15999. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16000. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16001. params.nth = n_tasks;
  16002. if (n_tasks == 1) {
  16003. /* INIT */
  16004. if (GGML_OP_HAS_INIT[node->op]) {
  16005. params.type = GGML_TASK_TYPE_INIT;
  16006. ggml_compute_forward(&params, node, state);
  16007. }
  16008. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16009. // they do something more efficient than spinning (?)
  16010. params.type = GGML_TASK_TYPE_COMPUTE;
  16011. ggml_compute_forward(&params, node, state);
  16012. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16013. params.type = GGML_TASK_TYPE_FINALIZE;
  16014. ggml_compute_forward(&params, node, state);
  16015. }
  16016. ggml_graph_compute_perf_stats_node(node, state->shared);
  16017. } else {
  16018. break;
  16019. }
  16020. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16021. break;
  16022. }
  16023. }
  16024. task_phase = GGML_TASK_TYPE_INIT;
  16025. atomic_store(&state->shared->n_active, n_threads);
  16026. atomic_store(&state->shared->node_n, node_n);
  16027. atomic_store(&state->shared->node_task, task_phase);
  16028. } else {
  16029. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16030. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16031. }
  16032. // check if we should stop
  16033. if (node_n >= cgraph->n_nodes) break;
  16034. /* INIT & COMPUTE */
  16035. struct ggml_tensor * node = cgraph->nodes[node_n];
  16036. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16037. struct ggml_compute_params params = {
  16038. /*.type =*/ GGML_TASK_TYPE_INIT,
  16039. /*.ith =*/ state->ith,
  16040. /*.nth =*/ n_tasks,
  16041. /*.wsize =*/ cplan->work_size,
  16042. /*.wdata =*/ cplan->work_data,
  16043. };
  16044. if (state->ith < n_tasks) {
  16045. if (GGML_OP_HAS_INIT[node->op]) {
  16046. ggml_compute_forward(&params, node, state);
  16047. }
  16048. }
  16049. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16050. task_phase = GGML_TASK_TYPE_COMPUTE;
  16051. atomic_store(&state->shared->n_active, n_threads);
  16052. atomic_store(&state->shared->node_task, task_phase);
  16053. }
  16054. else {
  16055. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16056. // depending on the workload and the operating system.
  16057. // since it is not clear what is the best approach, it should potentially become user-configurable
  16058. // ref: https://github.com/ggerganov/ggml/issues/291
  16059. // UPD: adding the do_yield flag seems to resolve the issue universally
  16060. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16061. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16062. }
  16063. if (state->ith < n_tasks) {
  16064. params.type = GGML_TASK_TYPE_COMPUTE;
  16065. ggml_compute_forward(&params, node, state);
  16066. }
  16067. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16068. task_phase = GGML_TASK_TYPE_FINALIZE;
  16069. atomic_store(&state->shared->n_active, n_threads);
  16070. atomic_store(&state->shared->node_task, task_phase);
  16071. }
  16072. else {
  16073. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16074. }
  16075. }
  16076. return 0;
  16077. }
  16078. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16079. if (n_threads <= 0) {
  16080. n_threads = GGML_DEFAULT_N_THREADS;
  16081. }
  16082. size_t work_size = 0;
  16083. struct ggml_cplan cplan;
  16084. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16085. int max_tasks = 1;
  16086. // thread scheduling for the different operations + work buffer size estimation
  16087. for (int i = 0; i < cgraph->n_nodes; i++) {
  16088. struct ggml_tensor * node = cgraph->nodes[i];
  16089. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16090. max_tasks = MAX(max_tasks, n_tasks);
  16091. size_t cur = 0;
  16092. switch (node->op) {
  16093. case GGML_OP_CPY:
  16094. case GGML_OP_DUP:
  16095. {
  16096. if (ggml_is_quantized(node->type) ||
  16097. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16098. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16099. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16100. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16101. }
  16102. } break;
  16103. case GGML_OP_ADD:
  16104. case GGML_OP_ADD1:
  16105. {
  16106. if (ggml_is_quantized(node->src[0]->type)) {
  16107. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16108. }
  16109. } break;
  16110. case GGML_OP_ACC:
  16111. {
  16112. if (ggml_is_quantized(node->src[0]->type)) {
  16113. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16114. }
  16115. } break;
  16116. case GGML_OP_MUL_MAT:
  16117. {
  16118. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16119. #if defined(GGML_USE_CLBLAST)
  16120. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16121. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16122. } else
  16123. #endif
  16124. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16125. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16126. if (node->src[0]->type != GGML_TYPE_F32) {
  16127. // here we need memory for fully dequantized matrix from src0
  16128. // take into account that src0 can be broadcasted into src1[2,3]
  16129. cur = ggml_type_size(GGML_TYPE_F32)
  16130. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16131. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16132. }
  16133. } else
  16134. #endif
  16135. if (node->src[1]->type != vec_dot_type) {
  16136. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16137. }
  16138. } break;
  16139. case GGML_OP_MUL_MAT_ID:
  16140. {
  16141. cur = 0;
  16142. const struct ggml_tensor * src0 = node->src[0];
  16143. const struct ggml_tensor * src1 = node->src[1];
  16144. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16145. if (src1->type != vec_dot_type) {
  16146. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16147. }
  16148. const int n_as = src0->ne[2];
  16149. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16150. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16151. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16152. } break;
  16153. case GGML_OP_OUT_PROD:
  16154. {
  16155. if (ggml_is_quantized(node->src[0]->type)) {
  16156. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16157. }
  16158. } break;
  16159. case GGML_OP_SOFT_MAX:
  16160. case GGML_OP_ROPE:
  16161. {
  16162. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16163. } break;
  16164. case GGML_OP_CONV_TRANSPOSE_1D:
  16165. {
  16166. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16167. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16168. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16169. const int64_t ne00 = node->src[0]->ne[0]; // K
  16170. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16171. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16172. const int64_t ne10 = node->src[1]->ne[0]; // L
  16173. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16174. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16175. node->src[0]->type == GGML_TYPE_BF16) &&
  16176. node->src[1]->type == GGML_TYPE_F32) {
  16177. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16178. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16179. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16180. node->src[1]->type == GGML_TYPE_F32) {
  16181. cur += sizeof(float)*ne00*ne01*ne02;
  16182. cur += sizeof(float)*ne10*ne11;
  16183. } else {
  16184. GGML_ASSERT(false);
  16185. }
  16186. } break;
  16187. case GGML_OP_CONV_TRANSPOSE_2D:
  16188. {
  16189. const int64_t ne00 = node->src[0]->ne[0]; // W
  16190. const int64_t ne01 = node->src[0]->ne[1]; // H
  16191. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16192. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16193. const int64_t ne10 = node->src[1]->ne[0]; // W
  16194. const int64_t ne11 = node->src[1]->ne[1]; // H
  16195. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16196. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16197. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16198. } break;
  16199. case GGML_OP_FLASH_ATTN_EXT:
  16200. {
  16201. const int64_t ne00 = node->src[0]->ne[0]; // D
  16202. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16203. } break;
  16204. case GGML_OP_FLASH_ATTN_BACK:
  16205. {
  16206. const int64_t D = node->src[0]->ne[0];
  16207. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16208. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16209. if (node->src[1]->type == GGML_TYPE_F32) {
  16210. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16211. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16212. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16213. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16214. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16215. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16216. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16217. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16218. }
  16219. } break;
  16220. case GGML_OP_CROSS_ENTROPY_LOSS:
  16221. {
  16222. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16223. } break;
  16224. case GGML_OP_COUNT:
  16225. {
  16226. GGML_ASSERT(false);
  16227. } break;
  16228. default:
  16229. break;
  16230. }
  16231. work_size = MAX(work_size, cur);
  16232. }
  16233. if (work_size > 0) {
  16234. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16235. }
  16236. cplan.n_threads = MIN(max_tasks, n_threads);
  16237. cplan.work_size = work_size;
  16238. cplan.work_data = NULL;
  16239. return cplan;
  16240. }
  16241. static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
  16242. enum ggml_status compute_status = GGML_STATUS_SUCCESS;
  16243. #ifdef GGML_USE_OPENMP
  16244. if (n_threads > 1) {
  16245. #pragma omp parallel num_threads(n_threads)
  16246. {
  16247. #pragma omp single
  16248. {
  16249. // update the number of threads from the actual number of threads that we got from OpenMP
  16250. n_threads = omp_get_num_threads();
  16251. workers[0].shared->n_threads = n_threads;
  16252. workers[0].shared->n_active = n_threads;
  16253. }
  16254. ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
  16255. }
  16256. } else {
  16257. ggml_graph_compute_thread(&workers[0]);
  16258. }
  16259. #else
  16260. // create thread pool
  16261. if (n_threads > 1) {
  16262. for (int j = 1; j < n_threads; ++j) {
  16263. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16264. GGML_ASSERT(rc == 0);
  16265. UNUSED(rc);
  16266. }
  16267. }
  16268. // this is a work thread too
  16269. ggml_graph_compute_thread(&workers[0]);
  16270. // join or kill thread pool
  16271. if (n_threads > 1) {
  16272. for (int j = 1; j < n_threads; j++) {
  16273. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16274. GGML_ASSERT(rc == 0);
  16275. UNUSED(rc);
  16276. }
  16277. }
  16278. #endif
  16279. // don't leave affinity set on the main thread
  16280. clear_numa_thread_affinity();
  16281. for (int j = 0; j < n_threads; j++) {
  16282. if (workers[j].ec != GGML_STATUS_SUCCESS) {
  16283. compute_status = workers[j].ec;
  16284. break;
  16285. }
  16286. }
  16287. return compute_status;
  16288. }
  16289. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16290. {
  16291. GGML_ASSERT(cplan);
  16292. GGML_ASSERT(cplan->n_threads > 0);
  16293. if (cplan->work_size > 0) {
  16294. GGML_ASSERT(cplan->work_data);
  16295. }
  16296. }
  16297. int n_threads = cplan->n_threads;
  16298. #if defined(GGML_USE_OPENMP)
  16299. n_threads = MIN(n_threads, omp_get_max_threads());
  16300. #endif
  16301. struct ggml_compute_state_shared state_shared = {
  16302. /*.cgraph =*/ cgraph,
  16303. /*.cgraph_plan =*/ cplan,
  16304. /*.perf_node_start_cycles =*/ 0,
  16305. /*.perf_node_start_time_us =*/ 0,
  16306. /*.n_threads =*/ n_threads,
  16307. /*.n_active =*/ n_threads,
  16308. /*.node_n =*/ -1,
  16309. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16310. /*.abort_callback =*/ NULL,
  16311. /*.abort_callback_data =*/ NULL,
  16312. /*.current_chunk; =*/ 0,
  16313. };
  16314. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16315. const int64_t perf_start_cycles = ggml_perf_cycles();
  16316. const int64_t perf_start_time_us = ggml_perf_time_us();
  16317. for (int j = 0; j < n_threads; ++j) {
  16318. workers[j] = (struct ggml_compute_state) {
  16319. .thrd = 0,
  16320. .ith = j,
  16321. .shared = &state_shared,
  16322. .ec = GGML_STATUS_SUCCESS,
  16323. };
  16324. }
  16325. enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
  16326. // performance stats (graph)
  16327. {
  16328. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16329. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16330. cgraph->perf_runs++;
  16331. cgraph->perf_cycles += perf_cycles_cur;
  16332. cgraph->perf_time_us += perf_time_us_cur;
  16333. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16334. __func__, cgraph->perf_runs,
  16335. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16336. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16337. (double) perf_time_us_cur / 1000.0,
  16338. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16339. }
  16340. return compute_status;
  16341. }
  16342. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16343. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16344. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16345. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16346. return ggml_graph_compute(cgraph, &cplan);
  16347. }
  16348. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16349. for (int i = 0; i < cgraph->n_leafs; i++) {
  16350. struct ggml_tensor * leaf = cgraph->leafs[i];
  16351. if (strcmp(leaf->name, name) == 0) {
  16352. return leaf;
  16353. }
  16354. }
  16355. for (int i = 0; i < cgraph->n_nodes; i++) {
  16356. struct ggml_tensor * node = cgraph->nodes[i];
  16357. if (strcmp(node->name, name) == 0) {
  16358. return node;
  16359. }
  16360. }
  16361. return NULL;
  16362. }
  16363. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16364. const int64_t * ne = tensor->ne;
  16365. const size_t * nb = tensor->nb;
  16366. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16367. ggml_type_name(tensor->type),
  16368. ggml_op_name (tensor->op),
  16369. ggml_n_dims(tensor),
  16370. ne[0], ne[1], ne[2], ne[3],
  16371. nb[0], nb[1], nb[2], nb[3],
  16372. tensor->data,
  16373. tensor->name);
  16374. }
  16375. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16376. const int64_t * ne = tensor->ne;
  16377. const size_t * nb = tensor->nb;
  16378. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16379. arg,
  16380. ggml_type_name(tensor->type),
  16381. ggml_op_name (tensor->op),
  16382. ggml_n_dims(tensor),
  16383. ne[0], ne[1], ne[2], ne[3],
  16384. nb[0], nb[1], nb[2], nb[3],
  16385. tensor->data,
  16386. tensor->name);
  16387. }
  16388. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16389. uint64_t size_eval = 0;
  16390. // compute size of intermediate results
  16391. // TODO: does not take into account scratch buffers !!!!
