unicode.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. #if defined(_MSC_VER)
  2. #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
  3. #endif
  4. #include "unicode.h"
  5. #include "unicode-data.h"
  6. #include <algorithm>
  7. #include <cassert>
  8. #include <cstddef>
  9. #include <cstdint>
  10. #include <map>
  11. #include <regex>
  12. #include <stdexcept>
  13. #include <string>
  14. #include <unordered_map>
  15. #include <unordered_set>
  16. #include <utility>
  17. #include <vector>
  18. #include <locale>
  19. #include <codecvt>
  20. size_t unicode_len_utf8(char src) {
  21. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  22. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  23. return lookup[highbits];
  24. }
  25. static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
  26. std::string result;
  27. for (size_t i = 0; i < cps.size(); ++i) {
  28. result.append(unicode_cpt_to_utf8(cps[i]));
  29. }
  30. return result;
  31. }
  32. uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
  33. assert(offset < utf8.size());
  34. if (!(utf8[offset + 0] & 0x80)) {
  35. auto result = utf8[offset + 0];
  36. offset += 1;
  37. return result;
  38. }
  39. if (!(utf8[offset + 0] & 0x40)) {
  40. throw std::invalid_argument("invalid character");
  41. }
  42. if (!(utf8[offset + 0] & 0x20)) {
  43. if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) {
  44. throw std::invalid_argument("invalid character");
  45. }
  46. auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
  47. offset += 2;
  48. return result;
  49. }
  50. if (!(utf8[offset + 0] & 0x10)) {
  51. if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) {
  52. throw std::invalid_argument("invalid character");
  53. }
  54. auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
  55. offset += 3;
  56. return result;
  57. }
  58. if (!(utf8[offset + 0] & 0x08)) {
  59. if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) {
  60. throw std::invalid_argument("invalid character");
  61. }
  62. auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
  63. offset += 4;
  64. return result;
  65. }
  66. throw std::invalid_argument("failed to convert utf8 to codepoint");
  67. }
  68. //static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) {
  69. // std::vector<uint16_t> result;
  70. // if (/* 0x0000 <= cp && */ cp <= 0xffff) {
  71. // result.emplace_back(cp);
  72. // return result;
  73. // }
  74. // if (0x10000 <= cp && cp <= 0x10ffff) {
  75. // result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
  76. // result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
  77. // return result;
  78. // }
  79. // throw std::invalid_argument("failed to convert codepoint to utf16");
  80. //}
  81. //static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) {
  82. // std::vector<uint16_t> result;
  83. // for (size_t i = 0; i < cps.size(); ++i) {
  84. // auto temp = unicode_cpt_to_utf16(cps[i]);
  85. // result.insert(result.end(), temp.begin(), temp.end());
  86. // }
  87. // return result;
  88. //}
  89. //static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
  90. // assert(offset < utf16.size());
  91. // if (((utf16[0] >> 10) << 10) != 0xd800) {
  92. // auto result = utf16[offset + 0];
  93. // offset += 1;
  94. // return result;
  95. // }
  96. //
  97. // if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) {
  98. // throw std::invalid_argument("invalid character");
  99. // }
  100. //
  101. // auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
  102. // offset += 2;
  103. // return result;
  104. //}
  105. //static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) {
  106. // std::vector<uint32_t> result;
  107. // size_t offset = 0;
  108. // while (offset < utf16.size()) {
  109. // result.push_back(unicode_cpt_from_utf16(utf16, offset));
  110. // }
  111. // return result;
  112. //}
  113. static std::vector<codepoint_flags> unicode_cpt_flags_array() {
  114. std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
  115. assert (unicode_ranges_flags.begin()[0].first == 0);
  116. assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS);
  117. for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
  118. const auto range_ini = unicode_ranges_flags.begin()[i-1]; // codepoint_ini, flags
  119. const auto range_end = unicode_ranges_flags.begin()[i]; // codepoint_end, flags
