main.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. // Defines sigaction on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #endif
  5. #include "common.h"
  6. #include "llama.h"
  7. #include "build-info.h"
  8. #include <cassert>
  9. #include <cinttypes>
  10. #include <cmath>
  11. #include <cstdio>
  12. #include <cstring>
  13. #include <ctime>
  14. #include <fstream>
  15. #include <iostream>
  16. #include <string>
  17. #include <vector>
  18. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  19. #include <signal.h>
  20. #include <unistd.h>
  21. #elif defined (_WIN32)
  22. #include <signal.h>
  23. #endif
  24. static console_state con_st;
  25. static llama_context ** g_ctx;
  26. static bool is_interacting = false;
  27. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  28. void sigint_handler(int signo) {
  29. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  30. printf("\n"); // this also force flush stdout.
  31. if (signo == SIGINT) {
  32. if (!is_interacting) {
  33. is_interacting=true;
  34. } else {
  35. llama_print_timings(*g_ctx);
  36. _exit(130);
  37. }
  38. }
  39. }
  40. #endif
  41. int main(int argc, char ** argv) {
  42. gpt_params params;
  43. params.model = "models/llama-7B/ggml-model.bin";
  44. if (gpt_params_parse(argc, argv, params) == false) {
  45. return 1;
  46. }
  47. // save choice to use color for later
  48. // (note for later: this is a slightly awkward choice)
  49. con_st.use_color = params.use_color;
  50. #if defined (_WIN32)
  51. win32_console_init(params.use_color);
  52. #endif
  53. if (params.perplexity) {
  54. printf("\n************\n");
  55. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  56. printf("************\n\n");
  57. return 0;
  58. }
  59. if (params.embedding) {
  60. printf("\n************\n");
  61. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  62. printf("************\n\n");
  63. return 0;
  64. }
  65. if (params.n_ctx > 2048) {
  66. fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
  67. "expect poor results\n", __func__, params.n_ctx);
  68. }
  69. fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  70. if (params.seed < 0) {
  71. params.seed = time(NULL);
  72. }
  73. fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
  74. std::mt19937 rng(params.seed);
  75. if (params.random_prompt) {
  76. params.prompt = gpt_random_prompt(rng);
  77. }
  78. // params.prompt = R"(// this function checks if the number n is prime
  79. //bool is_prime(int n) {)";
  80. llama_context * ctx;
  81. g_ctx = &ctx;
  82. // load the model and apply lora adapter, if any
  83. ctx = llama_init_from_gpt_params(params);
  84. if (ctx == NULL) {
  85. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  86. return 1;
  87. }
  88. // print system information
  89. {
  90. fprintf(stderr, "\n");
  91. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  92. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  93. }
  94. // determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
  95. // uncomment the "used_mem" line in llama.cpp to see the results
  96. if (params.mem_test) {
  97. {
  98. const std::vector<llama_token> tmp(params.n_batch, 0);
  99. llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
  100. }
  101. {
  102. const std::vector<llama_token> tmp = { 0, };
  103. llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
  104. }
  105. llama_print_timings(ctx);
  106. llama_free(ctx);
  107. return 0;
  108. }
  109. // Add a space in front of the first character to match OG llama tokenizer behavior
  110. params.prompt.insert(0, 1, ' ');
  111. std::string path_session = params.path_session;
  112. std::vector<llama_token> session_tokens;
  113. if (!path_session.empty()) {
  114. fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  115. // fopen to check for existing session
  116. FILE * fp = std::fopen(path_session.c_str(), "rb");
  117. if (fp != NULL) {
  118. std::fclose(fp);
  119. session_tokens.resize(params.n_ctx);
  120. size_t n_token_count_out = 0;
  121. if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  122. fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
  123. return 1;
  124. }
  125. session_tokens.resize(n_token_count_out);
  126. fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
  127. } else {
  128. fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
  129. }
  130. }
  131. // tokenize the prompt
  132. auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
  133. const int n_ctx = llama_n_ctx(ctx);
  134. if ((int) embd_inp.size() > n_ctx - 4) {
  135. fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  136. return 1;
  137. }
  138. // debug message about similarity of saved session, if applicable
  139. size_t n_matching_session_tokens = 0;
  140. if (session_tokens.size()) {
  141. for (llama_token id : session_tokens) {