  16392. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16393. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16394. }
  16395. // print
  16396. {
  16397. FILE * fout = stdout;
  16398. fprintf(fout, "\n");
  16399. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16400. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16401. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16402. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16403. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16404. // header
  16405. fprintf(fout, "\n");
  16406. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16407. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16408. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16409. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16410. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16411. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16412. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16413. }
  16414. // header
  16415. fprintf(fout, "\n");
  16416. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16417. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16418. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16419. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16420. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16421. if (cgraph->nodes[i]->src[j]) {
  16422. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16423. }
  16424. }
  16425. fprintf(fout, "\n");
  16426. }
  16427. fprintf(fout, "\n");
  16428. }
  16429. // write binary data
  16430. {
  16431. FILE * fout = ggml_fopen(fname, "wb");
  16432. if (!fout) {
  16433. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16434. return;
  16435. }
  16436. // header
  16437. {
  16438. const uint32_t magic = GGML_FILE_MAGIC;
  16439. const uint32_t version = GGML_FILE_VERSION;
  16440. const uint32_t n_leafs = cgraph->n_leafs;
  16441. const uint32_t n_nodes = cgraph->n_nodes;
  16442. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16443. fwrite(&version, sizeof(uint32_t), 1, fout);
  16444. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16445. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16446. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16447. }
  16448. // leafs
  16449. {
  16450. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16451. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16452. const uint32_t type = tensor->type;
  16453. const uint32_t op = tensor->op;
  16454. fwrite(&type, sizeof(uint32_t), 1, fout);
  16455. fwrite(&op, sizeof(uint32_t), 1, fout);
  16456. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16457. const uint64_t ne = tensor->ne[j];
  16458. const uint64_t nb = tensor->nb[j];
  16459. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16460. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16461. }
  16462. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16463. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16464. // dump the data
  16465. // TODO: pad this to 32 byte boundary
  16466. {
  16467. const size_t size = ggml_nbytes(tensor);
  16468. fwrite(tensor->data, sizeof(char), size, fout);
  16469. }
  16470. }
  16471. }
  16472. // nodes
  16473. {
  16474. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16475. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16476. const uint32_t type = tensor->type;
  16477. const uint32_t op = tensor->op;
  16478. fwrite(&type, sizeof(uint32_t), 1, fout);
  16479. fwrite(&op, sizeof(uint32_t), 1, fout);
  16480. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16481. const uint64_t ne = tensor->ne[j];
  16482. const uint64_t nb = tensor->nb[j];
  16483. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16484. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16485. }
  16486. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16487. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16488. // output the op arguments
  16489. {
  16490. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16491. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16492. args[j] = tensor->src[j];
  16493. }
  16494. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16495. if (args[j]) {
  16496. int32_t idx = -1;
  16497. // check if leaf
  16498. {
  16499. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16500. if (args[j] == cgraph->leafs[k]) {
  16501. idx = k;
  16502. break;
  16503. }
  16504. }
  16505. }
  16506. // check if node
  16507. if (idx == -1) {
  16508. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16509. if (args[j] == cgraph->nodes[k]) {
  16510. idx = cgraph->n_leafs + k;
  16511. break;
  16512. }
  16513. }
  16514. }
  16515. if (idx == -1) {
  16516. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16517. fclose(fout);
  16518. return;
  16519. }
  16520. fwrite(&idx, sizeof(int32_t), 1, fout);
  16521. } else {
  16522. const int32_t nul = -1;
  16523. fwrite(&nul, sizeof(int32_t), 1, fout);
  16524. }
  16525. }
  16526. }
  16527. }
  16528. }
  16529. fclose(fout);
  16530. }
  16531. }
  16532. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16533. assert(*ctx_data == NULL);
  16534. assert(*ctx_eval == NULL);
  16535. struct ggml_cgraph * result = NULL;
  16536. struct ggml_tensor * data = NULL;
  16537. // read file into data
  16538. {
  16539. FILE * fin = ggml_fopen(fname, "rb");
  16540. if (!fin) {
  16541. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16542. return result;
  16543. }
  16544. size_t fsize = 0;
  16545. fseek(fin, 0, SEEK_END);
  16546. fsize = ftell(fin);
  16547. fseek(fin, 0, SEEK_SET);
  16548. // create the data context
  16549. {
  16550. const size_t overhead = 1*ggml_tensor_overhead();
  16551. struct ggml_init_params params = {
  16552. .mem_size = fsize + overhead,
  16553. .mem_buffer = NULL,
  16554. .no_alloc = false,
  16555. };
  16556. *ctx_data = ggml_init(params);
  16557. if (!*ctx_data) {
  16558. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16559. fclose(fin);
  16560. return result;
  16561. }
  16562. }
  16563. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16564. {
  16565. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16566. if (ret != fsize) {
  16567. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16568. fclose(fin);
  16569. return result;
  16570. }
  16571. }
  16572. fclose(fin);
  16573. }
  16574. // populate result
  16575. {
  16576. char * ptr = (char *) data->data;
  16577. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16578. if (magic != GGML_FILE_MAGIC) {
  16579. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16580. return result;
  16581. }
  16582. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16583. if (version != GGML_FILE_VERSION) {
  16584. fprintf(stderr, "%s: invalid version number\n", __func__);
  16585. return result;
  16586. }
  16587. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16588. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16589. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16590. const int graph_size = MAX(n_leafs, n_nodes);
  16591. // create the data context
  16592. {
  16593. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16594. struct ggml_init_params params = {
  16595. .mem_size = size_eval + overhead,
  16596. .mem_buffer = NULL,
  16597. .no_alloc = true,
  16598. };
  16599. *ctx_eval = ggml_init(params);
  16600. if (!*ctx_eval) {
  16601. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16602. return result;
  16603. }
  16604. }
  16605. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16606. result->n_leafs = n_leafs;
  16607. result->n_nodes = n_nodes;
  16608. // leafs
  16609. {
  16610. uint32_t type;
  16611. uint32_t op;
  16612. for (uint32_t i = 0; i < n_leafs; ++i) {
  16613. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16614. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16615. int64_t ne[GGML_MAX_DIMS];
  16616. size_t nb[GGML_MAX_DIMS];
  16617. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16618. uint64_t ne_cur;
  16619. uint64_t nb_cur;
  16620. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16621. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16622. ne[j] = ne_cur;
  16623. nb[j] = nb_cur;
  16624. }
  16625. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16626. tensor->op = (enum ggml_op) op;
  16627. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16628. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16629. tensor->data = (void *) ptr;
  16630. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16631. tensor->nb[j] = nb[j];
  16632. }
  16633. result->leafs[i] = tensor;
  16634. ptr += ggml_nbytes(tensor);
  16635. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16636. }
  16637. }
  16638. ggml_set_no_alloc(*ctx_eval, false);
  16639. // nodes
  16640. {
  16641. uint32_t type;
  16642. uint32_t op;
  16643. for (uint32_t i = 0; i < n_nodes; ++i) {
  16644. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16645. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16646. enum ggml_op eop = (enum ggml_op) op;
  16647. int64_t ne[GGML_MAX_DIMS];
  16648. size_t nb[GGML_MAX_DIMS];
  16649. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16650. uint64_t ne_cur;
  16651. uint64_t nb_cur;
  16652. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16653. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16654. ne[j] = ne_cur;
  16655. nb[j] = nb_cur;
  16656. }
  16657. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16658. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16659. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16660. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16661. // parse args
  16662. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16663. const int32_t arg_idx = ptr_arg_idx[j];
  16664. if (arg_idx == -1) {
  16665. continue;
  16666. }
  16667. if (arg_idx < result->n_leafs) {
  16668. args[j] = result->leafs[arg_idx];
  16669. } else {
  16670. args[j] = result->nodes[arg_idx - result->n_leafs];
  16671. }
  16672. }
  16673. // create the tensor
  16674. // "view" operations are handled differently
  16675. // TODO: handle inplace ops - currently a copy is always made
  16676. struct ggml_tensor * tensor = NULL;
  16677. switch (eop) {
  16678. // TODO: implement other view ops
  16679. case GGML_OP_RESHAPE:
  16680. {
  16681. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16682. } break;
  16683. case GGML_OP_VIEW:
  16684. {
  16685. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16686. size_t offs;
  16687. memcpy(&offs, ptr_op_params, sizeof(offs));
  16688. tensor->data = ((char *) tensor->data) + offs;
  16689. } break;
  16690. case GGML_OP_TRANSPOSE:
  16691. {
  16692. tensor = ggml_transpose(*ctx_eval, args[0]);
  16693. } break;
  16694. case GGML_OP_PERMUTE:
  16695. {
  16696. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16697. } break;
  16698. default:
  16699. {
  16700. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16701. tensor->op = eop;
  16702. } break;
  16703. }
  16704. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16705. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16706. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16707. tensor->nb[j] = nb[j];
  16708. }
  16709. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16710. tensor->src[j] = args[j];
  16711. }
  16712. result->nodes[i] = tensor;
  16713. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16714. }
  16715. }
  16716. }
  16717. return result;
  16718. }
  16719. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16720. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16721. GGML_PRINT("=== GRAPH ===\n");
  16722. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16723. for (int i = 0; i < cgraph->n_nodes; i++) {
  16724. struct ggml_tensor * node = cgraph->nodes[i];
  16725. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16726. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16727. i,
  16728. node->ne[0], node->ne[1], node->ne[2],
  16729. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16730. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16731. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16732. (double) node->perf_time_us / 1000.0,