  120. for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
  121. cpt_flags[cpt] = range_ini.second;
  122. }
  123. }
  124. for (auto cpt : unicode_set_whitespace) {
  125. cpt_flags[cpt].is_whitespace = true;
  126. }
  127. for (auto p : unicode_map_lowercase) {
  128. cpt_flags[p.second].is_lowercase = true;
  129. }
  130. for (auto p : unicode_map_uppercase) {
  131. cpt_flags[p.second].is_uppercase = true;
  132. }
  133. for (auto &range : unicode_ranges_nfd) { // start, last, nfd
  134. cpt_flags[range.nfd].is_nfd = true;
  135. }
  136. return cpt_flags;
  137. }
  138. static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
  139. std::unordered_map<uint8_t, std::string> map;
  140. for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
  141. assert(0 <= ch && ch < 256);
  142. map[ch] = unicode_cpt_to_utf8(ch);
  143. }
  144. for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
  145. assert(0 <= ch && ch < 256);
  146. map[ch] = unicode_cpt_to_utf8(ch);
  147. }
  148. for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
  149. assert(0 <= ch && ch < 256);
  150. map[ch] = unicode_cpt_to_utf8(ch);
  151. }
  152. auto n = 0;
  153. for (int ch = 0; ch < 256; ++ch) {
  154. if (map.find(ch) == map.end()) {
  155. map[ch] = unicode_cpt_to_utf8(256 + n);
  156. ++n;
  157. }
  158. }
  159. return map;
  160. }
  161. static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
  162. std::unordered_map<std::string, uint8_t> map;
  163. for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
  164. assert(0 <= ch && ch < 256);
  165. map[unicode_cpt_to_utf8(ch)] = ch;
  166. }
  167. for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
  168. assert(0 <= ch && ch < 256);
  169. map[unicode_cpt_to_utf8(ch)] = ch;
  170. }
  171. for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
  172. assert(0 <= ch && ch < 256);
  173. map[unicode_cpt_to_utf8(ch)] = ch;
  174. }
  175. auto n = 0;
  176. for (int ch = 0; ch < 256; ++ch) {
  177. if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) {
  178. map[unicode_cpt_to_utf8(256 + n)] = ch;
  179. ++n;
  180. }
  181. }
  182. return map;
  183. }
  184. static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
  185. std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
  186. return conv.from_bytes(s);
  187. }
  188. static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
  189. std::vector<std::string> bpe_encoded_words;
  190. for (const auto & word : bpe_words) {
  191. std::string text_utf;
  192. auto utf_word = unicode_cpts_from_utf8(word);
  193. for (size_t i = 0; i < utf_word.size(); ++i) {
  194. text_utf += unicode_cpt_to_utf8(utf_word[i]);
  195. }
  196. std::string encoded_token;
  197. for (char & c : text_utf) {
  198. encoded_token += unicode_byte_to_utf8(c);
  199. }
  200. bpe_encoded_words.emplace_back(encoded_token);
  201. }
  202. return bpe_encoded_words;
  203. }
  204. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  205. static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) {
  206. std::vector<size_t> bpe_offsets; // store the offset of each word
  207. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  208. const auto cpts = unicode_cpts_from_utf8(text);
  209. size_t start = 0;
  210. for (auto offset : offsets) {
  211. const size_t offset_ini = start;
  212. const size_t offset_end = start + offset;
  213. assert(offset_end <= cpts.size());
  214. start = offset_end;
  215. static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
  216. auto _get_cpt = [&] (const size_t pos) -> uint32_t {
  217. return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
  218. };
  219. auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
  220. return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
  221. };
  222. size_t _prev_end = offset_ini;
  223. auto _add_token = [&] (const size_t end) -> size_t {
  224. assert(_prev_end <= end && end <= offset_end);
  225. size_t len = end - _prev_end;
  226. if (len > 0) {
  227. bpe_offsets.push_back(len);
  228. }
  229. _prev_end = end;
  230. //if (len > 0) {
  231. // std::string s = "";
  232. // for(size_t p = end-len; p < end; p++)
  233. // s += unicode_cpt_to_utf8(cpts[p]);
  234. // printf(">>> '%s'\n", s.c_str());
  235. //}
  236. return len;
  237. };
  238. for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
