llama-model.cpp 542 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "ggml-cpp.h"
  9. #include <algorithm>
  10. #include <cassert>
  11. #include <cmath>
  12. #include <cfloat>
  13. #include <cstring>
  14. #include <cmath>
  15. #include <functional>
  16. #include <map>
  17. #include <regex>
  18. #include <sstream>
  19. #include <stdexcept>
  20. const char * llm_type_name(llm_type type) {
  21. switch (type) {
  22. case LLM_TYPE_14M: return "14M";
  23. case LLM_TYPE_17M: return "17M";
  24. case LLM_TYPE_22M: return "22M";
  25. case LLM_TYPE_33M: return "33M";
  26. case LLM_TYPE_60M: return "60M";
  27. case LLM_TYPE_70M: return "70M";
  28. case LLM_TYPE_80M: return "80M";
  29. case LLM_TYPE_109M: return "109M";
  30. case LLM_TYPE_137M: return "137M";
  31. case LLM_TYPE_160M: return "160M";
  32. case LLM_TYPE_190M: return "190M";
  33. case LLM_TYPE_220M: return "220M";
  34. case LLM_TYPE_250M: return "250M";
  35. case LLM_TYPE_270M: return "270M";
  36. case LLM_TYPE_335M: return "335M";
  37. case LLM_TYPE_410M: return "410M";
  38. case LLM_TYPE_450M: return "450M";
  39. case LLM_TYPE_770M: return "770M";
  40. case LLM_TYPE_780M: return "780M";
  41. case LLM_TYPE_0_5B: return "0.5B";
  42. case LLM_TYPE_1B: return "1B";
  43. case LLM_TYPE_1_3B: return "1.3B";
  44. case LLM_TYPE_1_4B: return "1.4B";
  45. case LLM_TYPE_1_5B: return "1.5B";
  46. case LLM_TYPE_1_6B: return "1.6B";
  47. case LLM_TYPE_1_8B: return "1.8B";
  48. case LLM_TYPE_2B: return "2B";
  49. case LLM_TYPE_2_8B: return "2.8B";
  50. case LLM_TYPE_2_9B: return "2.9B";
  51. case LLM_TYPE_3B: return "3B";
  52. case LLM_TYPE_4B: return "4B";
  53. case LLM_TYPE_6B: return "6B";
  54. case LLM_TYPE_6_9B: return "6.9B";
  55. case LLM_TYPE_7B: return "7B";
  56. case LLM_TYPE_8B: return "8B";
  57. case LLM_TYPE_9B: return "9B";
  58. case LLM_TYPE_11B: return "11B";
  59. case LLM_TYPE_12B: return "12B";
  60. case LLM_TYPE_13B: return "13B";
  61. case LLM_TYPE_14B: return "14B";
  62. case LLM_TYPE_15B: return "15B";
  63. case LLM_TYPE_16B: return "16B";
  64. case LLM_TYPE_20B: return "20B";
  65. case LLM_TYPE_30B: return "30B";
  66. case LLM_TYPE_32B: return "32B";
  67. case LLM_TYPE_34B: return "34B";
  68. case LLM_TYPE_35B: return "35B";
  69. case LLM_TYPE_40B: return "40B";
  70. case LLM_TYPE_65B: return "65B";
  71. case LLM_TYPE_70B: return "70B";
  72. case LLM_TYPE_236B: return "236B";
  73. case LLM_TYPE_314B: return "314B";
  74. case LLM_TYPE_671B: return "671B";
  75. case LLM_TYPE_SMALL: return "0.1B";
  76. case LLM_TYPE_MEDIUM: return "0.4B";
  77. case LLM_TYPE_LARGE: return "0.8B";
  78. case LLM_TYPE_XL: return "1.5B";
  79. case LLM_TYPE_A1_7B: return "A1.7B";
  80. case LLM_TYPE_A2_7B: return "A2.7B";
  81. case LLM_TYPE_8x7B: return "8x7B";
  82. case LLM_TYPE_8x22B: return "8x22B";
  83. case LLM_TYPE_16x12B: return "16x12B";
  84. case LLM_TYPE_16x3_8B: return "16x3.8B";
  85. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  86. case LLM_TYPE_57B_A14B: return "57B.A14B";
  87. case LLM_TYPE_27B: return "27B";
  88. case LLM_TYPE_290B: return "290B";
  89. default: return "?B";
  90. }
  91. }
  92. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  93. switch (type) {
  94. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  95. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  96. default: return "unknown";
  97. }
  98. }
  99. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  100. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  101. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  102. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  103. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  104. };
  105. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  106. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  107. if (kv.second == name) {
  108. return (llama_rope_scaling_type) kv.first;
  109. }
  110. }
  111. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  112. }
  113. // checks if the weight tensor can be used with the specified buffer type and device
  114. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  115. GGML_ASSERT(w != nullptr);
  116. if (op == GGML_OP_NONE) {
  117. return true;
  118. }
  119. ggml_init_params params = {
  120. /*.mem_size =*/ ggml_tensor_overhead()*8,
  121. /*.mem_buffer =*/ NULL,
  122. /*.no_alloc =*/ true,
  123. };
  124. ggml_context_ptr ctx_ptr { ggml_init(params) };
  125. if (!ctx_ptr) {
  126. throw std::runtime_error(format("failed to create ggml context"));
  127. }
  128. ggml_context * ctx = ctx_ptr.get();
  129. ggml_tensor * op_tensor = nullptr;
  130. switch (op) {
  131. case GGML_OP_GET_ROWS:
  132. {
  133. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  134. op_tensor = ggml_get_rows(ctx, w, b);
  135. } break;
  136. case GGML_OP_MUL_MAT:
  137. {
  138. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  139. op_tensor = ggml_mul_mat(ctx, w, b);
  140. } break;
  141. case GGML_OP_MUL_MAT_ID:
  142. {
  143. int n_expert_used = hparams.n_expert_used;
  144. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  145. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  146. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  147. } break;
  148. case GGML_OP_ADD:
  149. {
  150. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  151. op_tensor = ggml_add(ctx, a, w);
  152. } break;
  153. case GGML_OP_MUL:
  154. {
  155. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  156. op_tensor = ggml_mul(ctx, a, w);
  157. } break;
  158. case GGML_OP_DIV:
  159. {
  160. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  161. op_tensor = ggml_div(ctx, a, w);
  162. } break;
  163. case GGML_OP_ROPE:
  164. {
  165. int n_embd_head = hparams.n_embd_head_v;
  166. int n_head = hparams.n_head();
  167. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  168. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  169. op_tensor = ggml_rope_ext(
  170. ctx, a, b, w,
  171. 0, 0, 0, 0, 0,
  172. 0, 0, 0, 0
  173. );
  174. } break;
  175. case GGML_OP_SSM_CONV:
  176. {
  177. // FIXME
  178. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  179. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  180. } break;
  181. case GGML_OP_SSM_SCAN:
  182. {
  183. // FIXME
  184. const int64_t d_state = w->ne[0];
  185. const int64_t d_inner = w->ne[1];
  186. const int64_t n_seq_tokens = 512;
  187. const int64_t n_seqs = 1;
  188. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  189. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  190. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  191. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  192. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  193. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  194. } break;
  195. case GGML_OP_RWKV_WKV6:
  196. {
  197. // FIXME
  198. const int64_t S = 123;
  199. const int64_t H = 123;
  200. const int64_t n_tokens = 123;
  201. const int64_t n_seqs = 123;
  202. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  203. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  204. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  205. ggml_tensor * tf = w;
  206. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  207. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  208. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  209. } break;
  210. case GGML_OP_IM2COL:
  211. {
  212. const int n_embd = hparams.n_embd;
  213. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  214. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  215. } break;
  216. default:
  217. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  218. }
  219. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  220. GGML_ASSERT(w->buffer == nullptr);
  221. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  222. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  223. ggml_backend_buffer_free(w->buffer);
  224. w->buffer = nullptr;
  225. return op_supported;
  226. }
  227. // lists of buffer types used for each layer
  228. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  229. // find the first buffer type in the list that can use the tensor
  230. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  231. GGML_ASSERT(!buft_list.empty());
  232. for (const auto & cur : buft_list) {
  233. ggml_backend_dev_t cur_dev = cur.first;
  234. ggml_backend_buffer_type_t cur_buft = cur.second;
  235. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  236. return cur_buft;
  237. }
  238. }
  239. return nullptr;
  240. }
  241. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  242. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  243. buft_list_t buft_list;
  244. // add ACCEL buffer types
  245. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  246. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  247. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  248. auto * buft = ggml_backend_dev_buffer_type(dev);
  249. // skip
  250. if (buft != ggml_backend_cpu_buffer_type()) {
  251. buft_list.emplace_back(dev, buft);
  252. }
  253. }
  254. }
  255. // add a host buffer type
  256. // storing the tensors in a host buffer is useful when the processing of large batches
  257. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  258. // generally, this will be done using the first device in the list
  259. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  260. // function of the device to determine if it would benefit from being stored in a host buffer
  261. for (auto * dev : devices) {
  262. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  263. if (buft) {
  264. buft_list.emplace_back(dev, buft);
  265. break;
  266. }
  267. }
  268. // add extra buffer types, only if no GPU device is present
  269. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  270. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  271. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  272. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  273. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  274. if (ggml_backend_dev_get_extra_bufts_fn) {
  275. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  276. while (extra_bufts && *extra_bufts) {
  277. buft_list.emplace_back(cpu_dev, *extra_bufts);
  278. ++extra_bufts;
  279. }
  280. }
  281. // add the CPU buffer type
  282. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  283. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  284. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  285. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  286. }
  287. }
  288. return buft_list;
  289. }
  290. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  291. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  292. buft_list_t buft_list;
  293. // add the device split buffer type if requested and available
  294. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  295. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  296. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  297. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  298. if (ggml_backend_split_buffer_type_fn) {
  299. size_t dev_index = [&]() {
  300. auto * reg = ggml_backend_dev_backend_reg(dev);
  301. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  302. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  303. return i;
  304. }
  305. }
  306. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  307. }();
  308. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  309. if (buft != nullptr) {
  310. buft_list.emplace_back(dev, buft);
  311. }
  312. }
  313. }
  314. // add the device default buffer type
  315. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  316. return buft_list;
  317. }
  318. struct llama_model::impl {
  319. impl() {}
  320. ~impl() {}
  321. uint64_t n_elements = 0;
  322. size_t n_bytes = 0;
  323. std::string desc_str;
  324. // model memory mapped files
  325. llama_mmaps mappings;
  326. // objects representing data potentially being locked in memory
  327. llama_mlocks mlock_bufs;
  328. llama_mlocks mlock_mmaps;
  329. // contexts where the model tensors metadata is stored
  330. std::vector<ggml_context_ptr> ctxs;
  331. // the model memory buffers for the tensor data
  332. std::vector<ggml_backend_buffer_ptr> bufs;
  333. buft_list_t cpu_buft_list;
  334. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  335. struct layer_dev {
  336. ggml_backend_dev_t dev;
  337. buft_list_t * buft_list;
  338. };
  339. layer_dev dev_input = {};
  340. layer_dev dev_output = {};
  341. std::vector<layer_dev> dev_layer;
  342. bool has_tensor_overrides;
  343. };
  344. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  345. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  346. }
  347. llama_model::~llama_model() {}
  348. void llama_model::load_stats(llama_model_loader & ml) {
  349. pimpl->n_elements = ml.n_elements;
  350. pimpl->n_bytes = ml.n_bytes;
  351. }
  352. void llama_model::load_arch(llama_model_loader & ml) {
  353. arch = ml.get_arch();
  354. if (arch == LLM_ARCH_UNKNOWN) {
  355. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  356. }
  357. }
  358. void llama_model::load_hparams(llama_model_loader & ml) {
  359. const gguf_context * ctx = ml.meta.get();
  360. // get metadata as string
  361. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  362. gguf_type type = gguf_get_kv_type(ctx, i);
  363. if (type == GGUF_TYPE_ARRAY) {
  364. continue;
  365. }
  366. const char * name = gguf_get_key(ctx, i);
  367. const std::string value = gguf_kv_to_str(ctx, i);
  368. gguf_kv.emplace(name, value);
  369. }
  370. // get general kv
  371. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  372. // everything past this point is not vocab-related
  373. if (hparams.vocab_only) {
  374. return;
  375. }
  376. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  377. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  378. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  379. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  380. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  381. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  382. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  383. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  384. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  385. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  386. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  387. }
  388. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  389. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  390. if (hparams.n_expert > 0) {
  391. GGML_ASSERT(hparams.n_expert_used > 0);
  392. } else {
  393. GGML_ASSERT(hparams.n_expert_used == 0);
  394. }
  395. // zero-out the array hparams
  396. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  397. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  398. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  399. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  400. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  401. // n_head_kv is optional, default to n_head
  402. hparams.n_head_kv_arr = hparams.n_head_arr;
  403. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  404. bool rope_finetuned = false;
  405. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  406. hparams.rope_finetuned = rope_finetuned;
  407. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  408. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  409. // rope_freq_base (optional)
  410. hparams.rope_freq_base_train = 10000.0f;
  411. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  412. std::string rope_scaling("linear");
  413. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  414. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  415. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  416. // rope_freq_scale (inverse of the kv) is optional
  417. float ropescale = 0.0f;
  418. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  419. // try the old key name
  420. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  421. }
  422. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  423. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  424. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  425. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  426. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  427. // non-transformer models do not have attention heads
  428. if (hparams.n_head() > 0) {
  429. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  430. // gpt-j n_rot = rotary_dim
  431. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  432. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  433. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  434. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  435. // sanity check for n_rot (optional)
  436. hparams.n_rot = hparams.n_embd_head_k;
  437. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  438. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  439. if (hparams.n_rot != hparams.n_embd_head_k) {
  440. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  441. }
  442. }
  443. } else {
  444. hparams.n_rot = 0;
  445. hparams.n_embd_head_k = 0;
  446. hparams.n_embd_head_v = 0;
  447. }
  448. // for differentiating model types
  449. uint32_t n_vocab = 0;
  450. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  451. // arch-specific KVs
  452. switch (arch) {
  453. case LLM_ARCH_LLAMA:
  454. {
  455. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  456. if (hparams.n_expert == 8) {
  457. switch (hparams.n_layer) {
  458. case 32: type = LLM_TYPE_8x7B; break;
  459. case 56: type = LLM_TYPE_8x22B; break;
  460. default: type = LLM_TYPE_UNKNOWN;
  461. }
  462. } else {
  463. switch (hparams.n_layer) {
  464. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  465. case 22: type = LLM_TYPE_1B; break;
  466. case 26: type = LLM_TYPE_3B; break;
  467. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  468. // granite uses a vocab with len 49152
  469. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  470. case 36: type = LLM_TYPE_8B; break; // granite
  471. case 40: type = LLM_TYPE_13B; break;
  472. case 48: type = LLM_TYPE_34B; break;
  473. case 60: type = LLM_TYPE_30B; break;
  474. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  475. default: type = LLM_TYPE_UNKNOWN;
  476. }
  477. }
  478. } break;
  479. case LLM_ARCH_DECI:
  480. {
  481. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  482. switch (hparams.n_layer) {
  483. case 32: type = LLM_TYPE_7B; break;
  484. case 80: type = LLM_TYPE_70B; break;
  485. default: type = LLM_TYPE_UNKNOWN;
  486. }
  487. } break;
  488. case LLM_ARCH_MINICPM:
  489. {
  490. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  491. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  492. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  493. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  494. switch (hparams.n_layer) {
  495. case 52: type = LLM_TYPE_1B; break;
  496. case 40: type = LLM_TYPE_2B; break;
  497. default: type = LLM_TYPE_UNKNOWN;
  498. }
  499. } break;
  500. case LLM_ARCH_MINICPM3:
  501. {
  502. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  503. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  504. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  505. switch (hparams.n_layer) {
  506. case 62: type = LLM_TYPE_4B; break;
  507. default: type = LLM_TYPE_UNKNOWN;
  508. }
  509. } break;
  510. case LLM_ARCH_GROK:
  511. {
  512. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  513. switch (hparams.n_layer) {
  514. case 64: type = LLM_TYPE_314B; break;
  515. default: type = LLM_TYPE_UNKNOWN;
  516. }
  517. } break;
  518. case LLM_ARCH_FALCON:
  519. {
  520. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  521. switch (hparams.n_layer) {
  522. case 32: type = LLM_TYPE_7B; break;
  523. case 60: type = LLM_TYPE_40B; break;
  524. default: type = LLM_TYPE_UNKNOWN;
  525. }
  526. } break;
  527. case LLM_ARCH_BAICHUAN:
  528. {
  529. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  530. switch (hparams.n_layer) {
  531. case 32: type = LLM_TYPE_7B; break;
  532. case 40: type = LLM_TYPE_13B; break;
  533. default: type = LLM_TYPE_UNKNOWN;
  534. }
  535. if (type == LLM_TYPE_13B) {
  536. // TODO: become GGUF KV parameter
  537. hparams.f_max_alibi_bias = 8.0f;
  538. }
  539. } break;
  540. case LLM_ARCH_STARCODER:
  541. {
  542. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  543. switch (hparams.n_layer) {
  544. case 24: type = LLM_TYPE_1B; break;
  545. case 36: type = LLM_TYPE_3B; break;
  546. case 42: type = LLM_TYPE_7B; break;
  547. case 40: type = LLM_TYPE_15B; break;
  548. default: type = LLM_TYPE_UNKNOWN;
  549. }
  550. } break;
  551. case LLM_ARCH_REFACT:
  552. {
  553. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  554. switch (hparams.n_layer) {
  555. case 32: type = LLM_TYPE_1B; break;
  556. default: type = LLM_TYPE_UNKNOWN;
  557. }
  558. // TODO: become GGUF KV parameter
  559. hparams.f_max_alibi_bias = 8.0f;
  560. } break;
  561. case LLM_ARCH_BERT:
  562. {
  563. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  564. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  565. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  566. switch (hparams.n_layer) {
  567. case 3:
  568. type = LLM_TYPE_17M; break; // bge-micro
  569. case 6:
  570. type = LLM_TYPE_22M; break; // MiniLM-L6
  571. case 12:
  572. switch (hparams.n_embd) {
  573. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  574. case 768: type = LLM_TYPE_109M; break; // bge-base
  575. default: type = LLM_TYPE_UNKNOWN;
  576. } break;
  577. case 24:
  578. type = LLM_TYPE_335M; break; // bge-large
  579. default: type = LLM_TYPE_UNKNOWN;
  580. }
  581. } break;
  582. case LLM_ARCH_JINA_BERT_V2:
  583. {
  584. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  585. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  586. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  587. hparams.f_max_alibi_bias = 8.0f;
  588. switch (hparams.n_layer) {
  589. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  590. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  591. default: type = LLM_TYPE_UNKNOWN;
  592. }
  593. } break;
  594. case LLM_ARCH_NOMIC_BERT:
  595. {
  596. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  597. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  598. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  599. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  600. type = LLM_TYPE_137M;
  601. }
  602. } break;
  603. case LLM_ARCH_BLOOM:
  604. {
  605. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  606. switch (hparams.n_layer) {
  607. case 24: type = LLM_TYPE_1B; break;
  608. case 30:
  609. switch (hparams.n_embd) {
  610. case 2560: type = LLM_TYPE_3B; break;
  611. case 4096: type = LLM_TYPE_7B; break;
  612. default: type = LLM_TYPE_UNKNOWN;
  613. } break;
  614. default: type = LLM_TYPE_UNKNOWN;
  615. }
  616. // TODO: become GGUF KV parameter
  617. hparams.f_max_alibi_bias = 8.0f;
  618. } break;
  619. case LLM_ARCH_MPT:
  620. {
  621. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  622. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  623. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  624. switch (hparams.n_layer) {
  625. case 32: type = LLM_TYPE_7B; break;
  626. case 48: type = LLM_TYPE_30B; break;
  627. default: type = LLM_TYPE_UNKNOWN;
  628. }
  629. } break;
  630. case LLM_ARCH_STABLELM:
  631. {
  632. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  633. switch (hparams.n_layer) {
  634. case 24: type = LLM_TYPE_1B; break;
  635. case 32: type = LLM_TYPE_3B; break;
  636. case 40: type = LLM_TYPE_12B; break;
  637. default: type = LLM_TYPE_UNKNOWN;
  638. }
  639. } break;
  640. case LLM_ARCH_QWEN:
  641. {
  642. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  643. switch (hparams.n_layer) {
  644. case 32: type = LLM_TYPE_7B; break;
  645. case 40: type = LLM_TYPE_13B; break;
  646. default: type = LLM_TYPE_UNKNOWN;
  647. }
  648. } break;
  649. case LLM_ARCH_QWEN2VL:
  650. {
  651. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  652. }
  653. // fall through
  654. case LLM_ARCH_QWEN2:
  655. {
  656. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  657. switch (hparams.n_layer) {
  658. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  659. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  660. case 32: type = LLM_TYPE_7B; break;
  661. case 36: type = LLM_TYPE_3B; break;
  662. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  663. case 48: type = LLM_TYPE_14B; break;
  664. case 64: type = LLM_TYPE_32B; break;
  665. case 80: type = LLM_TYPE_70B; break;
  666. default: type = LLM_TYPE_UNKNOWN;
  667. }
  668. } break;
  669. case LLM_ARCH_QWEN2MOE:
  670. {
  671. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  672. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  673. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  674. switch (hparams.n_layer) {
  675. case 24: type = LLM_TYPE_A2_7B; break;
  676. case 28: type = LLM_TYPE_57B_A14B; break;
  677. default: type = LLM_TYPE_UNKNOWN;
  678. }
  679. } break;
  680. case LLM_ARCH_PHI2:
  681. {
  682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  683. switch (hparams.n_layer) {
  684. case 24: type = LLM_TYPE_1B; break;
  685. case 32: type = LLM_TYPE_3B; break;
  686. default: type = LLM_TYPE_UNKNOWN;
  687. }
  688. } break;
  689. case LLM_ARCH_PHI3:
  690. {
  691. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  692. switch (hparams.n_layer) {
  693. case 24: type = LLM_TYPE_1B; break;
  694. case 32: type = LLM_TYPE_3B; break;
  695. case 40: type = LLM_TYPE_14B; break;
  696. default: type = LLM_TYPE_UNKNOWN;
  697. }
  698. // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
  699. if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
  700. // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
  701. hparams.n_swa = 2047;
  702. } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
  703. // default value for Phi-3-mini-128k-instruct
  704. // note: this seems incorrect because the window is bigger than the train context?
  705. hparams.n_swa = 262144;
  706. } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
  707. // default value for Phi-3-medium-128k-instruct
  708. // note: this seems incorrect because the window is equal to the train context?
  709. hparams.n_swa = 131072;
  710. }
  711. bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  712. if (!found_swa && hparams.n_swa == 0) {
  713. throw std::runtime_error("invalid value for sliding_window");
  714. }
  715. } break;
  716. case LLM_ARCH_PHIMOE:
  717. {
  718. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  719. switch (hparams.n_layer) {
  720. case 32: type = LLM_TYPE_16x3_8B; break;
  721. default: type = LLM_TYPE_UNKNOWN;
  722. }
  723. } break;
  724. case LLM_ARCH_PLAMO:
  725. {
  726. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  727. switch (hparams.n_layer) {
  728. case 40: type = LLM_TYPE_13B; break;
  729. default: type = LLM_TYPE_UNKNOWN;
  730. }
  731. } break;
  732. case LLM_ARCH_GPT2:
  733. {
  734. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  735. switch (hparams.n_layer) {
  736. case 12: type = LLM_TYPE_SMALL; break;
  737. case 24: type = LLM_TYPE_MEDIUM; break;
  738. case 36: type = LLM_TYPE_LARGE; break;
  739. case 48: type = LLM_TYPE_XL; break;
  740. default: type = LLM_TYPE_UNKNOWN;
  741. }
  742. } break;
  743. case LLM_ARCH_CODESHELL:
  744. {
  745. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  746. switch (hparams.n_layer) {
  747. case 42: type = LLM_TYPE_7B; break;
  748. default: type = LLM_TYPE_UNKNOWN;
  749. }
  750. } break;
  751. case LLM_ARCH_ORION:
  752. {
  753. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  754. switch (hparams.n_layer) {
  755. case 40: type = LLM_TYPE_14B; break;
  756. default: type = LLM_TYPE_UNKNOWN;
  757. }
  758. } break;
  759. case LLM_ARCH_INTERNLM2:
  760. {
  761. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  762. switch (hparams.n_layer) {
  763. case 32: type = LLM_TYPE_7B; break;
  764. case 48: type = LLM_TYPE_20B; break;
  765. default: type = LLM_TYPE_UNKNOWN;
  766. }
  767. } break;
  768. case LLM_ARCH_GEMMA:
  769. {
  770. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  771. switch (hparams.n_layer) {
  772. case 18: type = LLM_TYPE_2B; break;
  773. case 28: type = LLM_TYPE_7B; break;
  774. default: type = LLM_TYPE_UNKNOWN;
  775. }
  776. } break;
  777. case LLM_ARCH_GEMMA2:
  778. {
  779. hparams.n_swa = 4096; // default value of gemma 2
  780. hparams.n_swa_pattern = 2;
  781. hparams.attn_soft_cap = true;
  782. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  783. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  784. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  785. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  786. switch (hparams.n_layer) {
  787. case 26: type = LLM_TYPE_2B; break;
  788. case 42: type = LLM_TYPE_9B; break;
  789. case 46: type = LLM_TYPE_27B; break;
  790. default: type = LLM_TYPE_UNKNOWN;
  791. }
  792. } break;
  793. case LLM_ARCH_GEMMA3:
  794. {
  795. hparams.n_swa_pattern = 6;
  796. hparams.rope_freq_base_train_swa = 10000.0f;
  797. hparams.rope_freq_scale_train_swa = 1.0f;
  798. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  799. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  800. switch (hparams.n_layer) {
  801. case 26: type = LLM_TYPE_1B; break;
  802. case 34: type = LLM_TYPE_4B; break;
  803. case 48: type = LLM_TYPE_12B; break;
  804. case 62: type = LLM_TYPE_27B; break;
  805. default: type = LLM_TYPE_UNKNOWN;
  806. }
  807. hparams.f_attention_scale = type == LLM_TYPE_27B
  808. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  809. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  810. } break;
  811. case LLM_ARCH_STARCODER2:
  812. {
  813. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  814. switch (hparams.n_layer) {
  815. case 30: type = LLM_TYPE_3B; break;
  816. case 32: type = LLM_TYPE_7B; break;
  817. case 40: type = LLM_TYPE_15B; break;
  818. case 52: type = LLM_TYPE_20B; break; // granite
  819. case 88: type = LLM_TYPE_34B; break; // granite
  820. default: type = LLM_TYPE_UNKNOWN;
  821. }
  822. } break;
  823. case LLM_ARCH_MAMBA:
  824. {
  825. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  826. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  827. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  828. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  829. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  830. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  831. switch (hparams.n_layer) {
  832. case 24:
  833. switch (hparams.n_embd) {
  834. case 768: type = LLM_TYPE_SMALL; break;
  835. default: type = LLM_TYPE_UNKNOWN;
  836. } break;
  837. case 48:
  838. switch (hparams.n_embd) {
  839. case 1024: type = LLM_TYPE_MEDIUM; break;
  840. case 1536: type = LLM_TYPE_LARGE; break;
  841. case 2048: type = LLM_TYPE_XL; break;
  842. default: type = LLM_TYPE_UNKNOWN;
  843. } break;
  844. case 64:
  845. switch (hparams.n_embd) {
  846. case 2560: type = LLM_TYPE_3B; break;
  847. default: type = LLM_TYPE_UNKNOWN;
  848. } break;
  849. default: type = LLM_TYPE_UNKNOWN;
  850. }
  851. } break;
  852. case LLM_ARCH_XVERSE:
  853. {
  854. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  855. switch (hparams.n_layer) {
  856. case 32: type = LLM_TYPE_7B; break;
  857. case 40: type = LLM_TYPE_13B; break;
  858. case 80: type = LLM_TYPE_65B; break;
  859. default: type = LLM_TYPE_UNKNOWN;
  860. }
  861. } break;
  862. case LLM_ARCH_COMMAND_R:
  863. {
  864. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  865. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  866. switch (hparams.n_layer) {
  867. case 40: type = LLM_TYPE_35B; break;
  868. default: type = LLM_TYPE_UNKNOWN;
  869. }
  870. } break;
  871. case LLM_ARCH_COHERE2:
  872. {
  873. hparams.n_swa_pattern = 4;
  874. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  875. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  876. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  877. switch (hparams.n_layer) {
  878. case 32: type = LLM_TYPE_8B; break;
  879. default: type = LLM_TYPE_UNKNOWN;
  880. }
  881. } break;
  882. case LLM_ARCH_DBRX:
  883. {
  884. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  885. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  886. switch (hparams.n_layer) {
  887. case 40: type = LLM_TYPE_16x12B; break;
  888. default: type = LLM_TYPE_UNKNOWN;
  889. }
  890. } break;
  891. case LLM_ARCH_OLMO:
  892. {
  893. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  894. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  895. switch (hparams.n_layer) {
  896. case 22: type = LLM_TYPE_1B; break;
  897. case 32: type = LLM_TYPE_7B; break;
  898. case 80: type = LLM_TYPE_70B; break;
  899. default: type = LLM_TYPE_UNKNOWN;
  900. }
  901. } break;
  902. case LLM_ARCH_OLMO2:
  903. {
  904. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  905. switch (hparams.n_layer) {
  906. case 16: type = LLM_TYPE_1B; break;
  907. case 32: type = LLM_TYPE_7B; break;
  908. case 40: type = LLM_TYPE_13B; break;
  909. case 64: type = LLM_TYPE_32B; break;
  910. default: type = LLM_TYPE_UNKNOWN;
  911. }
  912. } break;
  913. case LLM_ARCH_OLMOE:
  914. {
  915. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  916. switch (hparams.n_layer) {
  917. case 16: type = LLM_TYPE_A1_7B; break;
  918. default: type = LLM_TYPE_UNKNOWN;
  919. }
  920. } break;
  921. case LLM_ARCH_OPENELM:
  922. {
  923. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  924. switch (hparams.n_layer) {
  925. case 16: type = LLM_TYPE_270M; break;
  926. case 20: type = LLM_TYPE_450M; break;
  927. case 28: type = LLM_TYPE_1B; break;
  928. case 36: type = LLM_TYPE_3B; break;
  929. default: type = LLM_TYPE_UNKNOWN;
  930. }
  931. } break;
  932. case LLM_ARCH_GPTNEOX:
  933. {
  934. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  935. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  936. switch (hparams.n_layer) {
  937. case 6:
  938. switch (hparams.n_ff()) {
  939. case 512: type = LLM_TYPE_14M; break;
  940. case 2048: type = LLM_TYPE_70M; break;
  941. default: type = LLM_TYPE_UNKNOWN;
  942. } break;
  943. case 12:
  944. switch (hparams.n_ff()) {
  945. case 3072: type = LLM_TYPE_160M; break;
  946. default: type = LLM_TYPE_UNKNOWN;
  947. } break;
  948. case 16:
  949. switch (hparams.n_ff()) {
  950. case 8192: type = LLM_TYPE_1B; break;
  951. default: type = LLM_TYPE_UNKNOWN;
  952. } break;
  953. case 24:
  954. switch (hparams.n_ff()) {
  955. case 4096: type = LLM_TYPE_410M; break;
  956. case 8192: type = LLM_TYPE_1_4B; break;
  957. default: type = LLM_TYPE_UNKNOWN;
  958. } break;
  959. case 32:
  960. switch (hparams.n_ff()) {
  961. case 10240: type = LLM_TYPE_2_8B; break;
  962. case 16384: type = LLM_TYPE_6_9B; break;
  963. default: type = LLM_TYPE_UNKNOWN;
  964. } break;
  965. case 36:
  966. switch (hparams.n_ff()) {
  967. case 20480: type = LLM_TYPE_12B; break;
  968. default: type = LLM_TYPE_UNKNOWN;
  969. } break;
  970. case 44:
  971. switch (hparams.n_ff()) {
  972. case 24576: type = LLM_TYPE_20B; break;
  973. default: type = LLM_TYPE_UNKNOWN;
  974. } break;
  975. default: type = LLM_TYPE_UNKNOWN;
  976. }
  977. } break;
  978. case LLM_ARCH_ARCTIC:
  979. {
  980. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  981. if (hparams.n_expert == 128) {
  982. switch (hparams.n_layer) {
  983. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  984. default: type = LLM_TYPE_UNKNOWN;
  985. }
  986. } else {
  987. type = LLM_TYPE_UNKNOWN;
  988. }
  989. } break;
  990. case LLM_ARCH_DEEPSEEK:
  991. {
  992. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  993. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  994. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  995. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  996. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  997. switch (hparams.n_layer) {
  998. case 28: type = LLM_TYPE_20B; break;
  999. default: type = LLM_TYPE_UNKNOWN;
  1000. }
  1001. } break;
  1002. case LLM_ARCH_DEEPSEEK2:
  1003. {
  1004. bool is_lite = (hparams.n_layer == 27);
  1005. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1006. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1007. if (!is_lite) {
  1008. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1009. }
  1010. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1011. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1012. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1013. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1014. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1015. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1016. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1017. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1018. // that have no expert_gating_func model parameter set
  1019. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1020. }
  1021. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1022. switch (hparams.n_layer) {
  1023. case 27: type = LLM_TYPE_16B; break;
  1024. case 60: type = LLM_TYPE_236B; break;
  1025. case 61: type = LLM_TYPE_671B; break;
  1026. default: type = LLM_TYPE_UNKNOWN;
  1027. }
  1028. } break;
  1029. case LLM_ARCH_PLM:
  1030. {
  1031. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1032. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1033. switch (hparams.n_layer) {
  1034. case 32: type = LLM_TYPE_1_8B; break;
  1035. default: type = LLM_TYPE_UNKNOWN;
  1036. }
  1037. } break;
  1038. case LLM_ARCH_CHATGLM:
  1039. {
  1040. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1041. switch (hparams.n_layer) {
  1042. case 28: {
  1043. if (hparams.n_head(0) == 16) {
  1044. type = LLM_TYPE_1_5B;
  1045. } else {
  1046. type = LLM_TYPE_6B;
  1047. }
  1048. } break;
  1049. case 40: {
  1050. if (hparams.n_head(0) == 24) {
  1051. type = LLM_TYPE_4B;
  1052. } else {
  1053. type = LLM_TYPE_9B;
  1054. }
  1055. } break;
  1056. default: type = LLM_TYPE_UNKNOWN;
  1057. }
  1058. } break;
  1059. case LLM_ARCH_BITNET:
  1060. {
  1061. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1062. switch (hparams.n_layer) {
  1063. case 26: type = LLM_TYPE_3B; break;
  1064. default: type = LLM_TYPE_UNKNOWN;
  1065. }
  1066. } break;
  1067. case LLM_ARCH_T5:
  1068. {
  1069. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1070. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1071. uint32_t dec_start_token_id;
  1072. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1073. hparams.dec_start_token_id = dec_start_token_id;
  1074. }
  1075. switch (hparams.n_layer) {
  1076. case 6: type = LLM_TYPE_60M; break; // t5-small
  1077. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1078. case 12:
  1079. switch (hparams.n_ff()) {
  1080. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1081. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1082. default: type = LLM_TYPE_UNKNOWN;
  1083. } break;
  1084. case 24:
  1085. switch (hparams.n_ff()) {
  1086. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1087. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1088. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1089. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1090. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1091. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1092. default: type = LLM_TYPE_UNKNOWN;
  1093. } break;
  1094. default: type = LLM_TYPE_UNKNOWN;
  1095. }
  1096. } break;
  1097. case LLM_ARCH_T5ENCODER:
  1098. {
  1099. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1100. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1101. type = LLM_TYPE_UNKNOWN;
  1102. } break;
  1103. case LLM_ARCH_JAIS:
  1104. {
  1105. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1106. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1107. switch (hparams.n_layer) {
  1108. case 24: type = LLM_TYPE_1_3B; break;
  1109. case 40: type = LLM_TYPE_13B; break;
  1110. /* TODO: add variants */
  1111. default: type = LLM_TYPE_UNKNOWN;
  1112. }
  1113. } break;
  1114. case LLM_ARCH_NEMOTRON:
  1115. {
  1116. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1117. switch (hparams.n_layer) {
  1118. case 32: type = LLM_TYPE_4B; break;
  1119. default: type = LLM_TYPE_UNKNOWN;
  1120. }
  1121. } break;
  1122. case LLM_ARCH_EXAONE:
  1123. {
  1124. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1125. switch (hparams.n_layer) {
  1126. case 32: type = LLM_TYPE_8B; break;
  1127. default: type = LLM_TYPE_UNKNOWN;
  1128. }
  1129. } break;
  1130. case LLM_ARCH_RWKV6:
  1131. case LLM_ARCH_RWKV6QWEN2:
  1132. {
  1133. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1134. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1135. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1136. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1137. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1138. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1139. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1140. switch (hparams.n_layer) {
  1141. case 24: type = LLM_TYPE_1_6B; break;
  1142. case 32:
  1143. switch (hparams.n_embd) {
  1144. case 2560: type = LLM_TYPE_3B; break;
  1145. case 4096: type = LLM_TYPE_7B; break;
  1146. default: type = LLM_TYPE_UNKNOWN;
  1147. } break;
  1148. case 61: type = LLM_TYPE_14B; break;
  1149. case 64: type = LLM_TYPE_32B; break;
  1150. default: type = LLM_TYPE_UNKNOWN;
  1151. }
  1152. } break;
  1153. case LLM_ARCH_RWKV7:
  1154. case LLM_ARCH_ARWKV7:
  1155. {
  1156. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1157. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1158. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1159. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1160. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1161. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1162. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1163. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1164. switch (hparams.n_layer) {
  1165. case 12: type = LLM_TYPE_190M; break;
  1166. case 24:
  1167. switch (hparams.n_embd) {
  1168. case 1024: type = LLM_TYPE_450M; break;
  1169. case 2048: type = LLM_TYPE_1_5B; break;
  1170. default: type = LLM_TYPE_UNKNOWN;
  1171. } break;
  1172. case 28:
  1173. switch (hparams.n_embd) {
  1174. case 1536: type = LLM_TYPE_1_5B; break;
  1175. case 3584: type = LLM_TYPE_7B; break;
  1176. default: type = LLM_TYPE_UNKNOWN;
  1177. } break;
  1178. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1179. default: type = LLM_TYPE_UNKNOWN;
  1180. }
  1181. } break;
  1182. case LLM_ARCH_GRANITE:
  1183. case LLM_ARCH_GRANITE_MOE:
  1184. {
  1185. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1186. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1187. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1188. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1189. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1190. switch (hparams.n_layer) {
  1191. case 32: type = LLM_TYPE_3B; break;
  1192. case 40: type = LLM_TYPE_3B; break;
  1193. // Add additional layer/vocab/etc checks here for other model sizes
  1194. default: type = LLM_TYPE_UNKNOWN;
  1195. }
  1196. } break;
  1197. case LLM_ARCH_CHAMELEON:
  1198. {
  1199. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1200. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1201. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1202. switch (hparams.n_layer) {
  1203. case 32: type = LLM_TYPE_7B; break;
  1204. case 48: type = LLM_TYPE_34B; break;
  1205. default: type = LLM_TYPE_UNKNOWN;
  1206. }
  1207. } break;
  1208. case LLM_ARCH_WAVTOKENIZER_DEC:
  1209. {
  1210. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1211. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1212. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1213. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1214. } break;
  1215. case LLM_ARCH_BAILINGMOE:
  1216. {
  1217. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1218. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1219. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1220. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1221. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1222. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1223. switch (hparams.n_layer) {
  1224. case 28: type = LLM_TYPE_16B; break;
  1225. case 88: type = LLM_TYPE_290B; break;
  1226. default: type = LLM_TYPE_UNKNOWN;
  1227. }
  1228. } break;
  1229. default: throw std::runtime_error("unsupported model architecture");
  1230. }
  1231. pimpl->n_bytes = ml.n_bytes;
  1232. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1233. if (hparams.f_max_alibi_bias > 0.0f) {
  1234. hparams.use_alibi = true;
  1235. }
  1236. hparams.rope_type = llama_model_rope_type(this);
  1237. }
  1238. void llama_model::load_vocab(llama_model_loader & ml) {
  1239. const auto kv = LLM_KV(arch);
  1240. vocab.load(ml, kv);
  1241. }
  1242. bool llama_model::load_tensors(llama_model_loader & ml) {
  1243. const auto & split_mode = params.split_mode;
  1244. const auto & n_gpu_layers = params.n_gpu_layers;
  1245. const auto & use_mlock = params.use_mlock;
  1246. const auto & tensor_split = params.tensor_split;
  1247. const int n_layer = hparams.n_layer;
  1248. const bool use_mmap_buffer = true;
  1249. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1250. // build a list of buffer types for the CPU and GPU devices
  1251. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1252. for (auto * dev : devices) {
  1253. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1254. // add CPU buffer types as a fallback
  1255. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1256. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1257. }
  1258. // calculate the split points
  1259. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1260. std::vector<float> splits(n_devices());
  1261. if (all_zero) {
  1262. // default split, by free memory
  1263. for (size_t i = 0; i < n_devices(); ++i) {
  1264. ggml_backend_dev_t dev = devices[i];
  1265. size_t total;
  1266. size_t free;
  1267. ggml_backend_dev_memory(dev, &free, &total);
  1268. splits[i] = free;
  1269. }
  1270. } else {
  1271. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1272. }
  1273. // sum and normalize the splits to get the split points
  1274. float split_sum = 0.0f;
  1275. for (size_t i = 0; i < n_devices(); ++i) {
  1276. split_sum += splits[i];
  1277. splits[i] = split_sum;
  1278. }
  1279. for (size_t i = 0; i < n_devices(); ++i) {
  1280. splits[i] /= split_sum;
  1281. }
  1282. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1283. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1284. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1285. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1286. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1287. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1288. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1289. return {cpu_dev, &pimpl->cpu_buft_list};
  1290. }
  1291. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1292. auto * dev = devices.at(layer_gpu);
  1293. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1294. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1295. };
  1296. // assign the input layer
  1297. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1298. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1299. // assign the repeating layers to the devices according to the splits
  1300. pimpl->dev_layer.resize(n_layer);
  1301. for (int il = 0; il < n_layer; ++il) {
  1302. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1303. }
  1304. // assign the output layer
  1305. pimpl->dev_output = get_layer_buft_list(n_layer);
  1306. // one ggml context per buffer type
  1307. int max_n_tensors = ml.n_tensors;
  1308. max_n_tensors += 1; // duplicated output tensor
  1309. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1310. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1311. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1312. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1313. auto it = ctx_map.find(buft);
  1314. if (it == ctx_map.end()) {
  1315. ggml_init_params params = {
  1316. /*.mem_size =*/ ctx_size,
  1317. /*.mem_buffer =*/ NULL,
  1318. /*.no_alloc =*/ true,
  1319. };
  1320. ggml_context * ctx = ggml_init(params);
  1321. if (!ctx) {
  1322. throw std::runtime_error(format("failed to create ggml context"));
  1323. }
  1324. ctx_map[buft] = ctx;
  1325. pimpl->ctxs.emplace_back(ctx);
  1326. return ctx;
  1327. }
  1328. return it->second;
  1329. };
  1330. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1331. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1332. // create tensors for the weights
  1333. {
  1334. // note: cast to int64_t since we will use these for the tensor dimensions
  1335. const int64_t n_head = hparams.n_head();
  1336. const int64_t n_head_kv = hparams.n_head_kv();
  1337. const int64_t n_embd = hparams.n_embd;
  1338. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1339. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1340. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1341. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1342. const int64_t n_ff = hparams.n_ff();
  1343. const int64_t n_embd_gqa = n_embd_v_gqa;
  1344. const int64_t n_vocab = vocab.n_tokens();
  1345. const int64_t n_token_types = vocab.n_token_types();
  1346. const int64_t n_rot = hparams.n_rot;
  1347. const int64_t n_expert = hparams.n_expert;
  1348. const int64_t n_expert_used = hparams.n_expert_used;
  1349. const int64_t n_ctx_train = hparams.n_ctx_train;
  1350. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1351. throw std::runtime_error("model has expert layers but no expert layers are used");
  1352. }
  1353. int n_moved_tensors = 0;
  1354. ggml_tensor * first_moved_tensor = nullptr;
  1355. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1356. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1357. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1358. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1359. if (!t_meta) {
  1360. if (flags & TENSOR_NOT_REQUIRED) {
  1361. return nullptr;
  1362. }
  1363. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1364. }
  1365. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1366. // the tensor is duplicated
  1367. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1368. llm_tensor tn_tensor = tn.tensor;
  1369. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1370. tn_tensor = LLM_TENSOR_OUTPUT;
  1371. }
  1372. llm_tensor_info info;
  1373. try {
  1374. info = llm_tensor_info_for(tn_tensor);
  1375. } catch (const std::out_of_range & e) {
  1376. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1377. }
  1378. // skip unused tensors
  1379. if (info.op == GGML_OP_NONE) {
  1380. const size_t nbytes = ggml_nbytes(t_meta);
  1381. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1382. ml.size_data -= nbytes;
  1383. ml.n_created++;
  1384. return nullptr;
  1385. }
  1386. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1387. ggml_op op;
  1388. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1389. if (bias) {
  1390. op = GGML_OP_ADD;
  1391. } else {
  1392. op = info.op;
  1393. }
  1394. // sanity checks
  1395. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1396. if (tn.bid != -1) {
  1397. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1398. }
  1399. } else {
  1400. if (tn.bid == -1) {
  1401. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1402. }
  1403. }
  1404. // select the buffer type for this tensor
  1405. buft_list_t * buft_list;
  1406. switch (info.layer) {
  1407. case LLM_TENSOR_LAYER_INPUT:
  1408. buft_list = pimpl->dev_input.buft_list;
  1409. break;
  1410. case LLM_TENSOR_LAYER_OUTPUT:
  1411. buft_list = pimpl->dev_output.buft_list;
  1412. break;
  1413. case LLM_TENSOR_LAYER_REPEATING:
  1414. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1415. break;
  1416. default:
  1417. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1418. }