  16733. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16734. }
  16735. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16736. for (int i = 0; i < cgraph->n_leafs; i++) {
  16737. struct ggml_tensor * node = cgraph->leafs[i];
  16738. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16739. i,
  16740. node->ne[0], node->ne[1],
  16741. ggml_op_name(node->op),
  16742. ggml_get_name(node));
  16743. }
  16744. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16745. if (perf_total_per_op_us[i] == 0) {
  16746. continue;
  16747. }
  16748. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16749. }
  16750. GGML_PRINT("========================================\n");
  16751. }
  16752. // check if node is part of the graph
  16753. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16754. if (cgraph == NULL) {
  16755. return true;
  16756. }
  16757. for (int i = 0; i < cgraph->n_nodes; i++) {
  16758. if (cgraph->nodes[i] == node) {
  16759. return true;
  16760. }
  16761. }
  16762. return false;
  16763. }
  16764. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16765. for (int i = 0; i < cgraph->n_nodes; i++) {
  16766. struct ggml_tensor * parent = cgraph->nodes[i];
  16767. if (parent->grad == node) {
  16768. return parent;
  16769. }
  16770. }
  16771. return NULL;
  16772. }
  16773. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16774. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16775. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16776. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16777. gparent0 ? (void *) gparent0 : (void *) parent,
  16778. gparent0 ? "g" : "x",
  16779. gparent ? (void *) gparent : (void *) node,
  16780. gparent ? "g" : "x",
  16781. gparent ? "empty" : "vee",
  16782. gparent ? "dashed" : "solid",
  16783. label);
  16784. }
  16785. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16786. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16787. (void *) parent, "x",
  16788. (void *) node, "x",
  16789. label);
  16790. }
  16791. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16792. char color[16];
  16793. FILE * fp = ggml_fopen(filename, "w");
  16794. GGML_ASSERT(fp);
  16795. fprintf(fp, "digraph G {\n");
  16796. fprintf(fp, " newrank = true;\n");
  16797. fprintf(fp, " rankdir = LR;\n");
  16798. for (int i = 0; i < gb->n_nodes; i++) {
  16799. struct ggml_tensor * node = gb->nodes[i];
  16800. if (ggml_graph_get_parent(gb, node) != NULL) {
  16801. continue;
  16802. }
  16803. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16804. snprintf(color, sizeof(color), "yellow");
  16805. } else if (node->grad) {
  16806. if (ggml_graph_find(gf, node)) {
  16807. snprintf(color, sizeof(color), "green");
  16808. } else {
  16809. snprintf(color, sizeof(color), "lightblue");
  16810. }
  16811. } else {
  16812. snprintf(color, sizeof(color), "white");
  16813. }
  16814. fprintf(fp, " \"%p\" [ "
  16815. "style = filled; fillcolor = %s; shape = record; "
  16816. "label=\"",
  16817. (void *) node, color);
  16818. if (strlen(node->name) > 0) {
  16819. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16820. } else {
  16821. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16822. }
  16823. if (ggml_is_matrix(node)) {
  16824. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16825. } else {
  16826. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16827. }
  16828. if (node->grad) {
  16829. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16830. } else {
  16831. fprintf(fp, "\"; ]\n");
  16832. }
  16833. }
  16834. for (int i = 0; i < gb->n_leafs; i++) {
  16835. struct ggml_tensor * node = gb->leafs[i];
  16836. snprintf(color, sizeof(color), "pink");
  16837. fprintf(fp, " \"%p\" [ "
  16838. "style = filled; fillcolor = %s; shape = record; "
  16839. "label=\"<x>",
  16840. (void *) node, color);
  16841. if (strlen(node->name) > 0) {
  16842. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16843. } else {
  16844. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16845. }
  16846. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16847. if (ggml_nelements(node) < 5) {
  16848. fprintf(fp, " | (");
  16849. for (int j = 0; j < ggml_nelements(node); j++) {
  16850. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16851. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16852. }
  16853. else if (node->type == GGML_TYPE_F32 ||
  16854. node->type == GGML_TYPE_F16 ||
  16855. node->type == GGML_TYPE_BF16) {
  16856. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16857. }
  16858. else {
  16859. fprintf(fp, "#");
  16860. }
  16861. if (j < ggml_nelements(node) - 1) {
  16862. fprintf(fp, ", ");
  16863. }
  16864. }
  16865. fprintf(fp, ")");
  16866. }
  16867. fprintf(fp, "\"; ]\n");
  16868. }
  16869. for (int i = 0; i < gb->n_nodes; i++) {
  16870. struct ggml_tensor * node = gb->nodes[i];
  16871. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16872. if (node->src[j]) {
  16873. char label[16];
  16874. snprintf(label, sizeof(label), "src %d", j);
  16875. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16876. }
  16877. }
  16878. }
  16879. for (int i = 0; i < gb->n_leafs; i++) {
  16880. struct ggml_tensor * node = gb->leafs[i];
  16881. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16882. if (node->src[j]) {
  16883. char label[16];
  16884. snprintf(label, sizeof(label), "src %d", j);
  16885. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16886. }
  16887. }
  16888. }
  16889. fprintf(fp, "}\n");
  16890. fclose(fp);
  16891. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16892. }
  16893. ////////////////////////////////////////////////////////////////////////////////
  16894. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16895. int i = 0;
  16896. for (int p = 0; p < np; ++p) {
  16897. const int64_t ne = ggml_nelements(ps[p]) ;
  16898. // TODO: add function to set tensor from array
  16899. for (int64_t j = 0; j < ne; ++j) {
  16900. ggml_set_f32_1d(ps[p], j, x[i++]);
  16901. }
  16902. }
  16903. }
  16904. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16905. int i = 0;
  16906. for (int p = 0; p < np; ++p) {
  16907. const int64_t ne = ggml_nelements(ps[p]) ;
  16908. // TODO: add function to get all elements at once
  16909. for (int64_t j = 0; j < ne; ++j) {
  16910. x[i++] = ggml_get_f32_1d(ps[p], j);
  16911. }
  16912. }
  16913. }
  16914. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16915. int64_t i = 0;
  16916. for (int p = 0; p < np; ++p) {
  16917. const int64_t ne = ggml_nelements(ps[p]) ;
  16918. // TODO: add function to get all elements at once
  16919. for (int64_t j = 0; j < ne; ++j) {
  16920. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16921. }
  16922. }
  16923. }
  16924. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16925. int64_t i = 0;
  16926. for (int p = 0; p < np; ++p) {
  16927. const int64_t ne = ggml_nelements(ps[p]) ;
  16928. // TODO: add function to get all elements at once
  16929. for (int64_t j = 0; j < ne; ++j) {
  16930. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16931. }
  16932. }
  16933. }
  16934. //
  16935. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16936. //
  16937. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16938. //
  16939. static enum ggml_opt_result ggml_opt_adam(
  16940. struct ggml_context * ctx,
  16941. struct ggml_opt_context * opt,
  16942. struct ggml_opt_params params,
  16943. struct ggml_tensor * f,
  16944. struct ggml_cgraph * gf,
  16945. struct ggml_cgraph * gb,
  16946. ggml_opt_callback callback,
  16947. void * callback_data) {
  16948. GGML_ASSERT(ggml_is_scalar(f));
  16949. // these will store the parameters we want to optimize
  16950. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16951. int np = 0;
  16952. int64_t nx = 0;
  16953. for (int i = 0; i < gf->n_nodes; ++i) {
  16954. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16955. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16956. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16957. ps[np++] = gf->nodes[i];
  16958. nx += ggml_nelements(gf->nodes[i]);
  16959. }
  16960. }
  16961. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16962. int iter = opt->iter;
  16963. ggml_opt_init(opt->ctx, opt, params, nx);
  16964. opt->iter = iter;
  16965. }
  16966. // constants
  16967. float sched = params.adam.sched;
  16968. const float alpha = params.adam.alpha;
  16969. const float decay = params.adam.decay * alpha;
  16970. const float beta1 = params.adam.beta1;
  16971. const float beta2 = params.adam.beta2;
  16972. const float eps = params.adam.eps;
  16973. const float gclip = params.adam.gclip;
  16974. const int decay_min_ndim = params.adam.decay_min_ndim;
  16975. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16976. const float accum_norm = 1.0f / (float) n_accum;
  16977. float * g = opt->adam.g->data; // gradients
  16978. float * m = opt->adam.m->data; // first moment
  16979. float * v = opt->adam.v->data; // second moment
  16980. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16981. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16982. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16983. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16984. bool cancel = false;
  16985. // compute the function value
  16986. float fx = 0;
  16987. ggml_set_zero(opt->adam.g);
  16988. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16989. if (callback) {
  16990. callback(callback_data, accum_step, &sched, &cancel);
  16991. if (cancel) {
  16992. return GGML_OPT_RESULT_CANCEL;
  16993. }
  16994. }
  16995. // ggml_graph_reset (gf);
  16996. ggml_set_f32 (f->grad, 1.0f);
  16997. ggml_graph_compute(gb, &cplan);
  16998. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16999. fx += ggml_get_f32_1d(f, 0);
  17000. }
  17001. fx *= accum_norm;
  17002. opt->adam.fx_prev = fx;
  17003. opt->adam.fx_best = opt->adam.fx_prev;
  17004. if (pf) {
  17005. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17006. }
  17007. opt->loss_before = opt->adam.fx_prev;
  17008. opt->loss_after = opt->adam.fx_prev;
  17009. // initialize
  17010. if (opt->just_initialized) {
  17011. opt->adam.n_no_improvement = 0;
  17012. opt->just_initialized = false;
  17013. }
  17014. float * fx_best = &opt->adam.fx_best;
  17015. float * fx_prev = &opt->adam.fx_prev;
  17016. int * n_no_improvement = &opt->adam.n_no_improvement;
  17017. int iter0 = opt->iter;
  17018. // run the optimizer
  17019. for (int t = 0; t < params.adam.n_iter; ++t) {
  17020. opt->iter = iter0 + t + 1;
  17021. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17022. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17023. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17024. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17025. for (int i = 0; i < np; ++i) {
  17026. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17027. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17028. }
  17029. const int64_t t_start_wall = ggml_time_us();
  17030. const int64_t t_start_cpu = ggml_cycles();
  17031. UNUSED(t_start_wall);
  17032. UNUSED(t_start_cpu);
  17033. {
  17034. float gnorm = 1.0f;
  17035. if (gclip > 0.0f) {
  17036. // gradient clipping
  17037. ggml_float sum = 0.0;
  17038. for (int64_t i = 0; i < nx; ++i) {
  17039. sum += (ggml_float)(g[i]*g[i]);
  17040. }
  17041. ggml_float norm = sqrt(sum);
  17042. if (norm > (ggml_float) gclip) {
  17043. gnorm = (float) ((ggml_float) gclip / norm);
  17044. }
  17045. }
  17046. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17047. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17048. int64_t i = 0;
  17049. for (int p = 0; p < np; ++p) {
  17050. const int64_t ne = ggml_nelements(ps[p]);
  17051. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17052. for (int64_t j = 0; j < ne; ++j) {
  17053. float x = ggml_get_f32_1d(ps[p], j);
  17054. float g_ = g[i]*gnorm;
  17055. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17056. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17057. float mh = m[i]*beta1h;
  17058. float vh = v[i]*beta2h;
  17059. vh = sqrtf(vh) + eps;
  17060. x = x*(1.0f - p_decay) - mh/vh;
  17061. ggml_set_f32_1d(ps[p], j, x);
  17062. ++i;
