| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- #include "common.h"
- #include "llama.h"
- #include "ggml.h"
- #include "pca.hpp"
- #include "mean.hpp"
- #ifdef GGML_USE_CUDA
- #include "ggml-cuda.h"
- #endif
- #ifdef GGML_USE_METAL
- #include "ggml-metal.h"
- #endif
- #include <cstdio>
- #include <string>
- #include <tuple>
- #include <vector>
- #include <algorithm>
- #include <iostream>
- #include <fstream>
- #include <climits>
- //////////////////////////////////////////////////
- // utils
- template <class Iter>
- static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
- std::string ret;
- for (; begin != end; ++begin) {
- ret += llama_token_to_piece(ctx, *begin);
- }
- return ret;
- }
- static void print_usage(int argc, char ** argv, const gpt_params & params) {
- gpt_params_print_usage(argc, argv, params);
- printf("\nexample usage:\n");
- printf("\n CPU only: %s -m ./llama-3.Q4_K_M.gguf\n", argv[0]);
- printf("\n with GPU: %s -m ./llama-3.Q4_K_M.gguf -ngl 99\n", argv[0]);
- printf("\n advanced: %s -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100\n", argv[0]);
- printf("\n using mean: %s -m ./llama-3.Q4_K_M.gguf --method mean\n", argv[0]);
- printf("\n");
- }
- //////////////////////////////////////////////////
- // cb_eval is reused for each pair of positive - negative prompt
- struct callback_data {
- ggml_context * ctx_ggml = nullptr; // holds v_pos, v_neg, v_diff_filtered
- int n_layers = 0;
- int n_tokens = 0;
- bool is_eval_pos = true;
- // each element of the vector correspond to one layer
- std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
- std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
- std::vector<struct ggml_tensor *> v_diff_filtered; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
- // save a tensor into either v_pos or v_neg (decided by is_eval_pos)
- void save_tensor_for_layer(struct ggml_tensor * t) {
- GGML_ASSERT(t->type == GGML_TYPE_F32);
- if (ctx_ggml == nullptr) {
- // alloc a new ctx_ggml if needed
- struct ggml_init_params params_ggml = {
- /*.mem_size =*/ ggml_tensor_overhead() * n_layers * 3u,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx_ggml = ggml_init(params_ggml);
- }
- // copy tensor data
- auto n_bytes = ggml_nbytes(t);
- struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
- t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
- ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
- ggml_set_name(t_layer, ggml_get_name(t));
- //print_debug_tensor(t_layer);
- if (is_eval_pos) {
- v_pos.push_back(t_layer);
- } else {
- v_neg.push_back(t_layer);
- }
- }
- // calculate diff (v_pos - v_neg) and place the result back to v_pos
- // all zero rows in the diff tensor will also be removed
- // NOTE: final layer is ignored. we only have (n_layers - 1) to process
- std::vector<struct ggml_tensor *> calc_diff() {
- for (float il = 0; il < v_pos.size(); il++) {
- float * a = (float *) v_pos[il]->data;
- float * b = (float *) v_neg[il]->data;
- size_t n_elem = ggml_nelements(v_pos[il]);
- for (size_t j = 0; j < n_elem; j++) {
- a[j] -= b[j];
- }
- //print_debug_tensor(v_pos[i]);
- auto diff_filtered = filter_nonzero_rows(v_pos[il]);
- v_diff_filtered.push_back(diff_filtered);
- }
- return v_diff_filtered; // for convinient, we return the result std::vector
- }
- // delete zero rows from a given 2D tensor
- struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
- //printf("filter_nonzero_rows\n");
- auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
- // check if given row containing all zero elements
- int n_cols = t->ne[0]; // hint: should be equal to n_embd
- for (int col = 0; col < n_cols; ++col) {
- if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
- return false;
- }
- }
- return true;
- };
- std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
- for (int i_row = 0; i_row < a->ne[1]; i_row++) {
- if (!is_row_all_zeros(a, i_row, 1e-6)) {
- rows_to_copy.push_back(i_row);
- }
- }
- // get "n_nonzero_rows" for the output "diff_filtered"
- int n_nonzero_rows = rows_to_copy.size();
- //printf("n_nonzero_rows: %d\n", n_nonzero_rows);
- int n_embd = a->ne[0];
- GGML_ASSERT(n_nonzero_rows > 0);
- // diff_filtered: [n_embd, n_nonzero_rows]
- struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
- ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
- ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
- diff_filtered->data = malloc(ggml_nbytes(diff_filtered));
- // copy non-zero rows
- for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
- int src_row = rows_to_copy[dest_row];
- for (int i = 0; i < n_embd; i++) {
- float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
- ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
- }
- }
- //print_debug_tensor(diff_filtered);
- return diff_filtered;
- }
- // we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
- void reset() {
- for (auto ptr : v_pos) free(ptr->data);
- for (auto ptr : v_neg) free(ptr->data);
- for (auto ptr : v_diff_filtered) free(ptr->data);
- v_pos.clear();
- v_neg.clear();
- v_diff_filtered.clear();
- if (ctx_ggml) {
- ggml_free(ctx_ggml);
- }
- ctx_ggml = nullptr;
- }
- };
- /**
- * process_ctx is used to store the ggml context for pre-post processing the diff vectors
- * in short, input => v_diff and output => v_final
- */
- struct train_context {
- ggml_context * ctx_ggml;
- int n_embd;
- int n_layers;
- /* pair of prompts to be used for generating final vector */
- std::vector<std::string> positive_entries;
- std::vector<std::string> negative_entries;
