common.cpp 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <algorithm>
  4. #include <cassert>
  5. #include <cmath>
  6. #include <cstring>
  7. #include <ctime>
  8. #include <fstream>
  9. #include <iterator>
  10. #include <iostream>
  11. #include <regex>
  12. #include <sstream>
  13. #include <string>
  14. #include <unordered_map>
  15. #include <unordered_set>
  16. #include <vector>
  17. #include <cinttypes>
  18. #if defined(__APPLE__) && defined(__MACH__)
  19. #include <sys/types.h>
  20. #include <sys/sysctl.h>
  21. #endif
  22. #if defined(_WIN32)
  23. #define WIN32_LEAN_AND_MEAN
  24. #ifndef NOMINMAX
  25. # define NOMINMAX
  26. #endif
  27. #include <codecvt>
  28. #include <locale>
  29. #include <windows.h>
  30. #include <fcntl.h>
  31. #include <io.h>
  32. #else
  33. #include <sys/ioctl.h>
  34. #include <sys/stat.h>
  35. #include <unistd.h>
  36. #endif
  37. #if defined(_MSC_VER)
  38. #pragma warning(disable: 4244 4267) // possible loss of data
  39. #endif
  40. int32_t get_num_physical_cores() {
  41. #ifdef __linux__
  42. // enumerate the set of thread siblings, num entries is num cores
  43. std::unordered_set<std::string> siblings;
  44. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  45. std::ifstream thread_siblings("/sys/devices/system/cpu"
  46. + std::to_string(cpu) + "/topology/thread_siblings");
  47. if (!thread_siblings.is_open()) {
  48. break; // no more cpus
  49. }
  50. std::string line;
  51. if (std::getline(thread_siblings, line)) {
  52. siblings.insert(line);
  53. }
  54. }
  55. if (!siblings.empty()) {
  56. return static_cast<int32_t>(siblings.size());
  57. }
  58. #elif defined(__APPLE__) && defined(__MACH__)
  59. int32_t num_physical_cores;
  60. size_t len = sizeof(num_physical_cores);
  61. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  62. if (result == 0) {
  63. return num_physical_cores;
  64. }
  65. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  66. if (result == 0) {
  67. return num_physical_cores;
  68. }
  69. #elif defined(_WIN32)
  70. //TODO: Implement
  71. #endif
  72. unsigned int n_threads = std::thread::hardware_concurrency();
  73. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  74. }
  75. void process_escapes(std::string& input) {
  76. std::size_t input_len = input.length();
  77. std::size_t output_idx = 0;
  78. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  79. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  80. switch (input[++input_idx]) {
  81. case 'n': input[output_idx++] = '\n'; break;
  82. case 'r': input[output_idx++] = '\r'; break;
  83. case 't': input[output_idx++] = '\t'; break;
  84. case '\'': input[output_idx++] = '\''; break;
  85. case '\"': input[output_idx++] = '\"'; break;
  86. case '\\': input[output_idx++] = '\\'; break;
  87. case 'x':
  88. // Handle \x12, etc
  89. if (input_idx + 2 < input_len) {
  90. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  91. char *err_p = nullptr;
  92. const long val = std::strtol(x, &err_p, 16);
  93. if (err_p == x + 2) {
  94. input_idx += 2;
  95. input[output_idx++] = char(val);
  96. break;
  97. }
  98. }
  99. // fall through
  100. default: input[output_idx++] = '\\';
  101. input[output_idx++] = input[input_idx]; break;
  102. }
  103. } else {
  104. input[output_idx++] = input[input_idx];
  105. }
  106. }
  107. input.resize(output_idx);
  108. }
  109. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  110. bool result = true;
  111. try {
  112. if (!gpt_params_parse_ex(argc, argv, params)) {
  113. gpt_print_usage(argc, argv, gpt_params());
  114. exit(0);
  115. }
  116. }
  117. catch (const std::invalid_argument & ex) {
  118. fprintf(stderr, "%s\n", ex.what());
  119. gpt_print_usage(argc, argv, gpt_params());
  120. exit(1);
  121. }
  122. return result;
  123. }
  124. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
  125. bool invalid_param = false;
  126. std::string arg;
  127. const std::string arg_prefix = "--";
  128. llama_sampling_params & sparams = params.sparams;
  129. for (int i = 1; i < argc; i++) {
  130. arg = argv[i];
  131. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  132. std::replace(arg.begin(), arg.end(), '_', '-');
  133. }
  134. if (arg == "-s" || arg == "--seed") {
  135. if (++i >= argc) {
  136. invalid_param = true;
  137. break;
  138. }
  139. params.seed = std::stoul(argv[i]);
  140. } else if (arg == "-t" || arg == "--threads") {
  141. if (++i >= argc) {
  142. invalid_param = true;
  143. break;
  144. }
  145. params.n_threads = std::stoi(argv[i]);
  146. if (params.n_threads <= 0) {
  147. params.n_threads = std::thread::hardware_concurrency();
  148. }
  149. } else if (arg == "-tb" || arg == "--threads-batch") {
  150. if (++i >= argc) {
  151. invalid_param = true;
  152. break;
  153. }
  154. params.n_threads_batch = std::stoi(argv[i]);
  155. if (params.n_threads_batch <= 0) {
  156. params.n_threads_batch = std::thread::hardware_concurrency();
  157. }
  158. } else if (arg == "-td" || arg == "--threads-draft") {
  159. if (++i >= argc) {
  160. invalid_param = true;
  161. break;
  162. }
  163. params.n_threads_draft = std::stoi(argv[i]);
  164. if (params.n_threads_draft <= 0) {
  165. params.n_threads_draft = std::thread::hardware_concurrency();
  166. }
  167. } else if (arg == "-tbd" || arg == "--threads-batch-draft") {
  168. if (++i >= argc) {
  169. invalid_param = true;
  170. break;
  171. }
  172. params.n_threads_batch_draft = std::stoi(argv[i]);
  173. if (params.n_threads_batch_draft <= 0) {
  174. params.n_threads_batch_draft = std::thread::hardware_concurrency();
  175. }
  176. } else if (arg == "-p" || arg == "--prompt") {
  177. if (++i >= argc) {
  178. invalid_param = true;
  179. break;
  180. }
  181. params.prompt = argv[i];
  182. } else if (arg == "-e" || arg == "--escape") {
  183. params.escape = true;
  184. } else if (arg == "--prompt-cache") {
  185. if (++i >= argc) {
  186. invalid_param = true;
  187. break;
  188. }
  189. params.path_prompt_cache = argv[i];
  190. } else if (arg == "--prompt-cache-all") {
  191. params.prompt_cache_all = true;