  142. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  143. break;
  144. }
  145. n_matching_session_tokens++;
  146. }
  147. if (n_matching_session_tokens >= embd_inp.size()) {
  148. fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
  149. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  150. fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  151. __func__, n_matching_session_tokens, embd_inp.size());
  152. } else {
  153. fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
  154. __func__, n_matching_session_tokens, embd_inp.size());
  155. }
  156. }
  157. // number of tokens to keep when resetting context
  158. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
  159. params.n_keep = (int)embd_inp.size();
  160. }
  161. // prefix & suffix for instruct mode
  162. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
  163. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
  164. // in instruct mode, we inject a prefix and a suffix to each input by the user
  165. if (params.instruct) {
  166. params.interactive_first = true;
  167. params.antiprompt.push_back("### Instruction:\n\n");
  168. }
  169. // enable interactive mode if reverse prompt or interactive start is specified
  170. if (params.antiprompt.size() != 0 || params.interactive_first) {
  171. params.interactive = true;
  172. }
  173. // determine newline token
  174. auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
  175. if (params.verbose_prompt) {
  176. fprintf(stderr, "\n");
  177. fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  178. fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  179. for (int i = 0; i < (int) embd_inp.size(); i++) {
  180. fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
  181. }
  182. if (params.n_keep > 0) {
  183. fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
  184. for (int i = 0; i < params.n_keep; i++) {
  185. fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
  186. }
  187. fprintf(stderr, "'\n");
  188. }
  189. fprintf(stderr, "\n");
  190. }
  191. if (params.interactive) {
  192. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  193. struct sigaction sigint_action;
  194. sigint_action.sa_handler = sigint_handler;
  195. sigemptyset (&sigint_action.sa_mask);
  196. sigint_action.sa_flags = 0;
  197. sigaction(SIGINT, &sigint_action, NULL);
  198. #elif defined (_WIN32)
  199. signal(SIGINT, sigint_handler);
  200. #endif
  201. fprintf(stderr, "%s: interactive mode on.\n", __func__);
  202. if (params.antiprompt.size()) {
  203. for (auto antiprompt : params.antiprompt) {
  204. fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
  205. }
  206. }
  207. if (!params.input_prefix.empty()) {
  208. fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
  209. }
  210. }
  211. fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
  212. params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
  213. fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  214. fprintf(stderr, "\n\n");
  215. // TODO: replace with ring-buffer
  216. std::vector<llama_token> last_n_tokens(n_ctx);
  217. std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
  218. if (params.interactive) {
  219. fprintf(stderr, "== Running in interactive mode. ==\n"
  220. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  221. " - Press Ctrl+C to interject at any time.\n"
  222. #endif
  223. " - Press Return to return control to LLaMa.\n"
  224. " - If you want to submit another line, end your input in '\\'.\n\n");
  225. is_interacting = params.interactive_first;
  226. }
  227. bool is_antiprompt = false;
  228. bool input_echo = true;
  229. // HACK - because session saving incurs a non-negligible delay, for now skip re-saving session
  230. // if we loaded a session with at least 75% similarity. It's currently just used to speed up the
  231. // initial prompt so it doesn't need to be an exact match.
  232. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4);
  233. int n_past = 0;
  234. int n_remain = params.n_predict;
  235. int n_consumed = 0;
  236. int n_session_consumed = 0;
  237. // the first thing we will do is to output the prompt, so set color accordingly
  238. set_console_color(con_st, CONSOLE_COLOR_PROMPT);
  239. std::vector<llama_token> embd;
  240. while (n_remain != 0 || params.interactive) {
  241. // predict
  242. if (embd.size() > 0) {
  243. // infinite text generation via context swapping
  244. // if we run out of context:
  245. // - take the n_keep first tokens from the original prompt (via n_past)
  246. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  247. if (n_past + (int) embd.size() > n_ctx) {
  248. const int n_left = n_past - params.n_keep;
  249. n_past = params.n_keep;
  250. // insert n_left/2 tokens at the start of embd from last_n_tokens
  251. embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
  252. // stop saving session if we run out of context