  1419. ggml_backend_buffer_type_t buft = nullptr;
  1420. // check overrides
  1421. if (ml.tensor_buft_overrides) {
  1422. std::string tensor_name = tn.str();
  1423. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1424. std::regex pattern(overrides->pattern);
  1425. if (std::regex_search(tensor_name, pattern)) {
  1426. LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
  1427. buft = overrides->buft;
  1428. break;
  1429. }
  1430. }
  1431. }
  1432. if (!buft) {
  1433. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1434. if (!buft) {
  1435. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1436. }
  1437. }
  1438. // avoid using a host buffer when using mmap
  1439. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1440. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1441. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1442. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1443. }
  1444. if (buft != buft_list->front().second) {
  1445. n_moved_tensors++;
  1446. if (!first_moved_tensor) {
  1447. first_moved_tensor = t_meta;
  1448. first_moved_from_buft = buft_list->front().second;
  1449. first_moved_to_buft = buft;
  1450. }
  1451. }
  1452. ggml_context * ctx = ctx_for_buft(buft);
  1453. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1454. if (flags & TENSOR_DUPLICATED) {
  1455. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1456. if (t) {
  1457. return t;
  1458. }
  1459. }
  1460. return ml.create_tensor(ctx, tn, ne, flags);
  1461. };
  1462. layers.resize(n_layer);
  1463. // TODO: move to a separate function
  1464. const auto tn = LLM_TN(arch);
  1465. switch (arch) {
  1466. case LLM_ARCH_LLAMA:
  1467. case LLM_ARCH_REFACT:
  1468. case LLM_ARCH_MINICPM:
  1469. case LLM_ARCH_GRANITE:
  1470. case LLM_ARCH_GRANITE_MOE:
  1471. {
  1472. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1473. // output
  1474. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1475. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1476. // if output is NULL, init from the input tok embed
  1477. if (output == NULL) {
  1478. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1479. }
  1480. for (int i = 0; i < n_layer; ++i) {
  1481. auto & layer = layers[i];
  1482. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1483. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1484. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1485. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1486. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1487. // optional bias tensors
  1488. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1489. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1490. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1491. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1492. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1493. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1494. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1495. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1496. }
  1497. else {
  1498. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1499. }
  1500. if (n_expert == 0) {
  1501. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1502. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1503. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1504. // optional MLP bias
  1505. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1506. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1507. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1508. } else {
  1509. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1510. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1511. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1512. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1513. }
  1514. }
  1515. } break;
  1516. case LLM_ARCH_DECI:
  1517. {
  1518. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1519. // output
  1520. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1521. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1522. // if output is NULL, init from the input tok embed
  1523. if (output == NULL) {
  1524. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1525. }
  1526. for (int i = 0; i < n_layer; ++i) {
  1527. auto & layer = layers[i];
  1528. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1529. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1530. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1531. const int64_t n_ff = hparams.n_ff(i);
  1532. const int64_t n_head = hparams.n_head(i);
  1533. const int64_t n_head_kv = hparams.n_head_kv(i);
  1534. if (n_head_kv == 0 && n_head > 0) {
  1535. // linear attention for DeciLMCausalModel
  1536. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1537. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1538. }
  1539. else if (n_head_kv > 0) {
  1540. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1541. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1542. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1543. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1544. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1545. }
  1546. // optional bias tensors
  1547. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1548. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1549. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1550. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1551. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1552. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1553. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1554. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1555. }
  1556. else {
  1557. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1558. }
  1559. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1560. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1561. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1562. // optional MLP bias
  1563. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1564. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1565. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1566. }
  1567. } break;
  1568. case LLM_ARCH_MINICPM3:
  1569. {
  1570. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1571. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1572. const int64_t q_lora_rank = hparams.n_lora_q;
  1573. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1574. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1575. // output
  1576. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1577. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1578. // if output is NULL, init from the input tok embed
  1579. if (output == NULL) {
  1580. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1581. }
  1582. for (int i = 0; i < n_layer; ++i) {
  1583. auto & layer = layers[i];
  1584. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1585. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1586. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1587. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1588. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1589. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1590. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1591. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1592. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1593. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1594. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1595. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1596. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1597. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1598. }
  1599. } break;
  1600. case LLM_ARCH_GROK:
  1601. {
  1602. if (n_expert == 0) {
  1603. throw std::runtime_error("Grok model cannot have zero experts");
  1604. }
  1605. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1606. // output
  1607. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1608. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1609. // if output is NULL, init from the input tok embed
  1610. if (output == NULL) {
  1611. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1612. }
  1613. for (int i = 0; i < n_layer; ++i) {
  1614. auto & layer = layers[i];
  1615. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1616. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1617. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1618. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1619. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1620. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1621. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1622. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1623. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1624. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1625. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1626. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1627. }
  1628. } break;
  1629. case LLM_ARCH_DBRX:
  1630. {
  1631. if (n_expert == 0) {
  1632. throw std::runtime_error("DBRX model cannot have zero experts");
  1633. }
  1634. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1635. // output
  1636. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1637. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1638. for (int i = 0; i < n_layer; ++i) {
  1639. auto & layer = layers[i];
  1640. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1641. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1642. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1643. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1644. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1645. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1646. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1647. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1648. }
  1649. } break;
  1650. case LLM_ARCH_BAICHUAN:
  1651. {
  1652. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1653. {
  1654. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1655. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1656. }
  1657. for (int i = 0; i < n_layer; ++i) {
  1658. auto & layer = layers[i];
  1659. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1660. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1661. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1662. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1663. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1664. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1665. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1666. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1667. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1668. }
  1669. } break;
  1670. case LLM_ARCH_FALCON:
  1671. {
  1672. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1673. // output
  1674. {
  1675. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1676. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1677. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1678. if (!output) {
  1679. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1680. }
  1681. }
  1682. for (int i = 0; i < n_layer; ++i) {
  1683. auto & layer = layers[i];
  1684. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1685. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1686. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1687. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1688. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1689. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1690. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1691. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1692. }
  1693. } break;
  1694. case LLM_ARCH_STARCODER:
  1695. {
  1696. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1697. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1698. // output
  1699. {
  1700. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1701. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1702. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1703. if (!output) {
  1704. // needs to be on GPU
  1705. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1706. }
  1707. }
  1708. for (int i = 0; i < n_layer; ++i) {
  1709. auto & layer = layers[i];
  1710. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1711. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1712. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1713. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1714. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1715. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1716. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1717. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1718. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1719. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1720. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1721. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1722. }
  1723. } break;
  1724. case LLM_ARCH_BERT:
  1725. case LLM_ARCH_NOMIC_BERT:
  1726. {
  1727. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1728. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
  1729. if (arch == LLM_ARCH_BERT) {
  1730. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1731. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1732. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1733. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1734. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1735. }
  1736. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1737. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1738. for (int i = 0; i < n_layer; ++i) {
  1739. auto & layer = layers[i];
  1740. if (arch == LLM_ARCH_BERT) {
  1741. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1742. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1743. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1744. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1745. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1746. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1747. } else {
  1748. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1749. }
  1750. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1751. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1752. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1753. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1754. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1755. if (arch == LLM_ARCH_BERT) {
  1756. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1757. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1758. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1759. } else {
  1760. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1761. }
  1762. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1763. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1764. }
  1765. } break;
  1766. case LLM_ARCH_JINA_BERT_V2:
  1767. {
  1768. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1769. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1770. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1771. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1772. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1773. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1774. for (int i = 0; i < n_layer; ++i) {
  1775. auto & layer = layers[i]; // JinaBertLayer
  1776. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1777. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1778. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1779. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1780. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1781. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1782. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1783. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1784. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1785. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1786. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1787. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1788. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1789. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1790. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1791. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1792. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1793. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1794. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1795. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1796. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1797. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1798. }
  1799. } break;
  1800. case LLM_ARCH_BLOOM:
  1801. {
  1802. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1803. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1804. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1805. // output
  1806. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1807. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1808. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1809. // if output is NULL, init from the input tok embed
  1810. if (output == NULL) {
  1811. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1812. }
  1813. for (int i = 0; i < n_layer; ++i) {
  1814. auto & layer = layers[i];
  1815. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1816. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1817. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1818. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1819. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1820. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1821. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1822. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1823. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1824. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1825. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1826. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1827. }
  1828. } break;
  1829. case LLM_ARCH_MPT:
  1830. {
  1831. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1832. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1833. // output
  1834. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1835. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1836. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1837. if (!output) {
  1838. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1839. }
  1840. for (int i = 0; i < n_layer; ++i) {
  1841. auto & layer = layers[i];
  1842. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1843. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1844. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1845. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1846. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1847. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1848. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1849. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1850. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1851. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1852. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1853. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1854. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1855. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1856. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1857. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1858. // AWQ ScaleActivation layer
  1859. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1860. }
  1861. } break;
  1862. case LLM_ARCH_STABLELM:
  1863. {
  1864. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1865. // output
  1866. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1867. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1868. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1869. for (int i = 0; i < n_layer; ++i) {
  1870. auto & layer = layers[i];
  1871. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1872. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1873. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1874. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1875. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1876. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1877. // optional bias tensors, present in Stable LM 2 1.6B
  1878. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1879. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1880. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1881. // optional q and k layernorms, present in StableLM 2 12B
  1882. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  1883. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  1884. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  1885. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1886. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1887. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1888. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1889. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1890. }
  1891. } break;
  1892. case LLM_ARCH_QWEN:
  1893. {
  1894. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1895. // output
  1896. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1897. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1898. for (int i = 0; i < n_layer; ++i) {
  1899. auto & layer = layers[i];
  1900. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1901. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  1902. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  1903. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1904. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1905. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  1906. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  1907. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  1908. }
  1909. } break;
  1910. case LLM_ARCH_QWEN2:
  1911. case LLM_ARCH_QWEN2VL:
  1912. {
  1913. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1914. // output
  1915. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1916. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1917. // if output is NULL, init from the input tok embed
  1918. if (output == NULL) {
  1919. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1920. }
  1921. for (int i = 0; i < n_layer; ++i) {
  1922. auto & layer = layers[i];
  1923. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1924. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1925. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1926. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1927. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1928. // optional bias tensors
  1929. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1930. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1931. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1932. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1933. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1934. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1935. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1936. }
  1937. } break;
  1938. case LLM_ARCH_QWEN2MOE:
  1939. {
  1940. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1941. // output
  1942. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1943. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1944. for (int i = 0; i < n_layer; ++i) {
  1945. auto & layer = layers[i];
  1946. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1947. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1948. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1949. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1950. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1951. // optional bias tensors
  1952. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1953. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1954. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1955. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1956. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1957. if (n_expert == 0) {
  1958. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  1959. }
  1960. if (n_expert_used == 0) {
  1961. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  1962. }
  1963. // MoE branch
  1964. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  1965. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1966. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  1967. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  1968. // Shared expert branch
  1969. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  1970. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  1971. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1972. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  1973. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1974. }
  1975. } break;
  1976. case LLM_ARCH_PHI2:
  1977. {
  1978. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1979. // output
  1980. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1981. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1982. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1983. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  1984. for (int i = 0; i < n_layer; ++i) {
  1985. auto & layer = layers[i];
  1986. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1987. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1988. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1989. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1990. if (layer.wqkv == nullptr) {
  1991. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1992. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1993. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1994. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1995. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1996. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1997. }
  1998. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1999. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2000. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2001. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2002. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2003. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2004. }
  2005. } break;
  2006. case LLM_ARCH_PHI3:
  2007. {
  2008. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2009. // output
  2010. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2011. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2012. // if output is NULL, init from the input tok embed
  2013. if (output == NULL) {
  2014. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2015. }
  2016. for (int i = 0; i < n_layer; ++i) {
  2017. auto & layer = layers[i];
  2018. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2019. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2020. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2021. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2022. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2023. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2024. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2025. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2026. }
  2027. } break;
  2028. case LLM_ARCH_PHIMOE:
  2029. {
  2030. const int64_t n_embd_head = n_embd / n_head;
  2031. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2032. // output
  2033. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2034. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2035. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2036. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2037. for (int i = 0; i < n_layer; ++i) {
  2038. auto & layer = layers[i];
  2039. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2040. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2041. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2042. if (layer.wqkv == nullptr) {
  2043. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2044. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2045. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2046. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2047. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2048. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2049. }
  2050. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2051. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2052. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2053. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2054. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2055. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2056. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2057. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2058. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2059. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2060. }
  2061. } break;
  2062. case LLM_ARCH_PLAMO:
  2063. {
  2064. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2065. // output
  2066. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2067. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2068. for (int i = 0; i < n_layer; ++i) {
  2069. auto & layer = layers[i];
  2070. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2071. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2072. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2073. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2074. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2075. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2076. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2077. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2078. }
  2079. } break;
  2080. case LLM_ARCH_GPT2:
  2081. {
  2082. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2083. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2084. // output
  2085. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2086. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2087. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2088. // if output is NULL, init from the input tok embed
  2089. if (output == NULL) {
  2090. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2091. }
  2092. for (int i = 0; i < n_layer; ++i) {
  2093. auto & layer = layers[i];
  2094. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2095. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2096. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2097. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2098. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2099. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2100. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2101. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2102. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2103. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2104. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2105. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2106. }
  2107. } break;
  2108. case LLM_ARCH_CODESHELL:
  2109. {
  2110. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2111. // if tok embd is NULL, init from output
  2112. if (tok_embd == NULL) {
  2113. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2114. }
  2115. // output
  2116. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2117. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2118. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2119. for (int i = 0; i < n_layer; ++i) {
  2120. auto & layer = layers[i];
  2121. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2122. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2123. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2124. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2125. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2126. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2127. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2128. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2129. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2130. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2131. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2132. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2133. }
  2134. } break;
  2135. case LLM_ARCH_ORION:
  2136. {
  2137. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2138. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2139. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2140. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2141. for (int i = 0; i < n_layer; ++i) {
  2142. auto & layer = layers[i];
  2143. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2144. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2145. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2146. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2147. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2148. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2149. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2150. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2151. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2152. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2153. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2154. }
  2155. } break;
  2156. case LLM_ARCH_INTERNLM2:
  2157. {
  2158. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2159. // output
  2160. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2161. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2162. for (int i = 0; i < n_layer; ++i) {
  2163. auto & layer = layers[i];
  2164. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2165. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2166. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2167. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2168. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2169. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2170. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2171. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2172. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2173. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2174. }
  2175. } break;
  2176. case LLM_ARCH_GEMMA:
  2177. {
  2178. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2179. // output
  2180. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2181. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2182. for (int i = 0; i < n_layer; ++i) {
  2183. auto & layer = layers[i];
  2184. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2185. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2186. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2187. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2188. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2189. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2190. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2191. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2192. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2193. }
  2194. } break;
  2195. case LLM_ARCH_GEMMA2:
  2196. {
  2197. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2198. // output
  2199. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2200. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2201. for (int i = 0; i < n_layer; ++i) {
  2202. auto & layer = layers[i];
  2203. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2204. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2205. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2206. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2207. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2208. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2209. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2210. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2211. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2212. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2213. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2214. }
  2215. } break;
  2216. case LLM_ARCH_GEMMA3:
  2217. {
  2218. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2219. // output
  2220. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2221. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2222. // if output is NULL, init from the input tok embed
  2223. if (output == NULL) {
  2224. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2225. }
  2226. for (int i = 0; i < n_layer; ++i) {
  2227. auto & layer = layers[i];
  2228. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2229. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2230. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2231. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2232. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2233. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2234. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2235. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2236. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2237. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2238. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2239. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2240. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2241. }
  2242. } break;
  2243. case LLM_ARCH_STARCODER2:
  2244. {
  2245. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2246. // output
  2247. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2248. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2249. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2250. // if output is NULL, init from the input tok embed
  2251. if (output == NULL) {
  2252. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2253. }
  2254. for (int i = 0; i < n_layer; ++i) {
  2255. auto & layer = layers[i];
  2256. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2257. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2258. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2259. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2260. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2261. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2262. // optional bias tensors
  2263. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2264. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2265. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2266. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2267. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2268. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2269. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2270. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2271. // optional bias tensors
  2272. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2273. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2274. }
  2275. } break;
  2276. case LLM_ARCH_MAMBA:
  2277. {
  2278. const int64_t d_conv = hparams.ssm_d_conv;
  2279. const int64_t d_inner = hparams.ssm_d_inner;
  2280. const int64_t d_state = hparams.ssm_d_state;
  2281. const int64_t dt_rank = hparams.ssm_dt_rank;
  2282. // only an expansion factor of 2 is supported for now
  2283. if (2 * n_embd != d_inner) {
  2284. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2285. }
  2286. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2287. // output
  2288. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2289. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2290. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2291. if (output == NULL) {
  2292. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2293. }
  2294. for (int i = 0; i < n_layer; ++i) {
  2295. auto & layer = layers[i];
  2296. // norm
  2297. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2298. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2299. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2300. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2301. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2302. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2303. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2304. // no "weight" suffix for these
  2305. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2306. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2307. // out_proj
  2308. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2309. }
  2310. } break;
  2311. case LLM_ARCH_XVERSE:
  2312. {
  2313. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2314. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2315. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2316. for (int i = 0; i < n_layer; ++i) {
  2317. auto & layer = layers[i];
  2318. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2319. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2320. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2321. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2322. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2323. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2324. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2325. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2326. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2327. }
  2328. } break;
  2329. case LLM_ARCH_COMMAND_R:
  2330. {
  2331. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2332. // output
  2333. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2334. // init output from the input tok embed
  2335. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2336. for (int i = 0; i < n_layer; ++i) {
  2337. auto & layer = layers[i];
  2338. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2339. if (n_layer >= 64){
  2340. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2341. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2342. }
  2343. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2344. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2345. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2346. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2347. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2348. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2349. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2350. }
  2351. } break;
  2352. case LLM_ARCH_COHERE2:
  2353. {
  2354. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2355. // output
  2356. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2357. // init output from the input tok embed
  2358. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2359. TENSOR_DUPLICATED);
  2360. for (int i = 0; i < n_layer; ++i) {
  2361. auto & layer = layers[i];
  2362. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2363. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2364. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2365. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2366. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2367. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2368. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2369. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2370. }
  2371. }
  2372. break;
  2373. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2374. {
  2375. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2376. // output
  2377. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2378. // if output is NULL, init from the input tok embed
  2379. if (output == NULL) {
  2380. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2381. }
  2382. for (int i = 0; i < n_layer; ++i) {
  2383. auto & layer = layers[i];
  2384. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2385. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2386. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2387. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2388. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2389. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2390. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2391. }
  2392. } break;
  2393. case LLM_ARCH_OLMO2:
  2394. {
  2395. const int64_t n_embd_head = n_embd / n_head;
  2396. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2397. // output
  2398. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2399. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2400. for (int i = 0; i < n_layer; ++i) {
  2401. auto & layer = layers[i];
  2402. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2403. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2404. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2405. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2406. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2407. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2408. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2409. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2410. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2411. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2412. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2413. }
  2414. } break;
  2415. case LLM_ARCH_OLMOE:
  2416. {
  2417. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2418. // output
  2419. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2420. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2421. for (int i = 0; i < n_layer; ++i) {
  2422. auto & layer = layers[i];
  2423. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2424. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2425. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2426. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2427. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2428. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2429. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2430. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2431. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2432. if (n_expert == 0) {
  2433. throw std::runtime_error("n_expert must be > 0");
  2434. }
  2435. if (n_expert_used == 0) {
  2436. throw std::runtime_error("n_expert_used must be > 0");
  2437. }
  2438. // MoE branch
  2439. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2440. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2441. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2442. }
  2443. } break;
  2444. case LLM_ARCH_OPENELM:
  2445. {
  2446. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2447. // output
  2448. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2449. // init output from the input tok embed
  2450. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2451. for (int i = 0; i < n_layer; ++i) {
  2452. const int64_t n_head = hparams.n_head(i);
  2453. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2454. const int64_t n_ff = hparams.n_ff(i);
  2455. auto & layer = layers[i];
  2456. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2457. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2458. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2459. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2460. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2461. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2462. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2463. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2464. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2465. }
  2466. } break;
  2467. case LLM_ARCH_GPTNEOX:
  2468. {
  2469. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2470. // output
  2471. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2472. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2473. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2474. for (int i = 0; i < n_layer; ++i) {
  2475. auto & layer = layers[i];
  2476. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2477. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2478. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2479. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2480. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2481. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2482. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2483. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2484. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2485. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2486. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2487. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2488. }
  2489. } break;
  2490. case LLM_ARCH_ARCTIC:
  2491. {
  2492. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2493. // output
  2494. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2495. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2496. // if output is NULL, init from the input tok embed
  2497. if (output == NULL) {
  2498. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2499. }
  2500. for (int i = 0; i < n_layer; ++i) {
  2501. auto & layer = layers[i];
  2502. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2503. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2504. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2505. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2506. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2507. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2508. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2509. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2510. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2511. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2512. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2513. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2514. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2515. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2516. }
  2517. } break;
  2518. case LLM_ARCH_DEEPSEEK:
  2519. {
  2520. const int64_t n_ff_exp = hparams.n_ff_exp;
  2521. const int64_t n_expert_shared = hparams.n_expert_shared;
  2522. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2523. // output
  2524. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2525. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2526. for (int i = 0; i < n_layer; ++i) {
  2527. auto & layer = layers[i];
  2528. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2529. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2530. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2531. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2532. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2533. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2534. if (i < (int) hparams.n_layer_dense_lead) {
  2535. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2536. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2537. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2538. } else {
  2539. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2540. if (n_expert == 0) {
  2541. throw std::runtime_error("n_expert must be > 0");
  2542. }
  2543. if (n_expert_used == 0) {
  2544. throw std::runtime_error("n_expert_used must be > 0");
  2545. }
  2546. // MoE branch
  2547. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2548. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2549. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2550. // Shared expert branch
  2551. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2552. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2553. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2554. }
  2555. }
  2556. } break;
  2557. case LLM_ARCH_DEEPSEEK2:
  2558. {
  2559. const bool is_lite = (hparams.n_layer == 27);
  2560. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2561. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2562. const int64_t q_lora_rank = hparams.n_lora_q;
  2563. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2564. const int64_t n_ff_exp = hparams.n_ff_exp;
  2565. const int64_t n_expert_shared = hparams.n_expert_shared;
  2566. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2567. // output
  2568. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2569. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2570. for (int i = 0; i < n_layer; ++i) {
  2571. auto & layer = layers[i];
  2572. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2573. if (!is_lite) {
  2574. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2575. }
  2576. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2577. if (!is_lite) {
  2578. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2579. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  2580. } else {
  2581. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2582. }
  2583. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2584. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2585. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2586. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2587. if (i < (int) hparams.n_layer_dense_lead) {