  192. } else if (arg == "--prompt-cache-ro") {
  193. params.prompt_cache_ro = true;
  194. } else if (arg == "-f" || arg == "--file") {
  195. if (++i >= argc) {
  196. invalid_param = true;
  197. break;
  198. }
  199. std::ifstream file(argv[i]);
  200. if (!file) {
  201. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  202. invalid_param = true;
  203. break;
  204. }
  205. // store the external file name in params
  206. params.prompt_file = argv[i];
  207. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  208. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  209. params.prompt.pop_back();
  210. }
  211. } else if (arg == "-n" || arg == "--n-predict") {
  212. if (++i >= argc) {
  213. invalid_param = true;
  214. break;
  215. }
  216. params.n_predict = std::stoi(argv[i]);
  217. } else if (arg == "--top-k") {
  218. if (++i >= argc) {
  219. invalid_param = true;
  220. break;
  221. }
  222. sparams.top_k = std::stoi(argv[i]);
  223. } else if (arg == "-c" || arg == "--ctx-size") {
  224. if (++i >= argc) {
  225. invalid_param = true;
  226. break;
  227. }
  228. params.n_ctx = std::stoi(argv[i]);
  229. } else if (arg == "--grp-attn-n" || arg == "-gan") {
  230. if (++i >= argc) {
  231. invalid_param = true;
  232. break;
  233. }
  234. params.grp_attn_n = std::stoi(argv[i]);
  235. } else if (arg == "--grp-attn-w" || arg == "-gaw") {
  236. if (++i >= argc) {
  237. invalid_param = true;
  238. break;
  239. }
  240. params.grp_attn_w = std::stoi(argv[i]);
  241. } else if (arg == "--rope-freq-base") {
  242. if (++i >= argc) {
  243. invalid_param = true;
  244. break;
  245. }
  246. params.rope_freq_base = std::stof(argv[i]);
  247. } else if (arg == "--rope-freq-scale") {
  248. if (++i >= argc) {
  249. invalid_param = true;
  250. break;
  251. }
  252. params.rope_freq_scale = std::stof(argv[i]);
  253. } else if (arg == "--rope-scaling") {
  254. if (++i >= argc) {
  255. invalid_param = true;
  256. break;
  257. }
  258. std::string value(argv[i]);
  259. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
  260. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
  261. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
  262. else { invalid_param = true; break; }
  263. } else if (arg == "--rope-scale") {
  264. if (++i >= argc) {
  265. invalid_param = true;
  266. break;
  267. }
  268. params.rope_freq_scale = 1.0f/std::stof(argv[i]);
  269. } else if (arg == "--yarn-orig-ctx") {
  270. if (++i >= argc) {
  271. invalid_param = true;
  272. break;
  273. }
  274. params.yarn_orig_ctx = std::stoi(argv[i]);
  275. } else if (arg == "--yarn-ext-factor") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. break;
  279. }
  280. params.yarn_ext_factor = std::stof(argv[i]);
  281. } else if (arg == "--yarn-attn-factor") {
  282. if (++i >= argc) {
  283. invalid_param = true;
  284. break;
  285. }
  286. params.yarn_attn_factor = std::stof(argv[i]);
  287. } else if (arg == "--yarn-beta-fast") {
  288. if (++i >= argc) {
  289. invalid_param = true;
  290. break;
  291. }
  292. params.yarn_beta_fast = std::stof(argv[i]);
  293. } else if (arg == "--yarn-beta-slow") {
  294. if (++i >= argc) {
  295. invalid_param = true;
  296. break;
  297. }
  298. params.yarn_beta_slow = std::stof(argv[i]);
  299. } else if (arg == "--samplers") {
  300. if (++i >= argc) {
  301. invalid_param = true;
  302. break;
  303. }
  304. sparams.samplers_sequence = parse_samplers_input(argv[i]);
  305. } else if (arg == "--sampling-seq") {
  306. if (++i >= argc) {
  307. invalid_param = true;
  308. break;
  309. }
  310. sparams.samplers_sequence = argv[i];
  311. } else if (arg == "--top-p") {
  312. if (++i >= argc) {
  313. invalid_param = true;
  314. break;
  315. }
  316. sparams.top_p = std::stof(argv[i]);
  317. } else if (arg == "--min-p") {
  318. if (++i >= argc) {
  319. invalid_param = true;
  320. break;
  321. }
  322. sparams.min_p = std::stof(argv[i]);
  323. } else if (arg == "--temp") {
  324. if (++i >= argc) {
  325. invalid_param = true;
  326. break;
  327. }
  328. sparams.temp = std::stof(argv[i]);
  329. sparams.temp = std::max(sparams.temp, 0.0f);
  330. } else if (arg == "--tfs") {
  331. if (++i >= argc) {
  332. invalid_param = true;
  333. break;
  334. }
  335. sparams.tfs_z = std::stof(argv[i]);
  336. } else if (arg == "--typical") {
  337. if (++i >= argc) {
  338. invalid_param = true;
  339. break;
  340. }
  341. sparams.typical_p = std::stof(argv[i]);
  342. } else if (arg == "--repeat-last-n") {
  343. if (++i >= argc) {
  344. invalid_param = true;
  345. break;
  346. }
  347. sparams.penalty_last_n = std::stoi(argv[i]);
  348. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  349. } else if (arg == "--repeat-penalty") {
  350. if (++i >= argc) {
  351. invalid_param = true;
  352. break;
  353. }
  354. sparams.penalty_repeat = std::stof(argv[i]);
  355. } else if (arg == "--frequency-penalty") {
  356. if (++i >= argc) {
  357. invalid_param = true;
  358. break;
  359. }
  360. sparams.penalty_freq = std::stof(argv[i]);
  361. } else if (arg == "--presence-penalty") {
  362. if (++i >= argc) {
  363. invalid_param = true;
  364. break;
  365. }
  366. sparams.penalty_present = std::stof(argv[i]);
  367. } else if (arg == "--mirostat") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. break;
  371. }
  372. sparams.mirostat = std::stoi(argv[i]);
  373. } else if (arg == "--mirostat-lr") {
  374. if (++i >= argc) {
  375. invalid_param = true;
  376. break;
  377. }
  378. sparams.mirostat_eta = std::stof(argv[i]);
  379. } else if (arg == "--mirostat-ent") {
  380. if (++i >= argc) {
  381. invalid_param = true;
  382. break;
  383. }
  384. sparams.mirostat_tau = std::stof(argv[i]);
  385. } else if (arg == "--cfg-negative-prompt") {
  386. if (++i >= argc) {
  387. invalid_param = true;
  388. break;
  389. }
  390. sparams.cfg_negative_prompt = argv[i];
  391. } else if (arg == "--cfg-negative-prompt-file") {
  392. if (++i >= argc) {
  393. invalid_param = true;
  394. break;
  395. }
  396. std::ifstream file(argv[i]);
  397. if (!file) {
  398. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  399. invalid_param = true;