  253. path_session = "";
  254. //printf("\n---\n");
  255. //printf("resetting: '");
  256. //for (int i = 0; i < (int) embd.size(); i++) {
  257. // printf("%s", llama_token_to_str(ctx, embd[i]));
  258. //}
  259. //printf("'\n");
  260. //printf("\n---\n");
  261. }
  262. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  263. // REVIEW
  264. if (n_session_consumed < (int) session_tokens.size()) {
  265. size_t i = 0;
  266. for ( ; i < embd.size(); i++) {
  267. if (embd[i] != session_tokens[n_session_consumed]) {
  268. session_tokens.resize(n_session_consumed);
  269. break;
  270. }
  271. n_past++;
  272. n_session_consumed++;
  273. if (n_session_consumed >= (int) session_tokens.size()) {
  274. ++i;
  275. break;
  276. }
  277. }
  278. if (i > 0) {
  279. embd.erase(embd.begin(), embd.begin() + i);
  280. }
  281. }
  282. // evaluate tokens in batches
  283. // embd is typically prepared beforehand to fit within a batch, but not always
  284. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  285. int n_eval = (int) embd.size() - i;
  286. if (n_eval > params.n_batch) {
  287. n_eval = params.n_batch;
  288. }
  289. if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
  290. fprintf(stderr, "%s : failed to eval\n", __func__);
  291. return 1;
  292. }
  293. n_past += n_eval;
  294. }
  295. if (embd.size() > 0 && !path_session.empty()) {
  296. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  297. n_session_consumed = session_tokens.size();
  298. }
  299. }
  300. embd.clear();
  301. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  302. // out of user input, sample next token
  303. const float temp = params.temp;
  304. const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
  305. const float top_p = params.top_p;
  306. const float tfs_z = params.tfs_z;
  307. const float typical_p = params.typical_p;
  308. const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
  309. const float repeat_penalty = params.repeat_penalty;
  310. const float alpha_presence = params.presence_penalty;
  311. const float alpha_frequency = params.frequency_penalty;
  312. const int mirostat = params.mirostat;
  313. const float mirostat_tau = params.mirostat_tau;
  314. const float mirostat_eta = params.mirostat_eta;
  315. const bool penalize_nl = params.penalize_nl;
  316. // optionally save the session on first sample (for faster prompt loading next time)
  317. if (!path_session.empty() && need_to_save_session) {
  318. need_to_save_session = false;
  319. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  320. }
  321. llama_token id = 0;
  322. {
  323. auto logits = llama_get_logits(ctx);
  324. auto n_vocab = llama_n_vocab(ctx);
  325. // Apply params.logit_bias map
  326. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  327. logits[it->first] += it->second;
  328. }
  329. std::vector<llama_token_data> candidates;
  330. candidates.reserve(n_vocab);
  331. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  332. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  333. }
  334. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  335. // Apply penalties
  336. float nl_logit = logits[llama_token_nl()];
  337. auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
  338. llama_sample_repetition_penalty(ctx, &candidates_p,
  339. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  340. last_n_repeat, repeat_penalty);
  341. llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
  342. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  343. last_n_repeat, alpha_frequency, alpha_presence);
  344. if (!penalize_nl) {
  345. logits[llama_token_nl()] = nl_logit;
  346. }
  347. if (temp <= 0) {
  348. // Greedy sampling
  349. id = llama_sample_token_greedy(ctx, &candidates_p);
  350. } else {
  351. if (mirostat == 1) {
  352. static float mirostat_mu = 2.0f * mirostat_tau;
  353. const int mirostat_m = 100;
  354. llama_sample_temperature(ctx, &candidates_p, temp);
  355. id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
  356. } else if (mirostat == 2) {
  357. static float mirostat_mu = 2.0f * mirostat_tau;
  358. llama_sample_temperature(ctx, &candidates_p, temp);
  359. id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
  360. } else {
  361. // Temperature sampling
  362. llama_sample_top_k(ctx, &candidates_p, top_k);
  363. llama_sample_tail_free(ctx, &candidates_p, tfs_z);
  364. llama_sample_typical(ctx, &candidates_p, typical_p);
  365. llama_sample_top_p(ctx, &candidates_p, top_p);
  366. llama_sample_temperature(ctx, &candidates_p, temp);
  367. id = llama_sample_token(ctx, &candidates_p);
  368. }
  369. }
  370. // printf("`%d`", candidates_p.size);
  371. last_n_tokens.erase(last_n_tokens.begin());
  372. last_n_tokens.push_back(id);
  373. }
  374. // replace end of text token with newline token when in interactive mode