  17063. }
  17064. }
  17065. }
  17066. fx = 0;
  17067. ggml_set_zero(opt->adam.g);
  17068. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17069. if (callback) {
  17070. callback(callback_data, accum_step, &sched, &cancel);
  17071. if (cancel) {
  17072. return GGML_OPT_RESULT_CANCEL;;
  17073. }
  17074. }
  17075. // ggml_graph_reset (gf);
  17076. ggml_set_f32 (f->grad, 1.0f);
  17077. ggml_graph_compute(gb, &cplan);
  17078. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17079. fx += ggml_get_f32_1d(f, 0);
  17080. }
  17081. fx *= accum_norm;
  17082. opt->loss_after = fx;
  17083. // check convergence
  17084. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17085. GGML_PRINT_DEBUG("converged\n");
  17086. return GGML_OPT_RESULT_OK;
  17087. }
  17088. // delta-based convergence test
  17089. if (pf != NULL) {
  17090. // need at least params.past iterations to start checking for convergence
  17091. if (params.past <= iter0 + t) {
  17092. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17093. if (fabsf(rate) < params.delta) {
  17094. return GGML_OPT_RESULT_OK;
  17095. }
  17096. }
  17097. pf[(iter0 + t)%params.past] = fx;
  17098. }
  17099. // check for improvement
  17100. if (params.max_no_improvement > 0) {
  17101. if (fx_best[0] > fx) {
  17102. fx_best[0] = fx;
  17103. n_no_improvement[0] = 0;
  17104. } else {
  17105. ++n_no_improvement[0];
  17106. if (n_no_improvement[0] >= params.max_no_improvement) {
  17107. return GGML_OPT_RESULT_OK;
  17108. }
  17109. }
  17110. }
  17111. fx_prev[0] = fx;
  17112. {
  17113. const int64_t t_end_cpu = ggml_cycles();
  17114. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17115. UNUSED(t_end_cpu);
  17116. const int64_t t_end_wall = ggml_time_us();
  17117. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17118. UNUSED(t_end_wall);
  17119. }
  17120. }
  17121. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17122. }
  17123. //
  17124. // L-BFGS
  17125. //
  17126. // the L-BFGS implementation below is based on the following implementation:
  17127. //
  17128. // https://github.com/chokkan/liblbfgs
  17129. //
  17130. struct ggml_lbfgs_iteration_data {
  17131. float alpha;
  17132. float ys;
  17133. float * s;
  17134. float * y;
  17135. };
  17136. static enum ggml_opt_result linesearch_backtracking(
  17137. const struct ggml_opt_params * params,
  17138. int nx,
  17139. float * x,
  17140. float * fx,
  17141. float * g,
  17142. float * d,
  17143. float * step,
  17144. const float * xp,
  17145. struct ggml_tensor * f,
  17146. struct ggml_cgraph * gb,
  17147. struct ggml_cplan * cplan,
  17148. const int np,
  17149. struct ggml_tensor * ps[],
  17150. bool * cancel,
  17151. ggml_opt_callback callback,
  17152. void * callback_data) {
  17153. int count = 0;
  17154. float width = 0.0f;
  17155. float dg = 0.0f;
  17156. float finit = 0.0f;
  17157. float dginit = 0.0f;
  17158. float dgtest = 0.0f;
  17159. const float dec = 0.5f;
  17160. const float inc = 2.1f;
  17161. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17162. const float accum_norm = 1.0f / (float) n_accum;
  17163. if (*step <= 0.f) {
  17164. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17165. }
  17166. // compute the initial gradient in the search direction
  17167. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17168. // make sure that d points to a descent direction
  17169. if (0 < dginit) {
  17170. return GGML_LINESEARCH_FAIL;
  17171. }
  17172. // initialize local variables
  17173. finit = *fx;
  17174. dgtest = params->lbfgs.ftol*dginit;
  17175. while (true) {
  17176. ggml_vec_cpy_f32(nx, x, xp);
  17177. ggml_vec_mad_f32(nx, x, d, *step);
  17178. // evaluate the function and gradient values
  17179. {
  17180. ggml_opt_set_params(np, ps, x);
  17181. *fx = 0;
  17182. memset(g, 0, sizeof(float)*nx);
  17183. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17184. if (callback) {
  17185. // LBFG-S does not support learning rate -> ignore learning schedule
  17186. float sched = 0;
  17187. callback(callback_data, accum_step, &sched, cancel);
  17188. if (*cancel) {
  17189. return GGML_OPT_RESULT_CANCEL;
  17190. }
  17191. }
  17192. // ggml_graph_reset (gf);
  17193. ggml_set_f32 (f->grad, 1.0f);
  17194. ggml_graph_compute(gb, cplan);
  17195. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17196. *fx += ggml_get_f32_1d(f, 0);
  17197. }
  17198. *fx *= accum_norm;
  17199. }
  17200. ++count;
  17201. if (*fx > finit + (*step)*dgtest) {
  17202. width = dec;
  17203. } else {
  17204. // Armijo condition is satisfied
  17205. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17206. return count;
  17207. }
  17208. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17209. // check the Wolfe condition
  17210. if (dg < params->lbfgs.wolfe * dginit) {
  17211. width = inc;
  17212. } else {
  17213. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17214. // regular Wolfe conditions
  17215. return count;
  17216. }
  17217. if(dg > -params->lbfgs.wolfe*dginit) {
  17218. width = dec;
  17219. } else {
  17220. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17221. return count;
  17222. }
  17223. }
  17224. }
  17225. if (*step < params->lbfgs.min_step) {
  17226. return GGML_LINESEARCH_MINIMUM_STEP;
  17227. }
  17228. if (*step > params->lbfgs.max_step) {
  17229. return GGML_LINESEARCH_MAXIMUM_STEP;
  17230. }
  17231. if (params->lbfgs.max_linesearch <= count) {
  17232. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17233. }
  17234. (*step) *= width;
  17235. }
  17236. GGML_ASSERT(false && "line search failed");
  17237. return GGML_LINESEARCH_FAIL;
  17238. }
  17239. static enum ggml_opt_result ggml_opt_lbfgs(
  17240. struct ggml_context * ctx,
  17241. struct ggml_opt_context * opt,
  17242. struct ggml_opt_params params,
  17243. struct ggml_tensor * f,
  17244. struct ggml_cgraph * gf,
  17245. struct ggml_cgraph * gb,
  17246. ggml_opt_callback callback,
  17247. void * callback_data) {
  17248. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17249. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17250. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17251. return GGML_OPT_RESULT_INVALID_WOLFE;
  17252. }
  17253. }
  17254. const int m = params.lbfgs.m;
  17255. // these will store the parameters we want to optimize
  17256. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17257. int np = 0;
  17258. int nx = 0;
  17259. for (int i = 0; i < gf->n_nodes; ++i) {
  17260. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17261. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17262. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17263. ps[np++] = gf->nodes[i];
  17264. nx += ggml_nelements(gf->nodes[i]);
  17265. }
  17266. }
  17267. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17268. int iter = opt->iter;
  17269. ggml_opt_init(ctx, opt, params, nx);
  17270. opt->iter = iter;
  17271. }
  17272. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17273. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17274. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17275. float * x = opt->lbfgs.x->data; // current parameters
  17276. float * xp = opt->lbfgs.xp->data; // previous parameters
  17277. float * g = opt->lbfgs.g->data; // current gradient
  17278. float * gp = opt->lbfgs.gp->data; // previous gradient
  17279. float * d = opt->lbfgs.d->data; // search direction
  17280. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17281. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17282. const float accum_norm = 1.0f / (float) n_accum;
  17283. float fx = 0.0f; // cost function value
  17284. float xnorm = 0.0f; // ||x||
  17285. float gnorm = 0.0f; // ||g||
  17286. // initialize x from the graph nodes
  17287. ggml_opt_get_params(np, ps, x);
  17288. // the L-BFGS memory
  17289. float * lm_alpha = opt->lbfgs.lmal->data;
  17290. float * lm_ys = opt->lbfgs.lmys->data;
  17291. float * lm_s = opt->lbfgs.lms->data;
  17292. float * lm_y = opt->lbfgs.lmy->data;
  17293. bool cancel = false;
  17294. // evaluate the function value and its gradient
  17295. {
  17296. ggml_opt_set_params(np, ps, x);
  17297. fx = 0;
  17298. memset(g, 0, sizeof(float)*nx);
  17299. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17300. if (callback) {
  17301. // LBFG-S does not support learning rate -> ignore learning schedule
  17302. float sched = 0;
  17303. callback(callback_data, accum_step, &sched, &cancel);
  17304. if (cancel) {
  17305. return GGML_OPT_RESULT_CANCEL;
  17306. }
  17307. }
  17308. // ggml_graph_reset (gf);
  17309. ggml_set_f32 (f->grad, 1.0f);
  17310. ggml_graph_compute(gb, &cplan);
  17311. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17312. fx += ggml_get_f32_1d(f, 0);
  17313. }
  17314. fx *= accum_norm;
  17315. opt->loss_before = fx;
  17316. opt->loss_after = fx;
  17317. }
  17318. // search direction = -gradient
  17319. ggml_vec_neg_f32(nx, d, g);
  17320. // ||x||, ||g||
  17321. ggml_vec_norm_f32(nx, &xnorm, x);
  17322. ggml_vec_norm_f32(nx, &gnorm, g);
  17323. if (xnorm < 1.0f) {
  17324. xnorm = 1.0f;
  17325. }
  17326. // already optimized
  17327. if (gnorm/xnorm <= params.lbfgs.eps) {
  17328. return GGML_OPT_RESULT_OK;
  17329. }
  17330. if (opt->just_initialized) {
  17331. if (pf) {
  17332. pf[0] = fx;
  17333. }
  17334. opt->lbfgs.fx_best = fx;
  17335. // initial step
  17336. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17337. opt->lbfgs.j = 0;
  17338. opt->lbfgs.k = 1;
  17339. opt->lbfgs.end = 0;
  17340. opt->lbfgs.n_no_improvement = 0;
  17341. opt->just_initialized = false;
  17342. }
  17343. float * fx_best = &opt->lbfgs.fx_best;
  17344. float * step = &opt->lbfgs.step;
  17345. int * j = &opt->lbfgs.j;
  17346. int * k = &opt->lbfgs.k;
  17347. int * end = &opt->lbfgs.end;
  17348. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17349. int ls = 0;
  17350. int bound = 0;
  17351. float ys = 0.0f;
  17352. float yy = 0.0f;
  17353. float beta = 0.0f;
  17354. int it = 0;
  17355. while (true) {
  17356. // store the current position and gradient vectors
  17357. ggml_vec_cpy_f32(nx, xp, x);
  17358. ggml_vec_cpy_f32(nx, gp, g);
  17359. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17360. // to determine if the optimization should be cancelled
  17361. // this is a simple change, but not doing this atm, since I don't have a nice
  17362. // way to test and don't want to break something with so many changes lined up
  17363. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17364. if (cancel) {
  17365. return GGML_OPT_RESULT_CANCEL;
  17366. }
  17367. if (ls < 0) {
  17368. // linesearch failed - go back to the previous point and return
  17369. ggml_vec_cpy_f32(nx, x, xp);
  17370. ggml_vec_cpy_f32(nx, g, gp);
  17371. return ls;
  17372. }
  17373. opt->loss_after = fx;
  17374. ggml_vec_norm_f32(nx, &xnorm, x);
  17375. ggml_vec_norm_f32(nx, &gnorm, g);
  17376. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17377. if (xnorm < 1.0f) {
  17378. xnorm = 1.0f;
  17379. }
  17380. if (gnorm/xnorm <= params.lbfgs.eps) {
  17381. // converged
  17382. return GGML_OPT_RESULT_OK;
  17383. }
  17384. // delta-based convergence test
  17385. if (pf != NULL) {
  17386. // need at least params.past iterations to start checking for convergence
  17387. if (params.past <= k[0]) {
  17388. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17389. if (fabsf(rate) < params.delta) {
  17390. return GGML_OPT_RESULT_OK;
  17391. }
  17392. }
  17393. pf[k[0]%params.past] = fx;
  17394. }
  17395. // check for improvement
  17396. if (params.max_no_improvement > 0) {
  17397. if (fx < fx_best[0]) {
  17398. fx_best[0] = fx;
  17399. n_no_improvement[0] = 0;
  17400. } else {
  17401. n_no_improvement[0]++;
  17402. if (n_no_improvement[0] >= params.max_no_improvement) {
  17403. return GGML_OPT_RESULT_OK;
  17404. }
  17405. }
  17406. }
  17407. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17408. // reached the maximum number of iterations
  17409. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17410. }
  17411. // update vectors s and y:
  17412. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17413. // y_{k+1} = g_{k+1} - g_{k}.