  400. break;
  401. }
  402. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  403. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  404. sparams.cfg_negative_prompt.pop_back();
  405. }
  406. } else if (arg == "--cfg-scale") {
  407. if (++i >= argc) {
  408. invalid_param = true;
  409. break;
  410. }
  411. sparams.cfg_scale = std::stof(argv[i]);
  412. } else if (arg == "-b" || arg == "--batch-size") {
  413. if (++i >= argc) {
  414. invalid_param = true;
  415. break;
  416. }
  417. params.n_batch = std::stoi(argv[i]);
  418. } else if (arg == "--keep") {
  419. if (++i >= argc) {
  420. invalid_param = true;
  421. break;
  422. }
  423. params.n_keep = std::stoi(argv[i]);
  424. } else if (arg == "--draft") {
  425. if (++i >= argc) {
  426. invalid_param = true;
  427. break;
  428. }
  429. params.n_draft = std::stoi(argv[i]);
  430. } else if (arg == "--chunks") {
  431. if (++i >= argc) {
  432. invalid_param = true;
  433. break;
  434. }
  435. params.n_chunks = std::stoi(argv[i]);
  436. } else if (arg == "-np" || arg == "--parallel") {
  437. if (++i >= argc) {
  438. invalid_param = true;
  439. break;
  440. }
  441. params.n_parallel = std::stoi(argv[i]);
  442. } else if (arg == "-ns" || arg == "--sequences") {
  443. if (++i >= argc) {
  444. invalid_param = true;
  445. break;
  446. }
  447. params.n_sequences = std::stoi(argv[i]);
  448. } else if (arg == "--p-accept" || arg == "-pa") {
  449. if (++i >= argc) {
  450. invalid_param = true;
  451. break;
  452. }
  453. params.p_accept = std::stof(argv[i]);
  454. } else if (arg == "--p-split" || arg == "-ps") {
  455. if (++i >= argc) {
  456. invalid_param = true;
  457. break;
  458. }
  459. params.p_split = std::stof(argv[i]);
  460. } else if (arg == "-m" || arg == "--model") {
  461. if (++i >= argc) {
  462. invalid_param = true;
  463. break;
  464. }
  465. params.model = argv[i];
  466. } else if (arg == "-md" || arg == "--model-draft") {
  467. if (++i >= argc) {
  468. invalid_param = true;
  469. break;
  470. }
  471. params.model_draft = argv[i];
  472. } else if (arg == "-a" || arg == "--alias") {
  473. if (++i >= argc) {
  474. invalid_param = true;
  475. break;
  476. }
  477. params.model_alias = argv[i];
  478. } else if (arg == "--lora") {
  479. if (++i >= argc) {
  480. invalid_param = true;
  481. break;
  482. }
  483. params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
  484. params.use_mmap = false;
  485. } else if (arg == "--lora-scaled") {
  486. if (++i >= argc) {
  487. invalid_param = true;
  488. break;
  489. }
  490. const char * lora_adapter = argv[i];
  491. if (++i >= argc) {
  492. invalid_param = true;
  493. break;
  494. }
  495. params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
  496. params.use_mmap = false;
  497. } else if (arg == "--lora-base") {
  498. if (++i >= argc) {
  499. invalid_param = true;
  500. break;
  501. }
  502. params.lora_base = argv[i];
  503. } else if (arg == "--mmproj") {
  504. if (++i >= argc) {
  505. invalid_param = true;
  506. break;
  507. }
  508. params.mmproj = argv[i];
  509. } else if (arg == "--image") {
  510. if (++i >= argc) {
  511. invalid_param = true;
  512. break;
  513. }
  514. params.image = argv[i];
  515. } else if (arg == "-i" || arg == "--interactive") {
  516. params.interactive = true;
  517. } else if (arg == "--embedding") {
  518. params.embedding = true;
  519. } else if (arg == "--interactive-first") {
  520. params.interactive_first = true;
  521. } else if (arg == "-ins" || arg == "--instruct") {
  522. params.instruct = true;
  523. } else if (arg == "-cml" || arg == "--chatml") {
  524. params.chatml = true;
  525. } else if (arg == "--infill") {
  526. params.infill = true;
  527. } else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
  528. params.dump_kv_cache = true;
  529. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  530. params.no_kv_offload = true;
  531. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  532. params.cache_type_k = argv[++i];
  533. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  534. params.cache_type_v = argv[++i];
  535. } else if (arg == "--multiline-input") {
  536. params.multiline_input = true;
  537. } else if (arg == "--simple-io") {
  538. params.simple_io = true;
  539. } else if (arg == "-cb" || arg == "--cont-batching") {
  540. params.cont_batching = true;
  541. } else if (arg == "--color") {
  542. params.use_color = true;
  543. } else if (arg == "--mlock") {
  544. params.use_mlock = true;
  545. } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  546. if (++i >= argc) {
  547. invalid_param = true;
  548. break;
  549. }
  550. params.n_gpu_layers = std::stoi(argv[i]);
  551. #ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
  552. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  553. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  554. #endif
  555. } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
  556. if (++i >= argc) {
  557. invalid_param = true;
  558. break;
  559. }
  560. params.n_gpu_layers_draft = std::stoi(argv[i]);
  561. #ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
  562. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
  563. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  564. #endif
  565. } else if (arg == "--main-gpu" || arg == "-mg") {
  566. if (++i >= argc) {
  567. invalid_param = true;
  568. break;
  569. }
  570. params.main_gpu = std::stoi(argv[i]);
  571. #ifndef GGML_USE_CUBLAS
  572. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
  573. #endif // GGML_USE_CUBLAS
  574. } else if (arg == "--split-mode" || arg == "-sm") {
  575. if (++i >= argc) {
  576. invalid_param = true;
  577. break;
  578. }
  579. std::string arg_next = argv[i];
  580. if (arg_next == "none") {
  581. params.split_mode = LLAMA_SPLIT_NONE;
  582. } else if (arg_next == "layer") {
  583. params.split_mode = LLAMA_SPLIT_LAYER;
  584. } else if (arg_next == "row") {
  585. params.split_mode = LLAMA_SPLIT_ROW;
  586. } else {
  587. invalid_param = true;
  588. break;
  589. }
  590. #ifndef GGML_USE_CUBLAS
