ggml.c 733 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. /*#define GGML_PERF*/
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #elif defined(GGML_USE_OPENBLAS)
  252. #if defined(GGML_BLAS_USE_MKL)
  253. #include <mkl.h>
  254. #else
  255. #include <cblas.h>
  256. #endif
  257. #endif
  258. // floating point type used to accumulate sums
  259. typedef double ggml_float;
  260. #undef MIN
  261. #undef MAX
  262. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  263. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  269. // precomputed quick gelu table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  272. float ggml_table_f32_f16[1 << 16];
  273. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  274. switch (status) {
  275. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  276. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  277. case GGML_STATUS_SUCCESS: return "GGML status: success";
  278. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  279. }
  280. return "GGML status: unknown";
  281. }
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  284. return GGML_FP16_TO_FP32(x);
  285. }
  286. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  287. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  291. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  292. return GGML_BF16_TO_FP32(x); // it just left shifts
  293. }
  294. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  295. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  296. return GGML_FP32_TO_BF16(x);
  297. }
  298. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  299. for (int64_t i = 0; i < n; i++) {
  300. y[i] = GGML_FP16_TO_FP32(x[i]);
  301. }
  302. }
  303. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  304. int64_t i = 0;
  305. #if defined(__F16C__)
  306. for (; i + 7 < n; i += 8) {
  307. __m256 x_vec = _mm256_loadu_ps(x + i);
  308. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  309. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  310. }
  311. for(; i + 3 < n; i += 4) {
  312. __m128 x_vec = _mm_loadu_ps(x + i);
  313. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  314. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  315. }
  316. #endif
  317. for (; i < n; i++) {
  318. y[i] = GGML_FP32_TO_FP16(x[i]);
  319. }
  320. }
  321. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  322. int64_t i = 0;
  323. #if defined(__AVX512F__)
  324. for (; i + 16 <= n; i += 16) {
  325. _mm512_storeu_ps(y + i,
  326. _mm512_castsi512_ps(
  327. _mm512_slli_epi32(
  328. _mm512_cvtepu16_epi32(
  329. _mm256_loadu_si256(
  330. (const __m256i *)(x + i))),
  331. 16)));
  332. }
  333. #elif defined(__AVX2__)
  334. for (; i + 8 <= n; i += 8) {
  335. _mm256_storeu_ps(y + i,
  336. _mm256_castsi256_ps(
  337. _mm256_slli_epi32(
  338. _mm256_cvtepu16_epi32(
  339. _mm_loadu_si128(
  340. (const __m128i *)(x + i))),
  341. 16)));
  342. }
  343. #endif
  344. for (; i < n; i++) {
  345. y[i] = GGML_BF16_TO_FP32(x[i]);
  346. }
  347. }
  348. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  349. int i = 0;
  350. #if defined(__AVX512BF16__)
  351. for (; i + 32 <= n; i += 32) {
  352. _mm512_storeu_si512(
  353. (__m512i *)(y + i),
  354. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  355. _mm512_loadu_ps(x + i))));
  356. }
  357. #endif
  358. for (; i < n; i++) {
  359. y[i] = GGML_FP32_TO_BF16(x[i]);
  360. }
  361. }
  362. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  363. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  364. }
  365. //
  366. // timing
  367. //
  368. #if defined(_MSC_VER) || defined(__MINGW32__)
  369. static int64_t timer_freq, timer_start;
  370. void ggml_time_init(void) {
  371. LARGE_INTEGER t;
  372. QueryPerformanceFrequency(&t);
  373. timer_freq = t.QuadPart;
  374. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  375. // and the uptime is high enough.
  376. // We subtract the program start time to reduce the likelihood of that happening.
  377. QueryPerformanceCounter(&t);
  378. timer_start = t.QuadPart;
  379. }
  380. int64_t ggml_time_ms(void) {
  381. LARGE_INTEGER t;
  382. QueryPerformanceCounter(&t);
  383. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  384. }
  385. int64_t ggml_time_us(void) {
  386. LARGE_INTEGER t;
  387. QueryPerformanceCounter(&t);
  388. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  389. }
  390. #else
  391. void ggml_time_init(void) {}
  392. int64_t ggml_time_ms(void) {
  393. struct timespec ts;
  394. clock_gettime(CLOCK_MONOTONIC, &ts);
  395. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  396. }
  397. int64_t ggml_time_us(void) {
  398. struct timespec ts;
  399. clock_gettime(CLOCK_MONOTONIC, &ts);
  400. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  401. }
  402. #endif
  403. int64_t ggml_cycles(void) {
  404. return clock();
  405. }
  406. int64_t ggml_cycles_per_ms(void) {
  407. return CLOCKS_PER_SEC/1000;
  408. }
  409. #ifdef GGML_PERF
  410. #define ggml_perf_time_ms() ggml_time_ms()
  411. #define ggml_perf_time_us() ggml_time_us()
  412. #define ggml_perf_cycles() ggml_cycles()
  413. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  414. #else
  415. #define ggml_perf_time_ms() 0
  416. #define ggml_perf_time_us() 0
  417. #define ggml_perf_cycles() 0
  418. #define ggml_perf_cycles_per_ms() 0
  419. #endif
  420. //
  421. // cross-platform UTF-8 file paths
  422. //
  423. #ifdef _WIN32
  424. static wchar_t * ggml_mbstowcs(const char * mbs) {
  425. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  426. if (!wlen) {
  427. errno = EINVAL;
  428. return NULL;
  429. }
  430. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  431. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  432. if (!wlen) {
  433. GGML_FREE(wbuf);
  434. errno = EINVAL;
  435. return NULL;
  436. }
  437. return wbuf;
  438. }
  439. #endif
  440. FILE * ggml_fopen(const char * fname, const char * mode) {
  441. #ifdef _WIN32
  442. FILE * file = NULL;
  443. // convert fname (UTF-8)
  444. wchar_t * wfname = ggml_mbstowcs(fname);
  445. if (wfname) {
  446. // convert mode (ANSI)
  447. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  448. wchar_t * wmode_p = wmode;
  449. do {
  450. *wmode_p++ = (wchar_t)*mode;
  451. } while (*mode++);
  452. // open file
  453. file = _wfopen(wfname, wmode);
  454. GGML_FREE(wfname);
  455. GGML_FREE(wmode);
  456. }
  457. return file;
  458. #else
  459. return fopen(fname, mode);
  460. #endif
  461. }
  462. //
  463. // cache line
  464. //
  465. #if defined(__cpp_lib_hardware_interference_size)
  466. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  467. #else
  468. #if defined(__POWER9_VECTOR__)
  469. #define CACHE_LINE_SIZE 128
  470. #else
  471. #define CACHE_LINE_SIZE 64
  472. #endif
  473. #endif
  474. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  475. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  476. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  477. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  478. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  479. [GGML_TYPE_I8] = {
  480. .type_name = "i8",
  481. .blck_size = 1,
  482. .type_size = sizeof(int8_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I16] = {
  486. .type_name = "i16",
  487. .blck_size = 1,
  488. .type_size = sizeof(int16_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I32] = {
  492. .type_name = "i32",
  493. .blck_size = 1,
  494. .type_size = sizeof(int32_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_I64] = {
  498. .type_name = "i64",
  499. .blck_size = 1,
  500. .type_size = sizeof(int64_t),
  501. .is_quantized = false,
  502. },
  503. [GGML_TYPE_F64] = {
  504. .type_name = "f64",
  505. .blck_size = 1,
  506. .type_size = sizeof(double),
  507. .is_quantized = false,
  508. .nrows = 1,
  509. },
  510. [GGML_TYPE_F32] = {
  511. .type_name = "f32",
  512. .blck_size = 1,
  513. .type_size = sizeof(float),
  514. .is_quantized = false,
  515. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  516. .vec_dot_type = GGML_TYPE_F32,
  517. .nrows = 1,
  518. },
  519. [GGML_TYPE_F16] = {
  520. .type_name = "f16",
  521. .blck_size = 1,
  522. .type_size = sizeof(ggml_fp16_t),
  523. .is_quantized = false,
  524. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  525. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  526. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  527. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  528. .vec_dot_type = GGML_TYPE_F16,
  529. .nrows = 1,
  530. },
  531. [GGML_TYPE_Q4_0] = {
  532. .type_name = "q4_0",
  533. .blck_size = QK4_0,
  534. .type_size = sizeof(block_q4_0),
  535. .is_quantized = true,
  536. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  537. .from_float = quantize_row_q4_0,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  539. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  540. .vec_dot_type = GGML_TYPE_Q8_0,
  541. #if defined (__ARM_FEATURE_MATMUL_INT8)
  542. .nrows = 2,
  543. #else
  544. .nrows = 1,
  545. #endif
  546. },
  547. [GGML_TYPE_Q4_1] = {
  548. .type_name = "q4_1",
  549. .blck_size = QK4_1,
  550. .type_size = sizeof(block_q4_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  553. .from_float = quantize_row_q4_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  555. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. #if defined (__ARM_FEATURE_MATMUL_INT8)
  558. .nrows = 2,
  559. #else
  560. .nrows = 1,
  561. #endif
  562. },
  563. [4] = { // GGML_TYPE_Q4_2
  564. .type_name = "DEPRECATED",
  565. .blck_size = 0,
  566. .type_size = 0,
  567. .is_quantized = false,
  568. .to_float = NULL,
  569. .from_float = NULL,
  570. .from_float_reference = NULL,
  571. .vec_dot = NULL,
  572. .vec_dot_type = GGML_TYPE_COUNT,
  573. .nrows = 1,
  574. },
  575. [5] = { // GGML_TYPE_Q4_3
  576. .type_name = "DEPRECATED",
  577. .blck_size = 0,
  578. .type_size = 0,
  579. .is_quantized = false,
  580. .to_float = NULL,
  581. .from_float = NULL,
  582. .from_float_reference = NULL,
  583. .vec_dot = NULL,
  584. .vec_dot_type = GGML_TYPE_COUNT,
  585. .nrows = 1,
  586. },
  587. [GGML_TYPE_Q5_0] = {
  588. .type_name = "q5_0",
  589. .blck_size = QK5_0,
  590. .type_size = sizeof(block_q5_0),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  593. .from_float = quantize_row_q5_0,
  594. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  595. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  596. .vec_dot_type = GGML_TYPE_Q8_0,
  597. .nrows = 1,
  598. },
  599. [GGML_TYPE_Q5_1] = {
  600. .type_name = "q5_1",
  601. .blck_size = QK5_1,
  602. .type_size = sizeof(block_q5_1),
  603. .is_quantized = true,
  604. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  605. .from_float = quantize_row_q5_1,
  606. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  607. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  608. .vec_dot_type = GGML_TYPE_Q8_1,
  609. .nrows = 1,
  610. },
  611. [GGML_TYPE_Q8_0] = {
  612. .type_name = "q8_0",
  613. .blck_size = QK8_0,
  614. .type_size = sizeof(block_q8_0),
  615. .is_quantized = true,
  616. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  617. .from_float = quantize_row_q8_0,
  618. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  619. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  620. .vec_dot_type = GGML_TYPE_Q8_0,
  621. #if defined (__ARM_FEATURE_MATMUL_INT8)
  622. .nrows = 2,
  623. #else
  624. .nrows = 1,
  625. #endif
  626. },
  627. [GGML_TYPE_Q8_1] = {
  628. .type_name = "q8_1",
  629. .blck_size = QK8_1,
  630. .type_size = sizeof(block_q8_1),
  631. .is_quantized = true,
  632. .from_float = quantize_row_q8_1,
  633. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  634. .vec_dot_type = GGML_TYPE_Q8_1,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_Q2_K] = {
  638. .type_name = "q2_K",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_q2_K),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  643. .from_float = quantize_row_q2_K,
  644. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  645. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_Q3_K] = {
  650. .type_name = "q3_K",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_q3_K),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  655. .from_float = quantize_row_q3_K,
  656. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  657. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_Q4_K] = {
  662. .type_name = "q4_K",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_q4_K),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  667. .from_float = quantize_row_q4_K,
  668. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  669. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  670. .vec_dot_type = GGML_TYPE_Q8_K,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_Q5_K] = {
  674. .type_name = "q5_K",
  675. .blck_size = QK_K,
  676. .type_size = sizeof(block_q5_K),
  677. .is_quantized = true,
  678. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  679. .from_float = quantize_row_q5_K,
  680. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  681. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  682. .vec_dot_type = GGML_TYPE_Q8_K,
  683. .nrows = 1,
  684. },
  685. [GGML_TYPE_Q6_K] = {
  686. .type_name = "q6_K",
  687. .blck_size = QK_K,
  688. .type_size = sizeof(block_q6_K),
  689. .is_quantized = true,
  690. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  691. .from_float = quantize_row_q6_K,
  692. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  693. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  694. .vec_dot_type = GGML_TYPE_Q8_K,
  695. .nrows = 1,
  696. },
  697. [GGML_TYPE_IQ2_XXS] = {
  698. .type_name = "iq2_xxs",
  699. .blck_size = QK_K,
  700. .type_size = sizeof(block_iq2_xxs),
  701. .is_quantized = true,
  702. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  703. .from_float = NULL,
  704. .from_float_reference = NULL,
  705. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  706. .vec_dot_type = GGML_TYPE_Q8_K,
  707. .nrows = 1,
  708. },
  709. [GGML_TYPE_IQ2_XS] = {
  710. .type_name = "iq2_xs",
  711. .blck_size = QK_K,
  712. .type_size = sizeof(block_iq2_xs),
  713. .is_quantized = true,
  714. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  715. .from_float = NULL,
  716. .from_float_reference = NULL,
  717. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  718. .vec_dot_type = GGML_TYPE_Q8_K,
  719. .nrows = 1,
  720. },
  721. [GGML_TYPE_IQ3_XXS] = {
  722. .type_name = "iq3_xxs",
  723. .blck_size = QK_K,
  724. .type_size = sizeof(block_iq3_xxs),
  725. .is_quantized = true,
  726. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  727. .from_float = quantize_row_iq3_xxs,
  728. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  729. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  730. .vec_dot_type = GGML_TYPE_Q8_K,
  731. .nrows = 1,
  732. },
  733. [GGML_TYPE_IQ3_S] = {
  734. .type_name = "iq3_s",
  735. .blck_size = QK_K,
  736. .type_size = sizeof(block_iq3_s),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  739. .from_float = quantize_row_iq3_s,
  740. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  741. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  742. .vec_dot_type = GGML_TYPE_Q8_K,
  743. .nrows = 1,
  744. },
  745. [GGML_TYPE_IQ2_S] = {
  746. .type_name = "iq2_s",
  747. .blck_size = QK_K,
  748. .type_size = sizeof(block_iq2_s),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  751. .from_float = quantize_row_iq2_s,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  753. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  754. .vec_dot_type = GGML_TYPE_Q8_K,
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_IQ1_S] = {
  758. .type_name = "iq1_s",
  759. .blck_size = QK_K,
  760. .type_size = sizeof(block_iq1_s),
  761. .is_quantized = true,
  762. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  763. .from_float = NULL,
  764. .from_float_reference = NULL,
  765. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  766. .vec_dot_type = GGML_TYPE_Q8_K,
  767. .nrows = 1,
  768. },
  769. [GGML_TYPE_IQ1_M] = {
  770. .type_name = "iq1_m",
  771. .blck_size = QK_K,
  772. .type_size = sizeof(block_iq1_m),
  773. .is_quantized = true,
  774. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  775. .from_float = NULL,
  776. .from_float_reference = NULL,
  777. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  778. .vec_dot_type = GGML_TYPE_Q8_K,
  779. .nrows = 1,
  780. },
  781. [GGML_TYPE_IQ4_NL] = {
  782. .type_name = "iq4_nl",
  783. .blck_size = QK4_NL,
  784. .type_size = sizeof(block_iq4_nl),
  785. .is_quantized = true,
  786. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  787. .from_float = quantize_row_iq4_nl,
  788. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  789. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  790. .vec_dot_type = GGML_TYPE_Q8_0,
  791. .nrows = 1,
  792. },
  793. [GGML_TYPE_IQ4_XS] = {
  794. .type_name = "iq4_xs",
  795. .blck_size = QK_K,
  796. .type_size = sizeof(block_iq4_xs),
  797. .is_quantized = true,
  798. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  799. .from_float = quantize_row_iq4_xs,
  800. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  801. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  802. .vec_dot_type = GGML_TYPE_Q8_K,
  803. .nrows = 1,
  804. },
  805. [GGML_TYPE_Q8_K] = {
  806. .type_name = "q8_K",
  807. .blck_size = QK_K,
  808. .type_size = sizeof(block_q8_K),
  809. .is_quantized = true,
  810. .from_float = quantize_row_q8_K,
  811. },
  812. [GGML_TYPE_BF16] = {
  813. .type_name = "bf16",
  814. .blck_size = 1,
  815. .type_size = sizeof(ggml_bf16_t),
  816. .is_quantized = false,
  817. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  818. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  819. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  820. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  821. .vec_dot_type = GGML_TYPE_BF16,
  822. .nrows = 1,
  823. }
  824. };
  825. // For internal test use
  826. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  827. GGML_ASSERT(type < GGML_TYPE_COUNT);
  828. return type_traits[type];
  829. }
  830. //
  831. // simd mappings
  832. //
  833. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  834. // we then implement the fundamental computation operations below using only these macros
  835. // adding support for new architectures requires to define the corresponding SIMD macros
  836. //
  837. // GGML_F32_STEP / GGML_F16_STEP
  838. // number of elements to process in a single step
  839. //
  840. // GGML_F32_EPR / GGML_F16_EPR
  841. // number of elements to fit in a single register
  842. //
  843. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  844. #define GGML_SIMD
  845. // F32 NEON
  846. #define GGML_F32_STEP 16
  847. #define GGML_F32_EPR 4
  848. #define GGML_F32x4 float32x4_t
  849. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  850. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  851. #define GGML_F32x4_LOAD vld1q_f32
  852. #define GGML_F32x4_STORE vst1q_f32
  853. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  854. #define GGML_F32x4_ADD vaddq_f32
  855. #define GGML_F32x4_MUL vmulq_f32
  856. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  857. #define GGML_F32x4_REDUCE(res, x) \
  858. { \
  859. int offset = GGML_F32_ARR >> 1; \
  860. for (int i = 0; i < offset; ++i) { \
  861. x[i] = vaddq_f32(x[i], x[offset+i]); \
  862. } \
  863. offset >>= 1; \
  864. for (int i = 0; i < offset; ++i) { \
  865. x[i] = vaddq_f32(x[i], x[offset+i]); \
  866. } \
  867. offset >>= 1; \
  868. for (int i = 0; i < offset; ++i) { \
  869. x[i] = vaddq_f32(x[i], x[offset+i]); \
  870. } \
  871. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  872. }
  873. #define GGML_F32_VEC GGML_F32x4
  874. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  875. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  876. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  877. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  878. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  879. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  880. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  881. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  882. // F16 NEON
  883. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  884. #define GGML_F16_STEP 32
  885. #define GGML_F16_EPR 8
  886. #define GGML_F16x8 float16x8_t
  887. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  888. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  889. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  890. #define GGML_F16x8_STORE vst1q_f16
  891. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  892. #define GGML_F16x8_ADD vaddq_f16
  893. #define GGML_F16x8_MUL vmulq_f16
  894. #define GGML_F16x8_REDUCE(res, x) \
  895. do { \
  896. int offset = GGML_F16_ARR >> 1; \
  897. for (int i = 0; i < offset; ++i) { \
  898. x[i] = vaddq_f16(x[i], x[offset+i]); \
  899. } \
  900. offset >>= 1; \
  901. for (int i = 0; i < offset; ++i) { \
  902. x[i] = vaddq_f16(x[i], x[offset+i]); \
  903. } \
  904. offset >>= 1; \
  905. for (int i = 0; i < offset; ++i) { \
  906. x[i] = vaddq_f16(x[i], x[offset+i]); \
  907. } \
  908. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  909. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  910. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  911. } while (0)
  912. #define GGML_F16_VEC GGML_F16x8
  913. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  914. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  915. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  916. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  917. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  918. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  919. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  920. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  921. #else
  922. // if FP16 vector arithmetic is not supported, we use FP32 instead
  923. // and take advantage of the vcvt_ functions to convert to/from FP16
  924. #define GGML_F16_STEP 16
  925. #define GGML_F16_EPR 4
  926. #define GGML_F32Cx4 float32x4_t
  927. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  928. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  929. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  930. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  931. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  932. #define GGML_F32Cx4_ADD vaddq_f32
  933. #define GGML_F32Cx4_MUL vmulq_f32
  934. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  935. #define GGML_F16_VEC GGML_F32Cx4
  936. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  937. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  938. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  939. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  940. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  941. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  942. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  943. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  944. #endif
  945. #elif defined(__AVX512F__)
  946. #define GGML_SIMD
  947. // F32 AVX512
  948. #define GGML_F32_STEP 64
  949. #define GGML_F32_EPR 16
  950. #define GGML_F32x16 __m512
  951. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  952. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  953. #define GGML_F32x16_LOAD _mm512_loadu_ps
  954. #define GGML_F32x16_STORE _mm512_storeu_ps
  955. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  956. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  957. #define GGML_F32x16_ADD _mm512_add_ps
  958. #define GGML_F32x16_MUL _mm512_mul_ps
  959. #define GGML_F32x16_REDUCE(res, x) \
  960. do { \
  961. int offset = GGML_F32_ARR >> 1; \
  962. for (int i = 0; i < offset; ++i) { \
  963. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  964. } \
  965. offset >>= 1; \
  966. for (int i = 0; i < offset; ++i) { \
  967. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  968. } \
  969. offset >>= 1; \
  970. for (int i = 0; i < offset; ++i) { \
  971. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  972. } \
  973. res = _mm512_reduce_add_ps(x[0]); \
  974. } while (0)
  975. // TODO: is this optimal ?
  976. #define GGML_F32_VEC GGML_F32x16
  977. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  978. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  979. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  980. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  981. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  982. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  983. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  984. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  985. // F16 AVX512
  986. // F16 AVX
  987. #define GGML_F16_STEP 64
  988. #define GGML_F16_EPR 16
  989. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  990. #define GGML_F32Cx16 __m512
  991. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  992. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  993. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  994. // so F16C guard isn't required
  995. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  996. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  997. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  998. #define GGML_F32Cx16_ADD _mm512_add_ps
  999. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1000. #define GGML_F32Cx16_REDUCE(res, x) \
  1001. do { \
  1002. int offset = GGML_F32_ARR >> 1; \
  1003. for (int i = 0; i < offset; ++i) { \
  1004. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1005. } \
  1006. offset >>= 1; \
  1007. for (int i = 0; i < offset; ++i) { \
  1008. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1009. } \
  1010. offset >>= 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. res = _mm512_reduce_add_ps(x[0]); \
  1015. } while (0)
  1016. #define GGML_F16_VEC GGML_F32Cx16
  1017. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1018. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1019. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1020. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1021. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1022. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1023. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1024. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1025. #elif defined(__AVX__)
  1026. #define GGML_SIMD
  1027. // F32 AVX
  1028. #define GGML_F32_STEP 32
  1029. #define GGML_F32_EPR 8
  1030. #define GGML_F32x8 __m256
  1031. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1032. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1033. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1034. #define GGML_F32x8_STORE _mm256_storeu_ps
  1035. #if defined(__FMA__)
  1036. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1037. #else
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1039. #endif
  1040. #define GGML_F32x8_ADD _mm256_add_ps
  1041. #define GGML_F32x8_MUL _mm256_mul_ps
  1042. #define GGML_F32x8_REDUCE(res, x) \
  1043. do { \
  1044. int offset = GGML_F32_ARR >> 1; \
  1045. for (int i = 0; i < offset; ++i) { \
  1046. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1047. } \
  1048. offset >>= 1; \
  1049. for (int i = 0; i < offset; ++i) { \
  1050. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1051. } \
  1052. offset >>= 1; \
  1053. for (int i = 0; i < offset; ++i) { \
  1054. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1055. } \
  1056. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1057. _mm256_extractf128_ps(x[0], 1)); \
  1058. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1059. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1060. } while (0)
  1061. // TODO: is this optimal ?
  1062. #define GGML_F32_VEC GGML_F32x8
  1063. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1064. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1065. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1066. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1067. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1068. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1069. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1070. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1071. // F16 AVX
  1072. #define GGML_F16_STEP 32
  1073. #define GGML_F16_EPR 8
  1074. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1075. #define GGML_F32Cx8 __m256
  1076. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1077. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1078. #if defined(__F16C__)
  1079. // the _mm256_cvt intrinsics require F16C
  1080. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1081. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1082. #else
  1083. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1084. float tmp[8];
  1085. for (int i = 0; i < 8; i++) {
  1086. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1087. }
  1088. return _mm256_loadu_ps(tmp);
  1089. }
  1090. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1091. float arr[8];
  1092. _mm256_storeu_ps(arr, y);
  1093. for (int i = 0; i < 8; i++)
  1094. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1095. }
  1096. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1097. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1098. #endif
  1099. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1100. #define GGML_F32Cx8_ADD _mm256_add_ps
  1101. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1102. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1103. #define GGML_F16_VEC GGML_F32Cx8
  1104. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1105. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1106. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1107. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1108. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1109. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1110. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1111. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1112. #elif defined(__POWER9_VECTOR__)
  1113. #define GGML_SIMD
  1114. // F32 POWER9
  1115. #define GGML_F32_STEP 32
  1116. #define GGML_F32_EPR 4
  1117. #define GGML_F32x4 vector float
  1118. #define GGML_F32x4_ZERO 0.0f
  1119. #define GGML_F32x4_SET1 vec_splats
  1120. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1121. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1122. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1123. #define GGML_F32x4_ADD vec_add
  1124. #define GGML_F32x4_MUL vec_mul
  1125. #define GGML_F32x4_REDUCE(res, x) \
  1126. { \
  1127. int offset = GGML_F32_ARR >> 1; \
  1128. for (int i = 0; i < offset; ++i) { \
  1129. x[i] = vec_add(x[i], x[offset+i]); \
  1130. } \
  1131. offset >>= 1; \
  1132. for (int i = 0; i < offset; ++i) { \
  1133. x[i] = vec_add(x[i], x[offset+i]); \
  1134. } \
  1135. offset >>= 1; \
  1136. for (int i = 0; i < offset; ++i) { \
  1137. x[i] = vec_add(x[i], x[offset+i]); \
  1138. } \
  1139. res = vec_extract(x[0], 0) + \
  1140. vec_extract(x[0], 1) + \
  1141. vec_extract(x[0], 2) + \
  1142. vec_extract(x[0], 3); \
  1143. }
  1144. #define GGML_F32_VEC GGML_F32x4
  1145. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1146. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1147. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1148. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1149. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1150. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1151. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1152. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1153. // F16 POWER9
  1154. #define GGML_F16_STEP GGML_F32_STEP
  1155. #define GGML_F16_EPR GGML_F32_EPR
  1156. #define GGML_F16_VEC GGML_F32x4
  1157. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1158. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1159. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1160. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1161. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1162. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1163. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1164. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1165. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1166. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1167. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1168. #define GGML_F16_VEC_STORE(p, r, i) \
  1169. if (i & 0x1) \
  1170. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1171. r[i - GGML_ENDIAN_BYTE(0)]), \
  1172. 0, p - GGML_F16_EPR)
  1173. #elif defined(__wasm_simd128__)
  1174. #define GGML_SIMD
  1175. // F32 WASM
  1176. #define GGML_F32_STEP 16
  1177. #define GGML_F32_EPR 4
  1178. #define GGML_F32x4 v128_t
  1179. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1180. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1181. #define GGML_F32x4_LOAD wasm_v128_load
  1182. #define GGML_F32x4_STORE wasm_v128_store
  1183. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1184. #define GGML_F32x4_ADD wasm_f32x4_add
  1185. #define GGML_F32x4_MUL wasm_f32x4_mul
  1186. #define GGML_F32x4_REDUCE(res, x) \
  1187. { \
  1188. int offset = GGML_F32_ARR >> 1; \
  1189. for (int i = 0; i < offset; ++i) { \
  1190. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1191. } \
  1192. offset >>= 1; \
  1193. for (int i = 0; i < offset; ++i) { \
  1194. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1195. } \
  1196. offset >>= 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1201. wasm_f32x4_extract_lane(x[0], 1) + \
  1202. wasm_f32x4_extract_lane(x[0], 2) + \
  1203. wasm_f32x4_extract_lane(x[0], 3); \
  1204. }
  1205. #define GGML_F32_VEC GGML_F32x4
  1206. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1207. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1208. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1209. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1210. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1211. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1212. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1213. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1214. // F16 WASM
  1215. #define GGML_F16_STEP 16
  1216. #define GGML_F16_EPR 4
  1217. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1218. float tmp[4];
  1219. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1220. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1221. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1222. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1223. return wasm_v128_load(tmp);
  1224. }
  1225. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1226. float tmp[4];
  1227. wasm_v128_store(tmp, x);
  1228. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1229. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1230. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1231. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1232. }
  1233. #define GGML_F16x4 v128_t
  1234. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1235. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1236. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1237. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1238. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1239. #define GGML_F16x4_ADD wasm_f32x4_add
  1240. #define GGML_F16x4_MUL wasm_f32x4_mul
  1241. #define GGML_F16x4_REDUCE(res, x) \
  1242. { \
  1243. int offset = GGML_F16_ARR >> 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1256. wasm_f32x4_extract_lane(x[0], 1) + \
  1257. wasm_f32x4_extract_lane(x[0], 2) + \
  1258. wasm_f32x4_extract_lane(x[0], 3); \
  1259. }
  1260. #define GGML_F16_VEC GGML_F16x4
  1261. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1262. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1263. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1264. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1265. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1266. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1267. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1268. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1269. #elif defined(__SSE3__)
  1270. #define GGML_SIMD
  1271. // F32 SSE
  1272. #define GGML_F32_STEP 32
  1273. #define GGML_F32_EPR 4
  1274. #define GGML_F32x4 __m128
  1275. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1276. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1277. #define GGML_F32x4_LOAD _mm_loadu_ps
  1278. #define GGML_F32x4_STORE _mm_storeu_ps
  1279. #if defined(__FMA__)
  1280. // TODO: Does this work?
  1281. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1282. #else
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1284. #endif
  1285. #define GGML_F32x4_ADD _mm_add_ps
  1286. #define GGML_F32x4_MUL _mm_mul_ps
  1287. #define GGML_F32x4_REDUCE(res, x) \
  1288. { \
  1289. int offset = GGML_F32_ARR >> 1; \
  1290. for (int i = 0; i < offset; ++i) { \
  1291. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1292. } \
  1293. offset >>= 1; \
  1294. for (int i = 0; i < offset; ++i) { \
  1295. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1296. } \
  1297. offset >>= 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1302. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1303. }
  1304. // TODO: is this optimal ?
  1305. #define GGML_F32_VEC GGML_F32x4
  1306. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1307. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1308. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1309. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1310. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1311. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1312. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1313. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1314. // F16 SSE
  1315. #define GGML_F16_STEP 32
  1316. #define GGML_F16_EPR 4
  1317. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1318. float tmp[4];
  1319. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1320. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1321. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1322. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1323. return _mm_loadu_ps(tmp);
  1324. }
  1325. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1326. float arr[4];
  1327. _mm_storeu_ps(arr, y);
  1328. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1329. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1330. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1331. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1332. }
  1333. #define GGML_F32Cx4 __m128
  1334. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1335. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1336. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1337. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1338. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1339. #define GGML_F32Cx4_ADD _mm_add_ps
  1340. #define GGML_F32Cx4_MUL _mm_mul_ps
  1341. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1342. #define GGML_F16_VEC GGML_F32Cx4
  1343. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1344. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1345. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1346. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1347. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1348. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1349. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1350. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1351. #elif defined(__loongarch_asx)
  1352. #define GGML_SIMD
  1353. // F32 LASX
  1354. #define GGML_F32_STEP 32
  1355. #define GGML_F32_EPR 8
  1356. #define GGML_F32x8 __m256
  1357. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1358. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1359. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1360. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1361. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1362. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1363. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1364. #define GGML_F32x8_REDUCE(res, x) \
  1365. do { \
  1366. int offset = GGML_F32_ARR >> 1; \
  1367. for (int i = 0; i < offset; ++i) { \
  1368. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1369. } \
  1370. offset >>= 1; \
  1371. for (int i = 0; i < offset; ++i) { \
  1372. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1373. } \
  1374. offset >>= 1; \
  1375. for (int i = 0; i < offset; ++i) { \
  1376. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1377. } \
  1378. float *tmp_p = (float *)&x[0]; \
  1379. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1380. } while (0)
  1381. // TODO: is this optimal ?
  1382. #define GGML_F32_VEC GGML_F32x8
  1383. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1384. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1385. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1386. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1387. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1388. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1389. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1390. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1391. // F16 LASX
  1392. #define GGML_F16_STEP 32
  1393. #define GGML_F16_EPR 8
  1394. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1395. #define GGML_F32Cx8 __m256
  1396. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1397. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1398. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1399. float tmp[8];
  1400. for (int i = 0; i < 8; i++) {
  1401. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1402. }
  1403. return (__m256)__lasx_xvld(tmp, 0);
  1404. }
  1405. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1406. float arr[8];
  1407. __lasx_xvst(y, arr, 0);
  1408. for (int i = 0; i < 8; i++) {
  1409. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1410. }
  1411. }
  1412. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1413. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1414. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1415. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1416. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1417. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1418. #define GGML_F16_VEC GGML_F32Cx8
  1419. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1420. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1421. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1422. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1423. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1424. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1425. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1426. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1427. #elif defined(__loongarch_sx)
  1428. #define GGML_SIMD
  1429. // F32 LSX
  1430. #define GGML_F32_STEP 32
  1431. #define GGML_F32_EPR 4
  1432. #define GGML_F32x4 __m128
  1433. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1434. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1435. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1436. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1437. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1438. #define GGML_F32x4_ADD __lsx_vfadd_s
  1439. #define GGML_F32x4_MUL __lsx_vfmul_s
  1440. #define GGML_F32x4_REDUCE(res, x) \
  1441. { \
  1442. int offset = GGML_F32_ARR >> 1; \
  1443. for (int i = 0; i < offset; ++i) { \
  1444. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1445. } \
  1446. offset >>= 1; \
  1447. for (int i = 0; i < offset; ++i) { \
  1448. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1449. } \
  1450. offset >>= 1; \
  1451. for (int i = 0; i < offset; ++i) { \
  1452. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1453. } \
  1454. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1455. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1456. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1457. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1458. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1459. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1460. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1461. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1462. }
  1463. #define GGML_F32_VEC GGML_F32x4
  1464. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1465. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1466. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1467. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1468. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1469. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1470. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1471. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1472. // F16 LSX
  1473. #define GGML_F16_STEP 32
  1474. #define GGML_F16_EPR 4
  1475. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1476. float tmp[4];
  1477. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1478. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1479. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1480. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1481. return __lsx_vld(tmp, 0);
  1482. }
  1483. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1484. float arr[4];
  1485. __lsx_vst(y, arr, 0);
  1486. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1487. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1488. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1489. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1490. }
  1491. #define GGML_F32Cx4 __m128
  1492. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1493. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1494. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1495. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1496. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1497. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1498. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1499. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1500. #define GGML_F16_VEC GGML_F32Cx4
  1501. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1502. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1503. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1504. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1505. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1506. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1507. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1508. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1509. #endif
  1510. // GGML_F32_ARR / GGML_F16_ARR
  1511. // number of registers to use per step
  1512. #ifdef GGML_SIMD
  1513. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1514. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1515. #endif
  1516. //
  1517. // ggml context
  1518. //
  1519. struct ggml_context {
  1520. size_t mem_size;
  1521. void* mem_buffer;
  1522. bool mem_buffer_owned;
  1523. bool no_alloc;
  1524. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1525. int n_objects;
  1526. struct ggml_object* objects_begin;
  1527. struct ggml_object* objects_end;
  1528. struct ggml_scratch scratch;
  1529. struct ggml_scratch scratch_save;
  1530. };
  1531. struct ggml_context_container {
  1532. bool used;
  1533. struct ggml_context context;
  1534. };
  1535. struct ggml_compute_state_shared {
  1536. const struct ggml_cgraph* cgraph;
  1537. const struct ggml_cplan* cplan;
  1538. int64_t perf_node_start_cycles;
  1539. int64_t perf_node_start_time_us;
  1540. int n_threads;
  1541. // synchronization primitives
  1542. atomic_int n_active; // num active threads
  1543. atomic_int node_n; // active graph node
  1544. atomic_int node_task; // active graph node task phase
  1545. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1546. void* abort_callback_data;
  1547. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1548. };
  1549. struct ggml_compute_state {
  1550. ggml_thread_t thrd;
  1551. int ith;
  1552. struct ggml_compute_state_shared* shared;
  1553. enum ggml_status ec;
  1554. };
  1555. //
  1556. // fundamental operations
  1557. //
  1558. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1559. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1560. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1564. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1565. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1566. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1567. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1568. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1569. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1570. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1571. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1572. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1573. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1574. assert(nrc == 1);
  1575. UNUSED(nrc);
  1576. UNUSED(bx);
  1577. UNUSED(by);
  1578. UNUSED(bs);
  1579. #if defined(GGML_SIMD)
  1580. float sumf = 0.0f;
  1581. const int np = (n & ~(GGML_F32_STEP - 1));
  1582. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1583. GGML_F32_VEC ax[GGML_F32_ARR];
  1584. GGML_F32_VEC ay[GGML_F32_ARR];
  1585. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1586. for (int j = 0; j < GGML_F32_ARR; j++) {
  1587. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1588. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1589. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1590. }
  1591. }
  1592. // reduce sum0..sum3 to sum0
  1593. GGML_F32_VEC_REDUCE(sumf, sum);
  1594. // leftovers
  1595. for (int i = np; i < n; ++i) {
  1596. sumf += x[i]*y[i];
  1597. }
  1598. #else
  1599. // scalar
  1600. ggml_float sumf = 0.0;
  1601. for (int i = 0; i < n; ++i) {
  1602. sumf += (ggml_float)(x[i]*y[i]);
  1603. }
  1604. #endif
  1605. *s = sumf;
  1606. }
  1607. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1608. assert(nrc == 1);
  1609. UNUSED(nrc);
  1610. UNUSED(bx);
  1611. UNUSED(by);
  1612. UNUSED(bs);
  1613. int i = 0;
  1614. ggml_float sumf = 0;
  1615. #if defined(__AVX512BF16__)
  1616. __m512 c1 = _mm512_setzero_ps();
  1617. __m512 c2 = _mm512_setzero_ps();
  1618. for (; i + 64 <= n; i += 64) {
  1619. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1620. m512bh(_mm512_loadu_si512((y + i))));
  1621. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1622. m512bh(_mm512_loadu_si512((y + i + 32))));
  1623. }
  1624. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1625. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1626. #elif defined(__AVX512F__)
  1627. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1628. __m512 c1 = _mm512_setzero_ps();
  1629. __m512 c2 = _mm512_setzero_ps();
  1630. for (; i + 32 <= n; i += 32) {
  1631. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1632. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1633. }
  1634. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1635. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1636. #undef LOAD
  1637. #elif defined(__AVX2__)
  1638. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1639. __m256 c1 = _mm256_setzero_ps();
  1640. __m256 c2 = _mm256_setzero_ps();
  1641. __m256 c3 = _mm256_setzero_ps();
  1642. __m256 c4 = _mm256_setzero_ps();
  1643. for (; i + 32 <= n; i += 32) {
  1644. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1645. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1646. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1647. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1648. }
  1649. __m128 g;
  1650. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1651. _mm256_add_ps(c2, c4));
  1652. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1653. _mm256_castps256_ps128(c1));
  1654. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1655. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1656. sumf += (ggml_float)_mm_cvtss_f32(g);
  1657. #undef LOAD
  1658. #endif
  1659. for (; i < n; ++i) {
  1660. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1661. GGML_BF16_TO_FP32(y[i]));
  1662. }
  1663. *s = sumf;
  1664. }
  1665. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1666. assert(nrc == 1);
  1667. UNUSED(nrc);
  1668. UNUSED(bx);
  1669. UNUSED(by);
  1670. UNUSED(bs);
  1671. ggml_float sumf = 0.0;
  1672. #if defined(GGML_SIMD)
  1673. const int np = (n & ~(GGML_F16_STEP - 1));
  1674. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1675. GGML_F16_VEC ax[GGML_F16_ARR];
  1676. GGML_F16_VEC ay[GGML_F16_ARR];
  1677. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1678. for (int j = 0; j < GGML_F16_ARR; j++) {
  1679. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1680. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1681. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1682. }
  1683. }
  1684. // reduce sum0..sum3 to sum0
  1685. GGML_F16_VEC_REDUCE(sumf, sum);
  1686. // leftovers
  1687. for (int i = np; i < n; ++i) {
  1688. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1689. }
  1690. #else
  1691. for (int i = 0; i < n; ++i) {
  1692. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1693. }
  1694. #endif
  1695. *s = sumf;
  1696. }
  1697. // compute GGML_VEC_DOT_UNROLL dot products at once
  1698. // xs - x row stride in bytes
  1699. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1700. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1701. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1702. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1703. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1704. }
  1705. #if defined(GGML_SIMD)
  1706. const int np = (n & ~(GGML_F16_STEP - 1));
  1707. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1708. GGML_F16_VEC ax[GGML_F16_ARR];
  1709. GGML_F16_VEC ay[GGML_F16_ARR];
  1710. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1711. for (int j = 0; j < GGML_F16_ARR; j++) {
  1712. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1713. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1714. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1715. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1716. }
  1717. }
  1718. }
  1719. // reduce sum0..sum3 to sum0
  1720. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1721. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1722. }
  1723. // leftovers
  1724. for (int i = np; i < n; ++i) {
  1725. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1726. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1727. }
  1728. }
  1729. #else
  1730. for (int i = 0; i < n; ++i) {
  1731. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1732. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1733. }
  1734. }
  1735. #endif
  1736. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1737. s[i] = sumf[i];
  1738. }
  1739. }
  1740. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1741. #if defined(GGML_SIMD)
  1742. const int np = (n & ~(GGML_F32_STEP - 1));
  1743. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1744. GGML_F32_VEC ax[GGML_F32_ARR];
  1745. GGML_F32_VEC ay[GGML_F32_ARR];
  1746. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1747. for (int j = 0; j < GGML_F32_ARR; j++) {
  1748. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1749. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1750. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1751. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1752. }
  1753. }
  1754. // leftovers
  1755. for (int i = np; i < n; ++i) {
  1756. y[i] += x[i]*v;
  1757. }
  1758. #else
  1759. // scalar
  1760. for (int i = 0; i < n; ++i) {
  1761. y[i] += x[i]*v;
  1762. }
  1763. #endif
  1764. }
  1765. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1766. #if defined(GGML_SIMD)
  1767. const int np = (n & ~(GGML_F16_STEP - 1));
  1768. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1769. GGML_F16_VEC ax[GGML_F16_ARR];
  1770. GGML_F16_VEC ay[GGML_F16_ARR];
  1771. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1772. for (int j = 0; j < GGML_F16_ARR; j++) {
  1773. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1774. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1775. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1776. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1777. }
  1778. }
  1779. // leftovers
  1780. for (int i = np; i < n; ++i) {
  1781. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1782. }
  1783. #else
  1784. // scalar
  1785. for (int i = 0; i < n; ++i) {
  1786. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1787. }
  1788. #endif
  1789. }
  1790. // xs and vs are byte strides of x and v
  1791. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1792. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1793. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1794. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1795. x[i] = (const float *) ((const char *) xv + i*xs);
  1796. v[i] = (const float *) ((const char *) vv + i*vs);
  1797. }
  1798. #if defined(GGML_SIMD)
  1799. const int np = (n & ~(GGML_F32_STEP - 1));
  1800. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1801. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1802. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1803. }
  1804. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1805. GGML_F32_VEC ay[GGML_F32_ARR];
  1806. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1807. for (int j = 0; j < GGML_F32_ARR; j++) {
  1808. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1809. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1810. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1811. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1812. }
  1813. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1814. }
  1815. }
  1816. // leftovers
  1817. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1818. for (int i = np; i < n; ++i) {
  1819. y[i] += x[k][i]*v[k][0];
  1820. }
  1821. }
  1822. #else
  1823. // scalar
  1824. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1825. for (int i = 0; i < n; ++i) {
  1826. y[i] += x[k][i]*v[k][0];
  1827. }
  1828. }
  1829. #endif
  1830. }
  1831. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1832. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1833. #if defined(GGML_USE_ACCELERATE)
  1834. vDSP_vsmul(y, 1, &v, y, 1, n);
  1835. #elif defined(GGML_SIMD)
  1836. const int np = (n & ~(GGML_F32_STEP - 1));
  1837. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1838. GGML_F32_VEC ay[GGML_F32_ARR];
  1839. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1840. for (int j = 0; j < GGML_F32_ARR; j++) {
  1841. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1842. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1843. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1844. }
  1845. }
  1846. // leftovers
  1847. for (int i = np; i < n; ++i) {
  1848. y[i] *= v;
  1849. }
  1850. #else
  1851. // scalar
  1852. for (int i = 0; i < n; ++i) {
  1853. y[i] *= v;
  1854. }
  1855. #endif
  1856. }
  1857. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1858. #if defined(GGML_SIMD)
  1859. const int np = (n & ~(GGML_F16_STEP - 1));
  1860. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1861. GGML_F16_VEC ay[GGML_F16_ARR];
  1862. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1863. for (int j = 0; j < GGML_F16_ARR; j++) {
  1864. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1865. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1866. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1867. }
  1868. }
  1869. // leftovers
  1870. for (int i = np; i < n; ++i) {
  1871. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1872. }
  1873. #else
  1874. // scalar
  1875. for (int i = 0; i < n; ++i) {
  1876. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1877. }
  1878. #endif
  1879. }
  1880. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1881. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1882. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1883. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1884. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1885. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1886. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1887. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1888. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1889. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1890. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1891. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1892. // TODO: optimize performance
  1893. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1894. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1895. static const float GELU_COEF_A = 0.044715f;
  1896. static const float GELU_QUICK_COEF = -1.702f;
  1897. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1898. inline static float ggml_gelu_f32(float x) {
  1899. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1900. }
  1901. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1902. const uint16_t * i16 = (const uint16_t *) x;
  1903. for (int i = 0; i < n; ++i) {
  1904. y[i] = ggml_table_gelu_f16[i16[i]];
  1905. }
  1906. }
  1907. #ifdef GGML_GELU_FP16
  1908. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1909. uint16_t t;
  1910. for (int i = 0; i < n; ++i) {
  1911. if (x[i] <= -10.0f) {
  1912. y[i] = 0.0f;
  1913. } else if (x[i] >= 10.0f) {
  1914. y[i] = x[i];
  1915. } else {
  1916. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1917. memcpy(&t, &fp16, sizeof(uint16_t));
  1918. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1919. }
  1920. }
  1921. }
  1922. #else
  1923. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1924. for (int i = 0; i < n; ++i) {
  1925. y[i] = ggml_gelu_f32(x[i]);
  1926. }
  1927. }
  1928. #endif
  1929. inline static float ggml_gelu_quick_f32(float x) {
  1930. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1931. }
  1932. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1933. // const uint16_t * i16 = (const uint16_t *) x;
  1934. // for (int i = 0; i < n; ++i) {
  1935. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1936. // }
  1937. //}
  1938. #ifdef GGML_GELU_QUICK_FP16
  1939. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1940. uint16_t t;
  1941. for (int i = 0; i < n; ++i) {
  1942. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1943. memcpy(&t, &fp16, sizeof(uint16_t));
  1944. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1945. }
  1946. }
  1947. #else
  1948. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1949. for (int i = 0; i < n; ++i) {
  1950. y[i] = ggml_gelu_quick_f32(x[i]);
  1951. }
  1952. }
  1953. #endif
  1954. // Sigmoid Linear Unit (SiLU) function
  1955. inline static float ggml_silu_f32(float x) {
  1956. return x/(1.0f + expf(-x));
  1957. }
  1958. #if __FINITE_MATH_ONLY__
  1959. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1960. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1961. #endif
  1962. #if defined(__ARM_NEON) && defined(__aarch64__)
  1963. // adapted from arm limited optimized routine
  1964. // the maximum error is 1.45358 plus 0.5 ulps
  1965. // numbers above 88.38 will flush to infinity
  1966. // numbers beneath -103.97 will flush to zero
  1967. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1968. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1969. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1970. const float32x4_t n = vsubq_f32(z, r);
  1971. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1972. vdupq_n_f32(0x1.7f7d1cp-20f));
  1973. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1974. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1975. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1976. const float32x4_t u = vmulq_f32(b, b);
  1977. const float32x4_t j = vfmaq_f32(
  1978. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1979. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1980. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1981. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1982. return vfmaq_f32(k, j, k);
  1983. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1984. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1985. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1986. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1987. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1988. }
  1989. // computes silu x/(1+exp(-x)) in single precision vector
  1990. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1991. const float32x4_t one = vdupq_n_f32(1.0f);
  1992. const float32x4_t zero = vdupq_n_f32(0.0f);
  1993. const float32x4_t neg_x = vsubq_f32(zero, x);
  1994. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1995. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1996. return vdivq_f32(x, one_plus_exp_neg_x);
  1997. }
  1998. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1999. // adapted from arm limited optimized routine
  2000. // the maximum error is 1.45358 plus 0.5 ulps
  2001. // numbers above 88.38 will flush to infinity
  2002. // numbers beneath -103.97 will flush to zero
  2003. inline static __m512 ggml_v_expf(__m512 x) {
  2004. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2005. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2006. const __m512 n = _mm512_sub_ps(z, r);
  2007. const __m512 b =
  2008. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2009. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2010. const __mmask16 d =
  2011. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2012. const __m512 u = _mm512_mul_ps(b, b);
  2013. const __m512 j = _mm512_fmadd_ps(
  2014. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2015. _mm512_set1_ps(0x1.573e2ep-5f)),
  2016. u,
  2017. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2018. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2019. u,
  2020. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2021. const __m512 res = _mm512_scalef_ps(j, n);
  2022. if (_mm512_kortestz(d, d))
  2023. return res;
  2024. const __m512 zero = _mm512_setzero_ps();
  2025. const __m512 alt = _mm512_mask_blend_ps(
  2026. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2027. return _mm512_mask_blend_ps(d, res, alt);
  2028. }
  2029. // computes silu x/(1+exp(-x)) in single precision vector
  2030. inline static __m512 ggml_v_silu(__m512 x) {
  2031. const __m512 one = _mm512_set1_ps(1);
  2032. const __m512 zero = _mm512_setzero_ps();
  2033. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2034. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2035. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2036. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2037. }
  2038. #elif defined(__AVX2__) && defined(__FMA__)
  2039. // adapted from arm limited optimized routine
  2040. // the maximum error is 1.45358 plus 0.5 ulps
  2041. // numbers above 88.38 will flush to infinity
  2042. // numbers beneath -103.97 will flush to zero
  2043. inline static __m256 ggml_v_expf(__m256 x) {
  2044. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2045. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2046. const __m256 n = _mm256_sub_ps(z, r);
  2047. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2048. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2049. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2050. const __m256 k = _mm256_castsi256_ps(
  2051. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2052. const __m256i c = _mm256_castps_si256(
  2053. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2054. _mm256_set1_ps(126), _CMP_GT_OQ));
  2055. const __m256 u = _mm256_mul_ps(b, b);
  2056. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2057. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2058. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2059. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2060. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2061. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2062. return _mm256_fmadd_ps(j, k, k);
  2063. const __m256i g = _mm256_and_si256(
  2064. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2065. _mm256_set1_epi32(0x82000000u));
  2066. const __m256 s1 =
  2067. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2068. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2069. const __m256i d = _mm256_castps_si256(
  2070. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2071. _mm256_set1_ps(192), _CMP_GT_OQ));
  2072. return _mm256_or_ps(
  2073. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2074. _mm256_andnot_ps(
  2075. _mm256_castsi256_ps(d),
  2076. _mm256_or_ps(
  2077. _mm256_and_ps(_mm256_castsi256_ps(c),
  2078. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2079. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2080. }
  2081. // computes silu x/(1+exp(-x)) in single precision vector
  2082. inline static __m256 ggml_v_silu(__m256 x) {
  2083. const __m256 one = _mm256_set1_ps(1);
  2084. const __m256 zero = _mm256_setzero_ps();
  2085. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2086. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2087. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2088. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2089. }
  2090. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2091. #if defined(__FMA__)
  2092. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2093. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2094. #else
  2095. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2096. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2097. #endif
  2098. // adapted from arm limited optimized routine
  2099. // the maximum error is 1.45358 plus 0.5 ulps
  2100. // numbers above 88.38 will flush to infinity
  2101. // numbers beneath -103.97 will flush to zero
  2102. inline static __m128 ggml_v_expf(__m128 x) {
  2103. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2104. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2105. const __m128 n = _mm_sub_ps(z, r);
  2106. const __m128 b =
  2107. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2108. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2109. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2110. const __m128i c =
  2111. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2112. const __m128 u = _mm_mul_ps(b, b);
  2113. const __m128 j =
  2114. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2115. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2116. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2117. if (!_mm_movemask_epi8(c))
  2118. return MADD128(j, k, k);
  2119. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2120. _mm_set1_epi32(0x82000000u));
  2121. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2122. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2123. const __m128i d =
  2124. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2125. return _mm_or_ps(
  2126. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2127. _mm_andnot_ps(_mm_castsi128_ps(d),
  2128. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2129. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2130. }
  2131. // computes silu x/(1+exp(-x)) in single precision vector
  2132. inline static __m128 ggml_v_silu(__m128 x) {
  2133. const __m128 one = _mm_set1_ps(1);
  2134. const __m128 zero = _mm_setzero_ps();
  2135. const __m128 neg_x = _mm_sub_ps(zero, x);
  2136. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2137. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2138. return _mm_div_ps(x, one_plus_exp_neg_x);
  2139. }
  2140. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2141. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2142. int i = 0;
  2143. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2144. for (; i + 15 < n; i += 16) {
  2145. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2146. }
  2147. #elif defined(__AVX2__) && defined(__FMA__)
  2148. for (; i + 7 < n; i += 8) {
  2149. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2150. }
  2151. #elif defined(__SSE2__)
  2152. for (; i + 3 < n; i += 4) {
  2153. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2154. }
  2155. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2156. for (; i + 3 < n; i += 4) {
  2157. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2158. }
  2159. #endif
  2160. for (; i < n; ++i) {
  2161. y[i] = ggml_silu_f32(x[i]);
  2162. }
  2163. }
  2164. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2165. int i = 0;
  2166. ggml_float sum = 0;
  2167. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2168. for (; i + 15 < n; i += 16) {
  2169. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2170. _mm512_set1_ps(max)));
  2171. _mm512_storeu_ps(y + i, val);
  2172. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2173. }
  2174. #elif defined(__AVX2__) && defined(__FMA__)
  2175. for (; i + 7 < n; i += 8) {
  2176. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2177. _mm256_set1_ps(max)));
  2178. _mm256_storeu_ps(y + i, val);
  2179. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2180. _mm256_castps256_ps128(val));
  2181. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2182. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2183. sum += (ggml_float)_mm_cvtss_f32(val2);
  2184. }
  2185. #elif defined(__SSE2__)
  2186. for (; i + 3 < n; i += 4) {
  2187. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2188. _mm_set1_ps(max)));
  2189. _mm_storeu_ps(y + i, val);
  2190. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2191. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2192. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2193. #else
  2194. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2195. val = _mm_add_ps(val, tmp);
  2196. tmp = _mm_movehl_ps(tmp, val);
  2197. val = _mm_add_ss(val, tmp);
  2198. #endif
  2199. sum += (ggml_float)_mm_cvtss_f32(val);
  2200. }
  2201. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2202. for (; i + 3 < n; i += 4) {
  2203. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2204. vdupq_n_f32(max)));
  2205. vst1q_f32(y + i, val);
  2206. sum += (ggml_float)vaddvq_f32(val);
  2207. }
  2208. #endif
  2209. for (; i < n; ++i) {
  2210. float val = expf(x[i] - max);
  2211. sum += (ggml_float)val;
  2212. y[i] = val;
  2213. }
  2214. return sum;
  2215. }
  2216. inline static float ggml_silu_backward_f32(float x, float dy) {
  2217. const float s = 1.0f/(1.0f + expf(-x));
  2218. return dy*s*(1.0f + x*(1.0f - s));
  2219. }
  2220. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2221. for (int i = 0; i < n; ++i) {
  2222. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2223. }
  2224. }
  2225. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2226. #ifndef GGML_USE_ACCELERATE
  2227. ggml_float sum = 0.0;
  2228. for (int i = 0; i < n; ++i) {
  2229. sum += (ggml_float)x[i];
  2230. }
  2231. *s = sum;
  2232. #else
  2233. vDSP_sve(x, 1, s, n);
  2234. #endif
  2235. }
  2236. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2237. ggml_float sum = 0.0;
  2238. for (int i = 0; i < n; ++i) {
  2239. sum += (ggml_float)x[i];
  2240. }
  2241. *s = sum;
  2242. }
  2243. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2244. float sum = 0.0f;
  2245. for (int i = 0; i < n; ++i) {
  2246. sum += GGML_FP16_TO_FP32(x[i]);
  2247. }
  2248. *s = sum;
  2249. }
  2250. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2251. float sum = 0.0f;
  2252. for (int i = 0; i < n; ++i) {
  2253. sum += GGML_BF16_TO_FP32(x[i]);
  2254. }
  2255. *s = sum;
  2256. }
  2257. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2258. #ifndef GGML_USE_ACCELERATE
  2259. float max = -INFINITY;
  2260. for (int i = 0; i < n; ++i) {
  2261. max = MAX(max, x[i]);
  2262. }
  2263. *s = max;
  2264. #else
  2265. vDSP_maxv(x, 1, s, n);
  2266. #endif
  2267. }
  2268. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2269. ggml_vec_norm_f32(n, s, x);
  2270. *s = 1.f/(*s);
  2271. }
  2272. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2273. float max = -INFINITY;
  2274. int idx = 0;
  2275. for (int i = 0; i < n; ++i) {
  2276. max = MAX(max, x[i]);
  2277. if (max == x[i]) { idx = i; }
  2278. }
  2279. *s = idx;
  2280. }
  2281. //
  2282. // data types
  2283. //
  2284. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2285. "NONE",
  2286. "DUP",
  2287. "ADD",
  2288. "ADD1",
  2289. "ACC",
  2290. "SUB",
  2291. "MUL",
  2292. "DIV",
  2293. "SQR",
  2294. "SQRT",
  2295. "LOG",
  2296. "SUM",
  2297. "SUM_ROWS",
  2298. "MEAN",
  2299. "ARGMAX",
  2300. "REPEAT",
  2301. "REPEAT_BACK",
  2302. "CONCAT",
  2303. "SILU_BACK",
  2304. "NORM",
  2305. "RMS_NORM",
  2306. "RMS_NORM_BACK",
  2307. "GROUP_NORM",
  2308. "MUL_MAT",
  2309. "MUL_MAT_ID",
  2310. "OUT_PROD",
  2311. "SCALE",
  2312. "SET",
  2313. "CPY",
  2314. "CONT",
  2315. "RESHAPE",
  2316. "VIEW",
  2317. "PERMUTE",
  2318. "TRANSPOSE",
  2319. "GET_ROWS",
  2320. "GET_ROWS_BACK",
  2321. "DIAG",
  2322. "DIAG_MASK_INF",
  2323. "DIAG_MASK_ZERO",
  2324. "SOFT_MAX",
  2325. "SOFT_MAX_BACK",
  2326. "ROPE",
  2327. "ROPE_BACK",
  2328. "CLAMP",
  2329. "CONV_TRANSPOSE_1D",
  2330. "IM2COL",
  2331. "CONV_TRANSPOSE_2D",
  2332. "POOL_1D",
  2333. "POOL_2D",
  2334. "UPSCALE",
  2335. "PAD",
  2336. "ARANGE",
  2337. "TIMESTEP_EMBEDDING",
  2338. "ARGSORT",
  2339. "LEAKY_RELU",
  2340. "FLASH_ATTN_EXT",
  2341. "FLASH_ATTN_BACK",
  2342. "SSM_CONV",
  2343. "SSM_SCAN",
  2344. "WIN_PART",
  2345. "WIN_UNPART",
  2346. "GET_REL_POS",
  2347. "ADD_REL_POS",
  2348. "UNARY",
  2349. "MAP_UNARY",
  2350. "MAP_BINARY",
  2351. "MAP_CUSTOM1_F32",
  2352. "MAP_CUSTOM2_F32",
  2353. "MAP_CUSTOM3_F32",
  2354. "MAP_CUSTOM1",
  2355. "MAP_CUSTOM2",
  2356. "MAP_CUSTOM3",
  2357. "CROSS_ENTROPY_LOSS",
  2358. "CROSS_ENTROPY_LOSS_BACK",
  2359. };
  2360. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2361. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2362. "none",
  2363. "x",
  2364. "x+y",
  2365. "x+y",
  2366. "view(x,nb,offset)+=y->x",
  2367. "x-y",
  2368. "x*y",
  2369. "x/y",
  2370. "x^2",
  2371. "√x",
  2372. "log(x)",
  2373. "Σx",
  2374. "Σx_k",
  2375. "Σx/n",
  2376. "argmax(x)",
  2377. "repeat(x)",
  2378. "repeat_back(x)",
  2379. "concat(x, y)",
  2380. "silu_back(x)",
  2381. "norm(x)",
  2382. "rms_norm(x)",
  2383. "rms_norm_back(x)",
  2384. "group_norm(x)",
  2385. "X*Y",
  2386. "X[i]*Y",
  2387. "X*Y",
  2388. "x*v",
  2389. "y-\\>view(x)",
  2390. "x-\\>y",
  2391. "cont(x)",
  2392. "reshape(x)",
  2393. "view(x)",
  2394. "permute(x)",
  2395. "transpose(x)",
  2396. "get_rows(x)",
  2397. "get_rows_back(x)",
  2398. "diag(x)",
  2399. "diag_mask_inf(x)",
  2400. "diag_mask_zero(x)",
  2401. "soft_max(x)",
  2402. "soft_max_back(x)",
  2403. "rope(x)",
  2404. "rope_back(x)",
  2405. "clamp(x)",
  2406. "conv_transpose_1d(x)",
  2407. "im2col(x)",
  2408. "conv_transpose_2d(x)",
  2409. "pool_1d(x)",
  2410. "pool_2d(x)",
  2411. "upscale(x)",
  2412. "pad(x)",
  2413. "arange(start, stop, step)",
  2414. "timestep_embedding(timesteps, dim, max_period)",
  2415. "argsort(x)",
  2416. "leaky_relu(x)",
  2417. "flash_attn_ext(x)",
  2418. "flash_attn_back(x)",
  2419. "ssm_conv(x)",
  2420. "ssm_scan(x)",
  2421. "win_part(x)",
  2422. "win_unpart(x)",
  2423. "get_rel_pos(x)",
  2424. "add_rel_pos(x)",
  2425. "unary(x)",
  2426. "f(x)",
  2427. "f(x,y)",
  2428. "custom_f32(x)",
  2429. "custom_f32(x,y)",
  2430. "custom_f32(x,y,z)",
  2431. "custom(x)",
  2432. "custom(x,y)",
  2433. "custom(x,y,z)",
  2434. "cross_entropy_loss(x,y)",
  2435. "cross_entropy_loss_back(x,y)",
  2436. };
  2437. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2438. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2439. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2440. "ABS",
  2441. "SGN",
  2442. "NEG",
  2443. "STEP",
  2444. "TANH",
  2445. "ELU",
  2446. "RELU",
  2447. "SIGMOID",
  2448. "GELU",
  2449. "GELU_QUICK",
  2450. "SILU",
  2451. "HARDSWISH",
  2452. "HARDSIGMOID",
  2453. };
  2454. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2455. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2456. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2457. // WARN:
  2458. // Mis-configuration can lead to problem that's hard to reason about:
  2459. // * At best it crash or talks nosense.
  2460. // * At worst it talks slightly difference but hard to perceive.
  2461. //
  2462. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2463. // Take care about compile options (e.g., GGML_USE_xxx).