- // each element of the vector correspond to one layer
- // NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
- // NOTE (2): v_diff is transposed from v_diff_tmp
- std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
- std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
- // to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
- // v_diff_tmp will get converted unto v_diff later on
- std::vector<std::vector<uint8_t>> v_diff_tmp;
- train_context(int n_embd_, int n_layers_) {
- n_embd = n_embd_;
- n_layers = n_layers_;
- struct ggml_init_params params_ggml = {
- /*.mem_size =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx_ggml = ggml_init(params_ggml);
- for (int il = 0; il < n_layers - 1; il++) {
- std::vector<uint8_t> empty;
- v_diff_tmp.push_back(empty);
- auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
- t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
- v_final.push_back(t);
- }
- }
- // add new rows into existing tensor in v_diff_tmp
- void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
- GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
- for (int il = 0; il < n_layers - 1; il++) {
- auto t = diff_filtered[il];
- auto & diff_tmp = v_diff_tmp[il];
- size_t curr_size = diff_tmp.size();
- diff_tmp.resize(curr_size + ggml_nbytes(t));
- memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
- }
- }
- // build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
- // TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
- void build_v_diff(bool transpose) {
- printf("build_v_diff\n");
- for (int il = 0; il < n_layers - 1; il++) {
- auto & diff_tmp = v_diff_tmp[il];
- int n_elem = diff_tmp.size() / sizeof(float);
- GGML_ASSERT(n_elem % n_embd == 0);
- int n_rows = n_elem / n_embd;
- struct ggml_tensor * diff = transpose
- ? ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd)
- : ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_embd, n_rows);
- ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
- diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
- if (transpose) {
- // copy data & transpose
- float * arr = (float *) diff_tmp.data();
- for (int ir = 0; ir < n_rows; ++ir) {
- for (int ic = 0; ic < n_embd; ++ic) {
- float f = arr[ir*n_embd + ic];
- ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
- }
- }
- } else {
- // only copy
- memcpy(diff->data, diff_tmp.data(), ggml_nbytes(diff));
- }
- v_diff.push_back(diff);
- print_debug_tensor(diff);
- // free memory of diff_tmp
- diff_tmp.resize(0);
- }
- }
- ~train_context() {
- for (auto ptr : v_final) free(ptr->data);
- for (auto ptr : v_diff) free(ptr->data);
- // no need to free v_diff_tmp, since we didn't use malloc
- ggml_free(ctx_ggml);
- }
- };
- struct tokenized_prompt {
- std::vector<llama_token> tokens_pos;
- std::vector<llama_token> tokens_neg;
- size_t max_seq_len;
- tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
- const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
- tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true);
- tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true);
- max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
- padding_seq(ctx, tokens_pos, max_seq_len);
- padding_seq(ctx, tokens_neg, max_seq_len);
- }
- void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
- // TODO: customize padding token
- std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
- llama_token pad_tok = pad_tokens.back();
- while (tokens.size() < len) {
- tokens.push_back(pad_tok);
- }
- }
- };
- //////////////////////////////////////////////////
- template <typename T>
- static std::string to_string(const T & val) {
- std::stringstream ss;
- ss << val;
- return ss.str();
- }
- static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
- std::vector<std::string> output;
- std::ifstream file(path);
- if (!file.is_open()) {
- fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
- exit(1);
- }
- std::string line;
- while (std::getline(file, line)) {
- bool is_skip = skip_empty_lines && line.empty();
- if (!is_skip) {
- string_process_escapes(line);
- output.push_back(line);
- }
- }
- file.close();
- return output;
- }
- //////////////////////////////////////////////////
- static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
- auto * cb_data = (callback_data *) user_data;
- static const char * l_out_name = "l_out";
- const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;
- if (ask) {
- return is_l_out;
- }
- if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
- return true;
- }
- // save the tensor to current context
- cb_data->save_tensor_for_layer(t);
- return true;
- }
- static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
- llama_kv_cache_clear(ctx);
- if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return false;
- }
- return true;
- }
- static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
- struct gguf_context * ctx = gguf_init_empty();
- const std::string arch = "controlvector";
- gguf_set_val_str(ctx, "general.architecture", arch.c_str());
- gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
- gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());
- for (size_t i = 0; i < v_ctrl.size(); ++i) {
- gguf_add_tensor(ctx, v_ctrl[i]);
- print_debug_tensor(v_ctrl[i]);
- printf("Added tensor: %s\n", v_ctrl[i]->name);
- }
- printf("%s: writing file...\n", __func__);
- gguf_write_to_file(ctx, fname.c_str(), false);
- printf("%s: wrote file '%s'\n", __func__, fname.c_str());
- gguf_free(ctx);
- }
- /**
- * Load prompt files and completion file.