  17414. //
  17415. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17416. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17417. // compute scalars ys and yy:
  17418. // ys = y^t \cdot s -> 1 / \rho.
  17419. // yy = y^t \cdot y.
  17420. //
  17421. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17422. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17423. lm_ys[end[0]] = ys;
  17424. // find new search direction
  17425. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17426. bound = (m <= k[0]) ? m : k[0];
  17427. k[0]++;
  17428. it++;
  17429. end[0] = (end[0] + 1)%m;
  17430. // initialize search direction with -g
  17431. ggml_vec_neg_f32(nx, d, g);
  17432. j[0] = end[0];
  17433. for (int i = 0; i < bound; ++i) {
  17434. j[0] = (j[0] + m - 1) % m;
  17435. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17436. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17437. lm_alpha[j[0]] /= lm_ys[j[0]];
  17438. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17439. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17440. }
  17441. ggml_vec_scale_f32(nx, d, ys/yy);
  17442. for (int i = 0; i < bound; ++i) {
  17443. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17444. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17445. beta /= lm_ys[j[0]];
  17446. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17447. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17448. j[0] = (j[0] + 1)%m;
  17449. }
  17450. step[0] = 1.0;
  17451. }
  17452. GGML_ASSERT(false && "lbfgs failed");
  17453. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17454. }
  17455. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17456. struct ggml_opt_params result;
  17457. switch (type) {
  17458. case GGML_OPT_TYPE_ADAM:
  17459. {
  17460. result = (struct ggml_opt_params) {
  17461. .type = GGML_OPT_TYPE_ADAM,
  17462. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17463. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17464. .past = 0,
  17465. .delta = 1e-5f,
  17466. .max_no_improvement = 100,
  17467. .print_forward_graph = true,
  17468. .print_backward_graph = true,
  17469. .n_gradient_accumulation = 1,
  17470. .adam = {
  17471. .n_iter = 10000,
  17472. .sched = 1.000f,
  17473. .decay = 0.0f,
  17474. .decay_min_ndim = 2,
  17475. .alpha = 0.001f,
  17476. .beta1 = 0.9f,
  17477. .beta2 = 0.999f,
  17478. .eps = 1e-8f,
  17479. .eps_f = 1e-5f,
  17480. .eps_g = 1e-3f,
  17481. .gclip = 0.0f,
  17482. },
  17483. };
  17484. } break;
  17485. case GGML_OPT_TYPE_LBFGS:
  17486. {
  17487. result = (struct ggml_opt_params) {
  17488. .type = GGML_OPT_TYPE_LBFGS,
  17489. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17490. .n_threads = 1,
  17491. .past = 0,
  17492. .delta = 1e-5f,
  17493. .max_no_improvement = 0,
  17494. .print_forward_graph = true,
  17495. .print_backward_graph = true,
  17496. .n_gradient_accumulation = 1,
  17497. .lbfgs = {
  17498. .m = 6,
  17499. .n_iter = 100,
  17500. .max_linesearch = 20,
  17501. .eps = 1e-5f,
  17502. .ftol = 1e-4f,
  17503. .wolfe = 0.9f,
  17504. .min_step = 1e-20f,
  17505. .max_step = 1e+20f,
  17506. .linesearch = GGML_LINESEARCH_DEFAULT,
  17507. },
  17508. };
  17509. } break;
  17510. }
  17511. return result;
  17512. }
  17513. GGML_API void ggml_opt_init(
  17514. struct ggml_context * ctx,
  17515. struct ggml_opt_context * opt,
  17516. struct ggml_opt_params params,
  17517. int64_t nx) {
  17518. opt->ctx = ctx;
  17519. opt->params = params;
  17520. opt->iter = 0;
  17521. opt->nx = nx;
  17522. opt->just_initialized = true;
  17523. if (opt->ctx == NULL) {
  17524. struct ggml_init_params ctx_opt_params;
  17525. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17526. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17527. if (opt->params.past > 0) {
  17528. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17529. }
  17530. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17531. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17532. if (opt->params.past > 0) {
  17533. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17534. }
  17535. }
  17536. ctx_opt_params.mem_buffer = NULL;
  17537. ctx_opt_params.no_alloc = false;
  17538. opt->ctx = ggml_init(ctx_opt_params);
  17539. }
  17540. switch (opt->params.type) {
  17541. case GGML_OPT_TYPE_ADAM:
  17542. {
  17543. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17544. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17545. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17546. opt->adam.pf = params.past > 0
  17547. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17548. : NULL;
  17549. ggml_set_zero(opt->adam.m);
  17550. ggml_set_zero(opt->adam.v);
  17551. if (opt->adam.pf) {
  17552. ggml_set_zero(opt->adam.pf);
  17553. }
  17554. } break;
  17555. case GGML_OPT_TYPE_LBFGS:
  17556. {
  17557. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17558. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17559. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17560. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17561. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17562. opt->lbfgs.pf = params.past > 0
  17563. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17564. : NULL;
  17565. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17566. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17567. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17568. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17569. ggml_set_zero(opt->lbfgs.x);
  17570. ggml_set_zero(opt->lbfgs.xp);
  17571. ggml_set_zero(opt->lbfgs.g);
  17572. ggml_set_zero(opt->lbfgs.gp);
  17573. ggml_set_zero(opt->lbfgs.d);
  17574. if (opt->lbfgs.pf) {
  17575. ggml_set_zero(opt->lbfgs.pf);
  17576. }
  17577. ggml_set_zero(opt->lbfgs.lmal);
  17578. ggml_set_zero(opt->lbfgs.lmys);
  17579. ggml_set_zero(opt->lbfgs.lms);
  17580. ggml_set_zero(opt->lbfgs.lmy);
  17581. } break;
  17582. }
  17583. }
  17584. enum ggml_opt_result ggml_opt(
  17585. struct ggml_context * ctx,
  17586. struct ggml_opt_params params,
  17587. struct ggml_tensor * f) {
  17588. bool free_ctx = false;
  17589. if (ctx == NULL) {
  17590. struct ggml_init_params params_ctx = {
  17591. .mem_size = 16*1024*1024,
  17592. .mem_buffer = NULL,
  17593. .no_alloc = false,
  17594. };
  17595. ctx = ggml_init(params_ctx);
  17596. if (ctx == NULL) {
  17597. return GGML_OPT_RESULT_NO_CONTEXT;
  17598. }
  17599. free_ctx = true;
  17600. }
  17601. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17602. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17603. ggml_opt_init(ctx, opt, params, 0);
  17604. result = ggml_opt_resume(ctx, opt, f);
  17605. if (free_ctx) {
  17606. ggml_free(ctx);
  17607. }
  17608. return result;
  17609. }
  17610. enum ggml_opt_result ggml_opt_resume(
  17611. struct ggml_context * ctx,
  17612. struct ggml_opt_context * opt,
  17613. struct ggml_tensor * f) {
  17614. // build forward + backward compute graphs
  17615. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17616. ggml_build_forward_expand(gf, f);
  17617. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17618. ggml_build_backward_expand(ctx, gf, gb, true);
  17619. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17620. }
  17621. enum ggml_opt_result ggml_opt_resume_g(
  17622. struct ggml_context * ctx,
  17623. struct ggml_opt_context * opt,
  17624. struct ggml_tensor * f,
  17625. struct ggml_cgraph * gf,
  17626. struct ggml_cgraph * gb,
  17627. ggml_opt_callback callback,
  17628. void * callback_data) {
  17629. // build forward + backward compute graphs
  17630. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17631. switch (opt->params.type) {
  17632. case GGML_OPT_TYPE_ADAM:
  17633. {
  17634. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17635. } break;
  17636. case GGML_OPT_TYPE_LBFGS:
  17637. {
  17638. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17639. } break;
  17640. }
  17641. if (opt->params.print_forward_graph) {
  17642. ggml_graph_print (gf);
  17643. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17644. }
  17645. if (opt->params.print_backward_graph) {
  17646. ggml_graph_print (gb);
  17647. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17648. }
  17649. return result;
  17650. }
  17651. ////////////////////////////////////////////////////////////////////////////////
  17652. void ggml_set_input(struct ggml_tensor * tensor) {
  17653. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17654. }
  17655. void ggml_set_output(struct ggml_tensor * tensor) {
  17656. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17657. }
  17658. ////////////////////////////////////////////////////////////////////////////////
  17659. void ggml_quantize_init(enum ggml_type type) {
  17660. ggml_critical_section_start();
  17661. switch (type) {
  17662. case GGML_TYPE_IQ2_XXS:
  17663. case GGML_TYPE_IQ2_XS:
  17664. case GGML_TYPE_IQ2_S:
  17665. case GGML_TYPE_IQ1_S:
  17666. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17667. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17668. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17669. default: // nothing
  17670. break;
  17671. }
  17672. ggml_critical_section_end();
  17673. }
  17674. void ggml_quantize_free(void) {
  17675. ggml_critical_section_start();
  17676. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17677. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17678. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17679. iq3xs_free_impl(256);
  17680. ggml_critical_section_end();
  17681. }
  17682. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17683. return
  17684. type == GGML_TYPE_IQ2_XXS ||
  17685. type == GGML_TYPE_IQ2_XS ||
  17686. type == GGML_TYPE_IQ1_S;// ||
  17687. //type == GGML_TYPE_IQ1_M;
  17688. }
  17689. size_t ggml_quantize_chunk(
  17690. enum ggml_type type,
  17691. const float * src,
  17692. void * dst,
  17693. int64_t start,
  17694. int64_t nrows,
  17695. int64_t n_per_row,
  17696. const float * imatrix) {
  17697. const int64_t n = (int64_t) nrows * n_per_row;
  17698. if (ggml_quantize_requires_imatrix(type)) {
  17699. GGML_ASSERT(imatrix != NULL);
  17700. }
  17701. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17702. GGML_ASSERT(start % n_per_row == 0);
  17703. ggml_quantize_init(type); // this is noop if already initialized
  17704. const size_t start_row = start / n_per_row;
  17705. const size_t row_size = ggml_row_size(type, n_per_row);
  17706. size_t result = 0;
  17707. switch (type) {
  17708. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17709. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17710. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17711. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17712. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17713. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17714. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17715. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17716. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17717. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17718. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17719. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17720. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17721. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17722. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17723. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17724. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17725. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17726. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17727. case GGML_TYPE_F16:
  17728. {
  17729. size_t elemsize = sizeof(ggml_fp16_t);
  17730. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17731. result = n * elemsize;
  17732. } break;
  17733. case GGML_TYPE_BF16:
  17734. {
  17735. size_t elemsize = sizeof(ggml_bf16_t);
  17736. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17737. result = n * elemsize;
  17738. } break;
  17739. case GGML_TYPE_F32:
  17740. {
  17741. size_t elemsize = sizeof(float);
  17742. result = n * elemsize;
  17743. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17744. } break;
  17745. default:
  17746. assert(false);
  17747. }
  17748. GGML_ASSERT(result == nrows * row_size);
  17749. return result;
  17750. }
  17751. ////////////////////////////////////////////////////////////////////////////////
  17752. struct gguf_str {
  17753. uint64_t n; // GGUFv2
  17754. char * data;
  17755. };
  17756. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17757. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17758. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17759. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17760. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17761. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17762. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17763. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17764. [GGUF_TYPE_BOOL] = sizeof(bool),