  239. const uint32_t cpt = _get_cpt(pos);
  240. const auto flags = _get_flags(pos);
  241. // regex: 's|'t|'re|'ve|'m|'ll|'d
  242. if (cpt == '\'' && pos+1 < offset_end) {
  243. uint32_t cpt_next = _get_cpt(pos+1);
  244. if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
  245. pos += _add_token(pos+2);
  246. continue;
  247. }
  248. if (pos+2 < offset_end) {
  249. uint32_t cpt_next_next = _get_cpt(pos+2);
  250. if ((cpt_next == 'r' && cpt_next_next == 'e') ||
  251. (cpt_next == 'v' && cpt_next_next == 'e') ||
  252. (cpt_next == 'l' && cpt_next_next == 'l')) {
  253. pos += _add_token(pos+3);
  254. continue;
  255. }
  256. }
  257. }
  258. auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
  259. // regex: <space>?\p{L}+
  260. if (flags2.is_letter) {
  261. pos += (cpt == ' ');
  262. while (flags2.is_letter) {
  263. flags2 = _get_flags(++pos);
  264. }
  265. _add_token(pos);
  266. continue;
  267. }
  268. // regex: <space>?\p{N}+
  269. if (flags2.is_number) {
  270. pos += (cpt == ' ');
  271. while (flags2.is_number) {
  272. flags2 = _get_flags(++pos);
  273. }
  274. _add_token(pos);
  275. continue;
  276. }
  277. // regex: <space>?[^\s\p{L}\p{N}]+
  278. if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
  279. pos += (cpt == ' ');
  280. while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
  281. flags2 = _get_flags(++pos);
  282. }
  283. _add_token(pos);
  284. continue;
  285. }
  286. size_t num_whitespaces = 0;
  287. while (_get_flags(pos+num_whitespaces).is_whitespace) {
  288. num_whitespaces++;
  289. }
  290. // regex: \s+(?!\S)
  291. if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
  292. pos += num_whitespaces - 1;
  293. _add_token(pos);
  294. continue;
  295. }
  296. // regex: \s+
  297. if (num_whitespaces > 0) {
  298. pos += num_whitespaces;
  299. _add_token(pos);
  300. continue;
  301. }
  302. // no matches
  303. _add_token(++pos);
  304. }
  305. }
  306. return bpe_offsets;
  307. }
  308. // LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
  309. static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
  310. std::vector<size_t> bpe_offsets; // store the offset of each word
  311. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  312. const auto cpts = unicode_cpts_from_utf8(text);
  313. size_t start = 0;
  314. for (auto offset : offsets) {
  315. const size_t offset_ini = start;
  316. const size_t offset_end = start + offset;
  317. assert(offset_end <= cpts.size());
  318. start = offset_end;
  319. static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
  320. auto _get_cpt = [&] (const size_t pos) -> uint32_t {
  321. return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
  322. };
  323. auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
  324. return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
  325. };
  326. size_t _prev_end = offset_ini;
  327. auto _add_token = [&] (const size_t end) -> size_t {
  328. assert(_prev_end <= end && end <= offset_end);
  329. size_t len = end - _prev_end;
  330. if (len > 0) {
  331. bpe_offsets.push_back(len);
  332. }
  333. _prev_end = end;
  334. //if (len > 0) {
  335. // std::string s = "";
  336. // for(size_t p = end-len; p < end; p++)
  337. // s += unicode_cpt_to_utf8(cpts[p]);
  338. // printf(">>> '%s'\n", s.c_str());
  339. //}
  340. return len;
  341. };
  342. for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
  343. const uint32_t cpt = _get_cpt(pos);
  344. const auto flags = _get_flags(pos);
  345. // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
  346. if (cpt == '\'' && pos+1 < offset_end) {
  347. uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
  348. if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
  349. pos += _add_token(pos+2);
  350. continue;
  351. }
  352. if (pos+2 < offset_end) {
  353. uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
  354. if ((cpt_next == 'r' && cpt_next_next == 'e') ||
  355. (cpt_next == 'v' && cpt_next_next == 'e') ||
  356. (cpt_next == 'l' && cpt_next_next == 'l')) {
  357. pos += _add_token(pos+3);
  358. continue;
  359. }
  360. }
  361. }
  362. // regex: [^\r\n\p{L}\p{N}]?\p{L}+
  363. if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
  364. if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
  365. pos++;
  366. while (_get_flags(pos).is_letter) {