  591. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
  592. #endif // GGML_USE_CUBLAS
  593. } else if (arg == "--tensor-split" || arg == "-ts") {
  594. if (++i >= argc) {
  595. invalid_param = true;
  596. break;
  597. }
  598. std::string arg_next = argv[i];
  599. // split string by , and /
  600. const std::regex regex{R"([,/]+)"};
  601. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  602. std::vector<std::string> split_arg{it, {}};
  603. if (split_arg.size() >= LLAMA_MAX_DEVICES) {
  604. invalid_param = true;
  605. break;
  606. }
  607. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  608. if (i < split_arg.size()) {
  609. params.tensor_split[i] = std::stof(split_arg[i]);
  610. } else {
  611. params.tensor_split[i] = 0.0f;
  612. }
  613. }
  614. #ifndef GGML_USE_CUBLAS
  615. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
  616. #endif // GGML_USE_CUBLAS
  617. } else if (arg == "--no-mmap") {
  618. params.use_mmap = false;
  619. } else if (arg == "--numa") {
  620. params.numa = true;
  621. } else if (arg == "--verbose-prompt") {
  622. params.verbose_prompt = true;
  623. } else if (arg == "--no-display-prompt") {
  624. params.display_prompt = false;
  625. } else if (arg == "-r" || arg == "--reverse-prompt") {
  626. if (++i >= argc) {
  627. invalid_param = true;
  628. break;
  629. }
  630. params.antiprompt.push_back(argv[i]);
  631. } else if (arg == "-ld" || arg == "--logdir") {
  632. if (++i >= argc) {
  633. invalid_param = true;
  634. break;
  635. }
  636. params.logdir = argv[i];
  637. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  638. params.logdir += DIRECTORY_SEPARATOR;
  639. }
  640. } else if (arg == "--perplexity" || arg == "--all-logits") {
  641. params.logits_all = true;
  642. } else if (arg == "--ppl-stride") {
  643. if (++i >= argc) {
  644. invalid_param = true;
  645. break;
  646. }
  647. params.ppl_stride = std::stoi(argv[i]);
  648. } else if (arg == "-ptc" || arg == "--print-token-count") {
  649. if (++i >= argc) {
  650. invalid_param = true;
  651. break;
  652. }
  653. params.n_print = std::stoi(argv[i]);
  654. } else if (arg == "--ppl-output-type") {
  655. if (++i >= argc) {
  656. invalid_param = true;
  657. break;
  658. }
  659. params.ppl_output_type = std::stoi(argv[i]);
  660. } else if (arg == "--hellaswag") {
  661. params.hellaswag = true;
  662. } else if (arg == "--hellaswag-tasks") {
  663. if (++i >= argc) {
  664. invalid_param = true;
  665. break;
  666. }
  667. params.hellaswag_tasks = std::stoi(argv[i]);
  668. } else if (arg == "--ignore-eos") {
  669. params.ignore_eos = true;
  670. } else if (arg == "--no-penalize-nl") {
  671. sparams.penalize_nl = false;
  672. } else if (arg == "-l" || arg == "--logit-bias") {
  673. if (++i >= argc) {
  674. invalid_param = true;
  675. break;
  676. }
  677. std::stringstream ss(argv[i]);
  678. llama_token key;
  679. char sign;
  680. std::string value_str;
  681. try {
  682. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  683. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  684. } else {
  685. throw std::exception();
  686. }
  687. } catch (const std::exception&) {
  688. invalid_param = true;
  689. break;
  690. }
  691. } else if (arg == "-h" || arg == "--help") {
  692. return false;
  693. } else if (arg == "--version") {
  694. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  695. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  696. exit(0);
  697. } else if (arg == "--random-prompt") {
  698. params.random_prompt = true;
  699. } else if (arg == "--in-prefix-bos") {
  700. params.input_prefix_bos = true;
  701. } else if (arg == "--in-prefix") {
  702. if (++i >= argc) {
  703. invalid_param = true;
  704. break;
  705. }
  706. params.input_prefix = argv[i];
  707. } else if (arg == "--in-suffix") {
  708. if (++i >= argc) {
  709. invalid_param = true;
  710. break;
  711. }
  712. params.input_suffix = argv[i];
  713. } else if (arg == "--grammar") {
  714. if (++i >= argc) {
  715. invalid_param = true;
  716. break;
  717. }
  718. sparams.grammar = argv[i];
  719. } else if (arg == "--grammar-file") {
  720. if (++i >= argc) {
  721. invalid_param = true;
  722. break;
  723. }
  724. std::ifstream file(argv[i]);
  725. if (!file) {
  726. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  727. invalid_param = true;
  728. break;
  729. }
  730. std::copy(
  731. std::istreambuf_iterator<char>(file),
  732. std::istreambuf_iterator<char>(),
  733. std::back_inserter(sparams.grammar)
  734. );
  735. } else if (arg == "--override-kv") {
  736. if (++i >= argc) {
  737. invalid_param = true;
  738. break;
  739. }
  740. char * sep = strchr(argv[i], '=');
  741. if (sep == nullptr || sep - argv[i] >= 128) {
  742. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  743. invalid_param = true;
  744. break;
  745. }
  746. struct llama_model_kv_override kvo;
  747. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  748. kvo.key[sep - argv[i]] = 0;
  749. sep++;
  750. if (strncmp(sep, "int:", 4) == 0) {
  751. sep += 4;
  752. kvo.tag = LLAMA_KV_OVERRIDE_INT;
  753. kvo.int_value = std::atol(sep);
  754. } else if (strncmp(sep, "float:", 6) == 0) {
  755. sep += 6;
  756. kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
  757. kvo.float_value = std::atof(sep);
  758. } else if (strncmp(sep, "bool:", 5) == 0) {
  759. sep += 5;
  760. kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
  761. if (std::strcmp(sep, "true") == 0) {
  762. kvo.bool_value = true;
  763. } else if (std::strcmp(sep, "false") == 0) {
  764. kvo.bool_value = false;
  765. } else {
  766. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  767. invalid_param = true;
  768. break;
  769. }
  770. } else {
  771. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  772. invalid_param = true;
  773. break;
  774. }
  775. params.kv_overrides.push_back(kvo);
  776. #ifndef LOG_DISABLE_LOGS
  777. // Parse args for logging parameters
  778. } else if ( log_param_single_parse( argv[i] ) ) {
  779. // Do nothing, log_param_single_parse automatically does it's thing
  780. // and returns if a match was found and parsed.