  17765. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17766. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17767. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17768. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17769. [GGUF_TYPE_ARRAY] = 0, // undefined
  17770. };
  17771. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17772. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17773. [GGUF_TYPE_UINT8] = "u8",
  17774. [GGUF_TYPE_INT8] = "i8",
  17775. [GGUF_TYPE_UINT16] = "u16",
  17776. [GGUF_TYPE_INT16] = "i16",
  17777. [GGUF_TYPE_UINT32] = "u32",
  17778. [GGUF_TYPE_INT32] = "i32",
  17779. [GGUF_TYPE_FLOAT32] = "f32",
  17780. [GGUF_TYPE_BOOL] = "bool",
  17781. [GGUF_TYPE_STRING] = "str",
  17782. [GGUF_TYPE_ARRAY] = "arr",
  17783. [GGUF_TYPE_UINT64] = "u64",
  17784. [GGUF_TYPE_INT64] = "i64",
  17785. [GGUF_TYPE_FLOAT64] = "f64",
  17786. };
  17787. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17788. union gguf_value {
  17789. uint8_t uint8;
  17790. int8_t int8;
  17791. uint16_t uint16;
  17792. int16_t int16;
  17793. uint32_t uint32;
  17794. int32_t int32;
  17795. float float32;
  17796. uint64_t uint64;
  17797. int64_t int64;
  17798. double float64;
  17799. bool bool_;
  17800. struct gguf_str str;
  17801. struct {
  17802. enum gguf_type type;
  17803. uint64_t n; // GGUFv2
  17804. void * data;
  17805. } arr;
  17806. };
  17807. struct gguf_kv {
  17808. struct gguf_str key;
  17809. enum gguf_type type;
  17810. union gguf_value value;
  17811. };
  17812. struct gguf_header {
  17813. char magic[4];
  17814. uint32_t version;
  17815. uint64_t n_tensors; // GGUFv2
  17816. uint64_t n_kv; // GGUFv2
  17817. };
  17818. struct gguf_tensor_info {
  17819. struct gguf_str name;
  17820. uint32_t n_dims;
  17821. uint64_t ne[GGML_MAX_DIMS];
  17822. enum ggml_type type;
  17823. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17824. // for writing API
  17825. const void * data;
  17826. size_t size;
  17827. };
  17828. struct gguf_context {
  17829. struct gguf_header header;
  17830. struct gguf_kv * kv;
  17831. struct gguf_tensor_info * infos;
  17832. size_t alignment;
  17833. size_t offset; // offset of `data` from beginning of file
  17834. size_t size; // size of `data` in bytes
  17835. //uint8_t * padding;
  17836. void * data;
  17837. };
  17838. static size_t gguf_type_size(enum gguf_type type) {
  17839. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17840. return GGUF_TYPE_SIZE[type];
  17841. }
  17842. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17843. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17844. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17845. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17846. GGML_ASSERT(info->ne[i] > 0);
  17847. }
  17848. // prevent overflow for total number of elements
  17849. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17850. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17851. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17852. }
  17853. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17854. const size_t n = fread(dst, 1, size, file);
  17855. *offset += n;
  17856. return n == size;
  17857. }
  17858. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17859. p->n = 0;
  17860. p->data = NULL;
  17861. bool ok = true;
  17862. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17863. // early exit if string length is invalid, prevents from integer overflow
  17864. if (p->n == SIZE_MAX) {
  17865. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17866. return false;
  17867. }
  17868. p->data = GGML_CALLOC(p->n + 1, 1);
  17869. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17870. return ok;
  17871. }
  17872. static void gguf_free_kv(struct gguf_kv * kv) {
  17873. if (kv->key.data) {
  17874. GGML_FREE(kv->key.data);
  17875. }
  17876. if (kv->type == GGUF_TYPE_STRING) {
  17877. if (kv->value.str.data) {
  17878. GGML_FREE(kv->value.str.data);
  17879. }
  17880. }
  17881. if (kv->type == GGUF_TYPE_ARRAY) {
  17882. if (kv->value.arr.data) {
  17883. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17884. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17885. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17886. if (str->data) {
  17887. GGML_FREE(str->data);
  17888. }
  17889. }
  17890. }
  17891. GGML_FREE(kv->value.arr.data);
  17892. }
  17893. }
  17894. }
  17895. struct gguf_context * gguf_init_empty(void) {
  17896. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17897. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17898. ctx->header.version = GGUF_VERSION;
  17899. ctx->header.n_tensors = 0;
  17900. ctx->header.n_kv = 0;
  17901. ctx->kv = NULL;
  17902. ctx->infos = NULL;
  17903. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17904. ctx->offset = 0;
  17905. ctx->size = 0;
  17906. ctx->data = NULL;
  17907. return ctx;
  17908. }
  17909. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17910. FILE * file = ggml_fopen(fname, "rb");
  17911. if (!file) {
  17912. return NULL;
  17913. }
  17914. // offset from start of file
  17915. size_t offset = 0;
  17916. char magic[4];
  17917. // check the magic before making allocations
  17918. {
  17919. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17920. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17921. if (magic[i] != GGUF_MAGIC[i]) {
  17922. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17923. fclose(file);
  17924. return NULL;
  17925. }
  17926. }
  17927. }
  17928. bool ok = true;
  17929. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17930. // read the header
  17931. {
  17932. strncpy(ctx->header.magic, magic, 4);
  17933. ctx->kv = NULL;
  17934. ctx->infos = NULL;
  17935. ctx->data = NULL;
  17936. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17937. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17938. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17939. if (ctx->header.version == 1) {
  17940. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17941. fclose(file);
  17942. gguf_free(ctx);
  17943. return NULL;
  17944. }
  17945. // sanity-checks to prevent from integer/buffer overflows
  17946. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17947. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17948. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17949. if (!ok) {
  17950. fprintf(stderr, "%s: failed to read header\n", __func__);
  17951. fclose(file);
  17952. gguf_free(ctx);
  17953. return NULL;
  17954. }
  17955. }
  17956. // read the kv pairs
  17957. {
  17958. const uint64_t n_kv = ctx->header.n_kv;
  17959. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17960. ctx->header.n_kv = 0;
  17961. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17962. for (uint64_t i = 0; i < n_kv; ++i) {
  17963. struct gguf_kv * kv = &ctx->kv[i];
  17964. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17965. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17966. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17967. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17968. switch (kv->type) {
  17969. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17970. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17971. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17972. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17973. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17974. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17975. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17976. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17977. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17978. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17979. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17980. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17981. case GGUF_TYPE_ARRAY:
  17982. {
  17983. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17984. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17985. switch (kv->value.arr.type) {
  17986. case GGUF_TYPE_UINT8:
  17987. case GGUF_TYPE_INT8:
  17988. case GGUF_TYPE_UINT16:
  17989. case GGUF_TYPE_INT16:
  17990. case GGUF_TYPE_UINT32:
  17991. case GGUF_TYPE_INT32:
  17992. case GGUF_TYPE_FLOAT32:
  17993. case GGUF_TYPE_UINT64:
  17994. case GGUF_TYPE_INT64:
  17995. case GGUF_TYPE_FLOAT64:
  17996. case GGUF_TYPE_BOOL:
  17997. {
  17998. // prevent from integer overflow in the malloc below
  17999. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18000. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18001. fclose(file);
  18002. gguf_free(ctx);
  18003. return NULL;
  18004. }
  18005. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18006. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18007. } break;
  18008. case GGUF_TYPE_STRING:
  18009. {
  18010. // prevent from integer overflow in the malloc below
  18011. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18012. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18013. fclose(file);
  18014. gguf_free(ctx);
  18015. return NULL;
  18016. }
  18017. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18018. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18019. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18020. }
  18021. } break;
  18022. case GGUF_TYPE_ARRAY:
  18023. default: GGML_ASSERT(false && "invalid type"); break;
  18024. }
  18025. } break;
  18026. default: GGML_ASSERT(false && "invalid type");
  18027. }
  18028. if (!ok) {
  18029. break;
  18030. }
  18031. ctx->header.n_kv++;
  18032. }
  18033. if (!ok) {
  18034. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18035. fclose(file);
  18036. gguf_free(ctx);
  18037. return NULL;
  18038. }
  18039. }
  18040. // read the tensor infos
  18041. if (ctx->header.n_tensors > 0) {
  18042. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18043. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18044. struct gguf_tensor_info * info = &ctx->infos[i];
  18045. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18046. info->ne[j] = 1;
  18047. }
  18048. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18049. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18050. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18051. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18052. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18053. }
  18054. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18055. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18056. // TODO: return an error instead of crashing with GGML_ASSERT
  18057. gguf_tensor_info_sanitize(info);
  18058. // make sure there is no duplicated tensor names
  18059. for (uint64_t j = 0; j < i; ++j) {
  18060. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18061. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18062. ok = false;
  18063. }
  18064. }
  18065. if (!ok) {
  18066. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18067. fclose(file);
  18068. gguf_free(ctx);
  18069. return NULL;
  18070. }
  18071. }
  18072. }
  18073. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18074. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18075. if (alignment_idx != -1) {
  18076. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18077. }
  18078. // we require the data section to be aligned, so take into account any padding
  18079. {
  18080. const size_t offset_pad = offset % ctx->alignment;
  18081. if (offset_pad != 0) {
  18082. offset += ctx->alignment - offset_pad;
  18083. fseek(file, offset, SEEK_SET);
  18084. }
  18085. }
  18086. // store the current file offset - this is where the data section starts
  18087. ctx->offset = offset;
  18088. // compute the total size of the data section, taking into account the alignment
  18089. {
  18090. ctx->size = 0;
  18091. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18092. struct gguf_tensor_info * info = &ctx->infos[i];
  18093. const int64_t ne =
  18094. (int64_t) info->ne[0] *
  18095. (int64_t) info->ne[1] *
  18096. (int64_t) info->ne[2] *
  18097. (int64_t) info->ne[3];
  18098. if (ne % ggml_blck_size(info->type) != 0) {
  18099. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18100. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18101. fclose(file);
  18102. gguf_free(ctx);
  18103. return NULL;
  18104. }
  18105. const size_t size_cur = ggml_row_size(info->type, ne);
  18106. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18107. }
  18108. }
  18109. // load the tensor data only if requested
  18110. if (params.ctx != NULL) {
  18111. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18112. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18113. // the ggml_tensor structs to the appropriate locations in the binary blob
  18114. // compute the exact size needed for the new ggml_context
  18115. const size_t mem_size =
  18116. params.no_alloc ?