  367. pos++;
  368. }
  369. _add_token(pos);
  370. continue;
  371. }
  372. }
  373. // regex: \p{N}{1,3}
  374. if (flags.is_number) {
  375. size_t ini = pos;
  376. while (_get_flags(pos).is_number) {
  377. if (++pos - ini >= 3 ) {
  378. _add_token(pos);
  379. ini = pos;
  380. }
  381. }
  382. _add_token(pos);
  383. continue;
  384. }
  385. // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
  386. auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
  387. if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
  388. pos += (cpt == ' ');
  389. while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
  390. flags2 = _get_flags(++pos);
  391. }
  392. uint32_t cpt2 = _get_cpt(pos);
  393. while (cpt2 == '\r' || cpt2 == '\n') {
  394. cpt2 = _get_cpt(++pos);
  395. }
  396. _add_token(pos);
  397. continue;
  398. }
  399. size_t num_whitespaces = 0;
  400. size_t last_end_r_or_n = 0;
  401. while (_get_flags(pos+num_whitespaces).is_whitespace) {
  402. uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
  403. if (cpt2 == '\r' || cpt2 == '\n') {
  404. last_end_r_or_n = pos + num_whitespaces + 1;
  405. }
  406. num_whitespaces++;
  407. }
  408. // regex: \s*[\r\n]+
  409. if (last_end_r_or_n > 0) {
  410. pos = last_end_r_or_n;
  411. _add_token(pos);
  412. continue;
  413. }
  414. // regex: \s+(?!\S)
  415. if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
  416. pos += num_whitespaces - 1;
  417. _add_token(pos);
  418. continue;
  419. }
  420. // regex: \s+
  421. if (num_whitespaces > 0) {
  422. pos += num_whitespaces;
  423. _add_token(pos);
  424. continue;
  425. }
  426. // no matches
  427. _add_token(++pos);
  428. }
  429. }
  430. return bpe_offsets;
  431. }
  432. // use std::wregex to split the text
  433. static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
  434. std::wregex expr(regex_expr);
  435. std::vector<size_t> bpe_offsets; // store the offset of each word
  436. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  437. size_t start = 0;
  438. for (auto offset : offsets) {
  439. std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
  440. std::wcregex_iterator end;
  441. int64_t start_idx = 0;
  442. while (it != end) {
  443. std::wcmatch match = *it;
  444. if (match.position() > start_idx) {
  445. bpe_offsets.emplace_back(match.position() - start_idx);
  446. }
  447. bpe_offsets.emplace_back(match.length());
  448. start_idx = match.position() + match.length();
  449. ++it;
  450. }
  451. if (start_idx < (int64_t) offset) {
  452. bpe_offsets.emplace_back(offset - start_idx);
  453. }
  454. start += offset;
  455. }
  456. return bpe_offsets;
  457. }
  458. // use std::regex to split the text
  459. static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
  460. std::regex expr(regex_expr);
  461. std::vector<size_t> bpe_offsets; // store the offset of each word
  462. bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
  463. size_t start = 0;
  464. for (auto offset : offsets) {
  465. std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
  466. std::cregex_iterator end;
  467. int64_t start_idx = 0;
  468. while (it != end) {
  469. std::cmatch match = *it;
  470. if (match.position() > start_idx) {
  471. bpe_offsets.emplace_back(match.position() - start_idx);
  472. }
  473. bpe_offsets.emplace_back(match.length());
  474. start_idx = match.position() + match.length();
  475. ++it;
  476. }
  477. if (start_idx < (int64_t) offset) {
  478. bpe_offsets.emplace_back(offset - start_idx);
  479. }
  480. start += offset;
  481. }
  482. return bpe_offsets;
  483. }
  484. static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
  485. std::vector<size_t> bpe_offsets;
  486. if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
  487. bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
  488. } else if (
  489. regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
  490. regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
  491. bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
  492. }
  493. return bpe_offsets;
  494. }
  495. //
  496. // interface
  497. //
  498. std::string unicode_cpt_to_utf8(uint32_t cp) {
  499. std::string result;
  500. if (/* 0x00 <= cp && */ cp <= 0x7f) {
  501. result.push_back(cp);
  502. return result;
  503. }
  504. if (0x80 <= cp && cp <= 0x7ff) {
  505. result.push_back(0xc0 | ((cp >> 6) & 0x1f));