  2464. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2465. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2466. static void ggml_setup_op_has_task_pass(void) {
  2467. { // INIT
  2468. bool * p = GGML_OP_HAS_INIT;
  2469. p[GGML_OP_ACC ] = true;
  2470. p[GGML_OP_MUL_MAT ] = true;
  2471. p[GGML_OP_MUL_MAT_ID ] = true;
  2472. p[GGML_OP_OUT_PROD ] = true;
  2473. p[GGML_OP_SET ] = true;
  2474. p[GGML_OP_GET_ROWS_BACK ] = true;
  2475. p[GGML_OP_DIAG_MASK_INF ] = true;
  2476. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2477. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2478. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2479. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2480. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2481. p[GGML_OP_ADD_REL_POS ] = true;
  2482. }
  2483. { // FINALIZE
  2484. bool * p = GGML_OP_HAS_FINALIZE;
  2485. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2486. }
  2487. }
  2488. //
  2489. // NUMA support
  2490. //
  2491. #define GGML_NUMA_MAX_NODES 8
  2492. #define GGML_NUMA_MAX_CPUS 512
  2493. struct ggml_numa_node {
  2494. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2495. uint32_t n_cpus;
  2496. };
  2497. struct ggml_numa_nodes {
  2498. enum ggml_numa_strategy numa_strategy;
  2499. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2500. uint32_t n_nodes;
  2501. uint32_t total_cpus; // hardware threads on system
  2502. uint32_t current_node; // node on which main process is execting
  2503. #if defined(__gnu_linux__)
  2504. cpu_set_t cpuset; // cpuset from numactl
  2505. #else
  2506. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2507. #endif
  2508. };
  2509. //
  2510. // ggml state
  2511. //
  2512. struct ggml_state {
  2513. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2514. struct ggml_numa_nodes numa;
  2515. };
  2516. // global state
  2517. static struct ggml_state g_state;
  2518. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2519. // barrier via spin lock
  2520. inline static void ggml_critical_section_start(void) {
  2521. while (atomic_flag_test_and_set(&g_state_critical)) {
  2522. // spin
  2523. sched_yield();
  2524. }
  2525. }
  2526. // TODO: make this somehow automatically executed
  2527. // some sort of "sentry" mechanism
  2528. inline static void ggml_critical_section_end(void) {
  2529. atomic_flag_clear(&g_state_critical);
  2530. }
  2531. #if defined(__gnu_linux__)
  2532. static cpu_set_t ggml_get_numa_affinity(void) {
  2533. cpu_set_t cpuset;
  2534. pthread_t thread;
  2535. thread = pthread_self();
  2536. CPU_ZERO(&cpuset);
  2537. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2538. return cpuset;
  2539. }
  2540. #else
  2541. static uint32_t ggml_get_numa_affinity(void) {
  2542. return 0; // no NUMA support
  2543. }
  2544. #endif
  2545. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2546. if (g_state.numa.n_nodes > 0) {
  2547. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2548. return;
  2549. }
  2550. #if defined(__gnu_linux__)
  2551. struct stat st;
  2552. char path[256];
  2553. int rv;
  2554. // set numa scheme
  2555. g_state.numa.numa_strategy = numa_flag;
  2556. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2557. g_state.numa.cpuset = ggml_get_numa_affinity();
  2558. // enumerate nodes
  2559. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2560. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2561. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2562. if (stat(path, &st) != 0) { break; }
  2563. ++g_state.numa.n_nodes;
  2564. }
  2565. // enumerate CPUs
  2566. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2567. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2568. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2569. if (stat(path, &st) != 0) { break; }
  2570. ++g_state.numa.total_cpus;
  2571. }
  2572. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2573. // figure out which node we're on
  2574. uint current_cpu;
  2575. int getcpu_ret = 0;
  2576. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2577. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2578. #else
  2579. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2580. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2581. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2582. # endif
  2583. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2584. #endif
  2585. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2586. g_state.numa.n_nodes = 0;
  2587. return;
  2588. }
  2589. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2590. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2591. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2592. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2593. node->n_cpus = 0;
  2594. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2595. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2596. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2597. if (stat(path, &st) == 0) {
  2598. node->cpus[node->n_cpus++] = c;
  2599. GGML_PRINT_DEBUG(" %u", c);
  2600. }
  2601. }
  2602. GGML_PRINT_DEBUG("\n");
  2603. }
  2604. if (ggml_is_numa()) {
  2605. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2606. if (fptr != NULL) {
  2607. char buf[42];
  2608. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2609. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2610. }
  2611. fclose(fptr);
  2612. }
  2613. }
  2614. #else
  2615. GGML_UNUSED(numa_flag);
  2616. // TODO
  2617. #endif
  2618. }
  2619. bool ggml_is_numa(void) {
  2620. return g_state.numa.n_nodes > 1;
  2621. }
  2622. ////////////////////////////////////////////////////////////////////////////////
  2623. void ggml_print_object(const struct ggml_object * obj) {
  2624. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2625. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2626. }
  2627. void ggml_print_objects(const struct ggml_context * ctx) {
  2628. struct ggml_object * obj = ctx->objects_begin;
  2629. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2630. while (obj != NULL) {
  2631. ggml_print_object(obj);
  2632. obj = obj->next;
  2633. }
  2634. GGML_PRINT("%s: --- end ---\n", __func__);
  2635. }
  2636. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2637. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2638. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2639. }
  2640. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2641. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2642. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2643. }
  2644. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2645. size_t nbytes;
  2646. size_t blck_size = ggml_blck_size(tensor->type);
  2647. if (blck_size == 1) {
  2648. nbytes = ggml_type_size(tensor->type);
  2649. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2650. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2651. }
  2652. }
  2653. else {
  2654. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2655. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2656. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2657. }
  2658. }
  2659. return nbytes;
  2660. }
  2661. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2662. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2663. }
  2664. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2665. return type_traits[type].blck_size;
  2666. }
  2667. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2668. return type_traits[type].type_size;
  2669. }
  2670. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2671. assert(ne % ggml_blck_size(type) == 0);
  2672. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2673. }
  2674. double ggml_type_sizef(enum ggml_type type) {
  2675. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2676. }
  2677. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2678. return type_traits[type].type_name;
  2679. }
  2680. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2681. return type_traits[type].is_quantized;
  2682. }
  2683. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2684. return GGML_OP_NAME[op];
  2685. }
  2686. const char * ggml_op_symbol(enum ggml_op op) {
  2687. return GGML_OP_SYMBOL[op];
  2688. }
  2689. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2690. return GGML_UNARY_OP_NAME[op];
  2691. }
  2692. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2693. if (t->op == GGML_OP_UNARY) {
  2694. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2695. return ggml_unary_op_name(uop);
  2696. }
  2697. else {
  2698. return ggml_op_name(t->op);
  2699. }
  2700. }
  2701. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2702. return ggml_type_size(tensor->type);
  2703. }
  2704. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2706. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2707. }
  2708. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2709. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2710. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2711. }
  2712. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2713. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2714. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2715. }
  2716. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2717. return tensor->ne[3] == 1;
  2718. }
  2719. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2720. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2721. if (tensor->ne[i] > 1) {
  2722. return i + 1;
  2723. }
  2724. }
  2725. return 1;
  2726. }
  2727. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2728. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2729. return (t0->ne[0] == t1->ne[0]) &&
  2730. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2731. (t1->ne[3]%t0->ne[3] == 0);
  2732. }
  2733. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2734. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2735. return (t0->ne[1] == t1->ne[1]) &&
  2736. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2737. (t1->ne[3]%t0->ne[3] == 0);
  2738. }
  2739. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2740. enum ggml_type wtype = GGML_TYPE_COUNT;
  2741. switch (ftype) {
  2742. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2743. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2744. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2745. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2746. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2747. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2748. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2749. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2750. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2751. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2752. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2753. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2754. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2755. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2756. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2757. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2758. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2759. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2760. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2761. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2762. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2763. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2764. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2765. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2766. }
  2767. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2768. return wtype;
  2769. }
  2770. size_t ggml_tensor_overhead(void) {
  2771. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2772. }
  2773. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2774. return tensor->nb[0] > tensor->nb[1];
  2775. }
  2776. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2777. size_t next_nb = ggml_type_size(tensor->type);
  2778. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2779. return false;
  2780. }
  2781. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2782. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2783. if (tensor->ne[i] != 1) {
  2784. if (i > n) {
  2785. if (tensor->nb[i] != next_nb) {
  2786. return false;
  2787. }
  2788. next_nb *= tensor->ne[i];
  2789. } else {
  2790. // this dimension does not need to be contiguous
  2791. next_nb = tensor->ne[i]*tensor->nb[i];
  2792. }
  2793. }
  2794. }
  2795. return true;
  2796. }
  2797. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2798. return ggml_is_contiguous_0(tensor);
  2799. }
  2800. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2801. return ggml_is_contiguous_n(tensor, 0);
  2802. }
  2803. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2804. return ggml_is_contiguous_n(tensor, 1);
  2805. }
  2806. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2807. return ggml_is_contiguous_n(tensor, 2);
  2808. }
  2809. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2810. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2811. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2812. }
  2813. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2814. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2815. return
  2816. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2817. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2818. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2819. }
  2820. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2821. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2822. if (tensor->ne[i] == 0) {
  2823. // empty if any dimension has no elements
  2824. return true;
  2825. }
  2826. }
  2827. return false;
  2828. }
  2829. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2830. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2831. return
  2832. (t0->ne[0] == t1->ne[0]) &&
  2833. (t0->ne[1] == t1->ne[1]) &&
  2834. (t0->ne[2] == t1->ne[2]) &&
  2835. (t0->ne[3] == t1->ne[3]);
  2836. }
  2837. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return
  2840. (t0->nb[0] == t1->nb[0]) &&
  2841. (t0->nb[1] == t1->nb[1]) &&
  2842. (t0->nb[2] == t1->nb[2]) &&
  2843. (t0->nb[3] == t1->nb[3]);
  2844. }
  2845. // check if t1 can be represented as a repeatition of t0
  2846. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2848. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2849. (t1->ne[0]%t0->ne[0] == 0) &&
  2850. (t1->ne[1]%t0->ne[1] == 0) &&
  2851. (t1->ne[2]%t0->ne[2] == 0) &&
  2852. (t1->ne[3]%t0->ne[3] == 0);
  2853. }
  2854. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2855. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2856. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2857. }
  2858. static inline int ggml_up32(int n) {
  2859. return (n + 31) & ~31;
  2860. }
  2861. //static inline int ggml_up64(int n) {
  2862. // return (n + 63) & ~63;
  2863. //}
  2864. static inline int ggml_up(int n, int m) {
  2865. // assert m is a power of 2
  2866. GGML_ASSERT((m & (m - 1)) == 0);
  2867. return (n + m - 1) & ~(m - 1);
  2868. }
  2869. // assert that pointer is aligned to GGML_MEM_ALIGN
  2870. #define ggml_assert_aligned(ptr) \
  2871. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2872. ////////////////////////////////////////////////////////////////////////////////
  2873. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2874. // make this function thread safe
  2875. ggml_critical_section_start();
  2876. static bool is_first_call = true;
  2877. if (is_first_call) {
  2878. // initialize time system (required on Windows)
  2879. ggml_time_init();
  2880. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2881. {
  2882. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2883. for (int i = 0; i < (1 << 16); ++i) {
  2884. union {
  2885. uint16_t u16;
  2886. ggml_fp16_t fp16;
  2887. } u = {i};
  2888. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2889. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2890. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2891. }
  2892. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2893. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2894. }
  2895. // initialize g_state
  2896. {
  2897. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2898. g_state = (struct ggml_state) {
  2899. /*.contexts =*/ { { 0 } },
  2900. /*.numa =*/ {
  2901. .n_nodes = 0,
  2902. .total_cpus = 0,
  2903. },
  2904. };
  2905. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2906. g_state.contexts[i].used = false;
  2907. }
  2908. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2909. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2910. }
  2911. ggml_setup_op_has_task_pass();
  2912. is_first_call = false;
  2913. }
  2914. // find non-used context in g_state
  2915. struct ggml_context * ctx = NULL;
  2916. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2917. if (!g_state.contexts[i].used) {
  2918. g_state.contexts[i].used = true;
  2919. ctx = &g_state.contexts[i].context;
  2920. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2921. break;
  2922. }
  2923. }
  2924. if (ctx == NULL) {
  2925. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2926. ggml_critical_section_end();
  2927. return NULL;
  2928. }
  2929. // allow to call ggml_init with 0 size
  2930. if (params.mem_size == 0) {
  2931. params.mem_size = GGML_MEM_ALIGN;
  2932. }
  2933. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2934. *ctx = (struct ggml_context) {
  2935. /*.mem_size =*/ mem_size,
  2936. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2937. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2938. /*.no_alloc =*/ params.no_alloc,
  2939. /*.no_alloc_save =*/ params.no_alloc,
  2940. /*.n_objects =*/ 0,
  2941. /*.objects_begin =*/ NULL,
  2942. /*.objects_end =*/ NULL,
  2943. /*.scratch =*/ { 0, 0, NULL, },
  2944. /*.scratch_save =*/ { 0, 0, NULL, },
  2945. };
  2946. GGML_ASSERT(ctx->mem_buffer != NULL);
  2947. ggml_assert_aligned(ctx->mem_buffer);
  2948. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2949. ggml_critical_section_end();
  2950. return ctx;
  2951. }
  2952. void ggml_free(struct ggml_context * ctx) {
  2953. if (ctx == NULL) {
  2954. return;
  2955. }
  2956. // make this function thread safe
  2957. ggml_critical_section_start();
  2958. bool found = false;
  2959. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2960. if (&g_state.contexts[i].context == ctx) {
  2961. g_state.contexts[i].used = false;
  2962. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2963. __func__, i, ggml_used_mem(ctx));
  2964. if (ctx->mem_buffer_owned) {
  2965. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2966. }
  2967. found = true;
  2968. break;
  2969. }
  2970. }
  2971. if (!found) {
  2972. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2973. }
  2974. ggml_critical_section_end();
  2975. }
  2976. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2977. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2978. }
  2979. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2980. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2981. ctx->scratch = scratch;
  2982. return result;
  2983. }
  2984. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2985. return ctx->no_alloc;
  2986. }
  2987. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2988. ctx->no_alloc = no_alloc;
  2989. }
  2990. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2991. return ctx->mem_buffer;
  2992. }
  2993. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2994. return ctx->mem_size;
  2995. }
  2996. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2997. size_t max_size = 0;
  2998. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2999. size_t bytes = ggml_nbytes(tensor);
  3000. max_size = MAX(max_size, bytes);
  3001. }
  3002. return max_size;
  3003. }
  3004. // IMPORTANT:
  3005. // when creating "opt" tensors, always save and load the scratch buffer
  3006. // this is an error prone process, but it is necessary to support inplace
  3007. // operators when using scratch buffers
  3008. // TODO: implement a better way
  3009. static void ggml_scratch_save(struct ggml_context * ctx) {
  3010. // this is needed to allow opt tensors to store their data
  3011. // TODO: again, need to find a better way
  3012. ctx->no_alloc_save = ctx->no_alloc;
  3013. ctx->no_alloc = false;
  3014. ctx->scratch_save = ctx->scratch;
  3015. ctx->scratch.data = NULL;
  3016. }
  3017. static void ggml_scratch_load(struct ggml_context * ctx) {
  3018. ctx->no_alloc = ctx->no_alloc_save;
  3019. ctx->scratch = ctx->scratch_save;
  3020. }
  3021. ////////////////////////////////////////////////////////////////////////////////
  3022. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3023. // always insert objects at the end of the context's memory pool
  3024. struct ggml_object * obj_cur = ctx->objects_end;
  3025. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3026. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3027. const size_t cur_end = cur_offs + cur_size;
  3028. // align to GGML_MEM_ALIGN
  3029. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3030. char * const mem_buffer = ctx->mem_buffer;
  3031. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3032. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3033. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3034. __func__, cur_end + size_needed, ctx->mem_size);
  3035. assert(false);
  3036. return NULL;
  3037. }
  3038. *obj_new = (struct ggml_object) {
  3039. .offs = cur_end + GGML_OBJECT_SIZE,
  3040. .size = size_needed,
  3041. .next = NULL,
  3042. .type = type,
  3043. };
  3044. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3045. if (obj_cur != NULL) {
  3046. obj_cur->next = obj_new;
  3047. } else {
  3048. // this is the first object in this context
  3049. ctx->objects_begin = obj_new;
  3050. }
  3051. ctx->objects_end = obj_new;
  3052. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3053. return obj_new;
  3054. }
  3055. static struct ggml_tensor * ggml_new_tensor_impl(
  3056. struct ggml_context * ctx,
  3057. enum ggml_type type,
  3058. int n_dims,
  3059. const int64_t * ne,
  3060. struct ggml_tensor * view_src,
  3061. size_t view_offs) {
  3062. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3063. // find the base tensor and absolute offset
  3064. if (view_src != NULL && view_src->view_src != NULL) {
  3065. view_offs += view_src->view_offs;
  3066. view_src = view_src->view_src;
  3067. }
  3068. size_t data_size = ggml_row_size(type, ne[0]);
  3069. for (int i = 1; i < n_dims; i++) {
  3070. data_size *= ne[i];
  3071. }
  3072. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3073. void * data = view_src != NULL ? view_src->data : NULL;
  3074. if (data != NULL) {
  3075. data = (char *) data + view_offs;
  3076. }
  3077. size_t obj_alloc_size = 0;
  3078. if (view_src == NULL && !ctx->no_alloc) {
  3079. if (ctx->scratch.data != NULL) {
  3080. // allocate tensor data in the scratch buffer
  3081. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3082. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3083. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3084. assert(false);
  3085. return NULL;
  3086. }
  3087. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3088. ctx->scratch.offs += data_size;
  3089. } else {
  3090. // allocate tensor data in the context's memory pool
  3091. obj_alloc_size = data_size;
  3092. }
  3093. }
  3094. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3095. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3096. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3097. #ifdef __clang__
  3098. // temporary until ggml_tensor::backend is removed
  3099. #pragma clang diagnostic push
  3100. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3101. #endif
  3102. *result = (struct ggml_tensor) {
  3103. /*.type =*/ type,
  3104. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3105. /*.buffer =*/ NULL,
  3106. /*.ne =*/ { 1, 1, 1, 1 },
  3107. /*.nb =*/ { 0, 0, 0, 0 },
  3108. /*.op =*/ GGML_OP_NONE,
  3109. /*.op_params =*/ { 0 },
  3110. /*.flags =*/ 0,
  3111. /*.grad =*/ NULL,
  3112. /*.src =*/ { NULL },
  3113. /*.perf_runs =*/ 0,
  3114. /*.perf_cycles =*/ 0,
  3115. /*.perf_time_us =*/ 0,
  3116. /*.view_src =*/ view_src,
  3117. /*.view_offs =*/ view_offs,
  3118. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3119. /*.name =*/ { 0 },
  3120. /*.extra =*/ NULL,
  3121. /*.padding =*/ { 0 },
  3122. };
  3123. #ifdef __clang__
  3124. #pragma clang diagnostic pop
  3125. #endif
  3126. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3127. //ggml_assert_aligned(result->data);
  3128. for (int i = 0; i < n_dims; i++) {
  3129. result->ne[i] = ne[i];
  3130. }
  3131. result->nb[0] = ggml_type_size(type);
  3132. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3133. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3134. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3135. }
  3136. ctx->n_objects++;
  3137. return result;
  3138. }
  3139. struct ggml_tensor * ggml_new_tensor(
  3140. struct ggml_context * ctx,
  3141. enum ggml_type type,
  3142. int n_dims,
  3143. const int64_t * ne) {
  3144. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3145. }
  3146. struct ggml_tensor * ggml_new_tensor_1d(
  3147. struct ggml_context * ctx,
  3148. enum ggml_type type,
  3149. int64_t ne0) {
  3150. return ggml_new_tensor(ctx, type, 1, &ne0);
  3151. }
  3152. struct ggml_tensor * ggml_new_tensor_2d(
  3153. struct ggml_context * ctx,
  3154. enum ggml_type type,
  3155. int64_t ne0,
  3156. int64_t ne1) {
  3157. const int64_t ne[2] = { ne0, ne1 };
  3158. return ggml_new_tensor(ctx, type, 2, ne);
  3159. }
  3160. struct ggml_tensor * ggml_new_tensor_3d(
  3161. struct ggml_context * ctx,
  3162. enum ggml_type type,
  3163. int64_t ne0,
  3164. int64_t ne1,
  3165. int64_t ne2) {
  3166. const int64_t ne[3] = { ne0, ne1, ne2 };
  3167. return ggml_new_tensor(ctx, type, 3, ne);
  3168. }
  3169. struct ggml_tensor * ggml_new_tensor_4d(
  3170. struct ggml_context * ctx,
  3171. enum ggml_type type,
  3172. int64_t ne0,
  3173. int64_t ne1,
  3174. int64_t ne2,
  3175. int64_t ne3) {
  3176. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3177. return ggml_new_tensor(ctx, type, 4, ne);
  3178. }
  3179. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3180. ggml_scratch_save(ctx);
  3181. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3182. ggml_scratch_load(ctx);
  3183. ggml_set_i32(result, value);
  3184. return result;
  3185. }
  3186. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3187. ggml_scratch_save(ctx);
  3188. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3189. ggml_scratch_load(ctx);
  3190. ggml_set_f32(result, value);
  3191. return result;
  3192. }
  3193. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3194. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3195. }
  3196. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3197. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3198. assert(params_size <= GGML_MAX_OP_PARAMS);
  3199. memcpy(tensor->op_params, params, params_size);
  3200. }
  3201. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3202. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3203. return ((const int32_t *)(tensor->op_params))[i];
  3204. }
  3205. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3206. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3207. return ((const float *)(tensor->op_params))[i];
  3208. }
  3209. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3210. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3211. ((int32_t *)(tensor->op_params))[i] = value;
  3212. }
  3213. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3214. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3215. ((float *)(tensor->op_params))[i] = value;
  3216. }
  3217. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3218. memset(tensor->data, 0, ggml_nbytes(tensor));
  3219. return tensor;
  3220. }
  3221. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3222. const int n = ggml_nrows(tensor);
  3223. const int nc = tensor->ne[0];
  3224. const size_t n1 = tensor->nb[1];
  3225. char * const data = tensor->data;
  3226. switch (tensor->type) {
  3227. case GGML_TYPE_I8:
  3228. {
  3229. assert(tensor->nb[0] == sizeof(int8_t));
  3230. for (int i = 0; i < n; i++) {
  3231. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3232. }
  3233. } break;
  3234. case GGML_TYPE_I16:
  3235. {
  3236. assert(tensor->nb[0] == sizeof(int16_t));
  3237. for (int i = 0; i < n; i++) {
  3238. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3239. }
  3240. } break;
  3241. case GGML_TYPE_I32:
  3242. {
  3243. assert(tensor->nb[0] == sizeof(int32_t));
  3244. for (int i = 0; i < n; i++) {
  3245. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3246. }
  3247. } break;
  3248. case GGML_TYPE_F16:
  3249. {
  3250. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3251. for (int i = 0; i < n; i++) {
  3252. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3253. }
  3254. } break;
  3255. case GGML_TYPE_BF16:
  3256. {
  3257. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3258. for (int i = 0; i < n; i++) {
  3259. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3260. }
  3261. } break;
  3262. case GGML_TYPE_F32:
  3263. {
  3264. assert(tensor->nb[0] == sizeof(float));
  3265. for (int i = 0; i < n; i++) {
  3266. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3267. }
  3268. } break;
  3269. default:
  3270. {
  3271. GGML_ASSERT(false);
  3272. } break;
  3273. }
  3274. return tensor;
  3275. }
  3276. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3277. const int n = ggml_nrows(tensor);
  3278. const int nc = tensor->ne[0];
  3279. const size_t n1 = tensor->nb[1];
  3280. char * const data = tensor->data;
  3281. switch (tensor->type) {
  3282. case GGML_TYPE_I8:
  3283. {
  3284. assert(tensor->nb[0] == sizeof(int8_t));
  3285. for (int i = 0; i < n; i++) {
  3286. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3287. }
  3288. } break;
  3289. case GGML_TYPE_I16:
  3290. {
  3291. assert(tensor->nb[0] == sizeof(int16_t));
  3292. for (int i = 0; i < n; i++) {
  3293. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3294. }
  3295. } break;
  3296. case GGML_TYPE_I32:
  3297. {
  3298. assert(tensor->nb[0] == sizeof(int32_t));
  3299. for (int i = 0; i < n; i++) {
  3300. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3301. }
  3302. } break;
  3303. case GGML_TYPE_F16:
  3304. {
  3305. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3306. for (int i = 0; i < n; i++) {
  3307. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3308. }
  3309. } break;
  3310. case GGML_TYPE_BF16:
  3311. {
  3312. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3313. for (int i = 0; i < n; i++) {
  3314. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3315. }
  3316. } break;
  3317. case GGML_TYPE_F32:
  3318. {
  3319. assert(tensor->nb[0] == sizeof(float));
  3320. for (int i = 0; i < n; i++) {
  3321. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3322. }
  3323. } break;
  3324. default:
  3325. {
  3326. GGML_ASSERT(false);
  3327. } break;
  3328. }
  3329. return tensor;
  3330. }
  3331. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3332. const int64_t ne2 = tensor->ne[2];
  3333. const int64_t ne1 = tensor->ne[1];
  3334. const int64_t ne0 = tensor->ne[0];
  3335. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3336. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3337. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3338. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3339. if (i0) {
  3340. * i0 = i0_;
  3341. }
  3342. if (i1) {
  3343. * i1 = i1_;
  3344. }
  3345. if (i2) {
  3346. * i2 = i2_;
  3347. }
  3348. if (i3) {
  3349. * i3 = i3_;
  3350. }
  3351. }
  3352. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3353. if (!ggml_is_contiguous(tensor)) {
  3354. int64_t id[4] = { 0, 0, 0, 0 };
  3355. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3356. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3357. }
  3358. switch (tensor->type) {
  3359. case GGML_TYPE_I8:
  3360. {
  3361. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3362. return ((int8_t *)(tensor->data))[i];
  3363. }
  3364. case GGML_TYPE_I16:
  3365. {
  3366. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3367. return ((int16_t *)(tensor->data))[i];
  3368. }
  3369. case GGML_TYPE_I32:
  3370. {
  3371. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3372. return ((int32_t *)(tensor->data))[i];
  3373. }
  3374. case GGML_TYPE_F16:
  3375. {
  3376. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3377. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3378. }
  3379. case GGML_TYPE_BF16:
  3380. {
  3381. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3382. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3383. }
  3384. case GGML_TYPE_F32:
  3385. {
  3386. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3387. return ((float *)(tensor->data))[i];
  3388. }
  3389. default:
  3390. {
  3391. GGML_ASSERT(false);
  3392. }
  3393. }
  3394. return 0.0f;
  3395. }
  3396. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3397. if (!ggml_is_contiguous(tensor)) {
  3398. int64_t id[4] = { 0, 0, 0, 0 };
  3399. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3400. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3401. return;
  3402. }
  3403. switch (tensor->type) {
  3404. case GGML_TYPE_I8:
  3405. {
  3406. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3407. ((int8_t *)(tensor->data))[i] = value;
  3408. } break;
  3409. case GGML_TYPE_I16:
  3410. {
  3411. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3412. ((int16_t *)(tensor->data))[i] = value;
  3413. } break;
  3414. case GGML_TYPE_I32:
  3415. {
  3416. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3417. ((int32_t *)(tensor->data))[i] = value;
  3418. } break;
  3419. case GGML_TYPE_F16:
  3420. {
  3421. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3422. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3423. } break;
  3424. case GGML_TYPE_BF16:
  3425. {
  3426. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3427. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3428. } break;
  3429. case GGML_TYPE_F32:
  3430. {
  3431. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3432. ((float *)(tensor->data))[i] = value;
  3433. } break;
  3434. default:
  3435. {
  3436. GGML_ASSERT(false);
  3437. } break;
  3438. }
  3439. }
  3440. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3441. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3442. switch (tensor->type) {
  3443. case GGML_TYPE_I8:
  3444. return ((int8_t *) data)[0];
  3445. case GGML_TYPE_I16:
  3446. return ((int16_t *) data)[0];
  3447. case GGML_TYPE_I32:
  3448. return ((int32_t *) data)[0];
  3449. case GGML_TYPE_F16:
  3450. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3451. case GGML_TYPE_BF16:
  3452. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3453. case GGML_TYPE_F32:
  3454. return ((float *) data)[0];
  3455. default:
  3456. GGML_ASSERT(false);
  3457. }
  3458. return 0.0f;
  3459. }
  3460. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3461. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3462. switch (tensor->type) {
  3463. case GGML_TYPE_I8:
  3464. {
  3465. ((int8_t *)(data))[0] = value;
  3466. } break;
  3467. case GGML_TYPE_I16:
  3468. {
  3469. ((int16_t *)(data))[0] = value;
  3470. } break;
  3471. case GGML_TYPE_I32:
  3472. {
  3473. ((int32_t *)(data))[0] = value;
  3474. } break;
  3475. case GGML_TYPE_F16:
  3476. {
  3477. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3478. } break;
  3479. case GGML_TYPE_BF16:
  3480. {
  3481. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3482. } break;
  3483. case GGML_TYPE_F32:
  3484. {
  3485. ((float *)(data))[0] = value;
  3486. } break;
  3487. default:
  3488. {
  3489. GGML_ASSERT(false);
  3490. } break;
  3491. }
  3492. }
  3493. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3494. if (!ggml_is_contiguous(tensor)) {
  3495. int64_t id[4] = { 0, 0, 0, 0 };
  3496. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3497. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3498. }
  3499. switch (tensor->type) {
  3500. case GGML_TYPE_I8:
  3501. {
  3502. return ((int8_t *)(tensor->data))[i];
  3503. }
  3504. case GGML_TYPE_I16:
  3505. {
  3506. return ((int16_t *)(tensor->data))[i];
  3507. }
  3508. case GGML_TYPE_I32:
  3509. {
  3510. return ((int32_t *)(tensor->data))[i];
  3511. }
  3512. case GGML_TYPE_F16:
  3513. {
  3514. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3515. }
  3516. case GGML_TYPE_BF16:
  3517. {
  3518. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3519. }
  3520. case GGML_TYPE_F32:
  3521. {
  3522. return ((float *)(tensor->data))[i];
  3523. }
  3524. default:
  3525. {
  3526. GGML_ASSERT(false);
  3527. }
  3528. }
  3529. return 0.0f;
  3530. }
  3531. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3532. if (!ggml_is_contiguous(tensor)) {
  3533. int64_t id[4] = { 0, 0, 0, 0 };
  3534. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3535. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3536. return;
  3537. }
  3538. switch (tensor->type) {
  3539. case GGML_TYPE_I8:
  3540. {
  3541. ((int8_t *)(tensor->data))[i] = value;
  3542. } break;
  3543. case GGML_TYPE_I16:
  3544. {
  3545. ((int16_t *)(tensor->data))[i] = value;
  3546. } break;
  3547. case GGML_TYPE_I32:
  3548. {
  3549. ((int32_t *)(tensor->data))[i] = value;
  3550. } break;
  3551. case GGML_TYPE_F16:
  3552. {
  3553. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3554. } break;
  3555. case GGML_TYPE_BF16:
  3556. {
  3557. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3558. } break;
  3559. case GGML_TYPE_F32:
  3560. {
  3561. ((float *)(tensor->data))[i] = value;
  3562. } break;
  3563. default:
  3564. {
  3565. GGML_ASSERT(false);
  3566. } break;
  3567. }
  3568. }
  3569. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3570. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3571. switch (tensor->type) {
  3572. case GGML_TYPE_I8:
  3573. return ((int8_t *) data)[0];
  3574. case GGML_TYPE_I16:
  3575. return ((int16_t *) data)[0];
  3576. case GGML_TYPE_I32:
  3577. return ((int32_t *) data)[0];
  3578. case GGML_TYPE_F16:
  3579. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3580. case GGML_TYPE_BF16:
  3581. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3582. case GGML_TYPE_F32:
  3583. return ((float *) data)[0];
  3584. default:
  3585. GGML_ASSERT(false);
  3586. }
  3587. return 0.0f;
  3588. }
  3589. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3590. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3591. switch (tensor->type) {
  3592. case GGML_TYPE_I8:
  3593. {
  3594. ((int8_t *)(data))[0] = value;
  3595. } break;
  3596. case GGML_TYPE_I16:
  3597. {
  3598. ((int16_t *)(data))[0] = value;
  3599. } break;
  3600. case GGML_TYPE_I32:
  3601. {
  3602. ((int32_t *)(data))[0] = value;
  3603. } break;
  3604. case GGML_TYPE_F16:
  3605. {
  3606. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3607. } break;
  3608. case GGML_TYPE_BF16:
  3609. {
  3610. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3611. } break;
  3612. case GGML_TYPE_F32:
  3613. {
  3614. ((float *)(data))[0] = value;
  3615. } break;
  3616. default:
  3617. {
  3618. GGML_ASSERT(false);
  3619. } break;
  3620. }
  3621. }
  3622. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3623. return tensor->data;
  3624. }
  3625. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3626. assert(tensor->type == GGML_TYPE_F32);
  3627. return (float *)(tensor->data);
  3628. }
  3629. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3630. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3631. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3632. }
  3633. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3634. return tensor->name;
  3635. }
  3636. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3637. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3638. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3639. return tensor;
  3640. }
  3641. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3642. va_list args;
  3643. va_start(args, fmt);
  3644. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3645. va_end(args);
  3646. return tensor;
  3647. }
  3648. struct ggml_tensor * ggml_view_tensor(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * src) {
  3651. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3652. ggml_format_name(result, "%s (view)", src->name);
  3653. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3654. result->nb[i] = src->nb[i];
  3655. }
  3656. return result;
  3657. }
  3658. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3659. struct ggml_object * obj = ctx->objects_begin;
  3660. char * const mem_buffer = ctx->mem_buffer;
  3661. while (obj != NULL) {
  3662. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3663. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3664. }
  3665. obj = obj->next;
  3666. }
  3667. return NULL;
  3668. }
  3669. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3670. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3671. obj = obj->next;
  3672. char * const mem_buffer = ctx->mem_buffer;
  3673. while (obj != NULL) {
  3674. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3675. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3676. }
  3677. obj = obj->next;
  3678. }
  3679. return NULL;
  3680. }
  3681. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3682. struct ggml_object * obj = ctx->objects_begin;
  3683. char * const mem_buffer = ctx->mem_buffer;
  3684. while (obj != NULL) {
  3685. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3686. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3687. if (strcmp(cur->name, name) == 0) {
  3688. return cur;
  3689. }
  3690. }
  3691. obj = obj->next;
  3692. }
  3693. return NULL;
  3694. }
  3695. ////////////////////////////////////////////////////////////////////////////////
  3696. // ggml_dup
  3697. static struct ggml_tensor * ggml_dup_impl(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a,
  3700. bool inplace) {
  3701. bool is_node = false;
  3702. if (!inplace && (a->grad)) {
  3703. is_node = true;
  3704. }
  3705. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3706. result->op = GGML_OP_DUP;
  3707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3708. result->src[0] = a;
  3709. return result;
  3710. }
  3711. struct ggml_tensor * ggml_dup(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a) {
  3714. return ggml_dup_impl(ctx, a, false);
  3715. }
  3716. struct ggml_tensor * ggml_dup_inplace(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a) {
  3719. return ggml_dup_impl(ctx, a, true);
  3720. }
  3721. // ggml_add
  3722. static struct ggml_tensor * ggml_add_impl(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. struct ggml_tensor * b,
  3726. bool inplace) {
  3727. GGML_ASSERT(ggml_can_repeat(b, a));
  3728. bool is_node = false;
  3729. if (!inplace && (a->grad || b->grad)) {
  3730. // TODO: support backward pass for broadcasting
  3731. GGML_ASSERT(ggml_are_same_shape(a, b));
  3732. is_node = true;
  3733. }
  3734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3735. result->op = GGML_OP_ADD;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src[0] = a;
  3738. result->src[1] = b;
  3739. return result;
  3740. }
  3741. struct ggml_tensor * ggml_add(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. struct ggml_tensor * b) {
  3745. return ggml_add_impl(ctx, a, b, false);
  3746. }
  3747. struct ggml_tensor * ggml_add_inplace(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. struct ggml_tensor * b) {
  3751. return ggml_add_impl(ctx, a, b, true);
  3752. }
  3753. // ggml_add_cast
  3754. static struct ggml_tensor * ggml_add_cast_impl(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. struct ggml_tensor * b,
  3758. enum ggml_type type) {
  3759. // TODO: support less-strict constraint
  3760. // GGML_ASSERT(ggml_can_repeat(b, a));
  3761. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3762. // currently only supported for quantized input and f16
  3763. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3764. a->type == GGML_TYPE_F16 ||
  3765. a->type == GGML_TYPE_BF16);
  3766. bool is_node = false;
  3767. if (a->grad || b->grad) {
  3768. // TODO: support backward pass for broadcasting
  3769. GGML_ASSERT(ggml_are_same_shape(a, b));
  3770. is_node = true;
  3771. }
  3772. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3773. result->op = GGML_OP_ADD;
  3774. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3775. result->src[0] = a;
  3776. result->src[1] = b;
  3777. return result;
  3778. }
  3779. struct ggml_tensor * ggml_add_cast(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a,
  3782. struct ggml_tensor * b,
  3783. enum ggml_type type) {
  3784. return ggml_add_cast_impl(ctx, a, b, type);
  3785. }
  3786. // ggml_add1
  3787. static struct ggml_tensor * ggml_add1_impl(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. struct ggml_tensor * b,
  3791. bool inplace) {
  3792. GGML_ASSERT(ggml_is_scalar(b));
  3793. GGML_ASSERT(ggml_is_padded_1d(a));
  3794. bool is_node = false;
  3795. if (a->grad || b->grad) {
  3796. is_node = true;
  3797. }
  3798. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3799. result->op = GGML_OP_ADD1;
  3800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3801. result->src[0] = a;
  3802. result->src[1] = b;
  3803. return result;
  3804. }
  3805. struct ggml_tensor * ggml_add1(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b) {
  3809. return ggml_add1_impl(ctx, a, b, false);
  3810. }
  3811. struct ggml_tensor * ggml_add1_inplace(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. struct ggml_tensor * b) {
  3815. return ggml_add1_impl(ctx, a, b, true);
  3816. }
  3817. // ggml_acc
  3818. static struct ggml_tensor * ggml_acc_impl(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b,
  3822. size_t nb1,
  3823. size_t nb2,
  3824. size_t nb3,
  3825. size_t offset,
  3826. bool inplace) {
  3827. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3828. GGML_ASSERT(ggml_is_contiguous(a));
  3829. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3830. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3831. bool is_node = false;
  3832. if (!inplace && (a->grad || b->grad)) {
  3833. is_node = true;
  3834. }
  3835. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3836. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3837. ggml_set_op_params(result, params, sizeof(params));
  3838. result->op = GGML_OP_ACC;
  3839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3840. result->src[0] = a;
  3841. result->src[1] = b;
  3842. return result;
  3843. }
  3844. struct ggml_tensor * ggml_acc(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a,
  3847. struct ggml_tensor * b,
  3848. size_t nb1,
  3849. size_t nb2,
  3850. size_t nb3,
  3851. size_t offset) {
  3852. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3853. }
  3854. struct ggml_tensor * ggml_acc_inplace(
  3855. struct ggml_context * ctx,
  3856. struct ggml_tensor * a,
  3857. struct ggml_tensor * b,
  3858. size_t nb1,
  3859. size_t nb2,
  3860. size_t nb3,
  3861. size_t offset) {
  3862. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3863. }
  3864. // ggml_sub
  3865. static struct ggml_tensor * ggml_sub_impl(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a,
  3868. struct ggml_tensor * b,
  3869. bool inplace) {
  3870. GGML_ASSERT(ggml_are_same_shape(a, b));
  3871. bool is_node = false;
  3872. if (!inplace && (a->grad || b->grad)) {
  3873. is_node = true;
  3874. }
  3875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3876. result->op = GGML_OP_SUB;
  3877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3878. result->src[0] = a;
  3879. result->src[1] = b;
  3880. return result;
  3881. }
  3882. struct ggml_tensor * ggml_sub(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. return ggml_sub_impl(ctx, a, b, false);
  3887. }
  3888. struct ggml_tensor * ggml_sub_inplace(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. struct ggml_tensor * b) {
  3892. return ggml_sub_impl(ctx, a, b, true);
  3893. }
  3894. // ggml_mul
  3895. static struct ggml_tensor * ggml_mul_impl(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. struct ggml_tensor * b,
  3899. bool inplace) {
  3900. GGML_ASSERT(ggml_can_repeat(b, a));
  3901. bool is_node = false;
  3902. if (!inplace && (a->grad || b->grad)) {
  3903. // TODO: support backward pass for broadcasting
  3904. GGML_ASSERT(ggml_are_same_shape(a, b));
  3905. is_node = true;
  3906. }
  3907. if (inplace) {
  3908. GGML_ASSERT(!is_node);
  3909. }
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. result->op = GGML_OP_MUL;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src[0] = a;
  3914. result->src[1] = b;
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_mul(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b) {
  3921. return ggml_mul_impl(ctx, a, b, false);
  3922. }
  3923. struct ggml_tensor * ggml_mul_inplace(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b) {
  3927. return ggml_mul_impl(ctx, a, b, true);
  3928. }
  3929. // ggml_div
  3930. static struct ggml_tensor * ggml_div_impl(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b,
  3934. bool inplace) {
  3935. GGML_ASSERT(ggml_can_repeat(b, a));
  3936. bool is_node = false;
  3937. if (!inplace && (a->grad || b->grad)) {
  3938. is_node = true;
  3939. }
  3940. if (inplace) {
  3941. GGML_ASSERT(!is_node);
  3942. }
  3943. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3944. result->op = GGML_OP_DIV;
  3945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3946. result->src[0] = a;
  3947. result->src[1] = b;
  3948. return result;
  3949. }
  3950. struct ggml_tensor * ggml_div(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b) {
  3954. return ggml_div_impl(ctx, a, b, false);
  3955. }
  3956. struct ggml_tensor * ggml_div_inplace(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b) {
  3960. return ggml_div_impl(ctx, a, b, true);
  3961. }
  3962. // ggml_sqr
  3963. static struct ggml_tensor * ggml_sqr_impl(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. bool inplace) {
  3967. bool is_node = false;
  3968. if (!inplace && (a->grad)) {
  3969. is_node = true;
  3970. }
  3971. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3972. result->op = GGML_OP_SQR;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src[0] = a;
  3975. return result;
  3976. }
  3977. struct ggml_tensor * ggml_sqr(
  3978. struct ggml_context * ctx,
  3979. struct ggml_tensor * a) {
  3980. return ggml_sqr_impl(ctx, a, false);
  3981. }
  3982. struct ggml_tensor * ggml_sqr_inplace(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a) {
  3985. return ggml_sqr_impl(ctx, a, true);
  3986. }
  3987. // ggml_sqrt
  3988. static struct ggml_tensor * ggml_sqrt_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. bool inplace) {
  3992. bool is_node = false;
  3993. if (!inplace && (a->grad)) {
  3994. is_node = true;
  3995. }
  3996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3997. result->op = GGML_OP_SQRT;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src[0] = a;
  4000. return result;
  4001. }
  4002. struct ggml_tensor * ggml_sqrt(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a) {
  4005. return ggml_sqrt_impl(ctx, a, false);
  4006. }
  4007. struct ggml_tensor * ggml_sqrt_inplace(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a) {
  4010. return ggml_sqrt_impl(ctx, a, true);
  4011. }
  4012. // ggml_log
  4013. static struct ggml_tensor * ggml_log_impl(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. bool inplace) {
  4017. bool is_node = false;
  4018. if (!inplace && (a->grad)) {
  4019. is_node = true;
  4020. }
  4021. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4022. result->op = GGML_OP_LOG;
  4023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4024. result->src[0] = a;
  4025. return result;
  4026. }
  4027. struct ggml_tensor * ggml_log(
  4028. struct ggml_context * ctx,
  4029. struct ggml_tensor * a) {
  4030. return ggml_log_impl(ctx, a, false);
  4031. }
  4032. struct ggml_tensor * ggml_log_inplace(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a) {
  4035. return ggml_log_impl(ctx, a, true);
  4036. }
  4037. // ggml_sum
  4038. struct ggml_tensor * ggml_sum(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a) {
  4041. bool is_node = false;
  4042. if (a->grad) {
  4043. is_node = true;
  4044. }
  4045. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4046. result->op = GGML_OP_SUM;
  4047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4048. result->src[0] = a;
  4049. return result;
  4050. }
  4051. // ggml_sum_rows
  4052. struct ggml_tensor * ggml_sum_rows(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a) {
  4055. bool is_node = false;
  4056. if (a->grad) {
  4057. is_node = true;
  4058. }
  4059. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4060. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4061. ne[i] = a->ne[i];
  4062. }
  4063. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4064. result->op = GGML_OP_SUM_ROWS;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src[0] = a;
  4067. return result;
  4068. }
  4069. // ggml_mean
  4070. struct ggml_tensor * ggml_mean(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a) {
  4073. bool is_node = false;
  4074. if (a->grad) {
  4075. GGML_ASSERT(false); // TODO: implement
  4076. is_node = true;
  4077. }
  4078. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4079. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4080. result->op = GGML_OP_MEAN;
  4081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4082. result->src[0] = a;
  4083. return result;
  4084. }
  4085. // ggml_argmax
  4086. struct ggml_tensor * ggml_argmax(
  4087. struct ggml_context * ctx,
  4088. struct ggml_tensor * a) {
  4089. GGML_ASSERT(ggml_is_matrix(a));
  4090. bool is_node = false;
  4091. if (a->grad) {
  4092. GGML_ASSERT(false);
  4093. is_node = true;
  4094. }
  4095. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4096. result->op = GGML_OP_ARGMAX;
  4097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4098. result->src[0] = a;
  4099. return result;
  4100. }
  4101. // ggml_repeat
  4102. struct ggml_tensor * ggml_repeat(
  4103. struct ggml_context * ctx,
  4104. struct ggml_tensor * a,
  4105. struct ggml_tensor * b) {
  4106. GGML_ASSERT(ggml_can_repeat(a, b));
  4107. bool is_node = false;
  4108. if (a->grad) {
  4109. is_node = true;
  4110. }
  4111. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4112. result->op = GGML_OP_REPEAT;
  4113. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4114. result->src[0] = a;
  4115. return result;
  4116. }
  4117. // ggml_repeat_back
  4118. struct ggml_tensor * ggml_repeat_back(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a,
  4121. struct ggml_tensor * b) {
  4122. GGML_ASSERT(ggml_can_repeat(b, a));
  4123. bool is_node = false;
  4124. if (a->grad) {
  4125. is_node = true;
  4126. }
  4127. if (ggml_are_same_shape(a, b) && !is_node) {
  4128. return a;
  4129. }
  4130. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4131. result->op = GGML_OP_REPEAT_BACK;
  4132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4133. result->src[0] = a;
  4134. return result;
  4135. }
  4136. // ggml_concat
  4137. struct ggml_tensor * ggml_concat(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a,
  4140. struct ggml_tensor * b,
  4141. int dim) {
  4142. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4143. int64_t ne[GGML_MAX_DIMS];
  4144. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4145. if (d == dim) {
  4146. ne[d] = a->ne[d] + b->ne[d];
  4147. continue;
  4148. }
  4149. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4150. ne[d] = a->ne[d];
  4151. }
  4152. bool is_node = false;
  4153. if (a->grad || b->grad) {
  4154. is_node = true;
  4155. }
  4156. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4157. ggml_set_op_params_i32(result, 0, dim);
  4158. result->op = GGML_OP_CONCAT;
  4159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4160. result->src[0] = a;
  4161. result->src[1] = b;
  4162. return result;
  4163. }
  4164. // ggml_abs
  4165. struct ggml_tensor * ggml_abs(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a) {
  4168. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4169. }
  4170. struct ggml_tensor * ggml_abs_inplace(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a) {
  4173. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4174. }
  4175. // ggml_sgn
  4176. struct ggml_tensor * ggml_sgn(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a) {
  4179. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4180. }
  4181. struct ggml_tensor * ggml_sgn_inplace(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4185. }
  4186. // ggml_neg
  4187. struct ggml_tensor * ggml_neg(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a) {
  4190. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4191. }
  4192. struct ggml_tensor * ggml_neg_inplace(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4196. }
  4197. // ggml_step
  4198. struct ggml_tensor * ggml_step(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a) {
  4201. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4202. }
  4203. struct ggml_tensor * ggml_step_inplace(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a) {
  4206. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4207. }
  4208. // ggml_tanh
  4209. struct ggml_tensor * ggml_tanh(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4213. }
  4214. struct ggml_tensor * ggml_tanh_inplace(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4218. }
  4219. // ggml_elu
  4220. struct ggml_tensor * ggml_elu(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a) {
  4223. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4224. }
  4225. struct ggml_tensor * ggml_elu_inplace(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a) {
  4228. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4229. }
  4230. // ggml_relu
  4231. struct ggml_tensor * ggml_relu(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4235. }
  4236. struct ggml_tensor * ggml_relu_inplace(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a) {
  4239. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4240. }
  4241. // ggml_leaky_relu
  4242. struct ggml_tensor * ggml_leaky_relu(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4245. bool is_node = false;
  4246. if (!inplace && (a->grad)) {
  4247. is_node = true;
  4248. }
  4249. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4250. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4251. result->op = GGML_OP_LEAKY_RELU;
  4252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4253. result->src[0] = a;
  4254. return result;
  4255. }
  4256. // ggml_sigmoid
  4257. struct ggml_tensor * ggml_sigmoid(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a) {
  4260. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4261. }
  4262. struct ggml_tensor * ggml_sigmoid_inplace(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a) {
  4265. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4266. }
  4267. // ggml_gelu
  4268. struct ggml_tensor * ggml_gelu(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a) {
  4271. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4272. }
  4273. struct ggml_tensor * ggml_gelu_inplace(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a) {
  4276. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4277. }
  4278. // ggml_gelu_quick
  4279. struct ggml_tensor * ggml_gelu_quick(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a) {
  4282. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4283. }
  4284. struct ggml_tensor * ggml_gelu_quick_inplace(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4288. }
  4289. // ggml_silu
  4290. struct ggml_tensor * ggml_silu(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4294. }
  4295. struct ggml_tensor * ggml_silu_inplace(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a) {
  4298. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4299. }
  4300. // ggml_silu_back
  4301. struct ggml_tensor * ggml_silu_back(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a,
  4304. struct ggml_tensor * b) {
  4305. bool is_node = false;
  4306. if (a->grad || b->grad) {
  4307. // TODO: implement backward
  4308. is_node = true;
  4309. }
  4310. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4311. result->op = GGML_OP_SILU_BACK;
  4312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4313. result->src[0] = a;
  4314. result->src[1] = b;
  4315. return result;
  4316. }
  4317. // ggml hardswish
  4318. struct ggml_tensor * ggml_hardswish(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a) {
  4321. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4322. }
  4323. // ggml hardsigmoid
  4324. struct ggml_tensor * ggml_hardsigmoid(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a) {
  4327. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4328. }
  4329. // ggml_norm
  4330. static struct ggml_tensor * ggml_norm_impl(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. float eps,
  4334. bool inplace) {
  4335. bool is_node = false;
  4336. if (!inplace && (a->grad)) {
  4337. GGML_ASSERT(false); // TODO: implement backward
  4338. is_node = true;
  4339. }
  4340. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4341. ggml_set_op_params(result, &eps, sizeof(eps));
  4342. result->op = GGML_OP_NORM;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. return result;
  4346. }
  4347. struct ggml_tensor * ggml_norm(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float eps) {
  4351. return ggml_norm_impl(ctx, a, eps, false);
  4352. }
  4353. struct ggml_tensor * ggml_norm_inplace(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a,
  4356. float eps) {
  4357. return ggml_norm_impl(ctx, a, eps, true);
  4358. }
  4359. // ggml_rms_norm
  4360. static struct ggml_tensor * ggml_rms_norm_impl(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. float eps,
  4364. bool inplace) {
  4365. bool is_node = false;
  4366. if (!inplace && (a->grad)) {
  4367. is_node = true;
  4368. }
  4369. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4370. ggml_set_op_params(result, &eps, sizeof(eps));
  4371. result->op = GGML_OP_RMS_NORM;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src[0] = a;
  4374. return result;
  4375. }
  4376. struct ggml_tensor * ggml_rms_norm(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. float eps) {
  4380. return ggml_rms_norm_impl(ctx, a, eps, false);
  4381. }
  4382. struct ggml_tensor * ggml_rms_norm_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. float eps) {
  4386. return ggml_rms_norm_impl(ctx, a, eps, true);
  4387. }
  4388. // ggml_rms_norm_back
  4389. struct ggml_tensor * ggml_rms_norm_back(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. struct ggml_tensor * b,
  4393. float eps) {
  4394. bool is_node = false;
  4395. if (a->grad) {
  4396. // TODO: implement backward
  4397. is_node = true;
  4398. }
  4399. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4400. ggml_set_op_params(result, &eps, sizeof(eps));
  4401. result->op = GGML_OP_RMS_NORM_BACK;
  4402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4403. result->src[0] = a;
  4404. result->src[1] = b;
  4405. return result;
  4406. }
  4407. // ggml_group_norm
  4408. static struct ggml_tensor * ggml_group_norm_impl(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. int n_groups,
  4412. bool inplace) {
  4413. bool is_node = false;
  4414. if (!inplace && (a->grad)) {
  4415. GGML_ASSERT(false); // TODO: implement backward
  4416. is_node = true;
  4417. }
  4418. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4419. result->op_params[0] = n_groups;
  4420. result->op = GGML_OP_GROUP_NORM;
  4421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4422. result->src[0] = a;
  4423. return result;
  4424. }
  4425. struct ggml_tensor * ggml_group_norm(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. int n_groups) {
  4429. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4430. }
  4431. struct ggml_tensor * ggml_group_norm_inplace(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. int n_groups) {
  4435. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4436. }
  4437. // ggml_mul_mat
  4438. struct ggml_tensor * ggml_mul_mat(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4443. GGML_ASSERT(!ggml_is_transposed(a));
  4444. bool is_node = false;
  4445. if (a->grad || b->grad) {
  4446. is_node = true;
  4447. }
  4448. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4449. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4450. result->op = GGML_OP_MUL_MAT;
  4451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4452. result->src[0] = a;
  4453. result->src[1] = b;
  4454. return result;
  4455. }
  4456. void ggml_mul_mat_set_prec(
  4457. struct ggml_tensor * a,
  4458. enum ggml_prec prec) {
  4459. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4460. const int32_t prec_i32 = (int32_t) prec;
  4461. ggml_set_op_params_i32(a, 0, prec_i32);
  4462. }
  4463. // ggml_mul_mat_id
  4464. /*
  4465. c = ggml_mul_mat_id(ctx, as, b, ids);
  4466. as -> [cols, rows, n_expert]
  4467. ids -> [n_experts_used, n_tokens] (i32)
  4468. b -> [cols, n_expert_used, n_tokens]
  4469. c -> [cols, n_expert_used, n_tokens]
  4470. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4471. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4472. */
  4473. struct ggml_tensor * ggml_mul_mat_id(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * as,
  4476. struct ggml_tensor * b,
  4477. struct ggml_tensor * ids) {
  4478. GGML_ASSERT(!ggml_is_transposed(as));
  4479. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4480. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4481. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4482. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4483. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4484. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4485. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4486. bool is_node = false;
  4487. if (as->grad || b->grad) {
  4488. is_node = true;
  4489. }
  4490. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4491. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4492. result->op = GGML_OP_MUL_MAT_ID;
  4493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4494. result->src[0] = as;
  4495. result->src[1] = b;
  4496. result->src[2] = ids;
  4497. return result;
  4498. }
  4499. // ggml_out_prod
  4500. struct ggml_tensor * ggml_out_prod(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b) {
  4504. GGML_ASSERT(ggml_can_out_prod(a, b));
  4505. GGML_ASSERT(!ggml_is_transposed(a));
  4506. bool is_node = false;
  4507. if (a->grad || b->grad) {
  4508. is_node = true;
  4509. }
  4510. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4511. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4512. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4513. result->op = GGML_OP_OUT_PROD;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src[0] = a;
  4516. result->src[1] = b;
  4517. return result;
  4518. }
  4519. // ggml_scale
  4520. static struct ggml_tensor * ggml_scale_impl(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. float s,
  4524. bool inplace) {
  4525. GGML_ASSERT(ggml_is_padded_1d(a));
  4526. bool is_node = false;
  4527. if (a->grad) {
  4528. is_node = true;
  4529. }
  4530. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4531. ggml_set_op_params(result, &s, sizeof(s));
  4532. result->op = GGML_OP_SCALE;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = a;
  4535. return result;
  4536. }
  4537. struct ggml_tensor * ggml_scale(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. float s) {
  4541. return ggml_scale_impl(ctx, a, s, false);
  4542. }
  4543. struct ggml_tensor * ggml_scale_inplace(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. float s) {
  4547. return ggml_scale_impl(ctx, a, s, true);
  4548. }
  4549. // ggml_set
  4550. static struct ggml_tensor * ggml_set_impl(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. struct ggml_tensor * b,
  4554. size_t nb1,
  4555. size_t nb2,
  4556. size_t nb3,
  4557. size_t offset,
  4558. bool inplace) {
  4559. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4560. bool is_node = false;
  4561. if (a->grad || b->grad) {
  4562. is_node = true;
  4563. }
  4564. // make a view of the destination
  4565. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4566. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4567. ggml_set_op_params(result, params, sizeof(params));
  4568. result->op = GGML_OP_SET;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src[0] = a;
  4571. result->src[1] = b;
  4572. return result;
  4573. }
  4574. struct ggml_tensor * ggml_set(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b,
  4578. size_t nb1,
  4579. size_t nb2,
  4580. size_t nb3,
  4581. size_t offset) {
  4582. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4583. }
  4584. struct ggml_tensor * ggml_set_inplace(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a,
  4587. struct ggml_tensor * b,
  4588. size_t nb1,
  4589. size_t nb2,
  4590. size_t nb3,
  4591. size_t offset) {
  4592. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4593. }
  4594. struct ggml_tensor * ggml_set_1d(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. struct ggml_tensor * b,
  4598. size_t offset) {
  4599. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4600. }
  4601. struct ggml_tensor * ggml_set_1d_inplace(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. struct ggml_tensor * b,
  4605. size_t offset) {
  4606. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4607. }
  4608. struct ggml_tensor * ggml_set_2d(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a,
  4611. struct ggml_tensor * b,
  4612. size_t nb1,
  4613. size_t offset) {
  4614. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4615. }
  4616. struct ggml_tensor * ggml_set_2d_inplace(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a,
  4619. struct ggml_tensor * b,
  4620. size_t nb1,
  4621. size_t offset) {
  4622. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4623. }
  4624. // ggml_cpy
  4625. static struct ggml_tensor * ggml_cpy_impl(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a,
  4628. struct ggml_tensor * b) {
  4629. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4630. bool is_node = false;
  4631. if (a->grad || b->grad) {
  4632. // inplace is false and either one have a grad
  4633. is_node = true;
  4634. }
  4635. // make a view of the destination
  4636. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4637. if (strlen(b->name) > 0) {
  4638. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4639. } else {
  4640. ggml_format_name(result, "%s (copy)", a->name);
  4641. }
  4642. result->op = GGML_OP_CPY;
  4643. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4644. result->src[0] = a;
  4645. result->src[1] = b;
  4646. return result;
  4647. }
  4648. struct ggml_tensor * ggml_cpy(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a,
  4651. struct ggml_tensor * b) {
  4652. return ggml_cpy_impl(ctx, a, b);
  4653. }
  4654. struct ggml_tensor * ggml_cast(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. enum ggml_type type) {
  4658. bool is_node = false;
  4659. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4660. ggml_format_name(result, "%s (copy)", a->name);
  4661. result->op = GGML_OP_CPY;
  4662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4663. result->src[0] = a;
  4664. result->src[1] = result;
  4665. return result;
  4666. }
  4667. // ggml_cont
  4668. static struct ggml_tensor * ggml_cont_impl(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a) {
  4671. bool is_node = false;
  4672. if (a->grad) {
  4673. is_node = true;
  4674. }
  4675. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4676. ggml_format_name(result, "%s (cont)", a->name);
  4677. result->op = GGML_OP_CONT;
  4678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4679. result->src[0] = a;
  4680. return result;
  4681. }
  4682. struct ggml_tensor * ggml_cont(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a) {
  4685. return ggml_cont_impl(ctx, a);
  4686. }
  4687. // make contiguous, with new shape
  4688. GGML_API struct ggml_tensor * ggml_cont_1d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0) {
  4692. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4693. }
  4694. GGML_API struct ggml_tensor * ggml_cont_2d(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a,
  4697. int64_t ne0,
  4698. int64_t ne1) {
  4699. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4700. }
  4701. GGML_API struct ggml_tensor * ggml_cont_3d(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. int64_t ne0,
  4705. int64_t ne1,
  4706. int64_t ne2) {
  4707. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4708. }
  4709. struct ggml_tensor * ggml_cont_4d(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a,
  4712. int64_t ne0,
  4713. int64_t ne1,
  4714. int64_t ne2,
  4715. int64_t ne3) {
  4716. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4717. bool is_node = false;
  4718. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4719. ggml_format_name(result, "%s (cont)", a->name);
  4720. result->op = GGML_OP_CONT;
  4721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4722. result->src[0] = a;
  4723. return result;
  4724. }
  4725. // ggml_reshape
  4726. struct ggml_tensor * ggml_reshape(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. struct ggml_tensor * b) {
  4730. GGML_ASSERT(ggml_is_contiguous(a));
  4731. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4732. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4733. bool is_node = false;
  4734. if (a->grad) {
  4735. is_node = true;
  4736. }
  4737. if (b->grad) {
  4738. // gradient propagation is not supported
  4739. //GGML_ASSERT(false);
  4740. }
  4741. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4742. ggml_format_name(result, "%s (reshaped)", a->name);
  4743. result->op = GGML_OP_RESHAPE;
  4744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4745. result->src[0] = a;
  4746. return result;
  4747. }
  4748. struct ggml_tensor * ggml_reshape_1d(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a,
  4751. int64_t ne0) {
  4752. GGML_ASSERT(ggml_is_contiguous(a));
  4753. GGML_ASSERT(ggml_nelements(a) == ne0);
  4754. bool is_node = false;
  4755. if (a->grad) {
  4756. is_node = true;
  4757. }
  4758. const int64_t ne[1] = { ne0 };
  4759. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4760. ggml_format_name(result, "%s (reshaped)", a->name);
  4761. result->op = GGML_OP_RESHAPE;
  4762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4763. result->src[0] = a;
  4764. return result;
  4765. }
  4766. struct ggml_tensor * ggml_reshape_2d(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a,
  4769. int64_t ne0,
  4770. int64_t ne1) {
  4771. GGML_ASSERT(ggml_is_contiguous(a));
  4772. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4773. bool is_node = false;
  4774. if (a->grad) {
  4775. is_node = true;
  4776. }
  4777. const int64_t ne[2] = { ne0, ne1 };
  4778. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4779. ggml_format_name(result, "%s (reshaped)", a->name);
  4780. result->op = GGML_OP_RESHAPE;
  4781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4782. result->src[0] = a;
  4783. return result;
  4784. }
  4785. struct ggml_tensor * ggml_reshape_3d(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. int64_t ne0,
  4789. int64_t ne1,
  4790. int64_t ne2) {
  4791. GGML_ASSERT(ggml_is_contiguous(a));
  4792. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4793. bool is_node = false;
  4794. if (a->grad) {
  4795. is_node = true;
  4796. }
  4797. const int64_t ne[3] = { ne0, ne1, ne2 };
  4798. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4799. ggml_format_name(result, "%s (reshaped)", a->name);
  4800. result->op = GGML_OP_RESHAPE;
  4801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4802. result->src[0] = a;
  4803. return result;
  4804. }
  4805. struct ggml_tensor * ggml_reshape_4d(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. int64_t ne0,
  4809. int64_t ne1,
  4810. int64_t ne2,
  4811. int64_t ne3) {
  4812. GGML_ASSERT(ggml_is_contiguous(a));
  4813. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4814. bool is_node = false;
  4815. if (a->grad) {
  4816. is_node = true;
  4817. }
  4818. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4819. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4820. ggml_format_name(result, "%s (reshaped)", a->name);
  4821. result->op = GGML_OP_RESHAPE;
  4822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4823. result->src[0] = a;
  4824. return result;
  4825. }
  4826. static struct ggml_tensor * ggml_view_impl(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. int n_dims,
  4830. const int64_t * ne,
  4831. size_t offset) {
  4832. bool is_node = false;
  4833. if (a->grad) {
  4834. is_node = true;
  4835. }
  4836. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4837. ggml_format_name(result, "%s (view)", a->name);
  4838. ggml_set_op_params(result, &offset, sizeof(offset));
  4839. result->op = GGML_OP_VIEW;
  4840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4841. result->src[0] = a;
  4842. return result;
  4843. }
  4844. // ggml_view_1d
  4845. struct ggml_tensor * ggml_view_1d(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. int64_t ne0,
  4849. size_t offset) {
  4850. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4851. return result;
  4852. }
  4853. // ggml_view_2d
  4854. struct ggml_tensor * ggml_view_2d(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. int64_t ne0,
  4858. int64_t ne1,
  4859. size_t nb1,
  4860. size_t offset) {
  4861. const int64_t ne[2] = { ne0, ne1 };
  4862. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4863. result->nb[1] = nb1;
  4864. result->nb[2] = result->nb[1]*ne1;
  4865. result->nb[3] = result->nb[2];
  4866. return result;
  4867. }
  4868. // ggml_view_3d
  4869. struct ggml_tensor * ggml_view_3d(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a,
  4872. int64_t ne0,
  4873. int64_t ne1,
  4874. int64_t ne2,
  4875. size_t nb1,
  4876. size_t nb2,
  4877. size_t offset) {
  4878. const int64_t ne[3] = { ne0, ne1, ne2 };
  4879. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4880. result->nb[1] = nb1;
  4881. result->nb[2] = nb2;
  4882. result->nb[3] = result->nb[2]*ne2;
  4883. return result;
  4884. }
  4885. // ggml_view_4d
  4886. struct ggml_tensor * ggml_view_4d(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. int64_t ne0,
  4890. int64_t ne1,
  4891. int64_t ne2,
  4892. int64_t ne3,
  4893. size_t nb1,
  4894. size_t nb2,
  4895. size_t nb3,
  4896. size_t offset) {
  4897. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4898. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4899. result->nb[1] = nb1;
  4900. result->nb[2] = nb2;
  4901. result->nb[3] = nb3;
  4902. return result;
  4903. }
  4904. // ggml_permute
  4905. struct ggml_tensor * ggml_permute(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. int axis0,
  4909. int axis1,
  4910. int axis2,
  4911. int axis3) {
  4912. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4913. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4914. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4915. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4916. GGML_ASSERT(axis0 != axis1);
  4917. GGML_ASSERT(axis0 != axis2);
  4918. GGML_ASSERT(axis0 != axis3);
  4919. GGML_ASSERT(axis1 != axis2);
  4920. GGML_ASSERT(axis1 != axis3);
  4921. GGML_ASSERT(axis2 != axis3);
  4922. bool is_node = false;
  4923. if (a->grad) {
  4924. is_node = true;
  4925. }
  4926. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4927. ggml_format_name(result, "%s (permuted)", a->name);
  4928. int ne[GGML_MAX_DIMS];
  4929. int nb[GGML_MAX_DIMS];
  4930. ne[axis0] = a->ne[0];
  4931. ne[axis1] = a->ne[1];
  4932. ne[axis2] = a->ne[2];
  4933. ne[axis3] = a->ne[3];
  4934. nb[axis0] = a->nb[0];
  4935. nb[axis1] = a->nb[1];
  4936. nb[axis2] = a->nb[2];
  4937. nb[axis3] = a->nb[3];
  4938. result->ne[0] = ne[0];
  4939. result->ne[1] = ne[1];
  4940. result->ne[2] = ne[2];
  4941. result->ne[3] = ne[3];
  4942. result->nb[0] = nb[0];
  4943. result->nb[1] = nb[1];
  4944. result->nb[2] = nb[2];
  4945. result->nb[3] = nb[3];
  4946. result->op = GGML_OP_PERMUTE;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src[0] = a;
  4949. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4950. ggml_set_op_params(result, params, sizeof(params));
  4951. return result;
  4952. }
  4953. // ggml_transpose
  4954. struct ggml_tensor * ggml_transpose(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a) {
  4957. bool is_node = false;
  4958. if (a->grad) {
  4959. is_node = true;
  4960. }
  4961. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4962. ggml_format_name(result, "%s (transposed)", a->name);
  4963. result->ne[0] = a->ne[1];
  4964. result->ne[1] = a->ne[0];
  4965. result->nb[0] = a->nb[1];
  4966. result->nb[1] = a->nb[0];
  4967. result->op = GGML_OP_TRANSPOSE;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src[0] = a;
  4970. return result;
  4971. }
  4972. // ggml_get_rows
  4973. struct ggml_tensor * ggml_get_rows(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. struct ggml_tensor * b) {
  4977. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4978. GGML_ASSERT(b->ne[3] == 1);
  4979. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4980. bool is_node = false;
  4981. if (a->grad || b->grad) {
  4982. is_node = true;
  4983. }
  4984. // TODO: implement non F32 return
  4985. enum ggml_type type = GGML_TYPE_F32;
  4986. if (a->type == GGML_TYPE_I32) {
  4987. type = a->type;
  4988. }
  4989. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4990. result->op = GGML_OP_GET_ROWS;
  4991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4992. result->src[0] = a;
  4993. result->src[1] = b;
  4994. return result;
  4995. }
  4996. // ggml_get_rows_back
  4997. struct ggml_tensor * ggml_get_rows_back(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a,
  5000. struct ggml_tensor * b,
  5001. struct ggml_tensor * c) {
  5002. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5003. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5004. bool is_node = false;
  5005. if (a->grad || b->grad) {
  5006. is_node = true;
  5007. }
  5008. // TODO: implement non F32 return
  5009. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5010. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5011. result->op = GGML_OP_GET_ROWS_BACK;
  5012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5013. result->src[0] = a;
  5014. result->src[1] = b;
  5015. return result;
  5016. }
  5017. // ggml_diag
  5018. struct ggml_tensor * ggml_diag(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a) {
  5021. GGML_ASSERT(a->ne[1] == 1);
  5022. bool is_node = false;
  5023. if (a->grad) {
  5024. is_node = true;
  5025. }
  5026. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5027. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5028. result->op = GGML_OP_DIAG;
  5029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5030. result->src[0] = a;
  5031. return result;
  5032. }
  5033. // ggml_diag_mask_inf
  5034. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. int n_past,
  5038. bool inplace) {
  5039. bool is_node = false;
  5040. if (a->grad) {
  5041. is_node = true;
  5042. }
  5043. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5044. int32_t params[] = { n_past };
  5045. ggml_set_op_params(result, params, sizeof(params));
  5046. result->op = GGML_OP_DIAG_MASK_INF;
  5047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5048. result->src[0] = a;
  5049. return result;
  5050. }
  5051. struct ggml_tensor * ggml_diag_mask_inf(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. int n_past) {
  5055. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5056. }
  5057. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. int n_past) {
  5061. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5062. }
  5063. // ggml_diag_mask_zero
  5064. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5065. struct ggml_context * ctx,
  5066. struct ggml_tensor * a,
  5067. int n_past,
  5068. bool inplace) {
  5069. bool is_node = false;
  5070. if (a->grad) {
  5071. is_node = true;
  5072. }
  5073. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5074. int32_t params[] = { n_past };
  5075. ggml_set_op_params(result, params, sizeof(params));
  5076. result->op = GGML_OP_DIAG_MASK_ZERO;
  5077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5078. result->src[0] = a;
  5079. return result;
  5080. }
  5081. struct ggml_tensor * ggml_diag_mask_zero(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. int n_past) {
  5085. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5086. }
  5087. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5088. struct ggml_context * ctx,
  5089. struct ggml_tensor * a,
  5090. int n_past) {
  5091. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5092. }
  5093. // ggml_soft_max
  5094. static struct ggml_tensor * ggml_soft_max_impl(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. struct ggml_tensor * mask,
  5098. float scale,
  5099. float max_bias,
  5100. bool inplace) {
  5101. GGML_ASSERT(ggml_is_contiguous(a));
  5102. if (mask) {
  5103. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5104. GGML_ASSERT(ggml_is_contiguous(mask));
  5105. GGML_ASSERT(ggml_is_matrix(mask));
  5106. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5107. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5108. }
  5109. if (max_bias > 0.0f) {
  5110. GGML_ASSERT(mask);
  5111. }
  5112. bool is_node = false;
  5113. if (a->grad) {
  5114. is_node = true;
  5115. }
  5116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5117. float params[] = { scale, max_bias };
  5118. ggml_set_op_params(result, params, sizeof(params));
  5119. result->op = GGML_OP_SOFT_MAX;
  5120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5121. result->src[0] = a;
  5122. result->src[1] = mask;
  5123. return result;
  5124. }
  5125. struct ggml_tensor * ggml_soft_max(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a) {
  5128. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5129. }
  5130. struct ggml_tensor * ggml_soft_max_inplace(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a) {
  5133. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5134. }
  5135. struct ggml_tensor * ggml_soft_max_ext(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. struct ggml_tensor * mask,
  5139. float scale,
  5140. float max_bias) {
  5141. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5142. }
  5143. // ggml_soft_max_back
  5144. static struct ggml_tensor * ggml_soft_max_back_impl(
  5145. struct ggml_context * ctx,
  5146. struct ggml_tensor * a,
  5147. struct ggml_tensor * b,
  5148. bool inplace) {
  5149. bool is_node = false;
  5150. if (a->grad || b->grad) {
  5151. is_node = true; // TODO : implement backward pass
  5152. }
  5153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5154. result->op = GGML_OP_SOFT_MAX_BACK;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src[0] = a;
  5157. result->src[1] = b;
  5158. return result;
  5159. }
  5160. struct ggml_tensor * ggml_soft_max_back(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b) {
  5164. return ggml_soft_max_back_impl(ctx, a, b, false);
  5165. }
  5166. struct ggml_tensor * ggml_soft_max_back_inplace(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * a,
  5169. struct ggml_tensor * b) {
  5170. return ggml_soft_max_back_impl(ctx, a, b, true);
  5171. }
  5172. // ggml_rope
  5173. static struct ggml_tensor * ggml_rope_impl(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. struct ggml_tensor * b,
  5177. struct ggml_tensor * c,
  5178. int n_dims,
  5179. int mode,
  5180. int n_ctx_orig,
  5181. float freq_base,
  5182. float freq_scale,
  5183. float ext_factor,
  5184. float attn_factor,
  5185. float beta_fast,
  5186. float beta_slow,
  5187. bool inplace) {
  5188. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5189. GGML_ASSERT(ggml_is_vector(b));
  5190. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5191. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5192. if (c) {
  5193. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5194. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5195. }
  5196. bool is_node = false;
  5197. if (a->grad) {
  5198. is_node = true;
  5199. }
  5200. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5201. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5202. memcpy(params + 5, &freq_base, sizeof(float));
  5203. memcpy(params + 6, &freq_scale, sizeof(float));
  5204. memcpy(params + 7, &ext_factor, sizeof(float));
  5205. memcpy(params + 8, &attn_factor, sizeof(float));
  5206. memcpy(params + 9, &beta_fast, sizeof(float));
  5207. memcpy(params + 10, &beta_slow, sizeof(float));
  5208. ggml_set_op_params(result, params, sizeof(params));
  5209. result->op = GGML_OP_ROPE;
  5210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5211. result->src[0] = a;
  5212. result->src[1] = b;
  5213. result->src[2] = c;
  5214. return result;
  5215. }
  5216. struct ggml_tensor * ggml_rope(
  5217. struct ggml_context * ctx,
  5218. struct ggml_tensor * a,
  5219. struct ggml_tensor * b,
  5220. int n_dims,
  5221. int mode) {
  5222. return ggml_rope_impl(
  5223. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5224. );
  5225. }
  5226. struct ggml_tensor * ggml_rope_inplace(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. struct ggml_tensor * b,
  5230. int n_dims,
  5231. int mode) {
  5232. return ggml_rope_impl(
  5233. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5234. );
  5235. }
  5236. struct ggml_tensor * ggml_rope_ext(
  5237. struct ggml_context * ctx,
  5238. struct ggml_tensor * a,
  5239. struct ggml_tensor * b,
  5240. struct ggml_tensor * c,
  5241. int n_dims,
  5242. int mode,
  5243. int n_ctx_orig,
  5244. float freq_base,
  5245. float freq_scale,
  5246. float ext_factor,
  5247. float attn_factor,
  5248. float beta_fast,
  5249. float beta_slow) {
  5250. return ggml_rope_impl(
  5251. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5252. ext_factor, attn_factor, beta_fast, beta_slow, false
  5253. );
  5254. }
  5255. struct ggml_tensor * ggml_rope_ext_inplace(
  5256. struct ggml_context * ctx,
  5257. struct ggml_tensor * a,
  5258. struct ggml_tensor * b,
  5259. struct ggml_tensor * c,
  5260. int n_dims,
  5261. int mode,
  5262. int n_ctx_orig,
  5263. float freq_base,
  5264. float freq_scale,
  5265. float ext_factor,
  5266. float attn_factor,
  5267. float beta_fast,
  5268. float beta_slow) {
  5269. return ggml_rope_impl(
  5270. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5271. ext_factor, attn_factor, beta_fast, beta_slow, true
  5272. );
  5273. }
  5274. struct ggml_tensor * ggml_rope_custom(
  5275. struct ggml_context * ctx,
  5276. struct ggml_tensor * a,
  5277. struct ggml_tensor * b,
  5278. int n_dims,
  5279. int mode,
  5280. int n_ctx_orig,
  5281. float freq_base,
  5282. float freq_scale,
  5283. float ext_factor,
  5284. float attn_factor,
  5285. float beta_fast,
  5286. float beta_slow) {
  5287. return ggml_rope_impl(
  5288. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5289. ext_factor, attn_factor, beta_fast, beta_slow, false
  5290. );
  5291. }
  5292. struct ggml_tensor * ggml_rope_custom_inplace(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. struct ggml_tensor * b,
  5296. int n_dims,
  5297. int mode,
  5298. int n_ctx_orig,
  5299. float freq_base,
  5300. float freq_scale,
  5301. float ext_factor,
  5302. float attn_factor,
  5303. float beta_fast,
  5304. float beta_slow) {
  5305. return ggml_rope_impl(
  5306. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5307. ext_factor, attn_factor, beta_fast, beta_slow, true
  5308. );
  5309. }
  5310. // ggml_rope_back
  5311. struct ggml_tensor * ggml_rope_back(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. struct ggml_tensor * b,
  5315. struct ggml_tensor * c,
  5316. int n_dims,
  5317. int mode,
  5318. int n_ctx_orig,
  5319. float freq_base,
  5320. float freq_scale,
  5321. float ext_factor,
  5322. float attn_factor,
  5323. float beta_fast,
  5324. float beta_slow) {
  5325. GGML_ASSERT(ggml_is_vector(b));
  5326. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5327. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5328. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5329. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5330. bool is_node = false;
  5331. if (a->grad) {
  5332. is_node = false; // TODO: implement backward
  5333. }
  5334. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5335. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5336. memcpy(params + 5, &freq_base, sizeof(float));
  5337. memcpy(params + 6, &freq_scale, sizeof(float));
  5338. memcpy(params + 7, &ext_factor, sizeof(float));
  5339. memcpy(params + 8, &attn_factor, sizeof(float));
  5340. memcpy(params + 9, &beta_fast, sizeof(float));
  5341. memcpy(params + 10, &beta_slow, sizeof(float));
  5342. ggml_set_op_params(result, params, sizeof(params));
  5343. result->op = GGML_OP_ROPE_BACK;
  5344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5345. result->src[0] = a;
  5346. result->src[1] = b;
  5347. return result;
  5348. }
  5349. // ggml_clamp
  5350. struct ggml_tensor * ggml_clamp(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * a,
  5353. float min,
  5354. float max) {
  5355. bool is_node = false;
  5356. if (a->grad) {
  5357. GGML_ASSERT(false); // TODO: implement backward
  5358. is_node = true;
  5359. }
  5360. // TODO: when implement backward, fix this:
  5361. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5362. float params[] = { min, max };
  5363. ggml_set_op_params(result, params, sizeof(params));
  5364. result->op = GGML_OP_CLAMP;
  5365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5366. result->src[0] = a;
  5367. return result;
  5368. }
  5369. // ggml_conv_1d
  5370. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5371. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5372. }
  5373. GGML_API struct ggml_tensor * ggml_conv_1d(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. struct ggml_tensor * b,
  5377. int s0,
  5378. int p0,
  5379. int d0) {
  5380. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5381. struct ggml_tensor * result =
  5382. ggml_mul_mat(ctx,
  5383. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5384. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5385. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5386. return result;
  5387. }
  5388. // ggml_conv_1d_ph
  5389. struct ggml_tensor* ggml_conv_1d_ph(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a,
  5392. struct ggml_tensor * b,
  5393. int s,
  5394. int d) {
  5395. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5396. }
  5397. // ggml_conv_transpose_1d
  5398. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5399. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5400. }
  5401. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. struct ggml_tensor * b,
  5405. int s0,
  5406. int p0,
  5407. int d0) {
  5408. GGML_ASSERT(ggml_is_matrix(b));
  5409. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5410. GGML_ASSERT(a->ne[3] == 1);
  5411. GGML_ASSERT(p0 == 0);
  5412. GGML_ASSERT(d0 == 1);
  5413. bool is_node = false;
  5414. if (a->grad || b->grad) {
  5415. GGML_ASSERT(false); // TODO: implement backward
  5416. is_node = true;
  5417. }
  5418. const int64_t ne[4] = {
  5419. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5420. a->ne[1], b->ne[2], 1,
  5421. };
  5422. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5423. int32_t params[] = { s0, p0, d0 };
  5424. ggml_set_op_params(result, params, sizeof(params));
  5425. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5427. result->src[0] = a;
  5428. result->src[1] = b;
  5429. return result;
  5430. }
  5431. // ggml_conv_depthwise
  5432. struct ggml_tensor * ggml_conv_depthwise_2d(
  5433. struct ggml_context * ctx,
  5434. struct ggml_tensor * a,
  5435. struct ggml_tensor * b,
  5436. int s0,
  5437. int s1,
  5438. int p0,
  5439. int p1,
  5440. int d0,
  5441. int d1) {
  5442. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5443. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5444. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5445. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5446. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5447. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5448. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5449. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5450. return result;
  5451. }
  5452. // ggml_conv_2d
  5453. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5454. // a: [OC,IC, KH, KW]
  5455. // b: [N, IC, IH, IW]
  5456. // result: [N, OH, OW, IC*KH*KW]
  5457. struct ggml_tensor * ggml_im2col(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. struct ggml_tensor * b,
  5461. int s0,
  5462. int s1,
  5463. int p0,
  5464. int p1,
  5465. int d0,
  5466. int d1,
  5467. bool is_2D,
  5468. enum ggml_type dst_type) {
  5469. if(is_2D) {
  5470. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5471. } else {
  5472. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5473. }
  5474. bool is_node = false;
  5475. if (a->grad || b->grad) {
  5476. GGML_ASSERT(false); // TODO: implement backward
  5477. is_node = true;
  5478. }
  5479. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5480. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5481. const int64_t ne[4] = {
  5482. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5483. OW,
  5484. is_2D ? OH : b->ne[2],
  5485. is_2D ? b->ne[3] : 1,
  5486. };
  5487. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5488. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5489. ggml_set_op_params(result, params, sizeof(params));
  5490. result->op = GGML_OP_IM2COL;
  5491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5492. result->src[0] = a;
  5493. result->src[1] = b;
  5494. return result;
  5495. }
  5496. // a: [OC,IC, KH, KW]
  5497. // b: [N, IC, IH, IW]
  5498. // result: [N, OC, OH, OW]
  5499. struct ggml_tensor * ggml_conv_2d(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. struct ggml_tensor * b,
  5503. int s0,
  5504. int s1,
  5505. int p0,
  5506. int p1,
  5507. int d0,
  5508. int d1) {
  5509. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5510. struct ggml_tensor * result =
  5511. ggml_mul_mat(ctx,
  5512. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5513. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5514. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5515. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5516. return result;
  5517. }
  5518. // ggml_conv_2d_sk_p0
  5519. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a,
  5522. struct ggml_tensor * b) {
  5523. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5524. }
  5525. // ggml_conv_2d_s1_ph
  5526. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. struct ggml_tensor * b) {
  5530. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5531. }
  5532. // ggml_conv_transpose_2d_p0
  5533. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5534. return (ins - 1) * s - 2 * p + ks;
  5535. }
  5536. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b,
  5540. int stride) {
  5541. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5542. bool is_node = false;
  5543. if (a->grad || b->grad) {
  5544. GGML_ASSERT(false); // TODO: implement backward
  5545. is_node = true;
  5546. }
  5547. const int64_t ne[4] = {
  5548. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5549. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5550. a->ne[2], b->ne[3],
  5551. };
  5552. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5553. ggml_set_op_params_i32(result, 0, stride);
  5554. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5555. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5556. result->src[0] = a;
  5557. result->src[1] = b;
  5558. return result;
  5559. }
  5560. // ggml_pool_*
  5561. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5562. return (ins + 2 * p - ks) / s + 1;
  5563. }
  5564. // ggml_pool_1d
  5565. struct ggml_tensor * ggml_pool_1d(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. enum ggml_op_pool op,
  5569. int k0,
  5570. int s0,
  5571. int p0) {
  5572. bool is_node = false;
  5573. if (a->grad) {
  5574. GGML_ASSERT(false); // TODO: implement backward
  5575. is_node = true;
  5576. }
  5577. const int64_t ne[4] = {
  5578. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5579. a->ne[1],
  5580. a->ne[2],
  5581. a->ne[3],
  5582. };
  5583. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5584. int32_t params[] = { op, k0, s0, p0 };
  5585. ggml_set_op_params(result, params, sizeof(params));
  5586. result->op = GGML_OP_POOL_1D;
  5587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5588. result->src[0] = a;
  5589. return result;
  5590. }
  5591. // ggml_pool_2d
  5592. struct ggml_tensor * ggml_pool_2d(
  5593. struct ggml_context * ctx,
  5594. struct ggml_tensor * a,
  5595. enum ggml_op_pool op,
  5596. int k0,
  5597. int k1,
  5598. int s0,
  5599. int s1,
  5600. float p0,
  5601. float p1) {
  5602. bool is_node = false;
  5603. if (a->grad) {
  5604. GGML_ASSERT(false); // TODO: implement backward
  5605. is_node = true;
  5606. }
  5607. struct ggml_tensor * result;
  5608. const int64_t ne[3] = {
  5609. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5610. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5611. a->ne[2],
  5612. };
  5613. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5614. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5615. ggml_set_op_params(result, params, sizeof(params));
  5616. result->op = GGML_OP_POOL_2D;
  5617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5618. result->src[0] = a;
  5619. return result;
  5620. }
  5621. // ggml_upscale
  5622. static struct ggml_tensor * ggml_upscale_impl(
  5623. struct ggml_context * ctx,
  5624. struct ggml_tensor * a,
  5625. int ne0,
  5626. int ne1,
  5627. int ne2,
  5628. int ne3) {
  5629. bool is_node = false;
  5630. if (a->grad) {
  5631. GGML_ASSERT(false); // TODO: implement backward
  5632. is_node = true;
  5633. }
  5634. GGML_ASSERT(a->ne[0] <= ne0);
  5635. GGML_ASSERT(a->ne[1] <= ne1);
  5636. GGML_ASSERT(a->ne[2] <= ne2);
  5637. GGML_ASSERT(a->ne[3] <= ne3);
  5638. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5639. ne0,
  5640. ne1,
  5641. ne2,
  5642. ne3
  5643. );
  5644. result->op = GGML_OP_UPSCALE;
  5645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5646. result->src[0] = a;
  5647. return result;
  5648. }
  5649. struct ggml_tensor * ggml_upscale(
  5650. struct ggml_context * ctx,
  5651. struct ggml_tensor * a,
  5652. int scale_factor) {
  5653. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5654. }
  5655. struct ggml_tensor * ggml_upscale_ext(
  5656. struct ggml_context * ctx,
  5657. struct ggml_tensor * a,
  5658. int ne0,
  5659. int ne1,
  5660. int ne2,
  5661. int ne3) {
  5662. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5663. }
  5664. // ggml_pad
  5665. struct ggml_tensor * ggml_pad(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. int p0, int p1, int p2, int p3) {
  5669. bool is_node = false;
  5670. if (a->grad) {
  5671. GGML_ASSERT(false); // TODO: implement backward
  5672. is_node = true;
  5673. }
  5674. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5675. a->ne[0] + p0,
  5676. a->ne[1] + p1,
  5677. a->ne[2] + p2,
  5678. a->ne[3] + p3);
  5679. result->op = GGML_OP_PAD;
  5680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5681. result->src[0] = a;
  5682. return result;
  5683. }
  5684. // ggml_arange
  5685. struct ggml_tensor * ggml_arange(
  5686. struct ggml_context * ctx,
  5687. float start,
  5688. float stop,
  5689. float step) {
  5690. GGML_ASSERT(stop > start);
  5691. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5692. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5693. result->op = GGML_OP_ARANGE;
  5694. ggml_set_op_params_f32(result, 0, start);
  5695. ggml_set_op_params_f32(result, 1, stop);
  5696. ggml_set_op_params_f32(result, 2, step);
  5697. return result;
  5698. }
  5699. // ggml_timestep_embedding
  5700. struct ggml_tensor * ggml_timestep_embedding(
  5701. struct ggml_context * ctx,
  5702. struct ggml_tensor * timesteps,
  5703. int dim,
  5704. int max_period) {
  5705. bool is_node = false;
  5706. if (timesteps->grad) {
  5707. GGML_ASSERT(false); // TODO: implement backward
  5708. is_node = true;
  5709. }
  5710. int actual_dim = dim;
  5711. if (dim % 2 != 0) {
  5712. actual_dim = dim + 1;
  5713. }
  5714. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5715. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5716. ggml_set_op_params_i32(result, 0, dim);
  5717. ggml_set_op_params_i32(result, 1, max_period);
  5718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5719. result->src[0] = timesteps;
  5720. return result;
  5721. }
  5722. // ggml_argsort
  5723. struct ggml_tensor * ggml_argsort(
  5724. struct ggml_context * ctx,
  5725. struct ggml_tensor * a,
  5726. enum ggml_sort_order order) {
  5727. bool is_node = false;
  5728. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5729. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5730. result->op = GGML_OP_ARGSORT;
  5731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5732. result->src[0] = a;
  5733. return result;
  5734. }
  5735. // ggml_top_k
  5736. struct ggml_tensor * ggml_top_k(
  5737. struct ggml_context * ctx,
  5738. struct ggml_tensor * a,
  5739. int k) {
  5740. GGML_ASSERT(a->ne[0] >= k);
  5741. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5742. result = ggml_view_4d(ctx, result,
  5743. k, result->ne[1], result->ne[2], result->ne[3],
  5744. result->nb[1], result->nb[2], result->nb[3],
  5745. 0);
  5746. return result;
  5747. }
  5748. // ggml_flash_attn_ext
  5749. struct ggml_tensor * ggml_flash_attn_ext(
  5750. struct ggml_context * ctx,
  5751. struct ggml_tensor * q,
  5752. struct ggml_tensor * k,
  5753. struct ggml_tensor * v,
  5754. struct ggml_tensor * mask,
  5755. float scale,
  5756. float max_bias) {
  5757. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5758. // TODO: check if vT can be multiplied by (k*qT)
  5759. if (mask) {
  5760. GGML_ASSERT(ggml_is_contiguous(mask));
  5761. GGML_ASSERT(mask->ne[2] == 1);
  5762. GGML_ASSERT(mask->ne[3] == 1);
  5763. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5764. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5765. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5766. }
  5767. if (max_bias > 0.0f) {
  5768. GGML_ASSERT(mask);
  5769. }
  5770. bool is_node = false;
  5771. if (q->grad || k->grad || v->grad) {
  5772. is_node = true;
  5773. }
  5774. // permute(0, 2, 1, 3)
  5775. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5776. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5777. float params[] = { scale, max_bias };
  5778. ggml_set_op_params(result, params, sizeof(params));
  5779. result->op = GGML_OP_FLASH_ATTN_EXT;
  5780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5781. result->src[0] = q;
  5782. result->src[1] = k;
  5783. result->src[2] = v;
  5784. result->src[3] = mask;
  5785. return result;
  5786. }
  5787. void ggml_flash_attn_ext_set_prec(
  5788. struct ggml_tensor * a,
  5789. enum ggml_prec prec) {
  5790. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5791. const int32_t prec_i32 = (int32_t) prec;
  5792. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5793. }
  5794. // ggml_flash_attn_back
  5795. struct ggml_tensor * ggml_flash_attn_back(
  5796. struct ggml_context * ctx,
  5797. struct ggml_tensor * q,
  5798. struct ggml_tensor * k,
  5799. struct ggml_tensor * v,
  5800. struct ggml_tensor * d,
  5801. bool masked) {
  5802. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5803. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5804. // TODO: check if vT can be multiplied by (k*qT)
  5805. // d shape [D,N,ne2,ne3]
  5806. // q shape [D,N,ne2,ne3]
  5807. // k shape [D,M,kvne2,ne3]
  5808. // v shape [M,D,kvne2,ne3]
  5809. const int64_t D = q->ne[0];
  5810. const int64_t N = q->ne[1];
  5811. const int64_t M = k->ne[1];
  5812. const int64_t ne2 = q->ne[2];
  5813. const int64_t ne3 = q->ne[3];
  5814. const int64_t kvne2 = k->ne[2];
  5815. GGML_ASSERT(k->ne[0] == D);
  5816. GGML_ASSERT(v->ne[0] == M);
  5817. GGML_ASSERT(v->ne[1] == D);
  5818. GGML_ASSERT(d->ne[0] == D);
  5819. GGML_ASSERT(d->ne[1] == N);
  5820. GGML_ASSERT(k->ne[2] == kvne2);
  5821. GGML_ASSERT(k->ne[3] == ne3);
  5822. GGML_ASSERT(v->ne[2] == kvne2);
  5823. GGML_ASSERT(v->ne[3] == ne3);
  5824. GGML_ASSERT(d->ne[2] == ne2);
  5825. GGML_ASSERT(d->ne[3] == ne3);
  5826. GGML_ASSERT(ne2 % kvne2 == 0);
  5827. bool is_node = false;
  5828. if (q->grad || k->grad || v->grad) {
  5829. // when using this operation (in backwards pass) these grads are set.