  18117. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18118. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18119. struct ggml_init_params pdata = {
  18120. .mem_size = mem_size,
  18121. .mem_buffer = NULL,
  18122. .no_alloc = params.no_alloc,
  18123. };
  18124. *params.ctx = ggml_init(pdata);
  18125. struct ggml_context * ctx_data = *params.ctx;
  18126. struct ggml_tensor * data = NULL;
  18127. if (!params.no_alloc) {
  18128. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18129. ok = ok && data != NULL;
  18130. // read the binary blob with the tensor data
  18131. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18132. if (!ok) {
  18133. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18134. fclose(file);
  18135. ggml_free(ctx_data);
  18136. gguf_free(ctx);
  18137. return NULL;
  18138. }
  18139. ctx->data = data->data;
  18140. }
  18141. ggml_set_no_alloc(ctx_data, true);
  18142. // create the tensors
  18143. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18144. const int64_t ne[GGML_MAX_DIMS] = {
  18145. ctx->infos[i].ne[0],
  18146. ctx->infos[i].ne[1],
  18147. ctx->infos[i].ne[2],
  18148. ctx->infos[i].ne[3],
  18149. };
  18150. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18151. ok = ok && cur != NULL;
  18152. if (!ok) {
  18153. break;
  18154. }
  18155. ggml_set_name(cur, ctx->infos[i].name.data);
  18156. // point the data member to the appropriate location in the binary blob using the tensor infos
  18157. if (!params.no_alloc) {
  18158. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18159. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18160. }
  18161. }
  18162. if (!ok) {
  18163. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18164. fclose(file);
  18165. ggml_free(ctx_data);
  18166. gguf_free(ctx);
  18167. return NULL;
  18168. }
  18169. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18170. }
  18171. fclose(file);
  18172. return ctx;
  18173. }
  18174. void gguf_free(struct gguf_context * ctx) {
  18175. if (ctx == NULL) {
  18176. return;
  18177. }
  18178. if (ctx->kv) {
  18179. // free string memory - not great..
  18180. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18181. gguf_free_kv(&ctx->kv[i]);
  18182. }
  18183. GGML_FREE(ctx->kv);
  18184. }
  18185. if (ctx->infos) {
  18186. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18187. struct gguf_tensor_info * info = &ctx->infos[i];
  18188. if (info->name.data) {
  18189. GGML_FREE(info->name.data);
  18190. }
  18191. }
  18192. GGML_FREE(ctx->infos);
  18193. }
  18194. GGML_FREE(ctx);
  18195. }
  18196. const char * gguf_type_name(enum gguf_type type) {
  18197. return GGUF_TYPE_NAME[type];
  18198. }
  18199. int gguf_get_version(const struct gguf_context * ctx) {
  18200. return ctx->header.version;
  18201. }
  18202. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18203. return ctx->alignment;
  18204. }
  18205. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18206. return ctx->offset;
  18207. }
  18208. void * gguf_get_data(const struct gguf_context * ctx) {
  18209. return ctx->data;
  18210. }
  18211. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18212. return ctx->header.n_kv;
  18213. }
  18214. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18215. // return -1 if key not found
  18216. int keyfound = -1;
  18217. const int n_kv = gguf_get_n_kv(ctx);
  18218. for (int i = 0; i < n_kv; ++i) {
  18219. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18220. keyfound = i;
  18221. break;
  18222. }
  18223. }
  18224. return keyfound;
  18225. }
  18226. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18227. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18228. return ctx->kv[key_id].key.data;
  18229. }
  18230. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18231. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18232. return ctx->kv[key_id].type;
  18233. }
  18234. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18235. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18236. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18237. return ctx->kv[key_id].value.arr.type;
  18238. }
  18239. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18240. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18241. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18242. return ctx->kv[key_id].value.arr.data;
  18243. }
  18244. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18245. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18246. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18247. struct gguf_kv * kv = &ctx->kv[key_id];
  18248. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18249. return str->data;
  18250. }
  18251. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18252. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18253. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18254. return ctx->kv[key_id].value.arr.n;
  18255. }
  18256. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18257. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18258. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18259. return ctx->kv[key_id].value.uint8;
  18260. }
  18261. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18262. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18263. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18264. return ctx->kv[key_id].value.int8;
  18265. }
  18266. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18267. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18268. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18269. return ctx->kv[key_id].value.uint16;
  18270. }
  18271. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18272. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18273. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18274. return ctx->kv[key_id].value.int16;
  18275. }
  18276. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18277. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18278. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18279. return ctx->kv[key_id].value.uint32;
  18280. }
  18281. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18282. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18283. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18284. return ctx->kv[key_id].value.int32;
  18285. }
  18286. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18287. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18288. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18289. return ctx->kv[key_id].value.float32;
  18290. }
  18291. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18292. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18293. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18294. return ctx->kv[key_id].value.uint64;
  18295. }
  18296. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18297. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18298. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18299. return ctx->kv[key_id].value.int64;
  18300. }
  18301. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18302. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18303. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18304. return ctx->kv[key_id].value.float64;
  18305. }
  18306. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18307. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18308. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18309. return ctx->kv[key_id].value.bool_;
  18310. }
  18311. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18312. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18313. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18314. return ctx->kv[key_id].value.str.data;
  18315. }
  18316. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18317. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18318. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18319. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18320. return &ctx->kv[key_id].value;
  18321. }
  18322. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18323. return ctx->header.n_tensors;
  18324. }
  18325. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18326. // return -1 if tensor not found
  18327. int tensorfound = -1;
  18328. const int n_tensors = gguf_get_n_tensors(ctx);
  18329. for (int i = 0; i < n_tensors; ++i) {
  18330. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18331. tensorfound = i;
  18332. break;
  18333. }
  18334. }
  18335. return tensorfound;
  18336. }
  18337. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18338. return ctx->infos[i].offset;
  18339. }
  18340. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18341. return ctx->infos[i].name.data;
  18342. }
  18343. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18344. return ctx->infos[i].type;
  18345. }
  18346. // returns the index
  18347. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18348. const int idx = gguf_find_key(ctx, key);
  18349. if (idx >= 0) {
  18350. return idx;
  18351. }
  18352. const int n_kv = gguf_get_n_kv(ctx);
  18353. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18354. ctx->kv[n_kv].key.n = strlen(key);
  18355. ctx->kv[n_kv].key.data = strdup(key);
  18356. ctx->header.n_kv++;
  18357. return n_kv;
  18358. }
  18359. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18360. const int idx = gguf_find_key(ctx, key);
  18361. if (idx >= 0) {
  18362. const int n_kv = gguf_get_n_kv(ctx);
  18363. gguf_free_kv(&ctx->kv[idx]);
  18364. for (int i = idx; i < n_kv-1; ++i) {
  18365. ctx->kv[i] = ctx->kv[i+1];
  18366. }
  18367. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18368. ctx->header.n_kv--;
  18369. }
  18370. }
  18371. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18372. const int idx = gguf_get_or_add_key(ctx, key);
  18373. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18374. ctx->kv[idx].value.uint8 = val;
  18375. }
  18376. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18377. const int idx = gguf_get_or_add_key(ctx, key);
  18378. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18379. ctx->kv[idx].value.int8 = val;
  18380. }
  18381. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18382. const int idx = gguf_get_or_add_key(ctx, key);
  18383. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18384. ctx->kv[idx].value.uint16 = val;
  18385. }
  18386. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18387. const int idx = gguf_get_or_add_key(ctx, key);
  18388. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18389. ctx->kv[idx].value.int16 = val;
  18390. }
  18391. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18392. const int idx = gguf_get_or_add_key(ctx, key);
  18393. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18394. ctx->kv[idx].value.uint32 = val;
  18395. }
  18396. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18397. const int idx = gguf_get_or_add_key(ctx, key);
  18398. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18399. ctx->kv[idx].value.int32 = val;
  18400. }
  18401. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18402. const int idx = gguf_get_or_add_key(ctx, key);
  18403. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18404. ctx->kv[idx].value.float32 = val;
  18405. }
  18406. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18407. const int idx = gguf_get_or_add_key(ctx, key);
  18408. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18409. ctx->kv[idx].value.uint64 = val;
  18410. }
  18411. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18412. const int idx = gguf_get_or_add_key(ctx, key);
  18413. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18414. ctx->kv[idx].value.int64 = val;
  18415. }
  18416. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18417. const int idx = gguf_get_or_add_key(ctx, key);
  18418. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18419. ctx->kv[idx].value.float64 = val;
  18420. }
  18421. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18422. const int idx = gguf_get_or_add_key(ctx, key);
  18423. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18424. ctx->kv[idx].value.bool_ = val;
  18425. }
  18426. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18427. const int idx = gguf_get_or_add_key(ctx, key);
  18428. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18429. ctx->kv[idx].value.str.n = strlen(val);
  18430. ctx->kv[idx].value.str.data = strdup(val);
  18431. }
  18432. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18433. const int idx = gguf_get_or_add_key(ctx, key);
  18434. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18435. ctx->kv[idx].value.arr.type = type;
  18436. ctx->kv[idx].value.arr.n = n;
  18437. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18438. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18439. }
  18440. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18441. const int idx = gguf_get_or_add_key(ctx, key);
  18442. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18443. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18444. ctx->kv[idx].value.arr.n = n;
  18445. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18446. for (int i = 0; i < n; i++) {
  18447. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18448. str->n = strlen(data[i]);
  18449. str->data = strdup(data[i]);
  18450. }
  18451. }
  18452. // set or add KV pairs from another context
  18453. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18454. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18455. switch (src->kv[i].type) {