  2588. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2589. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2590. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2591. } else {
  2592. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2593. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2594. if (n_expert == 0) {
  2595. throw std::runtime_error("n_expert must be > 0");
  2596. }
  2597. if (n_expert_used == 0) {
  2598. throw std::runtime_error("n_expert_used must be > 0");
  2599. }
  2600. // MoE branch
  2601. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2602. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2603. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2604. // Shared expert branch
  2605. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2606. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2607. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2608. }
  2609. }
  2610. } break;
  2611. case LLM_ARCH_PLM:
  2612. {
  2613. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2614. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2615. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2616. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2617. // output
  2618. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2619. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2620. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2621. for (int i = 0; i < n_layer; ++i) {
  2622. auto & layer = layers[i];
  2623. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2624. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2625. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2626. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2627. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2628. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2629. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2630. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2631. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2632. }
  2633. } break;
  2634. case LLM_ARCH_BITNET:
  2635. {
  2636. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2637. // output
  2638. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2639. for (int i = 0; i < n_layer; ++i) {
  2640. auto & layer = layers[i];
  2641. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2642. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2643. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2644. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2645. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2646. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2647. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2648. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2649. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2650. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2651. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2652. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2653. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2654. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2655. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2656. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2657. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2658. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2659. }
  2660. } break;
  2661. case LLM_ARCH_T5:
  2662. {
  2663. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2664. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2665. // output
  2666. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2667. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2668. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2669. // if output is NULL, init from the input tok embed
  2670. if (output == NULL) {
  2671. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2672. }
  2673. for (int i = 0; i < n_layer; ++i) {
  2674. auto & layer = layers[i];
  2675. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2676. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2677. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2678. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2679. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2680. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2681. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2682. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2683. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2684. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2685. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2686. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2687. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2688. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2689. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2690. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2691. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2692. // this tensor seems to be unused in HF transformers implementation
  2693. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2694. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2695. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2696. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2697. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2698. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2699. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2700. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2701. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2702. }
  2703. } break;
  2704. case LLM_ARCH_T5ENCODER:
  2705. {
  2706. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2707. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2708. // output
  2709. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2710. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2711. // if output is NULL, init from the input tok embed
  2712. if (output == NULL) {
  2713. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2714. }
  2715. for (int i = 0; i < n_layer; ++i) {
  2716. auto & layer = layers[i];
  2717. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2718. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2719. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2720. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2721. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2722. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2723. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2724. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2725. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2726. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2727. }
  2728. } break;
  2729. case LLM_ARCH_JAIS:
  2730. {
  2731. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2732. // output
  2733. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2734. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2735. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2736. for (int i = 0; i < n_layer; ++i) {
  2737. auto & layer = layers[i];
  2738. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2739. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2740. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2741. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2742. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2743. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2744. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2745. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2746. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2747. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2748. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2749. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2750. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2751. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2752. }
  2753. } break;
  2754. case LLM_ARCH_CHATGLM:
  2755. {
  2756. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2757. // output
  2758. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2759. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2760. for (int i = 0; i < n_layer; ++i) {
  2761. auto & layer = layers[i];
  2762. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2763. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2764. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2765. if (layer.wqkv == nullptr) {
  2766. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2767. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2768. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2769. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2770. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2771. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2772. }
  2773. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2774. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2775. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2776. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2777. }
  2778. } break;
  2779. case LLM_ARCH_NEMOTRON:
  2780. {
  2781. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2782. // output
  2783. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2784. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2785. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2786. for (int i = 0; i < n_layer; ++i) {
  2787. auto & layer = layers[i];
  2788. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2789. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2790. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2791. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2792. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2793. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2794. // optional bias tensors
  2795. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2796. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2797. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2798. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2799. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2800. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2801. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2802. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2803. // optional MLP bias
  2804. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2805. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2806. }
  2807. } break;
  2808. case LLM_ARCH_EXAONE:
  2809. {
  2810. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2811. // output
  2812. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2813. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2814. // if output is NULL, init from the input tok embed
  2815. if (output == NULL) {
  2816. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2817. }
  2818. for (int i = 0; i < n_layer; ++i) {
  2819. auto & layer = layers[i];
  2820. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2821. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2822. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2823. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2824. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2825. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2826. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2827. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2828. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2829. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2830. }
  2831. } break;
  2832. case LLM_ARCH_RWKV6:
  2833. {
  2834. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2835. // Block 0, LN0
  2836. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2837. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2838. // output
  2839. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2840. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2841. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2842. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2843. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2844. const int head_size = hparams.wkv_head_size;
  2845. const int attn_hidden_size = n_embd;
  2846. const int ffn_size = hparams.n_ff_arr[0];
  2847. for (int i = 0; i < n_layer; ++i) {
  2848. auto & layer = layers[i];
  2849. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2850. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2851. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  2852. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  2853. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2854. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2855. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2856. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2857. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2858. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2859. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2860. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  2861. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  2862. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  2863. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  2864. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2865. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2866. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2867. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2868. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2869. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2870. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2871. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  2872. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  2873. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2874. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  2875. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  2876. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  2877. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  2878. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  2879. }
  2880. } break;
  2881. case LLM_ARCH_RWKV6QWEN2:
  2882. {
  2883. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2884. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2885. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2886. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2887. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  2888. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  2889. const int head_size = hparams.wkv_head_size;
  2890. const int attn_hidden_size = n_embd;
  2891. const int n_head_kv = hparams.n_head_kv();
  2892. int attn_key_value_size;
  2893. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  2894. attn_key_value_size = attn_hidden_size;
  2895. } else {
  2896. attn_key_value_size = n_head_kv * head_size;
  2897. }
  2898. for (int i = 0; i < n_layer; ++i) {
  2899. auto & layer = layers[i];
  2900. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2901. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  2902. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  2903. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  2904. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  2905. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  2906. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  2907. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  2908. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  2909. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  2910. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  2911. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2912. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2913. // optional bias tensors
  2914. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  2915. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  2916. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  2917. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2918. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2919. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2920. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2921. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2922. }
  2923. } break;
  2924. case LLM_ARCH_RWKV7:
  2925. {
  2926. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2927. // Block 0, LN0
  2928. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2929. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2930. // output
  2931. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2932. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2933. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2934. const int n_lora_decay = hparams.n_lora_decay;
  2935. const int n_lora_iclr = hparams.n_lora_iclr;
  2936. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  2937. const int n_lora_gate = hparams.n_lora_gate;
  2938. const int attn_hidden_size = n_embd;
  2939. const int ffn_size = hparams.n_ff_arr[0];
  2940. for (int i = 0; i < n_layer; ++i) {
  2941. auto & layer = layers[i];
  2942. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2943. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2944. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  2945. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  2946. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  2947. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  2948. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  2949. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  2950. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2951. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2952. if (i == 0) {
  2953. // actually not used
  2954. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2955. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2956. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2957. } else {
  2958. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  2959. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  2960. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  2961. }
  2962. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  2963. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  2964. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  2965. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  2966. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  2967. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  2968. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  2969. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2970. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  2971. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  2972. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  2973. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  2974. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  2975. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  2976. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  2977. }
  2978. } break;
  2979. case LLM_ARCH_ARWKV7:
  2980. {
  2981. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2982. // output
  2983. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2984. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2985. const int n_lora_decay = hparams.n_lora_decay;
  2986. const int n_lora_iclr = hparams.n_lora_iclr;
  2987. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  2988. const int n_lora_gate = hparams.n_lora_gate;
  2989. const int attn_hidden_size = n_embd;
  2990. for (int i = 0; i < n_layer; ++i) {
  2991. auto & layer = layers[i];
  2992. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2993. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  2994. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  2995. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  2996. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  2997. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  2998. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  2999. if (i == 0) {
  3000. // actually not used
  3001. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3002. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3003. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3004. } else {
  3005. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3006. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3007. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3008. }
  3009. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3010. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3011. try {
  3012. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3013. } catch(std::runtime_error & e) {
  3014. // ARWKV models may not have gate tensors
  3015. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3016. }
  3017. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3018. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3019. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3020. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3021. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3022. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3023. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3024. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3025. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3026. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3027. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3028. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3029. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3030. }
  3031. } break;
  3032. case LLM_ARCH_CHAMELEON:
  3033. {
  3034. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3035. // output
  3036. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3037. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3038. // if output is NULL, init from the input tok embed
  3039. if (output == NULL) {
  3040. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3041. }
  3042. for (int i = 0; i < n_layer; ++i) {
  3043. auto & layer = layers[i];
  3044. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3045. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3046. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3047. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3048. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3049. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3050. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3051. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3052. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3053. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3054. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3055. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3056. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3057. }
  3058. } break;
  3059. case LLM_ARCH_WAVTOKENIZER_DEC:
  3060. {
  3061. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3062. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3063. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3064. // posnet
  3065. {
  3066. const int64_t n_embd = hparams.posnet.n_embd;
  3067. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3068. auto & layer = layers[i].posnet;
  3069. // posnet:
  3070. //
  3071. // - resnet
  3072. // - resnet
  3073. // - attn
  3074. // - resnet
  3075. // - resnet
  3076. // - norm
  3077. //
  3078. switch (i) {
  3079. case 0:
  3080. case 1:
  3081. case 3:
  3082. case 4:
  3083. {
  3084. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3085. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3086. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3087. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3088. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3089. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3090. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3091. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3092. } break;
  3093. case 2:
  3094. {
  3095. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3096. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3097. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3098. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3099. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3100. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3101. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3102. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3103. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3104. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3105. } break;
  3106. case 5:
  3107. {
  3108. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3109. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3110. } break;
  3111. default: GGML_ABORT("unknown posnet layer");
  3112. };
  3113. }
  3114. }
  3115. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3116. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3117. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3118. // convnext
  3119. {
  3120. const int64_t n_embd = hparams.convnext.n_embd;
  3121. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3122. auto & layer = layers[i].convnext;
  3123. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3124. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3125. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3126. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3127. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3128. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3129. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3130. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3131. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3132. }
  3133. // output
  3134. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3135. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3136. }
  3137. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3138. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3139. } break;
  3140. case LLM_ARCH_BAILINGMOE:
  3141. {
  3142. const int64_t n_ff_exp = hparams.n_ff_exp;
  3143. const int64_t n_expert_shared = hparams.n_expert_shared;
  3144. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3145. // output
  3146. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3147. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3148. for (int i = 0; i < n_layer; ++i) {
  3149. auto & layer = layers[i];
  3150. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3151. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3152. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3153. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3154. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3155. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3156. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3157. if (n_expert == 0) {
  3158. throw std::runtime_error("n_expert must be > 0");
  3159. }
  3160. if (n_expert_used == 0) {
  3161. throw std::runtime_error("n_expert_used must be > 0");
  3162. }
  3163. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3164. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3165. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3166. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3167. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3168. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3169. }
  3170. } break;
  3171. default:
  3172. throw std::runtime_error("unknown architecture");
  3173. }
  3174. if (n_moved_tensors > 0) {
  3175. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3176. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3177. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3178. }
  3179. }
  3180. ml.done_getting_tensors();
  3181. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3182. pimpl->mappings.reserve(ml.mappings.size());
  3183. // create the backend buffers
  3184. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3185. ctx_bufs.reserve(ctx_map.size());
  3186. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3187. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3188. pimpl->bufs.reserve(n_max_backend_buffer);
  3189. for (auto & it : ctx_map) {
  3190. ggml_backend_buffer_type_t buft = it.first;
  3191. ggml_context * ctx = it.second;
  3192. // skip contexts without tensors
  3193. if (ggml_get_first_tensor(ctx) == nullptr) {
  3194. continue;
  3195. }
  3196. llama_buf_map buf_map;
  3197. buf_map.reserve(n_max_backend_buffer);
  3198. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3199. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3200. if (!dev) {
  3201. // FIXME: workaround for CPU backend buft having a NULL device
  3202. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3203. }
  3204. ggml_backend_dev_props props;
  3205. ggml_backend_dev_get_props(dev, &props);
  3206. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3207. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3208. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3209. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3210. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3211. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3212. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3213. void * addr = nullptr;
  3214. size_t first, last; // NOLINT
  3215. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3216. if (first >= last) {
  3217. continue;
  3218. }
  3219. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3220. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3221. if (buf == nullptr) {
  3222. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3223. }
  3224. pimpl->bufs.emplace_back(buf);
  3225. buf_map.emplace(idx, buf);
  3226. }
  3227. }
  3228. else {
  3229. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3230. if (buf == nullptr) {
  3231. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3232. }
  3233. pimpl->bufs.emplace_back(buf);
  3234. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3235. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3236. auto & mlock_buf = pimpl->mlock_bufs.back();
  3237. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3238. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3239. }
  3240. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3241. buf_map.emplace(idx, buf);
  3242. }
  3243. }
  3244. if (pimpl->bufs.empty()) {
  3245. throw std::runtime_error("failed to allocate buffer");
  3246. }
  3247. for (auto & buf : buf_map) {
  3248. // indicate that this buffer contains weights
  3249. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3250. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3251. }
  3252. ctx_bufs.emplace_back(ctx, buf_map);
  3253. }
  3254. if (llama_supports_gpu_offload()) {
  3255. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3256. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3257. if (n_gpu_layers > (int) hparams.n_layer) {
  3258. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3259. }
  3260. const int max_backend_supported_layers = hparams.n_layer + 1;
  3261. const int max_offloadable_layers = hparams.n_layer + 1;
  3262. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3263. }
  3264. // print memory requirements per buffer type
  3265. for (auto & buf : pimpl->bufs) {
  3266. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3267. }
  3268. // populate tensors_by_name
  3269. for (auto & ctx : pimpl->ctxs) {
  3270. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3271. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3272. }
  3273. }
  3274. // load tensor data
  3275. for (auto & it : ctx_bufs) {
  3276. ggml_context * ctx = it.first;
  3277. auto & bufs = it.second;
  3278. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3279. return false;
  3280. }
  3281. }
  3282. if (use_mmap_buffer) {
  3283. for (auto & mapping : ml.mappings) {
  3284. pimpl->mappings.emplace_back(std::move(mapping));
  3285. }
  3286. }
  3287. return true;
  3288. }
  3289. std::string llama_model::arch_name() const {
  3290. return llm_arch_name(arch);
  3291. }
  3292. std::string llama_model::type_name() const {
  3293. return llm_type_name(type);
  3294. }
  3295. std::string llama_model::desc() const {
  3296. return pimpl->desc_str;
  3297. }
  3298. size_t llama_model::size() const {
  3299. return pimpl->n_bytes;
  3300. }
  3301. size_t llama_model::n_tensors() const {
  3302. return tensors_by_name.size();
  3303. }
  3304. size_t llama_model::n_devices() const {
  3305. return devices.size();
  3306. }
  3307. uint64_t llama_model::n_elements() const {
  3308. return pimpl->n_elements;
  3309. }
  3310. void llama_model::print_info() const {
  3311. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3312. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3313. bool is_var = false;
  3314. std::vector<uint32_t> v;
  3315. for (uint32_t i = 0; i < n; ++i) {
  3316. v.push_back(f(i));
  3317. if (v[i] != v[0]) {
  3318. is_var = true;
  3319. }
  3320. }
  3321. std::stringstream ss;
  3322. if (is_var) {
  3323. ss << "[";
  3324. for (uint32_t i = 0; i < n; ++i) {
  3325. ss << v[i];
  3326. if (i < n - 1) {
  3327. ss << ", ";
  3328. }
  3329. }
  3330. ss << "]";
  3331. } else {
  3332. ss << v[0];
  3333. }
  3334. return ss.str();
  3335. };
  3336. // hparams
  3337. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3338. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3339. if (!hparams.vocab_only) {
  3340. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3341. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3342. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3343. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3344. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3345. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3346. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3347. LLAMA_LOG_INFO("%s: n_swa_pattern = %u\n", __func__, hparams.n_swa_pattern);
  3348. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3349. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3350. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3351. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3352. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3353. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3354. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3355. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3356. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3357. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3358. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3359. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3360. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3361. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3362. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3363. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3364. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3365. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3366. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3367. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3368. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3369. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3370. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3371. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3372. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3373. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3374. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3375. }
  3376. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3377. if (pimpl->n_elements >= 1e12) {
  3378. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3379. } else if (pimpl->n_elements >= 1e9) {
  3380. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3381. } else if (pimpl->n_elements >= 1e6) {
  3382. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3383. } else {
  3384. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3385. }
  3386. // general kv
  3387. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3388. if (arch == LLM_ARCH_DEEPSEEK) {
  3389. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3390. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3391. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3392. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3393. }
  3394. if (arch == LLM_ARCH_DEEPSEEK2) {
  3395. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3396. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3397. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3398. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3399. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3400. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3401. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3402. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3403. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3404. }
  3405. if (arch == LLM_ARCH_QWEN2MOE) {
  3406. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3407. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3408. }
  3409. if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
  3410. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3411. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3412. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3413. }
  3414. if (arch == LLM_ARCH_BAILINGMOE) {
  3415. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3416. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3417. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3418. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3419. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3420. }
  3421. vocab.print_info();
  3422. }
  3423. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3424. return pimpl->dev_layer.at(il).dev;
  3425. }
  3426. ggml_backend_dev_t llama_model::dev_output() const {
  3427. return pimpl->dev_output.dev;
  3428. }
  3429. template<typename F>
  3430. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3431. ggml_init_params params = {
  3432. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3433. /*.mem_buffer =*/ NULL,
  3434. /*.no_alloc =*/ true,
  3435. };
  3436. ggml_context_ptr ctx { ggml_init(params) };
  3437. if (!ctx) {
  3438. throw std::runtime_error(format("failed to create ggml context"));
  3439. }
  3440. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3441. ggml_tensor * op_tensor = fn(ctx.get());
  3442. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3443. if (op_tensor->src[i] != nullptr) {
  3444. assert(op_tensor->src[i]->buffer == nullptr);
  3445. op_tensor->src[i]->buffer = buf.get();
  3446. }
  3447. }
  3448. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3449. return op_supported;
  3450. }
  3451. template<typename F>
  3452. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3453. for (const auto & cur : buft_list) {
  3454. ggml_backend_dev_t cur_dev = cur.first;
  3455. ggml_backend_buffer_type_t cur_buft = cur.second;
  3456. if (buft_supported(cur_buft, cur_dev, fn)) {
  3457. return cur_buft;
  3458. }
  3459. }
  3460. throw std::runtime_error(format("no suitable buffer type found"));
  3461. }
  3462. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3463. return ::select_buft(
  3464. *pimpl->dev_layer.at(il).buft_list,
  3465. [&](ggml_context * ctx) {
  3466. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3467. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3468. return ggml_add(ctx, cur, layer_dir);
  3469. });
  3470. }
  3471. bool llama_model::has_tensor_overrides() const {
  3472. return pimpl->has_tensor_overrides;
  3473. }
  3474. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3475. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3476. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3477. return it.first == name;
  3478. });
  3479. if (it == tensors_by_name.end()) {
  3480. return nullptr;
  3481. }
  3482. return it->second;
  3483. }
  3484. struct llm_build_llama : public llm_graph_context {
  3485. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3486. const int64_t n_embd_head = hparams.n_embd_head_v;
  3487. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3488. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3489. ggml_tensor * cur;
  3490. ggml_tensor * inpL;
  3491. inpL = build_inp_embd(model.tok_embd);
  3492. // inp_pos - contains the positions
  3493. ggml_tensor * inp_pos = build_inp_pos();
  3494. auto * inp_attn = build_attn_inp_kv_unified();
  3495. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3496. for (int il = 0; il < n_layer; ++il) {
  3497. ggml_tensor * inpSA = inpL;
  3498. // norm
  3499. cur = build_norm(inpL,
  3500. model.layers[il].attn_norm, NULL,
  3501. LLM_NORM_RMS, il);
  3502. cb(cur, "attn_norm", il);
  3503. // self-attention
  3504. {
  3505. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3506. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3507. // compute Q and K and RoPE them
  3508. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3509. cb(Qcur, "Qcur", il);
  3510. if (model.layers[il].bq) {
  3511. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3512. cb(Qcur, "Qcur", il);
  3513. }
  3514. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3515. cb(Kcur, "Kcur", il);
  3516. if (model.layers[il].bk) {
  3517. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3518. cb(Kcur, "Kcur", il);
  3519. }
  3520. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3521. cb(Vcur, "Vcur", il);
  3522. if (model.layers[il].bv) {
  3523. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3524. cb(Vcur, "Vcur", il);
  3525. }
  3526. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3527. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3528. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3529. Qcur = ggml_rope_ext(
  3530. ctx0, Qcur, inp_pos, rope_factors,
  3531. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3532. ext_factor, attn_factor, beta_fast, beta_slow
  3533. );
  3534. Kcur = ggml_rope_ext(
  3535. ctx0, Kcur, inp_pos, rope_factors,
  3536. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3537. ext_factor, attn_factor, beta_fast, beta_slow
  3538. );
  3539. cb(Qcur, "Qcur", il);
  3540. cb(Kcur, "Kcur", il);
  3541. cb(Vcur, "Vcur", il);
  3542. cur = build_attn(inp_attn, gf,
  3543. model.layers[il].wo, model.layers[il].bo,
  3544. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  3545. }
  3546. if (il == n_layer - 1) {
  3547. // skip computing output for unused tokens
  3548. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3549. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3550. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3551. }
  3552. // For Granite architecture
  3553. if (hparams.f_residual_scale) {
  3554. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3555. }
  3556. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3557. cb(ffn_inp, "ffn_inp", il);
  3558. // feed-forward network
  3559. if (model.layers[il].ffn_gate_inp == nullptr) {
  3560. cur = build_norm(ffn_inp,
  3561. model.layers[il].ffn_norm, NULL,
  3562. LLM_NORM_RMS, il);
  3563. cb(cur, "ffn_norm", il);
  3564. cur = build_ffn(cur,
  3565. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3566. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3567. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3568. NULL,
  3569. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3570. cb(cur, "ffn_out", il);
  3571. } else {
  3572. // MoE branch
  3573. cur = build_norm(ffn_inp,
  3574. model.layers[il].ffn_norm, NULL,
  3575. LLM_NORM_RMS, il);
  3576. cb(cur, "ffn_norm", il);
  3577. cur = build_moe_ffn(cur,
  3578. model.layers[il].ffn_gate_inp,
  3579. model.layers[il].ffn_up_exps,
  3580. model.layers[il].ffn_gate_exps,
  3581. model.layers[il].ffn_down_exps,
  3582. nullptr,
  3583. n_expert, n_expert_used,
  3584. LLM_FFN_SILU, true,
  3585. false, 0.0,
  3586. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3587. il);
  3588. cb(cur, "ffn_moe_out", il);
  3589. }
  3590. // For Granite architecture
  3591. if (hparams.f_residual_scale) {
  3592. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3593. }
  3594. cur = ggml_add(ctx0, cur, ffn_inp);
  3595. cb(cur, "ffn_out", il);
  3596. cur = build_cvec(cur, il);
  3597. cb(cur, "l_out", il);
  3598. // input for next layer
  3599. inpL = cur;
  3600. }
  3601. cur = inpL;
  3602. cur = build_norm(cur,
  3603. model.output_norm, NULL,
  3604. LLM_NORM_RMS, -1);
  3605. cb(cur, "result_norm", -1);
  3606. res->t_embd = cur;
  3607. // lm_head
  3608. cur = build_lora_mm(model.output, cur);
  3609. // For Granite architecture
  3610. if (hparams.f_logit_scale) {
  3611. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3612. }
  3613. cb(cur, "result_output", -1);
  3614. res->t_logits = cur;
  3615. ggml_build_forward_expand(gf, cur);
  3616. }
  3617. };
  3618. struct llm_build_deci : public llm_graph_context {
  3619. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3620. const int64_t n_embd_head = hparams.n_embd_head_v;
  3621. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3622. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3623. ggml_tensor * cur;
  3624. ggml_tensor * inpL;
  3625. inpL = build_inp_embd(model.tok_embd);
  3626. // inp_pos - contains the positions
  3627. ggml_tensor * inp_pos = build_inp_pos();
  3628. auto * inp_attn = build_attn_inp_kv_unified();
  3629. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3630. for (int il = 0; il < n_layer; ++il) {
  3631. ggml_tensor * inpSA = inpL;
  3632. const int64_t n_head_kv = hparams.n_head_kv(il);
  3633. const int64_t n_head = hparams.n_head(il);
  3634. if (n_head == 0) {
  3635. // attention-free layer of Llama-3_1-Nemotron-51B
  3636. cur = inpL;
  3637. } else {
  3638. // norm
  3639. cur = build_norm(inpL,
  3640. model.layers[il].attn_norm, NULL,
  3641. LLM_NORM_RMS, il);
  3642. cb(cur, "attn_norm", il);
  3643. }
  3644. if (n_head > 0 && n_head_kv == 0) {
  3645. // "linear attention" of Llama-3_1-Nemotron-51B
  3646. cur = build_lora_mm(model.layers[il].wo, cur);
  3647. cb(cur, "wo", il);
  3648. } else if (n_head > 0) {
  3649. // self-attention
  3650. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3651. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  3652. // compute Q and K and RoPE them
  3653. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3654. cb(Qcur, "Qcur", il);
  3655. if (model.layers[il].bq) {
  3656. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3657. cb(Qcur, "Qcur", il);
  3658. }
  3659. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3660. cb(Kcur, "Kcur", il);
  3661. if (model.layers[il].bk) {
  3662. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3663. cb(Kcur, "Kcur", il);
  3664. }
  3665. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3666. cb(Vcur, "Vcur", il);
  3667. if (model.layers[il].bv) {
  3668. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3669. cb(Vcur, "Vcur", il);
  3670. }
  3671. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3672. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3673. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3674. Qcur = ggml_rope_ext(
  3675. ctx0, Qcur, inp_pos, rope_factors,
  3676. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3677. ext_factor, attn_factor, beta_fast, beta_slow
  3678. );
  3679. Kcur = ggml_rope_ext(
  3680. ctx0, Kcur, inp_pos, rope_factors,
  3681. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3682. ext_factor, attn_factor, beta_fast, beta_slow
  3683. );
  3684. cb(Qcur, "Qcur", il);
  3685. cb(Kcur, "Kcur", il);
  3686. cb(Vcur, "Vcur", il);
  3687. cur = build_attn(inp_attn, gf,
  3688. model.layers[il].wo, model.layers[il].bo,
  3689. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  3690. }
  3691. if (il == n_layer - 1) {
  3692. // skip computing output for unused tokens
  3693. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3694. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3695. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3696. }
  3697. // For Granite architecture
  3698. if (hparams.f_residual_scale) {
  3699. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3700. }
  3701. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  3702. ggml_tensor * ffn_inp = cur;
  3703. if (n_head > 0) {
  3704. ffn_inp = ggml_add(ctx0, cur, inpSA);
  3705. cb(ffn_inp, "ffn_inp", il);
  3706. }
  3707. // feed-forward network
  3708. if (model.layers[il].ffn_gate_inp == nullptr) {
  3709. cur = build_norm(ffn_inp,
  3710. model.layers[il].ffn_norm, NULL,
  3711. LLM_NORM_RMS, il);
  3712. cb(cur, "ffn_norm", il);
  3713. cur = build_ffn(cur,
  3714. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3715. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3716. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3717. NULL,
  3718. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3719. cb(cur, "ffn_out", il);
  3720. }
  3721. // For Granite architecture
  3722. if (hparams.f_residual_scale) {
  3723. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  3724. }
  3725. cur = ggml_add(ctx0, cur, ffn_inp);
  3726. cb(cur, "ffn_out", il);
  3727. cur = build_cvec(cur, il);
  3728. cb(cur, "l_out", il);
  3729. // input for next layer
  3730. inpL = cur;
  3731. }
  3732. cur = inpL;
  3733. cur = build_norm(cur,
  3734. model.output_norm, NULL,
  3735. LLM_NORM_RMS, -1);
  3736. cb(cur, "result_norm", -1);
  3737. res->t_embd = cur;
  3738. // lm_head
  3739. cur = build_lora_mm(model.output, cur);
  3740. // For Granite architecture
  3741. if (hparams.f_logit_scale) {
  3742. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  3743. }
  3744. cb(cur, "result_output", -1);
  3745. res->t_logits = cur;
  3746. ggml_build_forward_expand(gf, cur);
  3747. }
  3748. };
  3749. struct llm_build_baichuan : public llm_graph_context {
  3750. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3751. const int64_t n_embd_head = hparams.n_embd_head_v;
  3752. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3753. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3754. ggml_tensor * cur;
  3755. ggml_tensor * inpL;
  3756. inpL = build_inp_embd(model.tok_embd);
  3757. // inp_pos - contains the positions
  3758. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  3759. auto * inp_attn = build_attn_inp_kv_unified();
  3760. for (int il = 0; il < n_layer; ++il) {
  3761. ggml_tensor * inpSA = inpL;
  3762. cur = build_norm(inpL,
  3763. model.layers[il].attn_norm, NULL,
  3764. LLM_NORM_RMS, il);
  3765. cb(cur, "attn_norm", il);
  3766. // self-attention
  3767. {
  3768. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3769. cb(Qcur, "Qcur", il);
  3770. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3771. cb(Kcur, "Kcur", il);
  3772. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3773. cb(Vcur, "Vcur", il);
  3774. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3775. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3776. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3777. switch (model.type) {
  3778. case LLM_TYPE_7B:
  3779. Qcur = ggml_rope_ext(
  3780. ctx0, Qcur, inp_pos, nullptr,
  3781. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3782. ext_factor, attn_factor, beta_fast, beta_slow
  3783. );
  3784. Kcur = ggml_rope_ext(
  3785. ctx0, Kcur, inp_pos, nullptr,
  3786. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3787. ext_factor, attn_factor, beta_fast, beta_slow
  3788. );
  3789. break;
  3790. case LLM_TYPE_13B:
  3791. break;
  3792. default:
  3793. GGML_ABORT("fatal error");
  3794. }
  3795. cb(Qcur, "Qcur", il);
  3796. cb(Kcur, "Kcur", il);
  3797. cb(Vcur, "Vcur", il);
  3798. cur = build_attn(inp_attn, gf,
  3799. model.layers[il].wo, NULL,
  3800. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3801. }
  3802. if (il == n_layer - 1) {
  3803. // skip computing output for unused tokens
  3804. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3805. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3806. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3807. }
  3808. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3809. cb(ffn_inp, "ffn_inp", il);
  3810. // feed-forward network
  3811. {
  3812. cur = build_norm(ffn_inp,
  3813. model.layers[il].ffn_norm, NULL,
  3814. LLM_NORM_RMS, il);
  3815. cb(cur, "ffn_norm", il);
  3816. cur = build_ffn(cur,
  3817. model.layers[il].ffn_up, NULL, NULL,
  3818. model.layers[il].ffn_gate, NULL, NULL,
  3819. model.layers[il].ffn_down, NULL, NULL,
  3820. NULL,
  3821. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3822. cb(cur, "ffn_out", il);
  3823. }
  3824. cur = ggml_add(ctx0, cur, ffn_inp);
  3825. cur = build_cvec(cur, il);
  3826. cb(cur, "l_out", il);
  3827. // input for next layer
  3828. inpL = cur;
  3829. }
  3830. cur = inpL;
  3831. cur = build_norm(cur,