  506. result.push_back(0x80 | (cp & 0x3f));
  507. return result;
  508. }
  509. if (0x800 <= cp && cp <= 0xffff) {
  510. result.push_back(0xe0 | ((cp >> 12) & 0x0f));
  511. result.push_back(0x80 | ((cp >> 6) & 0x3f));
  512. result.push_back(0x80 | (cp & 0x3f));
  513. return result;
  514. }
  515. if (0x10000 <= cp && cp <= 0x10ffff) {
  516. result.push_back(0xf0 | ((cp >> 18) & 0x07));
  517. result.push_back(0x80 | ((cp >> 12) & 0x3f));
  518. result.push_back(0x80 | ((cp >> 6) & 0x3f));
  519. result.push_back(0x80 | (cp & 0x3f));
  520. return result;
  521. }
  522. throw std::invalid_argument("invalid codepoint");
  523. }
  524. std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
  525. auto comp = [] (const uint32_t cpt, const range_nfd & range) {
  526. return cpt < range.first;
  527. };
  528. std::vector<uint32_t> result(cpts.size());
  529. for (size_t i = 0; i < cpts.size(); ++i) {
  530. const uint32_t cpt = cpts[i];
  531. auto it = std::upper_bound(unicode_ranges_nfd.begin(), unicode_ranges_nfd.end(), cpt, comp) - 1;
  532. result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
  533. }
  534. return result;
  535. }
  536. std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
  537. std::vector<uint32_t> result;
  538. result.reserve(utf8.size());
  539. size_t offset = 0;
  540. while (offset < utf8.size()) {
  541. result.push_back(unicode_cpt_from_utf8(utf8, offset));
  542. }
  543. return result;
  544. }
  545. codepoint_flags unicode_cpt_flags(const uint32_t cp) {
  546. static const codepoint_flags undef(codepoint_flags::UNDEFINED);
  547. static const auto cpt_flags = unicode_cpt_flags_array();
  548. return cp < cpt_flags.size() ? cpt_flags[cp] : undef;
  549. }
  550. codepoint_flags unicode_cpt_flags(const std::string & utf8) {
  551. static const codepoint_flags undef(codepoint_flags::UNDEFINED);
  552. if (utf8.empty()) {
  553. return undef; // undefined
  554. }
  555. size_t offset = 0;
  556. return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset));
  557. }
  558. std::string unicode_byte_to_utf8(uint8_t byte) {
  559. static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
  560. return map.at(byte);
  561. }
  562. uint8_t unicode_utf8_to_byte(const std::string & utf8) {
  563. static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map();
  564. return map.at(utf8);
  565. }
  566. uint32_t unicode_tolower(uint32_t cp) {
  567. // binary search
  568. auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cp,
  569. [](const std::pair<uint32_t, uint32_t> & pair, uint32_t value) {
  570. return pair.first < value;
  571. });
  572. if (it != unicode_map_lowercase.end() && it->first == cp) {
  573. return it->second;
  574. }
  575. return cp; // Return the original code point if no lowercase mapping is found
  576. }
  577. std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
  578. // unicode categories
  579. static const std::map<std::string, int> k_ucat_enum = {
  580. { "\\p{N}", codepoint_flags::NUMBER },
  581. { "\\p{L}", codepoint_flags::LETTER },
  582. { "\\p{P}", codepoint_flags::PUNCTUATION },
  583. };
  584. static const std::map<int, int> k_ucat_cpt = {
  585. { codepoint_flags::NUMBER, 0xD1 },
  586. { codepoint_flags::LETTER, 0xD2 },
  587. { codepoint_flags::PUNCTUATION, 0xD3 },
  588. };
  589. static const std::map<int, std::string> k_ucat_map = {
  590. { codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9
  591. { codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
  592. { codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
  593. };
  594. // compute collapsed codepoints only if needed by at least one regex
  595. bool need_collapse = false;
  596. for (auto & regex_expr : regex_exprs) {
  597. // search for unicode categories
  598. for (const auto & ucat : k_ucat_enum) {
  599. if (std::string::npos != regex_expr.find(ucat.first)) {
  600. need_collapse = true;
  601. break;
  602. }
  603. }
  604. }
  605. const auto cpts = unicode_cpts_from_utf8(text);
  606. // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
  607. // ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935
  608. std::string text_collapsed;
  609. if (need_collapse) {
  610. // collapse all unicode categories
  611. text_collapsed.resize(cpts.size());
  612. for (size_t i = 0; i < cpts.size(); ++i) {