  5830. // we don't want to create (big) grad of our result, so is_node is false.
  5831. is_node = false;
  5832. }
  5833. // store gradients of q, k and v as continuous tensors concatenated in result.
  5834. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5835. const int64_t elem_q = ggml_nelements(q);
  5836. const int64_t elem_k = ggml_nelements(k);
  5837. const int64_t elem_v = ggml_nelements(v);
  5838. enum ggml_type result_type = GGML_TYPE_F32;
  5839. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5840. const size_t tsize = ggml_type_size(result_type);
  5841. const size_t offs_q = 0;
  5842. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5843. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5844. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5845. const size_t nelements = (end + tsize - 1)/tsize;
  5846. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5847. int32_t masked_i = masked ? 1 : 0;
  5848. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5849. result->op = GGML_OP_FLASH_ATTN_BACK;
  5850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5851. result->src[0] = q;
  5852. result->src[1] = k;
  5853. result->src[2] = v;
  5854. result->src[3] = d;
  5855. return result;
  5856. }
  5857. // ggml_ssm_conv
  5858. struct ggml_tensor * ggml_ssm_conv(
  5859. struct ggml_context * ctx,
  5860. struct ggml_tensor * s,
  5861. struct ggml_tensor * x,
  5862. struct ggml_tensor * c,
  5863. struct ggml_tensor * sq) {
  5864. GGML_ASSERT(ggml_is_3d(s));
  5865. GGML_ASSERT(ggml_is_matrix(x));
  5866. GGML_ASSERT(ggml_is_matrix(c));
  5867. GGML_ASSERT(ggml_is_matrix(sq));
  5868. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5869. const int64_t d_conv = c->ne[0];
  5870. const int64_t d_inner = c->ne[1];
  5871. const int64_t n_tokens = x->ne[1];
  5872. const int64_t n_kv = s->ne[2];
  5873. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5874. GGML_ASSERT( s->ne[1] == d_inner);
  5875. GGML_ASSERT( x->ne[0] == d_inner);
  5876. GGML_ASSERT(sq->ne[0] == n_kv);
  5877. GGML_ASSERT(sq->ne[1] == n_tokens);
  5878. bool is_node = false;
  5879. if (s->grad || x->grad || c->grad || sq->grad) {
  5880. GGML_ASSERT(false); // TODO: implement
  5881. is_node = true;
  5882. }
  5883. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5884. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5885. result->op = GGML_OP_SSM_CONV;
  5886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5887. result->src[0] = s;
  5888. result->src[1] = x;
  5889. result->src[2] = c;
  5890. result->src[3] = sq;
  5891. return result;
  5892. }
  5893. // ggml_ssm_scan
  5894. struct ggml_tensor * ggml_ssm_scan(
  5895. struct ggml_context * ctx,
  5896. struct ggml_tensor * s,
  5897. struct ggml_tensor * x,
  5898. struct ggml_tensor * dt,
  5899. struct ggml_tensor * A,
  5900. struct ggml_tensor * B,
  5901. struct ggml_tensor * C,
  5902. struct ggml_tensor * sq) {
  5903. GGML_ASSERT(ggml_is_contiguous(s));
  5904. GGML_ASSERT(ggml_is_contiguous(x));
  5905. GGML_ASSERT(ggml_is_contiguous(dt));
  5906. GGML_ASSERT(ggml_is_contiguous(A));
  5907. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5908. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5909. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5910. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5911. {
  5912. const int64_t d_state = s->ne[0];
  5913. const int64_t d_inner = s->ne[1];
  5914. const int64_t n_tokens = x->ne[1];
  5915. GGML_ASSERT(x->ne[0] == d_inner);
  5916. GGML_ASSERT(A->ne[0] == d_state);
  5917. GGML_ASSERT(A->ne[1] == d_inner);
  5918. GGML_ASSERT(B->ne[0] == d_state);
  5919. GGML_ASSERT(B->ne[1] == n_tokens);
  5920. GGML_ASSERT(C->ne[0] == d_state);
  5921. GGML_ASSERT(C->ne[1] == n_tokens);
  5922. }
  5923. bool is_node = false;
  5924. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5925. GGML_ASSERT(false); // TODO: implement
  5926. is_node = true;
  5927. }
  5928. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5929. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5930. result->op = GGML_OP_SSM_SCAN;
  5931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5932. result->src[0] = s;
  5933. result->src[1] = x;
  5934. result->src[2] = dt;
  5935. result->src[3] = A;
  5936. result->src[4] = B;
  5937. result->src[5] = C;
  5938. result->src[6] = sq;
  5939. return result;
  5940. }
  5941. // ggml_win_part
  5942. struct ggml_tensor * ggml_win_part(
  5943. struct ggml_context * ctx,
  5944. struct ggml_tensor * a,
  5945. int w) {
  5946. GGML_ASSERT(a->ne[3] == 1);
  5947. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5948. bool is_node = false;
  5949. if (a->grad) {
  5950. GGML_ASSERT(false); // TODO: implement backward
  5951. is_node = true;
  5952. }
  5953. // padding
  5954. const int px = (w - a->ne[1]%w)%w;
  5955. const int py = (w - a->ne[2]%w)%w;
  5956. const int npx = (px + a->ne[1])/w;
  5957. const int npy = (py + a->ne[2])/w;
  5958. const int np = npx*npy;
  5959. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5960. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5961. int32_t params[] = { npx, npy, w };
  5962. ggml_set_op_params(result, params, sizeof(params));
  5963. result->op = GGML_OP_WIN_PART;
  5964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5965. result->src[0] = a;
  5966. return result;
  5967. }
  5968. // ggml_win_unpart
  5969. struct ggml_tensor * ggml_win_unpart(
  5970. struct ggml_context * ctx,
  5971. struct ggml_tensor * a,
  5972. int w0,
  5973. int h0,
  5974. int w) {
  5975. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5976. bool is_node = false;
  5977. if (a->grad) {
  5978. GGML_ASSERT(false); // TODO: implement backward
  5979. is_node = true;
  5980. }
  5981. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5982. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5983. int32_t params[] = { w };
  5984. ggml_set_op_params(result, params, sizeof(params));
  5985. result->op = GGML_OP_WIN_UNPART;
  5986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5987. result->src[0] = a;
  5988. return result;
  5989. }
  5990. // ggml_get_rel_pos
  5991. struct ggml_tensor * ggml_get_rel_pos(
  5992. struct ggml_context * ctx,
  5993. struct ggml_tensor * a,
  5994. int qh,
  5995. int kh) {
  5996. GGML_ASSERT(qh == kh);
  5997. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5998. bool is_node = false;
  5999. if (a->grad) {
  6000. GGML_ASSERT(false); // TODO: implement backward
  6001. is_node = true;
  6002. }
  6003. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6004. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6005. result->op = GGML_OP_GET_REL_POS;
  6006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6007. result->src[0] = a;
  6008. return result;
  6009. }
  6010. // ggml_add_rel_pos
  6011. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6012. struct ggml_context * ctx,
  6013. struct ggml_tensor * a,
  6014. struct ggml_tensor * pw,
  6015. struct ggml_tensor * ph,
  6016. bool inplace) {
  6017. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6018. GGML_ASSERT(ggml_is_contiguous(a));
  6019. GGML_ASSERT(ggml_is_contiguous(pw));
  6020. GGML_ASSERT(ggml_is_contiguous(ph));
  6021. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6022. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6023. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6024. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6025. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6026. bool is_node = false;
  6027. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6028. is_node = true;
  6029. }
  6030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6031. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6032. result->op = GGML_OP_ADD_REL_POS;
  6033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6034. result->src[0] = a;
  6035. result->src[1] = pw;
  6036. result->src[2] = ph;
  6037. return result;
  6038. }
  6039. struct ggml_tensor * ggml_add_rel_pos(
  6040. struct ggml_context * ctx,
  6041. struct ggml_tensor * a,
  6042. struct ggml_tensor * pw,
  6043. struct ggml_tensor * ph) {
  6044. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6045. }
  6046. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6047. struct ggml_context * ctx,
  6048. struct ggml_tensor * a,
  6049. struct ggml_tensor * pw,
  6050. struct ggml_tensor * ph) {
  6051. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6052. }
  6053. // ggml_unary
  6054. static struct ggml_tensor * ggml_unary_impl(
  6055. struct ggml_context * ctx,
  6056. struct ggml_tensor * a,
  6057. enum ggml_unary_op op,
  6058. bool inplace) {
  6059. bool is_node = false;
  6060. if (!inplace && (a->grad)) {
  6061. is_node = true;
  6062. }
  6063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6064. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6065. result->op = GGML_OP_UNARY;
  6066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6067. result->src[0] = a;
  6068. return result;
  6069. }
  6070. struct ggml_tensor * ggml_unary(
  6071. struct ggml_context * ctx,
  6072. struct ggml_tensor * a,
  6073. enum ggml_unary_op op) {
  6074. return ggml_unary_impl(ctx, a, op, false);
  6075. }
  6076. struct ggml_tensor * ggml_unary_inplace(
  6077. struct ggml_context * ctx,
  6078. struct ggml_tensor * a,
  6079. enum ggml_unary_op op) {
  6080. return ggml_unary_impl(ctx, a, op, true);
  6081. }
  6082. // ggml_map_unary
  6083. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6084. struct ggml_context * ctx,
  6085. struct ggml_tensor * a,
  6086. const ggml_unary_op_f32_t fun,
  6087. bool inplace) {
  6088. bool is_node = false;
  6089. if (!inplace && a->grad) {
  6090. is_node = true;
  6091. }
  6092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6093. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6094. result->op = GGML_OP_MAP_UNARY;
  6095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6096. result->src[0] = a;
  6097. return result;
  6098. }
  6099. struct ggml_tensor * ggml_map_unary_f32(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. const ggml_unary_op_f32_t fun) {
  6103. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6104. }
  6105. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. const ggml_unary_op_f32_t fun) {
  6109. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6110. }
  6111. // ggml_map_binary
  6112. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6113. struct ggml_context * ctx,
  6114. struct ggml_tensor * a,
  6115. struct ggml_tensor * b,
  6116. const ggml_binary_op_f32_t fun,
  6117. bool inplace) {
  6118. GGML_ASSERT(ggml_are_same_shape(a, b));
  6119. bool is_node = false;
  6120. if (!inplace && (a->grad || b->grad)) {
  6121. is_node = true;
  6122. }
  6123. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6124. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6125. result->op = GGML_OP_MAP_BINARY;
  6126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6127. result->src[0] = a;
  6128. result->src[1] = b;
  6129. return result;
  6130. }
  6131. struct ggml_tensor * ggml_map_binary_f32(
  6132. struct ggml_context * ctx,
  6133. struct ggml_tensor * a,
  6134. struct ggml_tensor * b,
  6135. const ggml_binary_op_f32_t fun) {
  6136. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6137. }
  6138. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6139. struct ggml_context * ctx,
  6140. struct ggml_tensor * a,
  6141. struct ggml_tensor * b,
  6142. const ggml_binary_op_f32_t fun) {
  6143. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6144. }
  6145. // ggml_map_custom1_f32
  6146. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6147. struct ggml_context * ctx,
  6148. struct ggml_tensor * a,
  6149. const ggml_custom1_op_f32_t fun,
  6150. bool inplace) {
  6151. bool is_node = false;
  6152. if (!inplace && a->grad) {
  6153. is_node = true;
  6154. }
  6155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6156. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6157. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6159. result->src[0] = a;
  6160. return result;
  6161. }
  6162. struct ggml_tensor * ggml_map_custom1_f32(
  6163. struct ggml_context * ctx,
  6164. struct ggml_tensor * a,
  6165. const ggml_custom1_op_f32_t fun) {
  6166. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6167. }
  6168. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6169. struct ggml_context * ctx,
  6170. struct ggml_tensor * a,
  6171. const ggml_custom1_op_f32_t fun) {
  6172. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6173. }
  6174. // ggml_map_custom2_f32
  6175. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6176. struct ggml_context * ctx,
  6177. struct ggml_tensor * a,
  6178. struct ggml_tensor * b,
  6179. const ggml_custom2_op_f32_t fun,
  6180. bool inplace) {
  6181. bool is_node = false;
  6182. if (!inplace && (a->grad || b->grad)) {
  6183. is_node = true;
  6184. }
  6185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6186. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6187. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6189. result->src[0] = a;
  6190. result->src[1] = b;
  6191. return result;
  6192. }
  6193. struct ggml_tensor * ggml_map_custom2_f32(
  6194. struct ggml_context * ctx,
  6195. struct ggml_tensor * a,
  6196. struct ggml_tensor * b,
  6197. const ggml_custom2_op_f32_t fun) {
  6198. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6199. }
  6200. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6201. struct ggml_context * ctx,
  6202. struct ggml_tensor * a,
  6203. struct ggml_tensor * b,
  6204. const ggml_custom2_op_f32_t fun) {
  6205. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6206. }
  6207. // ggml_map_custom3_f32
  6208. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6209. struct ggml_context * ctx,
  6210. struct ggml_tensor * a,
  6211. struct ggml_tensor * b,
  6212. struct ggml_tensor * c,
  6213. const ggml_custom3_op_f32_t fun,
  6214. bool inplace) {
  6215. bool is_node = false;
  6216. if (!inplace && (a->grad || b->grad || c->grad)) {
  6217. is_node = true;
  6218. }
  6219. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6220. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6221. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6223. result->src[0] = a;
  6224. result->src[1] = b;
  6225. result->src[2] = c;
  6226. return result;
  6227. }
  6228. struct ggml_tensor * ggml_map_custom3_f32(
  6229. struct ggml_context * ctx,
  6230. struct ggml_tensor * a,
  6231. struct ggml_tensor * b,
  6232. struct ggml_tensor * c,
  6233. const ggml_custom3_op_f32_t fun) {
  6234. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6235. }
  6236. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6237. struct ggml_context * ctx,
  6238. struct ggml_tensor * a,
  6239. struct ggml_tensor * b,
  6240. struct ggml_tensor * c,
  6241. const ggml_custom3_op_f32_t fun) {
  6242. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6243. }
  6244. // ggml_map_custom1
  6245. struct ggml_map_custom1_op_params {
  6246. ggml_custom1_op_t fun;
  6247. int n_tasks;
  6248. void * userdata;
  6249. };
  6250. static struct ggml_tensor * ggml_map_custom1_impl(
  6251. struct ggml_context * ctx,
  6252. struct ggml_tensor * a,
  6253. const ggml_custom1_op_t fun,
  6254. int n_tasks,
  6255. void * userdata,
  6256. bool inplace) {
  6257. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6258. bool is_node = false;
  6259. if (!inplace && a->grad) {
  6260. is_node = true;
  6261. }
  6262. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6263. struct ggml_map_custom1_op_params params = {
  6264. /*.fun =*/ fun,
  6265. /*.n_tasks =*/ n_tasks,
  6266. /*.userdata =*/ userdata
  6267. };
  6268. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6269. result->op = GGML_OP_MAP_CUSTOM1;
  6270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6271. result->src[0] = a;
  6272. return result;
  6273. }
  6274. struct ggml_tensor * ggml_map_custom1(
  6275. struct ggml_context * ctx,
  6276. struct ggml_tensor * a,
  6277. const ggml_custom1_op_t fun,
  6278. int n_tasks,
  6279. void * userdata) {
  6280. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6281. }
  6282. struct ggml_tensor * ggml_map_custom1_inplace(
  6283. struct ggml_context * ctx,
  6284. struct ggml_tensor * a,
  6285. const ggml_custom1_op_t fun,
  6286. int n_tasks,
  6287. void * userdata) {
  6288. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6289. }
  6290. // ggml_map_custom2
  6291. struct ggml_map_custom2_op_params {
  6292. ggml_custom2_op_t fun;
  6293. int n_tasks;
  6294. void * userdata;
  6295. };
  6296. static struct ggml_tensor * ggml_map_custom2_impl(
  6297. struct ggml_context * ctx,
  6298. struct ggml_tensor * a,
  6299. struct ggml_tensor * b,
  6300. const ggml_custom2_op_t fun,
  6301. int n_tasks,
  6302. void * userdata,
  6303. bool inplace) {
  6304. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6305. bool is_node = false;
  6306. if (!inplace && (a->grad || b->grad)) {
  6307. is_node = true;
  6308. }
  6309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6310. struct ggml_map_custom2_op_params params = {
  6311. /*.fun =*/ fun,
  6312. /*.n_tasks =*/ n_tasks,
  6313. /*.userdata =*/ userdata
  6314. };
  6315. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6316. result->op = GGML_OP_MAP_CUSTOM2;
  6317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6318. result->src[0] = a;
  6319. result->src[1] = b;
  6320. return result;
  6321. }
  6322. struct ggml_tensor * ggml_map_custom2(
  6323. struct ggml_context * ctx,
  6324. struct ggml_tensor * a,
  6325. struct ggml_tensor * b,
  6326. const ggml_custom2_op_t fun,
  6327. int n_tasks,
  6328. void * userdata) {
  6329. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6330. }
  6331. struct ggml_tensor * ggml_map_custom2_inplace(
  6332. struct ggml_context * ctx,
  6333. struct ggml_tensor * a,
  6334. struct ggml_tensor * b,
  6335. const ggml_custom2_op_t fun,
  6336. int n_tasks,
  6337. void * userdata) {
  6338. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6339. }
  6340. // ggml_map_custom3
  6341. struct ggml_map_custom3_op_params {
  6342. ggml_custom3_op_t fun;
  6343. int n_tasks;
  6344. void * userdata;
  6345. };
  6346. static struct ggml_tensor * ggml_map_custom3_impl(
  6347. struct ggml_context * ctx,
  6348. struct ggml_tensor * a,
  6349. struct ggml_tensor * b,
  6350. struct ggml_tensor * c,
  6351. const ggml_custom3_op_t fun,
  6352. int n_tasks,
  6353. void * userdata,
  6354. bool inplace) {
  6355. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6356. bool is_node = false;
  6357. if (!inplace && (a->grad || b->grad || c->grad)) {
  6358. is_node = true;
  6359. }
  6360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6361. struct ggml_map_custom3_op_params params = {
  6362. /*.fun =*/ fun,
  6363. /*.n_tasks =*/ n_tasks,
  6364. /*.userdata =*/ userdata
  6365. };
  6366. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6367. result->op = GGML_OP_MAP_CUSTOM3;
  6368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6369. result->src[0] = a;
  6370. result->src[1] = b;
  6371. result->src[2] = c;
  6372. return result;
  6373. }
  6374. struct ggml_tensor * ggml_map_custom3(
  6375. struct ggml_context * ctx,
  6376. struct ggml_tensor * a,
  6377. struct ggml_tensor * b,
  6378. struct ggml_tensor * c,
  6379. const ggml_custom3_op_t fun,
  6380. int n_tasks,
  6381. void * userdata) {
  6382. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6383. }
  6384. struct ggml_tensor * ggml_map_custom3_inplace(
  6385. struct ggml_context * ctx,
  6386. struct ggml_tensor * a,
  6387. struct ggml_tensor * b,
  6388. struct ggml_tensor * c,
  6389. const ggml_custom3_op_t fun,
  6390. int n_tasks,
  6391. void * userdata) {
  6392. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6393. }
  6394. // ggml_cross_entropy_loss
  6395. struct ggml_tensor * ggml_cross_entropy_loss(
  6396. struct ggml_context * ctx,
  6397. struct ggml_tensor * a,
  6398. struct ggml_tensor * b) {
  6399. GGML_ASSERT(ggml_are_same_shape(a, b));
  6400. bool is_node = false;
  6401. if (a->grad || b->grad) {
  6402. is_node = true;
  6403. }
  6404. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6405. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6407. result->src[0] = a;
  6408. result->src[1] = b;
  6409. return result;
  6410. }
  6411. // ggml_cross_entropy_loss_back
  6412. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6413. struct ggml_context * ctx,
  6414. struct ggml_tensor * a,
  6415. struct ggml_tensor * b,
  6416. struct ggml_tensor * c) {
  6417. GGML_ASSERT(ggml_are_same_shape(a, b));
  6418. GGML_ASSERT(ggml_is_scalar(c));
  6419. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6420. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6421. result->grad = NULL;
  6422. result->src[0] = a;
  6423. result->src[1] = b;
  6424. result->src[2] = c;
  6425. return result;
  6426. }
  6427. ////////////////////////////////////////////////////////////////////////////////
  6428. void ggml_set_param(
  6429. struct ggml_context * ctx,
  6430. struct ggml_tensor * tensor) {
  6431. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6432. GGML_ASSERT(tensor->grad == NULL);
  6433. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6434. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6435. }
  6436. // ggml_compute_forward_dup
  6437. static void ggml_compute_forward_dup_same_cont(
  6438. const struct ggml_compute_params * params,
  6439. struct ggml_tensor * dst) {
  6440. const struct ggml_tensor * src0 = dst->src[0];
  6441. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6442. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6443. GGML_ASSERT(src0->type == dst->type);
  6444. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6445. return;
  6446. }
  6447. const size_t nb00 = src0->nb[0];
  6448. const size_t nb0 = dst->nb[0];
  6449. const int ith = params->ith; // thread index
  6450. const int nth = params->nth; // number of threads
  6451. // parallelize by elements
  6452. const int ne = ggml_nelements(dst);
  6453. const int dr = (ne + nth - 1) / nth;
  6454. const int ie0 = dr * ith;
  6455. const int ie1 = MIN(ie0 + dr, ne);
  6456. if (ie0 < ie1) {
  6457. memcpy(
  6458. ((char *) dst->data + ie0*nb0),
  6459. ((char *) src0->data + ie0*nb00),
  6460. (ie1 - ie0) * ggml_type_size(src0->type));
  6461. }
  6462. }
  6463. static void ggml_compute_forward_dup_f16(
  6464. const struct ggml_compute_params * params,
  6465. struct ggml_tensor * dst) {
  6466. const struct ggml_tensor * src0 = dst->src[0];
  6467. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6468. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6469. return;
  6470. }
  6471. GGML_TENSOR_UNARY_OP_LOCALS
  6472. const int ith = params->ith; // thread index
  6473. const int nth = params->nth; // number of threads
  6474. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6475. ggml_compute_forward_dup_same_cont(params, dst);
  6476. return;
  6477. }
  6478. // parallelize by rows
  6479. const int nr = ne01;
  6480. // number of rows per thread
  6481. const int dr = (nr + nth - 1) / nth;
  6482. // row range for this thread
  6483. const int ir0 = dr * ith;
  6484. const int ir1 = MIN(ir0 + dr, nr);
  6485. if (src0->type == dst->type &&
  6486. ne00 == ne0 &&
  6487. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6488. // copy by rows
  6489. const size_t rs = ne00*nb00;
  6490. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6491. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6492. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6493. memcpy(
  6494. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6495. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6496. rs);
  6497. }
  6498. }
  6499. }
  6500. return;
  6501. }
  6502. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6503. if (ggml_is_contiguous(dst)) {
  6504. if (nb00 == sizeof(ggml_fp16_t)) {
  6505. if (dst->type == GGML_TYPE_F16) {
  6506. size_t id = 0;
  6507. const size_t rs = ne00 * nb00;
  6508. char * dst_ptr = (char *) dst->data;
  6509. for (int i03 = 0; i03 < ne03; i03++) {
  6510. for (int i02 = 0; i02 < ne02; i02++) {
  6511. id += rs * ir0;
  6512. for (int i01 = ir0; i01 < ir1; i01++) {
  6513. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6514. memcpy(dst_ptr + id, src0_ptr, rs);
  6515. id += rs;
  6516. }
  6517. id += rs * (ne01 - ir1);
  6518. }
  6519. }
  6520. } else if (dst->type == GGML_TYPE_F32) {
  6521. size_t id = 0;
  6522. float * dst_ptr = (float *) dst->data;
  6523. for (int i03 = 0; i03 < ne03; i03++) {
  6524. for (int i02 = 0; i02 < ne02; i02++) {
  6525. id += ne00 * ir0;
  6526. for (int i01 = ir0; i01 < ir1; i01++) {
  6527. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6528. for (int i00 = 0; i00 < ne00; i00++) {
  6529. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6530. id++;
  6531. }
  6532. }
  6533. id += ne00 * (ne01 - ir1);
  6534. }
  6535. }
  6536. } else if (type_traits[dst->type].from_float) {
  6537. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6538. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6539. size_t id = 0;
  6540. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6541. char * dst_ptr = (char *) dst->data;
  6542. for (int i03 = 0; i03 < ne03; i03++) {
  6543. for (int i02 = 0; i02 < ne02; i02++) {
  6544. id += rs * ir0;
  6545. for (int i01 = ir0; i01 < ir1; i01++) {
  6546. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6547. for (int i00 = 0; i00 < ne00; i00++) {
  6548. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6549. }
  6550. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6551. id += rs;
  6552. }
  6553. id += rs * (ne01 - ir1);
  6554. }
  6555. }
  6556. } else {
  6557. GGML_ASSERT(false); // TODO: implement
  6558. }
  6559. } else {
  6560. //printf("%s: this is not optimal - fix me\n", __func__);
  6561. if (dst->type == GGML_TYPE_F32) {
  6562. size_t id = 0;
  6563. float * dst_ptr = (float *) dst->data;
  6564. for (int i03 = 0; i03 < ne03; i03++) {
  6565. for (int i02 = 0; i02 < ne02; i02++) {
  6566. id += ne00 * ir0;
  6567. for (int i01 = ir0; i01 < ir1; i01++) {
  6568. for (int i00 = 0; i00 < ne00; i00++) {
  6569. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6570. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6571. id++;
  6572. }
  6573. }
  6574. id += ne00 * (ne01 - ir1);
  6575. }
  6576. }
  6577. } else if (dst->type == GGML_TYPE_F16) {
  6578. size_t id = 0;
  6579. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6580. for (int i03 = 0; i03 < ne03; i03++) {
  6581. for (int i02 = 0; i02 < ne02; i02++) {
  6582. id += ne00 * ir0;
  6583. for (int i01 = ir0; i01 < ir1; i01++) {
  6584. for (int i00 = 0; i00 < ne00; i00++) {
  6585. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6586. dst_ptr[id] = *src0_ptr;
  6587. id++;
  6588. }
  6589. }
  6590. id += ne00 * (ne01 - ir1);
  6591. }
  6592. }
  6593. } else {
  6594. GGML_ASSERT(false); // TODO: implement
  6595. }
  6596. }
  6597. return;
  6598. }
  6599. // dst counters
  6600. int64_t i10 = 0;
  6601. int64_t i11 = 0;
  6602. int64_t i12 = 0;
  6603. int64_t i13 = 0;
  6604. if (dst->type == GGML_TYPE_F16) {
  6605. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6606. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6607. i10 += ne00 * ir0;
  6608. while (i10 >= ne0) {
  6609. i10 -= ne0;
  6610. if (++i11 == ne1) {
  6611. i11 = 0;
  6612. if (++i12 == ne2) {
  6613. i12 = 0;
  6614. if (++i13 == ne3) {
  6615. i13 = 0;
  6616. }
  6617. }
  6618. }
  6619. }
  6620. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6621. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6622. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6623. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6624. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6625. if (++i10 == ne00) {
  6626. i10 = 0;
  6627. if (++i11 == ne01) {
  6628. i11 = 0;
  6629. if (++i12 == ne02) {
  6630. i12 = 0;
  6631. if (++i13 == ne03) {
  6632. i13 = 0;
  6633. }
  6634. }
  6635. }
  6636. }
  6637. }
  6638. }
  6639. i10 += ne00 * (ne01 - ir1);
  6640. while (i10 >= ne0) {
  6641. i10 -= ne0;
  6642. if (++i11 == ne1) {
  6643. i11 = 0;
  6644. if (++i12 == ne2) {
  6645. i12 = 0;
  6646. if (++i13 == ne3) {
  6647. i13 = 0;
  6648. }
  6649. }
  6650. }
  6651. }
  6652. }
  6653. }
  6654. } else if (dst->type == GGML_TYPE_F32) {
  6655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6657. i10 += ne00 * ir0;
  6658. while (i10 >= ne0) {
  6659. i10 -= ne0;
  6660. if (++i11 == ne1) {
  6661. i11 = 0;
  6662. if (++i12 == ne2) {
  6663. i12 = 0;
  6664. if (++i13 == ne3) {
  6665. i13 = 0;
  6666. }
  6667. }
  6668. }
  6669. }
  6670. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6671. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6672. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6673. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6674. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6675. if (++i10 == ne0) {
  6676. i10 = 0;
  6677. if (++i11 == ne1) {
  6678. i11 = 0;
  6679. if (++i12 == ne2) {
  6680. i12 = 0;
  6681. if (++i13 == ne3) {
  6682. i13 = 0;
  6683. }
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. i10 += ne00 * (ne01 - ir1);
  6690. while (i10 >= ne0) {
  6691. i10 -= ne0;
  6692. if (++i11 == ne1) {
  6693. i11 = 0;
  6694. if (++i12 == ne2) {
  6695. i12 = 0;
  6696. if (++i13 == ne3) {
  6697. i13 = 0;
  6698. }
  6699. }
  6700. }
  6701. }
  6702. }
  6703. }
  6704. } else {
  6705. GGML_ASSERT(false); // TODO: implement
  6706. }
  6707. }
  6708. static void ggml_compute_forward_dup_bf16(
  6709. const struct ggml_compute_params * params,
  6710. struct ggml_tensor * dst) {
  6711. const struct ggml_tensor * src0 = dst->src[0];
  6712. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6714. return;
  6715. }
  6716. GGML_TENSOR_UNARY_OP_LOCALS
  6717. const int ith = params->ith; // thread index
  6718. const int nth = params->nth; // number of threads
  6719. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6720. ggml_compute_forward_dup_same_cont(params, dst);
  6721. return;
  6722. }
  6723. // parallelize by rows
  6724. const int nr = ne01;
  6725. // number of rows per thread
  6726. const int dr = (nr + nth - 1) / nth;
  6727. // row range for this thread
  6728. const int ir0 = dr * ith;
  6729. const int ir1 = MIN(ir0 + dr, nr);
  6730. if (src0->type == dst->type &&
  6731. ne00 == ne0 &&
  6732. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6733. // copy by rows
  6734. const size_t rs = ne00*nb00;
  6735. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6736. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6737. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6738. memcpy(
  6739. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6740. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6741. rs);
  6742. }
  6743. }
  6744. }
  6745. return;
  6746. }
  6747. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6748. if (ggml_is_contiguous(dst)) {
  6749. if (nb00 == sizeof(ggml_bf16_t)) {
  6750. if (dst->type == GGML_TYPE_BF16) {
  6751. size_t id = 0;
  6752. const size_t rs = ne00 * nb00;
  6753. char * dst_ptr = (char *) dst->data;
  6754. for (int i03 = 0; i03 < ne03; i03++) {
  6755. for (int i02 = 0; i02 < ne02; i02++) {
  6756. id += rs * ir0;
  6757. for (int i01 = ir0; i01 < ir1; i01++) {
  6758. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6759. memcpy(dst_ptr + id, src0_ptr, rs);
  6760. id += rs;
  6761. }
  6762. id += rs * (ne01 - ir1);
  6763. }
  6764. }
  6765. } else if (dst->type == GGML_TYPE_F16) {
  6766. size_t id = 0;
  6767. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6768. for (int i03 = 0; i03 < ne03; i03++) {
  6769. for (int i02 = 0; i02 < ne02; i02++) {
  6770. id += ne00 * ir0;
  6771. for (int i01 = ir0; i01 < ir1; i01++) {
  6772. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6773. for (int i00 = 0; i00 < ne00; i00++) {
  6774. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6775. id++;
  6776. }
  6777. }
  6778. id += ne00 * (ne01 - ir1);
  6779. }
  6780. }
  6781. } else if (dst->type == GGML_TYPE_F32) {
  6782. size_t id = 0;
  6783. float * dst_ptr = (float *) dst->data;
  6784. for (int i03 = 0; i03 < ne03; i03++) {
  6785. for (int i02 = 0; i02 < ne02; i02++) {
  6786. id += ne00 * ir0;
  6787. for (int i01 = ir0; i01 < ir1; i01++) {
  6788. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6789. for (int i00 = 0; i00 < ne00; i00++) {
  6790. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6791. id++;
  6792. }
  6793. }
  6794. id += ne00 * (ne01 - ir1);
  6795. }
  6796. }
  6797. } else if (type_traits[dst->type].from_float) {
  6798. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6799. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6800. size_t id = 0;
  6801. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6802. char * dst_ptr = (char *) dst->data;
  6803. for (int i03 = 0; i03 < ne03; i03++) {
  6804. for (int i02 = 0; i02 < ne02; i02++) {
  6805. id += rs * ir0;
  6806. for (int i01 = ir0; i01 < ir1; i01++) {
  6807. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6808. for (int i00 = 0; i00 < ne00; i00++) {
  6809. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6810. }
  6811. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6812. id += rs;
  6813. }
  6814. id += rs * (ne01 - ir1);
  6815. }
  6816. }
  6817. } else {
  6818. GGML_ASSERT(false); // TODO: implement
  6819. }
  6820. } else {
  6821. //printf("%s: this is not optimal - fix me\n", __func__);
  6822. if (dst->type == GGML_TYPE_F32) {
  6823. size_t id = 0;
  6824. float * dst_ptr = (float *) dst->data;
  6825. for (int i03 = 0; i03 < ne03; i03++) {
  6826. for (int i02 = 0; i02 < ne02; i02++) {
  6827. id += ne00 * ir0;
  6828. for (int i01 = ir0; i01 < ir1; i01++) {
  6829. for (int i00 = 0; i00 < ne00; i00++) {
  6830. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6831. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6832. id++;
  6833. }
  6834. }
  6835. id += ne00 * (ne01 - ir1);
  6836. }
  6837. }
  6838. } else if (dst->type == GGML_TYPE_BF16) {
  6839. size_t id = 0;
  6840. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6841. for (int i03 = 0; i03 < ne03; i03++) {
  6842. for (int i02 = 0; i02 < ne02; i02++) {
  6843. id += ne00 * ir0;
  6844. for (int i01 = ir0; i01 < ir1; i01++) {
  6845. for (int i00 = 0; i00 < ne00; i00++) {
  6846. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6847. dst_ptr[id] = *src0_ptr;
  6848. id++;
  6849. }
  6850. }
  6851. id += ne00 * (ne01 - ir1);
  6852. }
  6853. }
  6854. } else if (dst->type == GGML_TYPE_F16) {
  6855. size_t id = 0;
  6856. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6857. for (int i03 = 0; i03 < ne03; i03++) {
  6858. for (int i02 = 0; i02 < ne02; i02++) {
  6859. id += ne00 * ir0;
  6860. for (int i01 = ir0; i01 < ir1; i01++) {
  6861. for (int i00 = 0; i00 < ne00; i00++) {
  6862. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6863. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6864. id++;
  6865. }
  6866. }
  6867. id += ne00 * (ne01 - ir1);
  6868. }
  6869. }
  6870. } else {
  6871. GGML_ASSERT(false); // TODO: implement
  6872. }
  6873. }
  6874. return;
  6875. }
  6876. // dst counters
  6877. int64_t i10 = 0;
  6878. int64_t i11 = 0;
  6879. int64_t i12 = 0;
  6880. int64_t i13 = 0;
  6881. if (dst->type == GGML_TYPE_BF16) {
  6882. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6883. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6884. i10 += ne00 * ir0;
  6885. while (i10 >= ne0) {
  6886. i10 -= ne0;
  6887. if (++i11 == ne1) {
  6888. i11 = 0;
  6889. if (++i12 == ne2) {
  6890. i12 = 0;
  6891. if (++i13 == ne3) {
  6892. i13 = 0;
  6893. }
  6894. }
  6895. }
  6896. }
  6897. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6898. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6899. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6900. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6901. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6902. if (++i10 == ne00) {
  6903. i10 = 0;
  6904. if (++i11 == ne01) {
  6905. i11 = 0;
  6906. if (++i12 == ne02) {
  6907. i12 = 0;
  6908. if (++i13 == ne03) {
  6909. i13 = 0;
  6910. }
  6911. }
  6912. }
  6913. }
  6914. }
  6915. }
  6916. i10 += ne00 * (ne01 - ir1);
  6917. while (i10 >= ne0) {
  6918. i10 -= ne0;
  6919. if (++i11 == ne1) {
  6920. i11 = 0;
  6921. if (++i12 == ne2) {
  6922. i12 = 0;
  6923. if (++i13 == ne3) {
  6924. i13 = 0;
  6925. }
  6926. }
  6927. }
  6928. }
  6929. }
  6930. }
  6931. } else if (dst->type == GGML_TYPE_F16) {
  6932. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6933. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6934. i10 += ne00 * ir0;
  6935. while (i10 >= ne0) {
  6936. i10 -= ne0;
  6937. if (++i11 == ne1) {
  6938. i11 = 0;
  6939. if (++i12 == ne2) {
  6940. i12 = 0;
  6941. if (++i13 == ne3) {
  6942. i13 = 0;
  6943. }
  6944. }
  6945. }
  6946. }
  6947. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6948. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6949. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6950. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6951. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6952. if (++i10 == ne0) {
  6953. i10 = 0;
  6954. if (++i11 == ne1) {
  6955. i11 = 0;
  6956. if (++i12 == ne2) {
  6957. i12 = 0;
  6958. if (++i13 == ne3) {
  6959. i13 = 0;
  6960. }
  6961. }
  6962. }
  6963. }
  6964. }
  6965. }
  6966. i10 += ne00 * (ne01 - ir1);
  6967. while (i10 >= ne0) {
  6968. i10 -= ne0;
  6969. if (++i11 == ne1) {
  6970. i11 = 0;
  6971. if (++i12 == ne2) {
  6972. i12 = 0;
  6973. if (++i13 == ne3) {
  6974. i13 = 0;
  6975. }
  6976. }
  6977. }
  6978. }
  6979. }
  6980. }
  6981. } else if (dst->type == GGML_TYPE_F32) {
  6982. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6983. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6984. i10 += ne00 * ir0;
  6985. while (i10 >= ne0) {
  6986. i10 -= ne0;
  6987. if (++i11 == ne1) {
  6988. i11 = 0;
  6989. if (++i12 == ne2) {
  6990. i12 = 0;
  6991. if (++i13 == ne3) {
  6992. i13 = 0;
  6993. }
  6994. }
  6995. }
  6996. }
  6997. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6998. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6999. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7000. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7001. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7002. if (++i10 == ne0) {
  7003. i10 = 0;
  7004. if (++i11 == ne1) {
  7005. i11 = 0;
  7006. if (++i12 == ne2) {
  7007. i12 = 0;
  7008. if (++i13 == ne3) {
  7009. i13 = 0;
  7010. }
  7011. }
  7012. }
  7013. }
  7014. }
  7015. }
  7016. i10 += ne00 * (ne01 - ir1);
  7017. while (i10 >= ne0) {
  7018. i10 -= ne0;
  7019. if (++i11 == ne1) {
  7020. i11 = 0;
  7021. if (++i12 == ne2) {
  7022. i12 = 0;
  7023. if (++i13 == ne3) {
  7024. i13 = 0;
  7025. }
  7026. }
  7027. }
  7028. }
  7029. }
  7030. }
  7031. } else {
  7032. GGML_ASSERT(false); // TODO: implement
  7033. }
  7034. }
  7035. static void ggml_compute_forward_dup_f32(
  7036. const struct ggml_compute_params * params,
  7037. struct ggml_tensor * dst) {
  7038. const struct ggml_tensor * src0 = dst->src[0];
  7039. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7040. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7041. return;
  7042. }
  7043. GGML_TENSOR_UNARY_OP_LOCALS
  7044. const int ith = params->ith; // thread index
  7045. const int nth = params->nth; // number of threads
  7046. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7047. ggml_compute_forward_dup_same_cont(params, dst);
  7048. return;
  7049. }
  7050. // parallelize by rows
  7051. const int nr = ne01;
  7052. // number of rows per thread
  7053. const int dr = (nr + nth - 1) / nth;
  7054. // row range for this thread
  7055. const int ir0 = dr * ith;
  7056. const int ir1 = MIN(ir0 + dr, nr);
  7057. if (src0->type == dst->type &&
  7058. ne00 == ne0 &&
  7059. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7060. // copy by rows
  7061. const size_t rs = ne00*nb00;
  7062. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7063. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7064. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7065. memcpy(
  7066. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7067. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7068. rs);
  7069. }
  7070. }
  7071. }
  7072. return;
  7073. }
  7074. if (ggml_is_contiguous(dst)) {
  7075. // TODO: simplify
  7076. if (nb00 == sizeof(float)) {
  7077. if (dst->type == GGML_TYPE_F32) {
  7078. size_t id = 0;
  7079. const size_t rs = ne00 * nb00;
  7080. char * dst_ptr = (char *) dst->data;
  7081. for (int i03 = 0; i03 < ne03; i03++) {
  7082. for (int i02 = 0; i02 < ne02; i02++) {
  7083. id += rs * ir0;
  7084. for (int i01 = ir0; i01 < ir1; i01++) {
  7085. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7086. memcpy(dst_ptr + id, src0_ptr, rs);
  7087. id += rs;
  7088. }
  7089. id += rs * (ne01 - ir1);
  7090. }
  7091. }
  7092. } else if (type_traits[dst->type].from_float) {
  7093. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7094. size_t id = 0;
  7095. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7096. char * dst_ptr = (char *) dst->data;
  7097. for (int i03 = 0; i03 < ne03; i03++) {
  7098. for (int i02 = 0; i02 < ne02; i02++) {
  7099. id += rs * ir0;
  7100. for (int i01 = ir0; i01 < ir1; i01++) {
  7101. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7102. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7103. id += rs;
  7104. }
  7105. id += rs * (ne01 - ir1);
  7106. }
  7107. }
  7108. } else {
  7109. GGML_ASSERT(false); // TODO: implement
  7110. }
  7111. } else {
  7112. //printf("%s: this is not optimal - fix me\n", __func__);
  7113. if (dst->type == GGML_TYPE_F32) {
  7114. size_t id = 0;
  7115. float * dst_ptr = (float *) dst->data;
  7116. for (int i03 = 0; i03 < ne03; i03++) {
  7117. for (int i02 = 0; i02 < ne02; i02++) {
  7118. id += ne00 * ir0;
  7119. for (int i01 = ir0; i01 < ir1; i01++) {
  7120. for (int i00 = 0; i00 < ne00; i00++) {
  7121. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7122. dst_ptr[id] = *src0_ptr;
  7123. id++;
  7124. }
  7125. }
  7126. id += ne00 * (ne01 - ir1);
  7127. }
  7128. }
  7129. } else if (dst->type == GGML_TYPE_F16) {
  7130. size_t id = 0;
  7131. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7132. for (int i03 = 0; i03 < ne03; i03++) {
  7133. for (int i02 = 0; i02 < ne02; i02++) {
  7134. id += ne00 * ir0;
  7135. for (int i01 = ir0; i01 < ir1; i01++) {
  7136. for (int i00 = 0; i00 < ne00; i00++) {
  7137. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7138. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7139. id++;
  7140. }
  7141. }
  7142. id += ne00 * (ne01 - ir1);
  7143. }
  7144. }
  7145. } else if (dst->type == GGML_TYPE_BF16) {
  7146. size_t id = 0;
  7147. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7148. for (int i03 = 0; i03 < ne03; i03++) {
  7149. for (int i02 = 0; i02 < ne02; i02++) {
  7150. id += ne00 * ir0;
  7151. for (int i01 = ir0; i01 < ir1; i01++) {
  7152. for (int i00 = 0; i00 < ne00; i00++) {
  7153. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7154. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7155. id++;
  7156. }
  7157. }
  7158. id += ne00 * (ne01 - ir1);
  7159. }
  7160. }
  7161. } else {
  7162. GGML_ASSERT(false); // TODO: implement
  7163. }
  7164. }
  7165. return;
  7166. }
  7167. // dst counters
  7168. int64_t i10 = 0;
  7169. int64_t i11 = 0;
  7170. int64_t i12 = 0;
  7171. int64_t i13 = 0;
  7172. if (dst->type == GGML_TYPE_F32) {
  7173. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7174. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7175. i10 += ne00 * ir0;
  7176. while (i10 >= ne0) {
  7177. i10 -= ne0;
  7178. if (++i11 == ne1) {
  7179. i11 = 0;
  7180. if (++i12 == ne2) {
  7181. i12 = 0;
  7182. if (++i13 == ne3) {
  7183. i13 = 0;
  7184. }
  7185. }
  7186. }
  7187. }
  7188. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7189. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7190. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7191. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7192. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7193. if (++i10 == ne0) {
  7194. i10 = 0;
  7195. if (++i11 == ne1) {
  7196. i11 = 0;
  7197. if (++i12 == ne2) {
  7198. i12 = 0;
  7199. if (++i13 == ne3) {
  7200. i13 = 0;
  7201. }
  7202. }
  7203. }
  7204. }
  7205. }
  7206. }
  7207. i10 += ne00 * (ne01 - ir1);
  7208. while (i10 >= ne0) {
  7209. i10 -= ne0;
  7210. if (++i11 == ne1) {
  7211. i11 = 0;
  7212. if (++i12 == ne2) {
  7213. i12 = 0;
  7214. if (++i13 == ne3) {
  7215. i13 = 0;
  7216. }
  7217. }
  7218. }
  7219. }
  7220. }
  7221. }
  7222. } else if (dst->type == GGML_TYPE_F16) {
  7223. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7224. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7225. i10 += ne00 * ir0;
  7226. while (i10 >= ne0) {
  7227. i10 -= ne0;
  7228. if (++i11 == ne1) {
  7229. i11 = 0;
  7230. if (++i12 == ne2) {
  7231. i12 = 0;
  7232. if (++i13 == ne3) {
  7233. i13 = 0;
  7234. }
  7235. }
  7236. }
  7237. }
  7238. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7239. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7240. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7241. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7242. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7243. if (++i10 == ne0) {
  7244. i10 = 0;
  7245. if (++i11 == ne1) {
  7246. i11 = 0;
  7247. if (++i12 == ne2) {
  7248. i12 = 0;
  7249. if (++i13 == ne3) {
  7250. i13 = 0;
  7251. }
  7252. }
  7253. }
  7254. }
  7255. }
  7256. }
  7257. i10 += ne00 * (ne01 - ir1);
  7258. while (i10 >= ne0) {
  7259. i10 -= ne0;
  7260. if (++i11 == ne1) {
  7261. i11 = 0;
  7262. if (++i12 == ne2) {
  7263. i12 = 0;
  7264. if (++i13 == ne3) {
  7265. i13 = 0;
  7266. }
  7267. }
  7268. }
  7269. }
  7270. }
  7271. }
  7272. } else if (dst->type == GGML_TYPE_BF16) {
  7273. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7274. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7275. i10 += ne00 * ir0;
  7276. while (i10 >= ne0) {
  7277. i10 -= ne0;
  7278. if (++i11 == ne1) {
  7279. i11 = 0;
  7280. if (++i12 == ne2) {
  7281. i12 = 0;
  7282. if (++i13 == ne3) {
  7283. i13 = 0;
  7284. }
  7285. }
  7286. }
  7287. }
  7288. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7289. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7290. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7291. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7292. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7293. if (++i10 == ne0) {
  7294. i10 = 0;
  7295. if (++i11 == ne1) {
  7296. i11 = 0;
  7297. if (++i12 == ne2) {
  7298. i12 = 0;
  7299. if (++i13 == ne3) {
  7300. i13 = 0;
  7301. }
  7302. }
  7303. }
  7304. }
  7305. }
  7306. }
  7307. i10 += ne00 * (ne01 - ir1);
  7308. while (i10 >= ne0) {
  7309. i10 -= ne0;
  7310. if (++i11 == ne1) {
  7311. i11 = 0;
  7312. if (++i12 == ne2) {
  7313. i12 = 0;
  7314. if (++i13 == ne3) {
  7315. i13 = 0;
  7316. }
  7317. }
  7318. }
  7319. }
  7320. }
  7321. }
  7322. } else {
  7323. GGML_ASSERT(false); // TODO: implement
  7324. }
  7325. }
  7326. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7327. static void ggml_compute_forward_dup_bytes(
  7328. const struct ggml_compute_params * params,
  7329. struct ggml_tensor * dst) {
  7330. const struct ggml_tensor * src0 = dst->src[0];
  7331. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7332. GGML_ASSERT(src0->type == dst->type);
  7333. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7334. return;
  7335. }
  7336. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7337. ggml_compute_forward_dup_same_cont(params, dst);
  7338. return;
  7339. }
  7340. GGML_TENSOR_UNARY_OP_LOCALS;
  7341. const size_t type_size = ggml_type_size(src0->type);
  7342. const int ith = params->ith; // thread index
  7343. const int nth = params->nth; // number of threads
  7344. // parallelize by rows
  7345. const int nr = ne01;
  7346. // number of rows per thread
  7347. const int dr = (nr + nth - 1) / nth;
  7348. // row range for this thread
  7349. const int ir0 = dr * ith;
  7350. const int ir1 = MIN(ir0 + dr, nr);
  7351. if (src0->type == dst->type &&
  7352. ne00 == ne0 &&
  7353. nb00 == type_size && nb0 == type_size) {
  7354. // copy by rows
  7355. const size_t rs = ne00 * type_size;
  7356. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7357. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7358. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7359. memcpy(
  7360. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7361. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7362. rs);
  7363. }
  7364. }
  7365. }
  7366. return;
  7367. }
  7368. if (ggml_is_contiguous(dst)) {
  7369. size_t id = 0;
  7370. char * dst_ptr = (char *) dst->data;
  7371. const size_t rs = ne00 * type_size;
  7372. if (nb00 == type_size) {
  7373. // src0 is contigous on first dimension, copy by rows
  7374. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7375. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7376. id += rs * ir0;
  7377. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7378. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7379. memcpy(dst_ptr + id, src0_ptr, rs);
  7380. id += rs;
  7381. }
  7382. id += rs * (ne01 - ir1);
  7383. }
  7384. }
  7385. } else {
  7386. //printf("%s: this is not optimal - fix me\n", __func__);
  7387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7389. id += rs * ir0;
  7390. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7391. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7392. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7393. memcpy(dst_ptr + id, src0_ptr, type_size);
  7394. id += type_size;
  7395. }
  7396. }
  7397. id += rs * (ne01 - ir1);
  7398. }
  7399. }
  7400. }
  7401. return;
  7402. }
  7403. // dst counters
  7404. int64_t i10 = 0;
  7405. int64_t i11 = 0;
  7406. int64_t i12 = 0;
  7407. int64_t i13 = 0;
  7408. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7409. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7410. i10 += ne00 * ir0;
  7411. while (i10 >= ne0) {
  7412. i10 -= ne0;
  7413. if (++i11 == ne1) {
  7414. i11 = 0;
  7415. if (++i12 == ne2) {
  7416. i12 = 0;
  7417. if (++i13 == ne3) {
  7418. i13 = 0;
  7419. }
  7420. }
  7421. }
  7422. }
  7423. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7424. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7425. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7426. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7427. memcpy(dst_ptr, src0_ptr, type_size);
  7428. if (++i10 == ne0) {
  7429. i10 = 0;
  7430. if (++i11 == ne1) {
  7431. i11 = 0;
  7432. if (++i12 == ne2) {
  7433. i12 = 0;
  7434. if (++i13 == ne3) {
  7435. i13 = 0;
  7436. }
  7437. }
  7438. }
  7439. }
  7440. }
  7441. }
  7442. i10 += ne00 * (ne01 - ir1);
  7443. while (i10 >= ne0) {
  7444. i10 -= ne0;
  7445. if (++i11 == ne1) {
  7446. i11 = 0;
  7447. if (++i12 == ne2) {
  7448. i12 = 0;
  7449. if (++i13 == ne3) {
  7450. i13 = 0;
  7451. }
  7452. }
  7453. }
  7454. }
  7455. }
  7456. }
  7457. }
  7458. static void ggml_compute_forward_dup(
  7459. const struct ggml_compute_params * params,
  7460. struct ggml_tensor * dst) {
  7461. const struct ggml_tensor * src0 = dst->src[0];
  7462. if (src0->type == dst->type) {
  7463. ggml_compute_forward_dup_bytes(params, dst);
  7464. return;
  7465. }
  7466. switch (src0->type) {
  7467. case GGML_TYPE_F16:
  7468. {
  7469. ggml_compute_forward_dup_f16(params, dst);
  7470. } break;
  7471. case GGML_TYPE_BF16:
  7472. {
  7473. ggml_compute_forward_dup_bf16(params, dst);
  7474. } break;
  7475. case GGML_TYPE_F32:
  7476. {
  7477. ggml_compute_forward_dup_f32(params, dst);
  7478. } break;
  7479. default:
  7480. {
  7481. GGML_ASSERT(false);
  7482. } break;
  7483. }
  7484. }
  7485. // ggml_compute_forward_add
  7486. static void ggml_compute_forward_add_f32(
  7487. const struct ggml_compute_params * params,
  7488. struct ggml_tensor * dst) {
  7489. const struct ggml_tensor * src0 = dst->src[0];
  7490. const struct ggml_tensor * src1 = dst->src[1];
  7491. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7493. return;
  7494. }
  7495. const int ith = params->ith;
  7496. const int nth = params->nth;
  7497. const int nr = ggml_nrows(src0);
  7498. GGML_TENSOR_BINARY_OP_LOCALS
  7499. GGML_ASSERT( nb0 == sizeof(float));
  7500. GGML_ASSERT(nb00 == sizeof(float));
  7501. // rows per thread
  7502. const int dr = (nr + nth - 1)/nth;
  7503. // row range for this thread
  7504. const int ir0 = dr*ith;
  7505. const int ir1 = MIN(ir0 + dr, nr);
  7506. if (nb10 == sizeof(float)) {
  7507. for (int ir = ir0; ir < ir1; ++ir) {
  7508. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7509. const int64_t i03 = ir/(ne02*ne01);
  7510. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7511. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7512. const int64_t i13 = i03 % ne13;
  7513. const int64_t i12 = i02 % ne12;
  7514. const int64_t i11 = i01 % ne11;
  7515. const int64_t nr0 = ne00 / ne10;
  7516. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7517. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7518. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7519. for (int64_t r = 0; r < nr0; ++r) {
  7520. #ifdef GGML_USE_ACCELERATE
  7521. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7522. #else
  7523. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7524. #endif
  7525. }
  7526. }
  7527. } else {
  7528. // src1 is not contiguous
  7529. for (int ir = ir0; ir < ir1; ++ir) {
  7530. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7531. const int64_t i03 = ir/(ne02*ne01);
  7532. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7533. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7534. const int64_t i13 = i03 % ne13;
  7535. const int64_t i12 = i02 % ne12;
  7536. const int64_t i11 = i01 % ne11;
  7537. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7538. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7539. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7540. const int64_t i10 = i0 % ne10;
  7541. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7542. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7543. }
  7544. }
  7545. }
  7546. }
  7547. static void ggml_compute_forward_add_f16_f32(
  7548. const struct ggml_compute_params * params,
  7549. struct ggml_tensor * dst) {
  7550. const struct ggml_tensor * src0 = dst->src[0];
  7551. const struct ggml_tensor * src1 = dst->src[1];
  7552. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7553. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7554. return;
  7555. }
  7556. const int ith = params->ith;
  7557. const int nth = params->nth;
  7558. const int nr = ggml_nrows(src0);
  7559. GGML_TENSOR_BINARY_OP_LOCALS
  7560. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7561. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7562. if (dst->type == GGML_TYPE_F32) {
  7563. GGML_ASSERT( nb0 == sizeof(float));
  7564. }
  7565. else {
  7566. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7567. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7568. }
  7569. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7570. // rows per thread
  7571. const int dr = (nr + nth - 1)/nth;
  7572. // row range for this thread
  7573. const int ir0 = dr*ith;
  7574. const int ir1 = MIN(ir0 + dr, nr);
  7575. if (nb10 == sizeof(float)) {
  7576. if (dst->type == GGML_TYPE_F16) {
  7577. for (int ir = ir0; ir < ir1; ++ir) {
  7578. // src0, src1 and dst are same shape => same indices
  7579. const int i3 = ir/(ne2*ne1);
  7580. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7581. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7582. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7583. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7584. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7585. for (int i = 0; i < ne0; i++) {
  7586. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7587. }
  7588. }
  7589. } else {
  7590. for (int ir = ir0; ir < ir1; ++ir) {
  7591. // src0, src1 and dst are same shape => same indices
  7592. const int i3 = ir/(ne2*ne1);
  7593. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7594. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7595. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7596. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7597. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7598. for (int i = 0; i < ne0; i++) {
  7599. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7600. }
  7601. }
  7602. }
  7603. }
  7604. else {
  7605. // src1 is not contiguous
  7606. GGML_ASSERT(false);
  7607. }
  7608. }
  7609. static void ggml_compute_forward_add_bf16_f32(
  7610. const struct ggml_compute_params * params,
  7611. struct ggml_tensor * dst) {
  7612. const struct ggml_tensor * src0 = dst->src[0];
  7613. const struct ggml_tensor * src1 = dst->src[1];
  7614. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7615. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7616. return;
  7617. }
  7618. const int ith = params->ith;
  7619. const int nth = params->nth;
  7620. const int nr = ggml_nrows(src0);
  7621. GGML_TENSOR_BINARY_OP_LOCALS
  7622. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7623. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7624. if (dst->type == GGML_TYPE_F32) {
  7625. GGML_ASSERT( nb0 == sizeof(float));
  7626. }
  7627. else {
  7628. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7629. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7630. }
  7631. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7632. // rows per thread
  7633. const int dr = (nr + nth - 1)/nth;
  7634. // row range for this thread
  7635. const int ir0 = dr*ith;
  7636. const int ir1 = MIN(ir0 + dr, nr);
  7637. if (nb10 == sizeof(float)) {
  7638. if (dst->type == GGML_TYPE_BF16) {
  7639. for (int ir = ir0; ir < ir1; ++ir) {
  7640. // src0, src1 and dst are same shape => same indices
  7641. const int i3 = ir/(ne2*ne1);
  7642. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7643. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7644. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7645. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7646. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7647. for (int i = 0; i < ne0; i++) {
  7648. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7649. }
  7650. }
  7651. } else {
  7652. for (int ir = ir0; ir < ir1; ++ir) {
  7653. // src0, src1 and dst are same shape => same indices
  7654. const int i3 = ir/(ne2*ne1);
  7655. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7656. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7657. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7658. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7659. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7660. for (int i = 0; i < ne0; i++) {
  7661. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7662. }
  7663. }
  7664. }
  7665. }
  7666. else {
  7667. // src1 is not contiguous
  7668. GGML_ASSERT(false);
  7669. }
  7670. }
  7671. static void ggml_compute_forward_add_f16_f16(
  7672. const struct ggml_compute_params * params,
  7673. struct ggml_tensor * dst) {
  7674. const struct ggml_tensor * src0 = dst->src[0];
  7675. const struct ggml_tensor * src1 = dst->src[1];
  7676. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7677. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7678. return;
  7679. }
  7680. const int ith = params->ith;
  7681. const int nth = params->nth;
  7682. const int nr = ggml_nrows(src0);
  7683. GGML_TENSOR_BINARY_OP_LOCALS
  7684. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7685. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7686. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7687. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7688. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7689. // rows per thread
  7690. const int dr = (nr + nth - 1)/nth;
  7691. // row range for this thread
  7692. const int ir0 = dr*ith;
  7693. const int ir1 = MIN(ir0 + dr, nr);
  7694. if (nb10 == sizeof(ggml_fp16_t)) {
  7695. for (int ir = ir0; ir < ir1; ++ir) {
  7696. // src0, src1 and dst are same shape => same indices
  7697. const int i3 = ir/(ne2*ne1);
  7698. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7699. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7700. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7701. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7702. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7703. for (int i = 0; i < ne0; i++) {
  7704. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7705. }
  7706. }
  7707. }
  7708. else {
  7709. // src1 is not contiguous
  7710. GGML_ASSERT(false);
  7711. }
  7712. }
  7713. static void ggml_compute_forward_add_bf16_bf16(
  7714. const struct ggml_compute_params * params,
  7715. struct ggml_tensor * dst) {
  7716. const struct ggml_tensor * src0 = dst->src[0];
  7717. const struct ggml_tensor * src1 = dst->src[1];
  7718. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7719. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7720. return;
  7721. }
  7722. const int ith = params->ith;
  7723. const int nth = params->nth;
  7724. const int nr = ggml_nrows(src0);
  7725. GGML_TENSOR_BINARY_OP_LOCALS
  7726. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7727. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7728. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7729. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7730. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7731. // rows per thread
  7732. const int dr = (nr + nth - 1)/nth;
  7733. // row range for this thread
  7734. const int ir0 = dr*ith;
  7735. const int ir1 = MIN(ir0 + dr, nr);
  7736. if (nb10 == sizeof(ggml_bf16_t)) {
  7737. for (int ir = ir0; ir < ir1; ++ir) {
  7738. // src0, src1 and dst are same shape => same indices
  7739. const int i3 = ir/(ne2*ne1);
  7740. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7741. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7742. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7743. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7744. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7745. for (int i = 0; i < ne0; i++) {
  7746. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7747. }
  7748. }
  7749. }
  7750. else {
  7751. // src1 is not contiguous
  7752. GGML_ASSERT(false);
  7753. }
  7754. }
  7755. static void ggml_compute_forward_add_q_f32(
  7756. const struct ggml_compute_params * params,
  7757. struct ggml_tensor * dst) {
  7758. const struct ggml_tensor * src0 = dst->src[0];
  7759. const struct ggml_tensor * src1 = dst->src[1];
  7760. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7761. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7762. return;
  7763. }
  7764. const int nr = ggml_nrows(src0);
  7765. GGML_TENSOR_BINARY_OP_LOCALS
  7766. const int ith = params->ith;
  7767. const int nth = params->nth;
  7768. const enum ggml_type type = src0->type;
  7769. const enum ggml_type dtype = dst->type;
  7770. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7771. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7772. // we don't support permuted src0 or src1
  7773. GGML_ASSERT(nb00 == ggml_type_size(type));
  7774. GGML_ASSERT(nb10 == sizeof(float));
  7775. // dst cannot be transposed or permuted
  7776. GGML_ASSERT(nb0 <= nb1);
  7777. GGML_ASSERT(nb1 <= nb2);
  7778. GGML_ASSERT(nb2 <= nb3);
  7779. GGML_ASSERT(ggml_is_quantized(src0->type));
  7780. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7781. // rows per thread
  7782. const int dr = (nr + nth - 1)/nth;
  7783. // row range for this thread
  7784. const int ir0 = dr*ith;
  7785. const int ir1 = MIN(ir0 + dr, nr);
  7786. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7787. for (int ir = ir0; ir < ir1; ++ir) {
  7788. // src0 indices
  7789. const int i03 = ir/(ne02*ne01);
  7790. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7791. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7792. // src1 and dst are same shape as src0 => same indices
  7793. const int i13 = i03;
  7794. const int i12 = i02;
  7795. const int i11 = i01;
  7796. const int i3 = i03;
  7797. const int i2 = i02;
  7798. const int i1 = i01;
  7799. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7800. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7801. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7802. assert(ne00 % 32 == 0);
  7803. // unquantize row from src0 to temp buffer
  7804. dequantize_row_q(src0_row, wdata, ne00);
  7805. // add src1
  7806. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7807. // quantize row to dst
  7808. if (quantize_row_q != NULL) {
  7809. quantize_row_q(wdata, dst_row, ne00);
  7810. } else {
  7811. memcpy(dst_row, wdata, ne0*nb0);
  7812. }
  7813. }
  7814. }
  7815. static void ggml_compute_forward_add(
  7816. const struct ggml_compute_params * params,
  7817. struct ggml_tensor * dst) {
  7818. const struct ggml_tensor * src0 = dst->src[0];
  7819. const struct ggml_tensor * src1 = dst->src[1];
  7820. switch (src0->type) {
  7821. case GGML_TYPE_F32:
  7822. {
  7823. if (src1->type == GGML_TYPE_F32) {
  7824. ggml_compute_forward_add_f32(params, dst);
  7825. }
  7826. else {
  7827. GGML_ASSERT(false);
  7828. }
  7829. } break;
  7830. case GGML_TYPE_F16:
  7831. {
  7832. if (src1->type == GGML_TYPE_F16) {
  7833. ggml_compute_forward_add_f16_f16(params, dst);
  7834. }
  7835. else if (src1->type == GGML_TYPE_F32) {
  7836. ggml_compute_forward_add_f16_f32(params, dst);
  7837. }
  7838. else {
  7839. GGML_ASSERT(false);
  7840. }
  7841. } break;
  7842. case GGML_TYPE_BF16:
  7843. {
  7844. if (src1->type == GGML_TYPE_BF16) {
  7845. ggml_compute_forward_add_bf16_bf16(params, dst);
  7846. }
  7847. else if (src1->type == GGML_TYPE_F32) {
  7848. ggml_compute_forward_add_bf16_f32(params, dst);
  7849. }
  7850. else {
  7851. GGML_ASSERT(false);
  7852. }
  7853. } break;
  7854. case GGML_TYPE_Q4_0:
  7855. case GGML_TYPE_Q4_1:
  7856. case GGML_TYPE_Q5_0:
  7857. case GGML_TYPE_Q5_1:
  7858. case GGML_TYPE_Q8_0:
  7859. case GGML_TYPE_Q2_K:
  7860. case GGML_TYPE_Q3_K:
  7861. case GGML_TYPE_Q4_K:
  7862. case GGML_TYPE_Q5_K:
  7863. case GGML_TYPE_Q6_K:
  7864. case GGML_TYPE_IQ2_XXS:
  7865. case GGML_TYPE_IQ2_XS:
  7866. case GGML_TYPE_IQ3_XXS:
  7867. case GGML_TYPE_IQ1_S:
  7868. case GGML_TYPE_IQ1_M:
  7869. case GGML_TYPE_IQ4_NL:
  7870. case GGML_TYPE_IQ4_XS:
  7871. case GGML_TYPE_IQ3_S:
  7872. case GGML_TYPE_IQ2_S:
  7873. {
  7874. ggml_compute_forward_add_q_f32(params, dst);
  7875. } break;
  7876. default:
  7877. {
  7878. GGML_ASSERT(false);
  7879. } break;
  7880. }
  7881. }
  7882. // ggml_compute_forward_add1
  7883. static void ggml_compute_forward_add1_f32(
  7884. const struct ggml_compute_params * params,
  7885. struct ggml_tensor * dst) {
  7886. const struct ggml_tensor * src0 = dst->src[0];
  7887. const struct ggml_tensor * src1 = dst->src[1];
  7888. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7889. GGML_ASSERT(ggml_is_scalar(src1));
  7890. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7891. return;
  7892. }
  7893. const int ith = params->ith;
  7894. const int nth = params->nth;
  7895. const int nr = ggml_nrows(src0);
  7896. GGML_TENSOR_UNARY_OP_LOCALS
  7897. GGML_ASSERT( nb0 == sizeof(float));
  7898. GGML_ASSERT(nb00 == sizeof(float));
  7899. // rows per thread
  7900. const int dr = (nr + nth - 1)/nth;
  7901. // row range for this thread
  7902. const int ir0 = dr*ith;
  7903. const int ir1 = MIN(ir0 + dr, nr);
  7904. for (int ir = ir0; ir < ir1; ++ir) {
  7905. // src0 and dst are same shape => same indices
  7906. const int i3 = ir/(ne2*ne1);
  7907. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7908. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7909. #ifdef GGML_USE_ACCELERATE
  7910. UNUSED(ggml_vec_add1_f32);
  7911. vDSP_vadd(
  7912. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7913. (float *) ((char *) src1->data), 0,
  7914. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7915. ne0);
  7916. #else
  7917. ggml_vec_add1_f32(ne0,
  7918. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7919. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7920. *(float *) src1->data);
  7921. #endif
  7922. }
  7923. }
  7924. static void ggml_compute_forward_add1_f16_f32(
  7925. const struct ggml_compute_params * params,
  7926. struct ggml_tensor * dst) {
  7927. const struct ggml_tensor * src0 = dst->src[0];
  7928. const struct ggml_tensor * src1 = dst->src[1];
  7929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7930. GGML_ASSERT(ggml_is_scalar(src1));
  7931. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7932. return;
  7933. }
  7934. // scalar to add
  7935. const float v = *(float *) src1->data;
  7936. const int ith = params->ith;
  7937. const int nth = params->nth;
  7938. const int nr = ggml_nrows(src0);
  7939. GGML_TENSOR_UNARY_OP_LOCALS
  7940. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7941. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7942. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7943. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7944. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7945. // rows per thread
  7946. const int dr = (nr + nth - 1)/nth;
  7947. // row range for this thread
  7948. const int ir0 = dr*ith;
  7949. const int ir1 = MIN(ir0 + dr, nr);
  7950. for (int ir = ir0; ir < ir1; ++ir) {
  7951. // src0 and dst are same shape => same indices
  7952. const int i3 = ir/(ne2*ne1);
  7953. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7954. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7955. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7956. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7957. for (int i = 0; i < ne0; i++) {
  7958. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7959. }
  7960. }
  7961. }
  7962. static void ggml_compute_forward_add1_f16_f16(
  7963. const struct ggml_compute_params * params,
  7964. struct ggml_tensor * dst) {
  7965. const struct ggml_tensor * src0 = dst->src[0];
  7966. const struct ggml_tensor * src1 = dst->src[1];
  7967. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7968. GGML_ASSERT(ggml_is_scalar(src1));
  7969. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7970. return;
  7971. }
  7972. // scalar to add
  7973. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7974. const int ith = params->ith;
  7975. const int nth = params->nth;
  7976. const int nr = ggml_nrows(src0);
  7977. GGML_TENSOR_UNARY_OP_LOCALS
  7978. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7979. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7980. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7981. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7982. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7983. // rows per thread
  7984. const int dr = (nr + nth - 1)/nth;
  7985. // row range for this thread
  7986. const int ir0 = dr*ith;
  7987. const int ir1 = MIN(ir0 + dr, nr);
  7988. for (int ir = ir0; ir < ir1; ++ir) {
  7989. // src0 and dst are same shape => same indices
  7990. const int i3 = ir/(ne2*ne1);
  7991. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7992. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7993. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7994. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7995. for (int i = 0; i < ne0; i++) {
  7996. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7997. }
  7998. }
  7999. }
  8000. static void ggml_compute_forward_add1_q_f32(
  8001. const struct ggml_compute_params * params,
  8002. struct ggml_tensor * dst) {
  8003. const struct ggml_tensor * src0 = dst->src[0];
  8004. const struct ggml_tensor * src1 = dst->src[1];
  8005. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8006. GGML_ASSERT(ggml_is_scalar(src1));
  8007. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8008. return;
  8009. }
  8010. // scalar to add
  8011. const float v = *(float *) src1->data;
  8012. const int ith = params->ith;
  8013. const int nth = params->nth;
  8014. const int nr = ggml_nrows(src0);
  8015. GGML_TENSOR_UNARY_OP_LOCALS
  8016. const enum ggml_type type = src0->type;
  8017. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8018. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8019. // we don't support permuted src0
  8020. GGML_ASSERT(nb00 == ggml_type_size(type));
  8021. // dst cannot be transposed or permuted
  8022. GGML_ASSERT(nb0 <= nb1);
  8023. GGML_ASSERT(nb1 <= nb2);
  8024. GGML_ASSERT(nb2 <= nb3);
  8025. GGML_ASSERT(ggml_is_quantized(src0->type));
  8026. GGML_ASSERT(dst->type == src0->type);
  8027. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8028. // rows per thread
  8029. const int dr = (nr + nth - 1)/nth;
  8030. // row range for this thread
  8031. const int ir0 = dr*ith;
  8032. const int ir1 = MIN(ir0 + dr, nr);
  8033. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8034. for (int ir = ir0; ir < ir1; ++ir) {
  8035. // src0 and dst are same shape => same indices
  8036. const int i3 = ir/(ne2*ne1);
  8037. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8038. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8039. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8040. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8041. assert(ne0 % 32 == 0);
  8042. // unquantize row from src0 to temp buffer
  8043. dequantize_row_q(src0_row, wdata, ne0);
  8044. // add src1
  8045. ggml_vec_acc1_f32(ne0, wdata, v);
  8046. // quantize row to dst
  8047. quantize_row_q(wdata, dst_row, ne0);
  8048. }
  8049. }
  8050. static void ggml_compute_forward_add1_bf16_f32(
  8051. const struct ggml_compute_params * params,
  8052. struct ggml_tensor * dst) {
  8053. const struct ggml_tensor * src0 = dst->src[0];
  8054. const struct ggml_tensor * src1 = dst->src[1];
  8055. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8056. GGML_ASSERT(ggml_is_scalar(src1));
  8057. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8058. return;
  8059. }
  8060. // scalar to add
  8061. const float v = *(float *) src1->data;
  8062. const int ith = params->ith;
  8063. const int nth = params->nth;
  8064. const int nr = ggml_nrows(src0);
  8065. GGML_TENSOR_UNARY_OP_LOCALS
  8066. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8067. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8068. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8069. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8070. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8071. // rows per thread
  8072. const int dr = (nr + nth - 1)/nth;
  8073. // row range for this thread
  8074. const int ir0 = dr*ith;
  8075. const int ir1 = MIN(ir0 + dr, nr);
  8076. for (int ir = ir0; ir < ir1; ++ir) {
  8077. // src0 and dst are same shape => same indices
  8078. const int i3 = ir/(ne2*ne1);
  8079. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8080. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8081. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8082. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8083. for (int i = 0; i < ne0; i++) {
  8084. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8085. }
  8086. }
  8087. }
  8088. static void ggml_compute_forward_add1_bf16_bf16(
  8089. const struct ggml_compute_params * params,
  8090. struct ggml_tensor * dst) {
  8091. const struct ggml_tensor * src0 = dst->src[0];
  8092. const struct ggml_tensor * src1 = dst->src[1];
  8093. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8094. GGML_ASSERT(ggml_is_scalar(src1));
  8095. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8096. return;
  8097. }
  8098. // scalar to add
  8099. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8100. const int ith = params->ith;
  8101. const int nth = params->nth;
  8102. const int nr = ggml_nrows(src0);
  8103. GGML_TENSOR_UNARY_OP_LOCALS
  8104. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8105. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8106. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8107. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8108. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8109. // rows per thread
  8110. const int dr = (nr + nth - 1)/nth;
  8111. // row range for this thread
  8112. const int ir0 = dr*ith;
  8113. const int ir1 = MIN(ir0 + dr, nr);
  8114. for (int ir = ir0; ir < ir1; ++ir) {
  8115. // src0 and dst are same shape => same indices
  8116. const int i3 = ir/(ne2*ne1);
  8117. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8118. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8119. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8120. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8121. for (int i = 0; i < ne0; i++) {
  8122. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8123. }
  8124. }
  8125. }
  8126. static void ggml_compute_forward_add1(
  8127. const struct ggml_compute_params * params,
  8128. struct ggml_tensor * dst) {
  8129. const struct ggml_tensor * src0 = dst->src[0];
  8130. const struct ggml_tensor * src1 = dst->src[1];
  8131. switch (src0->type) {
  8132. case GGML_TYPE_F32:
  8133. {
  8134. ggml_compute_forward_add1_f32(params, dst);
  8135. } break;
  8136. case GGML_TYPE_F16:
  8137. {
  8138. if (src1->type == GGML_TYPE_F16) {
  8139. ggml_compute_forward_add1_f16_f16(params, dst);
  8140. }
  8141. else if (src1->type == GGML_TYPE_F32) {
  8142. ggml_compute_forward_add1_f16_f32(params, dst);
  8143. }
  8144. else {
  8145. GGML_ASSERT(false);
  8146. }
  8147. } break;
  8148. case GGML_TYPE_BF16:
  8149. {
  8150. if (src1->type == GGML_TYPE_BF16) {
  8151. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8152. }
  8153. else if (src1->type == GGML_TYPE_F32) {
  8154. ggml_compute_forward_add1_bf16_f32(params, dst);
  8155. }
  8156. else {
  8157. GGML_ASSERT(false);
  8158. }
  8159. } break;
  8160. case GGML_TYPE_Q4_0:
  8161. case GGML_TYPE_Q4_1:
  8162. case GGML_TYPE_Q5_0:
  8163. case GGML_TYPE_Q5_1:
  8164. case GGML_TYPE_Q8_0:
  8165. case GGML_TYPE_Q8_1:
  8166. case GGML_TYPE_Q2_K:
  8167. case GGML_TYPE_Q3_K:
  8168. case GGML_TYPE_Q4_K:
  8169. case GGML_TYPE_Q5_K:
  8170. case GGML_TYPE_Q6_K:
  8171. case GGML_TYPE_IQ2_XXS:
  8172. case GGML_TYPE_IQ2_XS:
  8173. case GGML_TYPE_IQ3_XXS:
  8174. case GGML_TYPE_IQ1_S:
  8175. case GGML_TYPE_IQ1_M:
  8176. case GGML_TYPE_IQ4_NL:
  8177. case GGML_TYPE_IQ4_XS:
  8178. case GGML_TYPE_IQ3_S:
  8179. case GGML_TYPE_IQ2_S:
  8180. {
  8181. ggml_compute_forward_add1_q_f32(params, dst);
  8182. } break;
  8183. default:
  8184. {
  8185. GGML_ASSERT(false);
  8186. } break;
  8187. }
  8188. }
  8189. // ggml_compute_forward_acc
  8190. static void ggml_compute_forward_acc_f32(
  8191. const struct ggml_compute_params * params,
  8192. struct ggml_tensor * dst) {
  8193. const struct ggml_tensor * src0 = dst->src[0];
  8194. const struct ggml_tensor * src1 = dst->src[1];
  8195. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8196. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8197. // view src0 and dst with these strides and data offset inbytes during acc
  8198. // nb0 is implicitly element_size because src0 and dst are contiguous
  8199. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8200. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8201. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8202. size_t offset = ((int32_t *) dst->op_params)[3];
  8203. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8204. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8205. if (params->ith != 0) {
  8206. return;
  8207. }
  8208. // memcpy needs to be synchronized across threads to avoid race conditions.