  3832. model.output_norm, NULL,
  3833. LLM_NORM_RMS, -1);
  3834. cb(cur, "result_norm", -1);
  3835. res->t_embd = cur;
  3836. // lm_head
  3837. cur = build_lora_mm(model.output, cur);
  3838. cb(cur, "result_output", -1);
  3839. res->t_logits = cur;
  3840. ggml_build_forward_expand(gf, cur);
  3841. }
  3842. };
  3843. struct llm_build_xverse : public llm_graph_context {
  3844. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3845. const int64_t n_embd_head = hparams.n_embd_head_v;
  3846. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3847. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3848. ggml_tensor * cur;
  3849. ggml_tensor * inpL;
  3850. inpL = build_inp_embd(model.tok_embd);
  3851. // inp_pos - contains the positions
  3852. ggml_tensor * inp_pos = build_inp_pos();
  3853. auto * inp_attn = build_attn_inp_kv_unified();
  3854. for (int il = 0; il < n_layer; ++il) {
  3855. ggml_tensor * inpSA = inpL;
  3856. cur = build_norm(inpL,
  3857. model.layers[il].attn_norm, NULL,
  3858. LLM_NORM_RMS, il);
  3859. cb(cur, "attn_norm", il);
  3860. // self-attention
  3861. {
  3862. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3863. cb(Qcur, "Qcur", il);
  3864. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3865. cb(Kcur, "Kcur", il);
  3866. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3867. cb(Vcur, "Vcur", il);
  3868. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3869. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3870. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3871. Qcur = ggml_rope_ext(
  3872. ctx0, Qcur, inp_pos, nullptr,
  3873. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3874. ext_factor, attn_factor, beta_fast, beta_slow
  3875. );
  3876. Kcur = ggml_rope_ext(
  3877. ctx0, Kcur, inp_pos, nullptr,
  3878. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3879. ext_factor, attn_factor, beta_fast, beta_slow
  3880. );
  3881. cb(Qcur, "Qcur", il);
  3882. cb(Kcur, "Kcur", il);
  3883. cb(Vcur, "Vcur", il);
  3884. cur = build_attn(inp_attn, gf,
  3885. model.layers[il].wo, NULL,
  3886. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3887. }
  3888. if (il == n_layer - 1) {
  3889. // skip computing output for unused tokens
  3890. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3891. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3892. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3893. }
  3894. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3895. cb(ffn_inp, "ffn_inp", il);
  3896. // feed-forward network
  3897. {
  3898. cur = build_norm(ffn_inp,
  3899. model.layers[il].ffn_norm, NULL,
  3900. LLM_NORM_RMS, il);
  3901. cb(cur, "ffn_norm", il);
  3902. cur = build_ffn(cur,
  3903. model.layers[il].ffn_up, NULL, NULL,
  3904. model.layers[il].ffn_gate, NULL, NULL,
  3905. model.layers[il].ffn_down, NULL, NULL,
  3906. NULL,
  3907. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3908. cb(cur, "ffn_out", il);
  3909. }
  3910. cur = ggml_add(ctx0, cur, ffn_inp);
  3911. cur = build_cvec(cur, il);
  3912. cb(cur, "l_out", il);
  3913. // input for next layer
  3914. inpL = cur;
  3915. }
  3916. cur = inpL;
  3917. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  3918. cb(cur, "result_norm", -1);
  3919. res->t_embd = cur;
  3920. // lm_head
  3921. cur = build_lora_mm(model.output, cur);
  3922. cb(cur, "result_output", -1);
  3923. res->t_logits = cur;
  3924. ggml_build_forward_expand(gf, cur);
  3925. }
  3926. };
  3927. struct llm_build_falcon : public llm_graph_context {
  3928. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3929. const int64_t n_embd_head = hparams.n_embd_head_v;
  3930. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  3931. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3932. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3933. ggml_tensor * cur;
  3934. ggml_tensor * inpL;
  3935. inpL = build_inp_embd(model.tok_embd);
  3936. // inp_pos - contains the positions
  3937. ggml_tensor * inp_pos = build_inp_pos();
  3938. auto * inp_attn = build_attn_inp_kv_unified();
  3939. for (int il = 0; il < n_layer; ++il) {
  3940. ggml_tensor * attn_norm;
  3941. attn_norm = build_norm(inpL,
  3942. model.layers[il].attn_norm,
  3943. model.layers[il].attn_norm_b,
  3944. LLM_NORM, il);
  3945. cb(attn_norm, "attn_norm", il);
  3946. // self-attention
  3947. {
  3948. if (model.layers[il].attn_norm_2) {
  3949. // Falcon-40B
  3950. cur = build_norm(inpL,
  3951. model.layers[il].attn_norm_2,
  3952. model.layers[il].attn_norm_2_b,
  3953. LLM_NORM, il);
  3954. cb(cur, "attn_norm_2", il);
  3955. } else {
  3956. cur = attn_norm;
  3957. }
  3958. cur = build_lora_mm(model.layers[il].wqkv, cur);
  3959. cb(cur, "wqkv", il);
  3960. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3961. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3962. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3963. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3964. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3965. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3966. // using mode = 2 for neox mode
  3967. Qcur = ggml_rope_ext(
  3968. ctx0, Qcur, inp_pos, nullptr,
  3969. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3970. ext_factor, attn_factor, beta_fast, beta_slow
  3971. );
  3972. Kcur = ggml_rope_ext(
  3973. ctx0, Kcur, inp_pos, nullptr,
  3974. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3975. ext_factor, attn_factor, beta_fast, beta_slow
  3976. );
  3977. cb(Qcur, "Qcur", il);
  3978. cb(Kcur, "Kcur", il);
  3979. cb(Vcur, "Vcur", il);
  3980. cur = build_attn(inp_attn, gf,
  3981. model.layers[il].wo, NULL,
  3982. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  3983. }
  3984. if (il == n_layer - 1) {
  3985. // skip computing output for unused tokens
  3986. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3987. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3988. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  3989. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  3990. }
  3991. ggml_tensor * ffn_inp = cur;
  3992. // feed forward
  3993. {
  3994. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  3995. model.layers[il].ffn_up, NULL, NULL,
  3996. NULL, NULL, NULL,
  3997. model.layers[il].ffn_down, NULL, NULL,
  3998. NULL,
  3999. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4000. cb(cur, "ffn_out", il);
  4001. }
  4002. cur = ggml_add(ctx0, cur, ffn_inp);
  4003. cur = ggml_add(ctx0, cur, inpL);
  4004. cur = build_cvec(cur, il);
  4005. cb(cur, "l_out", il);
  4006. // input for next layer
  4007. inpL = cur;
  4008. }
  4009. cur = inpL;
  4010. // norm
  4011. cur = build_norm(cur,
  4012. model.output_norm,
  4013. model.output_norm_b,
  4014. LLM_NORM, -1);
  4015. cb(cur, "result_norm", -1);
  4016. res->t_embd = cur;
  4017. cur = build_lora_mm(model.output, cur);
  4018. cb(cur, "result_output", -1);
  4019. res->t_logits = cur;
  4020. ggml_build_forward_expand(gf, cur);
  4021. }
  4022. };
  4023. struct llm_build_grok : public llm_graph_context {
  4024. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4025. const int64_t n_embd_head = hparams.n_embd_head_v;
  4026. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4027. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4028. ggml_tensor * cur;
  4029. ggml_tensor * inpL;
  4030. inpL = build_inp_embd(model.tok_embd);
  4031. // multiply by embedding_multiplier_scale of 78.38367176906169
  4032. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4033. // inp_pos - contains the positions
  4034. ggml_tensor * inp_pos = build_inp_pos();
  4035. auto * inp_attn = build_attn_inp_kv_unified();
  4036. for (int il = 0; il < n_layer; ++il) {
  4037. ggml_tensor * inpSA = inpL;
  4038. // norm
  4039. cur = build_norm(inpL,
  4040. model.layers[il].attn_norm, NULL,
  4041. LLM_NORM_RMS, il);
  4042. cb(cur, "attn_norm", il);
  4043. // self-attention
  4044. {
  4045. // compute Q and K and RoPE them
  4046. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4047. cb(Qcur, "Qcur", il);
  4048. if (model.layers[il].bq) {
  4049. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4050. cb(Qcur, "Qcur", il);
  4051. }
  4052. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4053. cb(Kcur, "Kcur", il);
  4054. if (model.layers[il].bk) {
  4055. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4056. cb(Kcur, "Kcur", il);
  4057. }
  4058. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4059. cb(Vcur, "Vcur", il);
  4060. if (model.layers[il].bv) {
  4061. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4062. cb(Vcur, "Vcur", il);
  4063. }
  4064. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4065. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4066. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4067. Qcur = ggml_rope_ext(
  4068. ctx0, Qcur, inp_pos, nullptr,
  4069. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4070. ext_factor, attn_factor, beta_fast, beta_slow
  4071. );
  4072. Kcur = ggml_rope_ext(
  4073. ctx0, Kcur, inp_pos, nullptr,
  4074. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4075. ext_factor, attn_factor, beta_fast, beta_slow
  4076. );
  4077. cb(Qcur, "Qcur", il);
  4078. cb(Kcur, "Kcur", il);
  4079. cb(Vcur, "Vcur", il);
  4080. cur = build_attn(inp_attn, gf,
  4081. model.layers[il].wo, model.layers[il].bo,
  4082. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  4083. }
  4084. if (il == n_layer - 1) {
  4085. // skip computing output for unused tokens
  4086. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4087. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4088. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4089. }
  4090. // Grok
  4091. // if attn_out_norm is present then apply it before adding the input
  4092. if (model.layers[il].attn_out_norm) {
  4093. cur = build_norm(cur,
  4094. model.layers[il].attn_out_norm, NULL,
  4095. LLM_NORM_RMS, il);
  4096. cb(cur, "attn_out_norm", il);
  4097. }
  4098. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4099. cb(ffn_inp, "ffn_inp", il);
  4100. // feed-forward network
  4101. // MoE branch
  4102. cur = build_norm(ffn_inp,
  4103. model.layers[il].ffn_norm, NULL,
  4104. LLM_NORM_RMS, il);
  4105. cb(cur, "ffn_norm", il);
  4106. cur = build_moe_ffn(cur,
  4107. model.layers[il].ffn_gate_inp,
  4108. model.layers[il].ffn_up_exps,
  4109. model.layers[il].ffn_gate_exps,
  4110. model.layers[il].ffn_down_exps,
  4111. nullptr,
  4112. n_expert, n_expert_used,
  4113. LLM_FFN_GELU, true,
  4114. false, 0.0,
  4115. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4116. il);
  4117. cb(cur, "ffn_moe_out", il);
  4118. // Grok
  4119. // if layer_out_norm is present then apply it before adding the input
  4120. // Idea: maybe ffn_out_norm is a better name
  4121. if (model.layers[il].layer_out_norm) {
  4122. cur = build_norm(cur,
  4123. model.layers[il].layer_out_norm, NULL,
  4124. LLM_NORM_RMS, il);
  4125. cb(cur, "layer_out_norm", il);
  4126. }
  4127. cur = ggml_add(ctx0, cur, ffn_inp);
  4128. cb(cur, "ffn_out", il);
  4129. cur = build_cvec(cur, il);
  4130. cb(cur, "l_out", il);
  4131. // input for next layer
  4132. inpL = cur;
  4133. }
  4134. cur = inpL;
  4135. cur = build_norm(cur,
  4136. model.output_norm, NULL,
  4137. LLM_NORM_RMS, -1);
  4138. cb(cur, "result_norm", -1);
  4139. res->t_embd = cur;
  4140. // lm_head
  4141. cur = build_lora_mm(model.output, cur);
  4142. // Grok
  4143. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4144. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4145. cb(cur, "result_output", -1);
  4146. res->t_logits = cur;
  4147. ggml_build_forward_expand(gf, cur);
  4148. }
  4149. };
  4150. struct llm_build_dbrx : public llm_graph_context {
  4151. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4152. const int64_t n_embd_head = hparams.n_embd_head_v;
  4153. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4154. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4155. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4156. ggml_tensor * cur;
  4157. ggml_tensor * inpL;
  4158. inpL = build_inp_embd(model.tok_embd);
  4159. // inp_pos - contains the positions
  4160. ggml_tensor * inp_pos = build_inp_pos();
  4161. auto * inp_attn = build_attn_inp_kv_unified();
  4162. for (int il = 0; il < n_layer; ++il) {
  4163. ggml_tensor * inpSA = inpL;
  4164. // norm
  4165. cur = build_norm(inpL,
  4166. model.layers[il].attn_norm, NULL,
  4167. LLM_NORM, il);
  4168. cb(cur, "attn_norm", il);
  4169. // self-attention
  4170. {
  4171. ggml_tensor * Qcur = nullptr;
  4172. ggml_tensor * Kcur = nullptr;
  4173. ggml_tensor * Vcur = nullptr;
  4174. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4175. cb(cur, "wqkv", il);
  4176. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4177. cb(cur, "wqkv_clamped", il);
  4178. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4179. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4180. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4181. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4182. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4183. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4184. Qcur = ggml_rope_ext(
  4185. ctx0, Qcur, inp_pos, nullptr,
  4186. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4187. ext_factor, attn_factor, beta_fast, beta_slow
  4188. );
  4189. Kcur = ggml_rope_ext(
  4190. ctx0, Kcur, inp_pos, nullptr,
  4191. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4192. ext_factor, attn_factor, beta_fast, beta_slow
  4193. );
  4194. cb(Qcur, "Qcur", il);
  4195. cb(Kcur, "Kcur", il);
  4196. cb(Vcur, "Vcur", il);
  4197. cur = build_attn(inp_attn, gf,
  4198. model.layers[il].wo, NULL,
  4199. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4200. }
  4201. if (il == n_layer - 1) {
  4202. // skip computing output for unused tokens
  4203. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4204. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4205. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4206. }
  4207. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4208. cb(ffn_inp, "ffn_inp", il);
  4209. // feed-forward network
  4210. // MoE branch
  4211. cur = build_norm(ffn_inp,
  4212. model.layers[il].attn_out_norm, NULL,
  4213. LLM_NORM, il);
  4214. cb(cur, "attn_out_norm", il);
  4215. cur = build_moe_ffn(cur,
  4216. model.layers[il].ffn_gate_inp,
  4217. model.layers[il].ffn_up_exps,
  4218. model.layers[il].ffn_gate_exps,
  4219. model.layers[il].ffn_down_exps,
  4220. nullptr,
  4221. n_expert, n_expert_used,
  4222. LLM_FFN_SILU, true,
  4223. false, 0.0,
  4224. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4225. il);
  4226. cb(cur, "ffn_moe_out", il);
  4227. cur = ggml_add(ctx0, cur, ffn_inp);
  4228. cb(cur, "ffn_out", il);
  4229. cur = build_cvec(cur, il);
  4230. cb(cur, "l_out", il);
  4231. // input for next layer
  4232. inpL = cur;
  4233. }
  4234. cur = inpL;
  4235. cur = build_norm(cur,
  4236. model.output_norm, NULL,
  4237. LLM_NORM, -1);
  4238. cb(cur, "result_norm", -1);
  4239. res->t_embd = cur;
  4240. // lm_head
  4241. cur = build_lora_mm(model.output, cur);
  4242. cb(cur, "result_output", -1);
  4243. res->t_logits = cur;
  4244. ggml_build_forward_expand(gf, cur);
  4245. }
  4246. };
  4247. struct llm_build_starcoder : public llm_graph_context {
  4248. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4249. const int64_t n_embd_head = hparams.n_embd_head_v;
  4250. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4251. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4252. ggml_tensor * cur;
  4253. ggml_tensor * inpL;
  4254. inpL = build_inp_embd(model.tok_embd);
  4255. // inp_pos - contains the positions
  4256. ggml_tensor * inp_pos = build_inp_pos();
  4257. auto * inp_attn = build_attn_inp_kv_unified();
  4258. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4259. cb(pos, "pos_embd", -1);
  4260. inpL = ggml_add(ctx0, inpL, pos);
  4261. cb(inpL, "inpL", -1);
  4262. for (int il = 0; il < n_layer; ++il) {
  4263. cur = build_norm(inpL,
  4264. model.layers[il].attn_norm,
  4265. model.layers[il].attn_norm_b,
  4266. LLM_NORM, il);
  4267. cb(cur, "attn_norm", il);
  4268. // self-attention
  4269. {
  4270. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4271. cb(cur, "wqkv", il);
  4272. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4273. cb(cur, "bqkv", il);
  4274. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4275. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4276. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4277. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4278. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4279. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4280. cb(Qcur, "Qcur", il);
  4281. cb(Kcur, "Kcur", il);
  4282. cb(Vcur, "Vcur", il);
  4283. cur = build_attn(inp_attn, gf,
  4284. model.layers[il].wo, model.layers[il].bo,
  4285. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4286. }
  4287. if (il == n_layer - 1) {
  4288. // skip computing output for unused tokens
  4289. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4290. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4291. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4292. }
  4293. // add the input
  4294. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4295. cb(ffn_inp, "ffn_inp", il);
  4296. // FF
  4297. {
  4298. cur = build_norm(ffn_inp,
  4299. model.layers[il].ffn_norm,
  4300. model.layers[il].ffn_norm_b,
  4301. LLM_NORM, il);
  4302. cb(cur, "ffn_norm", il);
  4303. cur = build_ffn(cur,
  4304. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4305. NULL, NULL, NULL,
  4306. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4307. NULL,
  4308. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4309. cb(cur, "ffn_out", il);
  4310. }
  4311. cur = ggml_add(ctx0, cur, ffn_inp);
  4312. cur = build_cvec(cur, il);
  4313. cb(cur, "l_out", il);
  4314. // input for next layer
  4315. inpL = cur;
  4316. }
  4317. cur = build_norm(inpL,
  4318. model.output_norm,
  4319. model.output_norm_b,
  4320. LLM_NORM, -1);
  4321. cb(cur, "result_norm", -1);
  4322. res->t_embd = cur;
  4323. cur = build_lora_mm(model.output, cur);
  4324. cb(cur, "result_output", -1);
  4325. res->t_logits = cur;
  4326. ggml_build_forward_expand(gf, cur);
  4327. }
  4328. };
  4329. struct llm_build_refact : public llm_graph_context {
  4330. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4331. const int64_t n_embd_head = hparams.n_embd_head_v;
  4332. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4333. ggml_tensor * cur;
  4334. ggml_tensor * inpL;
  4335. inpL = build_inp_embd(model.tok_embd);
  4336. auto * inp_attn = build_attn_inp_kv_unified();
  4337. for (int il = 0; il < n_layer; ++il) {
  4338. ggml_tensor * inpSA = inpL;
  4339. cur = build_norm(inpL,
  4340. model.layers[il].attn_norm, NULL,
  4341. LLM_NORM_RMS, il);
  4342. cb(cur, "attn_norm", il);
  4343. // self-attention
  4344. {
  4345. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4346. cb(Qcur, "Qcur", il);
  4347. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4348. cb(Kcur, "Kcur", il);
  4349. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4350. cb(Vcur, "Vcur", il);
  4351. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4352. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4353. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4354. cb(Qcur, "Qcur", il);
  4355. cb(Kcur, "Kcur", il);
  4356. cb(Vcur, "Vcur", il);
  4357. cur = build_attn(inp_attn, gf,
  4358. model.layers[il].wo, NULL,
  4359. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4360. }
  4361. if (il == n_layer - 1) {
  4362. // skip computing output for unused tokens
  4363. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4364. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4365. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4366. }
  4367. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4368. cb(ffn_inp, "ffn_inp", il);
  4369. // feed-forward network
  4370. {
  4371. cur = build_norm(ffn_inp,
  4372. model.layers[il].ffn_norm, NULL,
  4373. LLM_NORM_RMS, il);
  4374. cb(cur, "ffn_norm", il);
  4375. cur = build_ffn(cur,
  4376. model.layers[il].ffn_up, NULL, NULL,
  4377. model.layers[il].ffn_gate, NULL, NULL,
  4378. model.layers[il].ffn_down, NULL, NULL,
  4379. NULL,
  4380. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4381. cb(cur, "ffn_out", il);
  4382. }
  4383. cur = ggml_add(ctx0, cur, ffn_inp);
  4384. cur = build_cvec(cur, il);
  4385. cb(cur, "l_out", il);
  4386. // input for next layer
  4387. inpL = cur;
  4388. }
  4389. cur = inpL;
  4390. cur = build_norm(cur,
  4391. model.output_norm, NULL,
  4392. LLM_NORM_RMS, -1);
  4393. cb(cur, "result_norm", -1);
  4394. res->t_embd = cur;
  4395. // lm_head
  4396. cur = build_lora_mm(model.output, cur);
  4397. cb(cur, "result_output", -1);
  4398. res->t_logits = cur;
  4399. ggml_build_forward_expand(gf, cur);
  4400. }
  4401. };
  4402. struct llm_build_bert : public llm_graph_context {
  4403. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4404. const int64_t n_embd_head = hparams.n_embd_head_v;
  4405. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4406. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4407. ggml_tensor * cur;
  4408. ggml_tensor * inpL;
  4409. ggml_tensor * inp_pos = nullptr;
  4410. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4411. inp_pos = build_inp_pos();
  4412. }
  4413. // construct input embeddings (token, type, position)
  4414. inpL = build_inp_embd(model.tok_embd);
  4415. // token types are hardcoded to zero ("Sentence A")
  4416. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4417. inpL = ggml_add(ctx0, inpL, type_row0);
  4418. if (model.arch == LLM_ARCH_BERT) {
  4419. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4420. }
  4421. cb(inpL, "inp_embd", -1);
  4422. // embed layer norm
  4423. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4424. cb(inpL, "inp_norm", -1);
  4425. auto * inp_attn = build_attn_inp_no_cache();
  4426. // iterate layers
  4427. for (int il = 0; il < n_layer; ++il) {
  4428. ggml_tensor * cur = inpL;
  4429. ggml_tensor * Qcur;
  4430. ggml_tensor * Kcur;
  4431. ggml_tensor * Vcur;
  4432. // self-attention
  4433. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  4434. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4435. if (model.layers[il].attn_q_norm) {
  4436. Qcur = build_norm(Qcur,
  4437. model.layers[il].attn_q_norm,
  4438. model.layers[il].attn_q_norm_b,
  4439. LLM_NORM, il);
  4440. }
  4441. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4442. if (model.layers[il].attn_k_norm) {
  4443. Kcur = build_norm(Kcur,
  4444. model.layers[il].attn_k_norm,
  4445. model.layers[il].attn_k_norm_b,
  4446. LLM_NORM, il);
  4447. }
  4448. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4449. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4450. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4451. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4452. } else {
  4453. // compute Q and K and RoPE them
  4454. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4455. cb(cur, "wqkv", il);
  4456. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4457. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4458. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4459. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4460. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4461. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4462. Qcur = ggml_rope_ext(
  4463. ctx0, Qcur, inp_pos, nullptr,
  4464. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4465. ext_factor, attn_factor, beta_fast, beta_slow
  4466. );
  4467. Kcur = ggml_rope_ext(
  4468. ctx0, Kcur, inp_pos, nullptr,
  4469. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4470. ext_factor, attn_factor, beta_fast, beta_slow
  4471. );
  4472. }
  4473. cb(Qcur, "Qcur", il);
  4474. cb(Kcur, "Kcur", il);
  4475. cb(Vcur, "Vcur", il);
  4476. cur = build_attn(inp_attn, gf,
  4477. model.layers[il].wo, model.layers[il].bo,
  4478. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4479. cb(cur, "kqv_out", il);
  4480. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4481. // skip computing output for unused tokens
  4482. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4483. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4484. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4485. }
  4486. // re-add the layer input
  4487. cur = ggml_add(ctx0, cur, inpL);
  4488. // attention layer norm
  4489. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4490. if (model.layers[il].attn_norm_2 != nullptr) {
  4491. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4492. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4493. }
  4494. ggml_tensor * ffn_inp = cur;
  4495. cb(ffn_inp, "ffn_inp", il);
  4496. // feed-forward network
  4497. if (model.arch == LLM_ARCH_BERT) {
  4498. cur = build_ffn(cur,
  4499. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4500. NULL, NULL, NULL,
  4501. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4502. NULL,
  4503. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4504. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4505. cur = build_ffn(cur,
  4506. model.layers[il].ffn_up, NULL, NULL,
  4507. model.layers[il].ffn_gate, NULL, NULL,
  4508. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4509. NULL,
  4510. LLM_FFN_GELU, LLM_FFN_PAR, il);
  4511. } else {
  4512. cur = build_ffn(cur,
  4513. model.layers[il].ffn_up, NULL, NULL,
  4514. model.layers[il].ffn_gate, NULL, NULL,
  4515. model.layers[il].ffn_down, NULL, NULL,
  4516. NULL,
  4517. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4518. }
  4519. cb(cur, "ffn_out", il);
  4520. // attentions bypass the intermediate layer
  4521. cur = ggml_add(ctx0, cur, ffn_inp);
  4522. // output layer norm
  4523. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4524. // input for next layer
  4525. inpL = cur;
  4526. }
  4527. cur = inpL;
  4528. cb(cur, "result_embd", -1);
  4529. res->t_embd = cur;
  4530. ggml_build_forward_expand(gf, cur);
  4531. }
  4532. };
  4533. struct llm_build_bloom : public llm_graph_context {
  4534. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4535. const int64_t n_embd_head = hparams.n_embd_head_v;
  4536. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4537. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4538. ggml_tensor * cur;
  4539. ggml_tensor * inpL;
  4540. inpL = build_inp_embd(model.tok_embd);
  4541. auto * inp_attn = build_attn_inp_kv_unified();
  4542. inpL = build_norm(inpL,
  4543. model.tok_norm,
  4544. model.tok_norm_b,
  4545. LLM_NORM, -1);
  4546. cb(inpL, "inp_norm", -1);
  4547. for (int il = 0; il < n_layer; ++il) {
  4548. cur = build_norm(inpL,
  4549. model.layers[il].attn_norm,
  4550. model.layers[il].attn_norm_b,
  4551. LLM_NORM, il);
  4552. cb(cur, "attn_norm", il);
  4553. // self-attention
  4554. {
  4555. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4556. cb(cur, "wqkv", il);
  4557. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4558. cb(cur, "bqkv", il);
  4559. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4560. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4561. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4562. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4563. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4564. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4565. cb(Qcur, "Qcur", il);
  4566. cb(Kcur, "Kcur", il);
  4567. cb(Vcur, "Vcur", il);
  4568. cur = build_attn(inp_attn, gf,
  4569. model.layers[il].wo, model.layers[il].bo,
  4570. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4571. }
  4572. if (il == n_layer - 1) {
  4573. // skip computing output for unused tokens
  4574. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4575. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4576. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4577. }
  4578. // Add the input
  4579. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4580. cb(ffn_inp, "ffn_inp", il);
  4581. // FF
  4582. {
  4583. cur = build_norm(ffn_inp,
  4584. model.layers[il].ffn_norm,
  4585. model.layers[il].ffn_norm_b,
  4586. LLM_NORM, il);
  4587. cb(cur, "ffn_norm", il);
  4588. cur = build_ffn(cur,
  4589. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4590. NULL, NULL, NULL,
  4591. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4592. NULL,
  4593. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4594. cb(cur, "ffn_out", il);
  4595. }
  4596. cur = ggml_add(ctx0, cur, ffn_inp);
  4597. cur = build_cvec(cur, il);
  4598. cb(cur, "l_out", il);
  4599. // input for next layer
  4600. inpL = cur;
  4601. }
  4602. cur = build_norm(inpL,
  4603. model.output_norm,
  4604. model.output_norm_b,
  4605. LLM_NORM, -1);
  4606. cb(cur, "result_norm", -1);
  4607. res->t_embd = cur;
  4608. cur = build_lora_mm(model.output, cur);
  4609. cb(cur, "result_output", -1);
  4610. res->t_logits = cur;
  4611. ggml_build_forward_expand(gf, cur);
  4612. }
  4613. };
  4614. struct llm_build_mpt : public llm_graph_context {
  4615. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4616. const int64_t n_embd_head = hparams.n_embd_head_v;
  4617. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4618. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4619. ggml_tensor * cur;
  4620. ggml_tensor * pos;
  4621. ggml_tensor * inpL;
  4622. inpL = build_inp_embd(model.tok_embd);
  4623. auto * inp_attn = build_attn_inp_kv_unified();
  4624. if (model.pos_embd) {
  4625. // inp_pos - contains the positions
  4626. ggml_tensor * inp_pos = build_inp_pos();
  4627. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4628. cb(pos, "pos_embd", -1);
  4629. inpL = ggml_add(ctx0, inpL, pos);
  4630. cb(inpL, "inpL", -1);
  4631. }
  4632. for (int il = 0; il < n_layer; ++il) {
  4633. ggml_tensor * attn_norm;
  4634. attn_norm = build_norm(inpL,
  4635. model.layers[il].attn_norm,
  4636. model.layers[il].attn_norm_b,
  4637. LLM_NORM, il);
  4638. cb(attn_norm, "attn_norm", il);
  4639. // self-attention
  4640. {
  4641. cur = attn_norm;
  4642. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4643. cb(cur, "wqkv", il);
  4644. if (model.layers[il].bqkv){
  4645. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4646. cb(cur, "bqkv", il);
  4647. }
  4648. if (hparams.f_clamp_kqv > 0.0f) {
  4649. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4650. cb(cur, "wqkv_clamped", il);
  4651. }
  4652. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4653. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4654. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4655. cb(Qcur, "Qcur", il);
  4656. cb(Kcur, "Kcur", il);
  4657. cb(Vcur, "Vcur", il);
  4658. // Q/K Layernorm
  4659. if (model.layers[il].attn_q_norm) {
  4660. Qcur = build_norm(Qcur,
  4661. model.layers[il].attn_q_norm,
  4662. model.layers[il].attn_q_norm_b,
  4663. LLM_NORM, il);
  4664. cb(Qcur, "Qcur", il);
  4665. Kcur = build_norm(Kcur,
  4666. model.layers[il].attn_k_norm,
  4667. model.layers[il].attn_k_norm_b,
  4668. LLM_NORM, il);
  4669. cb(Kcur, "Kcur", il);
  4670. }
  4671. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4672. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4673. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4674. cb(Qcur, "Qcur", il);
  4675. cb(Kcur, "Kcur", il);
  4676. cb(Vcur, "Vcur", il);
  4677. cur = build_attn(inp_attn, gf,
  4678. model.layers[il].wo, model.layers[il].bo,
  4679. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4680. }
  4681. if (il == n_layer - 1) {
  4682. // skip computing output for unused tokens
  4683. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4684. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4685. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4686. }
  4687. // Add the input
  4688. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4689. cb(ffn_inp, "ffn_inp", il);
  4690. // feed forward
  4691. {
  4692. cur = build_norm(ffn_inp,
  4693. model.layers[il].ffn_norm,
  4694. model.layers[il].ffn_norm_b,
  4695. LLM_NORM, il);
  4696. cb(cur, "ffn_norm", il);
  4697. cur = build_ffn(cur,
  4698. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4699. NULL, NULL, NULL,
  4700. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4701. model.layers[il].ffn_act,
  4702. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4703. cb(cur, "ffn_out", il);
  4704. }
  4705. cur = ggml_add(ctx0, cur, ffn_inp);
  4706. cur = build_cvec(cur, il);
  4707. cb(cur, "l_out", il);
  4708. // input for next layer
  4709. inpL = cur;
  4710. }
  4711. cur = inpL;
  4712. cur = build_norm(cur,
  4713. model.output_norm,
  4714. model.output_norm_b,
  4715. LLM_NORM, -1);
  4716. cb(cur, "result_norm", -1);
  4717. res->t_embd = cur;
  4718. cur = build_lora_mm(model.output, cur);
  4719. cb(cur, "result_output", -1);
  4720. res->t_logits = cur;
  4721. ggml_build_forward_expand(gf, cur);
  4722. }
  4723. };
  4724. struct llm_build_stablelm : public llm_graph_context {
  4725. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4726. const int64_t n_embd_head = hparams.n_embd_head_v;
  4727. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4728. ggml_tensor * cur;
  4729. ggml_tensor * inpL;
  4730. inpL = build_inp_embd(model.tok_embd);
  4731. // inp_pos - contains the positions
  4732. ggml_tensor * inp_pos = build_inp_pos();
  4733. auto * inp_attn = build_attn_inp_kv_unified();
  4734. for (int il = 0; il < n_layer; ++il) {
  4735. // norm
  4736. cur = build_norm(inpL,
  4737. model.layers[il].attn_norm,
  4738. model.layers[il].attn_norm_b,
  4739. LLM_NORM, il);
  4740. cb(cur, "attn_norm", il);
  4741. ggml_tensor * inpSA = cur;
  4742. // self-attention
  4743. {
  4744. // compute Q and K and RoPE them
  4745. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4746. cb(Qcur, "Qcur", il);
  4747. if (model.layers[il].bq) {
  4748. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4749. cb(Qcur, "Qcur", il);
  4750. }
  4751. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4752. cb(Kcur, "Kcur", il);
  4753. if (model.layers[il].bk) {
  4754. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4755. cb(Kcur, "Kcur", il);
  4756. }
  4757. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4758. cb(Vcur, "Vcur", il);
  4759. if (model.layers[il].bv) {
  4760. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4761. cb(Vcur, "Vcur", il);
  4762. }
  4763. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4764. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4765. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4766. if (model.layers[il].attn_q_norm) {
  4767. Qcur = build_norm(Qcur,
  4768. model.layers[il].attn_q_norm,
  4769. NULL,
  4770. LLM_NORM, il);
  4771. cb(Qcur, "Qcur", il);
  4772. }
  4773. if (model.layers[il].attn_k_norm) {
  4774. Kcur = build_norm(Kcur,
  4775. model.layers[il].attn_k_norm,
  4776. NULL,
  4777. LLM_NORM, il);
  4778. cb(Kcur, "Kcur", il);
  4779. }
  4780. Qcur = ggml_rope_ext(
  4781. ctx0, Qcur, inp_pos, nullptr,
  4782. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4783. ext_factor, attn_factor, beta_fast, beta_slow
  4784. );
  4785. Kcur = ggml_rope_ext(
  4786. ctx0, Kcur, inp_pos, nullptr,
  4787. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4788. ext_factor, attn_factor, beta_fast, beta_slow
  4789. );
  4790. cb(Qcur, "Qcur", il);
  4791. cb(Kcur, "Kcur", il);
  4792. cb(Vcur, "Vcur", il);
  4793. cur = build_attn(inp_attn, gf,
  4794. model.layers[il].wo, NULL,
  4795. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4796. }
  4797. if (il == n_layer - 1) {
  4798. // skip computing output for unused tokens
  4799. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4800. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4801. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4802. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4803. }
  4804. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4805. cb(ffn_inp, "ffn_inp", il);
  4806. // feed-forward network
  4807. {
  4808. if (model.layers[il].ffn_norm) {
  4809. cur = build_norm(ffn_inp,
  4810. model.layers[il].ffn_norm,
  4811. model.layers[il].ffn_norm_b,
  4812. LLM_NORM, il);
  4813. cb(cur, "ffn_norm", il);
  4814. } else {
  4815. // parallel residual
  4816. cur = inpSA;
  4817. }
  4818. cur = build_ffn(cur,
  4819. model.layers[il].ffn_up, NULL, NULL,
  4820. model.layers[il].ffn_gate, NULL, NULL,
  4821. model.layers[il].ffn_down, NULL, NULL,
  4822. NULL,
  4823. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4824. cb(cur, "ffn_out", il);
  4825. }
  4826. cur = ggml_add(ctx0, cur, ffn_inp);
  4827. cur = build_cvec(cur, il);
  4828. cb(cur, "l_out", il);
  4829. // input for next layer
  4830. inpL = cur;
  4831. }
  4832. cur = inpL;
  4833. cur = build_norm(cur,
  4834. model.output_norm,
  4835. model.output_norm_b,
  4836. LLM_NORM, -1);
  4837. cb(cur, "result_norm", -1);
  4838. res->t_embd = cur;
  4839. // lm_head
  4840. cur = build_lora_mm(model.output, cur);
  4841. cb(cur, "result_output", -1);
  4842. res->t_logits = cur;
  4843. ggml_build_forward_expand(gf, cur);
  4844. }
  4845. };
  4846. struct llm_build_qwen : public llm_graph_context {
  4847. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4848. const int64_t n_embd_head = hparams.n_embd_head_v;
  4849. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4850. ggml_tensor * cur;
  4851. ggml_tensor * inpL;
  4852. inpL = build_inp_embd(model.tok_embd);
  4853. // inp_pos - contains the positions
  4854. ggml_tensor * inp_pos = build_inp_pos();
  4855. auto * inp_attn = build_attn_inp_kv_unified();
  4856. for (int il = 0; il < n_layer; ++il) {
  4857. ggml_tensor * inpSA = inpL;
  4858. cur = build_norm(inpL,
  4859. model.layers[il].attn_norm, NULL,
  4860. LLM_NORM_RMS, il);
  4861. cb(cur, "attn_norm", il);
  4862. // self-attention
  4863. {
  4864. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4865. cb(cur, "wqkv", il);
  4866. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4867. cb(cur, "bqkv", il);
  4868. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4869. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4870. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  4871. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4872. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4873. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4874. // using mode = 2 for neox mode
  4875. Qcur = ggml_rope_ext(
  4876. ctx0, Qcur, inp_pos, nullptr,
  4877. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4878. ext_factor, attn_factor, beta_fast, beta_slow
  4879. );
  4880. Kcur = ggml_rope_ext(
  4881. ctx0, Kcur, inp_pos, nullptr,
  4882. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4883. ext_factor, attn_factor, beta_fast, beta_slow
  4884. );
  4885. cb(Qcur, "Qcur", il);
  4886. cb(Kcur, "Kcur", il);
  4887. cb(Vcur, "Vcur", il);
  4888. cur = build_attn(inp_attn, gf,
  4889. model.layers[il].wo, NULL,
  4890. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4891. }
  4892. if (il == n_layer - 1) {
  4893. // skip computing output for unused tokens
  4894. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4895. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4896. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4897. }
  4898. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4899. cb(ffn_inp, "ffn_inp", il);
  4900. // feed-forward forward
  4901. {
  4902. cur = build_norm(ffn_inp,
  4903. model.layers[il].ffn_norm, NULL,
  4904. LLM_NORM_RMS, il);
  4905. cb(cur, "ffn_norm", il);
  4906. cur = build_ffn(cur,
  4907. model.layers[il].ffn_up, NULL, NULL,
  4908. model.layers[il].ffn_gate, NULL, NULL,
  4909. model.layers[il].ffn_down, NULL, NULL,
  4910. NULL,
  4911. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4912. cb(cur, "ffn_out", il);
  4913. }
  4914. cur = ggml_add(ctx0, cur, ffn_inp);
  4915. cur = build_cvec(cur, il);
  4916. cb(cur, "l_out", il);
  4917. // input for next layer
  4918. inpL = cur;
  4919. }
  4920. cur = inpL;
  4921. cur = build_norm(cur,
  4922. model.output_norm, NULL,
  4923. LLM_NORM_RMS, -1);
  4924. cb(cur, "result_norm", -1);
  4925. res->t_embd = cur;
  4926. // lm_head
  4927. cur = build_lora_mm(model.output, cur);
  4928. cb(cur, "result_output", -1);
  4929. res->t_logits = cur;
  4930. ggml_build_forward_expand(gf, cur);
  4931. }
  4932. };
  4933. struct llm_build_qwen2 : public llm_graph_context {
  4934. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4935. const int64_t n_embd_head = hparams.n_embd_head_v;
  4936. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4937. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4938. ggml_tensor * cur;
  4939. ggml_tensor * inpL;
  4940. inpL = build_inp_embd(model.tok_embd);
  4941. // inp_pos - contains the positions
  4942. ggml_tensor * inp_pos = build_inp_pos();
  4943. auto * inp_attn = build_attn_inp_kv_unified();
  4944. for (int il = 0; il < n_layer; ++il) {
  4945. ggml_tensor * inpSA = inpL;
  4946. // norm
  4947. cur = build_norm(inpL,
  4948. model.layers[il].attn_norm, NULL,
  4949. LLM_NORM_RMS, il);
  4950. cb(cur, "attn_norm", il);
  4951. // self-attention
  4952. {
  4953. // compute Q and K and RoPE them
  4954. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4955. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4956. cb(Qcur, "Qcur", il);
  4957. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4958. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4959. cb(Kcur, "Kcur", il);
  4960. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4961. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4962. cb(Vcur, "Vcur", il);
  4963. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4964. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4965. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4966. Qcur = ggml_rope_ext(
  4967. ctx0, Qcur, inp_pos, nullptr,
  4968. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4969. ext_factor, attn_factor, beta_fast, beta_slow
  4970. );
  4971. Kcur = ggml_rope_ext(
  4972. ctx0, Kcur, inp_pos, nullptr,
  4973. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4974. ext_factor, attn_factor, beta_fast, beta_slow
  4975. );
  4976. cb(Qcur, "Qcur", il);
  4977. cb(Kcur, "Kcur", il);
  4978. cb(Vcur, "Vcur", il);
  4979. cur = build_attn(inp_attn, gf,
  4980. model.layers[il].wo, model.layers[il].bo,
  4981. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4982. }
  4983. if (il == n_layer - 1) {
  4984. // skip computing output for unused tokens
  4985. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4986. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4987. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4988. }
  4989. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4990. cb(ffn_inp, "ffn_inp", il);
  4991. // feed-forward network
  4992. cur = build_norm(ffn_inp,
  4993. model.layers[il].ffn_norm, NULL,
  4994. LLM_NORM_RMS, il);
  4995. cb(cur, "ffn_norm", il);
  4996. cur = build_ffn(cur,
  4997. model.layers[il].ffn_up, NULL, NULL,
  4998. model.layers[il].ffn_gate, NULL, NULL,
  4999. model.layers[il].ffn_down, NULL, NULL,
  5000. NULL,
  5001. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5002. cb(cur, "ffn_out", il);
  5003. cur = ggml_add(ctx0, cur, ffn_inp);
  5004. cur = build_cvec(cur, il);
  5005. cb(cur, "l_out", il);
  5006. // input for next layer
  5007. inpL = cur;
  5008. }
  5009. cur = inpL;
  5010. cur = build_norm(cur,
  5011. model.output_norm, NULL,
  5012. LLM_NORM_RMS, -1);
  5013. cb(cur, "result_norm", -1);
  5014. res->t_embd = cur;
  5015. // lm_head
  5016. cur = build_lora_mm(model.output, cur);
  5017. cb(cur, "result_output", -1);
  5018. res->t_logits = cur;
  5019. ggml_build_forward_expand(gf, cur);
  5020. }
  5021. };
  5022. struct llm_build_qwen2vl : public llm_graph_context {
  5023. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5024. const int64_t n_embd_head = hparams.n_embd_head_v;
  5025. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5026. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5027. ggml_tensor * cur;
  5028. ggml_tensor * inpL;
  5029. inpL = build_inp_embd(model.tok_embd);
  5030. // inp_pos - contains the positions
  5031. ggml_tensor * inp_pos = build_inp_pos();
  5032. auto * inp_attn = build_attn_inp_kv_unified();
  5033. int sections[4];
  5034. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5035. for (int il = 0; il < n_layer; ++il) {
  5036. ggml_tensor * inpSA = inpL;
  5037. // norm
  5038. cur = build_norm(inpL,
  5039. model.layers[il].attn_norm, NULL,
  5040. LLM_NORM_RMS, il);
  5041. cb(cur, "attn_norm", il);
  5042. // self-attention
  5043. {
  5044. // compute Q and K and RoPE them
  5045. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5046. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5047. cb(Qcur, "Qcur", il);
  5048. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5049. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5050. cb(Kcur, "Kcur", il);
  5051. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5052. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5053. cb(Vcur, "Vcur", il);
  5054. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5055. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5056. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5057. Qcur = ggml_rope_multi(
  5058. ctx0, Qcur, inp_pos, nullptr,
  5059. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5060. ext_factor, attn_factor, beta_fast, beta_slow
  5061. );
  5062. Kcur = ggml_rope_multi(
  5063. ctx0, Kcur, inp_pos, nullptr,
  5064. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5065. ext_factor, attn_factor, beta_fast, beta_slow
  5066. );
  5067. cb(Qcur, "Qcur", il);
  5068. cb(Kcur, "Kcur", il);
  5069. cb(Vcur, "Vcur", il);
  5070. cur = build_attn(inp_attn, gf,
  5071. model.layers[il].wo, model.layers[il].bo,
  5072. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5073. }
  5074. if (il == n_layer - 1) {
  5075. // skip computing output for unused tokens
  5076. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5077. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5078. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5079. }
  5080. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5081. cb(ffn_inp, "ffn_inp", il);
  5082. // feed-forward network
  5083. cur = build_norm(ffn_inp,
  5084. model.layers[il].ffn_norm, NULL,
  5085. LLM_NORM_RMS, il);
  5086. cb(cur, "ffn_norm", il);
  5087. cur = build_ffn(cur,
  5088. model.layers[il].ffn_up, NULL, NULL,
  5089. model.layers[il].ffn_gate, NULL, NULL,
  5090. model.layers[il].ffn_down, NULL, NULL,
  5091. NULL,
  5092. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5093. cb(cur, "ffn_out", il);
  5094. cur = ggml_add(ctx0, cur, ffn_inp);
  5095. cur = build_cvec(cur, il);
  5096. cb(cur, "l_out", il);
  5097. // input for next layer
  5098. inpL = cur;
  5099. }
  5100. cur = inpL;
  5101. cur = build_norm(cur,
  5102. model.output_norm, NULL,
  5103. LLM_NORM_RMS, -1);
  5104. cb(cur, "result_norm", -1);
  5105. res->t_embd = cur;
  5106. // lm_head
  5107. cur = build_lora_mm(model.output, cur);
  5108. cb(cur, "result_output", -1);
  5109. res->t_logits = cur;
  5110. ggml_build_forward_expand(gf, cur);
  5111. }
  5112. };
  5113. struct llm_build_qwen2moe : public llm_graph_context {
  5114. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5115. const int64_t n_embd_head = hparams.n_embd_head_v;
  5116. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5117. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5118. ggml_tensor * cur;
  5119. ggml_tensor * inpL;
  5120. inpL = build_inp_embd(model.tok_embd);
  5121. // inp_pos - contains the positions
  5122. ggml_tensor * inp_pos = build_inp_pos();
  5123. auto * inp_attn = build_attn_inp_kv_unified();
  5124. for (int il = 0; il < n_layer; ++il) {
  5125. ggml_tensor * inpSA = inpL;
  5126. // norm
  5127. cur = build_norm(inpL,
  5128. model.layers[il].attn_norm, NULL,
  5129. LLM_NORM_RMS, il);
  5130. cb(cur, "attn_norm", il);
  5131. // self_attention
  5132. {
  5133. // compute Q and K and RoPE them
  5134. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5135. cb(Qcur, "Qcur", il);
  5136. if (model.layers[il].bq) {
  5137. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5138. cb(Qcur, "Qcur", il);
  5139. }
  5140. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5141. cb(Kcur, "Kcur", il);
  5142. if (model.layers[il].bk) {
  5143. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5144. cb(Kcur, "Kcur", il);
  5145. }
  5146. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5147. cb(Vcur, "Vcur", il);
  5148. if (model.layers[il].bv) {
  5149. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5150. cb(Vcur, "Vcur", il);
  5151. }
  5152. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5153. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5154. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5155. Qcur = ggml_rope_ext(
  5156. ctx0, Qcur, inp_pos, nullptr,
  5157. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5158. ext_factor, attn_factor, beta_fast, beta_slow
  5159. );
  5160. Kcur = ggml_rope_ext(
  5161. ctx0, Kcur, inp_pos, nullptr,
  5162. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5163. ext_factor, attn_factor, beta_fast, beta_slow
  5164. );
  5165. cb(Qcur, "Qcur", il);
  5166. cb(Kcur, "Kcur", il);
  5167. cb(Vcur, "Vcur", il);
  5168. cur = build_attn(inp_attn, gf,
  5169. model.layers[il].wo, model.layers[il].bo,
  5170. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5171. }
  5172. if (il == n_layer - 1) {
  5173. // skip computing output for unused tokens
  5174. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5175. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5176. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5177. }
  5178. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5179. cb(ffn_inp, "ffn_inp", il);
  5180. // MoE branch
  5181. cur = build_norm(ffn_inp,
  5182. model.layers[il].ffn_norm, NULL,
  5183. LLM_NORM_RMS, il);
  5184. cb(cur, "ffn_norm", il);
  5185. ggml_tensor * moe_out =
  5186. build_moe_ffn(cur,
  5187. model.layers[il].ffn_gate_inp,
  5188. model.layers[il].ffn_up_exps,
  5189. model.layers[il].ffn_gate_exps,
  5190. model.layers[il].ffn_down_exps,
  5191. nullptr,
  5192. n_expert, n_expert_used,
  5193. LLM_FFN_SILU, false,
  5194. false, 0.0,
  5195. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5196. il);
  5197. cb(moe_out, "ffn_moe_out", il);
  5198. // FFN shared expert
  5199. {
  5200. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5201. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5202. // sigmoid
  5203. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5204. cb(cur_gate, "ffn_shexp_gate", il);
  5205. ggml_tensor * cur_ffn = build_ffn(cur,
  5206. model.layers[il].ffn_up_shexp, NULL, NULL,
  5207. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5208. model.layers[il].ffn_down_shexp, NULL, NULL,
  5209. NULL,
  5210. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5211. cb(cur_ffn, "ffn_shexp", il);
  5212. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5213. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5214. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5215. cb(moe_out, "ffn_out", il);
  5216. cur = moe_out;
  5217. }
  5218. cur = ggml_add(ctx0, cur, ffn_inp);
  5219. cur = build_cvec(cur, il);
  5220. cb(cur, "l_out", il);
  5221. // input for next layer
  5222. inpL = cur;
  5223. }
  5224. cur = inpL;
  5225. cur = build_norm(cur,
  5226. model.output_norm, NULL,
  5227. LLM_NORM_RMS, -1);
  5228. cb(cur, "result_norm", -1);
  5229. res->t_embd = cur;
  5230. // lm_head
  5231. cur = build_lora_mm(model.output, cur);
  5232. cb(cur, "result_output", -1);
  5233. res->t_logits = cur;
  5234. ggml_build_forward_expand(gf, cur);
  5235. }
  5236. };
  5237. struct llm_build_phi2 : public llm_graph_context {
  5238. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5239. const int64_t n_embd_head = hparams.n_embd_head_v;
  5240. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5241. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5242. ggml_tensor * cur;
  5243. ggml_tensor * attn_norm_output;
  5244. ggml_tensor * ffn_output;
  5245. ggml_tensor * inpL;
  5246. inpL = build_inp_embd(model.tok_embd);