  18456. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18457. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18458. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18459. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18460. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18461. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18462. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18463. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18464. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18465. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18466. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18467. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18468. case GGUF_TYPE_ARRAY:
  18469. {
  18470. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18471. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18472. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18473. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18474. }
  18475. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18476. GGML_FREE((void *)data);
  18477. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18478. GGML_ASSERT(false && "nested arrays not supported");
  18479. } else {
  18480. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18481. }
  18482. } break;
  18483. default: GGML_ASSERT(false && "invalid type"); break;
  18484. }
  18485. }
  18486. }
  18487. void gguf_add_tensor(
  18488. struct gguf_context * ctx,
  18489. const struct ggml_tensor * tensor) {
  18490. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18491. GGML_ASSERT(false && "duplicated tensor name");
  18492. }
  18493. const int idx = ctx->header.n_tensors;
  18494. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18495. ctx->infos[idx].name.n = strlen(tensor->name);
  18496. ctx->infos[idx].name.data = strdup(tensor->name);
  18497. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18498. ctx->infos[idx].ne[i] = 1;
  18499. }
  18500. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18501. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18502. ctx->infos[idx].ne[i] = tensor->ne[i];
  18503. }
  18504. ctx->infos[idx].type = tensor->type;
  18505. ctx->infos[idx].offset = 0;
  18506. ctx->infos[idx].data = tensor->data;
  18507. ctx->infos[idx].size = ggml_nbytes(tensor);
  18508. if (ctx->header.n_tensors > 0) {
  18509. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18510. }
  18511. ctx->header.n_tensors++;
  18512. }
  18513. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18514. const int idx = gguf_find_tensor(ctx, name);
  18515. if (idx < 0) {
  18516. GGML_ASSERT(false && "tensor not found");
  18517. }
  18518. ctx->infos[idx].type = type;
  18519. }
  18520. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18521. const int idx = gguf_find_tensor(ctx, name);
  18522. if (idx < 0) {
  18523. GGML_ASSERT(false && "tensor not found");
  18524. }
  18525. ctx->infos[idx].data = data;
  18526. ctx->infos[idx].size = size;
  18527. // update offsets
  18528. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18529. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18530. }
  18531. }
  18532. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18533. // fwrite(&val->n, sizeof(val->n), 1, file);
  18534. // fwrite(val->data, sizeof(char), val->n, file);
  18535. //}
  18536. //
  18537. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18538. // fwrite(val, sizeof(char), size, file);
  18539. //}
  18540. struct gguf_buf {
  18541. void * data;
  18542. size_t size;
  18543. size_t offset;
  18544. };
  18545. static struct gguf_buf gguf_buf_init(size_t size) {
  18546. struct gguf_buf buf = {
  18547. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18548. /*buf.size =*/ size,
  18549. /*buf.offset =*/ 0,
  18550. };
  18551. return buf;
  18552. }
  18553. static void gguf_buf_free(struct gguf_buf buf) {
  18554. if (buf.data) {
  18555. GGML_FREE(buf.data);
  18556. }
  18557. }
  18558. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18559. if (buf->offset + size > buf->size) {
  18560. buf->size = 1.5*(buf->offset + size);
  18561. if (buf->data) {
  18562. buf->data = realloc(buf->data, buf->size);
  18563. }
  18564. }
  18565. }
  18566. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18567. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18568. if (buf->data) {
  18569. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18570. }
  18571. buf->offset += sizeof(val->n);
  18572. if (buf->data) {
  18573. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18574. }
  18575. buf->offset += val->n;
  18576. }
  18577. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18578. gguf_buf_grow(buf, el_size);
  18579. if (buf->data) {
  18580. memcpy((char *) buf->data + buf->offset, val, el_size);
  18581. }
  18582. buf->offset += el_size;
  18583. }
  18584. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18585. // write header
  18586. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18587. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18588. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18589. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18590. // write key-value pairs
  18591. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18592. struct gguf_kv * kv = &ctx->kv[i];
  18593. gguf_bwrite_str(buf, &kv->key);
  18594. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18595. switch (kv->type) {
  18596. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18597. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18598. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18599. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18600. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18601. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18602. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18603. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18604. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18605. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18606. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18607. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18608. case GGUF_TYPE_ARRAY:
  18609. {
  18610. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18611. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18612. switch (kv->value.arr.type) {
  18613. case GGUF_TYPE_UINT8:
  18614. case GGUF_TYPE_INT8:
  18615. case GGUF_TYPE_UINT16:
  18616. case GGUF_TYPE_INT16:
  18617. case GGUF_TYPE_UINT32:
  18618. case GGUF_TYPE_INT32:
  18619. case GGUF_TYPE_FLOAT32:
  18620. case GGUF_TYPE_UINT64:
  18621. case GGUF_TYPE_INT64:
  18622. case GGUF_TYPE_FLOAT64:
  18623. case GGUF_TYPE_BOOL:
  18624. {
  18625. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18626. } break;
  18627. case GGUF_TYPE_STRING:
  18628. {
  18629. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18630. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18631. }
  18632. } break;
  18633. case GGUF_TYPE_ARRAY:
  18634. default: GGML_ASSERT(false && "invalid type"); break;
  18635. }
  18636. } break;
  18637. default: GGML_ASSERT(false && "invalid type");
  18638. }
  18639. }
  18640. // write tensor infos
  18641. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18642. struct gguf_tensor_info * info = &ctx->infos[i];
  18643. gguf_bwrite_str(buf, &info->name);
  18644. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18645. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18646. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18647. }
  18648. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18649. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18650. }
  18651. // we require the data section to be aligned, so take into account any padding
  18652. {
  18653. const size_t offset = buf->offset;
  18654. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18655. if (offset_pad != offset) {
  18656. uint8_t pad = 0;
  18657. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18658. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18659. }
  18660. }
  18661. }
  18662. if (only_meta) {
  18663. return;
  18664. }
  18665. size_t offset = 0;
  18666. // write tensor data
  18667. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18668. struct gguf_tensor_info * info = &ctx->infos[i];
  18669. const size_t size = info->size;
  18670. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18671. gguf_bwrite_el(buf, info->data, size);
  18672. if (size_pad != size) {
  18673. uint8_t pad = 0;
  18674. for (size_t j = 0; j < size_pad - size; ++j) {
  18675. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18676. }
  18677. }
  18678. GGML_ASSERT(offset == info->offset);
  18679. offset += size_pad;
  18680. }
  18681. }
  18682. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18683. FILE * file = ggml_fopen(fname, "wb");
  18684. if (!file) {
  18685. GGML_ASSERT(false && "failed to open file for writing");
  18686. }
  18687. struct gguf_buf buf = gguf_buf_init(16*1024);
  18688. gguf_write_to_buf(ctx, &buf, only_meta);
  18689. fwrite(buf.data, 1, buf.offset, file);
  18690. gguf_buf_free(buf);
  18691. fclose(file);
  18692. }
  18693. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18694. // no allocs - only compute size
  18695. struct gguf_buf buf = gguf_buf_init(0);
  18696. gguf_write_to_buf(ctx, &buf, true);
  18697. return buf.offset;
  18698. }
  18699. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18700. struct gguf_buf buf = gguf_buf_init(16*1024);
  18701. gguf_write_to_buf(ctx, &buf, true);
  18702. memcpy(data, buf.data, buf.offset);
  18703. gguf_buf_free(buf);
  18704. }
  18705. ////////////////////////////////////////////////////////////////////////////////
  18706. int ggml_cpu_has_avx(void) {
  18707. #if defined(__AVX__)
  18708. return 1;
  18709. #else
  18710. return 0;
  18711. #endif
  18712. }
  18713. int ggml_cpu_has_avx_vnni(void) {
  18714. #if defined(__AVXVNNI__)
  18715. return 1;
  18716. #else
  18717. return 0;
  18718. #endif
  18719. }
  18720. int ggml_cpu_has_avx2(void) {
  18721. #if defined(__AVX2__)
  18722. return 1;
  18723. #else
  18724. return 0;
  18725. #endif
  18726. }
  18727. int ggml_cpu_has_avx512(void) {
  18728. #if defined(__AVX512F__)
  18729. return 1;
  18730. #else
  18731. return 0;
  18732. #endif
  18733. }
  18734. int ggml_cpu_has_avx512_vbmi(void) {
  18735. #if defined(__AVX512VBMI__)
  18736. return 1;
  18737. #else
  18738. return 0;
  18739. #endif
  18740. }
  18741. int ggml_cpu_has_avx512_vnni(void) {
  18742. #if defined(__AVX512VNNI__)
  18743. return 1;
  18744. #else
  18745. return 0;
  18746. #endif
  18747. }
  18748. int ggml_cpu_has_avx512_bf16(void) {
  18749. #if defined(__AVX512BF16__)
  18750. return 1;
  18751. #else
  18752. return 0;
  18753. #endif
  18754. }
  18755. int ggml_cpu_has_fma(void) {
  18756. #if defined(__FMA__)
  18757. return 1;
  18758. #else
  18759. return 0;
  18760. #endif
  18761. }
  18762. int ggml_cpu_has_neon(void) {
  18763. #if defined(__ARM_NEON)
  18764. return 1;
  18765. #else
  18766. return 0;
  18767. #endif
  18768. }
  18769. int ggml_cpu_has_sve(void) {
  18770. #if defined(__ARM_FEATURE_SVE)
  18771. // TODO: Currently, SVE 256 bit is only supported.
  18772. GGML_ASSERT(svcntb() == QK8_0);
  18773. return 1;
  18774. #else
  18775. return 0;
  18776. #endif
  18777. }
  18778. int ggml_cpu_has_arm_fma(void) {
  18779. #if defined(__ARM_FEATURE_FMA)
  18780. return 1;
  18781. #else
  18782. return 0;
  18783. #endif
  18784. }
  18785. int ggml_cpu_has_metal(void) {
  18786. #if defined(GGML_USE_METAL)
  18787. return 1;
  18788. #else
  18789. return 0;
  18790. #endif
  18791. }
  18792. int ggml_cpu_has_f16c(void) {
  18793. #if defined(__F16C__)
  18794. return 1;
  18795. #else
  18796. return 0;
  18797. #endif
  18798. }
  18799. int ggml_cpu_has_fp16_va(void) {
  18800. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18801. return 1;
  18802. #else
  18803. return 0;
  18804. #endif
  18805. }
  18806. int ggml_cpu_has_wasm_simd(void) {
  18807. #if defined(__wasm_simd128__)
  18808. return 1;
  18809. #else
  18810. return 0;
  18811. #endif
  18812. }
  18813. int ggml_cpu_has_blas(void) {
  18814. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18815. return 1;
  18816. #else
  18817. return 0;
  18818. #endif
  18819. }
  18820. int ggml_cpu_has_cuda(void) {
  18821. #if defined(GGML_USE_CUDA)
  18822. return 1;
  18823. #else
  18824. return 0;
  18825. #endif
  18826. }
  18827. int ggml_cpu_has_clblast(void) {
  18828. #if defined(GGML_USE_CLBLAST)
  18829. return 1;
  18830. #else
  18831. return 0;
  18832. #endif
  18833. }
  18834. int ggml_cpu_has_vulkan(void) {
  18835. #if defined(GGML_USE_VULKAN)
  18836. return 1;
  18837. #else
  18838. return 0;
  18839. #endif
  18840. }
  18841. int ggml_cpu_has_kompute(void) {
  18842. #if defined(GGML_USE_KOMPUTE)
  18843. return 1;
  18844. #else
  18845. return 0;
  18846. #endif
  18847. }
  18848. int ggml_cpu_has_sycl(void) {
  18849. #if defined(GGML_USE_SYCL)
  18850. return 1;
  18851. #else
  18852. return 0;
  18853. #endif
  18854. }
  18855. int ggml_cpu_has_rpc(void) {
  18856. #if defined(GGML_USE_RPC)
  18857. return 1;
  18858. #else
  18859. return 0;
  18860. #endif
  18861. }
  18862. int ggml_cpu_has_gpublas(void) {
  18863. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18864. ggml_cpu_has_sycl();
  18865. }
  18866. int ggml_cpu_has_sse3(void) {
  18867. #if defined(__SSE3__)
  18868. return 1;
  18869. #else
  18870. return 0;
  18871. #endif
  18872. }
  18873. int ggml_cpu_has_ssse3(void) {
  18874. #if defined(__SSSE3__)
  18875. return 1;
  18876. #else
  18877. return 0;
  18878. #endif
  18879. }
  18880. int ggml_cpu_has_vsx(void) {
  18881. #if defined(__POWER9_VECTOR__)
  18882. return 1;
  18883. #else
  18884. return 0;
  18885. #endif
  18886. }
  18887. int ggml_cpu_has_matmul_int8(void) {
  18888. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18889. return 1;
  18890. #else
  18891. return 0;
  18892. #endif
  18893. }
  18894. ////////////////////////////////////////////////////////////////////////////////