  8209. // => do it in INIT phase
  8210. memcpy(
  8211. ((char *) dst->data),
  8212. ((char *) src0->data),
  8213. ggml_nbytes(dst));
  8214. }
  8215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8216. return;
  8217. }
  8218. const int ith = params->ith;
  8219. const int nth = params->nth;
  8220. const int nr = ggml_nrows(src1);
  8221. const int nc = src1->ne[0];
  8222. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8223. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8224. // src0 and dst as viewed during acc
  8225. const size_t nb0 = ggml_element_size(src0);
  8226. const size_t nb00 = nb0;
  8227. const size_t nb01 = nb1;
  8228. const size_t nb02 = nb2;
  8229. const size_t nb03 = nb3;
  8230. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8231. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8232. GGML_ASSERT(nb10 == sizeof(float));
  8233. // rows per thread
  8234. const int dr = (nr + nth - 1)/nth;
  8235. // row range for this thread
  8236. const int ir0 = dr*ith;
  8237. const int ir1 = MIN(ir0 + dr, nr);
  8238. for (int ir = ir0; ir < ir1; ++ir) {
  8239. // src0 and dst are viewed with shape of src1 and offset
  8240. // => same indices
  8241. const int i3 = ir/(ne12*ne11);
  8242. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8243. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8244. #ifdef GGML_USE_ACCELERATE
  8245. vDSP_vadd(
  8246. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8247. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8248. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8249. #else
  8250. ggml_vec_add_f32(nc,
  8251. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8252. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8253. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8254. #endif
  8255. }
  8256. }
  8257. static void ggml_compute_forward_acc(
  8258. const struct ggml_compute_params * params,
  8259. struct ggml_tensor * dst) {
  8260. const struct ggml_tensor * src0 = dst->src[0];
  8261. switch (src0->type) {
  8262. case GGML_TYPE_F32:
  8263. {
  8264. ggml_compute_forward_acc_f32(params, dst);
  8265. } break;
  8266. case GGML_TYPE_F16:
  8267. case GGML_TYPE_BF16:
  8268. case GGML_TYPE_Q4_0:
  8269. case GGML_TYPE_Q4_1:
  8270. case GGML_TYPE_Q5_0:
  8271. case GGML_TYPE_Q5_1:
  8272. case GGML_TYPE_Q8_0:
  8273. case GGML_TYPE_Q8_1:
  8274. case GGML_TYPE_Q2_K:
  8275. case GGML_TYPE_Q3_K:
  8276. case GGML_TYPE_Q4_K:
  8277. case GGML_TYPE_Q5_K:
  8278. case GGML_TYPE_Q6_K:
  8279. case GGML_TYPE_IQ2_XXS:
  8280. case GGML_TYPE_IQ2_XS:
  8281. case GGML_TYPE_IQ3_XXS:
  8282. case GGML_TYPE_IQ1_S:
  8283. case GGML_TYPE_IQ1_M:
  8284. case GGML_TYPE_IQ4_NL:
  8285. case GGML_TYPE_IQ4_XS:
  8286. case GGML_TYPE_IQ3_S:
  8287. case GGML_TYPE_IQ2_S:
  8288. default:
  8289. {
  8290. GGML_ASSERT(false);
  8291. } break;
  8292. }
  8293. }
  8294. // ggml_compute_forward_sub
  8295. static void ggml_compute_forward_sub_f32(
  8296. const struct ggml_compute_params * params,
  8297. struct ggml_tensor * dst) {
  8298. const struct ggml_tensor * src0 = dst->src[0];
  8299. const struct ggml_tensor * src1 = dst->src[1];
  8300. assert(params->ith == 0);
  8301. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8302. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8303. return;
  8304. }
  8305. const int nr = ggml_nrows(src0);
  8306. GGML_TENSOR_BINARY_OP_LOCALS
  8307. GGML_ASSERT( nb0 == sizeof(float));
  8308. GGML_ASSERT(nb00 == sizeof(float));
  8309. if (nb10 == sizeof(float)) {
  8310. for (int ir = 0; ir < nr; ++ir) {
  8311. // src0, src1 and dst are same shape => same indices
  8312. const int i3 = ir/(ne2*ne1);
  8313. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8314. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8315. #ifdef GGML_USE_ACCELERATE
  8316. vDSP_vsub(
  8317. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8318. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8319. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8320. ne0);
  8321. #else
  8322. ggml_vec_sub_f32(ne0,
  8323. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8324. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8325. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8326. #endif
  8327. // }
  8328. // }
  8329. }
  8330. } else {
  8331. // src1 is not contiguous
  8332. for (int ir = 0; ir < nr; ++ir) {
  8333. // src0, src1 and dst are same shape => same indices
  8334. const int i3 = ir/(ne2*ne1);
  8335. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8336. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8337. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8338. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8339. for (int i0 = 0; i0 < ne0; i0++) {
  8340. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8341. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8342. }
  8343. }
  8344. }
  8345. }
  8346. static void ggml_compute_forward_sub(
  8347. const struct ggml_compute_params * params,
  8348. struct ggml_tensor * dst) {
  8349. const struct ggml_tensor * src0 = dst->src[0];
  8350. switch (src0->type) {
  8351. case GGML_TYPE_F32:
  8352. {
  8353. ggml_compute_forward_sub_f32(params, dst);
  8354. } break;
  8355. default:
  8356. {
  8357. GGML_ASSERT(false);
  8358. } break;
  8359. }
  8360. }
  8361. // ggml_compute_forward_mul
  8362. static void ggml_compute_forward_mul_f32(
  8363. const struct ggml_compute_params * params,
  8364. struct ggml_tensor * dst) {
  8365. const struct ggml_tensor * src0 = dst->src[0];
  8366. const struct ggml_tensor * src1 = dst->src[1];
  8367. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8368. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8369. return;
  8370. }
  8371. const int ith = params->ith;
  8372. const int nth = params->nth;
  8373. const int64_t nr = ggml_nrows(src0);
  8374. GGML_TENSOR_BINARY_OP_LOCALS
  8375. GGML_ASSERT( nb0 == sizeof(float));
  8376. GGML_ASSERT(nb00 == sizeof(float));
  8377. if (nb10 == sizeof(float)) {
  8378. for (int64_t ir = ith; ir < nr; ir += nth) {
  8379. // src0 and dst are same shape => same indices
  8380. const int64_t i03 = ir/(ne02*ne01);
  8381. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8382. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8383. const int64_t i13 = i03 % ne13;
  8384. const int64_t i12 = i02 % ne12;
  8385. const int64_t i11 = i01 % ne11;
  8386. const int64_t nr0 = ne00 / ne10;
  8387. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8388. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8389. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8390. for (int64_t r = 0 ; r < nr0; ++r) {
  8391. #ifdef GGML_USE_ACCELERATE
  8392. UNUSED(ggml_vec_mul_f32);
  8393. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8394. #else
  8395. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8396. #endif
  8397. }
  8398. }
  8399. } else {
  8400. // src1 is not contiguous
  8401. for (int64_t ir = ith; ir < nr; ir += nth) {
  8402. // src0 and dst are same shape => same indices
  8403. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8404. const int64_t i03 = ir/(ne02*ne01);
  8405. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8406. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8407. const int64_t i13 = i03 % ne13;
  8408. const int64_t i12 = i02 % ne12;
  8409. const int64_t i11 = i01 % ne11;
  8410. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8411. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8412. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8413. const int64_t i10 = i0 % ne10;
  8414. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8415. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8416. }
  8417. }
  8418. }
  8419. }
  8420. static void ggml_compute_forward_mul(
  8421. const struct ggml_compute_params * params,
  8422. struct ggml_tensor * dst) {
  8423. const struct ggml_tensor * src0 = dst->src[0];
  8424. const struct ggml_tensor * src1 = dst->src[1];
  8425. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8426. switch (src0->type) {
  8427. case GGML_TYPE_F32:
  8428. {
  8429. ggml_compute_forward_mul_f32(params, dst);
  8430. } break;
  8431. default:
  8432. {
  8433. GGML_ASSERT(false);
  8434. } break;
  8435. }
  8436. }
  8437. // ggml_compute_forward_div
  8438. static void ggml_compute_forward_div_f32(
  8439. const struct ggml_compute_params * params,
  8440. struct ggml_tensor * dst) {
  8441. const struct ggml_tensor * src0 = dst->src[0];
  8442. const struct ggml_tensor * src1 = dst->src[1];
  8443. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8444. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8445. return;
  8446. }
  8447. const int ith = params->ith;
  8448. const int nth = params->nth;
  8449. const int64_t nr = ggml_nrows(src0);
  8450. GGML_TENSOR_BINARY_OP_LOCALS
  8451. GGML_ASSERT( nb0 == sizeof(float));
  8452. GGML_ASSERT(nb00 == sizeof(float));
  8453. if (nb10 == sizeof(float)) {
  8454. for (int64_t ir = ith; ir < nr; ir += nth) {
  8455. // src0 and dst are same shape => same indices
  8456. const int64_t i03 = ir/(ne02*ne01);
  8457. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8458. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8459. const int64_t i13 = i03 % ne13;
  8460. const int64_t i12 = i02 % ne12;
  8461. const int64_t i11 = i01 % ne11;
  8462. const int64_t nr0 = ne00 / ne10;
  8463. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8464. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8465. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8466. for (int64_t r = 0; r < nr0; ++r) {
  8467. #ifdef GGML_USE_ACCELERATE
  8468. UNUSED(ggml_vec_div_f32);
  8469. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8470. #else
  8471. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8472. #endif
  8473. }
  8474. }
  8475. } else {
  8476. // src1 is not contiguous
  8477. for (int64_t ir = ith; ir < nr; ir += nth) {
  8478. // src0 and dst are same shape => same indices
  8479. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8480. const int64_t i03 = ir/(ne02*ne01);
  8481. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8482. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8483. const int64_t i13 = i03 % ne13;
  8484. const int64_t i12 = i02 % ne12;
  8485. const int64_t i11 = i01 % ne11;
  8486. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8487. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8488. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8489. const int64_t i10 = i0 % ne10;
  8490. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8491. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8492. }
  8493. }
  8494. }
  8495. }
  8496. static void ggml_compute_forward_div(
  8497. const struct ggml_compute_params * params,
  8498. struct ggml_tensor * dst) {
  8499. const struct ggml_tensor * src0 = dst->src[0];
  8500. switch (src0->type) {
  8501. case GGML_TYPE_F32:
  8502. {
  8503. ggml_compute_forward_div_f32(params, dst);
  8504. } break;
  8505. default:
  8506. {
  8507. GGML_ASSERT(false);
  8508. } break;
  8509. }
  8510. }
  8511. // ggml_compute_forward_sqr
  8512. static void ggml_compute_forward_sqr_f32(
  8513. const struct ggml_compute_params * params,
  8514. struct ggml_tensor * dst) {
  8515. const struct ggml_tensor * src0 = dst->src[0];
  8516. assert(params->ith == 0);
  8517. assert(ggml_are_same_shape(src0, dst));
  8518. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8519. return;
  8520. }
  8521. const int n = ggml_nrows(src0);
  8522. const int nc = src0->ne[0];
  8523. assert( dst->nb[0] == sizeof(float));
  8524. assert(src0->nb[0] == sizeof(float));
  8525. for (int i = 0; i < n; i++) {
  8526. ggml_vec_sqr_f32(nc,
  8527. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8528. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8529. }
  8530. }
  8531. static void ggml_compute_forward_sqr(
  8532. const struct ggml_compute_params * params,
  8533. struct ggml_tensor * dst) {
  8534. const struct ggml_tensor * src0 = dst->src[0];
  8535. switch (src0->type) {
  8536. case GGML_TYPE_F32:
  8537. {
  8538. ggml_compute_forward_sqr_f32(params, dst);
  8539. } break;
  8540. default:
  8541. {
  8542. GGML_ASSERT(false);
  8543. } break;
  8544. }
  8545. }
  8546. // ggml_compute_forward_sqrt
  8547. static void ggml_compute_forward_sqrt_f32(
  8548. const struct ggml_compute_params * params,
  8549. struct ggml_tensor * dst) {
  8550. const struct ggml_tensor * src0 = dst->src[0];
  8551. assert(params->ith == 0);
  8552. assert(ggml_are_same_shape(src0, dst));
  8553. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8554. return;
  8555. }
  8556. const int n = ggml_nrows(src0);
  8557. const int nc = src0->ne[0];
  8558. assert( dst->nb[0] == sizeof(float));
  8559. assert(src0->nb[0] == sizeof(float));
  8560. for (int i = 0; i < n; i++) {
  8561. ggml_vec_sqrt_f32(nc,
  8562. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8563. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8564. }
  8565. }
  8566. static void ggml_compute_forward_sqrt(
  8567. const struct ggml_compute_params * params,
  8568. struct ggml_tensor * dst) {
  8569. const struct ggml_tensor * src0 = dst->src[0];
  8570. switch (src0->type) {
  8571. case GGML_TYPE_F32:
  8572. {
  8573. ggml_compute_forward_sqrt_f32(params, dst);
  8574. } break;
  8575. default:
  8576. {
  8577. GGML_ASSERT(false);
  8578. } break;
  8579. }
  8580. }
  8581. // ggml_compute_forward_log
  8582. static void ggml_compute_forward_log_f32(
  8583. const struct ggml_compute_params * params,
  8584. struct ggml_tensor * dst) {
  8585. const struct ggml_tensor * src0 = dst->src[0];
  8586. GGML_ASSERT(params->ith == 0);
  8587. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8588. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8589. return;
  8590. }
  8591. const int n = ggml_nrows(src0);
  8592. const int nc = src0->ne[0];
  8593. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8594. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8595. for (int i = 0; i < n; i++) {
  8596. ggml_vec_log_f32(nc,
  8597. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8598. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8599. }
  8600. }
  8601. static void ggml_compute_forward_log(
  8602. const struct ggml_compute_params * params,
  8603. struct ggml_tensor * dst) {
  8604. const struct ggml_tensor * src0 = dst->src[0];
  8605. switch (src0->type) {
  8606. case GGML_TYPE_F32:
  8607. {
  8608. ggml_compute_forward_log_f32(params, dst);
  8609. } break;
  8610. default:
  8611. {
  8612. GGML_ASSERT(false);
  8613. } break;
  8614. }
  8615. }
  8616. // ggml_compute_forward_sum
  8617. static void ggml_compute_forward_sum_f32(
  8618. const struct ggml_compute_params * params,
  8619. struct ggml_tensor * dst) {
  8620. const struct ggml_tensor * src0 = dst->src[0];
  8621. assert(params->ith == 0);
  8622. assert(ggml_is_scalar(dst));
  8623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8624. return;
  8625. }
  8626. assert(ggml_is_scalar(dst));
  8627. assert(src0->nb[0] == sizeof(float));
  8628. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8629. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8630. ggml_float sum = 0;
  8631. ggml_float row_sum = 0;
  8632. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8633. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8634. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8635. ggml_vec_sum_f32_ggf(ne00,
  8636. &row_sum,
  8637. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8638. sum += row_sum;
  8639. }
  8640. }
  8641. }
  8642. ((float *) dst->data)[0] = sum;
  8643. }
  8644. static void ggml_compute_forward_sum_f16(
  8645. const struct ggml_compute_params * params,
  8646. struct ggml_tensor * dst) {
  8647. const struct ggml_tensor * src0 = dst->src[0];
  8648. assert(params->ith == 0);
  8649. assert(ggml_is_scalar(dst));
  8650. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8651. return;
  8652. }
  8653. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8654. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8655. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8656. float sum = 0;
  8657. float row_sum = 0;
  8658. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8660. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8661. ggml_vec_sum_f16_ggf(ne00,
  8662. &row_sum,
  8663. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8664. sum += row_sum;
  8665. }
  8666. }
  8667. }
  8668. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8669. }
  8670. static void ggml_compute_forward_sum_bf16(
  8671. const struct ggml_compute_params * params,
  8672. struct ggml_tensor * dst) {
  8673. const struct ggml_tensor * src0 = dst->src[0];
  8674. assert(params->ith == 0);
  8675. assert(ggml_is_scalar(dst));
  8676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8677. return;
  8678. }
  8679. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8680. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8681. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8682. float sum = 0;
  8683. float row_sum = 0;
  8684. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8685. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8686. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8687. ggml_vec_sum_bf16_ggf(ne00,
  8688. &row_sum,
  8689. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8690. sum += row_sum;
  8691. }
  8692. }
  8693. }
  8694. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8695. }
  8696. static void ggml_compute_forward_sum(
  8697. const struct ggml_compute_params * params,
  8698. struct ggml_tensor * dst) {
  8699. const struct ggml_tensor * src0 = dst->src[0];
  8700. switch (src0->type) {
  8701. case GGML_TYPE_F32:
  8702. {
  8703. ggml_compute_forward_sum_f32(params, dst);
  8704. } break;
  8705. case GGML_TYPE_F16:
  8706. {
  8707. ggml_compute_forward_sum_f16(params, dst);
  8708. } break;
  8709. case GGML_TYPE_BF16:
  8710. {
  8711. ggml_compute_forward_sum_bf16(params, dst);
  8712. } break;
  8713. default:
  8714. {
  8715. GGML_ASSERT(false);
  8716. } break;
  8717. }
  8718. }
  8719. // ggml_compute_forward_sum_rows
  8720. static void ggml_compute_forward_sum_rows_f32(
  8721. const struct ggml_compute_params * params,
  8722. struct ggml_tensor * dst) {
  8723. const struct ggml_tensor * src0 = dst->src[0];
  8724. GGML_ASSERT(params->ith == 0);
  8725. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8726. return;
  8727. }
  8728. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8729. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8730. GGML_TENSOR_UNARY_OP_LOCALS
  8731. GGML_ASSERT(ne0 == 1);
  8732. GGML_ASSERT(ne1 == ne01);
  8733. GGML_ASSERT(ne2 == ne02);
  8734. GGML_ASSERT(ne3 == ne03);
  8735. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8736. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8737. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8738. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8739. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8740. float row_sum = 0;
  8741. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8742. dst_row[0] = row_sum;
  8743. }
  8744. }
  8745. }
  8746. }
  8747. static void ggml_compute_forward_sum_rows(
  8748. const struct ggml_compute_params * params,
  8749. struct ggml_tensor * dst) {
  8750. const struct ggml_tensor * src0 = dst->src[0];
  8751. switch (src0->type) {
  8752. case GGML_TYPE_F32:
  8753. {
  8754. ggml_compute_forward_sum_rows_f32(params, dst);
  8755. } break;
  8756. default:
  8757. {
  8758. GGML_ASSERT(false);
  8759. } break;
  8760. }
  8761. }
  8762. // ggml_compute_forward_mean
  8763. static void ggml_compute_forward_mean_f32(
  8764. const struct ggml_compute_params * params,
  8765. struct ggml_tensor * dst) {
  8766. const struct ggml_tensor * src0 = dst->src[0];
  8767. assert(params->ith == 0);
  8768. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8769. return;
  8770. }
  8771. assert(src0->nb[0] == sizeof(float));
  8772. GGML_TENSOR_UNARY_OP_LOCALS
  8773. assert(ne0 == 1);
  8774. assert(ne1 == ne01);
  8775. assert(ne2 == ne02);
  8776. assert(ne3 == ne03);
  8777. UNUSED(ne0);
  8778. UNUSED(ne1);
  8779. UNUSED(ne2);
  8780. UNUSED(ne3);
  8781. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8782. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8783. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8784. ggml_vec_sum_f32(ne00,
  8785. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8786. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8787. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8788. }
  8789. }
  8790. }
  8791. }
  8792. static void ggml_compute_forward_mean(
  8793. const struct ggml_compute_params * params,
  8794. struct ggml_tensor * dst) {
  8795. const struct ggml_tensor * src0 = dst->src[0];
  8796. switch (src0->type) {
  8797. case GGML_TYPE_F32:
  8798. {
  8799. ggml_compute_forward_mean_f32(params, dst);
  8800. } break;
  8801. default:
  8802. {
  8803. GGML_ASSERT(false);
  8804. } break;
  8805. }
  8806. }
  8807. // ggml_compute_forward_argmax
  8808. static void ggml_compute_forward_argmax_f32(
  8809. const struct ggml_compute_params * params,
  8810. struct ggml_tensor * dst) {
  8811. const struct ggml_tensor * src0 = dst->src[0];
  8812. assert(params->ith == 0);
  8813. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8814. return;
  8815. }
  8816. assert(src0->nb[0] == sizeof(float));
  8817. assert(dst->nb[0] == sizeof(float));
  8818. const int64_t ne00 = src0->ne[0];
  8819. const int64_t ne01 = src0->ne[1];
  8820. const size_t nb01 = src0->nb[1];
  8821. const size_t nb0 = dst->nb[0];
  8822. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8823. float * src = (float *) ((char *) src0->data + i1*nb01);
  8824. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8825. int v = 0;
  8826. ggml_vec_argmax_f32(ne00, &v, src);
  8827. dst_[0] = v;
  8828. }
  8829. }
  8830. static void ggml_compute_forward_argmax(
  8831. const struct ggml_compute_params * params,
  8832. struct ggml_tensor * dst) {
  8833. const struct ggml_tensor * src0 = dst->src[0];
  8834. switch (src0->type) {
  8835. case GGML_TYPE_F32:
  8836. {
  8837. ggml_compute_forward_argmax_f32(params, dst);
  8838. } break;
  8839. default:
  8840. {
  8841. GGML_ASSERT(false);
  8842. } break;
  8843. }
  8844. }
  8845. // ggml_compute_forward_repeat
  8846. static void ggml_compute_forward_repeat_f32(
  8847. const struct ggml_compute_params * params,
  8848. struct ggml_tensor * dst) {
  8849. const struct ggml_tensor * src0 = dst->src[0];
  8850. GGML_ASSERT(params->ith == 0);
  8851. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8852. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8853. return;
  8854. }
  8855. GGML_TENSOR_UNARY_OP_LOCALS
  8856. // guaranteed to be an integer due to the check in ggml_can_repeat
  8857. const int nr0 = (int)(ne0/ne00);
  8858. const int nr1 = (int)(ne1/ne01);
  8859. const int nr2 = (int)(ne2/ne02);
  8860. const int nr3 = (int)(ne3/ne03);
  8861. // TODO: support for transposed / permuted tensors
  8862. GGML_ASSERT(nb0 == sizeof(float));
  8863. GGML_ASSERT(nb00 == sizeof(float));
  8864. // TODO: maybe this is not optimal?
  8865. for (int i3 = 0; i3 < nr3; i3++) {
  8866. for (int k3 = 0; k3 < ne03; k3++) {
  8867. for (int i2 = 0; i2 < nr2; i2++) {
  8868. for (int k2 = 0; k2 < ne02; k2++) {
  8869. for (int i1 = 0; i1 < nr1; i1++) {
  8870. for (int k1 = 0; k1 < ne01; k1++) {
  8871. for (int i0 = 0; i0 < nr0; i0++) {
  8872. ggml_vec_cpy_f32(ne00,
  8873. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8874. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8875. }
  8876. }
  8877. }
  8878. }
  8879. }
  8880. }
  8881. }
  8882. }
  8883. static void ggml_compute_forward_repeat_f16(
  8884. const struct ggml_compute_params * params,
  8885. struct ggml_tensor * dst) {
  8886. const struct ggml_tensor * src0 = dst->src[0];
  8887. GGML_ASSERT(params->ith == 0);
  8888. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8889. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8890. return;
  8891. }
  8892. GGML_TENSOR_UNARY_OP_LOCALS
  8893. // guaranteed to be an integer due to the check in ggml_can_repeat
  8894. const int nr0 = (int)(ne0/ne00);
  8895. const int nr1 = (int)(ne1/ne01);
  8896. const int nr2 = (int)(ne2/ne02);
  8897. const int nr3 = (int)(ne3/ne03);
  8898. // TODO: support for transposed / permuted tensors
  8899. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8900. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8901. // TODO: maybe this is not optimal?
  8902. for (int i3 = 0; i3 < nr3; i3++) {
  8903. for (int k3 = 0; k3 < ne03; k3++) {
  8904. for (int i2 = 0; i2 < nr2; i2++) {
  8905. for (int k2 = 0; k2 < ne02; k2++) {
  8906. for (int i1 = 0; i1 < nr1; i1++) {
  8907. for (int k1 = 0; k1 < ne01; k1++) {
  8908. for (int i0 = 0; i0 < nr0; i0++) {
  8909. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8910. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8911. // ggml_vec_cpy_f16(ne00, y, x)
  8912. for (int i = 0; i < ne00; ++i) {
  8913. y[i] = x[i];
  8914. }
  8915. }
  8916. }
  8917. }
  8918. }
  8919. }
  8920. }
  8921. }
  8922. }
  8923. static void ggml_compute_forward_repeat(
  8924. const struct ggml_compute_params * params,
  8925. struct ggml_tensor * dst) {
  8926. const struct ggml_tensor * src0 = dst->src[0];
  8927. switch (src0->type) {
  8928. case GGML_TYPE_F16:
  8929. case GGML_TYPE_BF16:
  8930. case GGML_TYPE_I16:
  8931. {
  8932. ggml_compute_forward_repeat_f16(params, dst);
  8933. } break;
  8934. case GGML_TYPE_F32:
  8935. case GGML_TYPE_I32:
  8936. {
  8937. ggml_compute_forward_repeat_f32(params, dst);
  8938. } break;
  8939. default:
  8940. {
  8941. GGML_ASSERT(false);
  8942. } break;
  8943. }
  8944. }
  8945. // ggml_compute_forward_repeat_back
  8946. static void ggml_compute_forward_repeat_back_f32(
  8947. const struct ggml_compute_params * params,
  8948. struct ggml_tensor * dst) {
  8949. const struct ggml_tensor * src0 = dst->src[0];
  8950. GGML_ASSERT(params->ith == 0);
  8951. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8952. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8953. return;
  8954. }
  8955. GGML_TENSOR_UNARY_OP_LOCALS
  8956. // guaranteed to be an integer due to the check in ggml_can_repeat
  8957. const int nr0 = (int)(ne00/ne0);
  8958. const int nr1 = (int)(ne01/ne1);
  8959. const int nr2 = (int)(ne02/ne2);
  8960. const int nr3 = (int)(ne03/ne3);
  8961. // TODO: support for transposed / permuted tensors
  8962. GGML_ASSERT(nb0 == sizeof(float));
  8963. GGML_ASSERT(nb00 == sizeof(float));
  8964. if (ggml_is_contiguous(dst)) {
  8965. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8966. } else {
  8967. for (int k3 = 0; k3 < ne3; k3++) {
  8968. for (int k2 = 0; k2 < ne2; k2++) {
  8969. for (int k1 = 0; k1 < ne1; k1++) {
  8970. ggml_vec_set_f32(ne0,
  8971. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8972. 0);
  8973. }
  8974. }
  8975. }
  8976. }
  8977. // TODO: maybe this is not optimal?
  8978. for (int i3 = 0; i3 < nr3; i3++) {
  8979. for (int k3 = 0; k3 < ne3; k3++) {
  8980. for (int i2 = 0; i2 < nr2; i2++) {
  8981. for (int k2 = 0; k2 < ne2; k2++) {
  8982. for (int i1 = 0; i1 < nr1; i1++) {
  8983. for (int k1 = 0; k1 < ne1; k1++) {
  8984. for (int i0 = 0; i0 < nr0; i0++) {
  8985. ggml_vec_acc_f32(ne0,
  8986. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8987. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8988. }
  8989. }
  8990. }
  8991. }
  8992. }
  8993. }
  8994. }
  8995. }
  8996. static void ggml_compute_forward_repeat_back(
  8997. const struct ggml_compute_params * params,
  8998. struct ggml_tensor * dst) {
  8999. const struct ggml_tensor * src0 = dst->src[0];
  9000. switch (src0->type) {
  9001. case GGML_TYPE_F32:
  9002. {
  9003. ggml_compute_forward_repeat_back_f32(params, dst);
  9004. } break;
  9005. default:
  9006. {
  9007. GGML_ASSERT(false);
  9008. } break;
  9009. }
  9010. }
  9011. // ggml_compute_forward_concat
  9012. static void ggml_compute_forward_concat_f32(
  9013. const struct ggml_compute_params * params,
  9014. struct ggml_tensor * dst) {
  9015. const struct ggml_tensor * src0 = dst->src[0];
  9016. const struct ggml_tensor * src1 = dst->src[1];
  9017. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9018. return;
  9019. }
  9020. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9021. const int ith = params->ith;
  9022. const int nth = params->nth;
  9023. GGML_TENSOR_BINARY_OP_LOCALS
  9024. // TODO: support for transposed / permuted tensors
  9025. GGML_ASSERT(nb0 == sizeof(float));
  9026. GGML_ASSERT(nb00 == sizeof(float));
  9027. GGML_ASSERT(nb10 == sizeof(float));
  9028. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9029. GGML_ASSERT(dim >= 0 && dim < 4);
  9030. int64_t o[4] = {0, 0, 0, 0};
  9031. o[dim] = src0->ne[dim];
  9032. const float * x;
  9033. // TODO: smarter multi-theading
  9034. for (int i3 = 0; i3 < ne3; i3++) {
  9035. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9036. for (int i1 = 0; i1 < ne1; i1++) {
  9037. for (int i0 = 0; i0 < ne0; i0++) {
  9038. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9039. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9040. } else {
  9041. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9042. }
  9043. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9044. *y = *x;
  9045. }
  9046. }
  9047. }
  9048. }
  9049. }
  9050. static void ggml_compute_forward_concat(
  9051. const struct ggml_compute_params * params,
  9052. struct ggml_tensor * dst) {
  9053. const struct ggml_tensor * src0 = dst->src[0];
  9054. switch (src0->type) {
  9055. case GGML_TYPE_F32:
  9056. case GGML_TYPE_I32:
  9057. {
  9058. ggml_compute_forward_concat_f32(params, dst);
  9059. } break;
  9060. default:
  9061. {
  9062. GGML_ASSERT(false);
  9063. } break;
  9064. }
  9065. }
  9066. // ggml_compute_forward_abs
  9067. static void ggml_compute_forward_abs_f32(
  9068. const struct ggml_compute_params * params,
  9069. struct ggml_tensor * dst) {
  9070. const struct ggml_tensor * src0 = dst->src[0];
  9071. assert(params->ith == 0);
  9072. assert(ggml_are_same_shape(src0, dst));
  9073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9074. return;
  9075. }
  9076. const int n = ggml_nrows(src0);
  9077. const int nc = src0->ne[0];
  9078. assert(dst->nb[0] == sizeof(float));
  9079. assert(src0->nb[0] == sizeof(float));
  9080. for (int i = 0; i < n; i++) {
  9081. ggml_vec_abs_f32(nc,
  9082. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9083. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9084. }
  9085. }
  9086. static void ggml_compute_forward_abs(
  9087. const struct ggml_compute_params * params,
  9088. struct ggml_tensor * dst) {
  9089. const struct ggml_tensor * src0 = dst->src[0];
  9090. switch (src0->type) {
  9091. case GGML_TYPE_F32:
  9092. {
  9093. ggml_compute_forward_abs_f32(params, dst);
  9094. } break;
  9095. default:
  9096. {
  9097. GGML_ASSERT(false);
  9098. } break;
  9099. }
  9100. }
  9101. // ggml_compute_forward_sgn
  9102. static void ggml_compute_forward_sgn_f32(
  9103. const struct ggml_compute_params * params,
  9104. struct ggml_tensor * dst) {
  9105. const struct ggml_tensor * src0 = dst->src[0];
  9106. assert(params->ith == 0);
  9107. assert(ggml_are_same_shape(src0, dst));
  9108. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9109. return;
  9110. }
  9111. const int n = ggml_nrows(src0);
  9112. const int nc = src0->ne[0];
  9113. assert(dst->nb[0] == sizeof(float));
  9114. assert(src0->nb[0] == sizeof(float));
  9115. for (int i = 0; i < n; i++) {
  9116. ggml_vec_sgn_f32(nc,
  9117. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9118. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9119. }
  9120. }
  9121. static void ggml_compute_forward_sgn(
  9122. const struct ggml_compute_params * params,
  9123. struct ggml_tensor * dst) {
  9124. const struct ggml_tensor * src0 = dst->src[0];
  9125. switch (src0->type) {
  9126. case GGML_TYPE_F32:
  9127. {
  9128. ggml_compute_forward_sgn_f32(params, dst);
  9129. } break;
  9130. default:
  9131. {
  9132. GGML_ASSERT(false);
  9133. } break;
  9134. }
  9135. }
  9136. // ggml_compute_forward_neg
  9137. static void ggml_compute_forward_neg_f32(
  9138. const struct ggml_compute_params * params,
  9139. struct ggml_tensor * dst) {
  9140. const struct ggml_tensor * src0 = dst->src[0];
  9141. assert(params->ith == 0);
  9142. assert(ggml_are_same_shape(src0, dst));
  9143. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9144. return;
  9145. }
  9146. const int n = ggml_nrows(src0);
  9147. const int nc = src0->ne[0];
  9148. assert(dst->nb[0] == sizeof(float));
  9149. assert(src0->nb[0] == sizeof(float));
  9150. for (int i = 0; i < n; i++) {
  9151. ggml_vec_neg_f32(nc,
  9152. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9153. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9154. }
  9155. }
  9156. static void ggml_compute_forward_neg(
  9157. const struct ggml_compute_params * params,
  9158. struct ggml_tensor * dst) {
  9159. const struct ggml_tensor * src0 = dst->src[0];
  9160. switch (src0->type) {
  9161. case GGML_TYPE_F32:
  9162. {
  9163. ggml_compute_forward_neg_f32(params, dst);
  9164. } break;
  9165. default:
  9166. {
  9167. GGML_ASSERT(false);
  9168. } break;
  9169. }
  9170. }
  9171. // ggml_compute_forward_step
  9172. static void ggml_compute_forward_step_f32(
  9173. const struct ggml_compute_params * params,
  9174. struct ggml_tensor * dst) {
  9175. const struct ggml_tensor * src0 = dst->src[0];
  9176. assert(params->ith == 0);
  9177. assert(ggml_are_same_shape(src0, dst));
  9178. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9179. return;
  9180. }
  9181. const int n = ggml_nrows(src0);
  9182. const int nc = src0->ne[0];
  9183. assert(dst->nb[0] == sizeof(float));
  9184. assert(src0->nb[0] == sizeof(float));
  9185. for (int i = 0; i < n; i++) {
  9186. ggml_vec_step_f32(nc,
  9187. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9188. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9189. }
  9190. }
  9191. static void ggml_compute_forward_step(
  9192. const struct ggml_compute_params * params,
  9193. struct ggml_tensor * dst) {
  9194. const struct ggml_tensor * src0 = dst->src[0];
  9195. switch (src0->type) {
  9196. case GGML_TYPE_F32:
  9197. {
  9198. ggml_compute_forward_step_f32(params, dst);
  9199. } break;
  9200. default:
  9201. {
  9202. GGML_ASSERT(false);
  9203. } break;
  9204. }
  9205. }
  9206. // ggml_compute_forward_tanh
  9207. static void ggml_compute_forward_tanh_f32(
  9208. const struct ggml_compute_params * params,
  9209. struct ggml_tensor * dst) {
  9210. const struct ggml_tensor * src0 = dst->src[0];
  9211. assert(params->ith == 0);
  9212. assert(ggml_are_same_shape(src0, dst));
  9213. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9214. return;
  9215. }
  9216. const int n = ggml_nrows(src0);
  9217. const int nc = src0->ne[0];
  9218. assert(dst->nb[0] == sizeof(float));
  9219. assert(src0->nb[0] == sizeof(float));
  9220. for (int i = 0; i < n; i++) {
  9221. ggml_vec_tanh_f32(nc,
  9222. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9223. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9224. }
  9225. }
  9226. static void ggml_compute_forward_tanh(
  9227. const struct ggml_compute_params * params,
  9228. struct ggml_tensor * dst) {
  9229. const struct ggml_tensor * src0 = dst->src[0];
  9230. switch (src0->type) {
  9231. case GGML_TYPE_F32:
  9232. {
  9233. ggml_compute_forward_tanh_f32(params, dst);
  9234. } break;
  9235. default:
  9236. {
  9237. GGML_ASSERT(false);
  9238. } break;
  9239. }
  9240. }
  9241. // ggml_compute_forward_elu
  9242. static void ggml_compute_forward_elu_f32(
  9243. const struct ggml_compute_params * params,
  9244. struct ggml_tensor * dst) {
  9245. const struct ggml_tensor * src0 = dst->src[0];
  9246. assert(params->ith == 0);
  9247. assert(ggml_are_same_shape(src0, dst));
  9248. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9249. return;
  9250. }
  9251. const int n = ggml_nrows(src0);
  9252. const int nc = src0->ne[0];
  9253. assert(dst->nb[0] == sizeof(float));
  9254. assert(src0->nb[0] == sizeof(float));
  9255. for (int i = 0; i < n; i++) {
  9256. ggml_vec_elu_f32(nc,
  9257. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9258. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9259. }
  9260. }
  9261. static void ggml_compute_forward_elu(
  9262. const struct ggml_compute_params * params,
  9263. struct ggml_tensor * dst) {
  9264. const struct ggml_tensor * src0 = dst->src[0];
  9265. switch (src0->type) {
  9266. case GGML_TYPE_F32:
  9267. {
  9268. ggml_compute_forward_elu_f32(params, dst);
  9269. } break;
  9270. default:
  9271. {
  9272. GGML_ASSERT(false);
  9273. } break;
  9274. }
  9275. }
  9276. // ggml_compute_forward_relu
  9277. static void ggml_compute_forward_relu_f32(
  9278. const struct ggml_compute_params * params,
  9279. struct ggml_tensor * dst) {
  9280. const struct ggml_tensor * src0 = dst->src[0];
  9281. assert(params->ith == 0);
  9282. assert(ggml_are_same_shape(src0, dst));
  9283. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9284. return;
  9285. }
  9286. const int n = ggml_nrows(src0);
  9287. const int nc = src0->ne[0];
  9288. assert(dst->nb[0] == sizeof(float));
  9289. assert(src0->nb[0] == sizeof(float));
  9290. for (int i = 0; i < n; i++) {
  9291. ggml_vec_relu_f32(nc,
  9292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9294. }
  9295. }
  9296. static void ggml_compute_forward_relu(
  9297. const struct ggml_compute_params * params,
  9298. struct ggml_tensor * dst) {
  9299. const struct ggml_tensor * src0 = dst->src[0];
  9300. switch (src0->type) {
  9301. case GGML_TYPE_F32:
  9302. {
  9303. ggml_compute_forward_relu_f32(params, dst);
  9304. } break;
  9305. default:
  9306. {
  9307. GGML_ASSERT(false);
  9308. } break;
  9309. }
  9310. }
  9311. // ggml_compute_forward_sigmoid
  9312. static void ggml_compute_forward_sigmoid_f32(
  9313. const struct ggml_compute_params * params,
  9314. struct ggml_tensor * dst) {
  9315. const struct ggml_tensor * src0 = dst->src[0];
  9316. assert(params->ith == 0);
  9317. assert(ggml_are_same_shape(src0, dst));
  9318. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9319. return;
  9320. }
  9321. const int n = ggml_nrows(src0);
  9322. const int nc = src0->ne[0];
  9323. assert(dst->nb[0] == sizeof(float));
  9324. assert(src0->nb[0] == sizeof(float));
  9325. for (int i = 0; i < n; i++) {
  9326. ggml_vec_sigmoid_f32(nc,
  9327. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9328. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9329. }
  9330. }
  9331. static void ggml_compute_forward_sigmoid(
  9332. const struct ggml_compute_params * params,
  9333. struct ggml_tensor * dst) {
  9334. const struct ggml_tensor * src0 = dst->src[0];
  9335. switch (src0->type) {
  9336. case GGML_TYPE_F32:
  9337. {
  9338. ggml_compute_forward_sigmoid_f32(params, dst);
  9339. } break;
  9340. default:
  9341. {
  9342. GGML_ASSERT(false);
  9343. } break;
  9344. }
  9345. }
  9346. // ggml_compute_forward_gelu
  9347. static void ggml_compute_forward_gelu_f32(
  9348. const struct ggml_compute_params * params,
  9349. struct ggml_tensor * dst) {
  9350. const struct ggml_tensor * src0 = dst->src[0];
  9351. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9352. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9353. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9354. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9355. return;
  9356. }
  9357. const int ith = params->ith;
  9358. const int nth = params->nth;
  9359. const int nc = src0->ne[0];
  9360. const int nr = ggml_nrows(src0);
  9361. // rows per thread
  9362. const int dr = (nr + nth - 1)/nth;
  9363. // row range for this thread
  9364. const int ir0 = dr*ith;
  9365. const int ir1 = MIN(ir0 + dr, nr);
  9366. for (int i1 = ir0; i1 < ir1; i1++) {
  9367. ggml_vec_gelu_f32(nc,
  9368. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9369. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9370. #ifndef NDEBUG
  9371. for (int k = 0; k < nc; k++) {
  9372. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9373. UNUSED(x);
  9374. assert(!isnan(x));
  9375. assert(!isinf(x));
  9376. }
  9377. #endif
  9378. }
  9379. }
  9380. static void ggml_compute_forward_gelu(
  9381. const struct ggml_compute_params * params,
  9382. struct ggml_tensor * dst) {
  9383. const struct ggml_tensor * src0 = dst->src[0];
  9384. switch (src0->type) {
  9385. case GGML_TYPE_F32:
  9386. {
  9387. ggml_compute_forward_gelu_f32(params, dst);
  9388. } break;
  9389. default:
  9390. {
  9391. GGML_ASSERT(false);
  9392. } break;
  9393. }
  9394. }
  9395. // ggml_compute_forward_gelu_quick
  9396. static void ggml_compute_forward_gelu_quick_f32(
  9397. const struct ggml_compute_params * params,
  9398. struct ggml_tensor * dst) {
  9399. const struct ggml_tensor * src0 = dst->src[0];
  9400. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9401. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9402. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9403. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9404. return;
  9405. }
  9406. const int ith = params->ith;
  9407. const int nth = params->nth;
  9408. const int nc = src0->ne[0];
  9409. const int nr = ggml_nrows(src0);
  9410. // rows per thread
  9411. const int dr = (nr + nth - 1)/nth;
  9412. // row range for this thread
  9413. const int ir0 = dr*ith;
  9414. const int ir1 = MIN(ir0 + dr, nr);
  9415. for (int i1 = ir0; i1 < ir1; i1++) {
  9416. ggml_vec_gelu_quick_f32(nc,
  9417. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9418. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9419. #ifndef NDEBUG
  9420. for (int k = 0; k < nc; k++) {
  9421. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9422. UNUSED(x);
  9423. assert(!isnan(x));
  9424. assert(!isinf(x));
  9425. }
  9426. #endif
  9427. }
  9428. }
  9429. static void ggml_compute_forward_gelu_quick(
  9430. const struct ggml_compute_params * params,
  9431. struct ggml_tensor * dst) {
  9432. const struct ggml_tensor * src0 = dst->src[0];
  9433. switch (src0->type) {
  9434. case GGML_TYPE_F32:
  9435. {
  9436. ggml_compute_forward_gelu_quick_f32(params, dst);
  9437. } break;
  9438. default:
  9439. {
  9440. GGML_ASSERT(false);
  9441. } break;
  9442. }
  9443. }
  9444. // ggml_compute_forward_silu
  9445. static void ggml_compute_forward_silu_f32(
  9446. const struct ggml_compute_params * params,
  9447. struct ggml_tensor * dst) {
  9448. const struct ggml_tensor * src0 = dst->src[0];
  9449. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9450. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9451. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9452. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9453. return;
  9454. }
  9455. const int ith = params->ith;
  9456. const int nth = params->nth;
  9457. const int nc = src0->ne[0];
  9458. const int nr = ggml_nrows(src0);
  9459. // rows per thread
  9460. const int dr = (nr + nth - 1)/nth;
  9461. // row range for this thread
  9462. const int ir0 = dr*ith;
  9463. const int ir1 = MIN(ir0 + dr, nr);
  9464. for (int i1 = ir0; i1 < ir1; i1++) {
  9465. ggml_vec_silu_f32(nc,
  9466. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9467. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9468. #ifndef NDEBUG
  9469. for (int k = 0; k < nc; k++) {
  9470. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9471. UNUSED(x);
  9472. assert(!isnan(x));
  9473. assert(!isinf(x));
  9474. }
  9475. #endif
  9476. }
  9477. }
  9478. static void ggml_compute_forward_silu(
  9479. const struct ggml_compute_params * params,
  9480. struct ggml_tensor * dst) {
  9481. const struct ggml_tensor * src0 = dst->src[0];
  9482. switch (src0->type) {
  9483. case GGML_TYPE_F32:
  9484. {
  9485. ggml_compute_forward_silu_f32(params, dst);
  9486. } break;
  9487. default:
  9488. {
  9489. GGML_ASSERT(false);
  9490. } break;
  9491. }
  9492. }
  9493. // ggml_compute_forward_leaky_relu
  9494. static void ggml_compute_forward_leaky_relu_f32(
  9495. const struct ggml_compute_params * params,
  9496. struct ggml_tensor * dst) {
  9497. const struct ggml_tensor * src0 = dst->src[0];
  9498. assert(params->ith == 0);
  9499. assert(ggml_are_same_shape(src0, dst));
  9500. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9501. return;
  9502. }
  9503. const int n = ggml_nrows(src0);
  9504. const int nc = src0->ne[0];
  9505. float negative_slope;
  9506. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9507. assert(dst->nb[0] == sizeof(float));
  9508. assert(src0->nb[0] == sizeof(float));
  9509. for (int i = 0; i < n; i++) {
  9510. ggml_vec_leaky_relu_f32(nc,
  9511. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9512. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9513. }
  9514. }
  9515. static void ggml_compute_forward_leaky_relu(
  9516. const struct ggml_compute_params * params,
  9517. struct ggml_tensor * dst) {
  9518. const struct ggml_tensor * src0 = dst->src[0];
  9519. switch (src0->type) {
  9520. case GGML_TYPE_F32:
  9521. {
  9522. ggml_compute_forward_leaky_relu_f32(params, dst);
  9523. } break;
  9524. default:
  9525. {
  9526. GGML_ASSERT(false);
  9527. } break;
  9528. }
  9529. }
  9530. // ggml_compute_forward_silu_back
  9531. static void ggml_compute_forward_silu_back_f32(
  9532. const struct ggml_compute_params * params,
  9533. struct ggml_tensor * dst) {
  9534. const struct ggml_tensor * src0 = dst->src[0];
  9535. const struct ggml_tensor * grad = dst->src[1];
  9536. GGML_ASSERT(ggml_is_contiguous_1(grad));
  9537. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9538. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9539. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9540. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9541. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9542. return;
  9543. }
  9544. const int ith = params->ith;
  9545. const int nth = params->nth;
  9546. const int nc = src0->ne[0];
  9547. const int nr = ggml_nrows(src0);
  9548. // rows per thread
  9549. const int dr = (nr + nth - 1)/nth;
  9550. // row range for this thread
  9551. const int ir0 = dr*ith;
  9552. const int ir1 = MIN(ir0 + dr, nr);
  9553. for (int i1 = ir0; i1 < ir1; i1++) {
  9554. ggml_vec_silu_backward_f32(nc,
  9555. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9556. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9557. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9558. #ifndef NDEBUG
  9559. for (int k = 0; k < nc; k++) {
  9560. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9561. UNUSED(x);
  9562. assert(!isnan(x));
  9563. assert(!isinf(x));
  9564. }
  9565. #endif
  9566. }
  9567. }
  9568. static void ggml_compute_forward_silu_back(
  9569. const struct ggml_compute_params * params,
  9570. struct ggml_tensor * dst) {
  9571. const struct ggml_tensor * src0 = dst->src[0];
  9572. switch (src0->type) {
  9573. case GGML_TYPE_F32:
  9574. {
  9575. ggml_compute_forward_silu_back_f32(params, dst);
  9576. } break;
  9577. default:
  9578. {
  9579. GGML_ASSERT(false);
  9580. } break;
  9581. }
  9582. }
  9583. static void ggml_compute_forward_hardswish_f32(
  9584. const struct ggml_compute_params * params,
  9585. struct ggml_tensor * dst) {
  9586. const struct ggml_tensor * src0 = dst->src[0];
  9587. assert(params->ith == 0);
  9588. assert(ggml_are_same_shape(src0, dst));
  9589. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9590. return;
  9591. }
  9592. const int n = ggml_nrows(src0);
  9593. const int nc = src0->ne[0];
  9594. assert(dst->nb[0] == sizeof(float));
  9595. assert(src0->nb[0] == sizeof(float));
  9596. for (int i = 0; i < n; i++) {
  9597. ggml_vec_hardswish_f32(nc,
  9598. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9599. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9600. }
  9601. }
  9602. static void ggml_compute_forward_hardswish(
  9603. const struct ggml_compute_params * params,
  9604. struct ggml_tensor * dst) {
  9605. const struct ggml_tensor * src0 = dst->src[0];
  9606. switch (src0->type) {
  9607. case GGML_TYPE_F32:
  9608. {
  9609. ggml_compute_forward_hardswish_f32(params, dst);
  9610. } break;
  9611. default:
  9612. {
  9613. GGML_ASSERT(false);
  9614. } break;
  9615. }
  9616. }
  9617. static void ggml_compute_forward_hardsigmoid_f32(
  9618. const struct ggml_compute_params * params,
  9619. struct ggml_tensor * dst) {
  9620. const struct ggml_tensor * src0 = dst->src[0];
  9621. assert(params->ith == 0);
  9622. assert(ggml_are_same_shape(src0, dst));
  9623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9624. return;
  9625. }
  9626. const int n = ggml_nrows(src0);
  9627. const int nc = src0->ne[0];
  9628. assert(dst->nb[0] == sizeof(float));
  9629. assert(src0->nb[0] == sizeof(float));
  9630. for (int i = 0; i < n; i++) {
  9631. ggml_vec_hardsigmoid_f32(nc,
  9632. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9633. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9634. }
  9635. }
  9636. static void ggml_compute_forward_hardsigmoid(
  9637. const struct ggml_compute_params * params,
  9638. struct ggml_tensor * dst) {
  9639. const struct ggml_tensor * src0 = dst->src[0];
  9640. switch (src0->type) {
  9641. case GGML_TYPE_F32:
  9642. {
  9643. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9644. } break;
  9645. default:
  9646. {
  9647. GGML_ASSERT(false);
  9648. } break;
  9649. }
  9650. }
  9651. // ggml_compute_forward_norm
  9652. static void ggml_compute_forward_norm_f32(
  9653. const struct ggml_compute_params * params,
  9654. struct ggml_tensor * dst) {
  9655. const struct ggml_tensor * src0 = dst->src[0];
  9656. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9657. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9658. return;
  9659. }
  9660. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9661. const int ith = params->ith;
  9662. const int nth = params->nth;
  9663. GGML_TENSOR_UNARY_OP_LOCALS
  9664. float eps;
  9665. memcpy(&eps, dst->op_params, sizeof(float));
  9666. GGML_ASSERT(eps > 0.0f);
  9667. // TODO: optimize
  9668. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9669. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9670. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9671. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9672. ggml_float sum = 0.0;
  9673. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9674. sum += (ggml_float)x[i00];
  9675. }
  9676. float mean = sum/ne00;
  9677. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9678. ggml_float sum2 = 0.0;
  9679. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9680. float v = x[i00] - mean;
  9681. y[i00] = v;
  9682. sum2 += (ggml_float)(v*v);
  9683. }
  9684. float variance = sum2/ne00;
  9685. const float scale = 1.0f/sqrtf(variance + eps);
  9686. ggml_vec_scale_f32(ne00, y, scale);
  9687. }
  9688. }
  9689. }
  9690. }
  9691. static void ggml_compute_forward_norm(
  9692. const struct ggml_compute_params * params,
  9693. struct ggml_tensor * dst) {
  9694. const struct ggml_tensor * src0 = dst->src[0];
  9695. switch (src0->type) {
  9696. case GGML_TYPE_F32:
  9697. {
  9698. ggml_compute_forward_norm_f32(params, dst);
  9699. } break;
  9700. default:
  9701. {
  9702. GGML_ASSERT(false);
  9703. } break;
  9704. }
  9705. }
  9706. // ggml_compute_forward_group_rms_norm
  9707. static void ggml_compute_forward_rms_norm_f32(
  9708. const struct ggml_compute_params * params,
  9709. struct ggml_tensor * dst) {
  9710. const struct ggml_tensor * src0 = dst->src[0];
  9711. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9712. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9713. return;
  9714. }
  9715. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9716. const int ith = params->ith;
  9717. const int nth = params->nth;
  9718. GGML_TENSOR_UNARY_OP_LOCALS
  9719. float eps;
  9720. memcpy(&eps, dst->op_params, sizeof(float));
  9721. GGML_ASSERT(eps > 0.0f);
  9722. // TODO: optimize
  9723. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9724. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9725. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9726. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9727. ggml_float sum = 0.0;
  9728. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9729. sum += (ggml_float)(x[i00] * x[i00]);
  9730. }
  9731. const float mean = sum/ne00;
  9732. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9733. memcpy(y, x, ne00 * sizeof(float));
  9734. // for (int i00 = 0; i00 < ne00; i00++) {
  9735. // y[i00] = x[i00];
  9736. // }
  9737. const float scale = 1.0f/sqrtf(mean + eps);
  9738. ggml_vec_scale_f32(ne00, y, scale);
  9739. }
  9740. }
  9741. }
  9742. }
  9743. static void ggml_compute_forward_rms_norm(
  9744. const struct ggml_compute_params * params,
  9745. struct ggml_tensor * dst) {
  9746. const struct ggml_tensor * src0 = dst->src[0];
  9747. switch (src0->type) {
  9748. case GGML_TYPE_F32:
  9749. {
  9750. ggml_compute_forward_rms_norm_f32(params, dst);
  9751. } break;
  9752. default:
  9753. {
  9754. GGML_ASSERT(false);
  9755. } break;
  9756. }
  9757. }
  9758. static void ggml_compute_forward_rms_norm_back_f32(
  9759. const struct ggml_compute_params * params,
  9760. struct ggml_tensor * dst) {
  9761. const struct ggml_tensor * src0 = dst->src[0];
  9762. const struct ggml_tensor * src1 = dst->src[1];
  9763. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9765. return;
  9766. }
  9767. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9768. const int ith = params->ith;
  9769. const int nth = params->nth;
  9770. GGML_TENSOR_BINARY_OP_LOCALS
  9771. float eps;
  9772. memcpy(&eps, dst->op_params, sizeof(float));
  9773. // TODO: optimize
  9774. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9775. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9776. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9777. // src1 is same shape as src0 => same indices
  9778. const int64_t i11 = i01;
  9779. const int64_t i12 = i02;
  9780. const int64_t i13 = i03;
  9781. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9782. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9783. ggml_float sum_xx = 0.0;
  9784. ggml_float sum_xdz = 0.0;
  9785. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9786. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9787. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9788. }
  9789. //const float mean = (float)(sum_xx)/ne00;
  9790. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9791. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9792. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9793. // we could cache rms from forward pass to improve performance.