  5247. // inp_pos - contains the positions
  5248. ggml_tensor * inp_pos = build_inp_pos();
  5249. auto * inp_attn = build_attn_inp_kv_unified();
  5250. for (int il = 0; il < n_layer; ++il) {
  5251. attn_norm_output = build_norm(inpL,
  5252. model.layers[il].attn_norm,
  5253. model.layers[il].attn_norm_b,
  5254. LLM_NORM, il);
  5255. cb(attn_norm_output, "attn_norm", il);
  5256. // self-attention
  5257. {
  5258. ggml_tensor * Qcur = nullptr;
  5259. ggml_tensor * Kcur = nullptr;
  5260. ggml_tensor * Vcur = nullptr;
  5261. if (model.layers[il].wqkv) {
  5262. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5263. cb(cur, "wqkv", il);
  5264. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5265. cb(cur, "bqkv", il);
  5266. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5267. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5268. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5269. } else {
  5270. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5271. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5272. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5273. }
  5274. cb(Qcur, "Qcur", il);
  5275. cb(Kcur, "Kcur", il);
  5276. cb(Vcur, "Vcur", il);
  5277. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5278. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5279. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5280. Qcur = ggml_rope_ext(
  5281. ctx0, Qcur, inp_pos, nullptr,
  5282. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5283. ext_factor, attn_factor, beta_fast, beta_slow
  5284. );
  5285. Kcur = ggml_rope_ext(
  5286. ctx0, Kcur, inp_pos, nullptr,
  5287. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5288. ext_factor, attn_factor, beta_fast, beta_slow
  5289. );
  5290. cb(Qcur, "Qcur", il);
  5291. cb(Kcur, "Kcur", il);
  5292. cb(Vcur, "Vcur", il);
  5293. // with phi2, we scale the Q to avoid precision issues
  5294. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5295. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5296. cur = build_attn(inp_attn, gf,
  5297. model.layers[il].wo, model.layers[il].bo,
  5298. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  5299. }
  5300. if (il == n_layer - 1) {
  5301. // skip computing output for unused tokens
  5302. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5303. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5304. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5305. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5306. }
  5307. // FF
  5308. {
  5309. ffn_output = build_ffn(attn_norm_output,
  5310. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5311. NULL, NULL, NULL,
  5312. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5313. NULL,
  5314. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5315. cb(ffn_output, "ffn_out", il);
  5316. }
  5317. cur = ggml_add(ctx0, cur, ffn_output);
  5318. cur = ggml_add(ctx0, cur, inpL);
  5319. cur = build_cvec(cur, il);
  5320. cb(cur, "l_out", il);
  5321. // input for next layer
  5322. inpL = cur;
  5323. }
  5324. cur = build_norm(inpL,
  5325. model.output_norm,
  5326. model.output_norm_b,
  5327. LLM_NORM, -1);
  5328. cb(cur, "result_norm", -1);
  5329. res->t_embd = cur;
  5330. cur = build_lora_mm(model.output, cur);
  5331. cb(cur, "result_output_no_bias", -1);
  5332. cur = ggml_add(ctx0, cur, model.output_b);
  5333. cb(cur, "result_output", -1);
  5334. res->t_logits = cur;
  5335. ggml_build_forward_expand(gf, cur);
  5336. }
  5337. };
  5338. struct llm_build_phi3 : public llm_graph_context {
  5339. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5340. const int64_t n_embd_head = hparams.n_embd_head_v;
  5341. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5342. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5343. ggml_tensor * cur;
  5344. ggml_tensor * inpL;
  5345. inpL = build_inp_embd(model.tok_embd);
  5346. // inp_pos - contains the positions
  5347. ggml_tensor * inp_pos = build_inp_pos();
  5348. auto * inp_attn = build_attn_inp_kv_unified();
  5349. for (int il = 0; il < n_layer; ++il) {
  5350. auto * residual = inpL;
  5351. // self-attention
  5352. {
  5353. // rope freq factors for 128k context
  5354. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  5355. ggml_tensor* attn_norm_output = build_norm(inpL,
  5356. model.layers[il].attn_norm,
  5357. model.layers[il].attn_norm_b,
  5358. LLM_NORM_RMS, il);
  5359. cb(attn_norm_output, "attn_norm", il);
  5360. ggml_tensor * Qcur = nullptr;
  5361. ggml_tensor * Kcur = nullptr;
  5362. ggml_tensor * Vcur = nullptr;
  5363. if (model.layers[il].wqkv) {
  5364. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5365. cb(cur, "wqkv", il);
  5366. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5367. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5368. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5369. } else {
  5370. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5371. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5372. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5373. }
  5374. cb(Qcur, "Qcur", il);
  5375. cb(Kcur, "Kcur", il);
  5376. cb(Vcur, "Vcur", il);
  5377. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5378. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5379. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5380. Qcur = ggml_rope_ext(
  5381. ctx0, Qcur, inp_pos, rope_factors,
  5382. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5383. ext_factor, attn_factor, beta_fast, beta_slow
  5384. );
  5385. Kcur = ggml_rope_ext(
  5386. ctx0, Kcur, inp_pos, rope_factors,
  5387. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5388. ext_factor, attn_factor, beta_fast, beta_slow
  5389. );
  5390. cb(Qcur, "Qcur", il);
  5391. cb(Kcur, "Kcur", il);
  5392. cb(Vcur, "Vcur", il);
  5393. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  5394. cb(Qcur, "Qcur", il);
  5395. cur = build_attn(inp_attn, gf,
  5396. model.layers[il].wo, model.layers[il].bo,
  5397. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  5398. }
  5399. if (il == n_layer - 1) {
  5400. // skip computing output for unused tokens
  5401. ggml_tensor* inp_out_ids = build_inp_out_ids();
  5402. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5403. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  5404. }
  5405. cur = ggml_add(ctx0, cur, residual);
  5406. residual = cur;
  5407. cur = build_norm(cur,
  5408. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5409. LLM_NORM_RMS, il);
  5410. cb(cur, "ffn_norm", il);
  5411. // feed-forward network
  5412. if (model.layers[il].ffn_gate_inp == nullptr) {
  5413. cur = build_ffn(cur,
  5414. model.layers[il].ffn_up, NULL, NULL,
  5415. NULL, NULL, NULL,
  5416. model.layers[il].ffn_down, NULL, NULL,
  5417. NULL,
  5418. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  5419. cb(cur, "ffn_out", il);
  5420. } else {
  5421. // MoE branch
  5422. cur = build_moe_ffn(cur,
  5423. model.layers[il].ffn_gate_inp,
  5424. model.layers[il].ffn_up_exps,
  5425. model.layers[il].ffn_gate_exps,
  5426. model.layers[il].ffn_down_exps,
  5427. nullptr,
  5428. n_expert, n_expert_used,
  5429. LLM_FFN_SILU, true,
  5430. false, 0.0,
  5431. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5432. il);
  5433. cb(cur, "ffn_moe_out", il);
  5434. }
  5435. cur = ggml_add(ctx0, residual, cur);
  5436. cur = build_cvec(cur, il);
  5437. cb(cur, "l_out", il);
  5438. // input for next layer
  5439. inpL = cur;
  5440. }
  5441. cur = build_norm(inpL,
  5442. model.output_norm,
  5443. model.output_norm_b,
  5444. LLM_NORM_RMS, -1);
  5445. cb(cur, "result_norm", -1);
  5446. res->t_embd = cur;
  5447. cur = build_lora_mm(model.output, cur);
  5448. if (model.output_b != nullptr) {
  5449. cb(cur, "result_output_no_bias", -1);
  5450. cur = ggml_add(ctx0, cur, model.output_b);
  5451. }
  5452. cb(cur, "result_output", -1);
  5453. res->t_logits = cur;
  5454. ggml_build_forward_expand(gf, cur);
  5455. }
  5456. };
  5457. struct llm_build_plamo : public llm_graph_context {
  5458. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5459. const int64_t n_embd_head = hparams.n_embd_head_v;
  5460. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5461. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5462. ggml_tensor * cur;
  5463. ggml_tensor * inpL;
  5464. inpL = build_inp_embd(model.tok_embd);
  5465. // inp_pos - contains the positions
  5466. ggml_tensor * inp_pos = build_inp_pos();
  5467. auto * inp_attn = build_attn_inp_kv_unified();
  5468. for (int il = 0; il < n_layer; ++il) {
  5469. // norm
  5470. cur = build_norm(inpL,
  5471. model.layers[il].attn_norm, NULL,
  5472. LLM_NORM_RMS, il);
  5473. cb(cur, "attn_norm", il);
  5474. ggml_tensor * attention_norm = cur;
  5475. // self-attention
  5476. {
  5477. // compute Q and K and RoPE them
  5478. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5479. cb(Qcur, "Qcur", il);
  5480. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5481. cb(Kcur, "Kcur", il);
  5482. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5483. cb(Vcur, "Vcur", il);
  5484. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5485. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5486. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5487. Qcur = ggml_rope_ext(
  5488. ctx0, Qcur, inp_pos, nullptr,
  5489. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5490. ext_factor, attn_factor, beta_fast, beta_slow
  5491. );
  5492. Kcur = ggml_rope_ext(
  5493. ctx0, Kcur, inp_pos, nullptr,
  5494. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  5495. ext_factor, attn_factor, beta_fast, beta_slow
  5496. );
  5497. cb(Qcur, "Qcur", il);
  5498. cb(Kcur, "Kcur", il);
  5499. cb(Vcur, "Vcur", il);
  5500. cur = build_attn(inp_attn, gf,
  5501. model.layers[il].wo, NULL,
  5502. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5503. }
  5504. ggml_tensor * sa_out = cur;
  5505. cur = attention_norm;
  5506. if (il == n_layer - 1) {
  5507. // skip computing output for unused tokens
  5508. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5509. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5510. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  5511. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5512. }
  5513. // feed-forward network
  5514. {
  5515. cur = build_ffn(cur,
  5516. model.layers[il].ffn_up, NULL, NULL,
  5517. model.layers[il].ffn_gate, NULL, NULL,
  5518. model.layers[il].ffn_down, NULL, NULL,
  5519. NULL,
  5520. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5521. cb(cur, "ffn_out", il);
  5522. }
  5523. cur = ggml_add(ctx0, cur, sa_out);
  5524. cur = ggml_add(ctx0, cur, inpL);
  5525. cur = build_cvec(cur, il);
  5526. cb(cur, "l_out", il);
  5527. // input for next layer
  5528. inpL = cur;
  5529. }
  5530. cur = inpL;
  5531. cur = build_norm(cur,
  5532. model.output_norm, NULL,
  5533. LLM_NORM_RMS, -1);
  5534. cb(cur, "result_norm", -1);
  5535. res->t_embd = cur;
  5536. // lm_head
  5537. cur = build_lora_mm(model.output, cur);
  5538. cb(cur, "result_output", -1);
  5539. res->t_logits = cur;
  5540. ggml_build_forward_expand(gf, cur);
  5541. }
  5542. };
  5543. struct llm_build_gpt2 : public llm_graph_context {
  5544. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5545. const int64_t n_embd_head = hparams.n_embd_head_v;
  5546. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5547. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5548. ggml_tensor * cur;
  5549. ggml_tensor * pos;
  5550. ggml_tensor * inpL;
  5551. inpL = build_inp_embd(model.tok_embd);
  5552. // inp_pos - contains the positions
  5553. ggml_tensor * inp_pos = build_inp_pos();
  5554. auto * inp_attn = build_attn_inp_kv_unified();
  5555. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5556. cb(pos, "pos_embd", -1);
  5557. inpL = ggml_add(ctx0, inpL, pos);
  5558. cb(inpL, "inpL", -1);
  5559. for (int il = 0; il < n_layer; ++il) {
  5560. cur = build_norm(inpL,
  5561. model.layers[il].attn_norm,
  5562. model.layers[il].attn_norm_b,
  5563. LLM_NORM, il);
  5564. cb(cur, "attn_norm", il);
  5565. // self-attention
  5566. {
  5567. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5568. cb(cur, "wqkv", il);
  5569. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5570. cb(cur, "bqkv", il);
  5571. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5572. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5573. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5574. cb(Qcur, "Qcur", il);
  5575. cb(Kcur, "Kcur", il);
  5576. cb(Vcur, "Vcur", il);
  5577. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5578. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5579. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5580. cur = build_attn(inp_attn, gf,
  5581. model.layers[il].wo, model.layers[il].bo,
  5582. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5583. }
  5584. if (il == n_layer - 1) {
  5585. // skip computing output for unused tokens
  5586. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5587. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5588. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5589. }
  5590. // add the input
  5591. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5592. cb(ffn_inp, "ffn_inp", il);
  5593. // FF
  5594. {
  5595. cur = build_norm(ffn_inp,
  5596. model.layers[il].ffn_norm,
  5597. model.layers[il].ffn_norm_b,
  5598. LLM_NORM, il);
  5599. cb(cur, "ffn_norm", il);
  5600. cur = build_ffn(cur,
  5601. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5602. NULL, NULL, NULL,
  5603. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5604. NULL,
  5605. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5606. cb(cur, "ffn_out", il);
  5607. }
  5608. cur = ggml_add(ctx0, cur, ffn_inp);
  5609. cur = build_cvec(cur, il);
  5610. cb(cur, "l_out", il);
  5611. // input for next layer
  5612. inpL = cur;
  5613. }
  5614. cur = build_norm(inpL,
  5615. model.output_norm,
  5616. model.output_norm_b,
  5617. LLM_NORM, -1);
  5618. cb(cur, "result_norm", -1);
  5619. res->t_embd = cur;
  5620. cur = build_lora_mm(model.output, cur);
  5621. cb(cur, "result_output", -1);
  5622. res->t_logits = cur;
  5623. ggml_build_forward_expand(gf, cur);
  5624. }
  5625. };
  5626. struct llm_build_codeshell : public llm_graph_context {
  5627. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5628. const int64_t n_embd_head = hparams.n_embd_head_v;
  5629. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5630. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5631. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5632. ggml_tensor * cur;
  5633. ggml_tensor * inpL;
  5634. inpL = build_inp_embd(model.tok_embd);
  5635. // inp_pos - contains the positions
  5636. ggml_tensor * inp_pos = build_inp_pos();
  5637. auto * inp_attn = build_attn_inp_kv_unified();
  5638. for (int il = 0; il < n_layer; ++il) {
  5639. cur = build_norm(inpL,
  5640. model.layers[il].attn_norm,
  5641. model.layers[il].attn_norm_b,
  5642. LLM_NORM, il);
  5643. cb(cur, "attn_norm", il);
  5644. // self-attention
  5645. {
  5646. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5647. cb(cur, "wqkv", il);
  5648. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5649. cb(cur, "bqkv", il);
  5650. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5651. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5652. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5653. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5654. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5655. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5656. Qcur = ggml_rope_ext(
  5657. ctx0, Qcur, inp_pos, nullptr,
  5658. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5659. ext_factor, attn_factor, beta_fast, beta_slow
  5660. );
  5661. Kcur = ggml_rope_ext(
  5662. ctx0, Kcur, inp_pos, nullptr,
  5663. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5664. ext_factor, attn_factor, beta_fast, beta_slow
  5665. );
  5666. cb(Qcur, "Qcur", il);
  5667. cb(Kcur, "Kcur", il);
  5668. cb(Vcur, "Vcur", il);
  5669. cur = build_attn(inp_attn, gf,
  5670. model.layers[il].wo, model.layers[il].bo,
  5671. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5672. }
  5673. if (il == n_layer - 1) {
  5674. // skip computing output for unused tokens
  5675. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5676. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5677. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5678. }
  5679. // add the input
  5680. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5681. cb(ffn_inp, "ffn_inp", il);
  5682. // FF
  5683. {
  5684. cur = build_norm(ffn_inp,
  5685. model.layers[il].ffn_norm,
  5686. model.layers[il].ffn_norm_b,
  5687. LLM_NORM, il);
  5688. cb(cur, "ffn_norm", il);
  5689. cur = build_ffn(cur,
  5690. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5691. NULL, NULL, NULL,
  5692. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5693. NULL,
  5694. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5695. cb(cur, "ffn_out", il);
  5696. }
  5697. cur = ggml_add(ctx0, cur, ffn_inp);
  5698. cur = build_cvec(cur, il);
  5699. cb(cur, "l_out", il);
  5700. // input for next layer
  5701. inpL = cur;
  5702. }
  5703. cur = build_norm(inpL,
  5704. model.output_norm,
  5705. model.output_norm_b,
  5706. LLM_NORM, -1);
  5707. cb(cur, "result_norm", -1);
  5708. res->t_embd = cur;
  5709. cur = build_lora_mm(model.output, cur);
  5710. cb(cur, "result_output", -1);
  5711. res->t_logits = cur;
  5712. ggml_build_forward_expand(gf, cur);
  5713. }
  5714. };
  5715. struct llm_build_orion : public llm_graph_context {
  5716. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5717. const int64_t n_embd_head = hparams.n_embd_head_v;
  5718. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5719. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5720. ggml_tensor * cur;
  5721. ggml_tensor * inpL;
  5722. inpL = build_inp_embd(model.tok_embd);
  5723. // inp_pos - contains the positions
  5724. ggml_tensor * inp_pos = build_inp_pos();
  5725. auto * inp_attn = build_attn_inp_kv_unified();
  5726. for (int il = 0; il < n_layer; ++il) {
  5727. ggml_tensor * inpSA = inpL;
  5728. // norm
  5729. cur = build_norm(inpL,
  5730. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  5731. LLM_NORM, il);
  5732. cb(cur, "attn_norm", il);
  5733. // self-attention
  5734. {
  5735. // compute Q and K and RoPE them
  5736. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5737. cb(Qcur, "Qcur", il);
  5738. // if (model.layers[il].bq) {
  5739. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5740. // cb(Qcur, "Qcur", il);
  5741. // }
  5742. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5743. cb(Kcur, "Kcur", il);
  5744. // if (model.layers[il].bk) {
  5745. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5746. // cb(Kcur, "Kcur", il);
  5747. // }
  5748. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5749. cb(Vcur, "Vcur", il);
  5750. // if (model.layers[il].bv) {
  5751. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5752. // cb(Vcur, "Vcur", il);
  5753. // }
  5754. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5755. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5756. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5757. Qcur = ggml_rope_ext(
  5758. ctx0, Qcur, inp_pos, nullptr,
  5759. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5760. ext_factor, attn_factor, beta_fast, beta_slow
  5761. );
  5762. Kcur = ggml_rope_ext(
  5763. ctx0, Kcur, inp_pos, nullptr,
  5764. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5765. ext_factor, attn_factor, beta_fast, beta_slow
  5766. );
  5767. cb(Qcur, "Qcur", il);
  5768. cb(Kcur, "Kcur", il);
  5769. cb(Vcur, "Vcur", il);
  5770. cur = build_attn(inp_attn, gf,
  5771. model.layers[il].wo, NULL,
  5772. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5773. }
  5774. if (il == n_layer - 1) {
  5775. // skip computing output for unused tokens
  5776. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5777. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5778. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5779. }
  5780. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5781. cb(ffn_inp, "ffn_inp", il);
  5782. // feed-forward network
  5783. cur = build_norm(ffn_inp,
  5784. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5785. LLM_NORM, il);
  5786. cb(cur, "ffn_norm", il);
  5787. cur = build_ffn(cur,
  5788. model.layers[il].ffn_up, NULL, NULL,
  5789. model.layers[il].ffn_gate, NULL, NULL,
  5790. model.layers[il].ffn_down, NULL, NULL,
  5791. NULL,
  5792. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5793. cb(cur, "ffn_out", il);
  5794. cur = ggml_add(ctx0, cur, ffn_inp);
  5795. cur = build_cvec(cur, il);
  5796. cb(cur, "l_out", il);
  5797. // input for next layer
  5798. inpL = cur;
  5799. }
  5800. cur = inpL;
  5801. cur = build_norm(cur,
  5802. model.output_norm, model.output_norm_b,
  5803. LLM_NORM, -1);
  5804. cb(cur, "result_norm", -1);
  5805. res->t_embd = cur;
  5806. // lm_head
  5807. cur = build_lora_mm(model.output, cur);
  5808. cb(cur, "result_output", -1);
  5809. res->t_logits = cur;
  5810. ggml_build_forward_expand(gf, cur);
  5811. }
  5812. };
  5813. struct llm_build_internlm2 : public llm_graph_context {
  5814. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5815. const int64_t n_embd_head = hparams.n_embd_head_v;
  5816. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5817. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5818. ggml_tensor * cur;
  5819. ggml_tensor * inpL;
  5820. inpL = build_inp_embd(model.tok_embd);
  5821. // inp_pos - contains the positions
  5822. ggml_tensor * inp_pos = build_inp_pos();
  5823. auto * inp_attn = build_attn_inp_kv_unified();
  5824. for (int il = 0; il < n_layer; ++il) {
  5825. ggml_tensor * inpSA = inpL;
  5826. // norm
  5827. cur = build_norm(inpL,
  5828. model.layers[il].attn_norm, NULL,
  5829. LLM_NORM_RMS, il);
  5830. cb(cur, "attn_norm", il);
  5831. // self-attention
  5832. {
  5833. // compute Q and K and RoPE them
  5834. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5835. cb(Qcur, "Qcur", il);
  5836. if (model.layers[il].bq) {
  5837. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5838. cb(Qcur, "Qcur", il);
  5839. }
  5840. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5841. cb(Kcur, "Kcur", il);
  5842. if (model.layers[il].bk) {
  5843. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5844. cb(Kcur, "Kcur", il);
  5845. }
  5846. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5847. cb(Vcur, "Vcur", il);
  5848. if (model.layers[il].bv) {
  5849. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5850. cb(Vcur, "Vcur", il);
  5851. }
  5852. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5853. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5854. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5855. Qcur = ggml_rope_ext(
  5856. ctx0, Qcur, inp_pos, nullptr,
  5857. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5858. ext_factor, attn_factor, beta_fast, beta_slow
  5859. );
  5860. Kcur = ggml_rope_ext(
  5861. ctx0, Kcur, inp_pos, nullptr,
  5862. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5863. ext_factor, attn_factor, beta_fast, beta_slow
  5864. );
  5865. cb(Qcur, "Qcur", il);
  5866. cb(Kcur, "Kcur", il);
  5867. cb(Vcur, "Vcur", il);
  5868. cur = build_attn(inp_attn, gf,
  5869. model.layers[il].wo, model.layers[il].bo,
  5870. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5871. }
  5872. if (il == n_layer - 1) {
  5873. // skip computing output for unused tokens
  5874. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5875. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5876. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5877. }
  5878. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5879. cb(ffn_inp, "ffn_inp", il);
  5880. // feed-forward network
  5881. cur = build_norm(ffn_inp,
  5882. model.layers[il].ffn_norm, NULL,
  5883. LLM_NORM_RMS, il);
  5884. cb(cur, "ffn_norm", il);
  5885. cur = build_ffn(cur,
  5886. model.layers[il].ffn_up, NULL, NULL,
  5887. model.layers[il].ffn_gate, NULL, NULL,
  5888. model.layers[il].ffn_down, NULL, NULL,
  5889. NULL,
  5890. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5891. cb(cur, "ffn_out", il);
  5892. cur = ggml_add(ctx0, cur, ffn_inp);
  5893. cur = build_cvec(cur, il);
  5894. cb(cur, "l_out", il);
  5895. // input for next layer
  5896. inpL = cur;
  5897. }
  5898. cur = inpL;
  5899. cur = build_norm(cur,
  5900. model.output_norm, NULL,
  5901. LLM_NORM_RMS, -1);
  5902. cb(cur, "result_norm", -1);
  5903. res->t_embd = cur;
  5904. // lm_head
  5905. cur = build_lora_mm(model.output, cur);
  5906. cb(cur, "result_output", -1);
  5907. res->t_logits = cur;
  5908. ggml_build_forward_expand(gf, cur);
  5909. }
  5910. };
  5911. struct llm_build_minicpm3 : public llm_graph_context {
  5912. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5913. //TODO: if the model varies, these parameters need to be read from the model
  5914. const int64_t n_embd_base = 256;
  5915. const float scale_embd = 12.0f;
  5916. const float scale_depth = 1.4f;
  5917. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  5918. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5919. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5920. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5921. ggml_tensor * cur;
  5922. ggml_tensor * inpL;
  5923. inpL = build_inp_embd(model.tok_embd);
  5924. // scale the input embeddings
  5925. inpL = ggml_scale(ctx0, inpL, scale_embd);
  5926. cb(inpL, "inp_scaled", -1);
  5927. // inp_pos - contains the positions
  5928. ggml_tensor * inp_pos = build_inp_pos();
  5929. auto * inp_attn = build_attn_inp_kv_unified();
  5930. for (int il = 0; il < n_layer; ++il) {
  5931. ggml_tensor * inpSA = inpL;
  5932. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  5933. // norm
  5934. cur = build_norm(inpL,
  5935. model.layers[il].attn_norm, NULL,
  5936. LLM_NORM_RMS, il);
  5937. cb(cur, "attn_norm", il);
  5938. // self_attention
  5939. {
  5940. ggml_tensor * q = NULL;
  5941. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  5942. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  5943. cb(q, "q", il);
  5944. q = build_norm(q,
  5945. model.layers[il].attn_q_a_norm, NULL,
  5946. LLM_NORM_RMS, il);
  5947. cb(q, "q", il);
  5948. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  5949. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  5950. cb(q, "q", il);
  5951. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  5952. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  5953. ggml_row_size(q->type, hparams.n_embd_head_k),
  5954. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  5955. 0);
  5956. cb(q_nope, "q_nope", il);
  5957. // and {n_head * n_embd_head_qk_rope, n_tokens}
  5958. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  5959. ggml_row_size(q->type, hparams.n_embd_head_k),
  5960. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  5961. ggml_row_size(q->type, n_embd_head_qk_nope));
  5962. cb(q_pe, "q_pe", il);
  5963. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  5964. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  5965. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  5966. // split into {kv_lora_rank, n_tokens}
  5967. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  5968. kv_pe_compresseed->nb[1],
  5969. 0);
  5970. cb(kv_compressed, "kv_compressed", il);
  5971. // and {n_embd_head_qk_rope, n_tokens}
  5972. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  5973. kv_pe_compresseed->nb[1],
  5974. kv_pe_compresseed->nb[1],
  5975. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  5976. cb(k_pe, "k_pe", il);
  5977. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  5978. kv_compressed = ggml_cont(ctx0, kv_compressed);
  5979. kv_compressed = build_norm(kv_compressed,
  5980. model.layers[il].attn_kv_a_norm, NULL,
  5981. LLM_NORM_RMS, il);
  5982. cb(kv_compressed, "kv_compressed", il);
  5983. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  5984. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  5985. cb(kv, "kv", il);
  5986. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  5987. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  5988. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  5989. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  5990. 0);
  5991. cb(k_nope, "k_nope", il);
  5992. // and {n_head * n_embd_head_v, n_tokens}
  5993. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  5994. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  5995. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  5996. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  5997. cb(v_states, "v_states", il);
  5998. v_states = ggml_cont(ctx0, v_states);
  5999. cb(v_states, "v_states", il);
  6000. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6001. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6002. 0);
  6003. cb(v_states, "v_states", il);
  6004. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6005. q_pe = ggml_rope_ext(
  6006. ctx0, q_pe, inp_pos, rope_factors,
  6007. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6008. ext_factor, attn_factor, beta_fast, beta_slow
  6009. );
  6010. cb(q_pe, "q_pe", il);
  6011. // shared RoPE key
  6012. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6013. k_pe = ggml_rope_ext(
  6014. ctx0, k_pe, inp_pos, rope_factors,
  6015. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6016. ext_factor, attn_factor, beta_fast, beta_slow
  6017. );
  6018. cb(k_pe, "k_pe", il);
  6019. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6020. cb(q_states, "q_states", il);
  6021. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6022. cb(k_states, "k_states", il);
  6023. cur = build_attn(inp_attn, gf,
  6024. model.layers[il].wo, NULL,
  6025. q_states, k_states, v_states, nullptr, kq_scale, il);
  6026. }
  6027. if (il == n_layer - 1) {
  6028. // skip computing output for unused tokens
  6029. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6030. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6031. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6032. }
  6033. // scale_res - scale the hidden states for residual connection
  6034. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6035. cur = ggml_scale(ctx0, cur, scale_res);
  6036. cb(cur, "hidden_scaled", il);
  6037. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6038. cb(ffn_inp, "ffn_inp", il);
  6039. // feed-forward network
  6040. {
  6041. cur = build_norm(ffn_inp,
  6042. model.layers[il].ffn_norm, NULL,
  6043. LLM_NORM_RMS, il);
  6044. cb(cur, "ffn_norm", il);
  6045. cur = build_ffn(cur,
  6046. model.layers[il].ffn_up, NULL, NULL,
  6047. model.layers[il].ffn_gate, NULL, NULL,
  6048. model.layers[il].ffn_down, NULL, NULL,
  6049. NULL,
  6050. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6051. cb(cur, "ffn_out", il);
  6052. }
  6053. // scale the hidden states for residual connection
  6054. cur = ggml_scale(ctx0, cur, scale_res);
  6055. cb(cur, "hidden_scaled_ffn", il);
  6056. cur = ggml_add(ctx0, cur, ffn_inp);
  6057. cur = build_cvec(cur, il);
  6058. cb(cur, "l_out", il);
  6059. // input for next layer
  6060. inpL = cur;
  6061. }
  6062. cur = inpL;
  6063. cur = build_norm(cur,
  6064. model.output_norm, NULL,
  6065. LLM_NORM_RMS, -1);
  6066. cb(cur, "result_norm", -1);
  6067. res->t_embd = cur;
  6068. // lm_head scaling
  6069. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6070. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6071. cb(cur, "lmhead_scaling", -1);
  6072. // lm_head
  6073. cur = build_lora_mm(model.output, cur);
  6074. cb(cur, "result_output", -1);
  6075. res->t_logits = cur;
  6076. ggml_build_forward_expand(gf, cur);
  6077. }
  6078. };
  6079. struct llm_build_gemma : public llm_graph_context {
  6080. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6081. const int64_t n_embd_head = hparams.n_embd_head_v;
  6082. ggml_tensor * cur;
  6083. ggml_tensor * inpL;
  6084. inpL = build_inp_embd(model.tok_embd);
  6085. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6086. cb(inpL, "inp_scaled", -1);
  6087. // inp_pos - contains the positions
  6088. ggml_tensor * inp_pos = build_inp_pos();
  6089. auto * inp_attn = build_attn_inp_kv_unified();
  6090. for (int il = 0; il < n_layer; ++il) {
  6091. // norm
  6092. cur = build_norm(inpL,
  6093. model.layers[il].attn_norm, NULL,
  6094. LLM_NORM_RMS, il);
  6095. cb(cur, "attn_norm", il);
  6096. // self-attention
  6097. {
  6098. // compute Q and K and RoPE them
  6099. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6100. cb(Qcur, "Qcur", il);
  6101. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6102. cb(Kcur, "Kcur", il);
  6103. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6104. cb(Vcur, "Vcur", il);
  6105. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6106. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6107. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6108. Qcur = ggml_rope_ext(
  6109. ctx0, Qcur, inp_pos, nullptr,
  6110. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6111. ext_factor, attn_factor, beta_fast, beta_slow);
  6112. Kcur = ggml_rope_ext(
  6113. ctx0, Kcur, inp_pos, nullptr,
  6114. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6115. ext_factor, attn_factor, beta_fast, beta_slow);
  6116. cb(Qcur, "Qcur", il);
  6117. cb(Kcur, "Kcur", il);
  6118. cb(Vcur, "Vcur", il);
  6119. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6120. cb(Qcur, "Qcur_scaled", il);
  6121. cur = build_attn(inp_attn, gf,
  6122. model.layers[il].wo, NULL,
  6123. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  6124. }
  6125. if (il == n_layer - 1) {
  6126. // skip computing output for unused tokens
  6127. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6128. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6129. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6130. }
  6131. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6132. cb(sa_out, "sa_out", il);
  6133. cur = build_norm(sa_out,
  6134. model.layers[il].ffn_norm, NULL,
  6135. LLM_NORM_RMS, il);
  6136. cb(cur, "ffn_norm", il);
  6137. // feed-forward network
  6138. {
  6139. cur = build_ffn(cur,
  6140. model.layers[il].ffn_up, NULL, NULL,
  6141. model.layers[il].ffn_gate, NULL, NULL,
  6142. model.layers[il].ffn_down, NULL, NULL,
  6143. NULL,
  6144. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6145. cb(cur, "ffn_out", il);
  6146. }
  6147. cur = ggml_add(ctx0, cur, sa_out);
  6148. cur = build_cvec(cur, il);
  6149. cb(cur, "l_out", il);
  6150. // input for next layer
  6151. inpL = cur;
  6152. }
  6153. cur = inpL;
  6154. cur = build_norm(cur,
  6155. model.output_norm, NULL,
  6156. LLM_NORM_RMS, -1);
  6157. cb(cur, "result_norm", -1);
  6158. res->t_embd = cur;
  6159. // lm_head
  6160. cur = build_lora_mm(model.output, cur);
  6161. cb(cur, "result_output", -1);
  6162. res->t_logits = cur;
  6163. ggml_build_forward_expand(gf, cur);
  6164. }
  6165. };
  6166. struct llm_build_gemma2 : public llm_graph_context {
  6167. llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6168. const int64_t n_embd_head = hparams.n_embd_head_k;
  6169. ggml_tensor * cur;
  6170. ggml_tensor * inpL;
  6171. inpL = build_inp_embd(model.tok_embd);
  6172. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6173. cb(inpL, "inp_scaled", -1);
  6174. // inp_pos - contains the positions
  6175. ggml_tensor * inp_pos = build_inp_pos();
  6176. auto * inp_attn = build_attn_inp_kv_unified();
  6177. for (int il = 0; il < n_layer; ++il) {
  6178. // norm
  6179. cur = build_norm(inpL,
  6180. model.layers[il].attn_norm, NULL,
  6181. LLM_NORM_RMS, il);
  6182. cb(cur, "attn_norm", il);
  6183. // self-attention
  6184. {
  6185. // compute Q and K and RoPE them
  6186. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6187. cb(Qcur, "Qcur", il);
  6188. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6189. cb(Kcur, "Kcur", il);
  6190. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6191. cb(Vcur, "Vcur", il);
  6192. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6193. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6194. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6195. Qcur = ggml_rope_ext(
  6196. ctx0, Qcur, inp_pos, nullptr,
  6197. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6198. ext_factor, attn_factor, beta_fast, beta_slow);
  6199. Kcur = ggml_rope_ext(
  6200. ctx0, Kcur, inp_pos, nullptr,
  6201. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6202. ext_factor, attn_factor, beta_fast, beta_slow);
  6203. cb(Qcur, "Qcur", il);
  6204. cb(Kcur, "Kcur", il);
  6205. cb(Vcur, "Vcur", il);
  6206. // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
  6207. switch (model.type) {
  6208. case LLM_TYPE_2B:
  6209. case LLM_TYPE_9B:
  6210. case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break;
  6211. default: GGML_ABORT("fatal error");
  6212. };
  6213. cb(Qcur, "Qcur_scaled", il);
  6214. cur = build_attn(inp_attn, gf,
  6215. model.layers[il].wo, NULL,
  6216. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  6217. }
  6218. cur = build_norm(cur,
  6219. model.layers[il].attn_post_norm, NULL,
  6220. LLM_NORM_RMS, il);
  6221. cb(cur, "attn_post_norm", il);
  6222. if (il == n_layer - 1) {
  6223. // skip computing output for unused tokens
  6224. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6225. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6226. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6227. }
  6228. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6229. cb(sa_out, "sa_out", il);
  6230. cur = build_norm(sa_out,
  6231. model.layers[il].ffn_norm, NULL,
  6232. LLM_NORM_RMS, il);
  6233. cb(cur, "ffn_norm", il);
  6234. // feed-forward network
  6235. {
  6236. cur = build_ffn(cur,
  6237. model.layers[il].ffn_up, NULL, NULL,
  6238. model.layers[il].ffn_gate, NULL, NULL,
  6239. model.layers[il].ffn_down, NULL, NULL,
  6240. NULL,
  6241. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6242. cb(cur, "ffn_out", il);
  6243. }
  6244. cur = build_norm(cur,
  6245. model.layers[il].ffn_post_norm, NULL,
  6246. LLM_NORM_RMS, -1);
  6247. cb(cur, "ffn_post_norm", -1);
  6248. cur = ggml_add(ctx0, cur, sa_out);
  6249. cur = build_cvec(cur, il);
  6250. cb(cur, "l_out", il);
  6251. // input for next layer
  6252. inpL = cur;
  6253. }
  6254. cur = inpL;
  6255. cur = build_norm(cur,
  6256. model.output_norm, NULL,
  6257. LLM_NORM_RMS, -1);
  6258. cb(cur, "result_norm", -1);
  6259. res->t_embd = cur;
  6260. // lm_head
  6261. cur = build_lora_mm(model.output, cur);
  6262. // final logit soft-capping
  6263. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6264. cur = ggml_tanh(ctx0, cur);
  6265. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6266. cb(cur, "result_output", -1);
  6267. res->t_logits = cur;
  6268. ggml_build_forward_expand(gf, cur);
  6269. }
  6270. };
  6271. struct llm_build_gemma3 : public llm_graph_context {
  6272. llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6273. const int64_t n_embd_head = hparams.n_embd_head_k;
  6274. ggml_tensor * cur;
  6275. ggml_tensor * inpL;
  6276. inpL = build_inp_embd(model.tok_embd);
  6277. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6278. if (ubatch.token) {
  6279. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6280. cb(inpL, "inp_scaled", -1);
  6281. }
  6282. // inp_pos - contains the positions
  6283. ggml_tensor * inp_pos = build_inp_pos();
  6284. // TODO: is causal == true correct? might need some changes
  6285. auto * inp_attn = build_attn_inp_kv_unified();
  6286. for (int il = 0; il < n_layer; ++il) {
  6287. const bool is_swa = hparams.is_swa(il);
  6288. const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  6289. const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  6290. // norm
  6291. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6292. cb(cur, "attn_norm", il);
  6293. // self-attention
  6294. {
  6295. // compute Q and K and RoPE them
  6296. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6297. cb(Qcur, "Qcur", il);
  6298. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6299. cb(Kcur, "Kcur", il);
  6300. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6301. cb(Vcur, "Vcur", il);
  6302. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6303. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6304. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6305. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6306. cb(Qcur, "Qcur_normed", il);
  6307. Qcur = ggml_rope_ext(
  6308. ctx0, Qcur, inp_pos, nullptr,
  6309. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6310. ext_factor, attn_factor, beta_fast, beta_slow);
  6311. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6312. cb(Kcur, "Kcur_normed", il);
  6313. Kcur = ggml_rope_ext(
  6314. ctx0, Kcur, inp_pos, nullptr,
  6315. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6316. ext_factor, attn_factor, beta_fast, beta_slow);
  6317. cb(Qcur, "Qcur", il);
  6318. cb(Kcur, "Kcur", il);
  6319. cb(Vcur, "Vcur", il);
  6320. cur = build_attn(inp_attn, gf,
  6321. model.layers[il].wo, NULL,
  6322. Qcur, Kcur, Vcur, nullptr, hparams.f_attention_scale, il);
  6323. }
  6324. cur = build_norm(cur,
  6325. model.layers[il].attn_post_norm, NULL,
  6326. LLM_NORM_RMS, il);
  6327. cb(cur, "attn_post_norm", il);
  6328. if (il == n_layer - 1) {
  6329. // skip computing output for unused tokens
  6330. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6331. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6332. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6333. }
  6334. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6335. cb(sa_out, "sa_out", il);
  6336. cur = build_norm(sa_out,
  6337. model.layers[il].ffn_norm, NULL,
  6338. LLM_NORM_RMS, il);
  6339. cb(cur, "ffn_norm", il);
  6340. // feed-forward network
  6341. {
  6342. cur = build_ffn(cur,
  6343. model.layers[il].ffn_up, NULL, NULL,
  6344. model.layers[il].ffn_gate, NULL, NULL,
  6345. model.layers[il].ffn_down, NULL, NULL,
  6346. NULL,
  6347. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6348. cb(cur, "ffn_out", il);
  6349. }
  6350. cur = build_norm(cur,
  6351. model.layers[il].ffn_post_norm, NULL,
  6352. LLM_NORM_RMS, -1);
  6353. cb(cur, "ffn_post_norm", -1);
  6354. cur = ggml_add(ctx0, cur, sa_out);
  6355. cur = build_cvec(cur, il);
  6356. cb(cur, "l_out", il);
  6357. // input for next layer
  6358. inpL = cur;
  6359. }
  6360. cur = inpL;
  6361. cur = build_norm(cur,
  6362. model.output_norm, NULL,
  6363. LLM_NORM_RMS, -1);
  6364. cb(cur, "result_norm", -1);
  6365. res->t_embd = cur;
  6366. // lm_head
  6367. cur = build_lora_mm(model.output, cur);
  6368. cb(cur, "result_output", -1);
  6369. res->t_logits = cur;
  6370. ggml_build_forward_expand(gf, cur);
  6371. }
  6372. };
  6373. // TODO: move up next to build_starcoder
  6374. struct llm_build_starcoder2 : public llm_graph_context {
  6375. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6376. const int64_t n_embd_head = hparams.n_embd_head_v;
  6377. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6378. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6379. ggml_tensor * cur;
  6380. ggml_tensor * inpL;
  6381. inpL = build_inp_embd(model.tok_embd);
  6382. // inp_pos - contains the positions
  6383. ggml_tensor * inp_pos = build_inp_pos();
  6384. auto * inp_attn = build_attn_inp_kv_unified();
  6385. for (int il = 0; il < n_layer; ++il) {
  6386. ggml_tensor * inpSA = inpL;
  6387. // norm
  6388. cur = build_norm(inpL,
  6389. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6390. LLM_NORM, il);
  6391. cb(cur, "attn_norm", il);
  6392. // self-attention
  6393. {
  6394. // compute Q and K and RoPE them
  6395. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6396. cb(Qcur, "Qcur", il);
  6397. if (model.layers[il].bq) {
  6398. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6399. cb(Qcur, "Qcur", il);
  6400. }
  6401. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6402. cb(Kcur, "Kcur", il);
  6403. if (model.layers[il].bk) {
  6404. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6405. cb(Kcur, "Kcur", il);
  6406. }
  6407. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6408. cb(Vcur, "Vcur", il);
  6409. if (model.layers[il].bv) {
  6410. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6411. cb(Vcur, "Vcur", il);
  6412. }
  6413. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6414. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6415. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6416. Qcur = ggml_rope_ext(
  6417. ctx0, Qcur, inp_pos, nullptr,
  6418. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6419. ext_factor, attn_factor, beta_fast, beta_slow
  6420. );
  6421. Kcur = ggml_rope_ext(
  6422. ctx0, Kcur, inp_pos, nullptr,
  6423. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6424. ext_factor, attn_factor, beta_fast, beta_slow
  6425. );
  6426. cb(Qcur, "Qcur", il);
  6427. cb(Kcur, "Kcur", il);
  6428. cb(Vcur, "Vcur", il);
  6429. cur = build_attn(inp_attn, gf,
  6430. model.layers[il].wo, model.layers[il].bo,
  6431. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6432. }
  6433. if (il == n_layer - 1) {
  6434. // skip computing output for unused tokens
  6435. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6436. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6437. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6438. }
  6439. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6440. cb(ffn_inp, "ffn_inp", il);
  6441. // feed-forward network
  6442. cur = build_norm(ffn_inp,
  6443. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6444. LLM_NORM, il);
  6445. cb(cur, "ffn_norm", il);
  6446. cur = build_ffn(cur,
  6447. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6448. NULL, NULL, NULL,
  6449. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6450. NULL,
  6451. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6452. cb(cur, "ffn_out", il);
  6453. cur = ggml_add(ctx0, cur, ffn_inp);
  6454. cur = build_cvec(cur, il);
  6455. cb(cur, "l_out", il);
  6456. // input for next layer
  6457. inpL = cur;
  6458. }
  6459. cur = inpL;
  6460. cur = build_norm(cur,
  6461. model.output_norm, model.output_norm_b,
  6462. LLM_NORM, -1);
  6463. cb(cur, "result_norm", -1);
  6464. res->t_embd = cur;
  6465. // lm_head
  6466. cur = build_lora_mm(model.output, cur);
  6467. cb(cur, "result_output", -1);
  6468. res->t_logits = cur;
  6469. ggml_build_forward_expand(gf, cur);
  6470. }
  6471. };
  6472. struct llm_build_mamba : public llm_graph_context {
  6473. const llama_model & model;
  6474. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  6475. ggml_tensor * cur;
  6476. ggml_tensor * inpL;
  6477. // {n_embd, n_tokens}
  6478. inpL = build_inp_embd(model.tok_embd);
  6479. ggml_tensor * state_copy = build_inp_s_copy();
  6480. ggml_tensor * state_mask = build_inp_s_mask();
  6481. for (int il = 0; il < n_layer; ++il) {
  6482. // norm
  6483. cur = build_norm(inpL,
  6484. model.layers[il].attn_norm, NULL,
  6485. LLM_NORM_RMS, il);
  6486. cb(cur, "attn_norm", il);
  6487. //cur = build_mamba_layer(gf, cur, state_copy, state_mask, il);
  6488. cur = build_mamba_layer(gf, cur, state_copy, state_mask, ubatch, il);
  6489. if (il == n_layer - 1) {
  6490. // skip computing output for unused tokens
  6491. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6492. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6493. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6494. }
  6495. // residual
  6496. cur = ggml_add(ctx0, cur, inpL);
  6497. cur = build_cvec(cur, il);
  6498. cb(cur, "l_out", il);
  6499. // input for next layer
  6500. inpL = cur;
  6501. }
  6502. // final rmsnorm
  6503. cur = build_norm(inpL,
  6504. model.output_norm, NULL,
  6505. LLM_NORM_RMS, -1);
  6506. cb(cur, "result_norm", -1);
  6507. res->t_embd = cur;
  6508. // lm_head
  6509. cur = build_lora_mm(model.output, cur);
  6510. cb(cur, "result_output", -1);
  6511. res->t_logits = cur;
  6512. ggml_build_forward_expand(gf, cur);
  6513. }
  6514. // TODO: split
  6515. ggml_tensor * build_mamba_layer(
  6516. ggml_cgraph * gf,
  6517. ggml_tensor * cur,
  6518. ggml_tensor * state_copy,
  6519. ggml_tensor * state_mask,
  6520. const llama_ubatch & ubatch,
  6521. int il) const {
  6522. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  6523. const auto kv_head = kv_self->head;
  6524. const int64_t d_conv = hparams.ssm_d_conv;
  6525. const int64_t d_inner = hparams.ssm_d_inner;
  6526. const int64_t d_state = hparams.ssm_d_state;
  6527. const int64_t dt_rank = hparams.ssm_dt_rank;
  6528. const int64_t n_seqs = ubatch.n_seqs;
  6529. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  6530. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  6531. // Use the same RMS norm as the final layer norm
  6532. const float norm_rms_eps = hparams.f_norm_rms_eps;
  6533. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  6534. GGML_ASSERT(n_seqs != 0);
  6535. GGML_ASSERT(ubatch.equal_seqs);
  6536. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  6537. ggml_tensor * conv_states_all = kv_self->k_l[il];
  6538. ggml_tensor * ssm_states_all = kv_self->v_l[il];
  6539. // (ab)using the KV cache to store the states
  6540. ggml_tensor * conv = build_copy_mask_state(
  6541. gf, conv_states_all, state_copy, state_mask,
  6542. hparams.n_embd_k_s(), n_seqs);
  6543. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  6544. ggml_tensor * ssm = build_copy_mask_state(
  6545. gf, ssm_states_all, state_copy, state_mask,
  6546. hparams.n_embd_v_s(), n_seqs);
  6547. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  6548. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  6549. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  6550. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  6551. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  6552. // split the above in two
  6553. // => {d_inner, n_seq_tokens, n_seqs}
  6554. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  6555. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  6556. // conv
  6557. {
  6558. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  6559. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  6560. // copy last (d_conv - 1) columns back into the state cache
  6561. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  6562. ggml_build_forward_expand(gf,
  6563. ggml_cpy(ctx0, last_conv,
  6564. ggml_view_1d(ctx0, conv_states_all,
  6565. (d_conv - 1)*(d_inner)*(n_seqs),
  6566. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  6567. // 1D convolution
  6568. // The equivalent is to make a self-overlapping view of conv_x
  6569. // over d_conv columns at each stride in the 3rd dimension,
  6570. // then element-wise multiply that with the conv1d weight,
  6571. // then sum the elements of each row,
  6572. // (the last two steps are a dot product over rows (also doable with mul_mat))
  6573. // then permute away the ne[0] dimension,
  6574. // and then you're left with the resulting x tensor.
  6575. // For simultaneous sequences, all sequences need to have the same length.
  6576. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  6577. // bias
  6578. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  6579. x = ggml_silu(ctx0, x);
  6580. }
  6581. // ssm
  6582. {
  6583. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  6584. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  6585. // split
  6586. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  6587. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  6588. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  6589. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  6590. if (ssm_dt_b_c_rms) {
  6591. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  6592. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  6593. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  6594. }
  6595. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  6596. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  6597. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  6598. // Custom operator to optimize the parallel associative scan
  6599. // as described in the Annex D of the Mamba paper.