- * Then format each pair of prompt + completion to make an entry.
- */
- static int prepare_entries(gpt_params & params, train_context & ctx_train) {
- // load prompts
- std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
- std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
- if (positive_prompts.size() != negative_prompts.size()) {
- fprintf(stderr, "number of positive and negative prompts must be equal\n");
- return 1;
- }
- if (positive_prompts.empty()) {
- fprintf(stderr, "must provide at least one prompt pair\n");
- return 1;
- }
- ctx_train.positive_entries = positive_prompts;
- ctx_train.negative_entries = negative_prompts;
- return 0;
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- if (!gpt_params_parse(argc, argv, params)) {
- print_usage(argc, argv, params);
- return 1;
- }
- if (params.n_pca_iterations % params.n_pca_batch != 0) {
- fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
- return 1;
- }
- callback_data cb_data;
- // pass the callback to the backend scheduler
- // it will be executed for each node during the graph computation
- params.cb_eval = cb_eval;
- params.cb_eval_user_data = &cb_data;
- params.warmup = false;
- print_build_info();
- llama_backend_init();
- llama_numa_init(params.numa);
- // load the model to get hparams
- llama_model * model;
- llama_context * ctx;
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- // int n_ctx = llama_n_ctx(ctx);
- int n_layers = llama_n_layer(model);
- int n_embd = llama_n_embd(model);
- // get model hint param (a.k.a model arch name)
- char model_hint[128];
- llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
- // init train_context
- train_context ctx_train(n_embd, n_layers);
- // load and prepare entries for training
- prepare_entries(params, ctx_train);
- // we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
- std::vector<tokenized_prompt> tokenized_prompts;
- size_t n_total_tokens = 0;
- for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
- tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
- n_total_tokens += 2 * t.max_seq_len;
- tokenized_prompts.push_back(std::move(t));
- }
- std::cout << "n_total_tokens: " << n_total_tokens << std::endl;
- for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
- bool success = false;
- tokenized_prompt t = tokenized_prompts[i];
- cb_data.n_layers = n_layers;
- cb_data.n_tokens = t.max_seq_len;
- printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
- (int) i+1, (int) ctx_train.positive_entries.size(),
- tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
- tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
- (int) t.max_seq_len);
- cb_data.is_eval_pos = true;
- success = get_hidden_layers(ctx, t.tokens_pos);
- if (!success) break;
- cb_data.is_eval_pos = false;
- success = get_hidden_layers(ctx, t.tokens_neg);
- if (!success) break;
- // calculate diff and remove all zero rows
- auto v_diff_filtered = cb_data.calc_diff();
- // save & concat the filtered v_diff to ctx_train
- ctx_train.concat_diff_tmp(v_diff_filtered);
- // reset for next iteration
- cb_data.reset();
- }
- // done with the model, we can now free it to make gain some memory
- printf("Done evaluate prompts, unload model...\n");
- llama_free(ctx);
- llama_free_model(model);
- bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;
- // prepare ctx_train for PCA
- ctx_train.build_v_diff(use_pca);
- if (use_pca) {
- // run PCA
- PCA::pca_params pca_params;
- pca_params.n_threads = params.n_threads;
- pca_params.n_batch = params.n_pca_batch;
- pca_params.n_iterations = params.n_pca_iterations;
- PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
- } else {
- // run mean
- mean::run(ctx_train.v_diff, ctx_train.v_final);
- }
- // write output vectors to gguf
- export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
- llama_backend_free();
- return 0;
- }
|