  9794. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9795. //const float rms = sqrtf(mean_eps);
  9796. const float rrms = 1.0f / sqrtf(mean_eps);
  9797. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9798. {
  9799. // z = rms_norm(x)
  9800. //
  9801. // rms_norm(src0) =
  9802. // scale(
  9803. // src0,
  9804. // div(
  9805. // 1,
  9806. // sqrt(
  9807. // add(
  9808. // scale(
  9809. // sum(
  9810. // sqr(
  9811. // src0)),
  9812. // (1.0/N)),
  9813. // eps))));
  9814. // postorder:
  9815. // ## op args grad
  9816. // 00 param src0 grad[#00]
  9817. // 01 const 1
  9818. // 02 sqr (#00) grad[#02]
  9819. // 03 sum (#02) grad[#03]
  9820. // 04 const 1/N
  9821. // 05 scale (#03, #04) grad[#05]
  9822. // 06 const eps
  9823. // 07 add (#05, #06) grad[#07]
  9824. // 08 sqrt (#07) grad[#08]
  9825. // 09 div (#01,#08) grad[#09]
  9826. // 10 scale (#00,#09) grad[#10]
  9827. //
  9828. // backward pass, given grad[#10]
  9829. // #10: scale
  9830. // grad[#00] += scale(grad[#10],#09)
  9831. // grad[#09] += sum(mul(grad[#10],#00))
  9832. // #09: div
  9833. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9834. // #08: sqrt
  9835. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9836. // #07: add
  9837. // grad[#05] += grad[#07]
  9838. // #05: scale
  9839. // grad[#03] += scale(grad[#05],#04)
  9840. // #03: sum
  9841. // grad[#02] += repeat(grad[#03], #02)
  9842. // #02:
  9843. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9844. //
  9845. // substitute and simplify:
  9846. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9847. // grad[#02] = repeat(grad[#03], #02)
  9848. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9849. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9850. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9851. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9852. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9853. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9854. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9855. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9856. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9857. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9858. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9859. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9860. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9861. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9862. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9863. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9864. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9865. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9866. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9867. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9868. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9869. // a = b*c + d*e
  9870. // a = b*c*f/f + d*e*f/f
  9871. // a = (b*c*f + d*e*f)*(1/f)
  9872. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9873. // a = (b + d*e/c)*c
  9874. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9875. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9876. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9877. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9878. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9879. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9880. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9881. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9882. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9883. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9884. }
  9885. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9886. // post-order:
  9887. // dx := x
  9888. // dx := scale(dx,-mean_xdz/mean_eps)
  9889. // dx := add(dx, dz)
  9890. // dx := scale(dx, rrms)
  9891. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9892. ggml_vec_cpy_f32 (ne00, dx, x);
  9893. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9894. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9895. ggml_vec_acc_f32 (ne00, dx, dz);
  9896. ggml_vec_scale_f32(ne00, dx, rrms);
  9897. }
  9898. }
  9899. }
  9900. }
  9901. static void ggml_compute_forward_rms_norm_back(
  9902. const struct ggml_compute_params * params,
  9903. struct ggml_tensor * dst) {
  9904. const struct ggml_tensor * src0 = dst->src[0];
  9905. switch (src0->type) {
  9906. case GGML_TYPE_F32:
  9907. {
  9908. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9909. } break;
  9910. default:
  9911. {
  9912. GGML_ASSERT(false);
  9913. } break;
  9914. }
  9915. }
  9916. // ggml_compute_forward_group_norm
  9917. static void ggml_compute_forward_group_norm_f32(
  9918. const struct ggml_compute_params * params,
  9919. struct ggml_tensor * dst) {
  9920. const struct ggml_tensor * src0 = dst->src[0];
  9921. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9922. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9923. return;
  9924. }
  9925. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9926. const int ith = params->ith;
  9927. const int nth = params->nth;
  9928. GGML_TENSOR_UNARY_OP_LOCALS
  9929. const float eps = 1e-6f; // TODO: make this a parameter
  9930. // TODO: optimize
  9931. int n_channels = src0->ne[2];
  9932. int n_groups = dst->op_params[0];
  9933. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9934. for (int i = ith; i < n_groups; i += nth) {
  9935. int start = i * n_channels_per_group;
  9936. int end = start + n_channels_per_group;
  9937. if (end > n_channels) {
  9938. end = n_channels;
  9939. }
  9940. int step = end - start;
  9941. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9942. ggml_float sum = 0.0;
  9943. for (int64_t i02 = start; i02 < end; i02++) {
  9944. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9945. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9946. ggml_float sumr = 0.0;
  9947. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9948. sumr += (ggml_float)x[i00];
  9949. }
  9950. sum += sumr;
  9951. }
  9952. }
  9953. const float mean = sum / (ne00 * ne01 * step);
  9954. ggml_float sum2 = 0.0;
  9955. for (int64_t i02 = start; i02 < end; i02++) {
  9956. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9957. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9958. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9959. ggml_float sumr = 0.0;
  9960. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9961. float v = x[i00] - mean;
  9962. y[i00] = v;
  9963. sumr += (ggml_float)(v * v);
  9964. }
  9965. sum2 += sumr;
  9966. }
  9967. }
  9968. const float variance = sum2 / (ne00 * ne01 * step);
  9969. const float scale = 1.0f / sqrtf(variance + eps);
  9970. for (int64_t i02 = start; i02 < end; i02++) {
  9971. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9972. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9973. ggml_vec_scale_f32(ne00, y, scale);
  9974. }
  9975. }
  9976. }
  9977. }
  9978. }
  9979. static void ggml_compute_forward_group_norm(
  9980. const struct ggml_compute_params * params,
  9981. struct ggml_tensor * dst) {
  9982. const struct ggml_tensor * src0 = dst->src[0];
  9983. switch (src0->type) {
  9984. case GGML_TYPE_F32:
  9985. {
  9986. ggml_compute_forward_group_norm_f32(params, dst);
  9987. } break;
  9988. default:
  9989. {
  9990. GGML_ASSERT(false);
  9991. } break;
  9992. }
  9993. }
  9994. // ggml_compute_forward_mul_mat
  9995. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9996. // helper function to determine if it is better to use BLAS or not
  9997. // for large matrices, BLAS is faster
  9998. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9999. const struct ggml_tensor * src0 = dst->src[0];
  10000. const struct ggml_tensor * src1 = dst->src[1];
  10001. //const int64_t ne00 = src0->ne[0];
  10002. //const int64_t ne01 = src0->ne[1];
  10003. const int64_t ne10 = src1->ne[0];
  10004. const int64_t ne0 = dst->ne[0];
  10005. const int64_t ne1 = dst->ne[1];
  10006. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10007. // all the experts for each batch element and the processing would become incredibly slow
  10008. // TODO: find the optimal values for these
  10009. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10010. ggml_is_contiguous(src0) &&
  10011. ggml_is_contiguous(src1) &&
  10012. //src0->type == GGML_TYPE_F32 &&
  10013. src1->type == GGML_TYPE_F32 &&
  10014. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10015. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10016. return true;
  10017. }
  10018. return false;
  10019. }
  10020. #endif
  10021. static void ggml_compute_forward_mul_mat_one_chunk(
  10022. const struct ggml_compute_params * params,
  10023. struct ggml_tensor * dst,
  10024. const int64_t num_rows_per_vec_dot,
  10025. const int64_t ir0_start,
  10026. const int64_t ir0_end,
  10027. const int64_t ir1_start,
  10028. const int64_t ir1_end) {
  10029. const struct ggml_tensor * src0 = dst->src[0];
  10030. const struct ggml_tensor * src1 = dst->src[1];
  10031. GGML_TENSOR_BINARY_OP_LOCALS
  10032. const enum ggml_type type = src0->type;
  10033. const bool src1_cont = ggml_is_contiguous(src1);
  10034. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10035. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10036. // broadcast factors
  10037. const int64_t r2 = ne12 / ne02;
  10038. const int64_t r3 = ne13 / ne03;
  10039. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10040. // threads with no work simply yield (not sure if it helps)
  10041. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10042. return;
  10043. }
  10044. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10045. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10046. assert(ne12 % ne02 == 0);
  10047. assert(ne13 % ne03 == 0);
  10048. // block-tiling attempt
  10049. const int64_t blck_0 = 16;
  10050. const int64_t blck_1 = 16;
  10051. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10052. // attempt to reduce false-sharing (does not seem to make a difference)
  10053. // 16 * 2, accounting for mmla kernels
  10054. float tmp[32];
  10055. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10056. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10057. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10058. const int64_t i13 = (ir1 / (ne12 * ne1));
  10059. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10060. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10061. // broadcast src0 into src1
  10062. const int64_t i03 = i13 / r3;
  10063. const int64_t i02 = i12 / r2;
  10064. const int64_t i1 = i11;
  10065. const int64_t i2 = i12;
  10066. const int64_t i3 = i13;
  10067. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10068. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10069. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10070. // the original src1 data pointer, so we should index using the indices directly
  10071. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10072. const char * src1_col = (const char*)wdata +
  10073. (src1_cont || src1->type != vec_dot_type
  10074. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10075. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10076. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10077. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10078. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10079. //}
  10080. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10081. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10082. }
  10083. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10084. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10085. }
  10086. }
  10087. }
  10088. }
  10089. }
  10090. static void ggml_compute_forward_mul_mat(
  10091. const struct ggml_compute_params * params,
  10092. struct ggml_tensor * dst,
  10093. struct ggml_compute_state * state) {
  10094. const struct ggml_tensor * src0 = dst->src[0];
  10095. const struct ggml_tensor * src1 = dst->src[1];
  10096. int64_t t0 = ggml_perf_time_us();
  10097. UNUSED(t0);
  10098. GGML_TENSOR_BINARY_OP_LOCALS
  10099. const int ith = params->ith;
  10100. const int nth = params->nth;
  10101. const enum ggml_type type = src0->type;
  10102. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10103. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10104. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10105. GGML_ASSERT(ne0 == ne01);
  10106. GGML_ASSERT(ne1 == ne11);
  10107. GGML_ASSERT(ne2 == ne12);
  10108. GGML_ASSERT(ne3 == ne13);
  10109. // we don't support permuted src0 or src1
  10110. GGML_ASSERT(nb00 == ggml_type_size(type));
  10111. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10112. // dst cannot be transposed or permuted
  10113. GGML_ASSERT(nb0 == sizeof(float));
  10114. GGML_ASSERT(nb0 <= nb1);
  10115. GGML_ASSERT(nb1 <= nb2);
  10116. GGML_ASSERT(nb2 <= nb3);
  10117. // broadcast factors
  10118. const int64_t r2 = ne12 / ne02;
  10119. const int64_t r3 = ne13 / ne03;
  10120. UNUSED(r2);
  10121. UNUSED(r3);
  10122. // nb01 >= nb00 - src0 is not transposed
  10123. // compute by src0 rows
  10124. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10125. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10126. const int64_t ne_plane = ne01*ne00;
  10127. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10128. UNUSED(desired_wsize);
  10129. if (params->type == GGML_TASK_TYPE_INIT) {
  10130. if (type != GGML_TYPE_F32) {
  10131. assert(params->wsize >= desired_wsize);
  10132. // parallelize by src0 rows
  10133. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10134. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10135. // broadcast src0 into src1 across 2nd,3rd dimension
  10136. const int64_t i03 = i13/r3;
  10137. const int64_t i02 = i12/r2;
  10138. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10139. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10140. ggml_to_float_t const to_float = type_traits[type].to_float;
  10141. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10142. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10143. }
  10144. }
  10145. }
  10146. }
  10147. return;
  10148. }
  10149. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10150. return;
  10151. }
  10152. // perform sgemm, parallelization controlled by blas lib
  10153. if (ith != 0) {
  10154. return;
  10155. }
  10156. //const int64_t tgemm0 = ggml_perf_time_us();
  10157. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10158. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10159. const int64_t i03 = i13/r3;
  10160. const int64_t i02 = i12/r2;
  10161. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10162. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10163. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10164. if (type != GGML_TYPE_F32) {
  10165. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10166. }
  10167. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10168. ne1, ne01, ne10,
  10169. 1.0f, y, ne10,
  10170. x, ne00,
  10171. 0.0f, d, ne01);
  10172. }
  10173. }
  10174. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10175. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10176. return;
  10177. }
  10178. #endif
  10179. #if GGML_USE_LLAMAFILE
  10180. const bool src1_cont = ggml_is_contiguous(src1);
  10181. if (src1_cont) {
  10182. for (int64_t i13 = 0; i13 < ne13; i13++)
  10183. for (int64_t i12 = 0; i12 < ne12; i12++)
  10184. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10185. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10186. nb01/ggml_type_size(src0->type),
  10187. (const char *)src1->data + i12*nb12 + i13*nb13,
  10188. nb11/ggml_type_size(src1->type),
  10189. (char *)dst->data + i12*nb2 + i13*nb3,
  10190. nb1/ggml_type_size(dst->type),
  10191. ith, nth,
  10192. params->type,
  10193. src0->type,
  10194. src1->type,
  10195. dst->type))
  10196. goto UseGgmlGemm1;
  10197. return;
  10198. }
  10199. UseGgmlGemm1:;
  10200. #endif
  10201. if (params->type == GGML_TASK_TYPE_INIT) {
  10202. if (ith != 0) {
  10203. return;
  10204. }
  10205. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10206. atomic_store(&state->shared->current_chunk, nth);
  10207. if (src1->type != vec_dot_type) {
  10208. char * wdata = params->wdata;
  10209. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10210. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10211. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10212. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10213. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10214. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10215. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10216. wdata += row_size;
  10217. }
  10218. }
  10219. }
  10220. }
  10221. return;
  10222. }
  10223. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10224. return;
  10225. }
  10226. #if GGML_USE_LLAMAFILE
  10227. if (src1->type != vec_dot_type) {
  10228. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10229. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10230. for (int64_t i13 = 0; i13 < ne13; i13++)
  10231. for (int64_t i12 = 0; i12 < ne12; i12++)
  10232. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10233. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10234. nb01/ggml_type_size(src0->type),
  10235. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10236. row_size/ggml_type_size(vec_dot_type),
  10237. (char *)dst->data + i12*nb2 + i13*nb3,
  10238. nb1/ggml_type_size(dst->type),
  10239. ith, nth,
  10240. params->type,
  10241. src0->type,
  10242. vec_dot_type,
  10243. dst->type))
  10244. goto UseGgmlGemm2;
  10245. return;
  10246. }
  10247. UseGgmlGemm2:;
  10248. #endif
  10249. #ifdef GGML_PERF
  10250. int chunks_executed = 0;
  10251. UNUSED(chunks_executed);
  10252. #endif
  10253. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10254. const int64_t nr0 = ne0;
  10255. // This is the size of the rest of the dimensions of the result
  10256. const int64_t nr1 = ne1 * ne2 * ne3;
  10257. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10258. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10259. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10260. // this check can be removed once they are extended to support odd numbered rows/cols too
  10261. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10262. num_rows_per_vec_dot = 1;
  10263. }
  10264. // Now select a reasonable chunk size.
  10265. int chunk_size = 16;
  10266. // We need to step up the size if it's small
  10267. if (nr0 == 1 || nr1 == 1) {
  10268. chunk_size = 64;
  10269. }
  10270. // distribute the work across the inner or outer loop based on which one is larger
  10271. // The number of chunks in the 0/1 dim.
  10272. // CEIL(nr0/chunk_size)
  10273. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10274. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10275. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10276. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10277. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10278. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10279. // distribute the thread work across the inner or outer loop based on which one is larger
  10280. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10281. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10282. }
  10283. // The number of elements in each chunk
  10284. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10285. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10286. //if (ith == 0)
  10287. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10288. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10289. int current_chunk = ith;
  10290. while (current_chunk < nchunk0 * nchunk1) {
  10291. const int64_t ith0 = current_chunk % nchunk0;
  10292. const int64_t ith1 = current_chunk / nchunk0;
  10293. const int64_t ir0_start = dr0 * ith0;
  10294. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10295. const int64_t ir1_start = dr1 * ith1;
  10296. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10297. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10298. #ifdef GGML_PERF
  10299. chunks_executed++;
  10300. #endif
  10301. if (nth >= nchunk0 * nchunk1) {
  10302. break;
  10303. }
  10304. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10305. }
  10306. #ifdef GGML_PERF
  10307. // These numbers are useful when trying to measure how well the threading scheduling works.
  10308. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10309. //float time = (ggml_perf_time_us() - t0);
  10310. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10311. #endif
  10312. }
  10313. // ggml_compute_forward_mul_mat_id
  10314. static void ggml_compute_forward_mul_mat_id(
  10315. const struct ggml_compute_params * params,
  10316. struct ggml_tensor * dst) {
  10317. const struct ggml_tensor * src0 = dst->src[0];
  10318. const struct ggml_tensor * src1 = dst->src[1];
  10319. const struct ggml_tensor * ids = dst->src[2];
  10320. GGML_TENSOR_BINARY_OP_LOCALS
  10321. const int ith = params->ith;
  10322. const int nth = params->nth;
  10323. const enum ggml_type type = src0->type;
  10324. const bool src1_cont = ggml_is_contiguous(src1);
  10325. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10326. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10327. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10328. // we don't support permuted src0 or src1
  10329. GGML_ASSERT(nb00 == ggml_type_size(type));
  10330. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10331. // dst cannot be transposed or permuted
  10332. GGML_ASSERT(nb0 == sizeof(float));
  10333. GGML_ASSERT(nb0 <= nb1);
  10334. GGML_ASSERT(nb1 <= nb2);
  10335. GGML_ASSERT(nb2 <= nb3);
  10336. // row groups
  10337. const int n_ids = ids->ne[0]; // n_expert_used
  10338. const int n_as = ne02; // n_expert
  10339. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10340. (char *) params->wdata :
  10341. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10342. struct mmid_row_mapping {
  10343. int32_t i1;
  10344. int32_t i2;
  10345. };
  10346. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10347. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10348. if (params->type == GGML_TASK_TYPE_INIT) {
  10349. if (ith != 0) {
  10350. return;
  10351. }
  10352. char * wdata = params->wdata;
  10353. if (src1->type != vec_dot_type) {
  10354. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10355. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10356. assert(src1->type == GGML_TYPE_F32);
  10357. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10358. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10359. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10360. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10361. wdata += row_size;
  10362. }
  10363. }
  10364. }
  10365. }
  10366. // initialize matrix_row_counts
  10367. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10368. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10369. // group rows by src0 matrix
  10370. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10371. for (int id = 0; id < n_ids; ++id) {
  10372. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10373. assert(i02 >= 0 && i02 < n_as);
  10374. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10375. matrix_row_counts[i02] += 1;
  10376. }
  10377. }
  10378. return;
  10379. }
  10380. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10381. return;
  10382. }
  10383. // compute each matrix multiplication in sequence
  10384. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10385. const int64_t cne1 = matrix_row_counts[cur_a];
  10386. if (cne1 == 0) {
  10387. continue;
  10388. }
  10389. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10390. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10391. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10392. const int64_t nr0 = ne01; // src0 rows
  10393. const int64_t nr1 = cne1; // src1 rows
  10394. // distribute the thread work across the inner or outer loop based on which one is larger
  10395. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10396. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10397. const int64_t ith0 = ith % nth0;
  10398. const int64_t ith1 = ith / nth0;
  10399. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10400. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10401. const int64_t ir010 = dr0*ith0;
  10402. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10403. const int64_t ir110 = dr1*ith1;
  10404. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10405. // threads with no work simply yield (not sure if it helps)
  10406. //if (ir010 >= ir011 || ir110 >= ir111) {
  10407. // sched_yield();
  10408. // continue;
  10409. //}
  10410. // block-tiling attempt
  10411. const int64_t blck_0 = 16;
  10412. const int64_t blck_1 = 16;
  10413. // attempt to reduce false-sharing (does not seem to make a difference)
  10414. float tmp[16];
  10415. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10416. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10417. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10418. const int64_t _i12 = ir1; // logical row index for this expert
  10419. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10420. const int id = row_mapping.i1; // selected expert index
  10421. const int64_t i11 = id % ne11;
  10422. const int64_t i12 = row_mapping.i2; // row index in src1
  10423. const int64_t i1 = id; // selected expert index
  10424. const int64_t i2 = i12; // row
  10425. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10426. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10427. // the original src1 data pointer, so we should index using the indices directly
  10428. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10429. const char * src1_col = (const char *) wdata +
  10430. (src1_cont || src1->type != vec_dot_type
  10431. ? (i11 + i12*ne11)*row_size
  10432. : (i11*nb11 + i12*nb12));
  10433. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10434. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10435. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10436. //}
  10437. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10438. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10439. }
  10440. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10441. }
  10442. }
  10443. }
  10444. }
  10445. #undef MMID_MATRIX_ROW
  10446. }
  10447. // ggml_compute_forward_out_prod
  10448. static void ggml_compute_forward_out_prod_f32(
  10449. const struct ggml_compute_params * params,
  10450. struct ggml_tensor * dst) {
  10451. const struct ggml_tensor * src0 = dst->src[0];
  10452. const struct ggml_tensor * src1 = dst->src[1];
  10453. // int64_t t0 = ggml_perf_time_us();
  10454. // UNUSED(t0);
  10455. GGML_TENSOR_BINARY_OP_LOCALS
  10456. const int ith = params->ith;
  10457. const int nth = params->nth;
  10458. GGML_ASSERT(ne0 == ne00);
  10459. GGML_ASSERT(ne1 == ne10);
  10460. GGML_ASSERT(ne2 == ne02);
  10461. GGML_ASSERT(ne02 == ne12);
  10462. GGML_ASSERT(ne3 == ne13);
  10463. GGML_ASSERT(ne03 == ne13);
  10464. // we don't support permuted src0 or src1
  10465. GGML_ASSERT(nb00 == sizeof(float));
  10466. // dst cannot be transposed or permuted
  10467. GGML_ASSERT(nb0 == sizeof(float));
  10468. // GGML_ASSERT(nb0 <= nb1);
  10469. // GGML_ASSERT(nb1 <= nb2);
  10470. // GGML_ASSERT(nb2 <= nb3);
  10471. // nb01 >= nb00 - src0 is not transposed
  10472. // compute by src0 rows
  10473. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10474. bool use_blas = ggml_is_matrix(src0) &&
  10475. ggml_is_matrix(src1) &&
  10476. ggml_is_contiguous(src0) &&
  10477. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10478. #endif
  10479. if (params->type == GGML_TASK_TYPE_INIT) {
  10480. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10481. if (use_blas) {
  10482. return;
  10483. }
  10484. #endif
  10485. if (ith != 0) {
  10486. return;
  10487. }
  10488. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10489. return;
  10490. }
  10491. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10492. return;
  10493. }
  10494. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10495. if (use_blas) {
  10496. if (params->ith != 0) { // All threads other than the first do no work.
  10497. return;
  10498. }
  10499. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10500. // src0: (k,n)
  10501. // src1: (k,m)
  10502. // dst: (m,n)
  10503. //
  10504. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10505. // Also expressed as (major,minor)
  10506. // a: (m,k): so src1 transposed
  10507. // b: (k,n): so src0
  10508. // c: (m,n)
  10509. //
  10510. // However, if ggml_is_transposed(src1) is true, then
  10511. // src1->data already contains a transposed version, so sgemm mustn't
  10512. // transpose it further.
  10513. int n = src0->ne[0];
  10514. int k = src0->ne[1];
  10515. int m = src1->ne[0];
  10516. int transposeA, lda;
  10517. if (!ggml_is_transposed(src1)) {
  10518. transposeA = CblasTrans;
  10519. lda = m;
  10520. } else {
  10521. transposeA = CblasNoTrans;
  10522. lda = k;
  10523. }
  10524. float * a = (float *) ((char *) src1->data);
  10525. float * b = (float *) ((char *) src0->data);
  10526. float * c = (float *) ((char *) dst->data);
  10527. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10528. return;
  10529. }
  10530. #endif
  10531. // dst[:,:,:,:] = 0
  10532. // for i2,i3:
  10533. // for i1:
  10534. // for i01:
  10535. // for i0:
  10536. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10537. // parallelize by last three dimensions
  10538. // total rows in dst
  10539. const int64_t nr = ne1*ne2*ne3;
  10540. // rows per thread
  10541. const int64_t dr = (nr + nth - 1)/nth;
  10542. // row range for this thread
  10543. const int64_t ir0 = dr*ith;
  10544. const int64_t ir1 = MIN(ir0 + dr, nr);
  10545. // block-tiling attempt
  10546. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10547. const int64_t blck_1 = 16;
  10548. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10549. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10550. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10551. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10552. for (int64_t ir = bir; ir < bir1; ++ir) {
  10553. // dst indices
  10554. const int64_t i3 = ir/(ne2*ne1);
  10555. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10556. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10557. const int64_t i02 = i2;
  10558. const int64_t i03 = i3;
  10559. //const int64_t i10 = i1;
  10560. const int64_t i12 = i2;
  10561. const int64_t i13 = i3;
  10562. #if GGML_VEC_MAD_UNROLL > 2
  10563. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10564. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10565. const int64_t i11 = i01;
  10566. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10567. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10568. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10569. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10570. }
  10571. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10572. const int64_t i11 = i01;
  10573. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10574. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10575. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10576. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10577. }
  10578. #else
  10579. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10580. const int64_t i11 = i01;
  10581. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10582. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10583. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10584. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10585. }
  10586. #endif
  10587. }
  10588. }
  10589. }
  10590. //int64_t t1 = ggml_perf_time_us();
  10591. //static int64_t acc = 0;
  10592. //acc += t1 - t0;
  10593. //if (t1 - t0 > 10) {
  10594. // printf("\n");
  10595. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10596. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10597. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10598. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10599. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10600. //}
  10601. }
  10602. static void ggml_compute_forward_out_prod_q_f32(
  10603. const struct ggml_compute_params * params,
  10604. struct ggml_tensor * dst) {
  10605. const struct ggml_tensor * src0 = dst->src[0];
  10606. const struct ggml_tensor * src1 = dst->src[1];
  10607. // int64_t t0 = ggml_perf_time_us();
  10608. // UNUSED(t0);
  10609. GGML_TENSOR_BINARY_OP_LOCALS;
  10610. const int ith = params->ith;
  10611. const int nth = params->nth;
  10612. const enum ggml_type type = src0->type;
  10613. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10614. GGML_ASSERT(ne02 == ne12);
  10615. GGML_ASSERT(ne03 == ne13);
  10616. GGML_ASSERT(ne2 == ne12);
  10617. GGML_ASSERT(ne3 == ne13);
  10618. // we don't support permuted src0 dim0
  10619. GGML_ASSERT(nb00 == ggml_type_size(type));
  10620. // dst dim0 cannot be transposed or permuted
  10621. GGML_ASSERT(nb0 == sizeof(float));
  10622. // GGML_ASSERT(nb0 <= nb1);
  10623. // GGML_ASSERT(nb1 <= nb2);
  10624. // GGML_ASSERT(nb2 <= nb3);
  10625. GGML_ASSERT(ne0 == ne00);
  10626. GGML_ASSERT(ne1 == ne10);
  10627. GGML_ASSERT(ne2 == ne02);
  10628. GGML_ASSERT(ne3 == ne03);
  10629. // nb01 >= nb00 - src0 is not transposed
  10630. // compute by src0 rows
  10631. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10632. if (params->type == GGML_TASK_TYPE_INIT) {
  10633. if (ith != 0) {
  10634. return;
  10635. }
  10636. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10637. return;
  10638. }
  10639. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10640. return;
  10641. }
  10642. // parallelize by last three dimensions
  10643. // total rows in dst
  10644. const int64_t nr = ne1*ne2*ne3;
  10645. // rows per thread
  10646. const int64_t dr = (nr + nth - 1)/nth;
  10647. // row range for this thread
  10648. const int64_t ir0 = dr*ith;
  10649. const int64_t ir1 = MIN(ir0 + dr, nr);
  10650. // dst[:,:,:,:] = 0
  10651. // for i2,i3:
  10652. // for i1:
  10653. // for i01:
  10654. // for i0:
  10655. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10656. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10657. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10658. // dst indices
  10659. const int64_t i3 = ir/(ne2*ne1);
  10660. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10661. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10662. const int64_t i02 = i2;
  10663. const int64_t i03 = i3;
  10664. //const int64_t i10 = i1;
  10665. const int64_t i12 = i2;
  10666. const int64_t i13 = i3;
  10667. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10668. const int64_t i11 = i01;
  10669. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10670. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10671. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10672. dequantize_row_q(s0, wdata, ne0);
  10673. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10674. }
  10675. }
  10676. //int64_t t1 = ggml_perf_time_us();
  10677. //static int64_t acc = 0;
  10678. //acc += t1 - t0;
  10679. //if (t1 - t0 > 10) {
  10680. // printf("\n");
  10681. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10682. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10683. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10684. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10685. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10686. //}
  10687. }
  10688. static void ggml_compute_forward_out_prod(
  10689. const struct ggml_compute_params * params,
  10690. struct ggml_tensor * dst) {
  10691. const struct ggml_tensor * src0 = dst->src[0];
  10692. switch (src0->type) {
  10693. case GGML_TYPE_Q4_0:
  10694. case GGML_TYPE_Q4_1:
  10695. case GGML_TYPE_Q5_0:
  10696. case GGML_TYPE_Q5_1:
  10697. case GGML_TYPE_Q8_0:
  10698. case GGML_TYPE_Q2_K:
  10699. case GGML_TYPE_Q3_K:
  10700. case GGML_TYPE_Q4_K:
  10701. case GGML_TYPE_Q5_K:
  10702. case GGML_TYPE_Q6_K:
  10703. case GGML_TYPE_IQ2_XXS:
  10704. case GGML_TYPE_IQ2_XS:
  10705. case GGML_TYPE_IQ3_XXS:
  10706. case GGML_TYPE_IQ1_S:
  10707. case GGML_TYPE_IQ1_M:
  10708. case GGML_TYPE_IQ4_NL:
  10709. case GGML_TYPE_IQ4_XS:
  10710. case GGML_TYPE_IQ3_S:
  10711. case GGML_TYPE_IQ2_S:
  10712. {
  10713. ggml_compute_forward_out_prod_q_f32(params, dst);
  10714. } break;
  10715. case GGML_TYPE_F16:
  10716. {
  10717. GGML_ASSERT(false); // todo
  10718. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10719. } break;
  10720. case GGML_TYPE_F32:
  10721. {
  10722. ggml_compute_forward_out_prod_f32(params, dst);
  10723. } break;
  10724. default:
  10725. {
  10726. GGML_ASSERT(false);
  10727. } break;
  10728. }
  10729. }
  10730. // ggml_compute_forward_scale
  10731. static void ggml_compute_forward_scale_f32(
  10732. const struct ggml_compute_params * params,
  10733. struct ggml_tensor * dst) {
  10734. const struct ggml_tensor * src0 = dst->src[0];
  10735. GGML_ASSERT(ggml_is_contiguous(src0));
  10736. GGML_ASSERT(ggml_is_contiguous(dst));
  10737. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10738. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10739. return;
  10740. }
  10741. // scale factor
  10742. float v;
  10743. memcpy(&v, dst->op_params, sizeof(float));
  10744. const int ith = params->ith;
  10745. const int nth = params->nth;
  10746. const int nc = src0->ne[0];
  10747. const int nr = ggml_nrows(src0);
  10748. // rows per thread
  10749. const int dr = (nr + nth - 1)/nth;
  10750. // row range for this thread
  10751. const int ir0 = dr*ith;
  10752. const int ir1 = MIN(ir0 + dr, nr);
  10753. const size_t nb01 = src0->nb[1];
  10754. const size_t nb1 = dst->nb[1];
  10755. for (int i1 = ir0; i1 < ir1; i1++) {
  10756. if (dst->data != src0->data) {
  10757. // src0 is same shape as dst => same indices
  10758. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10759. }
  10760. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10761. }
  10762. }
  10763. static void ggml_compute_forward_scale(
  10764. const struct ggml_compute_params * params,
  10765. struct ggml_tensor * dst) {
  10766. const struct ggml_tensor * src0 = dst->src[0];
  10767. switch (src0->type) {
  10768. case GGML_TYPE_F32:
  10769. {
  10770. ggml_compute_forward_scale_f32(params, dst);
  10771. } break;
  10772. default:
  10773. {
  10774. GGML_ASSERT(false);
  10775. } break;
  10776. }
  10777. }
  10778. // ggml_compute_forward_set
  10779. static void ggml_compute_forward_set_f32(
  10780. const struct ggml_compute_params * params,
  10781. struct ggml_tensor * dst) {
  10782. const struct ggml_tensor * src0 = dst->src[0];
  10783. const struct ggml_tensor * src1 = dst->src[1];
  10784. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10785. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10786. // view src0 and dst with these strides and data offset inbytes during set
  10787. // nb0 is implicitly element_size because src0 and dst are contiguous
  10788. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10789. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10790. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10791. size_t offset = ((int32_t *) dst->op_params)[3];
  10792. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10793. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10794. if (params->ith != 0) {
  10795. return;
  10796. }
  10797. // memcpy needs to be synchronized across threads to avoid race conditions.
  10798. // => do it in INIT phase
  10799. memcpy(
  10800. ((char *) dst->data),
  10801. ((char *) src0->data),
  10802. ggml_nbytes(dst));
  10803. }
  10804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10805. return;
  10806. }
  10807. const int ith = params->ith;
  10808. const int nth = params->nth;
  10809. const int nr = ggml_nrows(src1);
  10810. const int nc = src1->ne[0];
  10811. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10812. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10813. // src0 and dst as viewed during set
  10814. const size_t nb0 = ggml_element_size(src0);
  10815. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10816. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10817. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10818. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10819. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10820. GGML_ASSERT(nb10 == sizeof(float));
  10821. // rows per thread
  10822. const int dr = (nr + nth - 1)/nth;
  10823. // row range for this thread
  10824. const int ir0 = dr*ith;
  10825. const int ir1 = MIN(ir0 + dr, nr);
  10826. for (int ir = ir0; ir < ir1; ++ir) {
  10827. // src0 and dst are viewed with shape of src1 and offset
  10828. // => same indices
  10829. const int i3 = ir/(ne12*ne11);
  10830. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10831. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10832. ggml_vec_cpy_f32(nc,
  10833. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10834. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10835. }
  10836. }
  10837. static void ggml_compute_forward_set(
  10838. const struct ggml_compute_params * params,
  10839. struct ggml_tensor * dst) {
  10840. const struct ggml_tensor * src0 = dst->src[0];
  10841. switch (src0->type) {
  10842. case GGML_TYPE_F32:
  10843. {
  10844. ggml_compute_forward_set_f32(params, dst);
  10845. } break;
  10846. case GGML_TYPE_F16:
  10847. case GGML_TYPE_BF16:
  10848. case GGML_TYPE_Q4_0:
  10849. case GGML_TYPE_Q4_1:
  10850. case GGML_TYPE_Q5_0:
  10851. case GGML_TYPE_Q5_1:
  10852. case GGML_TYPE_Q8_0:
  10853. case GGML_TYPE_Q8_1:
  10854. case GGML_TYPE_Q2_K:
  10855. case GGML_TYPE_Q3_K:
  10856. case GGML_TYPE_Q4_K:
  10857. case GGML_TYPE_Q5_K:
  10858. case GGML_TYPE_Q6_K:
  10859. case GGML_TYPE_IQ2_XXS:
  10860. case GGML_TYPE_IQ2_XS:
  10861. case GGML_TYPE_IQ3_XXS:
  10862. case GGML_TYPE_IQ1_S:
  10863. case GGML_TYPE_IQ1_M:
  10864. case GGML_TYPE_IQ4_NL:
  10865. case GGML_TYPE_IQ4_XS:
  10866. case GGML_TYPE_IQ3_S:
  10867. case GGML_TYPE_IQ2_S:
  10868. default:
  10869. {
  10870. GGML_ASSERT(false);
  10871. } break;
  10872. }
  10873. }
  10874. // ggml_compute_forward_cpy
  10875. static void ggml_compute_forward_cpy(
  10876. const struct ggml_compute_params * params,
  10877. struct ggml_tensor * dst) {
  10878. ggml_compute_forward_dup(params, dst);
  10879. }
  10880. // ggml_compute_forward_cont
  10881. static void ggml_compute_forward_cont(
  10882. const struct ggml_compute_params * params,
  10883. struct ggml_tensor * dst) {
  10884. ggml_compute_forward_dup(params, dst);
  10885. }
  10886. // ggml_compute_forward_reshape
  10887. static void ggml_compute_forward_reshape(
  10888. const struct ggml_compute_params * params,
  10889. struct ggml_tensor * dst) {
  10890. // NOP
  10891. UNUSED(params);
  10892. UNUSED(dst);
  10893. }
  10894. // ggml_compute_forward_view
  10895. static void ggml_compute_forward_view(
  10896. const struct ggml_compute_params * params,
  10897. const struct ggml_tensor * dst) {
  10898. // NOP
  10899. UNUSED(params);
  10900. UNUSED(dst);
  10901. }
  10902. // ggml_compute_forward_permute
  10903. static void ggml_compute_forward_permute(
  10904. const struct ggml_compute_params * params,
  10905. const struct ggml_tensor * dst) {
  10906. // NOP
  10907. UNUSED(params);
  10908. UNUSED(dst);
  10909. }
  10910. // ggml_compute_forward_transpose
  10911. static void ggml_compute_forward_transpose(
  10912. const struct ggml_compute_params * params,
  10913. const struct ggml_tensor * dst) {
  10914. // NOP
  10915. UNUSED(params);
  10916. UNUSED(dst);
  10917. }
  10918. // ggml_compute_forward_get_rows
  10919. static void ggml_compute_forward_get_rows_q(
  10920. const struct ggml_compute_params * params,
  10921. struct ggml_tensor * dst) {
  10922. const struct ggml_tensor * src0 = dst->src[0];
  10923. const struct ggml_tensor * src1 = dst->src[1];
  10924. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10925. return;
  10926. }
  10927. GGML_TENSOR_BINARY_OP_LOCALS
  10928. const int64_t nc = ne00;
  10929. const int64_t nr = ggml_nelements(src1);
  10930. const enum ggml_type type = src0->type;
  10931. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10932. assert(ne0 == nc);
  10933. assert(ne02 == ne11);
  10934. assert(nb00 == ggml_type_size(type));
  10935. assert(ggml_nrows(dst) == nr);
  10936. const int ith = params->ith;
  10937. const int nth = params->nth;
  10938. // rows per thread
  10939. const int dr = (nr + nth - 1)/nth;
  10940. // row range for this thread
  10941. const int ir0 = dr*ith;
  10942. const int ir1 = MIN(ir0 + dr, nr);
  10943. for (int64_t i = ir0; i < ir1; ++i) {
  10944. const int64_t i12 = i/(ne11*ne10);
  10945. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10946. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10947. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10948. dequantize_row_q(
  10949. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10950. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10951. }
  10952. }
  10953. static void ggml_compute_forward_get_rows_f16(
  10954. const struct ggml_compute_params * params,
  10955. struct ggml_tensor * dst) {
  10956. const struct ggml_tensor * src0 = dst->src[0];
  10957. const struct ggml_tensor * src1 = dst->src[1];
  10958. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10959. return;
  10960. }
  10961. GGML_TENSOR_BINARY_OP_LOCALS
  10962. const int64_t nc = ne00;
  10963. const int64_t nr = ggml_nelements(src1);
  10964. assert(ne0 == nc);
  10965. assert(ne02 == ne11);
  10966. assert(nb00 == sizeof(ggml_fp16_t));
  10967. assert(ggml_nrows(dst) == nr);
  10968. const int ith = params->ith;
  10969. const int nth = params->nth;
  10970. // rows per thread
  10971. const int dr = (nr + nth - 1)/nth;
  10972. // row range for this thread
  10973. const int ir0 = dr*ith;
  10974. const int ir1 = MIN(ir0 + dr, nr);
  10975. for (int64_t i = ir0; i < ir1; ++i) {
  10976. const int64_t i12 = i/(ne11*ne10);
  10977. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10978. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10979. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10980. ggml_fp16_to_fp32_row(
  10981. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10982. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10983. }
  10984. }
  10985. static void ggml_compute_forward_get_rows_bf16(
  10986. const struct ggml_compute_params * params,
  10987. struct ggml_tensor * dst) {
  10988. const struct ggml_tensor * src0 = dst->src[0];
  10989. const struct ggml_tensor * src1 = dst->src[1];
  10990. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10991. return;
  10992. }
  10993. GGML_TENSOR_BINARY_OP_LOCALS
  10994. const int64_t nc = ne00;
  10995. const int64_t nr = ggml_nelements(src1);
  10996. assert(ne0 == nc);
  10997. assert(ne02 == ne11);
  10998. assert(nb00 == sizeof(ggml_bf16_t));
  10999. assert(ggml_nrows(dst) == nr);
  11000. const int ith = params->ith;
  11001. const int nth = params->nth;
  11002. // rows per thread
  11003. const int dr = (nr + nth - 1)/nth;
  11004. // row range for this thread
  11005. const int ir0 = dr*ith;
  11006. const int ir1 = MIN(ir0 + dr, nr);
  11007. for (int64_t i = ir0; i < ir1; ++i) {
  11008. const int64_t i12 = i/(ne11*ne10);
  11009. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11010. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11011. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11012. ggml_bf16_to_fp32_row(
  11013. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11014. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11015. }
  11016. }
  11017. static void ggml_compute_forward_get_rows_f32(
  11018. const struct ggml_compute_params * params,
  11019. struct ggml_tensor * dst) {
  11020. const struct ggml_tensor * src0 = dst->src[0];
  11021. const struct ggml_tensor * src1 = dst->src[1];
  11022. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11023. return;
  11024. }
  11025. GGML_TENSOR_BINARY_OP_LOCALS
  11026. const int64_t nc = ne00;
  11027. const int64_t nr = ggml_nelements(src1);
  11028. assert(ne0 == nc);
  11029. assert(ne02 == ne11);
  11030. assert(nb00 == sizeof(float));
  11031. assert(ggml_nrows(dst) == nr);
  11032. const int ith = params->ith;
  11033. const int nth = params->nth;
  11034. // rows per thread
  11035. const int dr = (nr + nth - 1)/nth;
  11036. // row range for this thread
  11037. const int ir0 = dr*ith;
  11038. const int ir1 = MIN(ir0 + dr, nr);
  11039. for (int64_t i = ir0; i < ir1; ++i) {
  11040. const int64_t i12 = i/(ne11*ne10);
  11041. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11042. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11043. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11044. ggml_vec_cpy_f32(nc,
  11045. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11046. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11047. }
  11048. }
  11049. static void ggml_compute_forward_get_rows(
  11050. const struct ggml_compute_params * params,
  11051. struct ggml_tensor * dst) {
  11052. const struct ggml_tensor * src0 = dst->src[0];
  11053. switch (src0->type) {
  11054. case GGML_TYPE_Q4_0:
  11055. case GGML_TYPE_Q4_1:
  11056. case GGML_TYPE_Q5_0:
  11057. case GGML_TYPE_Q5_1:
  11058. case GGML_TYPE_Q8_0:
  11059. case GGML_TYPE_Q8_1:
  11060. case GGML_TYPE_Q2_K:
  11061. case GGML_TYPE_Q3_K:
  11062. case GGML_TYPE_Q4_K:
  11063. case GGML_TYPE_Q5_K:
  11064. case GGML_TYPE_Q6_K:
  11065. case GGML_TYPE_IQ2_XXS:
  11066. case GGML_TYPE_IQ2_XS:
  11067. case GGML_TYPE_IQ3_XXS:
  11068. case GGML_TYPE_IQ1_S:
  11069. case GGML_TYPE_IQ1_M:
  11070. case GGML_TYPE_IQ4_NL:
  11071. case GGML_TYPE_IQ4_XS:
  11072. case GGML_TYPE_IQ3_S:
  11073. case GGML_TYPE_IQ2_S:
  11074. {
  11075. ggml_compute_forward_get_rows_q(params, dst);
  11076. } break;
  11077. case GGML_TYPE_F16:
  11078. {
  11079. ggml_compute_forward_get_rows_f16(params, dst);
  11080. } break;
  11081. case GGML_TYPE_BF16:
  11082. {
  11083. ggml_compute_forward_get_rows_bf16(params, dst);
  11084. } break;
  11085. case GGML_TYPE_F32:
  11086. case GGML_TYPE_I32:
  11087. {
  11088. ggml_compute_forward_get_rows_f32(params, dst);
  11089. } break;
  11090. default:
  11091. {
  11092. GGML_ASSERT(false);
  11093. } break;
  11094. }
  11095. //static bool first = true;
  11096. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11097. //if (first) {
  11098. // first = false;
  11099. //} else {
  11100. // for (int k = 0; k < dst->ne[1]; ++k) {
  11101. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11102. // for (int i = 0; i < 16; ++i) {
  11103. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11104. // }
  11105. // printf("\n");
  11106. // }
  11107. // printf("\n");
  11108. // }
  11109. // printf("\n");
  11110. // exit(0);
  11111. //}
  11112. }
  11113. // ggml_compute_forward_get_rows_back
  11114. static void ggml_compute_forward_get_rows_back_f32_f16(
  11115. const struct ggml_compute_params * params,
  11116. struct ggml_tensor * dst) {
  11117. const struct ggml_tensor * src0 = dst->src[0];
  11118. const struct ggml_tensor * src1 = dst->src[1];
  11119. GGML_ASSERT(params->ith == 0);
  11120. GGML_ASSERT(ggml_is_contiguous(dst));
  11121. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11122. if (params->type == GGML_TASK_TYPE_INIT) {
  11123. if (params->ith != 0) {
  11124. return;
  11125. }
  11126. memset(dst->data, 0, ggml_nbytes(dst));
  11127. }
  11128. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11129. return;
  11130. }
  11131. const int nc = src0->ne[0];
  11132. const int nr = ggml_nelements(src1);
  11133. GGML_ASSERT( dst->ne[0] == nc);
  11134. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11135. for (int i = 0; i < nr; ++i) {
  11136. const int r = ((int32_t *) src1->data)[i];
  11137. for (int j = 0; j < nc; ++j) {
  11138. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11139. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11140. }
  11141. }
  11142. }
  11143. static void ggml_compute_forward_get_rows_back_f32(
  11144. const struct ggml_compute_params * params,
  11145. struct ggml_tensor * dst) {
  11146. const struct ggml_tensor * src0 = dst->src[0];
  11147. const struct ggml_tensor * src1 = dst->src[1];
  11148. GGML_ASSERT(params->ith == 0);
  11149. GGML_ASSERT(ggml_is_contiguous(dst));
  11150. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11151. if (params->type == GGML_TASK_TYPE_INIT) {
  11152. if (params->ith != 0) {
  11153. return;
  11154. }
  11155. memset(dst->data, 0, ggml_nbytes(dst));
  11156. }
  11157. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11158. return;
  11159. }
  11160. const int nc = src0->ne[0];
  11161. const int nr = ggml_nelements(src1);
  11162. GGML_ASSERT( dst->ne[0] == nc);
  11163. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11164. for (int i = 0; i < nr; ++i) {
  11165. const int r = ((int32_t *) src1->data)[i];
  11166. ggml_vec_add_f32(nc,
  11167. (float *) ((char *) dst->data + r*dst->nb[1]),
  11168. (float *) ((char *) dst->data + r*dst->nb[1]),
  11169. (float *) ((char *) src0->data + i*src0->nb[1]));
  11170. }
  11171. }
  11172. static void ggml_compute_forward_get_rows_back(
  11173. const struct ggml_compute_params * params,
  11174. struct ggml_tensor * dst) {
  11175. const struct ggml_tensor * src0 = dst->src[0];
  11176. switch (src0->type) {
  11177. case GGML_TYPE_F16:
  11178. {
  11179. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11180. } break;
  11181. case GGML_TYPE_F32:
  11182. {
  11183. ggml_compute_forward_get_rows_back_f32(params, dst);
  11184. } break;
  11185. default:
  11186. {
  11187. GGML_ASSERT(false);
  11188. } break;
  11189. }
  11190. //static bool first = true;
  11191. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11192. //if (first) {
  11193. // first = false;
  11194. //} else {
  11195. // for (int k = 0; k < dst->ne[1]; ++k) {
  11196. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11197. // for (int i = 0; i < 16; ++i) {
  11198. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11199. // }
  11200. // printf("\n");
  11201. // }
  11202. // printf("\n");
  11203. // }
  11204. // printf("\n");
  11205. // exit(0);
  11206. //}
  11207. }
  11208. // ggml_compute_forward_diag
  11209. static void ggml_compute_forward_diag_f32(
  11210. const struct ggml_compute_params * params,
  11211. struct ggml_tensor * dst) {
  11212. const struct ggml_tensor * src0 = dst->src[0];
  11213. GGML_ASSERT(params->ith == 0);
  11214. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11215. return;
  11216. }
  11217. // TODO: handle transposed/permuted matrices
  11218. GGML_TENSOR_UNARY_OP_LOCALS
  11219. GGML_ASSERT(ne00 == ne0);
  11220. GGML_ASSERT(ne00 == ne1);
  11221. GGML_ASSERT(ne01 == 1);
  11222. GGML_ASSERT(ne02 == ne2);
  11223. GGML_ASSERT(ne03 == ne3);
  11224. GGML_ASSERT(nb00 == sizeof(float));
  11225. GGML_ASSERT(nb0 == sizeof(float));
  11226. for (int i3 = 0; i3 < ne3; i3++) {
  11227. for (int i2 = 0; i2 < ne2; i2++) {
  11228. for (int i1 = 0; i1 < ne1; i1++) {
  11229. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11230. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11231. for (int i0 = 0; i0 < i1; i0++) {
  11232. d[i0] = 0;
  11233. }
  11234. d[i1] = s[i1];
  11235. for (int i0 = i1+1; i0 < ne0; i0++) {
  11236. d[i0] = 0;
  11237. }
  11238. }
  11239. }
  11240. }
  11241. }
  11242. static void ggml_compute_forward_diag(
  11243. const struct ggml_compute_params * params,
  11244. struct ggml_tensor * dst) {
  11245. const struct ggml_tensor * src0 = dst->src[0];
  11246. switch (src0->type) {
  11247. case GGML_TYPE_F32:
  11248. {
  11249. ggml_compute_forward_diag_f32(params, dst);
  11250. } break;
  11251. default:
  11252. {
  11253. GGML_ASSERT(false);
  11254. } break;
  11255. }
  11256. }
  11257. // ggml_compute_forward_diag_mask_inf
  11258. static void ggml_compute_forward_diag_mask_f32(
  11259. const struct ggml_compute_params * params,
  11260. struct ggml_tensor * dst,
  11261. const float value) {
  11262. const struct ggml_tensor * src0 = dst->src[0];
  11263. const int ith = params->ith;
  11264. const int nth = params->nth;
  11265. const int n_past = ((int32_t *) dst->op_params)[0];
  11266. const bool inplace = src0->data == dst->data;
  11267. GGML_ASSERT(n_past >= 0);
  11268. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11269. if (ith != 0) {
  11270. return;
  11271. }
  11272. // memcpy needs to be synchronized across threads to avoid race conditions.
  11273. // => do it in INIT phase
  11274. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11275. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11276. memcpy(
  11277. ((char *) dst->data),
  11278. ((char *) src0->data),
  11279. ggml_nbytes(dst));
  11280. }
  11281. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11282. return;
  11283. }
  11284. // TODO: handle transposed/permuted matrices
  11285. const int n = ggml_nrows(src0);
  11286. const int nc = src0->ne[0];
  11287. const int nr = src0->ne[1];
  11288. const int nz = n/nr;
  11289. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11290. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11291. for (int k = 0; k < nz; k++) {
  11292. for (int j = ith; j < nr; j += nth) {
  11293. for (int i = n_past; i < nc; i++) {
  11294. if (i > n_past + j) {
  11295. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11296. }
  11297. }
  11298. }
  11299. }
  11300. }
  11301. static void ggml_compute_forward_diag_mask_inf(
  11302. const struct ggml_compute_params * params,
  11303. struct ggml_tensor * dst) {
  11304. const struct ggml_tensor * src0 = dst->src[0];
  11305. switch (src0->type) {
  11306. case GGML_TYPE_F32:
  11307. {
  11308. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11309. } break;
  11310. default:
  11311. {
  11312. GGML_ASSERT(false);
  11313. } break;
  11314. }
  11315. }
  11316. static void ggml_compute_forward_diag_mask_zero(
  11317. const struct ggml_compute_params * params,
  11318. struct ggml_tensor * dst) {
  11319. const struct ggml_tensor * src0 = dst->src[0];
  11320. switch (src0->type) {
  11321. case GGML_TYPE_F32:
  11322. {
  11323. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11324. } break;
  11325. default:
  11326. {
  11327. GGML_ASSERT(false);
  11328. } break;
  11329. }
  11330. }
  11331. // ggml_compute_forward_soft_max
  11332. static void ggml_compute_forward_soft_max_f32(
  11333. const struct ggml_compute_params * params,
  11334. struct ggml_tensor * dst) {
  11335. const struct ggml_tensor * src0 = dst->src[0];
  11336. const struct ggml_tensor * src1 = dst->src[1];
  11337. assert(ggml_is_contiguous(dst));
  11338. assert(ggml_are_same_shape(src0, dst));
  11339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11340. return;
  11341. }
  11342. float scale = 1.0f;
  11343. float max_bias = 0.0f;
  11344. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11345. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11346. // TODO: handle transposed/permuted matrices
  11347. const int ith = params->ith;
  11348. const int nth = params->nth;
  11349. GGML_TENSOR_UNARY_OP_LOCALS
  11350. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11351. // TODO: is this supposed to be ceil instead of floor?
  11352. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11353. const uint32_t n_head = ne02;
  11354. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11355. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11356. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11357. const int nc = src0->ne[0];
  11358. const int nr = ggml_nrows(src0);
  11359. // rows per thread
  11360. const int dr = (nr + nth - 1)/nth;
  11361. // row range for this thread
  11362. const int ir0 = dr*ith;
  11363. const int ir1 = MIN(ir0 + dr, nr);
  11364. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11365. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11366. for (int i1 = ir0; i1 < ir1; i1++) {
  11367. // ALiBi
  11368. const uint32_t h = (i1/ne01)%ne02; // head
  11369. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11370. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11371. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11372. // broadcast the mask across rows
  11373. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11374. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11375. ggml_vec_cpy_f32 (nc, wp, sp);
  11376. ggml_vec_scale_f32(nc, wp, scale);
  11377. if (mp_f32) {
  11378. if (use_f16) {
  11379. for (int i = 0; i < nc; ++i) {
  11380. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11381. }
  11382. } else {
  11383. for (int i = 0; i < nc; ++i) {
  11384. wp[i] += slope*mp_f32[i];
  11385. }
  11386. }
  11387. }
  11388. #ifndef NDEBUG
  11389. for (int i = 0; i < nc; ++i) {
  11390. //printf("p[%d] = %f\n", i, p[i]);
  11391. assert(!isnan(wp[i]));
  11392. }
  11393. #endif
  11394. float max = -INFINITY;
  11395. ggml_vec_max_f32(nc, &max, wp);
  11396. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11397. assert(sum > 0.0);
  11398. sum = 1.0/sum;
  11399. ggml_vec_scale_f32(nc, dp, sum);
  11400. #ifndef NDEBUG
  11401. for (int i = 0; i < nc; ++i) {
  11402. assert(!isnan(dp[i]));
  11403. assert(!isinf(dp[i]));
  11404. }
  11405. #endif
  11406. }
  11407. }
  11408. static void ggml_compute_forward_soft_max(
  11409. const struct ggml_compute_params * params,
  11410. struct ggml_tensor * dst) {
  11411. const struct ggml_tensor * src0 = dst->src[0];
  11412. switch (src0->type) {
  11413. case GGML_TYPE_F32:
  11414. {
  11415. ggml_compute_forward_soft_max_f32(params, dst);
  11416. } break;
  11417. default:
  11418. {
  11419. GGML_ASSERT(false);
  11420. } break;
  11421. }
  11422. }
  11423. // ggml_compute_forward_soft_max_back
  11424. static void ggml_compute_forward_soft_max_back_f32(
  11425. const struct ggml_compute_params * params,
  11426. struct ggml_tensor * dst) {
  11427. const struct ggml_tensor * src0 = dst->src[0];
  11428. const struct ggml_tensor * src1 = dst->src[1];
  11429. GGML_ASSERT(ggml_is_contiguous(src0));
  11430. GGML_ASSERT(ggml_is_contiguous(src1));
  11431. GGML_ASSERT(ggml_is_contiguous(dst));
  11432. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11433. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11434. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11435. return;
  11436. }
  11437. // TODO: handle transposed/permuted matrices
  11438. const int ith = params->ith;
  11439. const int nth = params->nth;
  11440. const int nc = src0->ne[0];
  11441. const int nr = ggml_nrows(src0);
  11442. // rows per thread
  11443. const int dr = (nr + nth - 1)/nth;
  11444. // row range for this thread
  11445. const int ir0 = dr*ith;
  11446. const int ir1 = MIN(ir0 + dr, nr);
  11447. for (int i1 = ir0; i1 < ir1; i1++) {
  11448. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11449. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11450. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11451. #ifndef NDEBUG
  11452. for (int i = 0; i < nc; ++i) {
  11453. //printf("p[%d] = %f\n", i, p[i]);
  11454. assert(!isnan(dy[i]));
  11455. assert(!isnan(y[i]));
  11456. }
  11457. #endif
  11458. // Jii = yi - yi*yi
  11459. // Jij = -yi*yj
  11460. // J = diag(y)-y.T*y
  11461. // dx = J * dy
  11462. // dxk = sum_i(Jki * dyi)
  11463. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11464. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11465. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11466. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11467. // dxk = -yk * dot(y, dy) + yk*dyk
  11468. // dxk = yk * (- dot(y, dy) + dyk)
  11469. // dxk = yk * (dyk - dot(y, dy))
  11470. //
  11471. // post-order:
  11472. // dot_y_dy := dot(y, dy)
  11473. // dx := dy
  11474. // dx := dx - dot_y_dy
  11475. // dx := dx * y
  11476. // linear runtime, no additional memory
  11477. float dot_y_dy = 0;
  11478. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11479. ggml_vec_cpy_f32 (nc, dx, dy);
  11480. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11481. ggml_vec_mul_f32 (nc, dx, dx, y);
  11482. #ifndef NDEBUG
  11483. for (int i = 0; i < nc; ++i) {
  11484. assert(!isnan(dx[i]));
  11485. assert(!isinf(dx[i]));
  11486. }
  11487. #endif
  11488. }
  11489. }
  11490. static void ggml_compute_forward_soft_max_back(
  11491. const struct ggml_compute_params * params,
  11492. struct ggml_tensor * dst) {
  11493. const struct ggml_tensor * src0 = dst->src[0];
  11494. switch (src0->type) {
  11495. case GGML_TYPE_F32:
  11496. {
  11497. ggml_compute_forward_soft_max_back_f32(params, dst);
  11498. } break;
  11499. default:
  11500. {
  11501. GGML_ASSERT(false);
  11502. } break;
  11503. }
  11504. }
  11505. // ggml_compute_forward_clamp
  11506. static void ggml_compute_forward_clamp_f32(
  11507. const struct ggml_compute_params * params,
  11508. struct ggml_tensor * dst) {
  11509. const struct ggml_tensor * src0 = dst->src[0];
  11510. assert(params->ith == 0);
  11511. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11512. return;
  11513. }
  11514. float min;
  11515. float max;
  11516. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11517. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11518. const int ith = params->ith;
  11519. const int nth = params->nth;
  11520. const int n = ggml_nrows(src0);
  11521. const int nc = src0->ne[0];
  11522. const size_t nb00 = src0->nb[0];
  11523. const size_t nb01 = src0->nb[1];
  11524. const size_t nb0 = dst->nb[0];
  11525. const size_t nb1 = dst->nb[1];
  11526. GGML_ASSERT( nb0 == sizeof(float));
  11527. GGML_ASSERT(nb00 == sizeof(float));
  11528. for (int j = ith; j < n; j += nth) {
  11529. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11530. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11531. for (int i = 0; i < nc; i++) {
  11532. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11533. }
  11534. }
  11535. }
  11536. static void ggml_compute_forward_clamp(
  11537. const struct ggml_compute_params * params,
  11538. struct ggml_tensor * dst) {
  11539. const struct ggml_tensor * src0 = dst->src[0];
  11540. switch (src0->type) {
  11541. case GGML_TYPE_F32:
  11542. {
  11543. ggml_compute_forward_clamp_f32(params, dst);
  11544. } break;
  11545. case GGML_TYPE_F16:
  11546. case GGML_TYPE_BF16:
  11547. case GGML_TYPE_Q4_0:
  11548. case GGML_TYPE_Q4_1:
  11549. case GGML_TYPE_Q5_0:
  11550. case GGML_TYPE_Q5_1:
  11551. case GGML_TYPE_Q8_0:
  11552. case GGML_TYPE_Q8_1:
  11553. case GGML_TYPE_Q2_K:
  11554. case GGML_TYPE_Q3_K:
  11555. case GGML_TYPE_Q4_K:
  11556. case GGML_TYPE_Q5_K:
  11557. case GGML_TYPE_Q6_K:
  11558. case GGML_TYPE_IQ2_XXS:
  11559. case GGML_TYPE_IQ2_XS:
  11560. case GGML_TYPE_IQ3_XXS:
  11561. case GGML_TYPE_IQ1_S:
  11562. case GGML_TYPE_IQ1_M:
  11563. case GGML_TYPE_IQ4_NL:
  11564. case GGML_TYPE_IQ4_XS:
  11565. case GGML_TYPE_IQ3_S:
  11566. case GGML_TYPE_IQ2_S:
  11567. case GGML_TYPE_Q8_K:
  11568. case GGML_TYPE_I8:
  11569. case GGML_TYPE_I16:
  11570. case GGML_TYPE_I32:
  11571. case GGML_TYPE_I64:
  11572. case GGML_TYPE_F64:
  11573. case GGML_TYPE_COUNT:
  11574. {
  11575. GGML_ASSERT(false);
  11576. } break;
  11577. }
  11578. }
  11579. // ggml_compute_forward_rope
  11580. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11581. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11582. return 1 - MIN(1, MAX(0, y));
  11583. }
  11584. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11585. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11586. static void rope_yarn(
  11587. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11588. float * cos_theta, float * sin_theta) {
  11589. // Get n-d rotational scaling corrected for extrapolation
  11590. float theta_interp = freq_scale * theta_extrap;
  11591. float theta = theta_interp;
  11592. if (ext_factor != 0.0f) {
  11593. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11594. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11595. // Get n-d magnitude scaling corrected for interpolation
  11596. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11597. }
  11598. *cos_theta = cosf(theta) * mscale;
  11599. *sin_theta = sinf(theta) * mscale;
  11600. }
  11601. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11602. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11603. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11604. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11605. }
  11606. static void ggml_rope_cache_init(
  11607. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11608. float * cache, float sin_sign, float theta_scale) {
  11609. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11610. float theta = theta_base;
  11611. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11612. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11613. rope_yarn(
  11614. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11615. );
  11616. cache[i0 + 1] *= sin_sign;
  11617. theta *= theta_scale;
  11618. }
  11619. }
  11620. GGML_CALL void ggml_rope_yarn_corr_dims(
  11621. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11622. ) {
  11623. // start and end correction dims
  11624. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11625. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11626. dims[0] = MAX(0, start);
  11627. dims[1] = MIN(n_dims - 1, end);
  11628. }
  11629. static void ggml_compute_forward_rope_f32(
  11630. const struct ggml_compute_params * params,
  11631. struct ggml_tensor * dst,
  11632. const bool forward) {
  11633. const struct ggml_tensor * src0 = dst->src[0];
  11634. const struct ggml_tensor * src1 = dst->src[1];
  11635. const struct ggml_tensor * src2 = dst->src[2];
  11636. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11637. return;
  11638. }
  11639. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11640. //const int n_past = ((int32_t *) dst->op_params)[0];
  11641. const int n_dims = ((int32_t *) dst->op_params)[1];
  11642. const int mode = ((int32_t *) dst->op_params)[2];
  11643. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11644. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11645. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11646. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11647. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11648. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11649. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11650. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11651. GGML_TENSOR_UNARY_OP_LOCALS
  11652. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11653. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11654. GGML_ASSERT(nb00 == sizeof(float));
  11655. const int ith = params->ith;
  11656. const int nth = params->nth;
  11657. const int nr = ggml_nrows(dst);
  11658. GGML_ASSERT(n_dims <= ne0);
  11659. GGML_ASSERT(n_dims % 2 == 0);
  11660. // rows per thread
  11661. const int dr = (nr + nth - 1)/nth;
  11662. // row range for this thread
  11663. const int ir0 = dr*ith;
  11664. const int ir1 = MIN(ir0 + dr, nr);
  11665. // row index used to determine which thread to use
  11666. int ir = 0;
  11667. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11668. float corr_dims[2];
  11669. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11670. const bool is_neox = mode & 2;
  11671. const float * freq_factors = NULL;
  11672. if (src2 != NULL) {
  11673. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11674. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11675. freq_factors = (const float *) src2->data;
  11676. }
  11677. // backward process uses inverse rotation by cos and sin.
  11678. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11679. // this essentially just switches the sign of sin.
  11680. const float sin_sign = forward ? 1.0f : -1.0f;
  11681. const int32_t * pos = (const int32_t *) src1->data;
  11682. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11683. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11684. const int64_t p = pos[i2];
  11685. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11686. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11687. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11688. if (ir++ < ir0) continue;
  11689. if (ir > ir1) break;
  11690. if (!is_neox) {
  11691. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11692. const float cos_theta = cache[i0 + 0];
  11693. const float sin_theta = cache[i0 + 1];
  11694. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11695. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11696. const float x0 = src[0];
  11697. const float x1 = src[1];
  11698. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11699. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11700. }
  11701. } else {
  11702. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11703. const int64_t ic = i0/2;
  11704. const float cos_theta = cache[i0 + 0];
  11705. const float sin_theta = cache[i0 + 1];
  11706. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11707. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11708. const float x0 = src[0];
  11709. const float x1 = src[n_dims/2];
  11710. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11711. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11712. }
  11713. }
  11714. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11715. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11716. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11717. dst_data[0] = src[0];
  11718. dst_data[1] = src[1];
  11719. }
  11720. }
  11721. }
  11722. }
  11723. }
  11724. // TODO: deduplicate f16/f32 code
  11725. static void ggml_compute_forward_rope_f16(
  11726. const struct ggml_compute_params * params,
  11727. struct ggml_tensor * dst,
  11728. const bool forward) {
  11729. const struct ggml_tensor * src0 = dst->src[0];
  11730. const struct ggml_tensor * src1 = dst->src[1];
  11731. const struct ggml_tensor * src2 = dst->src[2];
  11732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11733. return;
  11734. }
  11735. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11736. //const int n_past = ((int32_t *) dst->op_params)[0];
  11737. const int n_dims = ((int32_t *) dst->op_params)[1];
  11738. const int mode = ((int32_t *) dst->op_params)[2];
  11739. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11740. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11741. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11742. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11743. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11744. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11745. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11746. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11747. GGML_TENSOR_UNARY_OP_LOCALS
  11748. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11749. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11750. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11751. const int ith = params->ith;
  11752. const int nth = params->nth;
  11753. const int nr = ggml_nrows(dst);
  11754. GGML_ASSERT(n_dims <= ne0);
  11755. GGML_ASSERT(n_dims % 2 == 0);
  11756. // rows per thread
  11757. const int dr = (nr + nth - 1)/nth;
  11758. // row range for this thread
  11759. const int ir0 = dr*ith;
  11760. const int ir1 = MIN(ir0 + dr, nr);
  11761. // row index used to determine which thread to use
  11762. int ir = 0;
  11763. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11764. float corr_dims[2];
  11765. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11766. const bool is_neox = mode & 2;
  11767. const float * freq_factors = NULL;
  11768. if (src2 != NULL) {
  11769. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11770. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11771. freq_factors = (const float *) src2->data;
  11772. }
  11773. // backward process uses inverse rotation by cos and sin.
  11774. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11775. // this essentially just switches the sign of sin.