  6600. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  6601. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  6602. // store last states
  6603. ggml_build_forward_expand(gf,
  6604. ggml_cpy(ctx0,
  6605. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  6606. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  6607. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  6608. // TODO: skip computing output earlier for unused tokens
  6609. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  6610. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  6611. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  6612. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  6613. cur = build_lora_mm(model.layers[il].ssm_out, y);
  6614. }
  6615. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  6616. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  6617. //cb(cur, "mamba_out", il);
  6618. return cur;
  6619. }
  6620. };
  6621. struct llm_build_command_r : public llm_graph_context {
  6622. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6623. const int64_t n_embd_head = hparams.n_embd_head_v;
  6624. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6625. const float f_logit_scale = hparams.f_logit_scale;
  6626. ggml_tensor * cur;
  6627. ggml_tensor * inpL;
  6628. inpL = build_inp_embd(model.tok_embd);
  6629. // inp_pos - contains the positions
  6630. ggml_tensor * inp_pos = build_inp_pos();
  6631. auto * inp_attn = build_attn_inp_kv_unified();
  6632. for (int il = 0; il < n_layer; ++il) {
  6633. // norm
  6634. cur = build_norm(inpL,
  6635. model.layers[il].attn_norm, NULL,
  6636. LLM_NORM, il);
  6637. cb(cur, "attn_norm", il);
  6638. ggml_tensor * ffn_inp = cur;
  6639. // self-attention
  6640. {
  6641. // compute Q and K and RoPE them
  6642. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6643. cb(Qcur, "Qcur", il);
  6644. if (model.layers[il].bq) {
  6645. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6646. cb(Qcur, "Qcur", il);
  6647. }
  6648. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6649. cb(Kcur, "Kcur", il);
  6650. if (model.layers[il].bk) {
  6651. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6652. cb(Kcur, "Kcur", il);
  6653. }
  6654. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6655. cb(Vcur, "Vcur", il);
  6656. if (model.layers[il].bv) {
  6657. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6658. cb(Vcur, "Vcur", il);
  6659. }
  6660. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6661. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6662. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6663. if (model.layers[il].attn_q_norm) {
  6664. Qcur = build_norm(Qcur,
  6665. model.layers[il].attn_q_norm,
  6666. NULL,
  6667. LLM_NORM, il);
  6668. cb(Qcur, "Qcur", il);
  6669. }
  6670. Qcur = ggml_rope_ext(
  6671. ctx0, Qcur, inp_pos, nullptr,
  6672. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6673. ext_factor, attn_factor, beta_fast, beta_slow
  6674. );
  6675. if (model.layers[il].attn_k_norm) {
  6676. Kcur = build_norm(Kcur,
  6677. model.layers[il].attn_k_norm,
  6678. NULL,
  6679. LLM_NORM, il);
  6680. cb(Kcur, "Kcur", il);
  6681. }
  6682. Kcur = ggml_rope_ext(
  6683. ctx0, Kcur, inp_pos, nullptr,
  6684. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6685. ext_factor, attn_factor, beta_fast, beta_slow
  6686. );
  6687. cb(Qcur, "Qcur", il);
  6688. cb(Kcur, "Kcur", il);
  6689. cb(Vcur, "Vcur", il);
  6690. cur = build_attn(inp_attn, gf,
  6691. model.layers[il].wo, model.layers[il].bo,
  6692. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6693. }
  6694. if (il == n_layer - 1) {
  6695. // skip computing output for unused tokens
  6696. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6697. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6698. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6699. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  6700. }
  6701. ggml_tensor * attn_out = cur;
  6702. // feed-forward network
  6703. {
  6704. cur = build_ffn(ffn_inp,
  6705. model.layers[il].ffn_up, NULL, NULL,
  6706. model.layers[il].ffn_gate, NULL, NULL,
  6707. model.layers[il].ffn_down, NULL, NULL,
  6708. NULL,
  6709. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6710. cb(cur, "ffn_out", il);
  6711. }
  6712. // add together residual + FFN + self-attention
  6713. cur = ggml_add(ctx0, cur, inpL);
  6714. cur = ggml_add(ctx0, cur, attn_out);
  6715. cur = build_cvec(cur, il);
  6716. cb(cur, "l_out", il);
  6717. // input for next layer
  6718. inpL = cur;
  6719. }
  6720. cur = inpL;
  6721. cur = build_norm(cur,
  6722. model.output_norm, NULL,
  6723. LLM_NORM, -1);
  6724. cb(cur, "result_norm", -1);
  6725. res->t_embd = cur;
  6726. // lm_head
  6727. cur = build_lora_mm(model.output, cur);
  6728. if (f_logit_scale) {
  6729. cur = ggml_scale(ctx0, cur, f_logit_scale);
  6730. }
  6731. cb(cur, "result_output", -1);
  6732. res->t_logits = cur;
  6733. ggml_build_forward_expand(gf, cur);
  6734. }
  6735. };
  6736. struct llm_build_cohere2 : public llm_graph_context {
  6737. llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6738. const int64_t n_embd_head = hparams.n_embd_head_v;
  6739. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6740. const float f_logit_scale = hparams.f_logit_scale;
  6741. ggml_tensor * cur;
  6742. ggml_tensor * inpL;
  6743. inpL = build_inp_embd(model.tok_embd);
  6744. // inp_pos - contains the positions
  6745. ggml_tensor * inp_pos = build_inp_pos();
  6746. auto * inp_attn = build_attn_inp_kv_unified();
  6747. for (int il = 0; il < n_layer; ++il) {
  6748. const bool is_swa = hparams.is_swa(il);
  6749. // norm
  6750. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  6751. cb(cur, "attn_norm", il);
  6752. ggml_tensor * ffn_inp = cur;
  6753. // self-attention
  6754. {
  6755. // rope freq factors for 128k context
  6756. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  6757. // compute Q and K and RoPE them
  6758. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6759. cb(Qcur, "Qcur", il);
  6760. if (model.layers[il].bq) {
  6761. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6762. cb(Qcur, "Qcur", il);
  6763. }
  6764. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6765. cb(Kcur, "Kcur", il);
  6766. if (model.layers[il].bk) {
  6767. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6768. cb(Kcur, "Kcur", il);
  6769. }
  6770. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6771. cb(Vcur, "Vcur", il);
  6772. if (model.layers[il].bv) {
  6773. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6774. cb(Vcur, "Vcur", il);
  6775. }
  6776. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6777. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6778. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6779. if (is_swa) {
  6780. Qcur = ggml_rope_ext(
  6781. ctx0, Qcur, inp_pos, rope_factors,
  6782. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6783. ext_factor, attn_factor, beta_fast, beta_slow
  6784. );
  6785. Kcur = ggml_rope_ext(
  6786. ctx0, Kcur, inp_pos, rope_factors,
  6787. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6788. ext_factor, attn_factor, beta_fast, beta_slow
  6789. );
  6790. }
  6791. cb(Qcur, "Qcur", il);
  6792. cb(Kcur, "Kcur", il);
  6793. cb(Vcur, "Vcur", il);
  6794. cur = build_attn(inp_attn, gf,
  6795. model.layers[il].wo, model.layers[il].bo,
  6796. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6797. }
  6798. if (il == n_layer - 1) {
  6799. // skip computing output for unused tokens
  6800. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6801. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6802. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6803. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  6804. }
  6805. ggml_tensor * attn_out = cur;
  6806. // feed-forward network
  6807. {
  6808. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  6809. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  6810. il);
  6811. cb(cur, "ffn_out", il);
  6812. }
  6813. // add together residual + FFN + self-attention
  6814. cur = ggml_add(ctx0, cur, inpL);
  6815. cur = ggml_add(ctx0, cur, attn_out);
  6816. cur = build_cvec(cur, il);
  6817. cb(cur, "l_out", il);
  6818. // input for next layer
  6819. inpL = cur;
  6820. }
  6821. cur = inpL;
  6822. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  6823. cb(cur, "result_norm", -1);
  6824. res->t_embd = cur;
  6825. // lm_head
  6826. cur = build_lora_mm(model.output, cur);
  6827. if (f_logit_scale) {
  6828. cur = ggml_scale(ctx0, cur, f_logit_scale);
  6829. }
  6830. cb(cur, "result_output", -1);
  6831. res->t_logits = cur;
  6832. ggml_build_forward_expand(gf, cur);
  6833. }
  6834. };
  6835. // ref: https://allenai.org/olmo
  6836. // based on the original build_llama() function, changes:
  6837. // * non-parametric layer norm
  6838. // * clamp qkv
  6839. // * removed bias
  6840. // * removed MoE
  6841. struct llm_build_olmo : public llm_graph_context {
  6842. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6843. const int64_t n_embd_head = hparams.n_embd_head_v;
  6844. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6845. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6846. ggml_tensor * cur;
  6847. ggml_tensor * inpL;
  6848. inpL = build_inp_embd(model.tok_embd);
  6849. // inp_pos - contains the positions
  6850. ggml_tensor * inp_pos = build_inp_pos();
  6851. auto * inp_attn = build_attn_inp_kv_unified();
  6852. for (int il = 0; il < n_layer; ++il) {
  6853. ggml_tensor * inpSA = inpL;
  6854. // norm
  6855. cur = build_norm(inpL,
  6856. NULL, NULL,
  6857. LLM_NORM, il);
  6858. cb(cur, "attn_norm", il);
  6859. // self-attention
  6860. {
  6861. // compute Q and K and RoPE them
  6862. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6863. cb(Qcur, "Qcur", il);
  6864. if (hparams.f_clamp_kqv > 0.0f) {
  6865. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6866. cb(Qcur, "Qcur", il);
  6867. }
  6868. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6869. cb(Kcur, "Kcur", il);
  6870. if (hparams.f_clamp_kqv > 0.0f) {
  6871. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6872. cb(Kcur, "Kcur", il);
  6873. }
  6874. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6875. cb(Vcur, "Vcur", il);
  6876. if (hparams.f_clamp_kqv > 0.0f) {
  6877. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6878. cb(Vcur, "Vcur", il);
  6879. }
  6880. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6881. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6882. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6883. Qcur = ggml_rope_ext(
  6884. ctx0, Qcur, inp_pos, nullptr,
  6885. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6886. ext_factor, attn_factor, beta_fast, beta_slow
  6887. );
  6888. Kcur = ggml_rope_ext(
  6889. ctx0, Kcur, inp_pos, nullptr,
  6890. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6891. ext_factor, attn_factor, beta_fast, beta_slow
  6892. );
  6893. cb(Qcur, "Qcur", il);
  6894. cb(Kcur, "Kcur", il);
  6895. cb(Vcur, "Vcur", il);
  6896. cur = build_attn(inp_attn, gf,
  6897. model.layers[il].wo, nullptr,
  6898. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6899. }
  6900. if (il == n_layer - 1) {
  6901. // skip computing output for unused tokens
  6902. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6903. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6904. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6905. }
  6906. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6907. cb(ffn_inp, "ffn_inp", il);
  6908. // feed-forward network
  6909. cur = build_norm(ffn_inp,
  6910. NULL, NULL,
  6911. LLM_NORM, il);
  6912. cb(cur, "ffn_norm", il);
  6913. cur = build_ffn(cur,
  6914. model.layers[il].ffn_up, NULL, NULL,
  6915. model.layers[il].ffn_gate, NULL, NULL,
  6916. model.layers[il].ffn_down, NULL, NULL,
  6917. NULL,
  6918. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6919. cb(cur, "ffn_out", il);
  6920. cur = ggml_add(ctx0, cur, ffn_inp);
  6921. cb(cur, "ffn_out", il);
  6922. cur = build_cvec(cur, il);
  6923. cb(cur, "l_out", il);
  6924. // input for next layer
  6925. inpL = cur;
  6926. }
  6927. cur = inpL;
  6928. cur = build_norm(cur,
  6929. NULL, NULL,
  6930. LLM_NORM, -1);
  6931. cb(cur, "result_norm", -1);
  6932. res->t_embd = cur;
  6933. // lm_head
  6934. cur = build_lora_mm(model.output, cur);
  6935. cb(cur, "result_output", -1);
  6936. res->t_logits = cur;
  6937. ggml_build_forward_expand(gf, cur);
  6938. }
  6939. };
  6940. struct llm_build_olmo2 : public llm_graph_context {
  6941. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6942. const int64_t n_embd_head = hparams.n_embd_head_v;
  6943. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6944. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6945. ggml_tensor * cur;
  6946. ggml_tensor * inpL;
  6947. inpL = build_inp_embd(model.tok_embd);
  6948. // inp_pos - contains the positions
  6949. ggml_tensor * inp_pos = build_inp_pos();
  6950. auto * inp_attn = build_attn_inp_kv_unified();
  6951. for (int il = 0; il < n_layer; ++il) {
  6952. ggml_tensor * inpSA = inpL;
  6953. cur = inpL;
  6954. // self_attention
  6955. {
  6956. // compute Q and K and RoPE them
  6957. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6958. cb(Qcur, "Qcur", il);
  6959. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6960. cb(Kcur, "Kcur", il);
  6961. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6962. cb(Vcur, "Vcur", il);
  6963. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  6964. LLM_NORM_RMS, il);
  6965. cb(Qcur, "Qcur_normed", il);
  6966. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  6967. LLM_NORM_RMS, il);
  6968. cb(Kcur, "Kcur_normed", il);
  6969. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6970. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6971. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6972. Qcur = ggml_rope_ext(
  6973. ctx0, Qcur, inp_pos, nullptr,
  6974. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6975. ext_factor, attn_factor, beta_fast, beta_slow
  6976. );
  6977. Kcur = ggml_rope_ext(
  6978. ctx0, Kcur, inp_pos, nullptr,
  6979. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6980. ext_factor, attn_factor, beta_fast, beta_slow
  6981. );
  6982. cb(Qcur, "Qcur", il);
  6983. cb(Kcur, "Kcur", il);
  6984. cb(Vcur, "Vcur", il);
  6985. cur = build_attn(inp_attn, gf,
  6986. model.layers[il].wo, NULL,
  6987. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6988. }
  6989. cur = build_norm(cur,
  6990. model.layers[il].attn_post_norm, NULL,
  6991. LLM_NORM_RMS, il);
  6992. cb(cur, "attn_post_norm", il);
  6993. if (il == n_layer - 1) {
  6994. // skip computing output for unused tokens
  6995. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6996. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6997. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6998. }
  6999. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7000. cb(ffn_inp, "ffn_inp", il);
  7001. // feed-forward network
  7002. cur = build_ffn(ffn_inp,
  7003. model.layers[il].ffn_up, NULL, NULL,
  7004. model.layers[il].ffn_gate, NULL, NULL,
  7005. model.layers[il].ffn_down, NULL, NULL,
  7006. NULL,
  7007. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7008. cb(cur, "ffn_out", il);
  7009. cur = build_norm(cur,
  7010. model.layers[il].ffn_post_norm, NULL,
  7011. LLM_NORM_RMS, -1);
  7012. cb(cur, "ffn_post_norm", -1);
  7013. cur = ggml_add(ctx0, cur, ffn_inp);
  7014. cb(cur, "ffn_out", il);
  7015. cur = build_cvec(cur, il);
  7016. cb(cur, "l_out", il);
  7017. // input for next layer
  7018. inpL = cur;
  7019. }
  7020. cur = inpL;
  7021. cur = build_norm(cur,
  7022. model.output_norm, NULL,
  7023. LLM_NORM_RMS, -1);
  7024. cb(cur, "result_norm", -1);
  7025. res->t_embd = cur;
  7026. // lm_head
  7027. cur = build_lora_mm(model.output, cur);
  7028. cb(cur, "result_output", -1);
  7029. res->t_logits = cur;
  7030. ggml_build_forward_expand(gf, cur);
  7031. }
  7032. };
  7033. // based on the build_qwen2moe() function, changes:
  7034. // * removed shared experts
  7035. // * removed bias
  7036. // * added q, k norm
  7037. struct llm_build_olmoe : public llm_graph_context {
  7038. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7039. const int64_t n_embd_head = hparams.n_embd_head_v;
  7040. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7041. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7042. ggml_tensor * cur;
  7043. ggml_tensor * inpL;
  7044. inpL = build_inp_embd(model.tok_embd);
  7045. // inp_pos - contains the positions
  7046. ggml_tensor * inp_pos = build_inp_pos();
  7047. auto * inp_attn = build_attn_inp_kv_unified();
  7048. for (int il = 0; il < n_layer; ++il) {
  7049. ggml_tensor * inpSA = inpL;
  7050. // norm
  7051. cur = build_norm(inpL,
  7052. model.layers[il].attn_norm, NULL,
  7053. LLM_NORM_RMS, il);
  7054. cb(cur, "attn_norm", il);
  7055. // self_attention
  7056. {
  7057. // compute Q and K and RoPE them
  7058. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7059. cb(Qcur, "Qcur", il);
  7060. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7061. cb(Kcur, "Kcur", il);
  7062. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7063. cb(Vcur, "Vcur", il);
  7064. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7065. LLM_NORM_RMS, il);
  7066. cb(Qcur, "Qcur_normed", il);
  7067. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7068. LLM_NORM_RMS, il);
  7069. cb(Kcur, "Kcur_normed", il);
  7070. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7071. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7072. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7073. Qcur = ggml_rope_ext(
  7074. ctx0, Qcur, inp_pos, nullptr,
  7075. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7076. ext_factor, attn_factor, beta_fast, beta_slow
  7077. );
  7078. Kcur = ggml_rope_ext(
  7079. ctx0, Kcur, inp_pos, nullptr,
  7080. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7081. ext_factor, attn_factor, beta_fast, beta_slow
  7082. );
  7083. cb(Qcur, "Qcur", il);
  7084. cb(Kcur, "Kcur", il);
  7085. cb(Vcur, "Vcur", il);
  7086. cur = build_attn(inp_attn, gf,
  7087. model.layers[il].wo, NULL,
  7088. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7089. }
  7090. if (il == n_layer - 1) {
  7091. // skip computing output for unused tokens
  7092. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7093. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7094. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7095. }
  7096. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7097. cb(ffn_inp, "ffn_inp", il);
  7098. // MoE branch
  7099. cur = build_norm(ffn_inp,
  7100. model.layers[il].ffn_norm, NULL,
  7101. LLM_NORM_RMS, il);
  7102. cb(cur, "ffn_norm", il);
  7103. cur = build_moe_ffn(cur,
  7104. model.layers[il].ffn_gate_inp,
  7105. model.layers[il].ffn_up_exps,
  7106. model.layers[il].ffn_gate_exps,
  7107. model.layers[il].ffn_down_exps,
  7108. nullptr,
  7109. n_expert, n_expert_used,
  7110. LLM_FFN_SILU, false,
  7111. false, 0.0,
  7112. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7113. il);
  7114. cb(cur, "ffn_moe_out", il);
  7115. cur = ggml_add(ctx0, cur, ffn_inp);
  7116. cur = build_cvec(cur, il);
  7117. cb(cur, "l_out", il);
  7118. // input for next layer
  7119. inpL = cur;
  7120. }
  7121. cur = inpL;
  7122. cur = build_norm(cur,
  7123. model.output_norm, NULL,
  7124. LLM_NORM_RMS, -1);
  7125. cb(cur, "result_norm", -1);
  7126. res->t_embd = cur;
  7127. // lm_head
  7128. cur = build_lora_mm(model.output, cur);
  7129. cb(cur, "result_output", -1);
  7130. res->t_logits = cur;
  7131. ggml_build_forward_expand(gf, cur);
  7132. }
  7133. };
  7134. struct llm_build_openelm : public llm_graph_context {
  7135. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7136. const int64_t n_embd_head = hparams.n_embd_head_v;
  7137. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7138. ggml_tensor * cur;
  7139. ggml_tensor * inpL;
  7140. inpL = build_inp_embd(model.tok_embd);
  7141. // inp_pos - contains the positions
  7142. ggml_tensor * inp_pos = build_inp_pos();
  7143. auto * inp_attn = build_attn_inp_kv_unified();
  7144. for (int il = 0; il < n_layer; ++il) {
  7145. const int64_t n_head = hparams.n_head(il);
  7146. const int64_t n_head_kv = hparams.n_head_kv(il);
  7147. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7148. cur = inpL;
  7149. ggml_tensor * residual = cur;
  7150. // norm
  7151. cur = build_norm(inpL,
  7152. model.layers[il].attn_norm, NULL,
  7153. LLM_NORM_RMS, il);
  7154. cb(cur, "attn_norm", il);
  7155. // self-attention
  7156. {
  7157. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7158. cb(cur, "wqkv", il);
  7159. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7160. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7161. cb(Qcur, "Qcur", il);
  7162. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7163. cb(Kcur, "Kcur", il);
  7164. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7165. cb(Vcur, "Vcur", il);
  7166. Qcur = build_norm(Qcur,
  7167. model.layers[il].attn_q_norm, NULL,
  7168. LLM_NORM_RMS, il);
  7169. cb(Qcur, "Qcur", il);
  7170. Kcur = build_norm(Kcur,
  7171. model.layers[il].attn_k_norm, NULL,
  7172. LLM_NORM_RMS, il);
  7173. cb(Kcur, "Kcur", il);
  7174. Qcur = ggml_rope_ext(
  7175. ctx0, Qcur, inp_pos, NULL,
  7176. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7177. ext_factor, attn_factor, beta_fast, beta_slow
  7178. );
  7179. Kcur = ggml_rope_ext(
  7180. ctx0, Kcur, inp_pos, NULL,
  7181. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7182. ext_factor, attn_factor, beta_fast, beta_slow
  7183. );
  7184. cb(Qcur, "Qcur", il);
  7185. cb(Kcur, "Kcur", il);
  7186. cb(Qcur, "Vcur", il);
  7187. cur = build_attn(inp_attn, gf,
  7188. model.layers[il].wo, NULL,
  7189. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7190. }
  7191. if (il == n_layer - 1) {
  7192. // skip computing output for unused tokens
  7193. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7194. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7195. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7196. }
  7197. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7198. cb(ffn_inp, "ffn_inp", il);
  7199. // feed-forward network
  7200. {
  7201. cur = build_norm(ffn_inp,
  7202. model.layers[il].ffn_norm, NULL,
  7203. LLM_NORM_RMS, il);
  7204. cb(cur, "ffn_norm", il);
  7205. cur = build_ffn(cur,
  7206. model.layers[il].ffn_up, NULL, NULL,
  7207. model.layers[il].ffn_gate, NULL, NULL,
  7208. model.layers[il].ffn_down, NULL, NULL,
  7209. NULL,
  7210. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7211. cb(cur, "ffn_out", il);
  7212. }
  7213. cur = ggml_add(ctx0, cur, ffn_inp);
  7214. cur = build_cvec(cur, il);
  7215. cb(cur, "l_out", il);
  7216. inpL = cur;
  7217. }
  7218. cur = inpL;
  7219. // norm
  7220. cur = build_norm(cur,
  7221. model.output_norm, NULL,
  7222. LLM_NORM_RMS, -1);
  7223. cb(cur, "result_norm", -1);
  7224. res->t_embd = cur;
  7225. cur = build_lora_mm(model.output, cur);
  7226. cb(cur, "result_output", -1);
  7227. res->t_logits = cur;
  7228. ggml_build_forward_expand(gf, cur);
  7229. }
  7230. };
  7231. struct llm_build_gptneox : public llm_graph_context {
  7232. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7233. const int64_t n_embd_head = hparams.n_embd_head_v;
  7234. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7235. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7236. ggml_tensor * cur;
  7237. ggml_tensor * inpL;
  7238. inpL = build_inp_embd(model.tok_embd);
  7239. // inp_pos - contains the positions
  7240. ggml_tensor * inp_pos = build_inp_pos();
  7241. auto * inp_attn = build_attn_inp_kv_unified();
  7242. for (int il = 0; il < n_layer; ++il) {
  7243. cur = build_norm(inpL,
  7244. model.layers[il].attn_norm,
  7245. model.layers[il].attn_norm_b,
  7246. LLM_NORM, il);
  7247. cb(cur, "attn_norm", il);
  7248. // self-attention
  7249. {
  7250. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7251. cb(cur, "wqkv", il);
  7252. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7253. cb(cur, "bqkv", il);
  7254. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7255. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7256. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7257. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7258. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7259. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7260. Qcur = ggml_rope_ext(
  7261. ctx0, Qcur, inp_pos, nullptr,
  7262. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7263. ext_factor, attn_factor, beta_fast, beta_slow
  7264. );
  7265. Kcur = ggml_rope_ext(
  7266. ctx0, Kcur, inp_pos, nullptr,
  7267. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7268. ext_factor, attn_factor, beta_fast, beta_slow
  7269. );
  7270. cb(Qcur, "Qcur", il);
  7271. cb(Kcur, "Kcur", il);
  7272. cb(Vcur, "Vcur", il);
  7273. cur = build_attn(inp_attn, gf,
  7274. model.layers[il].wo, model.layers[il].bo,
  7275. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7276. }
  7277. if (il == n_layer - 1) {
  7278. // skip computing output for unused tokens
  7279. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7280. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7281. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7282. }
  7283. // ffn
  7284. if (hparams.use_par_res) {
  7285. // attention and ffn are computed in parallel
  7286. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7287. ggml_tensor * attn_out = cur;
  7288. cur = build_norm(inpL,
  7289. model.layers[il].ffn_norm,
  7290. model.layers[il].ffn_norm_b,
  7291. LLM_NORM, il);
  7292. cb(cur, "ffn_norm", il);
  7293. cur = build_ffn(cur,
  7294. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7295. NULL, NULL, NULL,
  7296. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7297. NULL,
  7298. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7299. cb(cur, "ffn_out", il);
  7300. cur = ggml_add(ctx0, cur, inpL);
  7301. cb(cur, "ffn_out", il);
  7302. cur = ggml_add(ctx0, cur, attn_out);
  7303. cur = build_cvec(cur, il);
  7304. cb(cur, "l_out", il);
  7305. // input for next layer
  7306. inpL = cur;
  7307. } else {
  7308. // attention and ffn are computed sequentially
  7309. // x = x + attn(ln1(x))
  7310. // x = x + ffn(ln2(x))
  7311. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7312. cb(ffn_inp, "ffn_inp", il);
  7313. cur = build_norm(ffn_inp,
  7314. model.layers[il].ffn_norm,
  7315. model.layers[il].ffn_norm_b,
  7316. LLM_NORM, il);
  7317. cb(cur, "ffn_norm", il);
  7318. cur = build_ffn(cur,
  7319. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7320. NULL, NULL, NULL,
  7321. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7322. NULL,
  7323. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7324. cb(cur, "ffn_out", il);
  7325. cur = ggml_add(ctx0, cur, ffn_inp);
  7326. cur = build_cvec(cur, il);
  7327. cb(cur, "l_out", il);
  7328. // input for next layer
  7329. inpL = cur;
  7330. }
  7331. }
  7332. cur = build_norm(inpL,
  7333. model.output_norm,
  7334. model.output_norm_b,
  7335. LLM_NORM, -1);
  7336. cb(cur, "result_norm", -1);
  7337. res->t_embd = cur;
  7338. cur = build_lora_mm(model.output, cur);
  7339. cb(cur, "result_output", -1);
  7340. res->t_logits = cur;
  7341. ggml_build_forward_expand(gf, cur);
  7342. }
  7343. };
  7344. struct llm_build_arctic : public llm_graph_context {
  7345. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7346. const int64_t n_embd_head = hparams.n_embd_head_v;
  7347. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7348. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7349. ggml_tensor * cur;
  7350. ggml_tensor * inpL;
  7351. inpL = build_inp_embd(model.tok_embd);
  7352. // inp_pos - contains the positions
  7353. ggml_tensor * inp_pos = build_inp_pos();
  7354. auto * inp_attn = build_attn_inp_kv_unified();
  7355. for (int il = 0; il < n_layer; ++il) {
  7356. ggml_tensor * inpSA = inpL;
  7357. // norm
  7358. cur = build_norm(inpL,
  7359. model.layers[il].attn_norm, NULL,
  7360. LLM_NORM_RMS, il);
  7361. cb(cur, "attn_norm", il);
  7362. // self-attention
  7363. {
  7364. // compute Q and K and RoPE them
  7365. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7366. cb(Qcur, "Qcur", il);
  7367. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7368. cb(Kcur, "Kcur", il);
  7369. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7370. cb(Vcur, "Vcur", il);
  7371. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7372. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7373. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7374. Qcur = ggml_rope_ext(
  7375. ctx0, Qcur, inp_pos, nullptr,
  7376. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7377. ext_factor, attn_factor, beta_fast, beta_slow
  7378. );
  7379. Kcur = ggml_rope_ext(
  7380. ctx0, Kcur, inp_pos, nullptr,
  7381. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7382. ext_factor, attn_factor, beta_fast, beta_slow
  7383. );
  7384. cb(Qcur, "Qcur", il);
  7385. cb(Kcur, "Kcur", il);
  7386. cb(Vcur, "Vcur", il);
  7387. cur = build_attn(inp_attn, gf,
  7388. model.layers[il].wo, NULL,
  7389. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7390. }
  7391. if (il == n_layer - 1) {
  7392. // skip computing output for unused tokens
  7393. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7394. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7395. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7396. }
  7397. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7398. cb(ffn_inp, "ffn_inp", il);
  7399. // feed-forward network
  7400. cur = build_norm(ffn_inp,
  7401. model.layers[il].ffn_norm, NULL,
  7402. LLM_NORM_RMS, il);
  7403. cb(cur, "ffn_norm", il);
  7404. cur = build_ffn(cur,
  7405. model.layers[il].ffn_up, NULL, NULL,
  7406. model.layers[il].ffn_gate, NULL, NULL,
  7407. model.layers[il].ffn_down, NULL, NULL,
  7408. NULL,
  7409. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7410. cb(cur, "ffn_out", il);
  7411. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  7412. cb(ffn_out, "ffn_out", il);
  7413. // MoE
  7414. cur = build_norm(inpSA,
  7415. model.layers[il].ffn_norm_exps, NULL,
  7416. LLM_NORM_RMS, il);
  7417. cb(cur, "ffn_norm_exps", il);
  7418. cur = build_moe_ffn(cur,
  7419. model.layers[il].ffn_gate_inp,
  7420. model.layers[il].ffn_up_exps,
  7421. model.layers[il].ffn_gate_exps,
  7422. model.layers[il].ffn_down_exps,
  7423. nullptr,
  7424. n_expert, n_expert_used,
  7425. LLM_FFN_SILU, true,
  7426. false, 0.0,
  7427. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7428. il);
  7429. cb(cur, "ffn_moe_out", il);
  7430. cur = ggml_add(ctx0, cur, ffn_out);
  7431. cb(cur, "ffn_out", il);
  7432. cur = build_cvec(cur, il);
  7433. cb(cur, "l_out", il);
  7434. // input for next layer
  7435. inpL = cur;
  7436. }
  7437. cur = inpL;
  7438. cur = build_norm(cur,
  7439. model.output_norm, NULL,
  7440. LLM_NORM_RMS, -1);
  7441. cb(cur, "result_norm", -1);
  7442. res->t_embd = cur;
  7443. // lm_head
  7444. cur = build_lora_mm(model.output, cur);
  7445. cb(cur, "result_output", -1);
  7446. res->t_logits = cur;
  7447. ggml_build_forward_expand(gf, cur);
  7448. }
  7449. };
  7450. struct llm_build_deepseek : public llm_graph_context {
  7451. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7452. const int64_t n_embd_head = hparams.n_embd_head_v;
  7453. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7454. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7455. ggml_tensor * cur;
  7456. ggml_tensor * inpL;
  7457. inpL = build_inp_embd(model.tok_embd);
  7458. // inp_pos - contains the positions
  7459. ggml_tensor * inp_pos = build_inp_pos();
  7460. auto * inp_attn = build_attn_inp_kv_unified();
  7461. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  7462. for (int il = 0; il < n_layer; ++il) {
  7463. ggml_tensor * inpSA = inpL;
  7464. // norm
  7465. cur = build_norm(inpL,
  7466. model.layers[il].attn_norm, NULL,
  7467. LLM_NORM_RMS, il);
  7468. cb(cur, "attn_norm", il);
  7469. // self-attention
  7470. {
  7471. // rope freq factors for llama3; may return nullptr for llama2 and other models
  7472. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  7473. // compute Q and K and RoPE them
  7474. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7475. cb(Qcur, "Qcur", il);
  7476. if (model.layers[il].bq) {
  7477. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7478. cb(Qcur, "Qcur", il);
  7479. }
  7480. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7481. cb(Kcur, "Kcur", il);
  7482. if (model.layers[il].bk) {
  7483. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7484. cb(Kcur, "Kcur", il);
  7485. }
  7486. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7487. cb(Vcur, "Vcur", il);
  7488. if (model.layers[il].bv) {
  7489. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7490. cb(Vcur, "Vcur", il);
  7491. }
  7492. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7493. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7494. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7495. Qcur = ggml_rope_ext(
  7496. ctx0, Qcur, inp_pos, rope_factors,
  7497. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7498. ext_factor, attn_factor, beta_fast, beta_slow
  7499. );
  7500. Kcur = ggml_rope_ext(
  7501. ctx0, Kcur, inp_pos, rope_factors,
  7502. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7503. ext_factor, attn_factor, beta_fast, beta_slow
  7504. );
  7505. cb(Qcur, "Qcur", il);
  7506. cb(Kcur, "Kcur", il);
  7507. cb(Vcur, "Vcur", il);
  7508. cur = build_attn(inp_attn, gf,
  7509. model.layers[il].wo, model.layers[il].bo,
  7510. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  7511. }
  7512. if (il == n_layer - 1) {
  7513. // skip computing output for unused tokens
  7514. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7515. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7516. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7517. }
  7518. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7519. cb(ffn_inp, "ffn_inp", il);
  7520. cur = build_norm(ffn_inp,
  7521. model.layers[il].ffn_norm, NULL,
  7522. LLM_NORM_RMS, il);
  7523. cb(cur, "ffn_norm", il);
  7524. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  7525. cur = build_ffn(cur,
  7526. model.layers[il].ffn_up, NULL, NULL,
  7527. model.layers[il].ffn_gate, NULL, NULL,
  7528. model.layers[il].ffn_down, NULL, NULL,
  7529. NULL,
  7530. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7531. cb(cur, "ffn_out", il);
  7532. } else {
  7533. // MoE branch
  7534. ggml_tensor * moe_out =
  7535. build_moe_ffn(cur,
  7536. model.layers[il].ffn_gate_inp,
  7537. model.layers[il].ffn_up_exps,
  7538. model.layers[il].ffn_gate_exps,
  7539. model.layers[il].ffn_down_exps,
  7540. nullptr,
  7541. n_expert, n_expert_used,
  7542. LLM_FFN_SILU, false,
  7543. false, hparams.expert_weights_scale,
  7544. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7545. il);
  7546. cb(moe_out, "ffn_moe_out", il);
  7547. // FFN shared expert
  7548. {
  7549. ggml_tensor * ffn_shexp = build_ffn(cur,
  7550. model.layers[il].ffn_up_shexp, NULL, NULL,
  7551. model.layers[il].ffn_gate_shexp, NULL, NULL,
  7552. model.layers[il].ffn_down_shexp, NULL, NULL,
  7553. NULL,
  7554. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7555. cb(ffn_shexp, "ffn_shexp", il);
  7556. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  7557. cb(cur, "ffn_out", il);
  7558. }
  7559. }
  7560. cur = ggml_add(ctx0, cur, ffn_inp);
  7561. cur = build_cvec(cur, il);
  7562. cb(cur, "l_out", il);
  7563. // input for next layer
  7564. inpL = cur;
  7565. }
  7566. cur = inpL;
  7567. cur = build_norm(cur,
  7568. model.output_norm, NULL,
  7569. LLM_NORM_RMS, -1);
  7570. cb(cur, "result_norm", -1);
  7571. res->t_embd = cur;
  7572. // lm_head
  7573. cur = build_lora_mm(model.output, cur);
  7574. cb(cur, "result_output", -1);
  7575. res->t_logits = cur;
  7576. ggml_build_forward_expand(gf, cur);
  7577. }
  7578. };
  7579. struct llm_build_deepseek2 : public llm_graph_context {
  7580. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7581. bool is_lite = (hparams.n_layer == 27);
  7582. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  7583. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  7584. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  7585. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  7586. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  7587. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  7588. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  7589. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  7590. ggml_tensor * cur;
  7591. ggml_tensor * inpL;
  7592. // {n_embd, n_tokens}
  7593. inpL = build_inp_embd(model.tok_embd);
  7594. // inp_pos - contains the positions
  7595. ggml_tensor * inp_pos = build_inp_pos();
  7596. auto * inp_attn = build_attn_inp_kv_unified();
  7597. for (int il = 0; il < n_layer; ++il) {
  7598. ggml_tensor * inpSA = inpL;
  7599. // norm
  7600. cur = build_norm(inpL,
  7601. model.layers[il].attn_norm, NULL,
  7602. LLM_NORM_RMS, il);
  7603. cb(cur, "attn_norm", il);
  7604. // self_attention
  7605. {
  7606. ggml_tensor * q = NULL;
  7607. if (!is_lite) {
  7608. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  7609. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  7610. cb(q, "q", il);
  7611. q = build_norm(q,
  7612. model.layers[il].attn_q_a_norm, NULL,
  7613. LLM_NORM_RMS, il);
  7614. cb(q, "q", il);
  7615. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  7616. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  7617. cb(q, "q", il);
  7618. } else {
  7619. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7620. cb(q, "q", il);
  7621. }
  7622. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  7623. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  7624. ggml_row_size(q->type, hparams.n_embd_head_k),
  7625. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  7626. 0);
  7627. cb(q_nope, "q_nope", il);
  7628. // and {n_head * n_embd_head_qk_rope, n_tokens}
  7629. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  7630. ggml_row_size(q->type, hparams.n_embd_head_k),
  7631. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  7632. ggml_row_size(q->type, n_embd_head_qk_nope));
  7633. cb(q_pe, "q_pe", il);
  7634. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  7635. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  7636. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  7637. // split into {kv_lora_rank, n_tokens}
  7638. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  7639. kv_pe_compresseed->nb[1],
  7640. 0);
  7641. cb(kv_compressed, "kv_compressed", il);
  7642. // and {n_embd_head_qk_rope, n_tokens}
  7643. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  7644. kv_pe_compresseed->nb[1],
  7645. kv_pe_compresseed->nb[1],
  7646. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  7647. cb(k_pe, "k_pe", il);
  7648. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  7649. kv_compressed = ggml_cont(ctx0, kv_compressed);
  7650. kv_compressed = build_norm(kv_compressed,
  7651. model.layers[il].attn_kv_a_norm, NULL,
  7652. LLM_NORM_RMS, il);
  7653. cb(kv_compressed, "kv_compressed", il);
  7654. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  7655. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  7656. cb(kv, "kv", il);
  7657. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  7658. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  7659. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  7660. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  7661. 0);
  7662. cb(k_nope, "k_nope", il);
  7663. // and {n_head * n_embd_head_v, n_tokens}
  7664. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  7665. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  7666. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  7667. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  7668. cb(v_states, "v_states", il);
  7669. v_states = ggml_cont(ctx0, v_states);
  7670. cb(v_states, "v_states", il);
  7671. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  7672. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  7673. 0);
  7674. cb(v_states, "v_states", il);
  7675. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  7676. q_pe = ggml_rope_ext(
  7677. ctx0, q_pe, inp_pos, nullptr,
  7678. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7679. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  7680. );
  7681. cb(q_pe, "q_pe", il);
  7682. // shared RoPE key
  7683. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  7684. k_pe = ggml_rope_ext(
  7685. ctx0, k_pe, inp_pos, nullptr,
  7686. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7687. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  7688. );
  7689. cb(k_pe, "k_pe", il);
  7690. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  7691. cb(q_states, "q_states", il);
  7692. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  7693. cb(k_states, "k_states", il);
  7694. cur = build_attn(inp_attn, gf,
  7695. model.layers[il].wo, NULL,
  7696. q_states, k_states, v_states, nullptr, kq_scale, il);
  7697. }
  7698. if (il == n_layer - 1) {
  7699. // skip computing output for unused tokens
  7700. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7701. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7702. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7703. }
  7704. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7705. cb(ffn_inp, "ffn_inp", il);
  7706. cur = build_norm(ffn_inp,
  7707. model.layers[il].ffn_norm, NULL,
  7708. LLM_NORM_RMS, il);
  7709. cb(cur, "ffn_norm", il);
  7710. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  7711. cur = build_ffn(cur,
  7712. model.layers[il].ffn_up, NULL, NULL,
  7713. model.layers[il].ffn_gate, NULL, NULL,
  7714. model.layers[il].ffn_down, NULL, NULL,
  7715. NULL,
  7716. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7717. cb(cur, "ffn_out", il);
  7718. } else {
  7719. // MoE branch
  7720. ggml_tensor * moe_out =
  7721. build_moe_ffn(cur,
  7722. model.layers[il].ffn_gate_inp,
  7723. model.layers[il].ffn_up_exps,
  7724. model.layers[il].ffn_gate_exps,
  7725. model.layers[il].ffn_down_exps,
  7726. model.layers[il].ffn_exp_probs_b,
  7727. n_expert, n_expert_used,
  7728. LLM_FFN_SILU, hparams.expert_weights_norm,
  7729. true, hparams.expert_weights_scale,
  7730. (llama_expert_gating_func_type) hparams.expert_gating_func,
  7731. il);
  7732. cb(moe_out, "ffn_moe_out", il);
  7733. // FFN shared expert
  7734. {
  7735. ggml_tensor * ffn_shexp = build_ffn(cur,
  7736. model.layers[il].ffn_up_shexp, NULL, NULL,
  7737. model.layers[il].ffn_gate_shexp, NULL, NULL,
  7738. model.layers[il].ffn_down_shexp, NULL, NULL,
  7739. NULL,
  7740. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7741. cb(ffn_shexp, "ffn_shexp", il);
  7742. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  7743. cb(cur, "ffn_out", il);
  7744. }
  7745. }
  7746. cur = ggml_add(ctx0, cur, ffn_inp);
  7747. cur = build_cvec(cur, il);
  7748. cb(cur, "l_out", il);
  7749. // input for next layer
  7750. inpL = cur;
  7751. }
  7752. cur = inpL;
  7753. cur = build_norm(cur,
  7754. model.output_norm, NULL,
  7755. LLM_NORM_RMS, -1);
  7756. cb(cur, "result_norm", -1);
  7757. res->t_embd = cur;
  7758. // lm_head
  7759. cur = ggml_mul_mat(ctx0, model.output, cur);
  7760. cb(cur, "result_output", -1);
  7761. res->t_logits = cur;
  7762. ggml_build_forward_expand(gf, cur);
  7763. }