  781. } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) {
  782. // We have a matching known parameter requiring an argument,
  783. // now we need to check if there is anything after this argv
  784. // and flag invalid_param or parse it.
  785. if (++i >= argc) {
  786. invalid_param = true;
  787. break;
  788. }
  789. if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) {
  790. invalid_param = true;
  791. break;
  792. }
  793. // End of Parse args for logging parameters
  794. #endif // LOG_DISABLE_LOGS
  795. } else {
  796. throw std::invalid_argument("error: unknown argument: " + arg);
  797. }
  798. }
  799. if (invalid_param) {
  800. throw std::invalid_argument("error: invalid parameter for argument: " + arg);
  801. }
  802. if (params.prompt_cache_all &&
  803. (params.interactive || params.interactive_first ||
  804. params.instruct)) {
  805. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  806. }
  807. if (params.escape) {
  808. process_escapes(params.prompt);
  809. process_escapes(params.input_prefix);
  810. process_escapes(params.input_suffix);
  811. process_escapes(sparams.cfg_negative_prompt);
  812. for (auto & antiprompt : params.antiprompt) {
  813. process_escapes(antiprompt);
  814. }
  815. }
  816. if (!params.kv_overrides.empty()) {
  817. params.kv_overrides.emplace_back(llama_model_kv_override());
  818. params.kv_overrides.back().key[0] = 0;
  819. }
  820. return true;
  821. }
  822. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  823. const llama_sampling_params & sparams = params.sparams;
  824. printf("\n");
  825. printf("usage: %s [options]\n", argv[0]);
  826. printf("\n");
  827. printf("options:\n");
  828. printf(" -h, --help show this help message and exit\n");
  829. printf(" --version show version and build info\n");
  830. printf(" -i, --interactive run in interactive mode\n");
  831. printf(" --interactive-first run in interactive mode and wait for input right away\n");
  832. printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
  833. printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
  834. printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
  835. printf(" -r PROMPT, --reverse-prompt PROMPT\n");
  836. printf(" halt generation at PROMPT, return control in interactive mode\n");
  837. printf(" (can be specified more than once for multiple prompts).\n");
  838. printf(" --color colorise output to distinguish prompt and user input from generations\n");
  839. printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
  840. printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
  841. printf(" -tb N, --threads-batch N\n");
  842. printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
  843. printf(" -td N, --threads-draft N");
  844. printf(" number of threads to use during generation (default: same as --threads)");
  845. printf(" -tbd N, --threads-batch-draft N\n");
  846. printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
  847. printf(" -p PROMPT, --prompt PROMPT\n");
  848. printf(" prompt to start generation with (default: empty)\n");
  849. printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
  850. printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
  851. printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
  852. printf(" not supported with --interactive or other interactive options\n");
  853. printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
  854. printf(" --random-prompt start with a randomized prompt.\n");
  855. printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
  856. printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
  857. printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
  858. printf(" -f FNAME, --file FNAME\n");
  859. printf(" prompt file to start generation.\n");
  860. printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
  861. printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
  862. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  863. printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
  864. printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
  865. printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
  866. printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
  867. printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
  868. printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
  869. printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
  870. printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
  871. printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
  872. printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
  873. printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
  874. printf(" --mirostat N use Mirostat sampling.\n");
  875. printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
  876. printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
  877. printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
  878. printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
  879. printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
  880. printf(" modifies the likelihood of token appearing in the completion,\n");
  881. printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
  882. printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
  883. printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
  884. printf(" --grammar-file FNAME file to read grammar from\n");
  885. printf(" --cfg-negative-prompt PROMPT\n");
  886. printf(" negative prompt to use for guidance. (default: empty)\n");
  887. printf(" --cfg-negative-prompt-file FNAME\n");
  888. printf(" negative prompt file to use for guidance. (default: empty)\n");
  889. printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
  890. printf(" --rope-scaling {none,linear,yarn}\n");
  891. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  892. printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
  893. printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
  894. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  895. printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
  896. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  897. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  898. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  899. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  900. printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
  901. printf(" --no-penalize-nl do not penalize newline token\n");
  902. printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
  903. printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
  904. printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
  905. printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
  906. printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
  907. printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
  908. printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
  909. printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
  910. printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
  911. printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept);
  912. printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
  913. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  914. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
  915. printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
  916. if (llama_mlock_supported()) {
  917. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  918. }
  919. if (llama_mmap_supported()) {
  920. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  921. }
  922. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  923. printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
  924. printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
  925. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  926. printf(" -ngl N, --n-gpu-layers N\n");
  927. printf(" number of layers to store in VRAM\n");
  928. printf(" -ngld N, --n-gpu-layers-draft N\n");
  929. printf(" number of layers to store in VRAM for the draft model\n");
  930. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  931. printf(" how to split the model across multiple GPUs, one of:\n");
  932. printf(" - none: use one GPU only\n");
  933. printf(" - layer (default): split layers and KV across GPUs\n");
  934. printf(" - row: split rows across GPUs\n");
  935. printf(" -ts SPLIT, --tensor-split SPLIT\n");