  11776. const float sin_sign = forward ? 1.0f : -1.0f;
  11777. const int32_t * pos = (const int32_t *) src1->data;
  11778. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11779. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11780. const int64_t p = pos[i2];
  11781. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11782. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11783. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11784. if (ir++ < ir0) continue;
  11785. if (ir > ir1) break;
  11786. if (!is_neox) {
  11787. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11788. const float cos_theta = cache[i0 + 0];
  11789. const float sin_theta = cache[i0 + 1];
  11790. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11791. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11792. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11793. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11794. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11795. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11796. }
  11797. } else {
  11798. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11799. const int64_t ic = i0/2;
  11800. const float cos_theta = cache[i0 + 0];
  11801. const float sin_theta = cache[i0 + 1];
  11802. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11803. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11804. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11805. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11806. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11807. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11808. }
  11809. }
  11810. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11811. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11812. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11813. dst_data[0] = src[0];
  11814. dst_data[1] = src[1];
  11815. }
  11816. }
  11817. }
  11818. }
  11819. }
  11820. static void ggml_compute_forward_rope(
  11821. const struct ggml_compute_params * params,
  11822. struct ggml_tensor * dst) {
  11823. const struct ggml_tensor * src0 = dst->src[0];
  11824. switch (src0->type) {
  11825. case GGML_TYPE_F16:
  11826. {
  11827. ggml_compute_forward_rope_f16(params, dst, true);
  11828. } break;
  11829. case GGML_TYPE_F32:
  11830. {
  11831. ggml_compute_forward_rope_f32(params, dst, true);
  11832. } break;
  11833. default:
  11834. {
  11835. GGML_ASSERT(false);
  11836. } break;
  11837. }
  11838. }
  11839. // ggml_compute_forward_rope_back
  11840. static void ggml_compute_forward_rope_back(
  11841. const struct ggml_compute_params * params,
  11842. struct ggml_tensor * dst) {
  11843. const struct ggml_tensor * src0 = dst->src[0];
  11844. switch (src0->type) {
  11845. case GGML_TYPE_F16:
  11846. {
  11847. ggml_compute_forward_rope_f16(params, dst, false);
  11848. } break;
  11849. case GGML_TYPE_F32:
  11850. {
  11851. ggml_compute_forward_rope_f32(params, dst, false);
  11852. } break;
  11853. default:
  11854. {
  11855. GGML_ASSERT(false);
  11856. } break;
  11857. }
  11858. }
  11859. // ggml_compute_forward_conv_transpose_1d
  11860. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11861. const struct ggml_compute_params * params,
  11862. struct ggml_tensor * dst) {
  11863. const struct ggml_tensor * src0 = dst->src[0];
  11864. const struct ggml_tensor * src1 = dst->src[1];
  11865. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11866. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11867. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11868. int64_t t0 = ggml_perf_time_us();
  11869. UNUSED(t0);
  11870. GGML_TENSOR_BINARY_OP_LOCALS
  11871. const int ith = params->ith;
  11872. const int nth = params->nth;
  11873. const int nk = ne00*ne01*ne02;
  11874. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11875. GGML_ASSERT(nb10 == sizeof(float));
  11876. if (params->type == GGML_TASK_TYPE_INIT) {
  11877. if (ith != 0) {
  11878. return;
  11879. }
  11880. memset(params->wdata, 0, params->wsize);
  11881. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11882. {
  11883. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11884. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11885. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11886. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11887. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11888. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11889. dst_data[i00*ne02 + i02] = src[i00];
  11890. }
  11891. }
  11892. }
  11893. }
  11894. // permute source data (src1) from (L x Cin) to (Cin x L)
  11895. {
  11896. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11897. ggml_fp16_t * dst_data = wdata;
  11898. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11899. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11900. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11901. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11902. }
  11903. }
  11904. }
  11905. // need to zero dst since we are accumulating into it
  11906. memset(dst->data, 0, ggml_nbytes(dst));
  11907. return;
  11908. }
  11909. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11910. return;
  11911. }
  11912. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11913. // total rows in dst
  11914. const int nr = ne1;
  11915. // rows per thread
  11916. const int dr = (nr + nth - 1)/nth;
  11917. // row range for this thread
  11918. const int ir0 = dr*ith;
  11919. const int ir1 = MIN(ir0 + dr, nr);
  11920. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11921. ggml_fp16_t * const wdata_src = wdata + nk;
  11922. for (int i1 = ir0; i1 < ir1; i1++) {
  11923. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11924. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11925. for (int i10 = 0; i10 < ne10; i10++) {
  11926. const int i1n = i10*ne11;
  11927. for (int i00 = 0; i00 < ne00; i00++) {
  11928. float v = 0;
  11929. ggml_vec_dot_f16(ne02, &v, 0,
  11930. (ggml_fp16_t *) wdata_src + i1n, 0,
  11931. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11932. dst_data[i10*s0 + i00] += v;
  11933. }
  11934. }
  11935. }
  11936. }
  11937. static void ggml_compute_forward_conv_transpose_1d_f32(
  11938. const struct ggml_compute_params * params,
  11939. struct ggml_tensor * dst) {
  11940. const struct ggml_tensor * src0 = dst->src[0];
  11941. const struct ggml_tensor * src1 = dst->src[1];
  11942. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11943. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11944. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11945. int64_t t0 = ggml_perf_time_us();
  11946. UNUSED(t0);
  11947. GGML_TENSOR_BINARY_OP_LOCALS
  11948. const int ith = params->ith;
  11949. const int nth = params->nth;
  11950. const int nk = ne00*ne01*ne02;
  11951. GGML_ASSERT(nb00 == sizeof(float));
  11952. GGML_ASSERT(nb10 == sizeof(float));
  11953. if (params->type == GGML_TASK_TYPE_INIT) {
  11954. if (ith != 0) {
  11955. return;
  11956. }
  11957. memset(params->wdata, 0, params->wsize);
  11958. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11959. {
  11960. float * const wdata = (float *) params->wdata + 0;
  11961. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11962. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11963. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11964. float * dst_data = wdata + i01*ne00*ne02;
  11965. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11966. dst_data[i00*ne02 + i02] = src[i00];
  11967. }
  11968. }
  11969. }
  11970. }
  11971. // prepare source data (src1)
  11972. {
  11973. float * const wdata = (float *) params->wdata + nk;
  11974. float * dst_data = wdata;
  11975. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11976. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11977. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11978. dst_data[i10*ne11 + i11] = src[i10];
  11979. }
  11980. }
  11981. }
  11982. // need to zero dst since we are accumulating into it
  11983. memset(dst->data, 0, ggml_nbytes(dst));
  11984. return;
  11985. }
  11986. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11987. return;
  11988. }
  11989. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11990. // total rows in dst
  11991. const int nr = ne1;
  11992. // rows per thread
  11993. const int dr = (nr + nth - 1)/nth;
  11994. // row range for this thread
  11995. const int ir0 = dr*ith;
  11996. const int ir1 = MIN(ir0 + dr, nr);
  11997. float * const wdata = (float *) params->wdata + 0;
  11998. float * const wdata_src = wdata + nk;
  11999. for (int i1 = ir0; i1 < ir1; i1++) {
  12000. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12001. float * wdata_kernel = wdata + i1*ne02*ne00;
  12002. for (int i10 = 0; i10 < ne10; i10++) {
  12003. const int i1n = i10*ne11;
  12004. for (int i00 = 0; i00 < ne00; i00++) {
  12005. float v = 0;
  12006. ggml_vec_dot_f32(ne02, &v, 0,
  12007. wdata_src + i1n, 0,
  12008. wdata_kernel + i00*ne02, 0, 1);
  12009. dst_data[i10*s0 + i00] += v;
  12010. }
  12011. }
  12012. }
  12013. }
  12014. static void ggml_compute_forward_conv_transpose_1d(
  12015. const struct ggml_compute_params * params,
  12016. struct ggml_tensor * dst) {
  12017. const struct ggml_tensor * src0 = dst->src[0];
  12018. switch (src0->type) {
  12019. case GGML_TYPE_F16:
  12020. {
  12021. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12022. } break;
  12023. case GGML_TYPE_F32:
  12024. {
  12025. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12026. } break;
  12027. default:
  12028. {
  12029. GGML_ASSERT(false);
  12030. } break;
  12031. }
  12032. }
  12033. // src0: kernel [OC, IC, KH, KW]
  12034. // src1: image [N, IC, IH, IW]
  12035. // dst: result [N, OH, OW, IC*KH*KW]
  12036. static void ggml_compute_forward_im2col_f32(
  12037. const struct ggml_compute_params * params,
  12038. struct ggml_tensor * dst) {
  12039. const struct ggml_tensor * src0 = dst->src[0];
  12040. const struct ggml_tensor * src1 = dst->src[1];
  12041. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12042. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12043. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12044. int64_t t0 = ggml_perf_time_us();
  12045. UNUSED(t0);
  12046. GGML_TENSOR_BINARY_OP_LOCALS;
  12047. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12048. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12049. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12050. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12051. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12052. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12053. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12054. const int ith = params->ith;
  12055. const int nth = params->nth;
  12056. const int64_t N = is_2D ? ne13 : ne12;
  12057. const int64_t IC = is_2D ? ne12 : ne11;
  12058. const int64_t IH = is_2D ? ne11 : 1;
  12059. const int64_t IW = ne10;
  12060. const int64_t KH = is_2D ? ne01 : 1;
  12061. const int64_t KW = ne00;
  12062. const int64_t OH = is_2D ? ne2 : 1;
  12063. const int64_t OW = ne1;
  12064. int ofs0 = is_2D ? nb13 : nb12;
  12065. int ofs1 = is_2D ? nb12 : nb11;
  12066. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12067. GGML_ASSERT(nb10 == sizeof(float));
  12068. if (params->type == GGML_TASK_TYPE_INIT) {
  12069. return;
  12070. }
  12071. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12072. return;
  12073. }
  12074. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12075. {
  12076. float * const wdata = (float *) dst->data;
  12077. for (int64_t in = 0; in < N; in++) {
  12078. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12079. for (int64_t iow = 0; iow < OW; iow++) {
  12080. for (int64_t iic = ith; iic < IC; iic += nth) {
  12081. // micro kernel
  12082. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12083. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12084. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12085. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12086. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12087. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12088. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12089. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12090. } else {
  12091. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12092. }
  12093. }
  12094. }
  12095. }
  12096. }
  12097. }
  12098. }
  12099. }
  12100. }
  12101. // src0: kernel [OC, IC, KH, KW]
  12102. // src1: image [N, IC, IH, IW]
  12103. // dst: result [N, OH, OW, IC*KH*KW]
  12104. static void ggml_compute_forward_im2col_f16(
  12105. const struct ggml_compute_params * params,
  12106. struct ggml_tensor * dst) {
  12107. const struct ggml_tensor * src0 = dst->src[0];
  12108. const struct ggml_tensor * src1 = dst->src[1];
  12109. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12110. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12111. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12112. int64_t t0 = ggml_perf_time_us();
  12113. UNUSED(t0);
  12114. GGML_TENSOR_BINARY_OP_LOCALS;
  12115. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12116. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12117. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12118. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12119. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12120. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12121. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12122. const int ith = params->ith;
  12123. const int nth = params->nth;
  12124. const int64_t N = is_2D ? ne13 : ne12;
  12125. const int64_t IC = is_2D ? ne12 : ne11;
  12126. const int64_t IH = is_2D ? ne11 : 1;
  12127. const int64_t IW = ne10;
  12128. const int64_t KH = is_2D ? ne01 : 1;
  12129. const int64_t KW = ne00;
  12130. const int64_t OH = is_2D ? ne2 : 1;
  12131. const int64_t OW = ne1;
  12132. int ofs0 = is_2D ? nb13 : nb12;
  12133. int ofs1 = is_2D ? nb12 : nb11;
  12134. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12135. GGML_ASSERT(nb10 == sizeof(float));
  12136. if (params->type == GGML_TASK_TYPE_INIT) {
  12137. return;
  12138. }
  12139. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12140. return;
  12141. }
  12142. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12143. {
  12144. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12145. for (int64_t in = 0; in < N; in++) {
  12146. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12147. for (int64_t iow = 0; iow < OW; iow++) {
  12148. for (int64_t iic = ith; iic < IC; iic += nth) {
  12149. // micro kernel
  12150. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12151. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12152. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12153. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12154. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12155. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12156. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12157. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12158. } else {
  12159. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12160. }
  12161. }
  12162. }
  12163. }
  12164. }
  12165. }
  12166. }
  12167. }
  12168. }
  12169. static void ggml_compute_forward_im2col(
  12170. const struct ggml_compute_params * params,
  12171. struct ggml_tensor * dst) {
  12172. switch (dst->type) {
  12173. case GGML_TYPE_F16:
  12174. {
  12175. ggml_compute_forward_im2col_f16(params, dst);
  12176. } break;
  12177. case GGML_TYPE_F32:
  12178. {
  12179. ggml_compute_forward_im2col_f32(params, dst);
  12180. } break;
  12181. default:
  12182. {
  12183. GGML_ASSERT(false);
  12184. } break;
  12185. }
  12186. }
  12187. // ggml_compute_forward_conv_transpose_2d
  12188. static void ggml_compute_forward_conv_transpose_2d(
  12189. const struct ggml_compute_params * params,
  12190. struct ggml_tensor * dst) {
  12191. const struct ggml_tensor * src0 = dst->src[0];
  12192. const struct ggml_tensor * src1 = dst->src[1];
  12193. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12194. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12195. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12196. int64_t t0 = ggml_perf_time_us();
  12197. UNUSED(t0);
  12198. GGML_TENSOR_BINARY_OP_LOCALS
  12199. const int ith = params->ith;
  12200. const int nth = params->nth;
  12201. const int nk = ne00*ne01*ne02*ne03;
  12202. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12203. GGML_ASSERT(nb10 == sizeof(float));
  12204. if (params->type == GGML_TASK_TYPE_INIT) {
  12205. if (ith != 0) {
  12206. return;
  12207. }
  12208. memset(params->wdata, 0, params->wsize);
  12209. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12210. {
  12211. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12212. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12213. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12214. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12215. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12216. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12217. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12218. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12219. }
  12220. }
  12221. }
  12222. }
  12223. }
  12224. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12225. {
  12226. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12227. for (int i12 = 0; i12 < ne12; i12++) {
  12228. for (int i11 = 0; i11 < ne11; i11++) {
  12229. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12230. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12231. for (int i10 = 0; i10 < ne10; i10++) {
  12232. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12233. }
  12234. }
  12235. }
  12236. }
  12237. memset(dst->data, 0, ggml_nbytes(dst));
  12238. return;
  12239. }
  12240. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12241. return;
  12242. }
  12243. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12244. // total patches in dst
  12245. const int np = ne2;
  12246. // patches per thread
  12247. const int dp = (np + nth - 1)/nth;
  12248. // patch range for this thread
  12249. const int ip0 = dp*ith;
  12250. const int ip1 = MIN(ip0 + dp, np);
  12251. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12252. ggml_fp16_t * const wdata_src = wdata + nk;
  12253. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12254. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12255. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12256. for (int i11 = 0; i11 < ne11; i11++) {
  12257. for (int i10 = 0; i10 < ne10; i10++) {
  12258. const int i1n = i11*ne10*ne12 + i10*ne12;
  12259. for (int i01 = 0; i01 < ne01; i01++) {
  12260. for (int i00 = 0; i00 < ne00; i00++) {
  12261. float v = 0;
  12262. ggml_vec_dot_f16(ne03, &v, 0,
  12263. wdata_src + i1n, 0,
  12264. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12265. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12266. }
  12267. }
  12268. }
  12269. }
  12270. }
  12271. }
  12272. // ggml_compute_forward_pool_1d_sk_p0
  12273. static void ggml_compute_forward_pool_1d_sk_p0(
  12274. const struct ggml_compute_params * params,
  12275. const enum ggml_op_pool op,
  12276. const int k,
  12277. struct ggml_tensor * dst) {
  12278. const struct ggml_tensor * src = dst->src[0];
  12279. assert(src->type == GGML_TYPE_F32);
  12280. assert(params->ith == 0);
  12281. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12282. return;
  12283. }
  12284. const char * cdata = (const char *)src->data;
  12285. const char * const data_end = cdata + ggml_nbytes(src);
  12286. float * drow = (float *)dst->data;
  12287. const int64_t rs = dst->ne[0];
  12288. while (cdata < data_end) {
  12289. const float * const srow = (const float *)cdata;
  12290. int j = 0;
  12291. for (int64_t i = 0; i < rs; ++i) {
  12292. switch (op) {
  12293. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12294. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12295. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12296. }
  12297. for (int ki = 0; ki < k; ++ki) {
  12298. switch (op) {
  12299. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12300. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12301. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12302. }
  12303. ++j;
  12304. }
  12305. switch (op) {
  12306. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12307. case GGML_OP_POOL_MAX: break;
  12308. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12309. }
  12310. }
  12311. cdata += src->nb[1];
  12312. drow += rs;
  12313. }
  12314. }
  12315. // ggml_compute_forward_pool_1d
  12316. static void ggml_compute_forward_pool_1d(
  12317. const struct ggml_compute_params * params,
  12318. struct ggml_tensor * dst) {
  12319. const int32_t * opts = (const int32_t *)dst->op_params;
  12320. enum ggml_op_pool op = opts[0];
  12321. const int k0 = opts[1];
  12322. const int s0 = opts[2];
  12323. const int p0 = opts[3];
  12324. GGML_ASSERT(p0 == 0); // padding not supported
  12325. GGML_ASSERT(k0 == s0); // only s = k supported
  12326. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12327. }
  12328. // ggml_compute_forward_pool_2d
  12329. static void ggml_compute_forward_pool_2d(
  12330. const struct ggml_compute_params * params,
  12331. struct ggml_tensor * dst) {
  12332. const struct ggml_tensor * src = dst->src[0];
  12333. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12334. GGML_ASSERT(params->ith == 0);
  12335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12336. return;
  12337. }
  12338. const int32_t * opts = (const int32_t *)dst->op_params;
  12339. enum ggml_op_pool op = opts[0];
  12340. const int k0 = opts[1];
  12341. const int k1 = opts[2];
  12342. const int s0 = opts[3];
  12343. const int s1 = opts[4];
  12344. const int p0 = opts[5];
  12345. const int p1 = opts[6];
  12346. const char * cdata = (const char*)src->data;
  12347. const char * const data_end = cdata + ggml_nbytes(src);
  12348. const int64_t px = dst->ne[0];
  12349. const int64_t py = dst->ne[1];
  12350. const int64_t pa = px * py;
  12351. float * dplane = (float *)dst->data;
  12352. const int ka = k0 * k1;
  12353. const int offset0 = -p0;
  12354. const int offset1 = -p1;
  12355. while (cdata < data_end) {
  12356. for (int oy = 0; oy < py; ++oy) {
  12357. float * const drow = dplane + oy * px;
  12358. for (int ox = 0; ox < px; ++ox) {
  12359. float * const out = drow + ox;
  12360. switch (op) {
  12361. case GGML_OP_POOL_AVG: *out = 0; break;
  12362. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12363. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12364. }
  12365. const int ix = offset0 + ox * s0;
  12366. const int iy = offset1 + oy * s1;
  12367. for (int ky = 0; ky < k1; ++ky) {
  12368. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12369. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12370. for (int kx = 0; kx < k0; ++kx) {
  12371. int j = ix + kx;
  12372. if (j < 0 || j >= src->ne[0]) continue;
  12373. switch (op) {
  12374. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12375. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12376. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12377. }
  12378. }
  12379. }
  12380. switch (op) {
  12381. case GGML_OP_POOL_AVG: *out /= ka; break;
  12382. case GGML_OP_POOL_MAX: break;
  12383. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12384. }
  12385. }
  12386. }
  12387. cdata += src->nb[2];
  12388. dplane += pa;
  12389. }
  12390. }
  12391. // ggml_compute_forward_upscale
  12392. static void ggml_compute_forward_upscale_f32(
  12393. const struct ggml_compute_params * params,
  12394. struct ggml_tensor * dst) {
  12395. const struct ggml_tensor * src0 = dst->src[0];
  12396. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12397. return;
  12398. }
  12399. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12400. const int ith = params->ith;
  12401. const int nth = params->nth;
  12402. GGML_TENSOR_UNARY_OP_LOCALS
  12403. const float sf0 = (float)ne0/src0->ne[0];
  12404. const float sf1 = (float)ne1/src0->ne[1];
  12405. const float sf2 = (float)ne2/src0->ne[2];
  12406. const float sf3 = (float)ne3/src0->ne[3];
  12407. // TODO: optimize
  12408. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12409. const int64_t i03 = i3 / sf3;
  12410. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12411. const int64_t i02 = i2 / sf2;
  12412. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12413. const int64_t i01 = i1 / sf1;
  12414. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12415. const int64_t i00 = i0 / sf0;
  12416. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12417. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12418. *y = *x;
  12419. }
  12420. }
  12421. }
  12422. }
  12423. }
  12424. static void ggml_compute_forward_upscale(
  12425. const struct ggml_compute_params * params,
  12426. struct ggml_tensor * dst) {
  12427. const struct ggml_tensor * src0 = dst->src[0];
  12428. switch (src0->type) {
  12429. case GGML_TYPE_F32:
  12430. {
  12431. ggml_compute_forward_upscale_f32(params, dst);
  12432. } break;
  12433. default:
  12434. {
  12435. GGML_ASSERT(false);
  12436. } break;
  12437. }
  12438. }
  12439. // ggml_compute_forward_pad
  12440. static void ggml_compute_forward_pad_f32(
  12441. const struct ggml_compute_params * params,
  12442. struct ggml_tensor * dst) {
  12443. const struct ggml_tensor * src0 = dst->src[0];
  12444. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12445. return;
  12446. }
  12447. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12448. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12449. const int ith = params->ith;
  12450. const int nth = params->nth;
  12451. GGML_TENSOR_UNARY_OP_LOCALS
  12452. float * dst_ptr = (float *) dst->data;
  12453. // TODO: optimize
  12454. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12455. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12456. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12457. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12458. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12459. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12460. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12461. dst_ptr[dst_idx] = *src_ptr;
  12462. } else {
  12463. dst_ptr[dst_idx] = 0;
  12464. }
  12465. }
  12466. }
  12467. }
  12468. }
  12469. }
  12470. static void ggml_compute_forward_pad(
  12471. const struct ggml_compute_params * params,
  12472. struct ggml_tensor * dst) {
  12473. const struct ggml_tensor * src0 = dst->src[0];
  12474. switch (src0->type) {
  12475. case GGML_TYPE_F32:
  12476. {
  12477. ggml_compute_forward_pad_f32(params, dst);
  12478. } break;
  12479. default:
  12480. {
  12481. GGML_ASSERT(false);
  12482. } break;
  12483. }
  12484. }
  12485. // ggml_compute_forward_arange
  12486. static void ggml_compute_forward_arange_f32(
  12487. const struct ggml_compute_params * params,
  12488. struct ggml_tensor * dst) {
  12489. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12490. return;
  12491. }
  12492. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12493. const int ith = params->ith;
  12494. const int nth = params->nth;
  12495. const float start = ggml_get_op_params_f32(dst, 0);
  12496. const float stop = ggml_get_op_params_f32(dst, 1);
  12497. const float step = ggml_get_op_params_f32(dst, 2);
  12498. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12499. GGML_ASSERT(ggml_nelements(dst) == steps);
  12500. for (int64_t i = ith; i < steps; i+= nth) {
  12501. float value = start + step * i;
  12502. ((float *)dst->data)[i] = value;
  12503. }
  12504. }
  12505. static void ggml_compute_forward_arange(
  12506. const struct ggml_compute_params * params,
  12507. struct ggml_tensor * dst) {
  12508. switch (dst->type) {
  12509. case GGML_TYPE_F32:
  12510. {
  12511. ggml_compute_forward_arange_f32(params, dst);
  12512. } break;
  12513. default:
  12514. {
  12515. GGML_ASSERT(false);
  12516. } break;
  12517. }
  12518. }
  12519. static void ggml_compute_forward_timestep_embedding_f32(
  12520. const struct ggml_compute_params * params,
  12521. struct ggml_tensor * dst) {
  12522. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12523. return;
  12524. }
  12525. const struct ggml_tensor * src0 = dst->src[0];
  12526. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12527. const int ith = params->ith;
  12528. const int nth = params->nth;
  12529. GGML_TENSOR_UNARY_OP_LOCALS
  12530. const int dim = ggml_get_op_params_i32(dst, 0);
  12531. const int max_period = ggml_get_op_params_i32(dst, 1);
  12532. int half = dim / 2;
  12533. for (int64_t i = 0; i < ne00; i++) {
  12534. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12535. for (int64_t j = ith; j < half; j += nth) {
  12536. float timestep = ((float *)src0->data)[i];
  12537. float freq = (float)expf(-logf(max_period) * j / half);
  12538. float arg = timestep * freq;
  12539. embed_data[j] = cosf(arg);
  12540. embed_data[j + half] = sinf(arg);
  12541. }
  12542. if (dim % 2 != 0 && ith == 0) {
  12543. embed_data[dim] = 0.f;
  12544. }
  12545. }
  12546. }
  12547. static void ggml_compute_forward_timestep_embedding(
  12548. const struct ggml_compute_params * params,
  12549. struct ggml_tensor * dst) {
  12550. const struct ggml_tensor * src0 = dst->src[0];
  12551. switch (src0->type) {
  12552. case GGML_TYPE_F32:
  12553. {
  12554. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12555. } break;
  12556. default:
  12557. {
  12558. GGML_ASSERT(false);
  12559. } break;
  12560. }
  12561. }
  12562. // ggml_compute_forward_argsort
  12563. static void ggml_compute_forward_argsort_f32(
  12564. const struct ggml_compute_params * params,
  12565. struct ggml_tensor * dst) {
  12566. const struct ggml_tensor * src0 = dst->src[0];
  12567. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12568. return;
  12569. }
  12570. GGML_TENSOR_UNARY_OP_LOCALS
  12571. GGML_ASSERT(nb0 == sizeof(float));
  12572. const int ith = params->ith;
  12573. const int nth = params->nth;
  12574. const int64_t nr = ggml_nrows(src0);
  12575. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12576. for (int64_t i = ith; i < nr; i += nth) {
  12577. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12578. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12579. for (int64_t j = 0; j < ne0; j++) {
  12580. dst_data[j] = j;
  12581. }
  12582. // C doesn't have a functional sort, so we do a bubble sort instead
  12583. for (int64_t j = 0; j < ne0; j++) {
  12584. for (int64_t k = j + 1; k < ne0; k++) {
  12585. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12586. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12587. int32_t tmp = dst_data[j];
  12588. dst_data[j] = dst_data[k];
  12589. dst_data[k] = tmp;
  12590. }
  12591. }
  12592. }
  12593. }
  12594. }
  12595. static void ggml_compute_forward_argsort(
  12596. const struct ggml_compute_params * params,
  12597. struct ggml_tensor * dst) {
  12598. const struct ggml_tensor * src0 = dst->src[0];
  12599. switch (src0->type) {
  12600. case GGML_TYPE_F32:
  12601. {
  12602. ggml_compute_forward_argsort_f32(params, dst);
  12603. } break;
  12604. default:
  12605. {
  12606. GGML_ASSERT(false);
  12607. } break;
  12608. }
  12609. }
  12610. // ggml_compute_forward_flash_attn_ext
  12611. static void ggml_compute_forward_flash_attn_ext_f16(
  12612. const struct ggml_compute_params * params,
  12613. const struct ggml_tensor * q,
  12614. const struct ggml_tensor * k,
  12615. const struct ggml_tensor * v,
  12616. const struct ggml_tensor * mask,
  12617. struct ggml_tensor * dst) {
  12618. int64_t t0 = ggml_perf_time_us();
  12619. UNUSED(t0);
  12620. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12621. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12622. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12623. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12624. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12625. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12626. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12627. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12628. const int ith = params->ith;
  12629. const int nth = params->nth;
  12630. const int64_t D = neq0;
  12631. const int64_t N = neq1;
  12632. GGML_ASSERT(ne0 == D);
  12633. GGML_ASSERT(ne2 == N);
  12634. // input tensor rows must be contiguous
  12635. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12636. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12637. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12638. GGML_ASSERT(neq0 == D);
  12639. GGML_ASSERT(nek0 == D);
  12640. GGML_ASSERT(nev0 == D);
  12641. GGML_ASSERT(neq1 == N);
  12642. GGML_ASSERT(nev0 == D);
  12643. // dst cannot be transposed or permuted
  12644. GGML_ASSERT(nb0 == sizeof(float));
  12645. GGML_ASSERT(nb0 <= nb1);
  12646. GGML_ASSERT(nb1 <= nb2);
  12647. GGML_ASSERT(nb2 <= nb3);
  12648. // broadcast factors
  12649. const int64_t rk2 = neq2/nek2;
  12650. const int64_t rk3 = neq3/nek3;
  12651. const int64_t rv2 = neq2/nev2;
  12652. const int64_t rv3 = neq3/nev3;
  12653. if (params->type == GGML_TASK_TYPE_INIT) {
  12654. return;
  12655. }
  12656. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12657. return;
  12658. }
  12659. // parallelize by q rows using ggml_vec_dot_f32
  12660. // total rows in q
  12661. const int nr = neq1*neq2*neq3;
  12662. // rows per thread
  12663. const int dr = (nr + nth - 1)/nth;
  12664. // row range for this thread
  12665. const int ir0 = dr*ith;
  12666. const int ir1 = MIN(ir0 + dr, nr);
  12667. float scale = 1.0f;
  12668. float max_bias = 0.0f;
  12669. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12670. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12671. const uint32_t n_head = neq2;
  12672. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12673. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12674. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12675. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12676. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12677. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12678. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12679. // loop over n_batch and n_head
  12680. for (int ir = ir0; ir < ir1; ++ir) {
  12681. // q indices
  12682. const int iq3 = ir/(neq2*neq1);
  12683. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12684. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12685. const uint32_t h = iq2; // head index
  12686. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12687. float S = 0.0f; // sum
  12688. float M = -INFINITY; // maximum KQ value
  12689. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12690. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12691. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12692. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12693. if (v->type == GGML_TYPE_F16) {
  12694. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12695. } else {
  12696. memset(VKQ32, 0, D*sizeof(float));
  12697. }
  12698. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12699. // k indices
  12700. const int ik3 = iq3 / rk3;
  12701. const int ik2 = iq2 / rk2;
  12702. // v indices
  12703. const int iv3 = iq3 / rv3;
  12704. const int iv2 = iq2 / rv2;
  12705. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12706. q_to_vec_dot(pq, Q_q, D);
  12707. // online softmax / attention
  12708. // loop over n_kv and n_head_kv
  12709. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12710. for (int64_t ic = 0; ic < nek1; ++ic) {
  12711. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12712. if (mv == -INFINITY) {
  12713. continue;
  12714. }
  12715. float s; // KQ value
  12716. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12717. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12718. s = s*scale + mv; // scale KQ value and apply mask
  12719. const float Mold = M;
  12720. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12721. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12722. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12723. if (v->type== GGML_TYPE_F16) {
  12724. if (s > M) {
  12725. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12726. M = s;
  12727. ms = expf(Mold - M);
  12728. // V = V*expf(Mold - M)
  12729. ggml_vec_scale_f16(D, VKQ16, ms);
  12730. } else {
  12731. // no new maximum, ms == 1.0f, vs != 1.0f
  12732. vs = expf(s - M);
  12733. }
  12734. // V += v*expf(s - M)
  12735. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12736. } else {
  12737. if (s > M) {
  12738. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12739. M = s;
  12740. ms = expf(Mold - M);
  12741. // V = V*expf(Mold - M)
  12742. ggml_vec_scale_f32(D, VKQ32, ms);
  12743. } else {
  12744. // no new maximum, ms == 1.0f, vs != 1.0f
  12745. vs = expf(s - M);
  12746. }
  12747. v_to_float(v_data, V32, D);
  12748. // V += v*expf(s - M)
  12749. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12750. }
  12751. S = S*ms + vs; // scale and increment sum with partial sum
  12752. }
  12753. if (v->type == GGML_TYPE_F16) {
  12754. for (int64_t d = 0; d < D; ++d) {
  12755. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12756. }
  12757. }
  12758. // V /= S
  12759. const float S_inv = 1.0f/S;
  12760. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12761. // dst indices
  12762. const int i1 = iq1;
  12763. const int i2 = iq2;
  12764. const int i3 = iq3;
  12765. // original
  12766. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12767. // permute(0, 2, 1, 3)
  12768. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12769. }
  12770. }
  12771. static void ggml_compute_forward_flash_attn_ext(
  12772. const struct ggml_compute_params * params,
  12773. const struct ggml_tensor * q,
  12774. const struct ggml_tensor * k,
  12775. const struct ggml_tensor * v,
  12776. const struct ggml_tensor * mask,
  12777. struct ggml_tensor * dst) {
  12778. switch (dst->op_params[2]) {
  12779. case GGML_PREC_DEFAULT:
  12780. case GGML_PREC_F32:
  12781. {
  12782. // uses F32 accumulators
  12783. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12784. } break;
  12785. default:
  12786. {
  12787. GGML_ASSERT(false);
  12788. } break;
  12789. }
  12790. }
  12791. // ggml_compute_forward_flash_attn_back
  12792. static void ggml_compute_forward_flash_attn_back_f32(
  12793. const struct ggml_compute_params * params,
  12794. const bool masked,
  12795. struct ggml_tensor * dst) {
  12796. const struct ggml_tensor * q = dst->src[0];
  12797. const struct ggml_tensor * k = dst->src[1];
  12798. const struct ggml_tensor * v = dst->src[2];
  12799. const struct ggml_tensor * d = dst->src[3];
  12800. int64_t t0 = ggml_perf_time_us();
  12801. UNUSED(t0);
  12802. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12803. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12804. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12805. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12806. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12807. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12808. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12809. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12810. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12811. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12812. const int ith = params->ith;
  12813. const int nth = params->nth;
  12814. const int64_t D = neq0;
  12815. const int64_t N = neq1;
  12816. const int64_t P = nek1 - N;
  12817. const int64_t M = P + N;
  12818. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12819. const int mxDM = MAX(D, Mup);
  12820. // GGML_ASSERT(ne0 == D);
  12821. // GGML_ASSERT(ne1 == N);
  12822. GGML_ASSERT(P >= 0);
  12823. GGML_ASSERT(nbq0 == sizeof(float));
  12824. GGML_ASSERT(nbk0 == sizeof(float));
  12825. GGML_ASSERT(nbv0 == sizeof(float));
  12826. GGML_ASSERT(neq0 == D);
  12827. GGML_ASSERT(nek0 == D);
  12828. GGML_ASSERT(nev1 == D);
  12829. GGML_ASSERT(ned0 == D);
  12830. GGML_ASSERT(neq1 == N);
  12831. GGML_ASSERT(nek1 == N + P);
  12832. GGML_ASSERT(nev1 == D);
  12833. GGML_ASSERT(ned1 == N);
  12834. // dst cannot be transposed or permuted
  12835. GGML_ASSERT(nb0 == sizeof(float));
  12836. GGML_ASSERT(nb0 <= nb1);
  12837. GGML_ASSERT(nb1 <= nb2);
  12838. GGML_ASSERT(nb2 <= nb3);
  12839. if (params->type == GGML_TASK_TYPE_INIT) {
  12840. if (ith == 0) {
  12841. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12842. }
  12843. return;
  12844. }
  12845. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12846. return;
  12847. }
  12848. const int64_t elem_q = ggml_nelements(q);
  12849. const int64_t elem_k = ggml_nelements(k);
  12850. enum ggml_type result_type = dst->type;
  12851. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12852. const size_t tsize = ggml_type_size(result_type);
  12853. const size_t offs_q = 0;
  12854. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12855. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12856. void * grad_q = (char *) dst->data;
  12857. void * grad_k = (char *) dst->data + offs_k;
  12858. void * grad_v = (char *) dst->data + offs_v;
  12859. const size_t nbgq1 = nb0*neq0;
  12860. const size_t nbgq2 = nb0*neq0*neq1;
  12861. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12862. const size_t nbgk1 = nb0*nek0;
  12863. const size_t nbgk2 = nb0*nek0*nek1;
  12864. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12865. const size_t nbgv1 = nb0*nev0;
  12866. const size_t nbgv2 = nb0*nev0*nev1;
  12867. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12868. // parallelize by k rows using ggml_vec_dot_f32
  12869. // total rows in k
  12870. const int nr = nek2*nek3;
  12871. // rows per thread
  12872. const int dr = (nr + nth - 1)/nth;
  12873. // row range for this thread
  12874. const int ir0 = dr*ith;
  12875. const int ir1 = MIN(ir0 + dr, nr);
  12876. const float scale = 1.0f/sqrtf(D);
  12877. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12878. // how often k2 (and v2) is repeated in q2
  12879. int nrep = neq2/nek2;
  12880. for (int ir = ir0; ir < ir1; ++ir) {
  12881. // q indices
  12882. const int ik3 = ir/(nek2);
  12883. const int ik2 = ir - ik3*nek2;
  12884. const int iq3 = ik3;
  12885. const int id3 = ik3;
  12886. const int iv3 = ik3;
  12887. const int iv2 = ik2;
  12888. for (int irep = 0; irep < nrep; ++irep) {
  12889. const int iq2 = ik2 + irep*nek2;
  12890. const int id2 = iq2;
  12891. // (ik2 + irep*nek2) % nek2 == ik2
  12892. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12893. const int id1 = iq1;
  12894. // not sure about CACHE_LINE_SIZE_F32..
  12895. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12896. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12897. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12898. for (int i = M; i < Mup; ++i) {
  12899. S[i] = -INFINITY;
  12900. }
  12901. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12902. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12903. // k indices
  12904. const int ik1 = ic;
  12905. // S indices
  12906. const int i1 = ik1;
  12907. ggml_vec_dot_f32(neq0,
  12908. S + i1, 0,
  12909. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12910. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12911. }
  12912. // scale
  12913. ggml_vec_scale_f32(masked_begin, S, scale);
  12914. for (int64_t i = masked_begin; i < M; i++) {
  12915. S[i] = -INFINITY;
  12916. }
  12917. // softmax
  12918. // exclude known -INF S[..] values from max and loop
  12919. // dont forget to set their SM values to zero
  12920. {
  12921. float max = -INFINITY;
  12922. ggml_vec_max_f32(masked_begin, &max, S);
  12923. ggml_float sum = 0.0;
  12924. {
  12925. #ifdef GGML_SOFT_MAX_ACCELERATE
  12926. max = -max;
  12927. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12928. vvexpf(SM, SM, &Mup);
  12929. ggml_vec_sum_f32(Mup, &sum, SM);
  12930. #else
  12931. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12932. #endif
  12933. }
  12934. assert(sum > 0.0);
  12935. sum = 1.0/sum;
  12936. ggml_vec_scale_f32(masked_begin, SM, sum);
  12937. }
  12938. // step-by-step explanation
  12939. {
  12940. // forward-process shape grads from backward process
  12941. // parallel_for ik2,ik3:
  12942. // for irep:
  12943. // iq2 = ik2 + irep*nek2
  12944. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12945. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12946. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12947. // for iq1:
  12948. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12949. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12950. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12951. // S0 = -Inf [D,1,1,1]
  12952. // ~S1[i] = dot(kcur[:D,i], qcur)
  12953. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12954. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12955. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12956. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12957. // ~S5[i] = dot(vcur[:,i], S4)
  12958. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12959. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12960. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12961. // dst backward-/ grad[dst] = d
  12962. //
  12963. // output gradients with their dependencies:
  12964. //
  12965. // grad[kcur] = grad[S1].T @ qcur
  12966. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12967. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12968. // grad[S4] = grad[S5] @ vcur
  12969. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12970. // grad[qcur] = grad[S1] @ kcur
  12971. // grad[vcur] = grad[S5].T @ S4
  12972. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12973. //
  12974. // in post-order:
  12975. //
  12976. // S1 = qcur @ kcur.T
  12977. // S2 = S1 * scale
  12978. // S3 = diag_mask_inf(S2, P)
  12979. // S4 = softmax(S3)
  12980. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12981. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12982. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12983. // grad[qcur] = grad[S1] @ kcur
  12984. // grad[kcur] = grad[S1].T @ qcur
  12985. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12986. //
  12987. // using less variables (SM=S4):
  12988. //
  12989. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12990. // SM = softmax(S)
  12991. // S = d[:D,iq1,iq2,iq3] @ vcur
  12992. // dot_SM_gradSM = dot(SM, S)
  12993. // S = SM * (S - dot(SM, S))
  12994. // S = diag_mask_zero(S, P) * scale
  12995. //
  12996. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12997. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12998. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12999. }
  13000. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13001. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13002. // for ic:
  13003. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13004. // exclude known future zero S[..] values from operation
  13005. ggml_vec_set_f32(masked_begin, S, 0);
  13006. for (int64_t ic = 0; ic < D; ++ic) {
  13007. ggml_vec_mad_f32(masked_begin,
  13008. S,
  13009. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13010. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13011. }
  13012. // S = SM * (S - dot(SM, S))
  13013. float dot_SM_gradSM = 0;
  13014. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13015. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13016. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13017. // S = diag_mask_zero(S, P) * scale
  13018. // already done by above ggml_vec_set_f32
  13019. // exclude known zero S[..] values from operation
  13020. ggml_vec_scale_f32(masked_begin, S, scale);
  13021. // S shape [M,1]
  13022. // SM shape [M,1]
  13023. // kcur shape [D,M]
  13024. // qcur shape [D,1]
  13025. // vcur shape [M,D]
  13026. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13027. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13028. // for ic:
  13029. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13030. // exclude known zero S[..] values from loop
  13031. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13032. ggml_vec_mad_f32(D,
  13033. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13034. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13035. S[ic]);
  13036. }
  13037. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13038. // for ic:
  13039. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13040. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13041. // exclude known zero S[..] values from loop
  13042. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13043. ggml_vec_mad_f32(D,
  13044. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13045. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13046. S[ic]);
  13047. }
  13048. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13049. // for ic:
  13050. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13051. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13052. // exclude known zero SM[..] values from mad
  13053. for (int64_t ic = 0; ic < D; ++ic) {
  13054. ggml_vec_mad_f32(masked_begin,
  13055. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13056. SM,
  13057. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13058. }
  13059. }
  13060. }
  13061. }
  13062. }
  13063. static void ggml_compute_forward_flash_attn_back(
  13064. const struct ggml_compute_params * params,
  13065. const bool masked,
  13066. struct ggml_tensor * dst) {
  13067. const struct ggml_tensor * q = dst->src[0];
  13068. switch (q->type) {
  13069. case GGML_TYPE_F32:
  13070. {
  13071. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13072. } break;
  13073. default:
  13074. {
  13075. GGML_ASSERT(false);
  13076. } break;
  13077. }
  13078. }
  13079. // ggml_compute_forward_ssm_conv
  13080. static void ggml_compute_forward_ssm_conv_f32(
  13081. const struct ggml_compute_params * params,
  13082. struct ggml_tensor * dst) {
  13083. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13084. return;
  13085. }
  13086. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13087. const struct ggml_tensor * src1 = dst->src[1]; // x
  13088. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13089. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13090. const int ith = params->ith;
  13091. const int nth = params->nth;
  13092. const int nc = src2->ne[0]; // d_conv
  13093. const int nr = src0->ne[1]; // d_inner
  13094. const int n_t = src1->ne[1]; // n_tokens
  13095. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13096. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13097. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13098. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13099. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13100. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13101. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13102. // for use with the destination state offset between sequences
  13103. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13104. // rows per thread
  13105. const int dr = (nr + nth - 1)/nth;
  13106. // row range for this thread
  13107. const int ir0 = dr*ith;
  13108. const int ir1 = MIN(ir0 + dr, nr);
  13109. const int ir = ir1 - ir0;
  13110. if (n_kv > 1) {
  13111. // multiple sequences means it's hard to know when it's the first time a state is read,
  13112. // so copy them all over to the destination, just to be sure.
  13113. for (int i3 = 0; i3 < n_kv; ++i3) {
  13114. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13115. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13116. // can't use memcpy because of d_conv vs d_conv - 1
  13117. for (int i1 = 0; i1 < ir; ++i1) {
  13118. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13119. // copy s0 to last (d_conv - 1) columns of s
  13120. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13121. }
  13122. }
  13123. }
  13124. }
  13125. for (int i2 = 0; i2 < n_t; ++i2) {
  13126. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13127. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13128. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13129. float * s0; // {d_conv - 1, d_inner, n_kv}
  13130. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13131. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13132. int ne0s0;
  13133. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13134. // avoid needing to copy the state for the first token
  13135. if (i2 == 0) {
  13136. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13137. ne0s0 = src0->ne[0];
  13138. } else {
  13139. // the source is the last (d_conv - 1) columns of the destination
  13140. s0 = s + 1;
  13141. ne0s0 = nc;
  13142. }
  13143. // d_inner
  13144. for (int i1 = 0; i1 < ir; ++i1) {
  13145. // shift state left
  13146. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13147. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13148. }
  13149. // insert x on the last column
  13150. s[(nc - 1) + i1*nc] = x0[i1];
  13151. }
  13152. // handle copies when there are multiple output states
  13153. for (int i3 = 1; i3 < n_kv; ++i3) {
  13154. int32_t seq = sq[i3];
  13155. if (0 <= seq && seq < n_kv) {
  13156. float * s1 = s + (seq - sq[0])*nc*nr;
  13157. memcpy(s1, s, nc*ir*sizeof(float));
  13158. } else {
  13159. // stop at negative or too big seq_ids
  13160. break;
  13161. }
  13162. }
  13163. // it seems a little faster when this is separate from the state shift
  13164. for (int i1 = 0; i1 < ir; ++i1) {
  13165. // rowwise dot product
  13166. float sumf = 0.0f;
  13167. for (int i0 = 0; i0 < nc; ++i0) {
  13168. int i = i0 + i1*nc;
  13169. sumf += s[i] * c[i];
  13170. }
  13171. x[i1] = sumf;
  13172. }
  13173. }
  13174. }
  13175. static void ggml_compute_forward_ssm_conv(
  13176. const struct ggml_compute_params * params,
  13177. struct ggml_tensor * dst) {
  13178. switch (dst->src[0]->type) {
  13179. case GGML_TYPE_F32:
  13180. {
  13181. ggml_compute_forward_ssm_conv_f32(params, dst);
  13182. } break;
  13183. default:
  13184. {
  13185. GGML_ASSERT(false);
  13186. } break;
  13187. }
  13188. }
  13189. // ggml_compute_forward_ssm_scan
  13190. static void ggml_compute_forward_ssm_scan_f32(
  13191. const struct ggml_compute_params * params,
  13192. struct ggml_tensor * dst) {
  13193. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13194. return;
  13195. }
  13196. const struct ggml_tensor * src0 = dst->src[0]; // s
  13197. const struct ggml_tensor * src1 = dst->src[1]; // x
  13198. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13199. const struct ggml_tensor * src3 = dst->src[3]; // A
  13200. const struct ggml_tensor * src4 = dst->src[4]; // B
  13201. const struct ggml_tensor * src5 = dst->src[5]; // C
  13202. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13203. const int ith = params->ith;
  13204. const int nth = params->nth;
  13205. const int64_t nc = src0->ne[0]; // d_state
  13206. const int64_t nr = src0->ne[1]; // d_inner
  13207. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13208. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13209. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13210. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13211. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13212. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13213. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13214. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13215. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13216. // required for the dot product between s and C, and when copying the states
  13217. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13218. // required for per-sequence offsets for states
  13219. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13220. // required to get correct offset for state destination (i.e. src1->nb[2])
  13221. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13222. // rows per thread
  13223. const int dr = (nr + nth - 1)/nth;
  13224. // row range for this thread
  13225. const int ir0 = dr*ith;
  13226. const int ir1 = MIN(ir0 + dr, nr);
  13227. const int ir = ir1 - ir0;
  13228. if (n_kv > 1) {
  13229. // it's hard to know if the source states have already been copied
  13230. // when there are multiple, so copy them already.
  13231. for (int i3 = 0; i3 < n_kv; ++i3) {
  13232. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13233. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13234. memcpy(s, s0, nc*ir*sizeof(float));
  13235. }
  13236. }
  13237. for (int i2 = 0; i2 < n_t; ++i2) {
  13238. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13239. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13240. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13241. float * s0;
  13242. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13243. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13244. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13245. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13246. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13247. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13248. // avoid needing to copy the state for the first token
  13249. if (i2 == 0) {
  13250. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13251. } else {
  13252. // otherwise the source is the same as the destination
  13253. s0 = s;
  13254. }
  13255. // d_inner
  13256. for (int i1 = 0; i1 < ir; ++i1) {
  13257. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13258. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13259. float x_dt = x[i1] * dt_soft_plus;
  13260. float sumf = 0.0f;
  13261. // d_state
  13262. for (int i0 = 0; i0 < nc; ++i0) {
  13263. int i = i0 + i1*nc;
  13264. // state = prev_state * dA + dB * x
  13265. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13266. // y = rowwise_dotprod(state, C)
  13267. sumf += state * C[i0];
  13268. s[i] = state;
  13269. }
  13270. y[i1] = sumf;
  13271. }
  13272. // handle copies when there are multiple output states
  13273. for (int i3 = 1; i3 < n_kv; ++i3) {
  13274. int32_t seq = sq[i3];
  13275. if (0 <= seq && seq < n_kv) {
  13276. float * s1 = s + (seq - sq[0])*nc*nr;
  13277. memcpy(s1, s, nc*ir*sizeof(float));
  13278. } else {
  13279. // stop at negative or too big seq_ids
  13280. break;
  13281. }
  13282. }
  13283. }
  13284. }
  13285. static void ggml_compute_forward_ssm_scan(
  13286. const struct ggml_compute_params * params,
  13287. struct ggml_tensor * dst) {
  13288. switch (dst->src[0]->type) {
  13289. case GGML_TYPE_F32:
  13290. {
  13291. ggml_compute_forward_ssm_scan_f32(params, dst);
  13292. } break;
  13293. default:
  13294. {
  13295. GGML_ASSERT(false);
  13296. } break;
  13297. }
  13298. }
  13299. // ggml_compute_forward_win_part
  13300. static void ggml_compute_forward_win_part_f32(
  13301. const struct ggml_compute_params * params,
  13302. struct ggml_tensor * dst) {
  13303. const struct ggml_tensor * src0 = dst->src[0];
  13304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13305. return;
  13306. }
  13307. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13308. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13309. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13310. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13311. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13312. assert(ne00 == ne0);
  13313. assert(ne3 == nep0*nep1);
  13314. // TODO: optimize / multi-thread
  13315. for (int py = 0; py < nep1; ++py) {
  13316. for (int px = 0; px < nep0; ++px) {
  13317. const int64_t i3 = py*nep0 + px;
  13318. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13319. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13320. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13321. const int64_t i02 = py*w + i2;
  13322. const int64_t i01 = px*w + i1;
  13323. const int64_t i00 = i0;
  13324. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13325. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13326. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13327. ((float *) dst->data)[i] = 0.0f;
  13328. } else {
  13329. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13330. }
  13331. }
  13332. }
  13333. }
  13334. }
  13335. }
  13336. }
  13337. static void ggml_compute_forward_win_part(
  13338. const struct ggml_compute_params * params,
  13339. struct ggml_tensor * dst) {
  13340. const struct ggml_tensor * src0 = dst->src[0];
  13341. switch (src0->type) {
  13342. case GGML_TYPE_F32:
  13343. {
  13344. ggml_compute_forward_win_part_f32(params, dst);
  13345. } break;
  13346. default:
  13347. {
  13348. GGML_ASSERT(false);
  13349. } break;
  13350. }
  13351. }
  13352. // ggml_compute_forward_win_unpart
  13353. static void ggml_compute_forward_win_unpart_f32(
  13354. const struct ggml_compute_params * params,
  13355. struct ggml_tensor * dst) {
  13356. const struct ggml_tensor * src0 = dst->src[0];
  13357. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13358. return;
  13359. }
  13360. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13361. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13362. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13363. // padding
  13364. const int px = (w - ne1%w)%w;
  13365. //const int py = (w - ne2%w)%w;
  13366. const int npx = (px + ne1)/w;
  13367. //const int npy = (py + ne2)/w;
  13368. assert(ne0 == ne00);
  13369. // TODO: optimize / multi-thread
  13370. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13371. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13372. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13373. const int ip2 = i2/w;
  13374. const int ip1 = i1/w;
  13375. const int64_t i02 = i2%w;
  13376. const int64_t i01 = i1%w;
  13377. const int64_t i00 = i0;
  13378. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13379. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13380. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13381. }
  13382. }
  13383. }
  13384. }
  13385. static void ggml_compute_forward_win_unpart(
  13386. const struct ggml_compute_params * params,
  13387. struct ggml_tensor * dst) {
  13388. const struct ggml_tensor * src0 = dst->src[0];
  13389. switch (src0->type) {
  13390. case GGML_TYPE_F32:
  13391. {
  13392. ggml_compute_forward_win_unpart_f32(params, dst);
  13393. } break;
  13394. default:
  13395. {
  13396. GGML_ASSERT(false);
  13397. } break;
  13398. }
  13399. }
  13400. //gmml_compute_forward_unary
  13401. static void ggml_compute_forward_unary(
  13402. const struct ggml_compute_params * params,
  13403. struct ggml_tensor * dst) {
  13404. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13405. switch (op) {
  13406. case GGML_UNARY_OP_ABS:
  13407. {
  13408. ggml_compute_forward_abs(params, dst);
  13409. } break;
  13410. case GGML_UNARY_OP_SGN:
  13411. {
  13412. ggml_compute_forward_sgn(params, dst);
  13413. } break;
  13414. case GGML_UNARY_OP_NEG:
  13415. {
  13416. ggml_compute_forward_neg(params, dst);
  13417. } break;
  13418. case GGML_UNARY_OP_STEP:
  13419. {
  13420. ggml_compute_forward_step(params, dst);
  13421. } break;
  13422. case GGML_UNARY_OP_TANH:
  13423. {
  13424. ggml_compute_forward_tanh(params, dst);
  13425. } break;
  13426. case GGML_UNARY_OP_ELU:
  13427. {
  13428. ggml_compute_forward_elu(params, dst);
  13429. } break;
  13430. case GGML_UNARY_OP_RELU:
  13431. {
  13432. ggml_compute_forward_relu(params, dst);
  13433. } break;
  13434. case GGML_UNARY_OP_SIGMOID:
  13435. {
  13436. ggml_compute_forward_sigmoid(params, dst);
  13437. } break;
  13438. case GGML_UNARY_OP_GELU:
  13439. {
  13440. ggml_compute_forward_gelu(params, dst);
  13441. } break;
  13442. case GGML_UNARY_OP_GELU_QUICK:
  13443. {
  13444. ggml_compute_forward_gelu_quick(params, dst);
  13445. } break;
  13446. case GGML_UNARY_OP_SILU:
  13447. {
  13448. ggml_compute_forward_silu(params, dst);
  13449. } break;
  13450. case GGML_UNARY_OP_HARDSWISH:
  13451. {
  13452. ggml_compute_forward_hardswish(params, dst);
  13453. } break;
  13454. case GGML_UNARY_OP_HARDSIGMOID:
  13455. {
  13456. ggml_compute_forward_hardsigmoid(params, dst);
  13457. } break;
  13458. default:
  13459. {
  13460. GGML_ASSERT(false);
  13461. } break;
  13462. }
  13463. }
  13464. // ggml_compute_forward_get_rel_pos
  13465. static void ggml_compute_forward_get_rel_pos_f16(
  13466. const struct ggml_compute_params * params,
  13467. struct ggml_tensor * dst) {
  13468. const struct ggml_tensor * src0 = dst->src[0];
  13469. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13470. return;
  13471. }
  13472. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13473. GGML_TENSOR_UNARY_OP_LOCALS
  13474. const int64_t w = ne1;
  13475. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13476. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13477. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13478. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13479. const int64_t pos = (w - i1 - 1) + i2;
  13480. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13481. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13482. }
  13483. }
  13484. }
  13485. }
  13486. static void ggml_compute_forward_get_rel_pos(
  13487. const struct ggml_compute_params * params,
  13488. struct ggml_tensor * dst) {
  13489. const struct ggml_tensor * src0 = dst->src[0];
  13490. switch (src0->type) {
  13491. case GGML_TYPE_F16:
  13492. case GGML_TYPE_BF16:
  13493. {
  13494. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13495. } break;
  13496. default:
  13497. {
  13498. GGML_ASSERT(false);
  13499. } break;
  13500. }
  13501. }
  13502. // ggml_compute_forward_add_rel_pos
  13503. static void ggml_compute_forward_add_rel_pos_f32(
  13504. const struct ggml_compute_params * params,
  13505. struct ggml_tensor * dst) {
  13506. const struct ggml_tensor * src0 = dst->src[0];
  13507. const struct ggml_tensor * src1 = dst->src[1];
  13508. const struct ggml_tensor * src2 = dst->src[2];
  13509. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13510. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13511. if (params->ith != 0) {
  13512. return;
  13513. }
  13514. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13515. return;
  13516. }
  13517. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13518. return;
  13519. }
  13520. int64_t t0 = ggml_perf_time_us();
  13521. UNUSED(t0);
  13522. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13523. float * src1_data = (float *) src1->data;
  13524. float * src2_data = (float *) src2->data;
  13525. float * dst_data = (float *) dst->data;
  13526. const int64_t ne10 = src1->ne[0];
  13527. const int64_t ne11 = src1->ne[1];
  13528. const int64_t ne12 = src1->ne[2];
  13529. const int64_t ne13 = src1->ne[3];
  13530. const int ith = params->ith;
  13531. const int nth = params->nth;
  13532. // total patches in dst
  13533. const int np = ne13;
  13534. // patches per thread
  13535. const int dp = (np + nth - 1)/nth;
  13536. // patch range for this thread
  13537. const int ip0 = dp*ith;
  13538. const int ip1 = MIN(ip0 + dp, np);
  13539. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13540. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13541. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13542. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13543. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13544. const int64_t jp0 = jp1 + i10;
  13545. const float src1_e = src1_data[jp0];
  13546. const float src2_e = src2_data[jp0];
  13547. const int64_t jdh = jp0 * ne10;
  13548. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13549. for (int64_t j = 0; j < ne10; ++j) {
  13550. dst_data[jdh + j ] += src2_e;
  13551. dst_data[jdw + j*ne10] += src1_e;
  13552. }
  13553. }
  13554. }
  13555. }
  13556. }
  13557. }
  13558. static void ggml_compute_forward_add_rel_pos(
  13559. const struct ggml_compute_params * params,
  13560. struct ggml_tensor * dst) {
  13561. const struct ggml_tensor * src0 = dst->src[0];
  13562. switch (src0->type) {
  13563. case GGML_TYPE_F32:
  13564. {
  13565. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13566. } break;
  13567. default:
  13568. {
  13569. GGML_ASSERT(false);
  13570. } break;
  13571. }
  13572. }
  13573. // ggml_compute_forward_map_unary
  13574. static void ggml_compute_forward_map_unary_f32(
  13575. const struct ggml_compute_params * params,
  13576. struct ggml_tensor * dst,
  13577. const ggml_unary_op_f32_t fun) {
  13578. const struct ggml_tensor * src0 = dst->src[0];
  13579. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13580. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13581. return;
  13582. }
  13583. const int n = ggml_nrows(src0);
  13584. const int nc = src0->ne[0];
  13585. assert( dst->nb[0] == sizeof(float));
  13586. assert(src0->nb[0] == sizeof(float));
  13587. for (int i = 0; i < n; i++) {
  13588. fun(nc,
  13589. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13590. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13591. }
  13592. }
  13593. static void ggml_compute_forward_map_unary(
  13594. const struct ggml_compute_params * params,
  13595. struct ggml_tensor * dst,
  13596. const ggml_unary_op_f32_t fun) {
  13597. const struct ggml_tensor * src0 = dst->src[0];
  13598. switch (src0->type) {
  13599. case GGML_TYPE_F32:
  13600. {
  13601. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13602. } break;
  13603. default:
  13604. {
  13605. GGML_ASSERT(false);
  13606. } break;
  13607. }
  13608. }
  13609. // ggml_compute_forward_map_binary
  13610. static void ggml_compute_forward_map_binary_f32(
  13611. const struct ggml_compute_params * params,
  13612. struct ggml_tensor * dst,
  13613. const ggml_binary_op_f32_t fun) {
  13614. const struct ggml_tensor * src0 = dst->src[0];
  13615. const struct ggml_tensor * src1 = dst->src[1];
  13616. assert(params->ith == 0);
  13617. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13618. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13619. return;
  13620. }
  13621. const int n = ggml_nrows(src0);
  13622. const int nc = src0->ne[0];
  13623. assert( dst->nb[0] == sizeof(float));
  13624. assert(src0->nb[0] == sizeof(float));
  13625. assert(src1->nb[0] == sizeof(float));
  13626. for (int i = 0; i < n; i++) {
  13627. fun(nc,
  13628. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13629. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13630. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13631. }
  13632. }
  13633. static void ggml_compute_forward_map_binary(
  13634. const struct ggml_compute_params * params,
  13635. struct ggml_tensor * dst,
  13636. const ggml_binary_op_f32_t fun) {
  13637. const struct ggml_tensor * src0 = dst->src[0];
  13638. switch (src0->type) {
  13639. case GGML_TYPE_F32:
  13640. {
  13641. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13642. } break;
  13643. default:
  13644. {
  13645. GGML_ASSERT(false);
  13646. } break;
  13647. }
  13648. }
  13649. // ggml_compute_forward_map_custom1
  13650. static void ggml_compute_forward_map_custom1_f32(
  13651. const struct ggml_compute_params * params,
  13652. struct ggml_tensor * dst,
  13653. const ggml_custom1_op_f32_t fun) {
  13654. const struct ggml_tensor * a = dst->src[0];
  13655. assert(params->ith == 0);
  13656. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13657. return;
  13658. }
  13659. fun(dst, a);
  13660. }
  13661. // ggml_compute_forward_map_custom2
  13662. static void ggml_compute_forward_map_custom2_f32(
  13663. const struct ggml_compute_params * params,
  13664. struct ggml_tensor * dst,
  13665. const ggml_custom2_op_f32_t fun) {
  13666. const struct ggml_tensor * a = dst->src[0];
  13667. const struct ggml_tensor * b = dst->src[1];
  13668. assert(params->ith == 0);
  13669. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13670. return;
  13671. }
  13672. fun(dst, a, b);
  13673. }
  13674. // ggml_compute_forward_map_custom3
  13675. static void ggml_compute_forward_map_custom3_f32(
  13676. const struct ggml_compute_params * params,
  13677. struct ggml_tensor * dst,
  13678. const ggml_custom3_op_f32_t fun) {
  13679. const struct ggml_tensor * a = dst->src[0];
  13680. const struct ggml_tensor * b = dst->src[1];
  13681. const struct ggml_tensor * c = dst->src[1];
  13682. assert(params->ith == 0);
  13683. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13684. return;
  13685. }
  13686. fun(dst, a, b, c);
  13687. }
  13688. // ggml_compute_forward_map_custom1
  13689. static void ggml_compute_forward_map_custom1(
  13690. const struct ggml_compute_params * params,
  13691. struct ggml_tensor * dst) {
  13692. const struct ggml_tensor * a = dst->src[0];
  13693. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13694. return;
  13695. }
  13696. struct ggml_map_custom1_op_params p;
  13697. memcpy(&p, dst->op_params, sizeof(p));
  13698. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13699. }
  13700. // ggml_compute_forward_map_custom2
  13701. static void ggml_compute_forward_map_custom2(
  13702. const struct ggml_compute_params * params,
  13703. struct ggml_tensor * dst) {
  13704. const struct ggml_tensor * a = dst->src[0];
  13705. const struct ggml_tensor * b = dst->src[1];
  13706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13707. return;
  13708. }
  13709. struct ggml_map_custom2_op_params p;
  13710. memcpy(&p, dst->op_params, sizeof(p));
  13711. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13712. }
  13713. // ggml_compute_forward_map_custom3
  13714. static void ggml_compute_forward_map_custom3(
  13715. const struct ggml_compute_params * params,
  13716. struct ggml_tensor * dst) {
  13717. const struct ggml_tensor * a = dst->src[0];
  13718. const struct ggml_tensor * b = dst->src[1];
  13719. const struct ggml_tensor * c = dst->src[2];
  13720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13721. return;
  13722. }
  13723. struct ggml_map_custom3_op_params p;
  13724. memcpy(&p, dst->op_params, sizeof(p));
  13725. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13726. }
  13727. // ggml_compute_forward_cross_entropy_loss
  13728. static void ggml_compute_forward_cross_entropy_loss_f32(
  13729. const struct ggml_compute_params * params,
  13730. struct ggml_tensor * dst) {
  13731. const struct ggml_tensor * src0 = dst->src[0];
  13732. const struct ggml_tensor * src1 = dst->src[1];
  13733. GGML_ASSERT(ggml_is_contiguous(src0));
  13734. GGML_ASSERT(ggml_is_contiguous(src1));
  13735. GGML_ASSERT(ggml_is_scalar(dst));
  13736. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13737. const int ith = params->ith;
  13738. const int nth = params->nth;
  13739. float * sums = (float *) params->wdata;
  13740. // TODO: handle transposed/permuted matrices
  13741. const int nc = src0->ne[0];
  13742. const int nr = ggml_nrows(src0);
  13743. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13744. if (params->type == GGML_TASK_TYPE_INIT) {
  13745. if (ith == 0) {
  13746. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13747. }
  13748. return;
  13749. }
  13750. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13751. if (ith == 0) {
  13752. float * dp = (float *) dst->data;
  13753. ggml_vec_sum_f32(nth, dp, sums);
  13754. dp[0] *= -1.0f / (float) nr;
  13755. }
  13756. return;
  13757. }
  13758. const double eps = 1e-9;
  13759. // rows per thread
  13760. const int dr = (nr + nth - 1)/nth;
  13761. // row range for this thread
  13762. const int ir0 = dr*ith;
  13763. const int ir1 = MIN(ir0 + dr, nr);
  13764. for (int i1 = ir0; i1 < ir1; i1++) {
  13765. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13766. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13767. float * st = ((float *) params->wdata) + nth + ith*nc;
  13768. #ifndef NDEBUG
  13769. for (int i = 0; i < nc; ++i) {
  13770. //printf("p[%d] = %f\n", i, p[i]);
  13771. assert(!isnan(s0[i]));
  13772. assert(!isnan(s1[i]));
  13773. }
  13774. #endif
  13775. // soft_max
  13776. float max = -INFINITY;
  13777. ggml_vec_max_f32(nc, &max, s0);
  13778. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13779. assert(sum > 0.0);
  13780. sum = (1.0 - eps) / sum;
  13781. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13782. ggml_vec_scale_f32(nc, st, sum);
  13783. ggml_vec_add1_f32(nc, st, st, eps);
  13784. ggml_vec_log_f32(nc, st, st);
  13785. ggml_vec_mul_f32(nc, st, st, s1);
  13786. float st_sum = 0;
  13787. ggml_vec_sum_f32(nc, &st_sum, st);
  13788. sums[ith] += st_sum;
  13789. #ifndef NDEBUG
  13790. for (int i = 0; i < nc; ++i) {
  13791. assert(!isnan(st[i]));
  13792. assert(!isinf(st[i]));
  13793. }
  13794. #endif
  13795. }
  13796. }
  13797. static void ggml_compute_forward_cross_entropy_loss(
  13798. const struct ggml_compute_params * params,
  13799. struct ggml_tensor * dst) {
  13800. const struct ggml_tensor * src0 = dst->src[0];
  13801. switch (src0->type) {
  13802. case GGML_TYPE_F32:
  13803. {
  13804. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13805. } break;
  13806. default:
  13807. {
  13808. GGML_ASSERT(false);
  13809. } break;
  13810. }
  13811. }
  13812. // ggml_compute_forward_cross_entropy_loss_back
  13813. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13814. const struct ggml_compute_params * params,
  13815. struct ggml_tensor * dst) {
  13816. const struct ggml_tensor * src0 = dst->src[0];
  13817. const struct ggml_tensor * src1 = dst->src[1];
  13818. const struct ggml_tensor * opt0 = dst->src[2];
  13819. GGML_ASSERT(ggml_is_contiguous(dst));
  13820. GGML_ASSERT(ggml_is_contiguous(src0));
  13821. GGML_ASSERT(ggml_is_contiguous(src1));
  13822. GGML_ASSERT(ggml_is_contiguous(opt0));
  13823. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13824. const int64_t ith = params->ith;
  13825. const int64_t nth = params->nth;
  13826. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13827. return;
  13828. }
  13829. const double eps = 1e-9;
  13830. // TODO: handle transposed/permuted matrices
  13831. const int64_t nc = src0->ne[0];
  13832. const int64_t nr = ggml_nrows(src0);
  13833. // rows per thread
  13834. const int64_t dr = (nr + nth - 1)/nth;
  13835. // row range for this thread
  13836. const int64_t ir0 = dr*ith;
  13837. const int64_t ir1 = MIN(ir0 + dr, nr);
  13838. float * d = (float *) opt0->data;
  13839. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13840. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13841. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13842. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13843. #ifndef NDEBUG
  13844. for (int i = 0; i < nc; ++i) {