  7764. };
  7765. struct llm_build_bitnet : public llm_graph_context {
  7766. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7767. const int64_t n_embd_head = hparams.n_embd_head_v;
  7768. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7769. ggml_tensor * cur;
  7770. ggml_tensor * inpL;
  7771. inpL = build_inp_embd(model.tok_embd);
  7772. // inp_pos - contains the positions
  7773. ggml_tensor * inp_pos = build_inp_pos();
  7774. auto * inp_attn = build_attn_inp_kv_unified();
  7775. for (int il = 0; il < n_layer; ++il) {
  7776. ggml_tensor * inpSA = inpL;
  7777. cur = build_norm(inpL,
  7778. model.layers[il].attn_norm, NULL,
  7779. LLM_NORM_RMS, il);
  7780. cb(cur, "attn_norm", il);
  7781. // self-attention
  7782. {
  7783. // compute Q and K and RoPE them
  7784. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7785. if (model.layers[il].wq_scale) {
  7786. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  7787. }
  7788. cb(Qcur, "Qcur", il);
  7789. if (model.layers[il].bq) {
  7790. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7791. cb(Qcur, "Qcur", il);
  7792. }
  7793. // B1.K
  7794. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7795. if (model.layers[il].wk_scale) {
  7796. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  7797. }
  7798. cb(Kcur, "Kcur", il);
  7799. if (model.layers[il].bk) {
  7800. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7801. cb(Kcur, "Kcur", il);
  7802. }
  7803. // B1.V
  7804. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7805. if (model.layers[il].wv_scale) {
  7806. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  7807. }
  7808. cb(Vcur, "Vcur", il);
  7809. if (model.layers[il].bv) {
  7810. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7811. cb(Vcur, "Vcur", il);
  7812. }
  7813. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7814. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7815. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7816. Qcur = ggml_rope_ext(
  7817. ctx0, Qcur, inp_pos, nullptr,
  7818. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7819. ext_factor, attn_factor, beta_fast, beta_slow
  7820. );
  7821. Kcur = ggml_rope_ext(
  7822. ctx0, Kcur, inp_pos, nullptr,
  7823. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7824. ext_factor, attn_factor, beta_fast, beta_slow
  7825. );
  7826. cb(Qcur, "Qcur", il);
  7827. cb(Kcur, "Kcur", il);
  7828. cb(Vcur, "Vcur", il);
  7829. cur = build_attn(inp_attn, gf,
  7830. NULL, NULL,
  7831. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7832. cur = build_norm(cur,
  7833. model.layers[il].attn_sub_norm, NULL,
  7834. LLM_NORM_RMS, il);
  7835. cb(cur, "attn_sub_norm", il);
  7836. cur = build_lora_mm(model.layers[il].wo, cur);
  7837. if (model.layers[il].wo_scale) {
  7838. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  7839. }
  7840. if (model.layers[il].bo) {
  7841. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7842. }
  7843. cb(cur, "attn_o_out", il);
  7844. }
  7845. if (il == n_layer - 1) {
  7846. // skip computing output for unused tokens
  7847. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7848. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7849. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7850. }
  7851. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7852. cb(ffn_inp, "ffn_inp", il);
  7853. // feed-forward forward
  7854. cur = build_norm(ffn_inp,
  7855. model.layers[il].ffn_norm, NULL,
  7856. LLM_NORM_RMS, il);
  7857. cb(cur, "ffn_norm", il);
  7858. cur = build_ffn(cur,
  7859. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  7860. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  7861. NULL, NULL, NULL,
  7862. NULL,
  7863. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7864. cb(cur, "ffn_sub_out", il);
  7865. cur = build_norm(cur,
  7866. model.layers[il].ffn_sub_norm, NULL,
  7867. LLM_NORM_RMS, il);
  7868. cb(cur, "ffn_sub_norm", il);
  7869. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  7870. if (model.layers[il].ffn_down_scale) {
  7871. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  7872. }
  7873. cb(cur, "ffn_down", il);
  7874. cur = ggml_add(ctx0, cur, ffn_inp);
  7875. cb(cur, "l_out", il);
  7876. // input for next layer
  7877. inpL = cur;
  7878. }
  7879. cur = inpL;
  7880. cur = build_norm(cur,
  7881. model.output_norm, NULL,
  7882. LLM_NORM_RMS, -1);
  7883. cb(cur, "result_norm", -1);
  7884. res->t_embd = cur;
  7885. // lm_head
  7886. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  7887. cur = build_lora_mm(model.tok_embd, cur);
  7888. cb(cur, "result_output", -1);
  7889. res->t_logits = cur;
  7890. ggml_build_forward_expand(gf, cur);
  7891. }
  7892. };
  7893. struct llm_build_t5_enc : public llm_graph_context {
  7894. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7895. const int64_t n_embd_head = hparams.n_embd_head_v;
  7896. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7897. ggml_tensor * cur;
  7898. ggml_tensor * inpL;
  7899. inpL = build_inp_embd(model.tok_embd);
  7900. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  7901. auto * inp_attn = build_attn_inp_no_cache();
  7902. for (int il = 0; il < n_layer; ++il) {
  7903. ggml_tensor * inpSA = inpL;
  7904. // norm
  7905. cur = build_norm(inpL,
  7906. model.layers[il].attn_norm_enc, NULL,
  7907. LLM_NORM_RMS, il);
  7908. cb(cur, "attn_norm", il);
  7909. // self-attention
  7910. {
  7911. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  7912. cb(Qcur, "Qcur", il);
  7913. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  7914. cb(Kcur, "Kcur", il);
  7915. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  7916. cb(Vcur, "Vcur", il);
  7917. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7918. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7919. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7920. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  7921. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  7922. cur = build_attn(inp_attn, gf,
  7923. model.layers[il].wo_enc, nullptr,
  7924. Qcur, Kcur, Vcur, kq_b, 1.0f, il);
  7925. cb(cur, "kqv_out", il);
  7926. }
  7927. if (il == n_layer - 1) {
  7928. // skip computing output for unused tokens
  7929. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7930. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7931. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7932. }
  7933. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7934. cb(ffn_inp, "ffn_inp", il);
  7935. // feed-forward network
  7936. {
  7937. cur = build_norm(ffn_inp,
  7938. model.layers[il].ffn_norm_enc, NULL,
  7939. LLM_NORM_RMS, il);
  7940. cb(cur, "ffn_norm", il);
  7941. // T5 uses relu, flan-T5 uses gelu-gated
  7942. cur = build_ffn(cur,
  7943. model.layers[il].ffn_up_enc, NULL, NULL,
  7944. model.layers[il].ffn_gate_enc, NULL, NULL,
  7945. model.layers[il].ffn_down_enc, NULL, NULL,
  7946. NULL,
  7947. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  7948. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  7949. il);
  7950. cb(cur, "ffn_out", il);
  7951. }
  7952. cur = ggml_add(ctx0, cur, ffn_inp);
  7953. cb(cur, "ffn_out", il);
  7954. cur = build_cvec(cur, il);
  7955. cb(cur, "l_out", il);
  7956. // input for next layer
  7957. inpL = cur;
  7958. }
  7959. cur = inpL;
  7960. cb(cur, "result_embd", -1);
  7961. cur = build_norm(cur,
  7962. model.output_norm_enc, NULL,
  7963. LLM_NORM_RMS, -1);
  7964. cb(cur, "result_norm", -1);
  7965. res->t_embd = cur;
  7966. ggml_build_forward_expand(gf, cur);
  7967. }
  7968. };
  7969. struct llm_build_t5_dec : public llm_graph_context {
  7970. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7971. const int64_t n_embd_head = hparams.n_embd_head_v;
  7972. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7973. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7974. ggml_tensor * cur;
  7975. ggml_tensor * inpL;
  7976. inpL = build_inp_embd(model.tok_embd);
  7977. ggml_tensor * embd_enc = build_inp_cross_embd();
  7978. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  7979. const int64_t n_outputs_enc = embd_enc->ne[1];
  7980. auto * inp_attn_self = build_attn_inp_kv_unified();
  7981. auto * inp_attn_cross = build_attn_inp_cross();
  7982. for (int il = 0; il < n_layer; ++il) {
  7983. ggml_tensor * inpSA = inpL;
  7984. // norm
  7985. cur = build_norm(inpL,
  7986. model.layers[il].attn_norm, NULL,
  7987. LLM_NORM_RMS, il);
  7988. cb(cur, "attn_norm", il);
  7989. // self-attention
  7990. {
  7991. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7992. cb(Qcur, "Qcur", il);
  7993. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7994. cb(Kcur, "Kcur", il);
  7995. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7996. cb(Vcur, "Vcur", il);
  7997. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7998. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7999. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8000. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8001. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8002. cur = build_attn(inp_attn_self, gf,
  8003. model.layers[il].wo, model.layers[il].bo,
  8004. Qcur, Kcur, Vcur, kq_b, 1.0f, il);
  8005. cb(cur, "kqv_out", il);
  8006. }
  8007. cur = ggml_add(ctx0, cur, inpSA);
  8008. cb(cur, "cross_inp", il);
  8009. ggml_tensor * inpCA = cur;
  8010. // norm
  8011. cur = build_norm(cur,
  8012. model.layers[il].attn_norm_cross, NULL,
  8013. LLM_NORM_RMS, il);
  8014. cb(cur, "attn_norm_cross", il);
  8015. // cross-attention
  8016. {
  8017. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8018. cb(Qcur, "Qcur", il);
  8019. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8020. cb(Kcur, "Kcur", il);
  8021. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8022. cb(Vcur, "Vcur", il);
  8023. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8024. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8025. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8026. cur = build_attn(inp_attn_cross, gf,
  8027. model.layers[il].wo_cross, nullptr,
  8028. Qcur, Kcur, Vcur, nullptr, 1.0f, il);
  8029. cb(cur, "kqv_out", il);
  8030. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8031. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8032. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8033. //cb(kq, "kq", il);
  8034. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8035. //cb(kq, "kq_soft_max_ext", il);
  8036. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8037. //cb(v, "v", il);
  8038. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8039. //cb(kqv, "kqv", il);
  8040. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8041. //cb(kqv_merged, "kqv_merged", il);
  8042. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8043. //cb(cur, "kqv_merged_cont", il);
  8044. //ggml_build_forward_expand(gf, cur);
  8045. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8046. //cb(cur, "kqv_out", il);
  8047. }
  8048. if (il == n_layer - 1) {
  8049. // skip computing output for unused tokens
  8050. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8051. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8052. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8053. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8054. }
  8055. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8056. cb(ffn_inp, "ffn_inp", il);
  8057. // feed-forward network
  8058. {
  8059. cur = build_norm(ffn_inp,
  8060. model.layers[il].ffn_norm, NULL,
  8061. LLM_NORM_RMS, il);
  8062. cb(cur, "ffn_norm", il);
  8063. // T5 uses relu, flan-T5 uses gelu-gated
  8064. cur = build_ffn(cur,
  8065. model.layers[il].ffn_up, NULL, NULL,
  8066. model.layers[il].ffn_gate, NULL, NULL,
  8067. model.layers[il].ffn_down, NULL, NULL,
  8068. NULL,
  8069. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8070. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8071. il);
  8072. cb(cur, "ffn_out", il);
  8073. }
  8074. cur = ggml_add(ctx0, cur, ffn_inp);
  8075. cb(cur, "ffn_out", il);
  8076. cur = build_cvec(cur, il);
  8077. cb(cur, "l_out", il);
  8078. // input for next layer
  8079. inpL = cur;
  8080. }
  8081. cur = inpL;
  8082. cb(cur, "result_embd", -1);
  8083. cur = build_norm(cur,
  8084. model.output_norm, NULL,
  8085. LLM_NORM_RMS, -1);
  8086. cb(cur, "result_norm", -1);
  8087. res->t_embd = cur;
  8088. // lm_head
  8089. cur = build_lora_mm(model.output, cur);
  8090. cb(cur, "result_output", -1);
  8091. res->t_logits = cur;
  8092. ggml_build_forward_expand(gf, cur);
  8093. }
  8094. };
  8095. struct llm_build_jais : public llm_graph_context {
  8096. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8097. const int64_t n_embd_head = hparams.n_embd_head_v;
  8098. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8099. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8100. ggml_tensor * cur;
  8101. ggml_tensor * inpL;
  8102. inpL = build_inp_embd(model.tok_embd);
  8103. auto * inp_attn = build_attn_inp_kv_unified();
  8104. for (int il = 0; il < n_layer; ++il) {
  8105. cur = build_norm(inpL,
  8106. model.layers[il].attn_norm,
  8107. model.layers[il].attn_norm_b,
  8108. LLM_NORM, il);
  8109. cb(cur, "attn_norm", il);
  8110. // self-attention
  8111. {
  8112. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8113. cb(cur, "wqkv", il);
  8114. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8115. cb(cur, "bqkv", il);
  8116. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8117. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8118. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8119. cb(Qcur, "Qcur", il);
  8120. cb(Kcur, "Kcur", il);
  8121. cb(Vcur, "Vcur", il);
  8122. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8123. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8124. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8125. cur = build_attn(inp_attn, gf,
  8126. model.layers[il].wo, model.layers[il].bo,
  8127. Qcur, Kcur, Vcur, nullptr, 1.0f/float(n_embd_head), il);
  8128. }
  8129. if (il == n_layer - 1) {
  8130. // skip computing output for unused tokens
  8131. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8132. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8133. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8134. }
  8135. // add the input
  8136. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8137. cb(ffn_inp, "ffn_inp", il);
  8138. // FF
  8139. {
  8140. cur = build_norm(ffn_inp,
  8141. model.layers[il].ffn_norm,
  8142. model.layers[il].ffn_norm_b,
  8143. LLM_NORM, il);
  8144. cb(cur, "ffn_norm", il);
  8145. cur = build_ffn(cur,
  8146. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8147. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8148. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8149. NULL,
  8150. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8151. cb(cur, "ffn_out", il);
  8152. }
  8153. inpL = ggml_add(ctx0, cur, ffn_inp);
  8154. cb(inpL, "l_out", il);
  8155. }
  8156. cur = build_norm(inpL,
  8157. model.output_norm,
  8158. model.output_norm_b,
  8159. LLM_NORM, -1);
  8160. cb(cur, "result_norm", -1);
  8161. res->t_embd = cur;
  8162. cur = build_lora_mm(model.output, cur);
  8163. cb(cur, "result_output", -1);
  8164. res->t_logits = cur;
  8165. ggml_build_forward_expand(gf, cur);
  8166. }
  8167. };
  8168. struct llm_build_chatglm : public llm_graph_context {
  8169. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8170. const int64_t n_embd_head = hparams.n_embd_head_v;
  8171. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8172. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8173. ggml_tensor * cur;
  8174. ggml_tensor * inpL;
  8175. inpL = build_inp_embd(model.tok_embd);
  8176. // inp_pos - contains the positions
  8177. ggml_tensor * inp_pos = build_inp_pos();
  8178. auto * inp_attn = build_attn_inp_kv_unified();
  8179. for (int il = 0; il < n_layer; ++il) {
  8180. ggml_tensor * inpSA = inpL;
  8181. cur = build_norm(inpL,
  8182. model.layers[il].attn_norm,
  8183. NULL,
  8184. LLM_NORM_RMS, il);
  8185. cb(cur, "attn_norm", il);
  8186. // self-attention
  8187. {
  8188. ggml_tensor * Qcur = nullptr;
  8189. ggml_tensor * Kcur = nullptr;
  8190. ggml_tensor * Vcur = nullptr;
  8191. if (model.layers[il].wqkv == nullptr) {
  8192. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8193. if (model.layers[il].bq) {
  8194. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8195. }
  8196. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8197. if (model.layers[il].bk) {
  8198. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8199. }
  8200. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8201. if (model.layers[il].bv) {
  8202. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8203. }
  8204. } else {
  8205. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8206. cb(cur, "wqkv", il);
  8207. if (model.layers[il].bqkv) {
  8208. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8209. cb(cur, "bqkv", il);
  8210. }
  8211. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8212. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8213. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8214. }
  8215. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8216. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8217. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8218. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8219. Qcur = ggml_rope_ext(
  8220. ctx0, Qcur, inp_pos, nullptr,
  8221. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8222. ext_factor, attn_factor, beta_fast, beta_slow
  8223. );
  8224. Kcur = ggml_rope_ext(
  8225. ctx0, Kcur, inp_pos, nullptr,
  8226. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8227. ext_factor, attn_factor, beta_fast, beta_slow
  8228. );
  8229. cb(Qcur, "Qcur", il);
  8230. cb(Kcur, "Kcur", il);
  8231. cb(Vcur, "Vcur", il);
  8232. cur = build_attn(inp_attn, gf,
  8233. model.layers[il].wo, NULL,
  8234. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8235. }
  8236. if (il == n_layer - 1) {
  8237. // skip computing output for unused tokens
  8238. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8239. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8240. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8241. }
  8242. // Add the input
  8243. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8244. cb(ffn_inp, "ffn_inp", il);
  8245. // FF
  8246. {
  8247. cur = build_norm(ffn_inp,
  8248. model.layers[il].ffn_norm,
  8249. NULL,
  8250. LLM_NORM_RMS, il);
  8251. cb(cur, "ffn_norm", il);
  8252. cur = build_ffn(cur,
  8253. model.layers[il].ffn_up, NULL, NULL,
  8254. NULL, NULL, NULL,
  8255. model.layers[il].ffn_down, NULL, NULL,
  8256. NULL,
  8257. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8258. cb(cur, "ffn_out", il);
  8259. }
  8260. inpL = ggml_add(ctx0, cur, ffn_inp);
  8261. cb(inpL, "l_out", il);
  8262. }
  8263. cur = build_norm(inpL,
  8264. model.output_norm,
  8265. NULL,
  8266. LLM_NORM_RMS, -1);
  8267. cb(cur, "result_norm", -1);
  8268. res->t_embd = cur;
  8269. cur = build_lora_mm(model.output, cur);
  8270. cb(cur, "result_output", -1);
  8271. res->t_logits = cur;
  8272. ggml_build_forward_expand(gf, cur);
  8273. }
  8274. };
  8275. struct llm_build_nemotron : public llm_graph_context {
  8276. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8277. const int64_t n_embd_head = hparams.n_embd_head_v;
  8278. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8279. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  8280. ggml_tensor * cur;
  8281. ggml_tensor * inpL;
  8282. inpL = build_inp_embd(model.tok_embd);
  8283. // inp_pos - contains the positions
  8284. ggml_tensor * inp_pos = build_inp_pos();
  8285. auto * inp_attn = build_attn_inp_kv_unified();
  8286. for (int il = 0; il < n_layer; ++il) {
  8287. ggml_tensor * inpSA = inpL;
  8288. // norm
  8289. cur = build_norm(inpL,
  8290. model.layers[il].attn_norm,
  8291. model.layers[il].attn_norm_b,
  8292. LLM_NORM, il);
  8293. cb(cur, "attn_norm", il);
  8294. // self-attention
  8295. {
  8296. // compute Q and K and RoPE them
  8297. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8298. cb(Qcur, "Qcur", il);
  8299. if (model.layers[il].bq) {
  8300. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8301. cb(Qcur, "Qcur", il);
  8302. }
  8303. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8304. cb(Kcur, "Kcur", il);
  8305. if (model.layers[il].bk) {
  8306. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8307. cb(Kcur, "Kcur", il);
  8308. }
  8309. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8310. cb(Vcur, "Vcur", il);
  8311. if (model.layers[il].bv) {
  8312. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8313. cb(Vcur, "Vcur", il);
  8314. }
  8315. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8316. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8317. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8318. Qcur = ggml_rope_ext(
  8319. ctx0, Qcur, inp_pos, nullptr,
  8320. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8321. ext_factor, attn_factor, beta_fast, beta_slow
  8322. );
  8323. Kcur = ggml_rope_ext(
  8324. ctx0, Kcur, inp_pos, nullptr,
  8325. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8326. ext_factor, attn_factor, beta_fast, beta_slow
  8327. );
  8328. cb(Qcur, "Qcur", il);
  8329. cb(Kcur, "Kcur", il);
  8330. cb(Vcur, "Vcur", il);
  8331. cur = build_attn(inp_attn, gf,
  8332. model.layers[il].wo, model.layers[il].bo,
  8333. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8334. }
  8335. if (il == n_layer - 1) {
  8336. // skip computing output for unused tokens
  8337. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8338. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8339. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8340. }
  8341. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8342. cb(ffn_inp, "ffn_inp", il);
  8343. // feed-forward network
  8344. cur = build_norm(ffn_inp,
  8345. model.layers[il].ffn_norm,
  8346. model.layers[il].ffn_norm_b,
  8347. LLM_NORM, il);
  8348. cb(cur, "ffn_norm", il);
  8349. cur = build_ffn(cur,
  8350. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8351. NULL, NULL, NULL,
  8352. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8353. NULL,
  8354. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  8355. cur = ggml_add(ctx0, cur, ffn_inp);
  8356. cb(cur, "ffn_out", il);
  8357. cur = build_cvec(cur, il);
  8358. cb(cur, "l_out", il);
  8359. // input for next layer
  8360. inpL = cur;
  8361. }
  8362. cur = inpL;
  8363. cur = build_norm(cur,
  8364. model.output_norm, model.output_norm_b,
  8365. LLM_NORM, -1);
  8366. cb(cur, "result_norm", -1);
  8367. res->t_embd = cur;
  8368. // lm_head
  8369. cur = build_lora_mm(model.output, cur);
  8370. cb(cur, "result_output", -1);
  8371. res->t_logits = cur;
  8372. ggml_build_forward_expand(gf, cur);
  8373. }
  8374. };
  8375. struct llm_build_exaone : public llm_graph_context {
  8376. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8377. const int64_t n_embd_head = hparams.n_embd_head_v;
  8378. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8379. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8380. ggml_tensor * cur;
  8381. ggml_tensor * inpL;
  8382. inpL = build_inp_embd(model.tok_embd);
  8383. // inp_pos - contains the positions
  8384. ggml_tensor * inp_pos = build_inp_pos();
  8385. auto * inp_attn = build_attn_inp_kv_unified();
  8386. for (int il = 0; il < n_layer; ++il) {
  8387. ggml_tensor * inpSA = inpL;
  8388. // norm
  8389. cur = build_norm(inpL,
  8390. model.layers[il].attn_norm, NULL,
  8391. LLM_NORM_RMS, il);
  8392. cb(cur, "attn_norm", il);
  8393. // self-attention
  8394. {
  8395. // rope freq factors for llama3; may return nullptr for llama2 and other models
  8396. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  8397. // compute Q and K and RoPE them
  8398. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8399. cb(Qcur, "Qcur", il);
  8400. if (model.layers[il].bq) {
  8401. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8402. cb(Qcur, "Qcur", il);
  8403. }
  8404. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8405. cb(Kcur, "Kcur", il);
  8406. if (model.layers[il].bk) {
  8407. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8408. cb(Kcur, "Kcur", il);
  8409. }
  8410. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8411. cb(Vcur, "Vcur", il);
  8412. if (model.layers[il].bv) {
  8413. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8414. cb(Vcur, "Vcur", il);
  8415. }
  8416. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8417. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8418. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8419. Qcur = ggml_rope_ext(
  8420. ctx0, Qcur, inp_pos, rope_factors,
  8421. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8422. ext_factor, attn_factor, beta_fast, beta_slow
  8423. );
  8424. Kcur = ggml_rope_ext(
  8425. ctx0, Kcur, inp_pos, rope_factors,
  8426. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8427. ext_factor, attn_factor, beta_fast, beta_slow
  8428. );
  8429. cb(Qcur, "Qcur", il);
  8430. cb(Kcur, "Kcur", il);
  8431. cb(Vcur, "Vcur", il);
  8432. cur = build_attn(inp_attn, gf,
  8433. model.layers[il].wo, model.layers[il].bo,
  8434. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8435. }
  8436. if (il == n_layer - 1) {
  8437. // skip computing output for unused tokens
  8438. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8439. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8440. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8441. }
  8442. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8443. cb(ffn_inp, "ffn_inp", il);
  8444. // feed-forward network
  8445. cur = build_norm(ffn_inp,
  8446. model.layers[il].ffn_norm, NULL,
  8447. LLM_NORM_RMS, il);
  8448. cb(cur, "ffn_norm", il);
  8449. cur = build_ffn(cur,
  8450. model.layers[il].ffn_up, NULL, NULL,
  8451. model.layers[il].ffn_gate, NULL, NULL,
  8452. model.layers[il].ffn_down, NULL, NULL,
  8453. NULL,
  8454. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8455. cb(cur, "ffn_out", il);
  8456. cur = ggml_add(ctx0, cur, ffn_inp);
  8457. cb(cur, "ffn_out", il);
  8458. cur = build_cvec(cur, il);
  8459. cb(cur, "l_out", il);
  8460. // input for next layer
  8461. inpL = cur;
  8462. }
  8463. cur = inpL;
  8464. cur = build_norm(cur,
  8465. model.output_norm, NULL,
  8466. LLM_NORM_RMS, -1);
  8467. cb(cur, "result_norm", -1);
  8468. res->t_embd = cur;
  8469. // lm_head
  8470. cur = build_lora_mm(model.output, cur);
  8471. cb(cur, "result_output", -1);
  8472. res->t_logits = cur;
  8473. ggml_build_forward_expand(gf, cur);
  8474. }
  8475. };
  8476. struct llm_build_rwkv6_base : public llm_graph_context {
  8477. const llama_model & model;
  8478. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  8479. }
  8480. ggml_tensor * build_rwkv6_channel_mix(
  8481. const llama_layer * layer,
  8482. ggml_tensor * cur,
  8483. ggml_tensor * x_prev,
  8484. llm_arch arch) const {
  8485. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8486. switch (arch) {
  8487. case LLM_ARCH_RWKV6:
  8488. {
  8489. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  8490. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  8491. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  8492. ggml_tensor * k = ggml_sqr(
  8493. ctx0,
  8494. ggml_relu(
  8495. ctx0,
  8496. build_lora_mm(layer->channel_mix_key, xk)
  8497. )
  8498. );
  8499. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  8500. } break;
  8501. default:
  8502. GGML_ABORT("fatal error");
  8503. }
  8504. return cur;
  8505. }
  8506. ggml_tensor * build_rwkv6_time_mix(
  8507. ggml_cgraph * gf,
  8508. ggml_tensor * cur,
  8509. ggml_tensor * x_prev,
  8510. ggml_tensor * state_copy,
  8511. ggml_tensor * state_mask,
  8512. const llama_ubatch & ubatch,
  8513. int il) const {
  8514. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  8515. const auto n_tokens = ubatch.n_tokens;
  8516. const auto n_seqs = ubatch.n_seqs;
  8517. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8518. const auto n_embd = hparams.n_embd;
  8519. const auto head_size = hparams.wkv_head_size;
  8520. const auto n_head = n_embd / head_size;
  8521. const auto n_head_kv = hparams.n_head_kv(il);
  8522. const auto kv_head = kv_self->head;
  8523. const auto & layer = model.layers[il];
  8524. bool is_qrwkv = layer.time_mix_first == nullptr;
  8525. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8526. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  8527. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8528. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  8529. xxx = ggml_reshape_4d(
  8530. ctx0,
  8531. ggml_tanh(
  8532. ctx0,
  8533. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  8534. ),
  8535. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  8536. );
  8537. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  8538. xxx = ggml_mul_mat(
  8539. ctx0,
  8540. ggml_reshape_4d(
  8541. ctx0,
  8542. layer.time_mix_w2,
  8543. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  8544. ),
  8545. xxx
  8546. );
  8547. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  8548. if (layer.time_mix_lerp_fused) {
  8549. // fusing these weights makes some performance improvement
  8550. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  8551. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  8552. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  8553. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8554. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8555. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8556. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8557. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8558. } else {
  8559. // for backward compatibility
  8560. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8561. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8562. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8563. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8564. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8565. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  8566. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  8567. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  8568. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  8569. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  8570. }
  8571. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  8572. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  8573. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  8574. if (layer.time_mix_receptance_b) {
  8575. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  8576. }
  8577. if (layer.time_mix_key_b) {
  8578. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  8579. }
  8580. if (layer.time_mix_value_b) {
  8581. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  8582. }
  8583. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  8584. if (is_qrwkv) {
  8585. g = ggml_sigmoid(ctx0, g);
  8586. } else {
  8587. g = ggml_silu(ctx0, g);
  8588. }
  8589. if (n_head_kv != 0 && n_head_kv != n_head) {
  8590. GGML_ASSERT(n_head % n_head_kv == 0);
  8591. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  8592. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  8593. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  8594. k = ggml_repeat(ctx0, k, tmp);
  8595. v = ggml_repeat(ctx0, v, tmp);
  8596. }
  8597. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  8598. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  8599. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  8600. ggml_tensor * w = ggml_mul_mat(
  8601. ctx0,
  8602. layer.time_mix_decay_w2,
  8603. ggml_tanh(
  8604. ctx0,
  8605. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  8606. )
  8607. );
  8608. w = ggml_add(ctx0, w, layer.time_mix_decay);
  8609. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  8610. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  8611. if (is_qrwkv) {
  8612. // k = k * (1 - w)
  8613. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  8614. }
  8615. ggml_tensor * wkv_state = build_copy_mask_state(
  8616. gf, kv_self->v_l[il], state_copy, state_mask,
  8617. hparams.n_embd_v_s(), n_seqs);
  8618. ggml_tensor * wkv_output;
  8619. if (is_qrwkv) {
  8620. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  8621. } else {
  8622. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  8623. }
  8624. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  8625. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  8626. ggml_build_forward_expand(
  8627. gf,
  8628. ggml_cpy(
  8629. ctx0,
  8630. wkv_state,
  8631. ggml_view_1d(
  8632. ctx0,
  8633. kv_self->v_l[il],
  8634. hparams.n_embd_v_s() * n_seqs,
  8635. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  8636. )
  8637. )
  8638. );
  8639. if (!is_qrwkv) {
  8640. // group norm with head_count groups
  8641. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  8642. cur = ggml_norm(ctx0, cur, 64e-5f);
  8643. // Convert back to regular vectors.
  8644. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8645. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  8646. } else {
  8647. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8648. }
  8649. cur = ggml_mul(ctx0, cur, g);
  8650. cur = build_lora_mm(layer.time_mix_output, cur);
  8651. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  8652. }
  8653. };
  8654. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  8655. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  8656. GGML_ASSERT(hparams.token_shift_count == 2);
  8657. ggml_tensor * cur;
  8658. ggml_tensor * inpL;
  8659. inpL = build_inp_embd(model.tok_embd);
  8660. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  8661. ggml_tensor * state_copy = build_inp_s_copy();
  8662. ggml_tensor * state_mask = build_inp_s_mask();
  8663. const auto n_embd = hparams.n_embd;
  8664. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8665. const auto n_seqs = ubatch.n_seqs;
  8666. for (int il = 0; il < n_layer; ++il) {
  8667. const llama_layer * layer = &model.layers[il];
  8668. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8669. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8670. gf, state_copy, state_mask, ubatch, il
  8671. );
  8672. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  8673. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  8674. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  8675. cb(att_norm, "attn_norm", il);
  8676. ggml_tensor * x_prev = ggml_concat(
  8677. ctx0,
  8678. att_shift,
  8679. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8680. 1
  8681. );
  8682. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  8683. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8684. cb(ffn_inp, "ffn_inp", il);
  8685. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  8686. cb(ffn_norm, "ffn_norm", il);
  8687. x_prev = ggml_concat(
  8688. ctx0,
  8689. ffn_shift,
  8690. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  8691. 1
  8692. );
  8693. token_shift = ggml_concat(ctx0,
  8694. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  8695. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  8696. 1
  8697. );
  8698. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8699. if (il == n_layer - 1) {
  8700. // skip computing output for unused tokens
  8701. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8702. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8703. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  8704. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  8705. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8706. }
  8707. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  8708. cur = ggml_add(ctx0, cur, ffn_inp);
  8709. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  8710. cur = ggml_scale(ctx0, cur, 0.5F);
  8711. }
  8712. cur = build_cvec(cur, il);
  8713. cb(cur, "l_out", il);
  8714. // input for next layer
  8715. inpL = cur;
  8716. }
  8717. cur = inpL;
  8718. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  8719. cb(cur, "result_norm", -1);
  8720. res->t_embd = cur;
  8721. cur = build_lora_mm(model.output, cur);
  8722. cb(cur, "result_output", -1);
  8723. res->t_logits = cur;
  8724. ggml_build_forward_expand(gf, cur);
  8725. }
  8726. };
  8727. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  8728. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  8729. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  8730. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  8731. ggml_tensor * cur;
  8732. ggml_tensor * inpL;
  8733. inpL = build_inp_embd(model.tok_embd);
  8734. ggml_tensor * state_copy = build_inp_s_copy();
  8735. ggml_tensor * state_mask = build_inp_s_mask();
  8736. const auto n_embd = hparams.n_embd;
  8737. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8738. const auto n_seqs = ubatch.n_seqs;
  8739. for (int il = 0; il < n_layer; ++il) {
  8740. const llama_layer * layer = &model.layers[il];
  8741. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8742. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8743. gf, state_copy, state_mask, ubatch, il
  8744. );
  8745. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  8746. cb(att_norm, "attn_norm", il);
  8747. ggml_tensor * x_prev = ggml_concat(
  8748. ctx0,
  8749. token_shift,
  8750. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8751. 1
  8752. );
  8753. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, state_mask, ubatch, il);
  8754. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  8755. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8756. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8757. cb(ffn_inp, "ffn_inp", il);
  8758. if (il == n_layer - 1) {
  8759. // skip computing output for unused tokens
  8760. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8761. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  8762. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8763. }
  8764. // feed-forward network
  8765. cur = build_norm(ffn_inp,
  8766. model.layers[il].ffn_norm, NULL,
  8767. LLM_NORM_RMS, il);
  8768. cb(cur, "ffn_norm", il);
  8769. cur = build_ffn(cur,
  8770. model.layers[il].ffn_up, NULL, NULL,
  8771. model.layers[il].ffn_gate, NULL, NULL,
  8772. model.layers[il].ffn_down, NULL, NULL,
  8773. NULL,
  8774. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8775. cb(cur, "ffn_out", il);
  8776. cur = ggml_add(ctx0, cur, ffn_inp);
  8777. cur = build_cvec(cur, il);
  8778. cb(cur, "l_out", il);
  8779. // input for next layer
  8780. inpL = cur;
  8781. }
  8782. cur = inpL;
  8783. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  8784. cb(cur, "result_norm", -1);
  8785. res->t_embd = cur;
  8786. cur = build_lora_mm(model.output, cur);
  8787. cb(cur, "result_output", -1);
  8788. res->t_logits = cur;
  8789. ggml_build_forward_expand(gf, cur);
  8790. }
  8791. };
  8792. struct llm_build_rwkv7_base : public llm_graph_context {
  8793. const llama_model & model;
  8794. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  8795. }
  8796. ggml_tensor * build_rwkv7_channel_mix(
  8797. const llama_layer * layer,
  8798. ggml_tensor * cur,
  8799. ggml_tensor * x_prev,
  8800. llm_arch arch) const {
  8801. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8802. switch (arch) {
  8803. case LLM_ARCH_RWKV7:
  8804. {
  8805. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  8806. ggml_tensor * k = ggml_sqr(
  8807. ctx0,
  8808. ggml_relu(
  8809. ctx0,
  8810. build_lora_mm(layer->channel_mix_key, xk)
  8811. )
  8812. );
  8813. cur = build_lora_mm(layer->channel_mix_value, k);
  8814. } break;
  8815. default:
  8816. GGML_ABORT("fatal error");
  8817. }
  8818. return cur;
  8819. }
  8820. ggml_tensor * build_rwkv7_time_mix(
  8821. ggml_cgraph * gf,
  8822. ggml_tensor * cur,
  8823. ggml_tensor * x_prev,
  8824. ggml_tensor * state_copy,
  8825. ggml_tensor * state_mask,
  8826. ggml_tensor *& first_layer_value,
  8827. const llama_ubatch & ubatch,
  8828. int il) const {
  8829. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  8830. const auto n_tokens = ubatch.n_tokens;
  8831. const auto n_seqs = ubatch.n_seqs;
  8832. const auto n_embd = hparams.n_embd;
  8833. const auto head_size = hparams.wkv_head_size;
  8834. const auto head_count = n_embd / head_size;
  8835. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8836. const auto kv_head = kv_self->head;
  8837. const auto & layer = model.layers[il];
  8838. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  8839. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  8840. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  8841. sx = ggml_repeat(ctx0, sx, dummy);
  8842. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  8843. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  8844. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  8845. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  8846. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  8847. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  8848. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  8849. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  8850. ggml_tensor * w = ggml_add(
  8851. ctx0,
  8852. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  8853. layer.time_mix_w0
  8854. );
  8855. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  8856. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  8857. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  8858. if (first_layer_value == nullptr) {
  8859. first_layer_value = v;
  8860. } else {
  8861. // Add the first layer value as a residual connection.
  8862. v = ggml_add(ctx0, v,
  8863. ggml_mul(ctx0,
  8864. ggml_sub(ctx0, first_layer_value, v),
  8865. ggml_sigmoid(ctx0, ggml_add(ctx0,
  8866. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  8867. layer.time_mix_v0
  8868. )
  8869. )
  8870. )
  8871. );
  8872. }
  8873. ggml_tensor * g = nullptr;
  8874. if (layer.time_mix_g1 && layer.time_mix_g2) {
  8875. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  8876. }
  8877. ggml_tensor * a = ggml_sigmoid(ctx0,
  8878. ggml_add(
  8879. ctx0,
  8880. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  8881. layer.time_mix_a0
  8882. )
  8883. );
  8884. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  8885. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  8886. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  8887. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  8888. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  8889. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  8890. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  8891. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  8892. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  8893. ggml_tensor * wkv_state = build_copy_mask_state(
  8894. gf, kv_self->v_l[il], state_copy, state_mask,
  8895. hparams.n_embd_v_s(), n_seqs);
  8896. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  8897. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  8898. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  8899. ggml_build_forward_expand(
  8900. gf,
  8901. ggml_cpy(
  8902. ctx0,
  8903. wkv_state,
  8904. ggml_view_1d(
  8905. ctx0,
  8906. kv_self->v_l[il],
  8907. hparams.n_embd_v_s() * n_seqs,
  8908. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il])
  8909. )
  8910. )
  8911. );
  8912. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  8913. // group norm with head_count groups
  8914. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  8915. cur = ggml_norm(ctx0, cur, 64e-5f);
  8916. // Convert back to regular vectors.