  936. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  937. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  938. printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
  939. #endif
  940. printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
  941. printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
  942. printf(" -gan N, --grp-attn-n N\n");
  943. printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
  944. printf(" -gaw N, --grp-attn-w N\n");
  945. printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
  946. printf(" -dkvc, --dump-kv-cache\n");
  947. printf(" verbose print of the KV cache\n");
  948. printf(" -nkvo, --no-kv-offload\n");
  949. printf(" disable KV offload\n");
  950. printf(" -ctk TYPE, --cache-type-k TYPE\n");
  951. printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
  952. printf(" -ctv TYPE, --cache-type-v TYPE\n");
  953. printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
  954. printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
  955. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  956. printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
  957. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  958. printf(" -m FNAME, --model FNAME\n");
  959. printf(" model path (default: %s)\n", params.model.c_str());
  960. printf(" -md FNAME, --model-draft FNAME\n");
  961. printf(" draft model for speculative decoding\n");
  962. printf(" -ld LOGDIR, --logdir LOGDIR\n");
  963. printf(" path under which to save YAML logs (no logging if unset)\n");
  964. printf(" --override-kv KEY=TYPE:VALUE\n");
  965. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  966. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  967. printf(" -ptc N, --print-token-count N\n");
  968. printf(" print token count every N tokens (default: %d)\n", params.n_print);
  969. printf("\n");
  970. #ifndef LOG_DISABLE_LOGS
  971. log_print_usage();
  972. #endif // LOG_DISABLE_LOGS
  973. }
  974. std::string get_system_info(const gpt_params & params) {
  975. std::ostringstream os;
  976. os << "system_info: n_threads = " << params.n_threads;
  977. if (params.n_threads_batch != -1) {
  978. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  979. }
  980. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  981. return os.str();
  982. }
  983. std::string gpt_random_prompt(std::mt19937 & rng) {
  984. const int r = rng() % 10;
  985. switch (r) {
  986. case 0: return "So";
  987. case 1: return "Once upon a time";
  988. case 2: return "When";
  989. case 3: return "The";
  990. case 4: return "After";
  991. case 5: return "If";
  992. case 6: return "import";
  993. case 7: return "He";
  994. case 8: return "She";
  995. case 9: return "They";
  996. }
  997. GGML_UNREACHABLE();
  998. }
  999. //
  1000. // String parsing
  1001. //
  1002. std::string parse_samplers_input(std::string input) {
  1003. std::string output = "";
  1004. // since samplers names are written multiple ways
  1005. // make it ready for both system names and input names
  1006. std::unordered_map<std::string, char> samplers_symbols {
  1007. {"top_k", 'k'},
  1008. {"top-k", 'k'},
  1009. {"top_p", 'p'},
  1010. {"top-p", 'p'},
  1011. {"nucleus", 'p'},
  1012. {"typical_p", 'y'},
  1013. {"typical-p", 'y'},
  1014. {"typical", 'y'},
  1015. {"min_p", 'm'},
  1016. {"min-p", 'm'},
  1017. {"tfs_z", 'f'},
  1018. {"tfs-z", 'f'},
  1019. {"tfs", 'f'},
  1020. {"temp", 't'},
  1021. {"temperature",'t'}
  1022. };
  1023. // expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
  1024. size_t separator = input.find(';');
  1025. while (separator != input.npos) {
  1026. std::string name = input.substr(0,separator);
  1027. input = input.substr(separator+1);
  1028. separator = input.find(';');
  1029. if (samplers_symbols.find(name) != samplers_symbols.end()) {
  1030. output += samplers_symbols[name];
  1031. }
  1032. }
  1033. if (samplers_symbols.find(input) != samplers_symbols.end()) {
  1034. output += samplers_symbols[input];
  1035. }
  1036. return output;
  1037. }
  1038. //
  1039. // Model utils
  1040. //
  1041. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  1042. auto mparams = llama_model_default_params();
  1043. if (params.n_gpu_layers != -1) {
  1044. mparams.n_gpu_layers = params.n_gpu_layers;
  1045. }
  1046. mparams.main_gpu = params.main_gpu;
  1047. mparams.split_mode = params.split_mode;
  1048. mparams.tensor_split = params.tensor_split;
  1049. mparams.use_mmap = params.use_mmap;
  1050. mparams.use_mlock = params.use_mlock;
  1051. if (params.kv_overrides.empty()) {
  1052. mparams.kv_overrides = NULL;
  1053. } else {
  1054. GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
  1055. mparams.kv_overrides = params.kv_overrides.data();
  1056. }
  1057. return mparams;
  1058. }
  1059. static ggml_type kv_cache_type_from_str(const std::string & s) {
  1060. if (s == "f32") {
  1061. return GGML_TYPE_F32;
  1062. }
  1063. if (s == "f16") {
  1064. return GGML_TYPE_F16;
  1065. }
  1066. if (s == "q8_0") {
  1067. return GGML_TYPE_Q8_0;
  1068. }
  1069. if (s == "q4_0") {
  1070. return GGML_TYPE_Q4_0;
  1071. }
  1072. if (s == "q4_1") {
  1073. return GGML_TYPE_Q4_1;
  1074. }
  1075. if (s == "q5_0") {
  1076. return GGML_TYPE_Q5_0;
  1077. }
  1078. if (s == "q5_1") {
  1079. return GGML_TYPE_Q5_1;
  1080. }
  1081. throw std::runtime_error("Invalid cache type: " + s);
  1082. }
  1083. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  1084. auto cparams = llama_context_default_params();
  1085. cparams.n_ctx = params.n_ctx;
  1086. cparams.n_batch = params.n_batch;
  1087. cparams.n_threads = params.n_threads;
  1088. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  1089. cparams.mul_mat_q = params.mul_mat_q;
  1090. cparams.seed = params.seed;
  1091. cparams.logits_all = params.logits_all;
  1092. cparams.embedding = params.embedding;
  1093. cparams.rope_scaling_type = params.rope_scaling_type;
  1094. cparams.rope_freq_base = params.rope_freq_base;
  1095. cparams.rope_freq_scale = params.rope_freq_scale;
  1096. cparams.yarn_ext_factor = params.yarn_ext_factor;
  1097. cparams.yarn_attn_factor = params.yarn_attn_factor;
  1098. cparams.yarn_beta_fast = params.yarn_beta_fast;
  1099. cparams.yarn_beta_slow = params.yarn_beta_slow;
  1100. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  1101. cparams.offload_kqv = !params.no_kv_offload;
  1102. cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
  1103. cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
  1104. return cparams;
  1105. }
  1106. void llama_batch_clear(struct llama_batch & batch) {
  1107. batch.n_tokens = 0;
  1108. }
  1109. void llama_batch_add(
  1110. struct llama_batch & batch,
  1111. llama_token id,
  1112. llama_pos pos,
  1113. const std::vector<llama_seq_id> & seq_ids,
  1114. bool logits) {
  1115. batch.token [batch.n_tokens] = id;
  1116. batch.pos [batch.n_tokens] = pos;
  1117. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  1118. for (size_t i = 0; i < seq_ids.size(); ++i) {
  1119. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  1120. }
  1121. batch.logits [batch.n_tokens] = logits;
  1122. batch.n_tokens++;
  1123. }
  1124. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  1125. auto mparams = llama_model_params_from_gpt_params(params);
  1126. llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
  1127. if (model == NULL) {
  1128. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  1129. return std::make_tuple(nullptr, nullptr);
  1130. }
  1131. auto cparams = llama_context_params_from_gpt_params(params);
  1132. llama_context * lctx = llama_new_context_with_model(model, cparams);
  1133. if (lctx == NULL) {
  1134. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  1135. llama_free_model(model);
  1136. return std::make_tuple(nullptr, nullptr);
  1137. }
  1138. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  1139. const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
  1140. float lora_scale = std::get<1>(params.lora_adapter[i]);
  1141. int err = llama_model_apply_lora_from_file(model,
  1142. lora_adapter.c_str(),
  1143. lora_scale,
  1144. ((i > 0) || params.lora_base.empty())
  1145. ? NULL
  1146. : params.lora_base.c_str(),
  1147. params.n_threads);
  1148. if (err != 0) {
  1149. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  1150. llama_free(lctx);
  1151. llama_free_model(model);
  1152. return std::make_tuple(nullptr, nullptr);
  1153. }