  13845. //printf("p[%d] = %f\n", i, p[i]);
  13846. assert(!isnan(s0[i]));
  13847. assert(!isnan(s1[i]));
  13848. }
  13849. #endif
  13850. // soft_max
  13851. float max = -INFINITY;
  13852. ggml_vec_max_f32(nc, &max, s0);
  13853. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13854. assert(sum > 0.0);
  13855. sum = (1.0 - eps) / sum;
  13856. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13857. ggml_vec_scale_f32(nc, ds0, sum);
  13858. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13859. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13860. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13861. #ifndef NDEBUG
  13862. for (int i = 0; i < nc; ++i) {
  13863. assert(!isnan(ds0[i]));
  13864. assert(!isinf(ds0[i]));
  13865. }
  13866. #endif
  13867. }
  13868. }
  13869. static void ggml_compute_forward_cross_entropy_loss_back(
  13870. const struct ggml_compute_params * params,
  13871. struct ggml_tensor * dst) {
  13872. const struct ggml_tensor * src0 = dst->src[0];
  13873. switch (src0->type) {
  13874. case GGML_TYPE_F32:
  13875. {
  13876. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13877. } break;
  13878. default:
  13879. {
  13880. GGML_ASSERT(false);
  13881. } break;
  13882. }
  13883. }
  13884. /////////////////////////////////
  13885. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  13886. GGML_ASSERT(params);
  13887. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13888. return;
  13889. }
  13890. switch (tensor->op) {
  13891. case GGML_OP_DUP:
  13892. {
  13893. ggml_compute_forward_dup(params, tensor);
  13894. } break;
  13895. case GGML_OP_ADD:
  13896. {
  13897. ggml_compute_forward_add(params, tensor);
  13898. } break;
  13899. case GGML_OP_ADD1:
  13900. {
  13901. ggml_compute_forward_add1(params, tensor);
  13902. } break;
  13903. case GGML_OP_ACC:
  13904. {
  13905. ggml_compute_forward_acc(params, tensor);
  13906. } break;
  13907. case GGML_OP_SUB:
  13908. {
  13909. ggml_compute_forward_sub(params, tensor);
  13910. } break;
  13911. case GGML_OP_MUL:
  13912. {
  13913. ggml_compute_forward_mul(params, tensor);
  13914. } break;
  13915. case GGML_OP_DIV:
  13916. {
  13917. ggml_compute_forward_div(params, tensor);
  13918. } break;
  13919. case GGML_OP_SQR:
  13920. {
  13921. ggml_compute_forward_sqr(params, tensor);
  13922. } break;
  13923. case GGML_OP_SQRT:
  13924. {
  13925. ggml_compute_forward_sqrt(params, tensor);
  13926. } break;
  13927. case GGML_OP_LOG:
  13928. {
  13929. ggml_compute_forward_log(params, tensor);
  13930. } break;
  13931. case GGML_OP_SUM:
  13932. {
  13933. ggml_compute_forward_sum(params, tensor);
  13934. } break;
  13935. case GGML_OP_SUM_ROWS:
  13936. {
  13937. ggml_compute_forward_sum_rows(params, tensor);
  13938. } break;
  13939. case GGML_OP_MEAN:
  13940. {
  13941. ggml_compute_forward_mean(params, tensor);
  13942. } break;
  13943. case GGML_OP_ARGMAX:
  13944. {
  13945. ggml_compute_forward_argmax(params, tensor);
  13946. } break;
  13947. case GGML_OP_REPEAT:
  13948. {
  13949. ggml_compute_forward_repeat(params, tensor);
  13950. } break;
  13951. case GGML_OP_REPEAT_BACK:
  13952. {
  13953. ggml_compute_forward_repeat_back(params, tensor);
  13954. } break;
  13955. case GGML_OP_CONCAT:
  13956. {
  13957. ggml_compute_forward_concat(params, tensor);
  13958. } break;
  13959. case GGML_OP_SILU_BACK:
  13960. {
  13961. ggml_compute_forward_silu_back(params, tensor);
  13962. } break;
  13963. case GGML_OP_NORM:
  13964. {
  13965. ggml_compute_forward_norm(params, tensor);
  13966. } break;
  13967. case GGML_OP_RMS_NORM:
  13968. {
  13969. ggml_compute_forward_rms_norm(params, tensor);
  13970. } break;
  13971. case GGML_OP_RMS_NORM_BACK:
  13972. {
  13973. ggml_compute_forward_rms_norm_back(params, tensor);
  13974. } break;
  13975. case GGML_OP_GROUP_NORM:
  13976. {
  13977. ggml_compute_forward_group_norm(params, tensor);
  13978. } break;
  13979. case GGML_OP_MUL_MAT:
  13980. {
  13981. ggml_compute_forward_mul_mat(params, tensor, state);
  13982. } break;
  13983. case GGML_OP_MUL_MAT_ID:
  13984. {
  13985. ggml_compute_forward_mul_mat_id(params, tensor);
  13986. } break;
  13987. case GGML_OP_OUT_PROD:
  13988. {
  13989. ggml_compute_forward_out_prod(params, tensor);
  13990. } break;
  13991. case GGML_OP_SCALE:
  13992. {
  13993. ggml_compute_forward_scale(params, tensor);
  13994. } break;
  13995. case GGML_OP_SET:
  13996. {
  13997. ggml_compute_forward_set(params, tensor);
  13998. } break;
  13999. case GGML_OP_CPY:
  14000. {
  14001. ggml_compute_forward_cpy(params, tensor);
  14002. } break;
  14003. case GGML_OP_CONT:
  14004. {
  14005. ggml_compute_forward_cont(params, tensor);
  14006. } break;
  14007. case GGML_OP_RESHAPE:
  14008. {
  14009. ggml_compute_forward_reshape(params, tensor);
  14010. } break;
  14011. case GGML_OP_VIEW:
  14012. {
  14013. ggml_compute_forward_view(params, tensor);
  14014. } break;
  14015. case GGML_OP_PERMUTE:
  14016. {
  14017. ggml_compute_forward_permute(params, tensor);
  14018. } break;
  14019. case GGML_OP_TRANSPOSE:
  14020. {
  14021. ggml_compute_forward_transpose(params, tensor);
  14022. } break;
  14023. case GGML_OP_GET_ROWS:
  14024. {
  14025. ggml_compute_forward_get_rows(params, tensor);
  14026. } break;
  14027. case GGML_OP_GET_ROWS_BACK:
  14028. {
  14029. ggml_compute_forward_get_rows_back(params, tensor);
  14030. } break;
  14031. case GGML_OP_DIAG:
  14032. {
  14033. ggml_compute_forward_diag(params, tensor);
  14034. } break;
  14035. case GGML_OP_DIAG_MASK_INF:
  14036. {
  14037. ggml_compute_forward_diag_mask_inf(params, tensor);
  14038. } break;
  14039. case GGML_OP_DIAG_MASK_ZERO:
  14040. {
  14041. ggml_compute_forward_diag_mask_zero(params, tensor);
  14042. } break;
  14043. case GGML_OP_SOFT_MAX:
  14044. {
  14045. ggml_compute_forward_soft_max(params, tensor);
  14046. } break;
  14047. case GGML_OP_SOFT_MAX_BACK:
  14048. {
  14049. ggml_compute_forward_soft_max_back(params, tensor);
  14050. } break;
  14051. case GGML_OP_ROPE:
  14052. {
  14053. ggml_compute_forward_rope(params, tensor);
  14054. } break;
  14055. case GGML_OP_ROPE_BACK:
  14056. {
  14057. ggml_compute_forward_rope_back(params, tensor);
  14058. } break;
  14059. case GGML_OP_CLAMP:
  14060. {
  14061. ggml_compute_forward_clamp(params, tensor);
  14062. } break;
  14063. case GGML_OP_CONV_TRANSPOSE_1D:
  14064. {
  14065. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14066. } break;
  14067. case GGML_OP_IM2COL:
  14068. {
  14069. ggml_compute_forward_im2col(params, tensor);
  14070. } break;
  14071. case GGML_OP_CONV_TRANSPOSE_2D:
  14072. {
  14073. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14074. } break;
  14075. case GGML_OP_POOL_1D:
  14076. {
  14077. ggml_compute_forward_pool_1d(params, tensor);
  14078. } break;
  14079. case GGML_OP_POOL_2D:
  14080. {
  14081. ggml_compute_forward_pool_2d(params, tensor);
  14082. } break;
  14083. case GGML_OP_UPSCALE:
  14084. {
  14085. ggml_compute_forward_upscale(params, tensor);
  14086. } break;
  14087. case GGML_OP_PAD:
  14088. {
  14089. ggml_compute_forward_pad(params, tensor);
  14090. } break;
  14091. case GGML_OP_ARANGE:
  14092. {
  14093. ggml_compute_forward_arange(params, tensor);
  14094. } break;
  14095. case GGML_OP_TIMESTEP_EMBEDDING:
  14096. {
  14097. ggml_compute_forward_timestep_embedding(params, tensor);
  14098. } break;
  14099. case GGML_OP_ARGSORT:
  14100. {
  14101. ggml_compute_forward_argsort(params, tensor);
  14102. } break;
  14103. case GGML_OP_LEAKY_RELU:
  14104. {
  14105. ggml_compute_forward_leaky_relu(params, tensor);
  14106. } break;
  14107. case GGML_OP_FLASH_ATTN_EXT:
  14108. {
  14109. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14110. } break;
  14111. case GGML_OP_FLASH_ATTN_BACK:
  14112. {
  14113. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14114. GGML_ASSERT(t == 0 || t == 1);
  14115. bool masked = t != 0;
  14116. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14117. } break;
  14118. case GGML_OP_SSM_CONV:
  14119. {
  14120. ggml_compute_forward_ssm_conv(params, tensor);
  14121. } break;
  14122. case GGML_OP_SSM_SCAN:
  14123. {
  14124. ggml_compute_forward_ssm_scan(params, tensor);
  14125. } break;
  14126. case GGML_OP_WIN_PART:
  14127. {
  14128. ggml_compute_forward_win_part(params, tensor);
  14129. } break;
  14130. case GGML_OP_WIN_UNPART:
  14131. {
  14132. ggml_compute_forward_win_unpart(params, tensor);
  14133. } break;
  14134. case GGML_OP_UNARY:
  14135. {
  14136. ggml_compute_forward_unary(params, tensor);
  14137. } break;
  14138. case GGML_OP_GET_REL_POS:
  14139. {
  14140. ggml_compute_forward_get_rel_pos(params, tensor);
  14141. } break;
  14142. case GGML_OP_ADD_REL_POS:
  14143. {
  14144. ggml_compute_forward_add_rel_pos(params, tensor);
  14145. } break;
  14146. case GGML_OP_MAP_UNARY:
  14147. {
  14148. ggml_unary_op_f32_t fun;
  14149. memcpy(&fun, tensor->op_params, sizeof(fun));
  14150. ggml_compute_forward_map_unary(params, tensor, fun);
  14151. }
  14152. break;
  14153. case GGML_OP_MAP_BINARY:
  14154. {
  14155. ggml_binary_op_f32_t fun;
  14156. memcpy(&fun, tensor->op_params, sizeof(fun));
  14157. ggml_compute_forward_map_binary(params, tensor, fun);
  14158. }
  14159. break;
  14160. case GGML_OP_MAP_CUSTOM1_F32:
  14161. {
  14162. ggml_custom1_op_f32_t fun;
  14163. memcpy(&fun, tensor->op_params, sizeof(fun));
  14164. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14165. }
  14166. break;
  14167. case GGML_OP_MAP_CUSTOM2_F32:
  14168. {
  14169. ggml_custom2_op_f32_t fun;
  14170. memcpy(&fun, tensor->op_params, sizeof(fun));
  14171. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14172. }
  14173. break;
  14174. case GGML_OP_MAP_CUSTOM3_F32:
  14175. {
  14176. ggml_custom3_op_f32_t fun;
  14177. memcpy(&fun, tensor->op_params, sizeof(fun));
  14178. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14179. }
  14180. break;
  14181. case GGML_OP_MAP_CUSTOM1:
  14182. {
  14183. ggml_compute_forward_map_custom1(params, tensor);
  14184. }
  14185. break;
  14186. case GGML_OP_MAP_CUSTOM2:
  14187. {
  14188. ggml_compute_forward_map_custom2(params, tensor);
  14189. }
  14190. break;
  14191. case GGML_OP_MAP_CUSTOM3:
  14192. {
  14193. ggml_compute_forward_map_custom3(params, tensor);
  14194. }
  14195. break;
  14196. case GGML_OP_CROSS_ENTROPY_LOSS:
  14197. {
  14198. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14199. }
  14200. break;
  14201. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14202. {
  14203. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14204. }
  14205. break;
  14206. case GGML_OP_NONE:
  14207. {
  14208. // nop
  14209. } break;
  14210. case GGML_OP_COUNT:
  14211. {
  14212. GGML_ASSERT(false);
  14213. } break;
  14214. }
  14215. }
  14216. ////////////////////////////////////////////////////////////////////////////////
  14217. static size_t ggml_hash_size(size_t min_sz) {
  14218. // next primes after powers of two
  14219. static const size_t primes[] = {
  14220. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14221. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14222. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14223. 16777259, 33554467, 67108879, 134217757, 268435459,
  14224. 536870923, 1073741827, 2147483659
  14225. };
  14226. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14227. // find the smallest prime that is larger or equal to min_sz
  14228. size_t l = 0;
  14229. size_t r = n_primes;
  14230. while (l < r) {
  14231. size_t m = (l + r)/2;
  14232. if (primes[m] < min_sz) {
  14233. l = m + 1;
  14234. } else {
  14235. r = m;
  14236. }
  14237. }
  14238. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14239. return sz;
  14240. }
  14241. static size_t ggml_hash(const void * p) {
  14242. return (size_t)p;
  14243. }
  14244. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14245. size_t h = ggml_hash(key) % hash_set.size;
  14246. // linear probing
  14247. size_t i = h;
  14248. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14249. i = (i + 1) % hash_set.size;
  14250. if (i == h) {
  14251. // visited all hash table entries -> not found
  14252. return GGML_HASHTABLE_FULL;
  14253. }
  14254. }
  14255. return i;
  14256. }
  14257. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14258. size_t i = ggml_hash_find(hash_set, key);
  14259. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14260. }
  14261. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14262. size_t i = ggml_hash_find(hash_set, key);
  14263. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14264. if (hash_set.keys[i] == key) {
  14265. return GGML_HASHTABLE_ALREADY_EXISTS;
  14266. }
  14267. // insert
  14268. GGML_ASSERT(hash_set.keys[i] == NULL);
  14269. hash_set.keys[i] = key;
  14270. return i;
  14271. }
  14272. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14273. size_t i = ggml_hash_find(hash_set, key);
  14274. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14275. hash_set.keys[i] = key;
  14276. return i;
  14277. }
  14278. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14279. size = ggml_hash_size(size);
  14280. struct ggml_hash_set result;
  14281. result.size = size;
  14282. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14283. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14284. return result;
  14285. }
  14286. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14287. GGML_FREE(hash_set.keys);
  14288. }
  14289. struct hash_map {
  14290. struct ggml_hash_set set;
  14291. struct ggml_tensor ** vals;
  14292. };
  14293. static struct hash_map * ggml_new_hash_map(size_t size) {
  14294. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14295. result->set = ggml_hash_set_new(size);
  14296. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14297. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14298. return result;
  14299. }
  14300. static void ggml_hash_map_free(struct hash_map * map) {
  14301. ggml_hash_set_free(map->set);
  14302. GGML_FREE(map->vals);
  14303. GGML_FREE(map);
  14304. }
  14305. // gradient checkpointing
  14306. static struct ggml_tensor * ggml_recompute_graph_node(
  14307. struct ggml_context * ctx,
  14308. struct ggml_cgraph * graph,
  14309. struct hash_map * replacements,
  14310. struct ggml_tensor * node) {
  14311. if (node == NULL) {
  14312. return NULL;
  14313. }
  14314. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14315. return node;
  14316. }
  14317. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14318. return node;
  14319. }
  14320. int count_children = 0;
  14321. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14322. if (node->src[k]) {
  14323. ++count_children;
  14324. }
  14325. }
  14326. if (count_children == 0) {
  14327. return node;
  14328. }
  14329. size_t i = ggml_hash_find(replacements->set, node);
  14330. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14331. if (replacements->set.keys[i] == node) {
  14332. return replacements->vals[i];
  14333. }
  14334. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14335. // insert clone into replacements
  14336. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14337. replacements->set.keys[i] = node;
  14338. replacements->vals[i] = clone;
  14339. clone->op = node->op;
  14340. clone->grad = node->grad;
  14341. clone->flags = node->flags;
  14342. clone->extra = node->extra;
  14343. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14344. clone->nb[k] = node->nb[k];
  14345. }
  14346. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14347. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14348. }
  14349. if (node->view_src != NULL) {
  14350. clone->data = (node->view_src->data == NULL)
  14351. ? NULL // view_src not yet allocated
  14352. : (char *) node->view_src->data // view_src already allocated
  14353. + node->view_offs;
  14354. clone->view_src = node->view_src;
  14355. clone->view_offs = node->view_offs;
  14356. }
  14357. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14358. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14359. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14360. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14361. return clone;
  14362. }
  14363. void ggml_build_backward_gradient_checkpointing(
  14364. struct ggml_context * ctx,
  14365. struct ggml_cgraph * gf,
  14366. struct ggml_cgraph * gb,
  14367. struct ggml_cgraph * gb_tmp,
  14368. struct ggml_tensor * * checkpoints,
  14369. int n_checkpoints) {
  14370. ggml_graph_cpy(gf, gb_tmp);
  14371. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14372. if (n_checkpoints <= 0) {
  14373. ggml_graph_cpy(gb_tmp, gb);
  14374. return;
  14375. }
  14376. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14377. // insert checkpoints in replacements
  14378. for (int i = 0; i < n_checkpoints; ++i) {
  14379. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14380. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14381. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14382. replacements->set.keys[k] = checkpoints[i];
  14383. replacements->vals[k] = checkpoints[i];
  14384. }
  14385. ggml_graph_cpy(gf, gb);
  14386. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14387. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14388. // by recomputing them from checkpoints
  14389. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14390. struct ggml_tensor * node = gb_tmp->nodes[i];
  14391. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14392. // insert new tensors recomputing src, reusing already made replacements,
  14393. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14394. // recurse for input tensors,
  14395. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14396. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14397. }
  14398. // insert rewritten backward node with replacements made into resulting backward graph gb
  14399. ggml_build_forward_expand(gb, node);
  14400. }
  14401. ggml_hash_map_free(replacements);
  14402. }
  14403. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14404. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14405. if (ggml_hash_contains(zero_table, a)) {
  14406. return b;
  14407. } else {
  14408. return ggml_add_impl(ctx, a, b, false);
  14409. }
  14410. }
  14411. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14412. if (ggml_hash_contains(zero_table, a)) {
  14413. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14414. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14415. } else {
  14416. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14417. }
  14418. }
  14419. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14420. if (ggml_hash_contains(zero_table, a)) {
  14421. return ggml_repeat(ctx, b, a);
  14422. } else {
  14423. return ggml_add1_impl(ctx, a, b, false);
  14424. }
  14425. }
  14426. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14427. if (ggml_hash_contains(zero_table, a)) {
  14428. return ggml_neg(ctx, b);
  14429. } else {
  14430. return ggml_sub_impl(ctx, a, b, false);
  14431. }
  14432. }
  14433. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14434. struct ggml_tensor * src0 = tensor->src[0];
  14435. struct ggml_tensor * src1 = tensor->src[1];
  14436. struct ggml_tensor * src2 = tensor->src[2];
  14437. switch (tensor->op) {
  14438. case GGML_OP_DUP:
  14439. {
  14440. if (src0->grad) {
  14441. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14442. }
  14443. } break;
  14444. case GGML_OP_ADD:
  14445. {
  14446. if (src0->grad) {
  14447. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14448. }
  14449. if (src1->grad) {
  14450. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14451. }
  14452. } break;
  14453. case GGML_OP_ADD1:
  14454. {
  14455. if (src0->grad) {
  14456. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14457. }
  14458. if (src1->grad) {
  14459. src1->grad = ggml_add_or_set(ctx,
  14460. src1->grad,
  14461. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14462. zero_table);
  14463. }
  14464. } break;
  14465. case GGML_OP_ACC:
  14466. {
  14467. if (src0->grad) {
  14468. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14469. }
  14470. if (src1->grad) {
  14471. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14472. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14473. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14474. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14475. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14476. tensor->grad,
  14477. src1->grad->ne[0],
  14478. src1->grad->ne[1],
  14479. src1->grad->ne[2],
  14480. src1->grad->ne[3],
  14481. nb1, nb2, nb3, offset);
  14482. src1->grad =
  14483. ggml_add_or_set(ctx,
  14484. src1->grad,
  14485. ggml_reshape(ctx,
  14486. ggml_cont(ctx, tensor_grad_view),
  14487. src1->grad),
  14488. zero_table);
  14489. }
  14490. } break;
  14491. case GGML_OP_SUB:
  14492. {
  14493. if (src0->grad) {
  14494. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14495. }
  14496. if (src1->grad) {
  14497. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14498. }
  14499. } break;
  14500. case GGML_OP_MUL:
  14501. {
  14502. if (src0->grad) {
  14503. src0->grad =
  14504. ggml_add_or_set(ctx,
  14505. src0->grad,
  14506. ggml_mul(ctx, src1, tensor->grad),
  14507. zero_table);
  14508. }
  14509. if (src1->grad) {
  14510. src1->grad =
  14511. ggml_add_or_set(ctx,
  14512. src1->grad,
  14513. ggml_mul(ctx, src0, tensor->grad),
  14514. zero_table);
  14515. }
  14516. } break;
  14517. case GGML_OP_DIV:
  14518. {
  14519. if (src0->grad) {
  14520. src0->grad =
  14521. ggml_add_or_set(ctx,
  14522. src0->grad,
  14523. ggml_div(ctx, tensor->grad, src1),
  14524. zero_table);
  14525. }
  14526. if (src1->grad) {
  14527. src1->grad =
  14528. ggml_sub_or_set(ctx,
  14529. src1->grad,
  14530. ggml_mul(ctx,
  14531. tensor->grad,
  14532. ggml_div(ctx, tensor, src1)),
  14533. zero_table);
  14534. }
  14535. } break;
  14536. case GGML_OP_SQR:
  14537. {
  14538. if (src0->grad) {
  14539. src0->grad =
  14540. ggml_add_or_set(ctx,
  14541. src0->grad,
  14542. ggml_scale(ctx,
  14543. ggml_mul(ctx, src0, tensor->grad),
  14544. 2.0f),
  14545. zero_table);
  14546. }
  14547. } break;
  14548. case GGML_OP_SQRT:
  14549. {
  14550. if (src0->grad) {
  14551. src0->grad =
  14552. ggml_add_or_set(ctx,
  14553. src0->grad,
  14554. ggml_scale(ctx,
  14555. ggml_div(ctx,
  14556. tensor->grad,
  14557. tensor),
  14558. 0.5f),
  14559. zero_table);
  14560. }
  14561. } break;
  14562. case GGML_OP_LOG:
  14563. {
  14564. if (src0->grad) {
  14565. src0->grad =
  14566. ggml_add_or_set(ctx,
  14567. src0->grad,
  14568. ggml_div(ctx,
  14569. tensor->grad,
  14570. src0),
  14571. zero_table);
  14572. }
  14573. } break;
  14574. case GGML_OP_SUM:
  14575. {
  14576. if (src0->grad) {
  14577. src0->grad =
  14578. ggml_add1_or_set(ctx,
  14579. src0->grad,
  14580. tensor->grad,
  14581. zero_table);
  14582. }
  14583. } break;
  14584. case GGML_OP_SUM_ROWS:
  14585. {
  14586. if (src0->grad) {
  14587. src0->grad =
  14588. ggml_add_or_set(ctx,
  14589. src0->grad,
  14590. ggml_repeat(ctx,
  14591. tensor->grad,
  14592. src0->grad),
  14593. zero_table);
  14594. }
  14595. } break;
  14596. case GGML_OP_MEAN:
  14597. case GGML_OP_ARGMAX:
  14598. {
  14599. GGML_ASSERT(false); // TODO: implement
  14600. } break;
  14601. case GGML_OP_REPEAT:
  14602. {
  14603. // necessary for llama
  14604. if (src0->grad) {
  14605. src0->grad = ggml_add_or_set(ctx,
  14606. src0->grad,
  14607. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14608. zero_table);
  14609. }
  14610. } break;
  14611. case GGML_OP_REPEAT_BACK:
  14612. {
  14613. if (src0->grad) {
  14614. // TODO: test this
  14615. src0->grad = ggml_add_or_set(ctx,
  14616. src0->grad,
  14617. ggml_repeat(ctx, tensor->grad, src0->grad),
  14618. zero_table);
  14619. }
  14620. } break;
  14621. case GGML_OP_CONCAT:
  14622. {
  14623. GGML_ASSERT(false); // TODO: implement
  14624. } break;
  14625. case GGML_OP_SILU_BACK:
  14626. {
  14627. GGML_ASSERT(false); // TODO: not implemented
  14628. } break;
  14629. case GGML_OP_NORM:
  14630. {
  14631. GGML_ASSERT(false); // TODO: not implemented
  14632. } break;
  14633. case GGML_OP_RMS_NORM:
  14634. {
  14635. // necessary for llama
  14636. if (src0->grad) {
  14637. float eps;
  14638. memcpy(&eps, tensor->op_params, sizeof(float));
  14639. src0->grad = ggml_add_or_set(ctx,
  14640. src0->grad,
  14641. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14642. zero_table);
  14643. }
  14644. } break;
  14645. case GGML_OP_RMS_NORM_BACK:
  14646. {
  14647. GGML_ASSERT(false); // TODO: not implemented
  14648. } break;
  14649. case GGML_OP_GROUP_NORM:
  14650. {
  14651. GGML_ASSERT(false); // TODO: not implemented
  14652. } break;
  14653. case GGML_OP_MUL_MAT:
  14654. {
  14655. // https://cs231n.github.io/optimization-2/#staged
  14656. // # forward pass
  14657. // s0 = np.random.randn(5, 10)
  14658. // s1 = np.random.randn(10, 3)
  14659. // t = s0.dot(s1)
  14660. // # now suppose we had the gradient on t from above in the circuit
  14661. // dt = np.random.randn(*t.shape) # same shape as t
  14662. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14663. // ds1 = t.T.dot(dt)
  14664. // tensor.shape [m,p,qq,rr]
  14665. // src0.shape [n,m,q1,r1]
  14666. // src1.shape [n,p,qq,rr]
  14667. // necessary for llama
  14668. if (src0->grad) {
  14669. struct ggml_tensor * s1_tg =
  14670. ggml_out_prod(ctx, // [n,m,qq,rr]
  14671. src1, // [n,p,qq,rr]
  14672. tensor->grad); // [m,p,qq,rr]
  14673. const int64_t qq = s1_tg->ne[2];
  14674. const int64_t rr = s1_tg->ne[3];
  14675. const int64_t q1 = src0->ne[2];
  14676. const int64_t r1 = src0->ne[3];
  14677. const bool ne2_broadcasted = qq > q1;
  14678. const bool ne3_broadcasted = rr > r1;
  14679. if (ne2_broadcasted || ne3_broadcasted) {
  14680. // sum broadcast repetitions of s1_tg into shape of src0
  14681. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14682. }
  14683. src0->grad =
  14684. ggml_add_or_set(ctx,
  14685. src0->grad, // [n,m,q1,r1]
  14686. s1_tg, // [n,m,q1,r1]
  14687. zero_table);
  14688. }
  14689. if (src1->grad) {
  14690. src1->grad =
  14691. ggml_add_or_set(ctx,
  14692. src1->grad, // [n,p,qq,rr]
  14693. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14694. // ggml_cont(ctx, // [m,n,q1,r1]
  14695. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14696. // tensor->grad), // [m,p,qq,rr]
  14697. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14698. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14699. // // and then use ggml_out_prod
  14700. ggml_out_prod(ctx, // [n,p,qq,rr]
  14701. src0, // [n,m,q1,r1]
  14702. ggml_transpose(ctx, // [p,m,qq,rr]
  14703. tensor->grad)), // [m,p,qq,rr]
  14704. zero_table);
  14705. }
  14706. } break;
  14707. case GGML_OP_MUL_MAT_ID:
  14708. {
  14709. GGML_ASSERT(false); // TODO: not implemented
  14710. } break;
  14711. case GGML_OP_OUT_PROD:
  14712. {
  14713. GGML_ASSERT(false); // TODO: not implemented
  14714. } break;
  14715. case GGML_OP_SCALE:
  14716. {
  14717. // necessary for llama
  14718. if (src0->grad) {
  14719. float s;
  14720. memcpy(&s, tensor->op_params, sizeof(float));
  14721. src0->grad =
  14722. ggml_add_or_set(ctx,
  14723. src0->grad,
  14724. ggml_scale_impl(ctx, tensor->grad, s, false),
  14725. zero_table);
  14726. }
  14727. } break;
  14728. case GGML_OP_SET:
  14729. {
  14730. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14731. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14732. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14733. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14734. struct ggml_tensor * tensor_grad_view = NULL;
  14735. if (src0->grad || src1->grad) {
  14736. GGML_ASSERT(src0->type == tensor->type);
  14737. GGML_ASSERT(tensor->grad->type == tensor->type);
  14738. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14739. tensor_grad_view = ggml_view_4d(ctx,
  14740. tensor->grad,
  14741. src1->grad->ne[0],
  14742. src1->grad->ne[1],
  14743. src1->grad->ne[2],
  14744. src1->grad->ne[3],
  14745. nb1, nb2, nb3, offset);
  14746. }
  14747. if (src0->grad) {
  14748. src0->grad = ggml_add_or_set(ctx,
  14749. src0->grad,
  14750. ggml_acc_impl(ctx,
  14751. tensor->grad,
  14752. ggml_neg(ctx, tensor_grad_view),
  14753. nb1, nb2, nb3, offset, false),
  14754. zero_table);
  14755. }
  14756. if (src1->grad) {
  14757. src1->grad =
  14758. ggml_add_or_set(ctx,
  14759. src1->grad,
  14760. ggml_reshape(ctx,
  14761. ggml_cont(ctx, tensor_grad_view),
  14762. src1->grad),
  14763. zero_table);
  14764. }
  14765. } break;
  14766. case GGML_OP_CPY:
  14767. {
  14768. // necessary for llama
  14769. // cpy overwrites value of src1 by src0 and returns view(src1)
  14770. // the overwriting is mathematically equivalent to:
  14771. // tensor = src0 * 1 + src1 * 0
  14772. if (src0->grad) {
  14773. // dsrc0 = dtensor * 1
  14774. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14775. }
  14776. if (src1->grad) {
  14777. // dsrc1 = dtensor * 0 -> noop
  14778. }
  14779. } break;
  14780. case GGML_OP_CONT:
  14781. {
  14782. // same as cpy
  14783. if (src0->grad) {
  14784. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14785. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14786. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14787. }
  14788. } break;
  14789. case GGML_OP_RESHAPE:
  14790. {
  14791. // necessary for llama
  14792. if (src0->grad) {
  14793. src0->grad =
  14794. ggml_add_or_set(ctx, src0->grad,
  14795. ggml_reshape(ctx,
  14796. ggml_is_contiguous(tensor->grad)
  14797. ? tensor->grad
  14798. : ggml_cont(ctx, tensor->grad),
  14799. src0->grad),
  14800. zero_table);
  14801. }
  14802. } break;
  14803. case GGML_OP_VIEW:
  14804. {
  14805. // necessary for llama
  14806. if (src0->grad) {
  14807. size_t offset;
  14808. memcpy(&offset, tensor->op_params, sizeof(offset));
  14809. size_t nb1 = tensor->nb[1];
  14810. size_t nb2 = tensor->nb[2];
  14811. size_t nb3 = tensor->nb[3];
  14812. if (src0->type != src0->grad->type) {
  14813. // gradient is typically F32, but src0 could be other type
  14814. size_t ng = ggml_element_size(src0->grad);
  14815. size_t n0 = ggml_element_size(src0);
  14816. GGML_ASSERT(offset % n0 == 0);
  14817. GGML_ASSERT(nb1 % n0 == 0);
  14818. GGML_ASSERT(nb2 % n0 == 0);
  14819. GGML_ASSERT(nb3 % n0 == 0);
  14820. offset = (offset / n0) * ng;
  14821. nb1 = (nb1 / n0) * ng;
  14822. nb2 = (nb2 / n0) * ng;
  14823. nb3 = (nb3 / n0) * ng;
  14824. }
  14825. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14826. }
  14827. } break;
  14828. case GGML_OP_PERMUTE:
  14829. {
  14830. // necessary for llama
  14831. if (src0->grad) {
  14832. int32_t * axes = (int32_t *) tensor->op_params;
  14833. int axis0 = axes[0] & 0x3;
  14834. int axis1 = axes[1] & 0x3;
  14835. int axis2 = axes[2] & 0x3;
  14836. int axis3 = axes[3] & 0x3;
  14837. int axes_backward[4] = {0,0,0,0};
  14838. axes_backward[axis0] = 0;
  14839. axes_backward[axis1] = 1;
  14840. axes_backward[axis2] = 2;
  14841. axes_backward[axis3] = 3;
  14842. src0->grad =
  14843. ggml_add_or_set(ctx, src0->grad,
  14844. ggml_permute(ctx,
  14845. tensor->grad,
  14846. axes_backward[0],
  14847. axes_backward[1],
  14848. axes_backward[2],
  14849. axes_backward[3]),
  14850. zero_table);
  14851. }
  14852. } break;
  14853. case GGML_OP_TRANSPOSE:
  14854. {
  14855. // necessary for llama
  14856. if (src0->grad) {
  14857. src0->grad =
  14858. ggml_add_or_set(ctx, src0->grad,
  14859. ggml_transpose(ctx, tensor->grad),
  14860. zero_table);
  14861. }
  14862. } break;
  14863. case GGML_OP_GET_ROWS:
  14864. {
  14865. // necessary for llama (only for tokenizer)
  14866. if (src0->grad) {
  14867. src0->grad =
  14868. ggml_add_or_set(ctx, src0->grad,
  14869. // last ggml_get_rows_back argument src0->grad is only
  14870. // necessary to setup correct output shape
  14871. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14872. zero_table);
  14873. }
  14874. if (src1->grad) {
  14875. // noop
  14876. }
  14877. } break;
  14878. case GGML_OP_GET_ROWS_BACK:
  14879. {
  14880. GGML_ASSERT(false); // TODO: not implemented
  14881. } break;
  14882. case GGML_OP_DIAG:
  14883. {
  14884. GGML_ASSERT(false); // TODO: not implemented
  14885. } break;
  14886. case GGML_OP_DIAG_MASK_INF:
  14887. {
  14888. // necessary for llama
  14889. if (src0->grad) {
  14890. const int n_past = ((int32_t *) tensor->op_params)[0];
  14891. src0->grad =
  14892. ggml_add_or_set(ctx, src0->grad,
  14893. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14894. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14895. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14896. zero_table);
  14897. }
  14898. } break;
  14899. case GGML_OP_DIAG_MASK_ZERO:
  14900. {
  14901. // necessary for llama
  14902. if (src0->grad) {
  14903. const int n_past = ((int32_t *) tensor->op_params)[0];
  14904. src0->grad =
  14905. ggml_add_or_set(ctx, src0->grad,
  14906. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14907. zero_table);
  14908. }
  14909. } break;
  14910. case GGML_OP_SOFT_MAX:
  14911. {
  14912. // necessary for llama
  14913. if (src0->grad) {
  14914. src0->grad =
  14915. ggml_add_or_set(ctx, src0->grad,
  14916. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14917. zero_table);
  14918. }
  14919. } break;
  14920. case GGML_OP_SOFT_MAX_BACK:
  14921. {
  14922. GGML_ASSERT(false); // TODO: not implemented
  14923. } break;
  14924. case GGML_OP_ROPE:
  14925. {
  14926. // necessary for llama
  14927. if (src0->grad) {
  14928. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14929. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14930. const int mode = ((int32_t *) tensor->op_params)[2];
  14931. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14932. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14933. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14934. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14935. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14936. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14937. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14938. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14939. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14940. src0->grad = ggml_add_or_set(ctx,
  14941. src0->grad,
  14942. ggml_rope_back(ctx,
  14943. tensor->grad,
  14944. src1,
  14945. src2,
  14946. n_dims,
  14947. mode,
  14948. n_ctx_orig,
  14949. freq_base,
  14950. freq_scale,
  14951. ext_factor,
  14952. attn_factor,
  14953. beta_fast,
  14954. beta_slow),
  14955. zero_table);
  14956. }
  14957. } break;
  14958. case GGML_OP_ROPE_BACK:
  14959. {
  14960. if (src0->grad) {
  14961. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14962. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14963. const int mode = ((int32_t *) tensor->op_params)[2];
  14964. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14965. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14966. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14967. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14968. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14969. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14970. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14971. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14972. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14973. src0->grad = ggml_add_or_set(ctx,
  14974. src0->grad,
  14975. ggml_rope_impl(ctx,
  14976. tensor->grad,
  14977. src1,
  14978. src2,
  14979. n_dims,
  14980. mode,
  14981. n_ctx_orig,
  14982. freq_base,
  14983. freq_scale,
  14984. ext_factor,
  14985. attn_factor,
  14986. beta_fast,
  14987. beta_slow,
  14988. false),
  14989. zero_table);
  14990. }
  14991. } break;
  14992. case GGML_OP_CLAMP:
  14993. {
  14994. GGML_ASSERT(false); // TODO: not implemented
  14995. } break;
  14996. case GGML_OP_CONV_TRANSPOSE_1D:
  14997. {
  14998. GGML_ASSERT(false); // TODO: not implemented
  14999. } break;
  15000. case GGML_OP_IM2COL:
  15001. {
  15002. GGML_ASSERT(false); // TODO: not implemented
  15003. } break;
  15004. case GGML_OP_CONV_TRANSPOSE_2D:
  15005. {
  15006. GGML_ASSERT(false); // TODO: not implemented
  15007. } break;
  15008. case GGML_OP_POOL_1D:
  15009. {
  15010. GGML_ASSERT(false); // TODO: not implemented
  15011. } break;
  15012. case GGML_OP_POOL_2D:
  15013. {
  15014. GGML_ASSERT(false); // TODO: not implemented
  15015. } break;
  15016. case GGML_OP_UPSCALE:
  15017. {
  15018. GGML_ASSERT(false); // TODO: not implemented
  15019. } break;
  15020. case GGML_OP_PAD:
  15021. {
  15022. GGML_ASSERT(false); // TODO: not implemented
  15023. } break;
  15024. case GGML_OP_ARANGE:
  15025. {
  15026. GGML_ASSERT(false); // TODO: not implemented
  15027. } break;
  15028. case GGML_OP_TIMESTEP_EMBEDDING:
  15029. {
  15030. GGML_ASSERT(false); // TODO: not implemented
  15031. } break;
  15032. case GGML_OP_ARGSORT:
  15033. {
  15034. GGML_ASSERT(false); // TODO: not implemented
  15035. } break;
  15036. case GGML_OP_LEAKY_RELU:
  15037. {
  15038. GGML_ASSERT(false); // TODO: not implemented
  15039. } break;
  15040. case GGML_OP_FLASH_ATTN_EXT:
  15041. {
  15042. struct ggml_tensor * flash_grad = NULL;
  15043. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15044. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15045. GGML_ASSERT(t == 0 || t == 1);
  15046. bool masked = t != 0;
  15047. flash_grad =
  15048. ggml_flash_attn_back(ctx,
  15049. src0,
  15050. src1,
  15051. tensor->src[2],
  15052. tensor->grad,
  15053. masked);
  15054. }
  15055. const int64_t elem_q = ggml_nelements(src0);
  15056. const int64_t elem_k = ggml_nelements(src1);
  15057. const int64_t elem_v = ggml_nelements(src2);
  15058. enum ggml_type result_type = flash_grad->type;
  15059. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15060. const size_t tsize = ggml_type_size(result_type);
  15061. const size_t offs_q = 0;
  15062. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15063. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15064. if (src0->grad) {
  15065. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15066. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15067. src0->grad = ggml_add_or_set(ctx,
  15068. src0->grad,
  15069. grad_q,
  15070. zero_table);
  15071. }
  15072. if (src1->grad) {
  15073. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15074. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15075. src1->grad = ggml_add_or_set(ctx,
  15076. src1->grad,
  15077. grad_k,
  15078. zero_table);
  15079. }
  15080. if (src2->grad) {
  15081. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15082. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15083. src2->grad = ggml_add_or_set(ctx,
  15084. src2->grad,
  15085. grad_v,
  15086. zero_table);
  15087. }
  15088. } break;
  15089. case GGML_OP_FLASH_ATTN_BACK:
  15090. {
  15091. GGML_ASSERT(false); // not supported
  15092. } break;
  15093. case GGML_OP_SSM_CONV:
  15094. case GGML_OP_SSM_SCAN:
  15095. {
  15096. GGML_ASSERT(false); // TODO: not implemented
  15097. } break;
  15098. case GGML_OP_WIN_PART:
  15099. case GGML_OP_WIN_UNPART:
  15100. case GGML_OP_UNARY:
  15101. {
  15102. switch (ggml_get_unary_op(tensor)) {
  15103. case GGML_UNARY_OP_ABS:
  15104. {
  15105. if (src0->grad) {
  15106. src0->grad =
  15107. ggml_add_or_set(ctx,
  15108. src0->grad,
  15109. ggml_mul(ctx,
  15110. ggml_sgn(ctx, src0),
  15111. tensor->grad),
  15112. zero_table);
  15113. }
  15114. } break;
  15115. case GGML_UNARY_OP_SGN:
  15116. {
  15117. if (src0->grad) {
  15118. // noop
  15119. }
  15120. } break;
  15121. case GGML_UNARY_OP_NEG:
  15122. {
  15123. if (src0->grad) {
  15124. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15125. }
  15126. } break;
  15127. case GGML_UNARY_OP_STEP:
  15128. {
  15129. if (src0->grad) {
  15130. // noop
  15131. }
  15132. } break;
  15133. case GGML_UNARY_OP_TANH:
  15134. {
  15135. GGML_ASSERT(false); // TODO: not implemented
  15136. } break;
  15137. case GGML_UNARY_OP_ELU:
  15138. {
  15139. GGML_ASSERT(false); // TODO: not implemented
  15140. } break;
  15141. case GGML_UNARY_OP_RELU:
  15142. {
  15143. if (src0->grad) {
  15144. src0->grad = ggml_add_or_set(ctx,
  15145. src0->grad,
  15146. ggml_mul(ctx,
  15147. ggml_step(ctx, src0),
  15148. tensor->grad),
  15149. zero_table);
  15150. }
  15151. } break;
  15152. case GGML_UNARY_OP_SIGMOID:
  15153. {
  15154. GGML_ASSERT(false); // TODO: not implemented
  15155. } break;
  15156. case GGML_UNARY_OP_GELU:
  15157. {
  15158. GGML_ASSERT(false); // TODO: not implemented
  15159. } break;
  15160. case GGML_UNARY_OP_GELU_QUICK:
  15161. {
  15162. GGML_ASSERT(false); // TODO: not implemented
  15163. } break;
  15164. case GGML_UNARY_OP_SILU:
  15165. {
  15166. // necessary for llama
  15167. if (src0->grad) {
  15168. src0->grad = ggml_add_or_set(ctx,
  15169. src0->grad,
  15170. ggml_silu_back(ctx, src0, tensor->grad),
  15171. zero_table);
  15172. }
  15173. } break;
  15174. default:
  15175. GGML_ASSERT(false);
  15176. }
  15177. } break;
  15178. case GGML_OP_GET_REL_POS:
  15179. case GGML_OP_ADD_REL_POS:
  15180. case GGML_OP_MAP_UNARY:
  15181. case GGML_OP_MAP_BINARY:
  15182. case GGML_OP_MAP_CUSTOM1_F32:
  15183. case GGML_OP_MAP_CUSTOM2_F32:
  15184. case GGML_OP_MAP_CUSTOM3_F32:
  15185. case GGML_OP_MAP_CUSTOM1:
  15186. case GGML_OP_MAP_CUSTOM2:
  15187. case GGML_OP_MAP_CUSTOM3:
  15188. {
  15189. GGML_ASSERT(false); // not supported
  15190. } break;
  15191. case GGML_OP_CROSS_ENTROPY_LOSS:
  15192. {
  15193. if (src0->grad) {
  15194. src0->grad = ggml_add_or_set(ctx,
  15195. src0->grad,
  15196. ggml_cross_entropy_loss_back(ctx,
  15197. src0,
  15198. src1,
  15199. tensor->grad),
  15200. zero_table);
  15201. }
  15202. } break;
  15203. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15204. {
  15205. GGML_ASSERT(false); // not supported
  15206. } break;
  15207. case GGML_OP_NONE:
  15208. {
  15209. // nop
  15210. } break;
  15211. case GGML_OP_COUNT:
  15212. {
  15213. GGML_ASSERT(false);
  15214. } break;
  15215. }
  15216. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15217. if (tensor->src[i] && tensor->src[i]->grad) {
  15218. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15219. }
  15220. }
  15221. }
  15222. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15223. if (node->grad == NULL) {
  15224. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15225. // it can also happen during forward pass, if the user performs computations with constants
  15226. if (node->op != GGML_OP_NONE) {
  15227. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15228. }
  15229. }
  15230. // check if already visited
  15231. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15232. return;
  15233. }
  15234. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15235. const int k =
  15236. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15237. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15238. /* unknown order, just fall back to using i*/ i;
  15239. if (node->src[k]) {
  15240. ggml_visit_parents(cgraph, node->src[k]);
  15241. }
  15242. }
  15243. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15244. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15245. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15246. if (strlen(node->name) == 0) {
  15247. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15248. }
  15249. cgraph->leafs[cgraph->n_leafs] = node;
  15250. cgraph->n_leafs++;
  15251. } else {
  15252. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15253. if (strlen(node->name) == 0) {
  15254. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15255. }
  15256. cgraph->nodes[cgraph->n_nodes] = node;
  15257. if (cgraph->grads) {
  15258. cgraph->grads[cgraph->n_nodes] = node->grad;
  15259. }
  15260. cgraph->n_nodes++;
  15261. }
  15262. }
  15263. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15264. if (!expand) {
  15265. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15266. ggml_graph_clear(cgraph);
  15267. }
  15268. const int n0 = cgraph->n_nodes;
  15269. UNUSED(n0);
  15270. ggml_visit_parents(cgraph, tensor);
  15271. const int n_new = cgraph->n_nodes - n0;
  15272. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15273. if (n_new > 0) {
  15274. // the last added node should always be starting point
  15275. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15276. }
  15277. }
  15278. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15279. ggml_build_forward_impl(cgraph, tensor, true);
  15280. }
  15281. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15282. GGML_ASSERT(gf->n_nodes > 0);
  15283. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15284. if (keep) {
  15285. for (int i = 0; i < gf->n_nodes; i++) {
  15286. struct ggml_tensor * node = gf->nodes[i];
  15287. if (node->grad) {
  15288. node->grad = ggml_dup_tensor(ctx, node);
  15289. gf->grads[i] = node->grad;
  15290. }
  15291. }
  15292. }
  15293. // remember original gradients which start with zero values
  15294. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15295. for (int i = 0; i < gf->n_nodes; i++) {
  15296. if (gf->grads[i]) {
  15297. ggml_hash_insert(zero_table, gf->grads[i]);
  15298. }
  15299. }
  15300. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15301. struct ggml_tensor * node = gf->nodes[i];
  15302. // inplace operations to add gradients are not created by ggml_compute_backward
  15303. // use allocator to automatically make inplace operations
  15304. if (node->grad) {
  15305. ggml_compute_backward(ctx, node, zero_table);
  15306. }
  15307. }
  15308. for (int i = 0; i < gf->n_nodes; i++) {
  15309. struct ggml_tensor * node = gf->nodes[i];
  15310. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15311. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15312. ggml_build_forward_expand(gb, node->grad);
  15313. }
  15314. }
  15315. ggml_hash_set_free(zero_table);
  15316. }
  15317. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15318. size_t nbytes = sizeof(struct ggml_cgraph);
  15319. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15320. if (grads) {
  15321. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15322. }
  15323. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15324. return nbytes;
  15325. }
  15326. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15327. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15328. }
  15329. size_t ggml_graph_overhead(void) {
  15330. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15331. }
  15332. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15333. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15334. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15335. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15336. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15337. size_t hash_size = ggml_hash_size(size * 2);
  15338. struct ggml_tensor ** nodes_ptr = data_start;
  15339. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15340. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15341. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15342. // check that we allocated the correct amount of memory
  15343. assert(obj_size == (size_t) (
  15344. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15345. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15346. *cgraph = (struct ggml_cgraph) {
  15347. /*.size =*/ size,
  15348. /*.n_nodes =*/ 0,
  15349. /*.n_leafs =*/ 0,
  15350. /*.nodes =*/ nodes_ptr,
  15351. /*.grads =*/ grads_ptr,
  15352. /*.leafs =*/ leafs_ptr,
  15353. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15354. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15355. /*.perf_runs =*/ 0,
  15356. /*.perf_cycles =*/ 0,
  15357. /*.perf_time_us =*/ 0,
  15358. };
  15359. return cgraph;
  15360. }
  15361. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15362. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15363. }
  15364. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15365. struct ggml_cgraph cgraph = {
  15366. /*.size =*/ 0,
  15367. /*.n_nodes =*/ i1 - i0,
  15368. /*.n_leafs =*/ 0,
  15369. /*.nodes =*/ cgraph0->nodes + i0,
  15370. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15371. /*.leafs =*/ NULL,
  15372. /*.hash_table =*/ { 0, NULL },
  15373. /*.order =*/ cgraph0->order,
  15374. /*.perf_runs =*/ 0,
  15375. /*.perf_cycles =*/ 0,
  15376. /*.perf_time_us =*/ 0,
  15377. };
  15378. return cgraph;
  15379. }
  15380. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15381. GGML_ASSERT(dst->size >= src->n_leafs);
  15382. GGML_ASSERT(dst->size >= src->n_nodes);
  15383. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15384. dst->n_leafs = src->n_leafs;
  15385. dst->n_nodes = src->n_nodes;
  15386. dst->order = src->order;
  15387. for (int i = 0; i < src->n_leafs; ++i) {
  15388. dst->leafs[i] = src->leafs[i];
  15389. }
  15390. for (int i = 0; i < src->n_nodes; ++i) {
  15391. dst->nodes[i] = src->nodes[i];
  15392. }
  15393. if (src->grads) {
  15394. GGML_ASSERT(dst->grads != NULL);
  15395. for (int i = 0; i < src->n_nodes; ++i) {
  15396. dst->grads[i] = src->grads[i];
  15397. }
  15398. }
  15399. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15400. if (src->visited_hash_table.keys[i]) {
  15401. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15402. }
  15403. }
  15404. }
  15405. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15406. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15407. ggml_graph_cpy(cgraph, result);
  15408. return result;
  15409. }
  15410. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15411. GGML_ASSERT(cgraph->grads != NULL);
  15412. for (int i = 0; i < cgraph->n_nodes; i++) {
  15413. struct ggml_tensor * grad = cgraph->grads[i];
  15414. if (grad) {
  15415. ggml_set_zero(grad);
  15416. }
  15417. }
  15418. }
  15419. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15420. cgraph->n_leafs = 0;
  15421. cgraph->n_nodes = 0;
  15422. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15423. }
  15424. //
  15425. // thread data
  15426. //
  15427. // synchronization is done via busy loops
  15428. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15429. //
  15430. #ifdef __APPLE__
  15431. //#include <os/lock.h>
  15432. //
  15433. //typedef os_unfair_lock ggml_lock_t;
  15434. //
  15435. //#define ggml_lock_init(x) UNUSED(x)
  15436. //#define ggml_lock_destroy(x) UNUSED(x)
  15437. //#define ggml_lock_lock os_unfair_lock_lock
  15438. //#define ggml_lock_unlock os_unfair_lock_unlock
  15439. //
  15440. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15441. typedef int ggml_lock_t;
  15442. #define ggml_lock_init(x) UNUSED(x)
  15443. #define ggml_lock_destroy(x) UNUSED(x)
  15444. #define ggml_lock_lock(x) UNUSED(x)
  15445. #define ggml_lock_unlock(x) UNUSED(x)
  15446. #define GGML_LOCK_INITIALIZER 0
  15447. #define ggml_thread_create pthread_create
  15448. #define ggml_thread_join pthread_join
  15449. #else
  15450. //typedef pthread_spinlock_t ggml_lock_t;
  15451. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15452. //#define ggml_lock_destroy pthread_spin_destroy
  15453. //#define ggml_lock_lock pthread_spin_lock
  15454. //#define ggml_lock_unlock pthread_spin_unlock
  15455. typedef int ggml_lock_t;
  15456. #define ggml_lock_init(x) UNUSED(x)
  15457. #define ggml_lock_destroy(x) UNUSED(x)
  15458. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15459. #define ggml_lock_lock(x) _mm_pause()
  15460. #else
  15461. #define ggml_lock_lock(x) UNUSED(x)
  15462. #endif
  15463. #define ggml_lock_unlock(x) UNUSED(x)
  15464. #define GGML_LOCK_INITIALIZER 0
  15465. #define ggml_thread_create pthread_create
  15466. #define ggml_thread_join pthread_join
  15467. #endif
  15468. // Android's libc implementation "bionic" does not support setting affinity
  15469. #if defined(__gnu_linux__)
  15470. static void set_numa_thread_affinity(int thread_n) {
  15471. if (!ggml_is_numa()) {
  15472. return;
  15473. }
  15474. int node_num;
  15475. int rv;
  15476. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15477. switch(g_state.numa.numa_strategy) {
  15478. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15479. // run thread on node_num thread_n / (threads per node)
  15480. node_num = thread_n % g_state.numa.n_nodes;
  15481. break;
  15482. case GGML_NUMA_STRATEGY_ISOLATE:
  15483. // run thread on current_node
  15484. node_num = g_state.numa.current_node;
  15485. break;
  15486. case GGML_NUMA_STRATEGY_NUMACTL:
  15487. // use the cpuset that numactl gave us
  15488. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15489. if (rv) {
  15490. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15491. }
  15492. return;
  15493. default:
  15494. return;
  15495. }
  15496. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15497. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15498. CPU_ZERO_S(setsize, cpus);
  15499. for (size_t i = 0; i < node->n_cpus; ++i) {
  15500. CPU_SET_S(node->cpus[i], setsize, cpus);
  15501. }
  15502. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15503. if (rv) {
  15504. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15505. }
  15506. CPU_FREE(cpus);
  15507. }
  15508. static void clear_numa_thread_affinity(void) {
  15509. if (!ggml_is_numa()) {
  15510. return;
  15511. }
  15512. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15513. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15514. CPU_ZERO_S(setsize, cpus);
  15515. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15516. CPU_SET_S(i, setsize, cpus);
  15517. }
  15518. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15519. if (rv) {
  15520. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15521. }
  15522. CPU_FREE(cpus);
  15523. }
  15524. #else
  15525. // TODO: Windows etc.
  15526. // (the linux implementation may also work on BSD, someone should test)
  15527. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15528. static void clear_numa_thread_affinity(void) {}
  15529. #endif
  15530. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15531. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15532. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15533. node->perf_runs++;
  15534. node->perf_cycles += cycles_cur;
  15535. node->perf_time_us += time_us_cur;
  15536. }
  15537. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15538. int n_tasks = 0;
  15539. if (ggml_is_empty(node)) {
  15540. // no need to multi-thread a no-op
  15541. n_tasks = 1;
  15542. return n_tasks;
  15543. }
  15544. switch (node->op) {
  15545. case GGML_OP_CPY:
  15546. case GGML_OP_DUP:
  15547. case GGML_OP_ADD:
  15548. case GGML_OP_ADD1:
  15549. case GGML_OP_ACC:
  15550. {
  15551. n_tasks = n_threads;
  15552. } break;
  15553. case GGML_OP_SUB:
  15554. case GGML_OP_SQR:
  15555. case GGML_OP_SQRT:
  15556. case GGML_OP_LOG:
  15557. case GGML_OP_SUM:
  15558. case GGML_OP_SUM_ROWS:
  15559. case GGML_OP_MEAN:
  15560. case GGML_OP_ARGMAX:
  15561. case GGML_OP_REPEAT:
  15562. case GGML_OP_REPEAT_BACK:
  15563. case GGML_OP_LEAKY_RELU:
  15564. {
  15565. n_tasks = 1;
  15566. } break;
  15567. case GGML_OP_UNARY:
  15568. switch (ggml_get_unary_op(node)) {
  15569. case GGML_UNARY_OP_ABS:
  15570. case GGML_UNARY_OP_SGN:
  15571. case GGML_UNARY_OP_NEG:
  15572. case GGML_UNARY_OP_STEP:
  15573. case GGML_UNARY_OP_TANH:
  15574. case GGML_UNARY_OP_ELU:
  15575. case GGML_UNARY_OP_RELU:
  15576. case GGML_UNARY_OP_SIGMOID:
  15577. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15578. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15579. {
  15580. n_tasks = 1;
  15581. } break;
  15582. case GGML_UNARY_OP_GELU:
  15583. case GGML_UNARY_OP_GELU_QUICK:
  15584. case GGML_UNARY_OP_SILU:
  15585. {
  15586. n_tasks = n_threads;
  15587. } break;
  15588. default:
  15589. GGML_ASSERT(false);
  15590. }
  15591. break;
  15592. case GGML_OP_SILU_BACK:
  15593. case GGML_OP_MUL:
  15594. case GGML_OP_DIV:
  15595. case GGML_OP_NORM:
  15596. case GGML_OP_RMS_NORM:
  15597. case GGML_OP_RMS_NORM_BACK:
  15598. case GGML_OP_GROUP_NORM:
  15599. case GGML_OP_CONCAT:
  15600. {
  15601. n_tasks = n_threads;
  15602. } break;
  15603. case GGML_OP_MUL_MAT:
  15604. {
  15605. n_tasks = n_threads;
  15606. // TODO: use different scheduling for different matrix sizes
  15607. //const int nr0 = ggml_nrows(node->src[0]);
  15608. //const int nr1 = ggml_nrows(node->src[1]);
  15609. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15610. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15611. } break;
  15612. case GGML_OP_MUL_MAT_ID:
  15613. {
  15614. n_tasks = n_threads;
  15615. } break;
  15616. case GGML_OP_OUT_PROD:
  15617. {
  15618. n_tasks = n_threads;
  15619. } break;
  15620. case GGML_OP_GET_ROWS:
  15621. {
  15622. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15623. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15624. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15625. } break;
  15626. case GGML_OP_SCALE:
  15627. case GGML_OP_SET:
  15628. case GGML_OP_CONT:
  15629. case GGML_OP_RESHAPE:
  15630. case GGML_OP_VIEW:
  15631. case GGML_OP_PERMUTE:
  15632. case GGML_OP_TRANSPOSE:
  15633. case GGML_OP_GET_ROWS_BACK:
  15634. case GGML_OP_DIAG:
  15635. {
  15636. n_tasks = 1;
  15637. } break;
  15638. case GGML_OP_DIAG_MASK_ZERO:
  15639. case GGML_OP_DIAG_MASK_INF:
  15640. case GGML_OP_SOFT_MAX_BACK:
  15641. case GGML_OP_ROPE:
  15642. case GGML_OP_ROPE_BACK:
  15643. case GGML_OP_ADD_REL_POS:
  15644. {
  15645. n_tasks = n_threads;
  15646. } break;
  15647. case GGML_OP_CLAMP:
  15648. {
  15649. n_tasks = 1; //TODO
  15650. } break;
  15651. case GGML_OP_SOFT_MAX:
  15652. {
  15653. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15654. } break;
  15655. case GGML_OP_CONV_TRANSPOSE_1D:
  15656. {
  15657. n_tasks = n_threads;
  15658. } break;
  15659. case GGML_OP_IM2COL:
  15660. {
  15661. n_tasks = n_threads;
  15662. } break;
  15663. case GGML_OP_CONV_TRANSPOSE_2D:
  15664. {
  15665. n_tasks = n_threads;
  15666. } break;
  15667. case GGML_OP_POOL_1D:
  15668. case GGML_OP_POOL_2D:
  15669. {
  15670. n_tasks = 1;
  15671. } break;
  15672. case GGML_OP_UPSCALE:
  15673. {
  15674. n_tasks = n_threads;
  15675. } break;
  15676. case GGML_OP_PAD:
  15677. {
  15678. n_tasks = n_threads;
  15679. } break;
  15680. case GGML_OP_ARANGE:
  15681. {
  15682. n_tasks = n_threads;
  15683. } break;
  15684. case GGML_OP_TIMESTEP_EMBEDDING:
  15685. {
  15686. n_tasks = n_threads;
  15687. } break;
  15688. case GGML_OP_ARGSORT:
  15689. {
  15690. n_tasks = n_threads;
  15691. } break;
  15692. case GGML_OP_FLASH_ATTN_EXT:
  15693. {
  15694. n_tasks = n_threads;
  15695. } break;
  15696. case GGML_OP_FLASH_ATTN_BACK:
  15697. {
  15698. n_tasks = n_threads;
  15699. } break;
  15700. case GGML_OP_SSM_CONV:
  15701. case GGML_OP_SSM_SCAN:
  15702. {
  15703. n_tasks = n_threads;
  15704. } break;
  15705. case GGML_OP_WIN_PART:
  15706. case GGML_OP_WIN_UNPART:
  15707. case GGML_OP_GET_REL_POS:
  15708. case GGML_OP_MAP_UNARY:
  15709. case GGML_OP_MAP_BINARY:
  15710. case GGML_OP_MAP_CUSTOM1_F32:
  15711. case GGML_OP_MAP_CUSTOM2_F32:
  15712. case GGML_OP_MAP_CUSTOM3_F32:
  15713. {
  15714. n_tasks = 1;
  15715. } break;
  15716. case GGML_OP_MAP_CUSTOM1:
  15717. {
  15718. struct ggml_map_custom1_op_params p;
  15719. memcpy(&p, node->op_params, sizeof(p));
  15720. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15721. n_tasks = n_threads;
  15722. } else {
  15723. n_tasks = MIN(p.n_tasks, n_threads);
  15724. }
  15725. } break;
  15726. case GGML_OP_MAP_CUSTOM2:
  15727. {
  15728. struct ggml_map_custom2_op_params p;
  15729. memcpy(&p, node->op_params, sizeof(p));
  15730. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15731. n_tasks = n_threads;
  15732. } else {
  15733. n_tasks = MIN(p.n_tasks, n_threads);
  15734. }
  15735. } break;
  15736. case GGML_OP_MAP_CUSTOM3:
  15737. {
  15738. struct ggml_map_custom3_op_params p;
  15739. memcpy(&p, node->op_params, sizeof(p));
  15740. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15741. n_tasks = n_threads;
  15742. } else {
  15743. n_tasks = MIN(p.n_tasks, n_threads);
  15744. }
  15745. } break;
  15746. case GGML_OP_CROSS_ENTROPY_LOSS:
  15747. {
  15748. n_tasks = n_threads;
  15749. } break;
  15750. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15751. {
  15752. n_tasks = n_threads;
  15753. } break;
  15754. case GGML_OP_NONE:
  15755. {
  15756. n_tasks = 1;
  15757. } break;
  15758. case GGML_OP_COUNT:
  15759. {
  15760. GGML_ASSERT(false);
  15761. } break;
  15762. default:
  15763. {
  15764. fprintf(stderr, "%s: op not implemented: ", __func__);
  15765. if (node->op < GGML_OP_COUNT) {
  15766. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15767. } else {
  15768. fprintf(stderr, "%d\n", node->op);
  15769. }
  15770. GGML_ASSERT(false);
  15771. } break;
  15772. }
  15773. assert(n_tasks > 0);
  15774. return n_tasks;
  15775. }
  15776. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15777. // wait for other threads to finish
  15778. const int last_node_n = * node_n;
  15779. while (true) {
  15780. if (do_yield) {
  15781. sched_yield();
  15782. }
  15783. * node_n = atomic_load(&state->shared->node_n);
  15784. if (* node_n != last_node_n) break;
  15785. #if defined(__SSE3__)
  15786. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15787. _mm_pause();
  15788. #endif
  15789. }
  15790. }
  15791. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15792. // wait for other threads to finish
  15793. const int last_task_phase = * task_phase;
  15794. while (true) {
  15795. if (do_yield) {
  15796. sched_yield();
  15797. }
  15798. * task_phase = atomic_load(&state->shared->node_task);
  15799. if (* task_phase != last_task_phase) break;
  15800. #if defined(__SSE3__)
  15801. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15802. _mm_pause();
  15803. #endif
  15804. }
  15805. }
  15806. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15807. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15808. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15809. const struct ggml_cplan * cplan = state->shared->cplan;
  15810. const int n_threads = state->shared->n_threads;
  15811. set_numa_thread_affinity(state->ith);
  15812. int node_n = -1;
  15813. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15814. while (true) {
  15815. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15816. state->shared->node_n += 1;
  15817. state->ec = GGML_STATUS_ABORTED;
  15818. return 0;
  15819. }
  15820. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15821. // all other threads are finished and spinning
  15822. // do finalize and init here so we don't have synchronize again
  15823. struct ggml_compute_params params = {
  15824. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15825. /*.ith =*/ 0,
  15826. /*.nth =*/ 0,
  15827. /*.wsize =*/ cplan->work_size,
  15828. /*.wdata =*/ cplan->work_data,
  15829. };
  15830. if (node_n != -1) {
  15831. /* FINALIZE */
  15832. struct ggml_tensor * node = cgraph->nodes[node_n];
  15833. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15834. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15835. ggml_compute_forward(&params, node, state);
  15836. }
  15837. ggml_graph_compute_perf_stats_node(node, state->shared);
  15838. }
  15839. // distribute new work or execute it direct if 1T
  15840. while (++node_n < cgraph->n_nodes) {
  15841. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15842. struct ggml_tensor * node = cgraph->nodes[node_n];
  15843. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15844. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15845. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15846. params.nth = n_tasks;
  15847. if (n_tasks == 1) {
  15848. /* INIT */
  15849. if (GGML_OP_HAS_INIT[node->op]) {
  15850. params.type = GGML_TASK_TYPE_INIT;
  15851. ggml_compute_forward(&params, node, state);
  15852. }
  15853. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15854. // they do something more efficient than spinning (?)
  15855. params.type = GGML_TASK_TYPE_COMPUTE;
  15856. ggml_compute_forward(&params, node, state);
  15857. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15858. params.type = GGML_TASK_TYPE_FINALIZE;
  15859. ggml_compute_forward(&params, node, state);
  15860. }
  15861. ggml_graph_compute_perf_stats_node(node, state->shared);
  15862. } else {
  15863. break;
  15864. }
  15865. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15866. break;
  15867. }
  15868. }
  15869. task_phase = GGML_TASK_TYPE_INIT;
  15870. atomic_store(&state->shared->n_active, n_threads);
  15871. atomic_store(&state->shared->node_n, node_n);
  15872. atomic_store(&state->shared->node_task, task_phase);
  15873. } else {
  15874. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15875. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15876. }
  15877. // check if we should stop
  15878. if (node_n >= cgraph->n_nodes) break;
  15879. /* INIT & COMPUTE */
  15880. struct ggml_tensor * node = cgraph->nodes[node_n];
  15881. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15882. struct ggml_compute_params params = {
  15883. /*.type =*/ GGML_TASK_TYPE_INIT,
  15884. /*.ith =*/ state->ith,
  15885. /*.nth =*/ n_tasks,
  15886. /*.wsize =*/ cplan->work_size,
  15887. /*.wdata =*/ cplan->work_data,
  15888. };
  15889. if (state->ith < n_tasks) {
  15890. if (GGML_OP_HAS_INIT[node->op]) {
  15891. ggml_compute_forward(&params, node, state);
  15892. }
  15893. }
  15894. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15895. task_phase = GGML_TASK_TYPE_COMPUTE;
  15896. atomic_store(&state->shared->n_active, n_threads);
  15897. atomic_store(&state->shared->node_task, task_phase);
  15898. }
  15899. else {
  15900. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15901. // depending on the workload and the operating system.
  15902. // since it is not clear what is the best approach, it should potentially become user-configurable
  15903. // ref: https://github.com/ggerganov/ggml/issues/291
  15904. // UPD: adding the do_yield flag seems to resolve the issue universally
  15905. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15906. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15907. }
  15908. if (state->ith < n_tasks) {
  15909. params.type = GGML_TASK_TYPE_COMPUTE;
  15910. ggml_compute_forward(&params, node, state);
  15911. }
  15912. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15913. task_phase = GGML_TASK_TYPE_FINALIZE;
  15914. atomic_store(&state->shared->n_active, n_threads);
  15915. atomic_store(&state->shared->node_task, task_phase);
  15916. }
  15917. else {
  15918. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15919. }
  15920. }
  15921. return 0;
  15922. }
  15923. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15924. if (n_threads <= 0) {
  15925. n_threads = GGML_DEFAULT_N_THREADS;
  15926. }
  15927. size_t work_size = 0;
  15928. struct ggml_cplan cplan;
  15929. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15930. int max_tasks = 1;
  15931. // thread scheduling for the different operations + work buffer size estimation
  15932. for (int i = 0; i < cgraph->n_nodes; i++) {
  15933. struct ggml_tensor * node = cgraph->nodes[i];
  15934. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15935. max_tasks = MAX(max_tasks, n_tasks);
  15936. size_t cur = 0;
  15937. switch (node->op) {
  15938. case GGML_OP_CPY:
  15939. case GGML_OP_DUP:
  15940. {
  15941. if (ggml_is_quantized(node->type) ||
  15942. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15943. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15944. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15945. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15946. }
  15947. } break;
  15948. case GGML_OP_ADD:
  15949. case GGML_OP_ADD1:
  15950. {
  15951. if (ggml_is_quantized(node->src[0]->type)) {
  15952. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15953. }
  15954. } break;
  15955. case GGML_OP_ACC:
  15956. {
  15957. if (ggml_is_quantized(node->src[0]->type)) {
  15958. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15959. }
  15960. } break;
  15961. case GGML_OP_MUL_MAT:
  15962. {
  15963. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15964. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15965. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15966. if (node->src[0]->type != GGML_TYPE_F32) {
  15967. // here we need memory for fully dequantized matrix from src0
  15968. // take into account that src0 can be broadcasted into src1[2,3]
  15969. cur = ggml_type_size(GGML_TYPE_F32)
  15970. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15971. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15972. }
  15973. } else
  15974. #endif
  15975. if (node->src[1]->type != vec_dot_type) {
  15976. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15977. }
  15978. } break;
  15979. case GGML_OP_MUL_MAT_ID:
  15980. {
  15981. cur = 0;
  15982. const struct ggml_tensor * src0 = node->src[0];
  15983. const struct ggml_tensor * src1 = node->src[1];
  15984. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15985. if (src1->type != vec_dot_type) {
  15986. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15987. }
  15988. const int n_as = src0->ne[2];
  15989. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15990. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15991. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15992. } break;
  15993. case GGML_OP_OUT_PROD:
  15994. {
  15995. if (ggml_is_quantized(node->src[0]->type)) {
  15996. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15997. }
  15998. } break;
  15999. case GGML_OP_SOFT_MAX:
  16000. case GGML_OP_ROPE:
  16001. {
  16002. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16003. } break;
  16004. case GGML_OP_CONV_TRANSPOSE_1D:
  16005. {
  16006. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16007. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16008. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16009. const int64_t ne00 = node->src[0]->ne[0]; // K
  16010. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16011. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16012. const int64_t ne10 = node->src[1]->ne[0]; // L
  16013. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16014. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16015. node->src[0]->type == GGML_TYPE_BF16) &&
  16016. node->src[1]->type == GGML_TYPE_F32) {
  16017. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16018. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16019. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16020. node->src[1]->type == GGML_TYPE_F32) {
  16021. cur += sizeof(float)*ne00*ne01*ne02;
  16022. cur += sizeof(float)*ne10*ne11;
  16023. } else {
  16024. GGML_ASSERT(false);
  16025. }
  16026. } break;
  16027. case GGML_OP_CONV_TRANSPOSE_2D:
  16028. {
  16029. const int64_t ne00 = node->src[0]->ne[0]; // W
  16030. const int64_t ne01 = node->src[0]->ne[1]; // H
  16031. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16032. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16033. const int64_t ne10 = node->src[1]->ne[0]; // W
  16034. const int64_t ne11 = node->src[1]->ne[1]; // H
  16035. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16036. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16037. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16038. } break;
  16039. case GGML_OP_FLASH_ATTN_EXT:
  16040. {
  16041. const int64_t ne00 = node->src[0]->ne[0]; // D
  16042. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16043. } break;
  16044. case GGML_OP_FLASH_ATTN_BACK:
  16045. {
  16046. const int64_t D = node->src[0]->ne[0];
  16047. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16048. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16049. if (node->src[1]->type == GGML_TYPE_F32) {
  16050. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16051. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16052. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16053. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16054. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16055. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16056. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16057. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16058. }
  16059. } break;
  16060. case GGML_OP_CROSS_ENTROPY_LOSS:
  16061. {
  16062. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16063. } break;
  16064. case GGML_OP_COUNT:
  16065. {
  16066. GGML_ASSERT(false);
  16067. } break;
  16068. default:
  16069. break;
  16070. }
  16071. work_size = MAX(work_size, cur);
  16072. }
  16073. if (work_size > 0) {
  16074. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16075. }
  16076. cplan.n_threads = MIN(max_tasks, n_threads);
  16077. cplan.work_size = work_size;
  16078. cplan.work_data = NULL;
  16079. return cplan;
  16080. }
  16081. static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
  16082. enum ggml_status compute_status = GGML_STATUS_SUCCESS;
  16083. #ifdef GGML_USE_OPENMP
  16084. if (n_threads > 1) {
  16085. #pragma omp parallel num_threads(n_threads)
  16086. {
  16087. #pragma omp single
  16088. {
  16089. // update the number of threads from the actual number of threads that we got from OpenMP
  16090. n_threads = omp_get_num_threads();
  16091. workers[0].shared->n_threads = n_threads;
  16092. workers[0].shared->n_active = n_threads;
  16093. }
  16094. ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
  16095. }
  16096. } else {
  16097. ggml_graph_compute_thread(&workers[0]);
  16098. }
  16099. #else
  16100. // create thread pool
  16101. if (n_threads > 1) {
  16102. for (int j = 1; j < n_threads; ++j) {
  16103. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16104. GGML_ASSERT(rc == 0);
  16105. UNUSED(rc);
  16106. }
  16107. }
  16108. // this is a work thread too
  16109. ggml_graph_compute_thread(&workers[0]);
  16110. // join or kill thread pool
  16111. if (n_threads > 1) {
  16112. for (int j = 1; j < n_threads; j++) {
  16113. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16114. GGML_ASSERT(rc == 0);
  16115. UNUSED(rc);
  16116. }
  16117. }
  16118. #endif
  16119. // don't leave affinity set on the main thread
  16120. clear_numa_thread_affinity();
  16121. for (int j = 0; j < n_threads; j++) {
  16122. if (workers[j].ec != GGML_STATUS_SUCCESS) {
  16123. compute_status = workers[j].ec;
  16124. break;
  16125. }
  16126. }
  16127. return compute_status;
  16128. }
  16129. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16130. {
  16131. GGML_ASSERT(cplan);
  16132. GGML_ASSERT(cplan->n_threads > 0);
  16133. if (cplan->work_size > 0) {
  16134. GGML_ASSERT(cplan->work_data);
  16135. }
  16136. }
  16137. int n_threads = cplan->n_threads;
  16138. #if defined(GGML_USE_OPENMP)
  16139. n_threads = MIN(n_threads, omp_get_max_threads());
  16140. #endif
  16141. struct ggml_compute_state_shared state_shared = {
  16142. /*.cgraph =*/ cgraph,
  16143. /*.cgraph_plan =*/ cplan,
  16144. /*.perf_node_start_cycles =*/ 0,
  16145. /*.perf_node_start_time_us =*/ 0,
  16146. /*.n_threads =*/ n_threads,
  16147. /*.n_active =*/ n_threads,
  16148. /*.node_n =*/ -1,
  16149. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16150. /*.abort_callback =*/ NULL,
  16151. /*.abort_callback_data =*/ NULL,
  16152. /*.current_chunk; =*/ 0,
  16153. };
  16154. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16155. const int64_t perf_start_cycles = ggml_perf_cycles();
  16156. const int64_t perf_start_time_us = ggml_perf_time_us();
  16157. for (int j = 0; j < n_threads; ++j) {
  16158. workers[j] = (struct ggml_compute_state) {
  16159. .thrd = 0,
  16160. .ith = j,
  16161. .shared = &state_shared,
  16162. .ec = GGML_STATUS_SUCCESS,
  16163. };
  16164. }
  16165. enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
  16166. // performance stats (graph)
  16167. {
  16168. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16169. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16170. cgraph->perf_runs++;
  16171. cgraph->perf_cycles += perf_cycles_cur;
  16172. cgraph->perf_time_us += perf_time_us_cur;
  16173. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16174. __func__, cgraph->perf_runs,
  16175. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16176. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16177. (double) perf_time_us_cur / 1000.0,
  16178. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16179. }
  16180. return compute_status;
  16181. }
  16182. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16183. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16184. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16185. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16186. return ggml_graph_compute(cgraph, &cplan);
  16187. }
  16188. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16189. for (int i = 0; i < cgraph->n_leafs; i++) {
  16190. struct ggml_tensor * leaf = cgraph->leafs[i];
  16191. if (strcmp(leaf->name, name) == 0) {
  16192. return leaf;
  16193. }
  16194. }
  16195. for (int i = 0; i < cgraph->n_nodes; i++) {
  16196. struct ggml_tensor * node = cgraph->nodes[i];
  16197. if (strcmp(node->name, name) == 0) {
  16198. return node;
  16199. }
  16200. }
  16201. return NULL;
  16202. }
  16203. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16204. const int64_t * ne = tensor->ne;
  16205. const size_t * nb = tensor->nb;
  16206. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16207. ggml_type_name(tensor->type),
  16208. ggml_op_name (tensor->op),
  16209. ggml_n_dims(tensor),
  16210. ne[0], ne[1], ne[2], ne[3],
  16211. nb[0], nb[1], nb[2], nb[3],
  16212. tensor->data,
  16213. tensor->name);
  16214. }
  16215. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16216. const int64_t * ne = tensor->ne;
  16217. const size_t * nb = tensor->nb;
  16218. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16219. arg,
  16220. ggml_type_name(tensor->type),
  16221. ggml_op_name (tensor->op),
  16222. ggml_n_dims(tensor),
  16223. ne[0], ne[1], ne[2], ne[3],
  16224. nb[0], nb[1], nb[2], nb[3],
  16225. tensor->data,
  16226. tensor->name);
  16227. }
  16228. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16229. uint64_t size_eval = 0;
  16230. // compute size of intermediate results
  16231. // TODO: does not take into account scratch buffers !!!!