  613. // keep single-byte codepoints as is
  614. if (cpts[i] < 128) {
  615. text_collapsed[i] = cpts[i];
  616. continue;
  617. }
  618. const auto flags = unicode_cpt_flags(cpts[i]);
  619. if (flags.is_whitespace) {
  620. //NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
  621. //text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
  622. text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
  623. } else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
  624. text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
  625. } else {
  626. text_collapsed[i] = (char) 0xD0; // fallback
  627. }
  628. }
  629. }
  630. std::vector<size_t> bpe_offsets = { cpts.size() };
  631. for (auto & regex_expr : regex_exprs) {
  632. // first, see if we have an efficient custom regex implementation
  633. auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
  634. if (!tmp.empty()) {
  635. bpe_offsets = std::move(tmp);
  636. continue;
  637. }
  638. // fallback to general-purpose std::regex / std::wregex
  639. try {
  640. // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
  641. // with the corresponding collapsed representation
  642. bool use_collapsed = false;
  643. for (auto & ucat : k_ucat_enum) {
  644. if (std::string::npos != regex_expr.find(ucat.first)) {
  645. use_collapsed = true;
  646. break;
  647. }
  648. }
  649. if (use_collapsed) {
  650. // sanity-check that the original regex does not contain any non-ASCII characters
  651. const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
  652. for (size_t i = 0; i < cpts_regex.size(); ++i) {
  653. if (cpts_regex[i] >= 128) {
  654. throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
  655. }
  656. }
  657. // generate a collapsed representation of the regex
  658. std::string regex_expr_collapsed;
  659. // track if we are inside [], because nested [] are not allowed
  660. bool inside = false;
  661. for (size_t i = 0; i < regex_expr.size(); ++i) {
  662. if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) {
  663. regex_expr_collapsed += '[';
  664. inside = true;
  665. continue;
  666. }
  667. if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') {
  668. regex_expr_collapsed += ']';
  669. inside = false;
  670. continue;
  671. }
  672. if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
  673. regex_expr[i + 1] == 'p' &&
  674. regex_expr[i + 2] == '{' &&
  675. regex_expr[i + 4] == '}') {
  676. const std::string pat = regex_expr.substr(i, 5);
  677. if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
  678. if (!inside) {
  679. regex_expr_collapsed += '[';
  680. }
  681. regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
  682. regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
  683. if (!inside) {
  684. regex_expr_collapsed += ']';
  685. }
  686. i += 4;
  687. continue;
  688. }
  689. }
  690. regex_expr_collapsed += regex_expr[i];
  691. }
  692. //printf("text_collapsed: %s\n", text_collapsed.c_str());
  693. //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str());
  694. bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
  695. } else {
  696. // no unicode category used, we can use std::wregex directly
  697. const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
  698. // std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
  699. std::wstring wtext(cpts.begin(), cpts.end());
  700. for (size_t i = 0; i < wtext.size(); ++i) {
  701. if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
  702. wtext[i] = 0x0B;
  703. }
  704. }
  705. //printf("text: %s\n", text.c_str());
  706. //printf("regex_expr: %s\n", regex_expr.c_str());
  707. bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
  708. }
  709. } catch (std::regex_error & e) {
  710. fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str());
  711. fprintf(stderr, "Regex error: %s\n", e.what());
  712. throw std::runtime_error("Failed to process regex");
  713. }
  714. }
  715. std::vector<std::string> bpe_words;
  716. bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size
  717. size_t start = 0;
  718. for (size_t & offset : bpe_offsets) {
  719. bpe_words.emplace_back();
  720. for (size_t i = start; i < start + offset; ++i) {
  721. bpe_words.back() += unicode_cpt_to_utf8(cpts[i]);
  722. }
  723. start += offset;
  724. }
  725. return unicode_byte_encoding_process(bpe_words);
  726. }