  1154. }
  1155. if (params.ignore_eos) {
  1156. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  1157. }
  1158. {
  1159. LOG("warming up the model with an empty run\n");
  1160. std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
  1161. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  1162. llama_kv_cache_clear(lctx);
  1163. llama_reset_timings(lctx);
  1164. }
  1165. return std::make_tuple(model, lctx);
  1166. }
  1167. //
  1168. // Vocab utils
  1169. //
  1170. std::vector<llama_token> llama_tokenize(
  1171. const struct llama_context * ctx,
  1172. const std::string & text,
  1173. bool add_bos,
  1174. bool special) {
  1175. return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
  1176. }
  1177. std::vector<llama_token> llama_tokenize(
  1178. const struct llama_model * model,
  1179. const std::string & text,
  1180. bool add_bos,
  1181. bool special) {
  1182. // upper limit for the number of tokens
  1183. int n_tokens = text.length() + add_bos;
  1184. std::vector<llama_token> result(n_tokens);
  1185. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  1186. if (n_tokens < 0) {
  1187. result.resize(-n_tokens);
  1188. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  1189. GGML_ASSERT(check == -n_tokens);
  1190. } else {
  1191. result.resize(n_tokens);
  1192. }
  1193. return result;
  1194. }
  1195. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1196. std::vector<char> result(8, 0);
  1197. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1198. if (n_tokens < 0) {
  1199. result.resize(-n_tokens);
  1200. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1201. GGML_ASSERT(check == -n_tokens);
  1202. } else {
  1203. result.resize(n_tokens);
  1204. }
  1205. return std::string(result.data(), result.size());
  1206. }
  1207. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  1208. const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
  1209. std::string piece;
  1210. std::string result;
  1211. for (size_t i = 0; i < tokens.size(); ++i) {
  1212. piece = llama_token_to_piece(ctx, tokens[i]);
  1213. // remove the leading space of the first non-BOS token
  1214. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  1215. piece = piece.substr(1);
  1216. }
  1217. result += piece;
  1218. }
  1219. return result;
  1220. }
  1221. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  1222. std::string piece;
  1223. std::string result;
  1224. for (size_t i = 0; i < tokens.size(); ++i) {
  1225. piece = llama_token_to_piece(ctx, tokens[i]);
  1226. result += piece;
  1227. }
  1228. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  1229. return result;
  1230. }
  1231. bool llama_should_add_bos_token(const llama_model * model) {
  1232. const int add_bos = llama_add_bos_token(model);
  1233. return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
  1234. }
  1235. //
  1236. // YAML utils
  1237. //
  1238. // returns true if successful, false otherwise
  1239. bool create_directory_with_parents(const std::string & path) {
  1240. #ifdef _WIN32
  1241. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  1242. std::wstring wpath = converter.from_bytes(path);
  1243. // if the path already exists, check whether it's a directory
  1244. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  1245. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1246. return true;
  1247. }
  1248. size_t pos_slash = 0;
  1249. // process path from front to back, procedurally creating directories
  1250. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  1251. const std::wstring subpath = wpath.substr(0, pos_slash);
  1252. const wchar_t * test = subpath.c_str();
  1253. const bool success = CreateDirectoryW(test, NULL);
  1254. if (!success) {
  1255. const DWORD error = GetLastError();
  1256. // if the path already exists, ensure that it's a directory
  1257. if (error == ERROR_ALREADY_EXISTS) {
  1258. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  1259. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1260. return false;
  1261. }
  1262. } else {
  1263. return false;
  1264. }
  1265. }
  1266. pos_slash += 1;
  1267. }
  1268. return true;
  1269. #else
  1270. // if the path already exists, check whether it's a directory
  1271. struct stat info;
  1272. if (stat(path.c_str(), &info) == 0) {
  1273. return S_ISDIR(info.st_mode);
  1274. }
  1275. size_t pos_slash = 1; // skip leading slashes for directory creation
  1276. // process path from front to back, procedurally creating directories
  1277. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  1278. const std::string subpath = path.substr(0, pos_slash);
  1279. struct stat info;
  1280. // if the path already exists, ensure that it's a directory
  1281. if (stat(subpath.c_str(), &info) == 0) {
  1282. if (!S_ISDIR(info.st_mode)) {
  1283. return false;
  1284. }
  1285. } else {
  1286. // create parent directories
  1287. const int ret = mkdir(subpath.c_str(), 0755);
  1288. if (ret != 0) {
  1289. return false;
  1290. }
  1291. }
  1292. pos_slash += 1;
  1293. }
  1294. return true;
  1295. #endif // _WIN32
  1296. }
  1297. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  1298. if (data.empty()) {
  1299. fprintf(stream, "%s:\n", prop_name);
  1300. return;
  1301. }
  1302. fprintf(stream, "%s: [", prop_name);
  1303. for (size_t i = 0; i < data.size() - 1; ++i) {
  1304. fprintf(stream, "%e, ", data[i]);
  1305. }
  1306. fprintf(stream, "%e]\n", data.back());
  1307. }
  1308. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  1309. if (data.empty()) {
  1310. fprintf(stream, "%s:\n", prop_name);
  1311. return;
  1312. }
  1313. fprintf(stream, "%s: [", prop_name);
  1314. for (size_t i = 0; i < data.size() - 1; ++i) {
  1315. fprintf(stream, "%d, ", data[i]);
  1316. }
  1317. fprintf(stream, "%d]\n", data.back());
  1318. }
  1319. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
  1320. std::string data_str(data == NULL ? "" : data);
  1321. if (data_str.empty()) {
  1322. fprintf(stream, "%s:\n", prop_name);
  1323. return;
  1324. }
  1325. size_t pos_start = 0;
  1326. size_t pos_found = 0;
  1327. if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
  1328. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  1329. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  1330. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  1331. data_str = "\"" + data_str + "\"";
  1332. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1333. return;
  1334. }
  1335. if (data_str.find('\n') == std::string::npos) {
  1336. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1337. return;
  1338. }
  1339. fprintf(stream, "%s: |\n", prop_name);
  1340. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  1341. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  1342. pos_start = pos_found + 1;
  1343. }
  1344. }
  1345. std::string get_sortable_timestamp() {
  1346. using clock = std::chrono::system_clock;
  1347. const clock::time_point current_time = clock::now();
  1348. const time_t as_time_t = clock::to_time_t(current_time);
  1349. char timestamp_no_ns[100];
  1350. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  1351. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  1352. current_time.time_since_epoch() % 1000000000).count();
  1353. char timestamp_ns[11];
  1354. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  1355. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  1356. }
  1357. void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
  1358. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  1359. const llama_sampling_params & sparams = params.sparams;
  1360. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  1361. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  1362. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  1363. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  1364. fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
  1365. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  1366. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  1367. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  1368. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  1369. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1370. fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
  1371. fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