  375. if (id == llama_token_eos() && params.interactive && !params.instruct) {
  376. id = llama_token_newline.front();
  377. if (params.antiprompt.size() != 0) {
  378. // tokenize and inject first reverse prompt
  379. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
  380. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  381. }
  382. }
  383. // add it to the context
  384. embd.push_back(id);
  385. // echo this to console
  386. input_echo = true;
  387. // decrement remaining sampling budget
  388. --n_remain;
  389. } else {
  390. // some user input remains from prompt or interaction, forward it to processing
  391. while ((int) embd_inp.size() > n_consumed) {
  392. embd.push_back(embd_inp[n_consumed]);
  393. last_n_tokens.erase(last_n_tokens.begin());
  394. last_n_tokens.push_back(embd_inp[n_consumed]);
  395. ++n_consumed;
  396. if ((int) embd.size() >= params.n_batch) {
  397. break;
  398. }
  399. }
  400. }
  401. // display text
  402. if (input_echo) {
  403. for (auto id : embd) {
  404. printf("%s", llama_token_to_str(ctx, id));
  405. }
  406. fflush(stdout);
  407. }
  408. // reset color to default if we there is no pending user input
  409. if (input_echo && (int)embd_inp.size() == n_consumed) {
  410. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  411. }
  412. // in interactive mode, and not currently processing queued inputs;
  413. // check if we should prompt the user for more
  414. if (params.interactive && (int) embd_inp.size() <= n_consumed) {
  415. // check for reverse prompt
  416. if (params.antiprompt.size()) {
  417. std::string last_output;
  418. for (auto id : last_n_tokens) {
  419. last_output += llama_token_to_str(ctx, id);
  420. }
  421. is_antiprompt = false;
  422. // Check if each of the reverse prompts appears at the end of the output.
  423. for (std::string & antiprompt : params.antiprompt) {
  424. if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
  425. is_interacting = true;
  426. is_antiprompt = true;
  427. set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
  428. fflush(stdout);
  429. break;
  430. }
  431. }
  432. }
  433. if (n_past > 0 && is_interacting) {
  434. // potentially set color to indicate we are taking user input
  435. set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
  436. #if defined (_WIN32)
  437. // Windows: must reactivate sigint handler after each signal
  438. signal(SIGINT, sigint_handler);
  439. #endif
  440. if (params.instruct) {
  441. printf("\n> ");
  442. }
  443. std::string buffer;
  444. if (!params.input_prefix.empty()) {
  445. buffer += params.input_prefix;
  446. printf("%s", buffer.c_str());
  447. }
  448. std::string line;
  449. bool another_line = true;
  450. do {
  451. #if defined(_WIN32)
  452. std::wstring wline;
  453. if (!std::getline(std::wcin, wline)) {
  454. // input stream is bad or EOF received
  455. return 0;
  456. }
  457. win32_utf8_encode(wline, line);
  458. #else
  459. if (!std::getline(std::cin, line)) {
  460. // input stream is bad or EOF received
  461. return 0;
  462. }
  463. #endif
  464. if (line.empty() || line.back() != '\\') {
  465. another_line = false;
  466. } else {
  467. line.pop_back(); // Remove the continue character
  468. }
  469. buffer += line + '\n'; // Append the line to the result
  470. } while (another_line);
  471. // done taking input, reset color
  472. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  473. // Add tokens to embd only if the input buffer is non-empty
  474. // Entering a empty line lets the user pass control back
  475. if (buffer.length() > 1) {
  476. // instruct mode: insert instruction prefix
  477. if (params.instruct && !is_antiprompt) {
  478. n_consumed = embd_inp.size();
  479. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  480. }
  481. auto line_inp = ::llama_tokenize(ctx, buffer, false);
  482. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  483. // instruct mode: insert response suffix
  484. if (params.instruct) {
  485. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  486. }
  487. n_remain -= line_inp.size();
  488. }
  489. input_echo = false; // do not echo this again
  490. }
  491. if (n_past > 0) {
  492. is_interacting = false;
  493. }
  494. }
  495. // end of text token
  496. if (!embd.empty() && embd.back() == llama_token_eos()) {
  497. if (params.instruct) {
  498. is_interacting = true;
  499. } else {
  500. fprintf(stderr, " [end of text]\n");
  501. break;
  502. }
  503. }
  504. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  505. if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
  506. n_remain = params.n_predict;
  507. is_interacting = true;
  508. }
  509. }
  510. #if defined (_WIN32)
  511. signal(SIGINT, SIG_DFL);
  512. #endif
  513. llama_print_timings(ctx);
  514. llama_free(ctx);
  515. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  516. return 0;
  517. }