  8917. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8918. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  8919. } else {
  8920. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  8921. }
  8922. ggml_tensor * rk = ggml_sum_rows(ctx0,
  8923. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  8924. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  8925. if (has_gating) {
  8926. cur = ggml_mul(ctx0, cur, g);
  8927. }
  8928. cur = build_lora_mm(layer.time_mix_output, cur);
  8929. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  8930. }
  8931. };
  8932. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  8933. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  8934. GGML_ASSERT(hparams.token_shift_count == 2);
  8935. ggml_tensor * cur;
  8936. ggml_tensor * inpL;
  8937. ggml_tensor * v_first = nullptr;
  8938. inpL = build_inp_embd(model.tok_embd);
  8939. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  8940. ggml_tensor * state_copy = build_inp_s_copy();
  8941. ggml_tensor * state_mask = build_inp_s_mask();
  8942. const auto n_embd = hparams.n_embd;
  8943. const auto n_seq_tokens = ubatch.n_seq_tokens;
  8944. const auto n_seqs = ubatch.n_seqs;
  8945. for (int il = 0; il < n_layer; ++il) {
  8946. const llama_layer * layer = &model.layers[il];
  8947. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  8948. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  8949. gf, state_copy, state_mask, ubatch, il
  8950. );
  8951. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  8952. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  8953. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  8954. cb(att_norm, "attn_norm", il);
  8955. ggml_tensor * x_prev = ggml_concat(
  8956. ctx0,
  8957. att_shift,
  8958. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  8959. 1
  8960. );
  8961. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  8962. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8963. cb(ffn_inp, "ffn_inp", il);
  8964. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  8965. cb(ffn_norm, "ffn_norm", il);
  8966. x_prev = ggml_concat(
  8967. ctx0,
  8968. ffn_shift,
  8969. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  8970. 1
  8971. );
  8972. token_shift = ggml_concat(ctx0,
  8973. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  8974. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  8975. 1
  8976. );
  8977. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  8978. if (il == n_layer - 1) {
  8979. // skip computing output for unused tokens
  8980. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8981. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  8982. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  8983. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  8984. }
  8985. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  8986. cur = ggml_add(ctx0, cur, ffn_inp);
  8987. cur = build_cvec(cur, il);
  8988. cb(cur, "l_out", il);
  8989. // input for next layer
  8990. inpL = cur;
  8991. }
  8992. cur = inpL;
  8993. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  8994. cb(cur, "result_norm", -1);
  8995. res->t_embd = cur;
  8996. cur = build_lora_mm(model.output, cur);
  8997. cb(cur, "result_output", -1);
  8998. res->t_logits = cur;
  8999. ggml_build_forward_expand(gf, cur);
  9000. }
  9001. };
  9002. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9003. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9004. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9005. ggml_tensor * cur;
  9006. ggml_tensor * inpL;
  9007. ggml_tensor * v_first = nullptr;
  9008. inpL = build_inp_embd(model.tok_embd);
  9009. ggml_tensor * state_copy = build_inp_s_copy();
  9010. ggml_tensor * state_mask = build_inp_s_mask();
  9011. const auto n_embd = hparams.n_embd;
  9012. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9013. const auto n_seqs = ubatch.n_seqs;
  9014. for (int il = 0; il < n_layer; ++il) {
  9015. const llama_layer * layer = &model.layers[il];
  9016. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9017. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9018. gf, state_copy, state_mask, ubatch, il
  9019. );
  9020. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9021. cb(att_norm, "attn_norm", il);
  9022. ggml_tensor * x_prev = ggml_concat(
  9023. ctx0,
  9024. token_shift,
  9025. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9026. 1
  9027. );
  9028. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, state_mask, v_first, ubatch, il);
  9029. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9030. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9031. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9032. cb(ffn_inp, "ffn_inp", il);
  9033. if (il == n_layer - 1) {
  9034. // skip computing output for unused tokens
  9035. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9036. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9037. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9038. }
  9039. // feed-forward network
  9040. cur = build_norm(ffn_inp,
  9041. model.layers[il].ffn_norm, NULL,
  9042. LLM_NORM_RMS, il);
  9043. cb(cur, "ffn_norm", il);
  9044. cur = build_ffn(cur,
  9045. model.layers[il].ffn_up, NULL, NULL,
  9046. model.layers[il].ffn_gate, NULL, NULL,
  9047. model.layers[il].ffn_down, NULL, NULL,
  9048. NULL,
  9049. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9050. cb(cur, "ffn_out", il);
  9051. cur = ggml_add(ctx0, cur, ffn_inp);
  9052. cur = build_cvec(cur, il);
  9053. cb(cur, "l_out", il);
  9054. // input for next layer
  9055. inpL = cur;
  9056. }
  9057. cur = inpL;
  9058. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9059. cb(cur, "result_norm", -1);
  9060. res->t_embd = cur;
  9061. cur = build_lora_mm(model.output, cur);
  9062. cb(cur, "result_output", -1);
  9063. res->t_logits = cur;
  9064. ggml_build_forward_expand(gf, cur);
  9065. }
  9066. };
  9067. // ref: https://github.com/facebookresearch/chameleon
  9068. // based on the original build_llama() function, changes:
  9069. // * qk-norm
  9070. // * swin-norm
  9071. // * removed bias
  9072. // * removed MoE
  9073. struct llm_build_chameleon : public llm_graph_context {
  9074. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9075. const int64_t n_embd_head = hparams.n_embd_head_v;
  9076. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9077. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9078. ggml_tensor * cur;
  9079. ggml_tensor * inpL;
  9080. inpL = build_inp_embd(model.tok_embd);
  9081. // inp_pos - contains the positions
  9082. ggml_tensor * inp_pos = build_inp_pos();
  9083. auto * inp_attn = build_attn_inp_kv_unified();
  9084. for (int il = 0; il < n_layer; ++il) {
  9085. ggml_tensor * inpSA = inpL;
  9086. // norm
  9087. if (hparams.swin_norm) {
  9088. cur = inpL;
  9089. } else {
  9090. cur = build_norm(inpL,
  9091. model.layers[il].attn_norm, NULL,
  9092. LLM_NORM_RMS, il);
  9093. cb(cur, "attn_norm", il);
  9094. }
  9095. // self-attention
  9096. {
  9097. // compute Q and K and RoPE them
  9098. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9099. cb(Qcur, "Qcur", il);
  9100. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9101. cb(Kcur, "Kcur", il);
  9102. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9103. cb(Vcur, "Vcur", il);
  9104. if (model.layers[il].attn_q_norm) {
  9105. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9106. ggml_element_size(Qcur) * n_embd_head,
  9107. ggml_element_size(Qcur) * n_embd_head * n_head,
  9108. 0);
  9109. cb(Qcur, "Qcur", il);
  9110. Qcur = build_norm(Qcur,
  9111. model.layers[il].attn_q_norm,
  9112. model.layers[il].attn_q_norm_b,
  9113. LLM_NORM, il);
  9114. cb(Qcur, "Qcur", il);
  9115. }
  9116. if (model.layers[il].attn_k_norm) {
  9117. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9118. ggml_element_size(Kcur) * n_embd_head,
  9119. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9120. 0);
  9121. cb(Kcur, "Kcur", il);
  9122. Kcur = build_norm(Kcur,
  9123. model.layers[il].attn_k_norm,
  9124. model.layers[il].attn_k_norm_b,
  9125. LLM_NORM, il);
  9126. cb(Kcur, "Kcur", il);
  9127. }
  9128. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9129. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9130. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9131. Qcur = ggml_rope_ext(
  9132. ctx0, Qcur, inp_pos, nullptr,
  9133. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9134. ext_factor, attn_factor, beta_fast, beta_slow
  9135. );
  9136. Kcur = ggml_rope_ext(
  9137. ctx0, Kcur, inp_pos, nullptr,
  9138. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9139. ext_factor, attn_factor, beta_fast, beta_slow
  9140. );
  9141. cb(Qcur, "Qcur", il);
  9142. cb(Kcur, "Kcur", il);
  9143. cb(Vcur, "Vcur", il);
  9144. cur = build_attn(inp_attn, gf,
  9145. model.layers[il].wo, nullptr,
  9146. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9147. if (hparams.swin_norm) {
  9148. cur = build_norm(cur,
  9149. model.layers[il].attn_norm, NULL,
  9150. LLM_NORM_RMS, il);
  9151. }
  9152. }
  9153. if (il == n_layer - 1) {
  9154. // skip computing output for unused tokens
  9155. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9156. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9157. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9158. }
  9159. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9160. cb(ffn_inp, "ffn_inp", il);
  9161. // feed-forward network
  9162. if (!hparams.swin_norm) {
  9163. cur = build_norm(ffn_inp,
  9164. model.layers[il].ffn_norm, NULL,
  9165. LLM_NORM_RMS, il);
  9166. cb(cur, "ffn_norm", il);
  9167. }
  9168. cur = build_ffn(cur,
  9169. model.layers[il].ffn_up, NULL, NULL,
  9170. model.layers[il].ffn_gate, NULL, NULL,
  9171. model.layers[il].ffn_down, NULL, NULL,
  9172. NULL,
  9173. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9174. cb(cur, "ffn_out", il);
  9175. if (hparams.swin_norm) {
  9176. cur = build_norm(cur,
  9177. model.layers[il].ffn_norm, NULL,
  9178. LLM_NORM_RMS, il);
  9179. cb(cur, "ffn_norm", il);
  9180. }
  9181. cur = ggml_add(ctx0, cur, ffn_inp);
  9182. cb(cur, "ffn_out", il);
  9183. cur = build_cvec(cur, il);
  9184. cb(cur, "l_out", il);
  9185. // input for next layer
  9186. inpL = cur;
  9187. }
  9188. cur = inpL;
  9189. cur = build_norm(cur,
  9190. model.output_norm, NULL,
  9191. LLM_NORM_RMS, -1);
  9192. cb(cur, "result_norm", -1);
  9193. res->t_embd = cur;
  9194. // lm_head
  9195. cur = build_lora_mm(model.output, cur);
  9196. cb(cur, "result_output_with_img_logits", -1);
  9197. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  9198. // Needs to be removed once image outputs are supported.
  9199. int img_token_end_idx = 8196;
  9200. int img_token_start_idx = 4;
  9201. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  9202. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  9203. // which ensures that text token values are always at least larger than image token values
  9204. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  9205. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  9206. cb(img_logits, "img_logits", -1);
  9207. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  9208. cb(cur, "result_output", -1);
  9209. res->t_logits = cur;
  9210. ggml_build_forward_expand(gf, cur);
  9211. }
  9212. };
  9213. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  9214. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9215. ggml_tensor * cur;
  9216. ggml_tensor * inpL;
  9217. inpL = build_inp_embd(model.tok_embd);
  9218. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  9219. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  9220. cur = ggml_add(ctx0, cur, model.conv1d_b);
  9221. // posnet
  9222. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  9223. const auto & layer = model.layers[il].posnet;
  9224. inpL = cur;
  9225. switch (il) {
  9226. case 0:
  9227. case 1:
  9228. case 3:
  9229. case 4:
  9230. {
  9231. cur = build_norm(cur,
  9232. layer.norm1,
  9233. layer.norm1_b,
  9234. LLM_NORM_GROUP, 0);
  9235. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9236. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  9237. cur = ggml_add(ctx0, cur, layer.conv1_b);
  9238. cur = build_norm(cur,
  9239. layer.norm2,
  9240. layer.norm2_b,
  9241. LLM_NORM_GROUP, 0);
  9242. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  9243. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  9244. cur = ggml_add(ctx0, cur, layer.conv2_b);
  9245. cur = ggml_add(ctx0, cur, inpL);
  9246. } break;
  9247. case 2:
  9248. {
  9249. cur = build_norm(cur,
  9250. layer.attn_norm,
  9251. layer.attn_norm_b,
  9252. LLM_NORM_GROUP, 0);
  9253. ggml_tensor * q;
  9254. ggml_tensor * k;
  9255. ggml_tensor * v;
  9256. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  9257. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  9258. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  9259. q = ggml_add(ctx0, q, layer.attn_q_b);
  9260. k = ggml_add(ctx0, k, layer.attn_k_b);
  9261. v = ggml_add(ctx0, v, layer.attn_v_b);
  9262. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  9263. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  9264. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  9265. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  9266. cur = ggml_mul_mat(ctx0, kq, v);
  9267. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  9268. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  9269. cur = ggml_add(ctx0, cur, inpL);
  9270. } break;
  9271. case 5:
  9272. {
  9273. cur = build_norm(cur,
  9274. layer.norm,
  9275. layer.norm_b,
  9276. LLM_NORM_GROUP, 0);
  9277. } break;
  9278. default: GGML_ABORT("unknown posnet layer");
  9279. };
  9280. }
  9281. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9282. cur = build_norm(cur,
  9283. model.tok_norm,
  9284. model.tok_norm_b,
  9285. LLM_NORM, -1);
  9286. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9287. inpL = cur;
  9288. // convnext
  9289. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  9290. const auto & layer = model.layers[il].convnext;
  9291. cur = inpL;
  9292. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  9293. cur = ggml_add(ctx0, cur, layer.dw_b);
  9294. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9295. cur = build_norm(cur,
  9296. layer.norm,
  9297. layer.norm_b,
  9298. LLM_NORM, -1);
  9299. cur = build_ffn(cur,
  9300. layer.pw1, layer.pw1_b, NULL,
  9301. NULL, NULL, NULL,
  9302. layer.pw2, layer.pw2_b, NULL,
  9303. NULL,
  9304. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9305. cur = ggml_mul(ctx0, cur, layer.gamma);
  9306. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9307. inpL = ggml_add(ctx0, cur, inpL);
  9308. }
  9309. cur = inpL;
  9310. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  9311. cur = build_norm(cur,
  9312. model.output_norm,
  9313. model.output_norm_b,
  9314. LLM_NORM, -1);
  9315. // lm_head
  9316. cur = build_lora_mm(model.output, cur);
  9317. cur = ggml_add(ctx0, cur, model.output_b);
  9318. cb(cur, "result_embd", -1);
  9319. res->t_embd = cur;
  9320. ggml_build_forward_expand(gf, cur);
  9321. }
  9322. };
  9323. struct llm_build_plm : public llm_graph_context {
  9324. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9325. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  9326. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9327. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9328. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9329. ggml_tensor * cur;
  9330. ggml_tensor * inpL;
  9331. // {n_embd, n_tokens}
  9332. inpL = build_inp_embd(model.tok_embd);
  9333. // inp_pos - contains the positions
  9334. ggml_tensor * inp_pos = build_inp_pos();
  9335. auto * inp_attn = build_attn_inp_kv_unified();
  9336. for (int il = 0; il < n_layer; ++il) {
  9337. ggml_tensor * inpSA = inpL;
  9338. // norm
  9339. cur = build_norm(inpL,
  9340. model.layers[il].attn_norm, NULL,
  9341. LLM_NORM_RMS, il);
  9342. cb(cur, "attn_norm", il);
  9343. // self_attention
  9344. {
  9345. ggml_tensor * q = NULL;
  9346. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9347. cb(q, "q", il);
  9348. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9349. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9350. ggml_row_size(q->type, hparams.n_embd_head_k),
  9351. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9352. 0);
  9353. cb(q_nope, "q_nope", il);
  9354. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9355. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9356. ggml_row_size(q->type, hparams.n_embd_head_k),
  9357. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9358. ggml_row_size(q->type, n_embd_head_qk_nope));
  9359. cb(q_pe, "q_pe", il);
  9360. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9361. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9362. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9363. // split into {kv_lora_rank, n_tokens}
  9364. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9365. kv_pe_compresseed->nb[1],
  9366. 0);
  9367. cb(kv_compressed, "kv_compressed", il);
  9368. // and {n_embd_head_qk_rope, n_tokens}
  9369. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9370. kv_pe_compresseed->nb[1],
  9371. kv_pe_compresseed->nb[1],
  9372. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9373. cb(k_pe, "k_pe", il);
  9374. kv_compressed = build_norm(kv_compressed,
  9375. model.layers[il].attn_kv_a_norm, NULL,
  9376. LLM_NORM_RMS, il);
  9377. cb(kv_compressed, "kv_compressed", il);
  9378. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9379. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9380. cb(kv, "kv", il);
  9381. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9382. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9383. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9384. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9385. 0);
  9386. cb(k_nope, "k_nope", il);
  9387. // and {n_head * n_embd_head_v, n_tokens}
  9388. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9389. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9390. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9391. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9392. cb(v_states, "v_states", il);
  9393. v_states = ggml_cont(ctx0, v_states);
  9394. cb(v_states, "v_states", il);
  9395. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9396. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9397. 0);
  9398. cb(v_states, "v_states", il);
  9399. q_pe = ggml_rope_ext(
  9400. ctx0, q_pe, inp_pos, nullptr,
  9401. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9402. ext_factor, attn_factor, beta_fast, beta_slow
  9403. );
  9404. cb(q_pe, "q_pe", il);
  9405. // shared RoPE key
  9406. k_pe = ggml_rope_ext(
  9407. ctx0, k_pe, inp_pos, nullptr,
  9408. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9409. ext_factor, attn_factor, beta_fast, beta_slow
  9410. );
  9411. cb(k_pe, "k_pe", il);
  9412. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9413. cb(q_states, "q_states", il);
  9414. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9415. cb(k_states, "k_states", il);
  9416. cur = build_attn(inp_attn, gf,
  9417. model.layers[il].wo, NULL,
  9418. q_states, k_states, v_states, nullptr, kq_scale, il);
  9419. }
  9420. if (il == n_layer - 1) {
  9421. // skip computing output for unused tokens
  9422. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9423. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9424. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9425. }
  9426. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9427. cb(ffn_inp, "ffn_inp", il);
  9428. cur = build_norm(ffn_inp,
  9429. model.layers[il].ffn_norm, NULL,
  9430. LLM_NORM_RMS, il);
  9431. cb(cur, "ffn_norm", il);
  9432. cur = build_ffn(cur,
  9433. model.layers[il].ffn_up, NULL, NULL,
  9434. NULL, NULL, NULL,
  9435. model.layers[il].ffn_down, NULL, NULL,
  9436. NULL,
  9437. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  9438. cb(cur, "ffn_out", il);
  9439. cur = ggml_add(ctx0, cur, ffn_inp);
  9440. cur = build_cvec(cur, il);
  9441. cb(cur, "l_out", il);
  9442. // input for next layer
  9443. inpL = cur;
  9444. }
  9445. cur = inpL;
  9446. cur = build_norm(cur,
  9447. model.output_norm, NULL,
  9448. LLM_NORM_RMS, -1);
  9449. cb(cur, "result_norm", -1);
  9450. res->t_embd = cur;
  9451. cur = build_lora_mm(model.output, cur);
  9452. cb(cur, "result_output", -1);
  9453. res->t_logits = cur;
  9454. ggml_build_forward_expand(gf, cur);
  9455. }
  9456. };
  9457. struct llm_build_bailingmoe : public llm_graph_context {
  9458. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9459. ggml_tensor * cur;
  9460. ggml_tensor * inpL;
  9461. inpL = build_inp_embd(model.tok_embd);
  9462. // inp_pos - contains the positions
  9463. ggml_tensor * inp_pos = build_inp_pos();
  9464. auto * inp_attn = build_attn_inp_kv_unified();
  9465. for (int il = 0; il < n_layer; ++il) {
  9466. ggml_tensor * inpSA = inpL;
  9467. // norm
  9468. cur = build_norm(inpL,
  9469. model.layers[il].attn_norm, NULL,
  9470. LLM_NORM_RMS, il);
  9471. cb(cur, "attn_norm", il);
  9472. // self-attention
  9473. {
  9474. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9475. ggml_tensor * rope_factors = static_cast<const llama_kv_cache_unified *>(memory)->cbs.get_rope_factors(n_ctx_per_seq, il);
  9476. // compute Q and K and RoPE them
  9477. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9478. cb(Qcur, "Qcur", il);
  9479. if (model.layers[il].bq) {
  9480. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9481. cb(Qcur, "Qcur", il);
  9482. }
  9483. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9484. cb(Kcur, "Kcur", il);
  9485. if (model.layers[il].bk) {
  9486. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9487. cb(Kcur, "Kcur", il);
  9488. }
  9489. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9490. cb(Vcur, "Vcur", il);
  9491. if (model.layers[il].bv) {
  9492. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9493. cb(Vcur, "Vcur", il);
  9494. }
  9495. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  9496. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  9497. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  9498. Qcur = ggml_rope_ext(
  9499. ctx0, Qcur, inp_pos, rope_factors,
  9500. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9501. ext_factor, attn_factor, beta_fast, beta_slow
  9502. );
  9503. Kcur = ggml_rope_ext(
  9504. ctx0, Kcur, inp_pos, rope_factors,
  9505. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9506. ext_factor, attn_factor, beta_fast, beta_slow
  9507. );
  9508. cb(Qcur, "Qcur", il);
  9509. cb(Kcur, "Kcur", il);
  9510. cb(Vcur, "Vcur", il);
  9511. cur = build_attn(inp_attn, gf,
  9512. model.layers[il].wo, model.layers[il].bo,
  9513. Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  9514. }
  9515. if (il == n_layer - 1) {
  9516. // skip computing output for unused tokens
  9517. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9518. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9519. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9520. }
  9521. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9522. cb(ffn_inp, "ffn_inp", il);
  9523. cur = build_norm(ffn_inp,
  9524. model.layers[il].ffn_norm, NULL,
  9525. LLM_NORM_RMS, il);
  9526. cb(cur, "ffn_norm", il);
  9527. ggml_tensor * moe_out =
  9528. build_moe_ffn(cur,
  9529. model.layers[il].ffn_gate_inp,
  9530. model.layers[il].ffn_up_exps,
  9531. model.layers[il].ffn_gate_exps,
  9532. model.layers[il].ffn_down_exps,
  9533. nullptr,
  9534. n_expert, n_expert_used,
  9535. LLM_FFN_SILU, hparams.expert_weights_norm,
  9536. false, hparams.expert_weights_scale,
  9537. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  9538. il);
  9539. cb(moe_out, "ffn_moe_out", il);
  9540. // FFN shared expert
  9541. {
  9542. ggml_tensor * ffn_shexp = build_ffn(cur,
  9543. model.layers[il].ffn_up_shexp, NULL, NULL,
  9544. model.layers[il].ffn_gate_shexp, NULL, NULL,
  9545. model.layers[il].ffn_down_shexp, NULL, NULL,
  9546. NULL,
  9547. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9548. cb(ffn_shexp, "ffn_shexp", il);
  9549. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9550. cb(cur, "ffn_out", il);
  9551. }
  9552. cur = ggml_add(ctx0, cur, ffn_inp);
  9553. cur = build_cvec(cur, il);
  9554. cb(cur, "l_out", il);
  9555. // input for next layer
  9556. inpL = cur;
  9557. }
  9558. cur = inpL;
  9559. cur = build_norm(cur,
  9560. model.output_norm, NULL,
  9561. LLM_NORM_RMS, -1);
  9562. cb(cur, "result_norm", -1);
  9563. res->t_embd = cur;
  9564. // lm_head
  9565. cur = build_lora_mm(model.output, cur);
  9566. cb(cur, "result_output", -1);
  9567. res->t_logits = cur;
  9568. ggml_build_forward_expand(gf, cur);
  9569. }
  9570. };
  9571. llama_memory_i * llama_model::create_memory() const {
  9572. llama_memory_i * res;
  9573. switch (arch) {
  9574. case LLM_ARCH_MAMBA:
  9575. case LLM_ARCH_RWKV6:
  9576. case LLM_ARCH_RWKV6QWEN2:
  9577. case LLM_ARCH_RWKV7:
  9578. case LLM_ARCH_ARWKV7:
  9579. {
  9580. res = new llama_kv_cache_unified(hparams, {
  9581. /*.get_rope_factors =*/ nullptr
  9582. });
  9583. } break;
  9584. default:
  9585. {
  9586. res = new llama_kv_cache_unified(hparams, {
  9587. /*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
  9588. // choose long/short freq factors based on the context size
  9589. if (layers[il].rope_freqs != nullptr) {
  9590. return layers[il].rope_freqs;
  9591. }
  9592. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  9593. return layers[il].rope_long;
  9594. }
  9595. return layers[il].rope_short;
  9596. }
  9597. });
  9598. }
  9599. }
  9600. return res;
  9601. }
  9602. llm_graph_result_ptr llama_model::build_graph(
  9603. const llm_graph_params & params,
  9604. ggml_cgraph * gf,
  9605. llm_graph_type type) const {
  9606. std::unique_ptr<llm_graph_context> llm;
  9607. switch (arch) {
  9608. case LLM_ARCH_LLAMA:
  9609. case LLM_ARCH_MINICPM:
  9610. case LLM_ARCH_GRANITE:
  9611. case LLM_ARCH_GRANITE_MOE:
  9612. {
  9613. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  9614. } break;
  9615. case LLM_ARCH_DECI:
  9616. {
  9617. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  9618. } break;
  9619. case LLM_ARCH_BAICHUAN:
  9620. {
  9621. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  9622. } break;
  9623. case LLM_ARCH_FALCON:
  9624. {
  9625. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  9626. } break;
  9627. case LLM_ARCH_GROK:
  9628. {
  9629. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  9630. } break;
  9631. case LLM_ARCH_STARCODER:
  9632. {
  9633. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  9634. } break;
  9635. case LLM_ARCH_REFACT:
  9636. {
  9637. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  9638. } break;
  9639. case LLM_ARCH_BERT:
  9640. case LLM_ARCH_JINA_BERT_V2:
  9641. case LLM_ARCH_NOMIC_BERT:
  9642. {
  9643. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  9644. } break;
  9645. case LLM_ARCH_BLOOM:
  9646. {
  9647. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  9648. } break;
  9649. case LLM_ARCH_MPT:
  9650. {
  9651. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  9652. } break;
  9653. case LLM_ARCH_STABLELM:
  9654. {
  9655. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  9656. } break;
  9657. case LLM_ARCH_QWEN:
  9658. {
  9659. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  9660. } break;
  9661. case LLM_ARCH_QWEN2:
  9662. {
  9663. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  9664. } break;
  9665. case LLM_ARCH_QWEN2VL:
  9666. {
  9667. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  9668. } break;
  9669. case LLM_ARCH_QWEN2MOE:
  9670. {
  9671. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  9672. } break;
  9673. case LLM_ARCH_PHI2:
  9674. {
  9675. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  9676. } break;
  9677. case LLM_ARCH_PHI3:
  9678. case LLM_ARCH_PHIMOE:
  9679. {
  9680. llm = std::make_unique<llm_build_phi3>(*this, params, gf);
  9681. } break;
  9682. case LLM_ARCH_PLAMO:
  9683. {
  9684. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  9685. } break;
  9686. case LLM_ARCH_GPT2:
  9687. {
  9688. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  9689. } break;
  9690. case LLM_ARCH_CODESHELL:
  9691. {
  9692. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  9693. } break;
  9694. case LLM_ARCH_ORION:
  9695. {
  9696. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  9697. } break;
  9698. case LLM_ARCH_INTERNLM2:
  9699. {
  9700. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  9701. } break;
  9702. case LLM_ARCH_MINICPM3:
  9703. {
  9704. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  9705. } break;
  9706. case LLM_ARCH_GEMMA:
  9707. {
  9708. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  9709. } break;
  9710. case LLM_ARCH_GEMMA2:
  9711. {
  9712. llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
  9713. } break;
  9714. case LLM_ARCH_GEMMA3:
  9715. {
  9716. llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
  9717. } break;
  9718. case LLM_ARCH_STARCODER2:
  9719. {
  9720. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  9721. } break;
  9722. case LLM_ARCH_MAMBA:
  9723. {
  9724. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  9725. } break;
  9726. case LLM_ARCH_XVERSE:
  9727. {
  9728. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  9729. } break;
  9730. case LLM_ARCH_COMMAND_R:
  9731. {
  9732. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  9733. } break;
  9734. case LLM_ARCH_COHERE2:
  9735. {
  9736. llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
  9737. } break;
  9738. case LLM_ARCH_DBRX:
  9739. {
  9740. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  9741. } break;
  9742. case LLM_ARCH_OLMO:
  9743. {
  9744. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  9745. } break;
  9746. case LLM_ARCH_OLMO2:
  9747. {
  9748. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  9749. } break;
  9750. case LLM_ARCH_OLMOE:
  9751. {
  9752. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  9753. } break;
  9754. case LLM_ARCH_OPENELM:
  9755. {
  9756. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  9757. } break;
  9758. case LLM_ARCH_GPTNEOX:
  9759. {
  9760. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  9761. } break;
  9762. case LLM_ARCH_ARCTIC:
  9763. {
  9764. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  9765. } break;
  9766. case LLM_ARCH_DEEPSEEK:
  9767. {
  9768. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  9769. } break;
  9770. case LLM_ARCH_DEEPSEEK2:
  9771. {
  9772. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  9773. } break;
  9774. case LLM_ARCH_CHATGLM:
  9775. {
  9776. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  9777. } break;
  9778. case LLM_ARCH_BITNET:
  9779. {
  9780. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  9781. } break;
  9782. case LLM_ARCH_T5:
  9783. {
  9784. switch (type) {
  9785. case LLM_GRAPH_TYPE_ENCODER:
  9786. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  9787. break;
  9788. case LLM_GRAPH_TYPE_DEFAULT:
  9789. case LLM_GRAPH_TYPE_DECODER:
  9790. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  9791. break;
  9792. default:
  9793. GGML_ABORT("invalid graph type");
  9794. };
  9795. } break;
  9796. case LLM_ARCH_T5ENCODER:
  9797. {
  9798. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  9799. }
  9800. break;
  9801. case LLM_ARCH_JAIS:
  9802. {
  9803. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  9804. } break;
  9805. case LLM_ARCH_NEMOTRON:
  9806. {
  9807. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  9808. } break;
  9809. case LLM_ARCH_EXAONE:
  9810. {
  9811. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  9812. } break;
  9813. case LLM_ARCH_RWKV6:
  9814. {
  9815. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  9816. } break;
  9817. case LLM_ARCH_RWKV6QWEN2:
  9818. {
  9819. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  9820. } break;
  9821. case LLM_ARCH_RWKV7:
  9822. {
  9823. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  9824. } break;
  9825. case LLM_ARCH_ARWKV7:
  9826. {
  9827. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  9828. } break;
  9829. case LLM_ARCH_CHAMELEON:
  9830. {
  9831. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  9832. } break;
  9833. case LLM_ARCH_WAVTOKENIZER_DEC:
  9834. {
  9835. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  9836. } break;
  9837. case LLM_ARCH_PLM:
  9838. {
  9839. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  9840. } break;
  9841. case LLM_ARCH_BAILINGMOE:
  9842. {
  9843. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  9844. } break;
  9845. default:
  9846. GGML_ABORT("fatal error");
  9847. }
  9848. // add on pooling layer
  9849. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  9850. return std::move(llm->res);
  9851. }
  9852. //
  9853. // interface implementation
  9854. //
  9855. llama_model_params llama_model_default_params() {
  9856. llama_model_params result = {
  9857. /*.devices =*/ nullptr,
  9858. /*.tensor_buft_overrides =*/ nullptr,
  9859. /*.n_gpu_layers =*/ 0,
  9860. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  9861. /*.main_gpu =*/ 0,
  9862. /*.tensor_split =*/ nullptr,
  9863. /*.progress_callback =*/ nullptr,
  9864. /*.progress_callback_user_data =*/ nullptr,
  9865. /*.kv_overrides =*/ nullptr,
  9866. /*.vocab_only =*/ false,
  9867. /*.use_mmap =*/ true,
  9868. /*.use_mlock =*/ false,
  9869. /*.check_tensors =*/ false,
  9870. };
  9871. #ifdef GGML_USE_METAL
  9872. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  9873. result.n_gpu_layers = 999;
  9874. #endif
  9875. return result;
  9876. }
  9877. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  9878. return &model->vocab;
  9879. }
  9880. void llama_free_model(llama_model * model) {
  9881. llama_model_free(model);
  9882. }
  9883. void llama_model_free(llama_model * model) {
  9884. delete model;
  9885. }
  9886. int32_t llama_model_n_ctx_train(const llama_model * model) {
  9887. return model->hparams.n_ctx_train;
  9888. }
  9889. int32_t llama_model_n_embd(const llama_model * model) {
  9890. return model->hparams.n_embd;
  9891. }
  9892. int32_t llama_model_n_layer(const llama_model * model) {
  9893. return model->hparams.n_layer;
  9894. }
  9895. int32_t llama_model_n_head(const llama_model * model) {
  9896. return model->hparams.n_head();
  9897. }
  9898. int32_t llama_model_n_head_kv(const llama_model * model) {
  9899. return model->hparams.n_head_kv();
  9900. }
  9901. // deprecated
  9902. int32_t llama_n_ctx_train(const llama_model * model) {
  9903. return llama_model_n_ctx_train(model);
  9904. }
  9905. // deprecated
  9906. int32_t llama_n_embd(const llama_model * model) {
  9907. return llama_model_n_embd(model);
  9908. }
  9909. // deprecated
  9910. int32_t llama_n_layer(const llama_model * model) {
  9911. return llama_model_n_layer(model);
  9912. }
  9913. // deprecated
  9914. int32_t llama_n_head(const llama_model * model) {
  9915. return llama_model_n_head(model);
  9916. }
  9917. llama_rope_type llama_model_rope_type(const llama_model * model) {
  9918. switch (model->arch) {
  9919. // these models do not use RoPE
  9920. case LLM_ARCH_GPT2:
  9921. case LLM_ARCH_GPTJ:
  9922. case LLM_ARCH_MPT:
  9923. case LLM_ARCH_REFACT:
  9924. case LLM_ARCH_BLOOM:
  9925. case LLM_ARCH_MAMBA:
  9926. case LLM_ARCH_JINA_BERT_V2:
  9927. case LLM_ARCH_T5:
  9928. case LLM_ARCH_T5ENCODER:
  9929. case LLM_ARCH_JAIS:
  9930. case LLM_ARCH_RWKV6:
  9931. case LLM_ARCH_RWKV6QWEN2:
  9932. case LLM_ARCH_RWKV7:
  9933. case LLM_ARCH_ARWKV7:
  9934. case LLM_ARCH_WAVTOKENIZER_DEC:
  9935. return LLAMA_ROPE_TYPE_NONE;
  9936. // use what we call a normal RoPE, operating on pairs of consecutive head values
  9937. case LLM_ARCH_LLAMA:
  9938. case LLM_ARCH_DECI:
  9939. case LLM_ARCH_BAICHUAN:
  9940. case LLM_ARCH_STARCODER:
  9941. case LLM_ARCH_PLAMO:
  9942. case LLM_ARCH_ORION:
  9943. case LLM_ARCH_INTERNLM2:
  9944. case LLM_ARCH_MINICPM:
  9945. case LLM_ARCH_XVERSE:
  9946. case LLM_ARCH_COMMAND_R:
  9947. case LLM_ARCH_COHERE2:
  9948. case LLM_ARCH_OLMO:
  9949. case LLM_ARCH_ARCTIC:
  9950. case LLM_ARCH_DEEPSEEK:
  9951. case LLM_ARCH_DEEPSEEK2:
  9952. case LLM_ARCH_PLM:
  9953. case LLM_ARCH_CHATGLM:
  9954. case LLM_ARCH_GRANITE:
  9955. case LLM_ARCH_GRANITE_MOE:
  9956. case LLM_ARCH_CHAMELEON:
  9957. case LLM_ARCH_BAILINGMOE:
  9958. return LLAMA_ROPE_TYPE_NORM;
  9959. // the pairs of head values are offset by n_rot/2
  9960. case LLM_ARCH_FALCON:
  9961. case LLM_ARCH_GROK:
  9962. case LLM_ARCH_DBRX:
  9963. case LLM_ARCH_BERT:
  9964. case LLM_ARCH_NOMIC_BERT:
  9965. case LLM_ARCH_STABLELM:
  9966. case LLM_ARCH_BITNET:
  9967. case LLM_ARCH_QWEN:
  9968. case LLM_ARCH_QWEN2:
  9969. case LLM_ARCH_QWEN2MOE:
  9970. case LLM_ARCH_OLMO2:
  9971. case LLM_ARCH_OLMOE:
  9972. case LLM_ARCH_PHI2:
  9973. case LLM_ARCH_PHI3:
  9974. case LLM_ARCH_PHIMOE:
  9975. case LLM_ARCH_GEMMA:
  9976. case LLM_ARCH_GEMMA2:
  9977. case LLM_ARCH_GEMMA3:
  9978. case LLM_ARCH_STARCODER2:
  9979. case LLM_ARCH_OPENELM:
  9980. case LLM_ARCH_GPTNEOX:
  9981. case LLM_ARCH_CODESHELL:
  9982. case LLM_ARCH_NEMOTRON:
  9983. case LLM_ARCH_EXAONE:
  9984. case LLM_ARCH_MINICPM3:
  9985. return LLAMA_ROPE_TYPE_NEOX;
  9986. case LLM_ARCH_QWEN2VL:
  9987. return LLAMA_ROPE_TYPE_MROPE;
  9988. // all model arches should be listed explicitly here
  9989. case LLM_ARCH_UNKNOWN:
  9990. GGML_ABORT("unknown architecture");
  9991. }
  9992. return LLAMA_ROPE_TYPE_NONE;
  9993. }
  9994. float llama_model_rope_freq_scale_train(const llama_model * model) {
  9995. return model->hparams.rope_freq_scale_train;
  9996. }
  9997. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  9998. const auto & it = model->gguf_kv.find(key);
  9999. if (it == model->gguf_kv.end()) {
  10000. if (buf_size > 0) {
  10001. buf[0] = '\0';
  10002. }
  10003. return -1;
  10004. }
  10005. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10006. }
  10007. int32_t llama_model_meta_count(const llama_model * model) {
  10008. return (int)model->gguf_kv.size();
  10009. }
  10010. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10011. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10012. if (buf_size > 0) {
  10013. buf[0] = '\0';
  10014. }
  10015. return -1;
  10016. }
  10017. auto it = model->gguf_kv.begin();
  10018. std::advance(it, i);
  10019. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10020. }
  10021. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10022. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10023. if (buf_size > 0) {
  10024. buf[0] = '\0';
  10025. }
  10026. return -1;
  10027. }
  10028. auto it = model->gguf_kv.begin();
  10029. std::advance(it, i);
  10030. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10031. }
  10032. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  10033. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  10034. }
  10035. uint64_t llama_model_size(const llama_model * model) {
  10036. return model->size();
  10037. }
  10038. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  10039. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
  10040. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  10041. const auto & it = model->gguf_kv.find(key);
  10042. if (it == model->gguf_kv.end()) {
  10043. return nullptr;
  10044. }
  10045. return it->second.c_str();
  10046. }
  10047. uint64_t llama_model_n_params(const llama_model * model) {
  10048. return model->n_elements();
  10049. }
  10050. bool llama_model_has_encoder(const llama_model * model) {
  10051. switch (model->arch) {
  10052. case LLM_ARCH_T5: return true;
  10053. case LLM_ARCH_T5ENCODER: return true;
  10054. default: return false;
  10055. }
  10056. }
  10057. bool llama_model_has_decoder(const llama_model * model) {
  10058. switch (model->arch) {
  10059. case LLM_ARCH_T5ENCODER: return false;
  10060. default: return true;
  10061. }
  10062. }
  10063. llama_token llama_model_decoder_start_token(const llama_model * model) {
  10064. return model->hparams.dec_start_token_id;
  10065. }
  10066. bool llama_model_is_recurrent(const llama_model * model) {
  10067. switch (model->arch) {
  10068. case LLM_ARCH_MAMBA: return true;
  10069. case LLM_ARCH_RWKV6: return true;
  10070. case LLM_ARCH_RWKV6QWEN2: return true;
  10071. case LLM_ARCH_RWKV7: return true;
  10072. case LLM_ARCH_ARWKV7: return true;
  10073. default: return false;
  10074. }
  10075. }
  10076. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  10077. return model->tensors_by_name;
  10078. }