  1372. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  1373. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  1374. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  1375. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  1376. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  1377. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  1378. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1379. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  1380. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  1381. #ifdef NDEBUG
  1382. fprintf(stream, "debug: false\n");
  1383. #else
  1384. fprintf(stream, "debug: true\n");
  1385. #endif // NDEBUG
  1386. fprintf(stream, "model_desc: %s\n", model_desc);
  1387. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  1388. #ifdef __OPTIMIZE__
  1389. fprintf(stream, "optimize: true\n");
  1390. #else
  1391. fprintf(stream, "optimize: false\n");
  1392. #endif // __OPTIMIZE__
  1393. fprintf(stream, "time: %s\n", timestamp.c_str());
  1394. fprintf(stream, "\n");
  1395. fprintf(stream, "###############\n");
  1396. fprintf(stream, "# User Inputs #\n");
  1397. fprintf(stream, "###############\n");
  1398. fprintf(stream, "\n");
  1399. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  1400. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  1401. dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  1402. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  1403. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  1404. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  1405. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  1406. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  1407. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  1408. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  1409. dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
  1410. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  1411. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  1412. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  1413. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  1414. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  1415. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  1416. dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
  1417. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  1418. dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
  1419. fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
  1420. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  1421. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  1422. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  1423. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  1424. fprintf(stream, "logit_bias:\n");
  1425. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  1426. if (ignore_eos && lb.first == logit_bias_eos->first) {
  1427. continue;
  1428. }
  1429. fprintf(stream, " %d: %f", lb.first, lb.second);
  1430. }
  1431. fprintf(stream, "lora:\n");
  1432. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1433. if (std::get<1>(la) != 1.0f) {
  1434. continue;
  1435. }
  1436. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  1437. }
  1438. fprintf(stream, "lora_scaled:\n");
  1439. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1440. if (std::get<1>(la) == 1.0f) {
  1441. continue;
  1442. }
  1443. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  1444. }
  1445. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  1446. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  1447. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  1448. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  1449. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  1450. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  1451. fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
  1452. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  1453. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  1454. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  1455. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  1456. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  1457. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  1458. fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
  1459. fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
  1460. fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
  1461. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  1462. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  1463. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  1464. dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
  1465. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  1466. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  1467. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  1468. dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
  1469. fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
  1470. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  1471. fprintf(stream, "reverse_prompt:\n");
  1472. for (std::string ap : params.antiprompt) {
  1473. size_t pos = 0;
  1474. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  1475. ap.replace(pos, 1, "\\n");
  1476. pos += 1;
  1477. }
  1478. fprintf(stream, " - %s\n", ap.c_str());
  1479. }
  1480. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  1481. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  1482. fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
  1483. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  1484. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  1485. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  1486. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
  1487. dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
  1488. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  1489. fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
  1490. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  1491. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  1492. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  1493. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  1494. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  1495. fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
  1496. }
  1497. //
  1498. // KV cache utils
  1499. //
  1500. void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
  1501. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  1502. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  1503. view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1504. llama_kv_cache_view_cell * c_curr = view.cells;
  1505. llama_seq_id * cs_curr = view.cells_sequences;
  1506. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1507. if (i % row_size == 0) {
  1508. printf("\n%5d: ", i);
  1509. }
  1510. int seq_count = 0;
  1511. for (int j = 0; j < view.n_max_seq; j++) {
  1512. if (cs_curr[j] >= 0) { seq_count++; }
  1513. }
  1514. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  1515. }
  1516. printf("\n=== Done dumping\n");
  1517. }
  1518. void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
  1519. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  1520. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  1521. view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1522. std::unordered_map<llama_seq_id, size_t> seqs;
  1523. llama_kv_cache_view_cell * c_curr = view.cells;
  1524. llama_seq_id * cs_curr = view.cells_sequences;
  1525. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1526. for (int j = 0; j < view.n_max_seq; j++) {
  1527. if (cs_curr[j] < 0) { continue; }
  1528. if (seqs.find(cs_curr[j]) == seqs.end()) {
  1529. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1530. seqs[cs_curr[j]] = seqs.size();
  1531. }
  1532. }
  1533. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1534. }
  1535. printf("=== Sequence legend: ");
  1536. for (const auto & it : seqs) {
  1537. printf("%zu=%d, ", it.second, it.first);
  1538. }
  1539. printf("'+'=other sequence ids");
  1540. c_curr = view.cells;
  1541. cs_curr = view.cells_sequences;
  1542. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1543. if (i % row_size == 0) {
  1544. printf("\n%5d: ", i);
  1545. }
  1546. for (int j = 0; j < view.n_max_seq; j++) {
  1547. if (cs_curr[j] >= 0) {
  1548. const auto & it = seqs.find(cs_curr[j]);
  1549. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  1550. } else {
  1551. putchar('.');
  1552. }
  1553. }
  1554. putchar(' ');
  1555. }
  1556. printf("\n=== Done dumping\n");
  1557. }