  16232. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16233. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16234. }
  16235. // print
  16236. {
  16237. FILE * fout = stdout;
  16238. fprintf(fout, "\n");
  16239. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16240. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16241. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16242. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16243. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16244. // header
  16245. fprintf(fout, "\n");
  16246. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16247. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16248. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16249. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16250. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16251. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16252. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16253. }
  16254. // header
  16255. fprintf(fout, "\n");
  16256. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16257. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16258. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16259. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16260. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16261. if (cgraph->nodes[i]->src[j]) {
  16262. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16263. }
  16264. }
  16265. fprintf(fout, "\n");
  16266. }
  16267. fprintf(fout, "\n");
  16268. }
  16269. // write binary data
  16270. {
  16271. FILE * fout = ggml_fopen(fname, "wb");
  16272. if (!fout) {
  16273. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16274. return;
  16275. }
  16276. // header
  16277. {
  16278. const uint32_t magic = GGML_FILE_MAGIC;
  16279. const uint32_t version = GGML_FILE_VERSION;
  16280. const uint32_t n_leafs = cgraph->n_leafs;
  16281. const uint32_t n_nodes = cgraph->n_nodes;
  16282. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16283. fwrite(&version, sizeof(uint32_t), 1, fout);
  16284. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16285. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16286. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16287. }
  16288. // leafs
  16289. {
  16290. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16291. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16292. const uint32_t type = tensor->type;
  16293. const uint32_t op = tensor->op;
  16294. fwrite(&type, sizeof(uint32_t), 1, fout);
  16295. fwrite(&op, sizeof(uint32_t), 1, fout);
  16296. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16297. const uint64_t ne = tensor->ne[j];
  16298. const uint64_t nb = tensor->nb[j];
  16299. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16300. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16301. }
  16302. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16303. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16304. // dump the data
  16305. // TODO: pad this to 32 byte boundary
  16306. {
  16307. const size_t size = ggml_nbytes(tensor);
  16308. fwrite(tensor->data, sizeof(char), size, fout);
  16309. }
  16310. }
  16311. }
  16312. // nodes
  16313. {
  16314. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16315. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16316. const uint32_t type = tensor->type;
  16317. const uint32_t op = tensor->op;
  16318. fwrite(&type, sizeof(uint32_t), 1, fout);
  16319. fwrite(&op, sizeof(uint32_t), 1, fout);
  16320. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16321. const uint64_t ne = tensor->ne[j];
  16322. const uint64_t nb = tensor->nb[j];
  16323. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16324. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16325. }
  16326. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16327. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16328. // output the op arguments
  16329. {
  16330. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16331. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16332. args[j] = tensor->src[j];
  16333. }
  16334. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16335. if (args[j]) {
  16336. int32_t idx = -1;
  16337. // check if leaf
  16338. {
  16339. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16340. if (args[j] == cgraph->leafs[k]) {
  16341. idx = k;
  16342. break;
  16343. }
  16344. }
  16345. }
  16346. // check if node
  16347. if (idx == -1) {
  16348. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16349. if (args[j] == cgraph->nodes[k]) {
  16350. idx = cgraph->n_leafs + k;
  16351. break;
  16352. }
  16353. }
  16354. }
  16355. if (idx == -1) {
  16356. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16357. fclose(fout);
  16358. return;
  16359. }
  16360. fwrite(&idx, sizeof(int32_t), 1, fout);
  16361. } else {
  16362. const int32_t nul = -1;
  16363. fwrite(&nul, sizeof(int32_t), 1, fout);
  16364. }
  16365. }
  16366. }
  16367. }
  16368. }
  16369. fclose(fout);
  16370. }
  16371. }
  16372. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16373. assert(*ctx_data == NULL);
  16374. assert(*ctx_eval == NULL);
  16375. struct ggml_cgraph * result = NULL;
  16376. struct ggml_tensor * data = NULL;
  16377. // read file into data
  16378. {
  16379. FILE * fin = ggml_fopen(fname, "rb");
  16380. if (!fin) {
  16381. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16382. return result;
  16383. }
  16384. size_t fsize = 0;
  16385. fseek(fin, 0, SEEK_END);
  16386. fsize = ftell(fin);
  16387. fseek(fin, 0, SEEK_SET);
  16388. // create the data context
  16389. {
  16390. const size_t overhead = 1*ggml_tensor_overhead();
  16391. struct ggml_init_params params = {
  16392. .mem_size = fsize + overhead,
  16393. .mem_buffer = NULL,
  16394. .no_alloc = false,
  16395. };
  16396. *ctx_data = ggml_init(params);
  16397. if (!*ctx_data) {
  16398. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16399. fclose(fin);
  16400. return result;
  16401. }
  16402. }
  16403. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16404. {
  16405. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16406. if (ret != fsize) {
  16407. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16408. fclose(fin);
  16409. return result;
  16410. }
  16411. }
  16412. fclose(fin);
  16413. }
  16414. // populate result
  16415. {
  16416. char * ptr = (char *) data->data;
  16417. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16418. if (magic != GGML_FILE_MAGIC) {
  16419. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16420. return result;
  16421. }
  16422. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16423. if (version != GGML_FILE_VERSION) {
  16424. fprintf(stderr, "%s: invalid version number\n", __func__);
  16425. return result;
  16426. }
  16427. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16428. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16429. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16430. const int graph_size = MAX(n_leafs, n_nodes);
  16431. // create the data context
  16432. {
  16433. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16434. struct ggml_init_params params = {
  16435. .mem_size = size_eval + overhead,
  16436. .mem_buffer = NULL,
  16437. .no_alloc = true,
  16438. };
  16439. *ctx_eval = ggml_init(params);
  16440. if (!*ctx_eval) {
  16441. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16442. return result;
  16443. }
  16444. }
  16445. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16446. result->n_leafs = n_leafs;
  16447. result->n_nodes = n_nodes;
  16448. // leafs
  16449. {
  16450. uint32_t type;
  16451. uint32_t op;
  16452. for (uint32_t i = 0; i < n_leafs; ++i) {
  16453. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16454. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16455. int64_t ne[GGML_MAX_DIMS];
  16456. size_t nb[GGML_MAX_DIMS];
  16457. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16458. uint64_t ne_cur;
  16459. uint64_t nb_cur;
  16460. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16461. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16462. ne[j] = ne_cur;
  16463. nb[j] = nb_cur;
  16464. }
  16465. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16466. tensor->op = (enum ggml_op) op;
  16467. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16468. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16469. tensor->data = (void *) ptr;
  16470. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16471. tensor->nb[j] = nb[j];
  16472. }
  16473. result->leafs[i] = tensor;
  16474. ptr += ggml_nbytes(tensor);
  16475. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16476. }
  16477. }
  16478. ggml_set_no_alloc(*ctx_eval, false);
  16479. // nodes
  16480. {
  16481. uint32_t type;
  16482. uint32_t op;
  16483. for (uint32_t i = 0; i < n_nodes; ++i) {
  16484. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16485. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16486. enum ggml_op eop = (enum ggml_op) op;
  16487. int64_t ne[GGML_MAX_DIMS];
  16488. size_t nb[GGML_MAX_DIMS];
  16489. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16490. uint64_t ne_cur;
  16491. uint64_t nb_cur;
  16492. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16493. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16494. ne[j] = ne_cur;
  16495. nb[j] = nb_cur;
  16496. }
  16497. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16498. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16499. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16500. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16501. // parse args
  16502. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16503. const int32_t arg_idx = ptr_arg_idx[j];
  16504. if (arg_idx == -1) {
  16505. continue;
  16506. }
  16507. if (arg_idx < result->n_leafs) {
  16508. args[j] = result->leafs[arg_idx];
  16509. } else {
  16510. args[j] = result->nodes[arg_idx - result->n_leafs];
  16511. }
  16512. }
  16513. // create the tensor
  16514. // "view" operations are handled differently
  16515. // TODO: handle inplace ops - currently a copy is always made
  16516. struct ggml_tensor * tensor = NULL;
  16517. switch (eop) {
  16518. // TODO: implement other view ops
  16519. case GGML_OP_RESHAPE:
  16520. {
  16521. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16522. } break;
  16523. case GGML_OP_VIEW:
  16524. {
  16525. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16526. size_t offs;
  16527. memcpy(&offs, ptr_op_params, sizeof(offs));
  16528. tensor->data = ((char *) tensor->data) + offs;
  16529. } break;
  16530. case GGML_OP_TRANSPOSE:
  16531. {
  16532. tensor = ggml_transpose(*ctx_eval, args[0]);
  16533. } break;
  16534. case GGML_OP_PERMUTE:
  16535. {
  16536. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16537. } break;
  16538. default:
  16539. {
  16540. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16541. tensor->op = eop;
  16542. } break;
  16543. }
  16544. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16545. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16546. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16547. tensor->nb[j] = nb[j];
  16548. }
  16549. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16550. tensor->src[j] = args[j];
  16551. }
  16552. result->nodes[i] = tensor;
  16553. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16554. }
  16555. }
  16556. }
  16557. return result;
  16558. }
  16559. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16560. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16561. GGML_PRINT("=== GRAPH ===\n");
  16562. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16563. for (int i = 0; i < cgraph->n_nodes; i++) {
  16564. struct ggml_tensor * node = cgraph->nodes[i];
  16565. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16566. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16567. i,
  16568. node->ne[0], node->ne[1], node->ne[2],
  16569. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16570. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16571. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16572. (double) node->perf_time_us / 1000.0,
  16573. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16574. }
  16575. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16576. for (int i = 0; i < cgraph->n_leafs; i++) {
  16577. struct ggml_tensor * node = cgraph->leafs[i];
  16578. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16579. i,
  16580. node->ne[0], node->ne[1],
  16581. ggml_op_name(node->op),
  16582. ggml_get_name(node));
  16583. }
  16584. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16585. if (perf_total_per_op_us[i] == 0) {
  16586. continue;
  16587. }
  16588. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16589. }
  16590. GGML_PRINT("========================================\n");
  16591. }
  16592. // check if node is part of the graph
  16593. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16594. if (cgraph == NULL) {
  16595. return true;
  16596. }
  16597. for (int i = 0; i < cgraph->n_nodes; i++) {
  16598. if (cgraph->nodes[i] == node) {
  16599. return true;
  16600. }
  16601. }
  16602. return false;
  16603. }
  16604. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16605. for (int i = 0; i < cgraph->n_nodes; i++) {
  16606. struct ggml_tensor * parent = cgraph->nodes[i];
  16607. if (parent->grad == node) {
  16608. return parent;
  16609. }
  16610. }
  16611. return NULL;
  16612. }
  16613. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16614. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16615. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16616. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16617. gparent0 ? (void *) gparent0 : (void *) parent,
  16618. gparent0 ? "g" : "x",
  16619. gparent ? (void *) gparent : (void *) node,
  16620. gparent ? "g" : "x",
  16621. gparent ? "empty" : "vee",
  16622. gparent ? "dashed" : "solid",
  16623. label);
  16624. }
  16625. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16626. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16627. (void *) parent, "x",
  16628. (void *) node, "x",
  16629. label);
  16630. }
  16631. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16632. char color[16];
  16633. FILE * fp = ggml_fopen(filename, "w");
  16634. GGML_ASSERT(fp);
  16635. fprintf(fp, "digraph G {\n");
  16636. fprintf(fp, " newrank = true;\n");
  16637. fprintf(fp, " rankdir = LR;\n");
  16638. for (int i = 0; i < gb->n_nodes; i++) {
  16639. struct ggml_tensor * node = gb->nodes[i];
  16640. if (ggml_graph_get_parent(gb, node) != NULL) {
  16641. continue;
  16642. }
  16643. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16644. snprintf(color, sizeof(color), "yellow");
  16645. } else if (node->grad) {
  16646. if (ggml_graph_find(gf, node)) {
  16647. snprintf(color, sizeof(color), "green");
  16648. } else {
  16649. snprintf(color, sizeof(color), "lightblue");
  16650. }
  16651. } else {
  16652. snprintf(color, sizeof(color), "white");
  16653. }
  16654. fprintf(fp, " \"%p\" [ "
  16655. "style = filled; fillcolor = %s; shape = record; "
  16656. "label=\"",
  16657. (void *) node, color);
  16658. if (strlen(node->name) > 0) {
  16659. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16660. } else {
  16661. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16662. }
  16663. if (ggml_is_matrix(node)) {
  16664. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16665. } else {
  16666. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16667. }
  16668. if (node->grad) {
  16669. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16670. } else {
  16671. fprintf(fp, "\"; ]\n");
  16672. }
  16673. }
  16674. for (int i = 0; i < gb->n_leafs; i++) {
  16675. struct ggml_tensor * node = gb->leafs[i];
  16676. snprintf(color, sizeof(color), "pink");
  16677. fprintf(fp, " \"%p\" [ "
  16678. "style = filled; fillcolor = %s; shape = record; "
  16679. "label=\"<x>",
  16680. (void *) node, color);
  16681. if (strlen(node->name) > 0) {
  16682. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16683. } else {
  16684. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16685. }
  16686. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16687. if (ggml_nelements(node) < 5) {
  16688. fprintf(fp, " | (");
  16689. for (int j = 0; j < ggml_nelements(node); j++) {
  16690. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16691. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16692. }
  16693. else if (node->type == GGML_TYPE_F32 ||
  16694. node->type == GGML_TYPE_F16 ||
  16695. node->type == GGML_TYPE_BF16) {
  16696. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16697. }
  16698. else {
  16699. fprintf(fp, "#");
  16700. }
  16701. if (j < ggml_nelements(node) - 1) {
  16702. fprintf(fp, ", ");
  16703. }
  16704. }
  16705. fprintf(fp, ")");
  16706. }
  16707. fprintf(fp, "\"; ]\n");
  16708. }
  16709. for (int i = 0; i < gb->n_nodes; i++) {
  16710. struct ggml_tensor * node = gb->nodes[i];
  16711. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16712. if (node->src[j]) {
  16713. char label[16];
  16714. snprintf(label, sizeof(label), "src %d", j);
  16715. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16716. }
  16717. }
  16718. }
  16719. for (int i = 0; i < gb->n_leafs; i++) {
  16720. struct ggml_tensor * node = gb->leafs[i];
  16721. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16722. if (node->src[j]) {
  16723. char label[16];
  16724. snprintf(label, sizeof(label), "src %d", j);
  16725. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16726. }
  16727. }
  16728. }
  16729. fprintf(fp, "}\n");
  16730. fclose(fp);
  16731. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16732. }
  16733. ////////////////////////////////////////////////////////////////////////////////
  16734. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16735. int i = 0;
  16736. for (int p = 0; p < np; ++p) {
  16737. const int64_t ne = ggml_nelements(ps[p]) ;
  16738. // TODO: add function to set tensor from array
  16739. for (int64_t j = 0; j < ne; ++j) {
  16740. ggml_set_f32_1d(ps[p], j, x[i++]);
  16741. }
  16742. }
  16743. }
  16744. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16745. int i = 0;
  16746. for (int p = 0; p < np; ++p) {
  16747. const int64_t ne = ggml_nelements(ps[p]) ;
  16748. // TODO: add function to get all elements at once
  16749. for (int64_t j = 0; j < ne; ++j) {
  16750. x[i++] = ggml_get_f32_1d(ps[p], j);
  16751. }
  16752. }
  16753. }
  16754. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16755. int64_t i = 0;
  16756. for (int p = 0; p < np; ++p) {
  16757. const int64_t ne = ggml_nelements(ps[p]) ;
  16758. // TODO: add function to get all elements at once
  16759. for (int64_t j = 0; j < ne; ++j) {
  16760. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16761. }
  16762. }
  16763. }
  16764. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16765. int64_t i = 0;
  16766. for (int p = 0; p < np; ++p) {
  16767. const int64_t ne = ggml_nelements(ps[p]) ;
  16768. // TODO: add function to get all elements at once
  16769. for (int64_t j = 0; j < ne; ++j) {
  16770. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16771. }
  16772. }
  16773. }
  16774. //
  16775. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16776. //
  16777. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16778. //
  16779. static enum ggml_opt_result ggml_opt_adam(
  16780. struct ggml_context * ctx,
  16781. struct ggml_opt_context * opt,
  16782. struct ggml_opt_params params,
  16783. struct ggml_tensor * f,
  16784. struct ggml_cgraph * gf,
  16785. struct ggml_cgraph * gb,
  16786. ggml_opt_callback callback,
  16787. void * callback_data) {
  16788. GGML_ASSERT(ggml_is_scalar(f));
  16789. // these will store the parameters we want to optimize
  16790. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16791. int np = 0;
  16792. int64_t nx = 0;
  16793. for (int i = 0; i < gf->n_nodes; ++i) {
  16794. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16795. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16796. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16797. ps[np++] = gf->nodes[i];
  16798. nx += ggml_nelements(gf->nodes[i]);
  16799. }
  16800. }
  16801. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16802. int iter = opt->iter;
  16803. ggml_opt_init(opt->ctx, opt, params, nx);
  16804. opt->iter = iter;
  16805. }
  16806. // constants
  16807. float sched = params.adam.sched;
  16808. const float alpha = params.adam.alpha;
  16809. const float decay = params.adam.decay * alpha;
  16810. const float beta1 = params.adam.beta1;
  16811. const float beta2 = params.adam.beta2;
  16812. const float eps = params.adam.eps;
  16813. const float gclip = params.adam.gclip;
  16814. const int decay_min_ndim = params.adam.decay_min_ndim;
  16815. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16816. const float accum_norm = 1.0f / (float) n_accum;
  16817. float * g = opt->adam.g->data; // gradients
  16818. float * m = opt->adam.m->data; // first moment
  16819. float * v = opt->adam.v->data; // second moment
  16820. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16821. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16822. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16823. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16824. bool cancel = false;
  16825. // compute the function value
  16826. float fx = 0;
  16827. ggml_set_zero(opt->adam.g);
  16828. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16829. if (callback) {
  16830. callback(callback_data, accum_step, &sched, &cancel);
  16831. if (cancel) {
  16832. return GGML_OPT_RESULT_CANCEL;
  16833. }
  16834. }
  16835. // ggml_graph_reset (gf);
  16836. ggml_set_f32 (f->grad, 1.0f);
  16837. ggml_graph_compute(gb, &cplan);
  16838. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16839. fx += ggml_get_f32_1d(f, 0);
  16840. }
  16841. fx *= accum_norm;
  16842. opt->adam.fx_prev = fx;
  16843. opt->adam.fx_best = opt->adam.fx_prev;
  16844. if (pf) {
  16845. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16846. }
  16847. opt->loss_before = opt->adam.fx_prev;
  16848. opt->loss_after = opt->adam.fx_prev;
  16849. // initialize
  16850. if (opt->just_initialized) {
  16851. opt->adam.n_no_improvement = 0;
  16852. opt->just_initialized = false;
  16853. }
  16854. float * fx_best = &opt->adam.fx_best;
  16855. float * fx_prev = &opt->adam.fx_prev;
  16856. int * n_no_improvement = &opt->adam.n_no_improvement;
  16857. int iter0 = opt->iter;
  16858. // run the optimizer
  16859. for (int t = 0; t < params.adam.n_iter; ++t) {
  16860. opt->iter = iter0 + t + 1;
  16861. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16862. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16863. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16864. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16865. for (int i = 0; i < np; ++i) {
  16866. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16867. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16868. }
  16869. const int64_t t_start_wall = ggml_time_us();
  16870. const int64_t t_start_cpu = ggml_cycles();
  16871. UNUSED(t_start_wall);
  16872. UNUSED(t_start_cpu);
  16873. {
  16874. float gnorm = 1.0f;
  16875. if (gclip > 0.0f) {
  16876. // gradient clipping
  16877. ggml_float sum = 0.0;
  16878. for (int64_t i = 0; i < nx; ++i) {
  16879. sum += (ggml_float)(g[i]*g[i]);
  16880. }
  16881. ggml_float norm = sqrt(sum);
  16882. if (norm > (ggml_float) gclip) {
  16883. gnorm = (float) ((ggml_float) gclip / norm);
  16884. }
  16885. }
  16886. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16887. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16888. int64_t i = 0;
  16889. for (int p = 0; p < np; ++p) {
  16890. const int64_t ne = ggml_nelements(ps[p]);
  16891. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16892. for (int64_t j = 0; j < ne; ++j) {
  16893. float x = ggml_get_f32_1d(ps[p], j);
  16894. float g_ = g[i]*gnorm;
  16895. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16896. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16897. float mh = m[i]*beta1h;
  16898. float vh = v[i]*beta2h;
  16899. vh = sqrtf(vh) + eps;
  16900. x = x*(1.0f - p_decay) - mh/vh;
  16901. ggml_set_f32_1d(ps[p], j, x);
  16902. ++i;
  16903. }
  16904. }
  16905. }
  16906. fx = 0;
  16907. ggml_set_zero(opt->adam.g);
  16908. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16909. if (callback) {
  16910. callback(callback_data, accum_step, &sched, &cancel);
  16911. if (cancel) {
  16912. return GGML_OPT_RESULT_CANCEL;;
  16913. }
  16914. }
  16915. // ggml_graph_reset (gf);
  16916. ggml_set_f32 (f->grad, 1.0f);
  16917. ggml_graph_compute(gb, &cplan);
  16918. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16919. fx += ggml_get_f32_1d(f, 0);
  16920. }
  16921. fx *= accum_norm;
  16922. opt->loss_after = fx;
  16923. // check convergence
  16924. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16925. GGML_PRINT_DEBUG("converged\n");
  16926. return GGML_OPT_RESULT_OK;
  16927. }
  16928. // delta-based convergence test
  16929. if (pf != NULL) {
  16930. // need at least params.past iterations to start checking for convergence
  16931. if (params.past <= iter0 + t) {
  16932. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16933. if (fabsf(rate) < params.delta) {
  16934. return GGML_OPT_RESULT_OK;
  16935. }
  16936. }
  16937. pf[(iter0 + t)%params.past] = fx;
  16938. }
  16939. // check for improvement
  16940. if (params.max_no_improvement > 0) {
  16941. if (fx_best[0] > fx) {
  16942. fx_best[0] = fx;
  16943. n_no_improvement[0] = 0;
  16944. } else {
  16945. ++n_no_improvement[0];
  16946. if (n_no_improvement[0] >= params.max_no_improvement) {
  16947. return GGML_OPT_RESULT_OK;
  16948. }
  16949. }
  16950. }
  16951. fx_prev[0] = fx;
  16952. {
  16953. const int64_t t_end_cpu = ggml_cycles();
  16954. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16955. UNUSED(t_end_cpu);
  16956. const int64_t t_end_wall = ggml_time_us();
  16957. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16958. UNUSED(t_end_wall);
  16959. }
  16960. }
  16961. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16962. }
  16963. //
  16964. // L-BFGS
  16965. //
  16966. // the L-BFGS implementation below is based on the following implementation:
  16967. //
  16968. // https://github.com/chokkan/liblbfgs
  16969. //
  16970. struct ggml_lbfgs_iteration_data {
  16971. float alpha;
  16972. float ys;
  16973. float * s;
  16974. float * y;
  16975. };
  16976. static enum ggml_opt_result linesearch_backtracking(
  16977. const struct ggml_opt_params * params,
  16978. int nx,
  16979. float * x,
  16980. float * fx,
  16981. float * g,
  16982. float * d,
  16983. float * step,
  16984. const float * xp,
  16985. struct ggml_tensor * f,
  16986. struct ggml_cgraph * gb,
  16987. struct ggml_cplan * cplan,
  16988. const int np,
  16989. struct ggml_tensor * ps[],
  16990. bool * cancel,
  16991. ggml_opt_callback callback,
  16992. void * callback_data) {
  16993. int count = 0;
  16994. float width = 0.0f;
  16995. float dg = 0.0f;
  16996. float finit = 0.0f;
  16997. float dginit = 0.0f;
  16998. float dgtest = 0.0f;
  16999. const float dec = 0.5f;
  17000. const float inc = 2.1f;
  17001. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17002. const float accum_norm = 1.0f / (float) n_accum;
  17003. if (*step <= 0.f) {
  17004. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17005. }
  17006. // compute the initial gradient in the search direction
  17007. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17008. // make sure that d points to a descent direction
  17009. if (0 < dginit) {
  17010. return GGML_LINESEARCH_FAIL;
  17011. }
  17012. // initialize local variables
  17013. finit = *fx;
  17014. dgtest = params->lbfgs.ftol*dginit;
  17015. while (true) {
  17016. ggml_vec_cpy_f32(nx, x, xp);
  17017. ggml_vec_mad_f32(nx, x, d, *step);
  17018. // evaluate the function and gradient values
  17019. {
  17020. ggml_opt_set_params(np, ps, x);
  17021. *fx = 0;
  17022. memset(g, 0, sizeof(float)*nx);
  17023. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17024. if (callback) {
  17025. // LBFG-S does not support learning rate -> ignore learning schedule
  17026. float sched = 0;
  17027. callback(callback_data, accum_step, &sched, cancel);
  17028. if (*cancel) {
  17029. return GGML_OPT_RESULT_CANCEL;
  17030. }
  17031. }
  17032. // ggml_graph_reset (gf);
  17033. ggml_set_f32 (f->grad, 1.0f);
  17034. ggml_graph_compute(gb, cplan);
  17035. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17036. *fx += ggml_get_f32_1d(f, 0);
  17037. }
  17038. *fx *= accum_norm;
  17039. }
  17040. ++count;
  17041. if (*fx > finit + (*step)*dgtest) {
  17042. width = dec;
  17043. } else {
  17044. // Armijo condition is satisfied
  17045. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17046. return count;
  17047. }
  17048. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17049. // check the Wolfe condition
  17050. if (dg < params->lbfgs.wolfe * dginit) {
  17051. width = inc;
  17052. } else {
  17053. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17054. // regular Wolfe conditions
  17055. return count;
  17056. }
  17057. if(dg > -params->lbfgs.wolfe*dginit) {
  17058. width = dec;
  17059. } else {
  17060. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17061. return count;
  17062. }
  17063. }
  17064. }
  17065. if (*step < params->lbfgs.min_step) {
  17066. return GGML_LINESEARCH_MINIMUM_STEP;
  17067. }
  17068. if (*step > params->lbfgs.max_step) {
  17069. return GGML_LINESEARCH_MAXIMUM_STEP;
  17070. }
  17071. if (params->lbfgs.max_linesearch <= count) {
  17072. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17073. }
  17074. (*step) *= width;
  17075. }
  17076. GGML_ASSERT(false && "line search failed");
  17077. return GGML_LINESEARCH_FAIL;
  17078. }
  17079. static enum ggml_opt_result ggml_opt_lbfgs(
  17080. struct ggml_context * ctx,
  17081. struct ggml_opt_context * opt,
  17082. struct ggml_opt_params params,
  17083. struct ggml_tensor * f,
  17084. struct ggml_cgraph * gf,
  17085. struct ggml_cgraph * gb,
  17086. ggml_opt_callback callback,
  17087. void * callback_data) {
  17088. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17089. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17090. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17091. return GGML_OPT_RESULT_INVALID_WOLFE;
  17092. }
  17093. }
  17094. const int m = params.lbfgs.m;
  17095. // these will store the parameters we want to optimize
  17096. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17097. int np = 0;
  17098. int nx = 0;
  17099. for (int i = 0; i < gf->n_nodes; ++i) {
  17100. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17101. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17102. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17103. ps[np++] = gf->nodes[i];
  17104. nx += ggml_nelements(gf->nodes[i]);
  17105. }
  17106. }
  17107. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17108. int iter = opt->iter;
  17109. ggml_opt_init(ctx, opt, params, nx);
  17110. opt->iter = iter;
  17111. }
  17112. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17113. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17114. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17115. float * x = opt->lbfgs.x->data; // current parameters
  17116. float * xp = opt->lbfgs.xp->data; // previous parameters
  17117. float * g = opt->lbfgs.g->data; // current gradient
  17118. float * gp = opt->lbfgs.gp->data; // previous gradient
  17119. float * d = opt->lbfgs.d->data; // search direction
  17120. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17121. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17122. const float accum_norm = 1.0f / (float) n_accum;
  17123. float fx = 0.0f; // cost function value
  17124. float xnorm = 0.0f; // ||x||
  17125. float gnorm = 0.0f; // ||g||
  17126. // initialize x from the graph nodes
  17127. ggml_opt_get_params(np, ps, x);
  17128. // the L-BFGS memory
  17129. float * lm_alpha = opt->lbfgs.lmal->data;
  17130. float * lm_ys = opt->lbfgs.lmys->data;
  17131. float * lm_s = opt->lbfgs.lms->data;
  17132. float * lm_y = opt->lbfgs.lmy->data;
  17133. bool cancel = false;
  17134. // evaluate the function value and its gradient
  17135. {
  17136. ggml_opt_set_params(np, ps, x);
  17137. fx = 0;
  17138. memset(g, 0, sizeof(float)*nx);
  17139. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17140. if (callback) {
  17141. // LBFG-S does not support learning rate -> ignore learning schedule
  17142. float sched = 0;
  17143. callback(callback_data, accum_step, &sched, &cancel);
  17144. if (cancel) {
  17145. return GGML_OPT_RESULT_CANCEL;
  17146. }
  17147. }
  17148. // ggml_graph_reset (gf);
  17149. ggml_set_f32 (f->grad, 1.0f);
  17150. ggml_graph_compute(gb, &cplan);
  17151. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17152. fx += ggml_get_f32_1d(f, 0);
  17153. }
  17154. fx *= accum_norm;
  17155. opt->loss_before = fx;
  17156. opt->loss_after = fx;
  17157. }
  17158. // search direction = -gradient
  17159. ggml_vec_neg_f32(nx, d, g);
  17160. // ||x||, ||g||
  17161. ggml_vec_norm_f32(nx, &xnorm, x);
  17162. ggml_vec_norm_f32(nx, &gnorm, g);
  17163. if (xnorm < 1.0f) {
  17164. xnorm = 1.0f;
  17165. }
  17166. // already optimized
  17167. if (gnorm/xnorm <= params.lbfgs.eps) {
  17168. return GGML_OPT_RESULT_OK;
  17169. }
  17170. if (opt->just_initialized) {
  17171. if (pf) {
  17172. pf[0] = fx;
  17173. }
  17174. opt->lbfgs.fx_best = fx;
  17175. // initial step
  17176. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17177. opt->lbfgs.j = 0;
  17178. opt->lbfgs.k = 1;
  17179. opt->lbfgs.end = 0;
  17180. opt->lbfgs.n_no_improvement = 0;
  17181. opt->just_initialized = false;
  17182. }
  17183. float * fx_best = &opt->lbfgs.fx_best;
  17184. float * step = &opt->lbfgs.step;
  17185. int * j = &opt->lbfgs.j;
  17186. int * k = &opt->lbfgs.k;
  17187. int * end = &opt->lbfgs.end;
  17188. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17189. int ls = 0;
  17190. int bound = 0;
  17191. float ys = 0.0f;
  17192. float yy = 0.0f;
  17193. float beta = 0.0f;
  17194. int it = 0;
  17195. while (true) {
  17196. // store the current position and gradient vectors
  17197. ggml_vec_cpy_f32(nx, xp, x);
  17198. ggml_vec_cpy_f32(nx, gp, g);
  17199. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17200. // to determine if the optimization should be cancelled
  17201. // this is a simple change, but not doing this atm, since I don't have a nice
  17202. // way to test and don't want to break something with so many changes lined up
  17203. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17204. if (cancel) {
  17205. return GGML_OPT_RESULT_CANCEL;
  17206. }
  17207. if (ls < 0) {
  17208. // linesearch failed - go back to the previous point and return
  17209. ggml_vec_cpy_f32(nx, x, xp);
  17210. ggml_vec_cpy_f32(nx, g, gp);
  17211. return ls;
  17212. }
  17213. opt->loss_after = fx;
  17214. ggml_vec_norm_f32(nx, &xnorm, x);
  17215. ggml_vec_norm_f32(nx, &gnorm, g);
  17216. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17217. if (xnorm < 1.0f) {
  17218. xnorm = 1.0f;
  17219. }
  17220. if (gnorm/xnorm <= params.lbfgs.eps) {
  17221. // converged
  17222. return GGML_OPT_RESULT_OK;
  17223. }
  17224. // delta-based convergence test
  17225. if (pf != NULL) {
  17226. // need at least params.past iterations to start checking for convergence
  17227. if (params.past <= k[0]) {
  17228. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17229. if (fabsf(rate) < params.delta) {
  17230. return GGML_OPT_RESULT_OK;
  17231. }
  17232. }
  17233. pf[k[0]%params.past] = fx;
  17234. }
  17235. // check for improvement
  17236. if (params.max_no_improvement > 0) {
  17237. if (fx < fx_best[0]) {
  17238. fx_best[0] = fx;
  17239. n_no_improvement[0] = 0;
  17240. } else {
  17241. n_no_improvement[0]++;
  17242. if (n_no_improvement[0] >= params.max_no_improvement) {
  17243. return GGML_OPT_RESULT_OK;
  17244. }
  17245. }
  17246. }
  17247. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17248. // reached the maximum number of iterations
  17249. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17250. }
  17251. // update vectors s and y:
  17252. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17253. // y_{k+1} = g_{k+1} - g_{k}.
  17254. //
  17255. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17256. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17257. // compute scalars ys and yy:
  17258. // ys = y^t \cdot s -> 1 / \rho.
  17259. // yy = y^t \cdot y.
  17260. //
  17261. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17262. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17263. lm_ys[end[0]] = ys;
  17264. // find new search direction
  17265. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17266. bound = (m <= k[0]) ? m : k[0];
  17267. k[0]++;
  17268. it++;
  17269. end[0] = (end[0] + 1)%m;
  17270. // initialize search direction with -g
  17271. ggml_vec_neg_f32(nx, d, g);
  17272. j[0] = end[0];
  17273. for (int i = 0; i < bound; ++i) {
  17274. j[0] = (j[0] + m - 1) % m;
  17275. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17276. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17277. lm_alpha[j[0]] /= lm_ys[j[0]];
  17278. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17279. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17280. }
  17281. ggml_vec_scale_f32(nx, d, ys/yy);
  17282. for (int i = 0; i < bound; ++i) {
  17283. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17284. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17285. beta /= lm_ys[j[0]];
  17286. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17287. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17288. j[0] = (j[0] + 1)%m;
  17289. }
  17290. step[0] = 1.0;
  17291. }
  17292. GGML_ASSERT(false && "lbfgs failed");
  17293. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17294. }
  17295. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17296. struct ggml_opt_params result;
  17297. switch (type) {
  17298. case GGML_OPT_TYPE_ADAM:
  17299. {
  17300. result = (struct ggml_opt_params) {
  17301. .type = GGML_OPT_TYPE_ADAM,
  17302. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17303. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17304. .past = 0,
  17305. .delta = 1e-5f,
  17306. .max_no_improvement = 100,
  17307. .print_forward_graph = true,
  17308. .print_backward_graph = true,
  17309. .n_gradient_accumulation = 1,
  17310. .adam = {
  17311. .n_iter = 10000,
  17312. .sched = 1.000f,
  17313. .decay = 0.0f,
  17314. .decay_min_ndim = 2,
  17315. .alpha = 0.001f,
  17316. .beta1 = 0.9f,
  17317. .beta2 = 0.999f,
  17318. .eps = 1e-8f,
  17319. .eps_f = 1e-5f,
  17320. .eps_g = 1e-3f,
  17321. .gclip = 0.0f,
  17322. },
  17323. };
  17324. } break;
  17325. case GGML_OPT_TYPE_LBFGS:
  17326. {
  17327. result = (struct ggml_opt_params) {
  17328. .type = GGML_OPT_TYPE_LBFGS,
  17329. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17330. .n_threads = 1,
  17331. .past = 0,
  17332. .delta = 1e-5f,
  17333. .max_no_improvement = 0,
  17334. .print_forward_graph = true,
  17335. .print_backward_graph = true,
  17336. .n_gradient_accumulation = 1,
  17337. .lbfgs = {
  17338. .m = 6,
  17339. .n_iter = 100,
  17340. .max_linesearch = 20,
  17341. .eps = 1e-5f,
  17342. .ftol = 1e-4f,
  17343. .wolfe = 0.9f,
  17344. .min_step = 1e-20f,
  17345. .max_step = 1e+20f,
  17346. .linesearch = GGML_LINESEARCH_DEFAULT,
  17347. },
  17348. };
  17349. } break;
  17350. }
  17351. return result;
  17352. }
  17353. GGML_API void ggml_opt_init(
  17354. struct ggml_context * ctx,
  17355. struct ggml_opt_context * opt,
  17356. struct ggml_opt_params params,
  17357. int64_t nx) {
  17358. opt->ctx = ctx;
  17359. opt->params = params;
  17360. opt->iter = 0;
  17361. opt->nx = nx;
  17362. opt->just_initialized = true;
  17363. if (opt->ctx == NULL) {
  17364. struct ggml_init_params ctx_opt_params;
  17365. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17366. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17367. if (opt->params.past > 0) {
  17368. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17369. }
  17370. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17371. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17372. if (opt->params.past > 0) {
  17373. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17374. }
  17375. }
  17376. ctx_opt_params.mem_buffer = NULL;
  17377. ctx_opt_params.no_alloc = false;
  17378. opt->ctx = ggml_init(ctx_opt_params);
  17379. }
  17380. switch (opt->params.type) {
  17381. case GGML_OPT_TYPE_ADAM:
  17382. {
  17383. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17384. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17385. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17386. opt->adam.pf = params.past > 0
  17387. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17388. : NULL;
  17389. ggml_set_zero(opt->adam.m);
  17390. ggml_set_zero(opt->adam.v);
  17391. if (opt->adam.pf) {
  17392. ggml_set_zero(opt->adam.pf);
  17393. }
  17394. } break;
  17395. case GGML_OPT_TYPE_LBFGS:
  17396. {
  17397. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17398. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17399. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17400. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17401. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17402. opt->lbfgs.pf = params.past > 0
  17403. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17404. : NULL;
  17405. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17406. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17407. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17408. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17409. ggml_set_zero(opt->lbfgs.x);
  17410. ggml_set_zero(opt->lbfgs.xp);
  17411. ggml_set_zero(opt->lbfgs.g);
  17412. ggml_set_zero(opt->lbfgs.gp);
  17413. ggml_set_zero(opt->lbfgs.d);
  17414. if (opt->lbfgs.pf) {
  17415. ggml_set_zero(opt->lbfgs.pf);
  17416. }
  17417. ggml_set_zero(opt->lbfgs.lmal);
  17418. ggml_set_zero(opt->lbfgs.lmys);
  17419. ggml_set_zero(opt->lbfgs.lms);
  17420. ggml_set_zero(opt->lbfgs.lmy);
  17421. } break;
  17422. }
  17423. }
  17424. enum ggml_opt_result ggml_opt(
  17425. struct ggml_context * ctx,
  17426. struct ggml_opt_params params,
  17427. struct ggml_tensor * f) {
  17428. bool free_ctx = false;
  17429. if (ctx == NULL) {
  17430. struct ggml_init_params params_ctx = {
  17431. .mem_size = 16*1024*1024,
  17432. .mem_buffer = NULL,
  17433. .no_alloc = false,
  17434. };
  17435. ctx = ggml_init(params_ctx);
  17436. if (ctx == NULL) {
  17437. return GGML_OPT_RESULT_NO_CONTEXT;
  17438. }
  17439. free_ctx = true;
  17440. }
  17441. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17442. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17443. ggml_opt_init(ctx, opt, params, 0);
  17444. result = ggml_opt_resume(ctx, opt, f);
  17445. if (free_ctx) {
  17446. ggml_free(ctx);
  17447. }
  17448. return result;
  17449. }
  17450. enum ggml_opt_result ggml_opt_resume(
  17451. struct ggml_context * ctx,
  17452. struct ggml_opt_context * opt,
  17453. struct ggml_tensor * f) {
  17454. // build forward + backward compute graphs
  17455. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17456. ggml_build_forward_expand(gf, f);
  17457. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17458. ggml_build_backward_expand(ctx, gf, gb, true);
  17459. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17460. }
  17461. enum ggml_opt_result ggml_opt_resume_g(
  17462. struct ggml_context * ctx,
  17463. struct ggml_opt_context * opt,
  17464. struct ggml_tensor * f,
  17465. struct ggml_cgraph * gf,
  17466. struct ggml_cgraph * gb,
  17467. ggml_opt_callback callback,
  17468. void * callback_data) {
  17469. // build forward + backward compute graphs
  17470. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17471. switch (opt->params.type) {
  17472. case GGML_OPT_TYPE_ADAM:
  17473. {
  17474. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17475. } break;
  17476. case GGML_OPT_TYPE_LBFGS:
  17477. {
  17478. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17479. } break;
  17480. }
  17481. if (opt->params.print_forward_graph) {
  17482. ggml_graph_print (gf);
  17483. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17484. }
  17485. if (opt->params.print_backward_graph) {
  17486. ggml_graph_print (gb);
  17487. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17488. }
  17489. return result;
  17490. }
  17491. ////////////////////////////////////////////////////////////////////////////////
  17492. void ggml_set_input(struct ggml_tensor * tensor) {
  17493. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17494. }
  17495. void ggml_set_output(struct ggml_tensor * tensor) {
  17496. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17497. }
  17498. ////////////////////////////////////////////////////////////////////////////////
  17499. void ggml_quantize_init(enum ggml_type type) {
  17500. ggml_critical_section_start();
  17501. switch (type) {
  17502. case GGML_TYPE_IQ2_XXS:
  17503. case GGML_TYPE_IQ2_XS:
  17504. case GGML_TYPE_IQ2_S:
  17505. case GGML_TYPE_IQ1_S:
  17506. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17507. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17508. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17509. default: // nothing
  17510. break;
  17511. }
  17512. ggml_critical_section_end();
  17513. }
  17514. void ggml_quantize_free(void) {
  17515. ggml_critical_section_start();
  17516. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17517. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17518. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17519. iq3xs_free_impl(256);
  17520. ggml_critical_section_end();
  17521. }
  17522. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17523. return
  17524. type == GGML_TYPE_IQ2_XXS ||
  17525. type == GGML_TYPE_IQ2_XS ||
  17526. type == GGML_TYPE_IQ1_S;// ||
  17527. //type == GGML_TYPE_IQ1_M;
  17528. }
  17529. size_t ggml_quantize_chunk(
  17530. enum ggml_type type,
  17531. const float * src,
  17532. void * dst,
  17533. int64_t start,
  17534. int64_t nrows,
  17535. int64_t n_per_row,
  17536. const float * imatrix) {
  17537. const int64_t n = (int64_t) nrows * n_per_row;
  17538. if (ggml_quantize_requires_imatrix(type)) {
  17539. GGML_ASSERT(imatrix != NULL);
  17540. }
  17541. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17542. GGML_ASSERT(start % n_per_row == 0);
  17543. ggml_quantize_init(type); // this is noop if already initialized
  17544. const size_t start_row = start / n_per_row;
  17545. const size_t row_size = ggml_row_size(type, n_per_row);
  17546. size_t result = 0;
  17547. switch (type) {
  17548. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17549. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17550. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17551. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17552. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17553. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17554. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17555. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17556. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17557. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17558. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17559. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17560. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17561. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17562. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17563. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17564. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17565. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17566. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17567. case GGML_TYPE_F16:
  17568. {
  17569. size_t elemsize = sizeof(ggml_fp16_t);
  17570. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17571. result = n * elemsize;
  17572. } break;
  17573. case GGML_TYPE_BF16:
  17574. {
  17575. size_t elemsize = sizeof(ggml_bf16_t);
  17576. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17577. result = n * elemsize;
  17578. } break;
  17579. case GGML_TYPE_F32:
  17580. {
  17581. size_t elemsize = sizeof(float);
  17582. result = n * elemsize;
  17583. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17584. } break;
  17585. default:
  17586. assert(false);
  17587. }
  17588. GGML_ASSERT(result == nrows * row_size);
  17589. return result;
  17590. }
  17591. ////////////////////////////////////////////////////////////////////////////////
  17592. struct gguf_str {
  17593. uint64_t n; // GGUFv2
  17594. char * data;
  17595. };
  17596. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17597. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17598. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17599. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17600. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17601. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17602. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17603. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17604. [GGUF_TYPE_BOOL] = sizeof(bool),
  17605. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17606. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17607. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17608. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17609. [GGUF_TYPE_ARRAY] = 0, // undefined
  17610. };
  17611. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17612. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17613. [GGUF_TYPE_UINT8] = "u8",
  17614. [GGUF_TYPE_INT8] = "i8",
  17615. [GGUF_TYPE_UINT16] = "u16",
  17616. [GGUF_TYPE_INT16] = "i16",
  17617. [GGUF_TYPE_UINT32] = "u32",
  17618. [GGUF_TYPE_INT32] = "i32",
  17619. [GGUF_TYPE_FLOAT32] = "f32",
  17620. [GGUF_TYPE_BOOL] = "bool",
  17621. [GGUF_TYPE_STRING] = "str",
  17622. [GGUF_TYPE_ARRAY] = "arr",
  17623. [GGUF_TYPE_UINT64] = "u64",
  17624. [GGUF_TYPE_INT64] = "i64",
  17625. [GGUF_TYPE_FLOAT64] = "f64",
  17626. };
  17627. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17628. union gguf_value {
  17629. uint8_t uint8;
  17630. int8_t int8;
  17631. uint16_t uint16;
  17632. int16_t int16;
  17633. uint32_t uint32;
  17634. int32_t int32;
  17635. float float32;
  17636. uint64_t uint64;
  17637. int64_t int64;
  17638. double float64;
  17639. bool bool_;
  17640. struct gguf_str str;
  17641. struct {
  17642. enum gguf_type type;
  17643. uint64_t n; // GGUFv2
  17644. void * data;
  17645. } arr;
  17646. };
  17647. struct gguf_kv {
  17648. struct gguf_str key;
  17649. enum gguf_type type;
  17650. union gguf_value value;
  17651. };
  17652. struct gguf_header {
  17653. char magic[4];
  17654. uint32_t version;
  17655. uint64_t n_tensors; // GGUFv2
  17656. uint64_t n_kv; // GGUFv2
  17657. };
  17658. struct gguf_tensor_info {
  17659. struct gguf_str name;
  17660. uint32_t n_dims;
  17661. uint64_t ne[GGML_MAX_DIMS];
  17662. enum ggml_type type;
  17663. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17664. // for writing API
  17665. const void * data;
  17666. size_t size;
  17667. };
  17668. struct gguf_context {
  17669. struct gguf_header header;
  17670. struct gguf_kv * kv;
  17671. struct gguf_tensor_info * infos;
  17672. size_t alignment;
  17673. size_t offset; // offset of `data` from beginning of file
  17674. size_t size; // size of `data` in bytes
  17675. //uint8_t * padding;
  17676. void * data;
  17677. };
  17678. static size_t gguf_type_size(enum gguf_type type) {
  17679. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17680. return GGUF_TYPE_SIZE[type];
  17681. }
  17682. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17683. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17684. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17685. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17686. GGML_ASSERT(info->ne[i] > 0);
  17687. }
  17688. // prevent overflow for total number of elements
  17689. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17690. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17691. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17692. }
  17693. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17694. const size_t n = fread(dst, 1, size, file);
  17695. *offset += n;
  17696. return n == size;
  17697. }
  17698. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17699. p->n = 0;
  17700. p->data = NULL;
  17701. bool ok = true;
  17702. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17703. // early exit if string length is invalid, prevents from integer overflow
  17704. if (p->n == SIZE_MAX) {
  17705. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17706. return false;
  17707. }
  17708. p->data = GGML_CALLOC(p->n + 1, 1);
  17709. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17710. return ok;
  17711. }
  17712. static void gguf_free_kv(struct gguf_kv * kv) {
  17713. if (kv->key.data) {
  17714. GGML_FREE(kv->key.data);
  17715. }
  17716. if (kv->type == GGUF_TYPE_STRING) {
  17717. if (kv->value.str.data) {
  17718. GGML_FREE(kv->value.str.data);
  17719. }
  17720. }
  17721. if (kv->type == GGUF_TYPE_ARRAY) {
  17722. if (kv->value.arr.data) {
  17723. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17724. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17725. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17726. if (str->data) {
  17727. GGML_FREE(str->data);
  17728. }
  17729. }
  17730. }
  17731. GGML_FREE(kv->value.arr.data);
  17732. }
  17733. }
  17734. }
  17735. struct gguf_context * gguf_init_empty(void) {
  17736. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17737. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17738. ctx->header.version = GGUF_VERSION;
  17739. ctx->header.n_tensors = 0;
  17740. ctx->header.n_kv = 0;
  17741. ctx->kv = NULL;
  17742. ctx->infos = NULL;
  17743. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17744. ctx->offset = 0;
  17745. ctx->size = 0;
  17746. ctx->data = NULL;
  17747. return ctx;
  17748. }
  17749. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17750. FILE * file = ggml_fopen(fname, "rb");
  17751. if (!file) {
  17752. return NULL;
  17753. }
  17754. // offset from start of file
  17755. size_t offset = 0;
  17756. char magic[4];
  17757. // check the magic before making allocations
  17758. {
  17759. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17760. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17761. if (magic[i] != GGUF_MAGIC[i]) {
  17762. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17763. fclose(file);
  17764. return NULL;
  17765. }
  17766. }
  17767. }
  17768. bool ok = true;
  17769. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17770. // read the header
  17771. {
  17772. strncpy(ctx->header.magic, magic, 4);
  17773. ctx->kv = NULL;
  17774. ctx->infos = NULL;
  17775. ctx->data = NULL;
  17776. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17777. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17778. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17779. if (ctx->header.version == 1) {
  17780. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17781. fclose(file);
  17782. gguf_free(ctx);
  17783. return NULL;
  17784. }
  17785. // sanity-checks to prevent from integer/buffer overflows
  17786. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17787. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17788. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17789. if (!ok) {
  17790. fprintf(stderr, "%s: failed to read header\n", __func__);
  17791. fclose(file);
  17792. gguf_free(ctx);
  17793. return NULL;
  17794. }
  17795. }
  17796. // read the kv pairs
  17797. {
  17798. const uint64_t n_kv = ctx->header.n_kv;
  17799. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17800. ctx->header.n_kv = 0;
  17801. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17802. for (uint64_t i = 0; i < n_kv; ++i) {
  17803. struct gguf_kv * kv = &ctx->kv[i];
  17804. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17805. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17806. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17807. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17808. switch (kv->type) {
  17809. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17810. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17811. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17812. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17813. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17814. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17815. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17816. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17817. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17818. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17819. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17820. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17821. case GGUF_TYPE_ARRAY:
  17822. {
  17823. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17824. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17825. switch (kv->value.arr.type) {
  17826. case GGUF_TYPE_UINT8:
  17827. case GGUF_TYPE_INT8:
  17828. case GGUF_TYPE_UINT16:
  17829. case GGUF_TYPE_INT16:
  17830. case GGUF_TYPE_UINT32:
  17831. case GGUF_TYPE_INT32:
  17832. case GGUF_TYPE_FLOAT32:
  17833. case GGUF_TYPE_UINT64:
  17834. case GGUF_TYPE_INT64:
  17835. case GGUF_TYPE_FLOAT64:
  17836. case GGUF_TYPE_BOOL:
  17837. {
  17838. // prevent from integer overflow in the malloc below
  17839. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17840. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17841. fclose(file);
  17842. gguf_free(ctx);
  17843. return NULL;
  17844. }
  17845. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17846. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17847. } break;
  17848. case GGUF_TYPE_STRING:
  17849. {
  17850. // prevent from integer overflow in the malloc below
  17851. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17852. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17853. fclose(file);
  17854. gguf_free(ctx);
  17855. return NULL;
  17856. }
  17857. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17858. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17859. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17860. }
  17861. } break;
  17862. case GGUF_TYPE_ARRAY:
  17863. default: GGML_ASSERT(false && "invalid type"); break;
  17864. }
  17865. } break;
  17866. default: GGML_ASSERT(false && "invalid type");
  17867. }
  17868. if (!ok) {
  17869. break;
  17870. }
  17871. ctx->header.n_kv++;
  17872. }
  17873. if (!ok) {
  17874. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17875. fclose(file);
  17876. gguf_free(ctx);
  17877. return NULL;
  17878. }
  17879. }
  17880. // read the tensor infos
  17881. if (ctx->header.n_tensors > 0) {
  17882. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17883. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17884. struct gguf_tensor_info * info = &ctx->infos[i];
  17885. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17886. info->ne[j] = 1;
  17887. }
  17888. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17889. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17890. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17891. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17892. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17893. }
  17894. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17895. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17896. // TODO: return an error instead of crashing with GGML_ASSERT
  17897. gguf_tensor_info_sanitize(info);
  17898. // make sure there is no duplicated tensor names
  17899. for (uint64_t j = 0; j < i; ++j) {
  17900. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17901. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17902. ok = false;
  17903. }
  17904. }
  17905. if (!ok) {
  17906. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17907. fclose(file);
  17908. gguf_free(ctx);
  17909. return NULL;
  17910. }
  17911. }
  17912. }
  17913. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17914. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17915. if (alignment_idx != -1) {
  17916. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17917. }
  17918. // we require the data section to be aligned, so take into account any padding
  17919. {
  17920. const size_t offset_pad = offset % ctx->alignment;
  17921. if (offset_pad != 0) {
  17922. offset += ctx->alignment - offset_pad;
  17923. fseek(file, offset, SEEK_SET);
  17924. }
  17925. }
  17926. // store the current file offset - this is where the data section starts
  17927. ctx->offset = offset;
  17928. // compute the total size of the data section, taking into account the alignment
  17929. {
  17930. ctx->size = 0;
  17931. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17932. struct gguf_tensor_info * info = &ctx->infos[i];
  17933. const int64_t ne =
  17934. (int64_t) info->ne[0] *
  17935. (int64_t) info->ne[1] *
  17936. (int64_t) info->ne[2] *
  17937. (int64_t) info->ne[3];
  17938. if (ne % ggml_blck_size(info->type) != 0) {
  17939. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17940. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17941. fclose(file);
  17942. gguf_free(ctx);
  17943. return NULL;
  17944. }
  17945. const size_t size_cur = ggml_row_size(info->type, ne);
  17946. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17947. }
  17948. }
  17949. // load the tensor data only if requested
  17950. if (params.ctx != NULL) {
  17951. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17952. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17953. // the ggml_tensor structs to the appropriate locations in the binary blob
  17954. // compute the exact size needed for the new ggml_context
  17955. const size_t mem_size =
  17956. params.no_alloc ?
  17957. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17958. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17959. struct ggml_init_params pdata = {
  17960. .mem_size = mem_size,
  17961. .mem_buffer = NULL,
  17962. .no_alloc = params.no_alloc,
  17963. };
  17964. *params.ctx = ggml_init(pdata);
  17965. struct ggml_context * ctx_data = *params.ctx;
  17966. struct ggml_tensor * data = NULL;
  17967. if (!params.no_alloc) {
  17968. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17969. ok = ok && data != NULL;
  17970. // read the binary blob with the tensor data
  17971. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17972. if (!ok) {
  17973. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17974. fclose(file);
  17975. ggml_free(ctx_data);
  17976. gguf_free(ctx);
  17977. return NULL;
  17978. }
  17979. ctx->data = data->data;
  17980. }
  17981. ggml_set_no_alloc(ctx_data, true);
  17982. // create the tensors
  17983. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17984. const int64_t ne[GGML_MAX_DIMS] = {
  17985. ctx->infos[i].ne[0],
  17986. ctx->infos[i].ne[1],
  17987. ctx->infos[i].ne[2],
  17988. ctx->infos[i].ne[3],
  17989. };
  17990. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17991. ok = ok && cur != NULL;
  17992. if (!ok) {
  17993. break;
  17994. }
  17995. ggml_set_name(cur, ctx->infos[i].name.data);
  17996. // point the data member to the appropriate location in the binary blob using the tensor infos
  17997. if (!params.no_alloc) {
  17998. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17999. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18000. }
  18001. }
  18002. if (!ok) {
  18003. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18004. fclose(file);
  18005. ggml_free(ctx_data);
  18006. gguf_free(ctx);
  18007. return NULL;
  18008. }
  18009. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18010. }
  18011. fclose(file);
  18012. return ctx;
  18013. }
  18014. void gguf_free(struct gguf_context * ctx) {
  18015. if (ctx == NULL) {
  18016. return;
  18017. }
  18018. if (ctx->kv) {
  18019. // free string memory - not great..
  18020. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18021. gguf_free_kv(&ctx->kv[i]);
  18022. }
  18023. GGML_FREE(ctx->kv);
  18024. }
  18025. if (ctx->infos) {
  18026. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18027. struct gguf_tensor_info * info = &ctx->infos[i];
  18028. if (info->name.data) {
  18029. GGML_FREE(info->name.data);
  18030. }
  18031. }
  18032. GGML_FREE(ctx->infos);
  18033. }
  18034. GGML_FREE(ctx);
  18035. }
  18036. const char * gguf_type_name(enum gguf_type type) {
  18037. return GGUF_TYPE_NAME[type];
  18038. }
  18039. int gguf_get_version(const struct gguf_context * ctx) {
  18040. return ctx->header.version;
  18041. }
  18042. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18043. return ctx->alignment;
  18044. }
  18045. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18046. return ctx->offset;
  18047. }
  18048. void * gguf_get_data(const struct gguf_context * ctx) {
  18049. return ctx->data;
  18050. }
  18051. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18052. return ctx->header.n_kv;
  18053. }
  18054. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18055. // return -1 if key not found
  18056. int keyfound = -1;
  18057. const int n_kv = gguf_get_n_kv(ctx);
  18058. for (int i = 0; i < n_kv; ++i) {
  18059. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18060. keyfound = i;
  18061. break;
  18062. }
  18063. }
  18064. return keyfound;
  18065. }
  18066. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18067. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18068. return ctx->kv[key_id].key.data;
  18069. }
  18070. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18071. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18072. return ctx->kv[key_id].type;
  18073. }
  18074. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18075. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18076. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18077. return ctx->kv[key_id].value.arr.type;
  18078. }
  18079. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18080. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18081. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18082. return ctx->kv[key_id].value.arr.data;
  18083. }
  18084. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18085. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18086. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18087. struct gguf_kv * kv = &ctx->kv[key_id];
  18088. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18089. return str->data;
  18090. }
  18091. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18092. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18093. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18094. return ctx->kv[key_id].value.arr.n;
  18095. }
  18096. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18097. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18098. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18099. return ctx->kv[key_id].value.uint8;
  18100. }
  18101. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18102. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18103. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18104. return ctx->kv[key_id].value.int8;
  18105. }
  18106. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18107. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18108. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18109. return ctx->kv[key_id].value.uint16;
  18110. }
  18111. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18112. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18113. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18114. return ctx->kv[key_id].value.int16;
  18115. }
  18116. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18117. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18118. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18119. return ctx->kv[key_id].value.uint32;
  18120. }
  18121. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18122. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18123. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18124. return ctx->kv[key_id].value.int32;
  18125. }
  18126. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18127. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18128. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18129. return ctx->kv[key_id].value.float32;
  18130. }
  18131. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18132. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18133. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18134. return ctx->kv[key_id].value.uint64;
  18135. }
  18136. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18137. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18138. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18139. return ctx->kv[key_id].value.int64;
  18140. }
  18141. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18142. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18143. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18144. return ctx->kv[key_id].value.float64;
  18145. }
  18146. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18147. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18148. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18149. return ctx->kv[key_id].value.bool_;
  18150. }
  18151. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18152. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18153. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18154. return ctx->kv[key_id].value.str.data;
  18155. }
  18156. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18157. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18158. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18159. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18160. return &ctx->kv[key_id].value;
  18161. }
  18162. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18163. return ctx->header.n_tensors;
  18164. }
  18165. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18166. // return -1 if tensor not found
  18167. int tensorfound = -1;
  18168. const int n_tensors = gguf_get_n_tensors(ctx);
  18169. for (int i = 0; i < n_tensors; ++i) {
  18170. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18171. tensorfound = i;
  18172. break;
  18173. }
  18174. }
  18175. return tensorfound;
  18176. }
  18177. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18178. return ctx->infos[i].offset;
  18179. }
  18180. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18181. return ctx->infos[i].name.data;
  18182. }
  18183. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18184. return ctx->infos[i].type;
  18185. }
  18186. // returns the index
  18187. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18188. const int idx = gguf_find_key(ctx, key);
  18189. if (idx >= 0) {
  18190. return idx;
  18191. }
  18192. const int n_kv = gguf_get_n_kv(ctx);
  18193. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18194. ctx->kv[n_kv].key.n = strlen(key);
  18195. ctx->kv[n_kv].key.data = strdup(key);
  18196. ctx->header.n_kv++;
  18197. return n_kv;
  18198. }
  18199. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18200. const int idx = gguf_find_key(ctx, key);
  18201. if (idx >= 0) {
  18202. const int n_kv = gguf_get_n_kv(ctx);
  18203. gguf_free_kv(&ctx->kv[idx]);
  18204. for (int i = idx; i < n_kv-1; ++i) {
  18205. ctx->kv[i] = ctx->kv[i+1];
  18206. }
  18207. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18208. ctx->header.n_kv--;
  18209. }
  18210. }
  18211. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18212. const int idx = gguf_get_or_add_key(ctx, key);
  18213. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18214. ctx->kv[idx].value.uint8 = val;
  18215. }
  18216. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18217. const int idx = gguf_get_or_add_key(ctx, key);
  18218. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18219. ctx->kv[idx].value.int8 = val;
  18220. }
  18221. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18222. const int idx = gguf_get_or_add_key(ctx, key);
  18223. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18224. ctx->kv[idx].value.uint16 = val;
  18225. }
  18226. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18227. const int idx = gguf_get_or_add_key(ctx, key);
  18228. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18229. ctx->kv[idx].value.int16 = val;
  18230. }
  18231. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18232. const int idx = gguf_get_or_add_key(ctx, key);
  18233. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18234. ctx->kv[idx].value.uint32 = val;
  18235. }
  18236. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18237. const int idx = gguf_get_or_add_key(ctx, key);
  18238. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18239. ctx->kv[idx].value.int32 = val;
  18240. }
  18241. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18242. const int idx = gguf_get_or_add_key(ctx, key);
  18243. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18244. ctx->kv[idx].value.float32 = val;
  18245. }
  18246. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18247. const int idx = gguf_get_or_add_key(ctx, key);
  18248. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18249. ctx->kv[idx].value.uint64 = val;
  18250. }
  18251. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18252. const int idx = gguf_get_or_add_key(ctx, key);
  18253. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18254. ctx->kv[idx].value.int64 = val;
  18255. }
  18256. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18257. const int idx = gguf_get_or_add_key(ctx, key);
  18258. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18259. ctx->kv[idx].value.float64 = val;
  18260. }
  18261. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18262. const int idx = gguf_get_or_add_key(ctx, key);
  18263. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18264. ctx->kv[idx].value.bool_ = val;
  18265. }
  18266. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18267. const int idx = gguf_get_or_add_key(ctx, key);
  18268. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18269. ctx->kv[idx].value.str.n = strlen(val);
  18270. ctx->kv[idx].value.str.data = strdup(val);
  18271. }
  18272. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18273. const int idx = gguf_get_or_add_key(ctx, key);
  18274. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18275. ctx->kv[idx].value.arr.type = type;
  18276. ctx->kv[idx].value.arr.n = n;
  18277. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18278. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18279. }
  18280. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18281. const int idx = gguf_get_or_add_key(ctx, key);
  18282. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18283. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18284. ctx->kv[idx].value.arr.n = n;
  18285. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18286. for (int i = 0; i < n; i++) {
  18287. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18288. str->n = strlen(data[i]);
  18289. str->data = strdup(data[i]);
  18290. }
  18291. }
  18292. // set or add KV pairs from another context
  18293. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18294. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18295. switch (src->kv[i].type) {
  18296. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18297. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18298. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18299. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18300. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18301. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18302. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18303. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18304. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18305. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18306. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18307. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18308. case GGUF_TYPE_ARRAY:
  18309. {
  18310. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18311. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18312. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18313. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18314. }
  18315. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18316. GGML_FREE((void *)data);
  18317. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18318. GGML_ASSERT(false && "nested arrays not supported");
  18319. } else {
  18320. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18321. }
  18322. } break;
  18323. default: GGML_ASSERT(false && "invalid type"); break;
  18324. }
  18325. }
  18326. }
  18327. void gguf_add_tensor(
  18328. struct gguf_context * ctx,
  18329. const struct ggml_tensor * tensor) {
  18330. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18331. GGML_ASSERT(false && "duplicated tensor name");
  18332. }
  18333. const int idx = ctx->header.n_tensors;
  18334. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18335. ctx->infos[idx].name.n = strlen(tensor->name);
  18336. ctx->infos[idx].name.data = strdup(tensor->name);
  18337. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18338. ctx->infos[idx].ne[i] = 1;
  18339. }
  18340. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18341. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18342. ctx->infos[idx].ne[i] = tensor->ne[i];
  18343. }
  18344. ctx->infos[idx].type = tensor->type;
  18345. ctx->infos[idx].offset = 0;
  18346. ctx->infos[idx].data = tensor->data;
  18347. ctx->infos[idx].size = ggml_nbytes(tensor);
  18348. if (ctx->header.n_tensors > 0) {
  18349. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18350. }
  18351. ctx->header.n_tensors++;
  18352. }
  18353. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18354. const int idx = gguf_find_tensor(ctx, name);
  18355. if (idx < 0) {
  18356. GGML_ASSERT(false && "tensor not found");
  18357. }
  18358. ctx->infos[idx].type = type;
  18359. }
  18360. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18361. const int idx = gguf_find_tensor(ctx, name);
  18362. if (idx < 0) {
  18363. GGML_ASSERT(false && "tensor not found");
  18364. }
  18365. ctx->infos[idx].data = data;
  18366. ctx->infos[idx].size = size;
  18367. // update offsets
  18368. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18369. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18370. }
  18371. }
  18372. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18373. // fwrite(&val->n, sizeof(val->n), 1, file);
  18374. // fwrite(val->data, sizeof(char), val->n, file);
  18375. //}
  18376. //
  18377. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18378. // fwrite(val, sizeof(char), size, file);
  18379. //}
  18380. struct gguf_buf {
  18381. void * data;
  18382. size_t size;
  18383. size_t offset;
  18384. };
  18385. static struct gguf_buf gguf_buf_init(size_t size) {
  18386. struct gguf_buf buf = {
  18387. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18388. /*buf.size =*/ size,
  18389. /*buf.offset =*/ 0,
  18390. };
  18391. return buf;
  18392. }
  18393. static void gguf_buf_free(struct gguf_buf buf) {
  18394. if (buf.data) {
  18395. GGML_FREE(buf.data);
  18396. }
  18397. }
  18398. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18399. if (buf->offset + size > buf->size) {
  18400. buf->size = 1.5*(buf->offset + size);
  18401. if (buf->data) {
  18402. buf->data = realloc(buf->data, buf->size);
  18403. }
  18404. }
  18405. }
  18406. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18407. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18408. if (buf->data) {
  18409. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18410. }
  18411. buf->offset += sizeof(val->n);
  18412. if (buf->data) {
  18413. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18414. }
  18415. buf->offset += val->n;
  18416. }
  18417. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18418. gguf_buf_grow(buf, el_size);
  18419. if (buf->data) {
  18420. memcpy((char *) buf->data + buf->offset, val, el_size);
  18421. }
  18422. buf->offset += el_size;
  18423. }
  18424. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18425. // write header
  18426. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18427. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18428. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18429. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18430. // write key-value pairs
  18431. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18432. struct gguf_kv * kv = &ctx->kv[i];
  18433. gguf_bwrite_str(buf, &kv->key);
  18434. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18435. switch (kv->type) {
  18436. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18437. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18438. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18439. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18440. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18441. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18442. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18443. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18444. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18445. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18446. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18447. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18448. case GGUF_TYPE_ARRAY:
  18449. {
  18450. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18451. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18452. switch (kv->value.arr.type) {
  18453. case GGUF_TYPE_UINT8:
  18454. case GGUF_TYPE_INT8:
  18455. case GGUF_TYPE_UINT16:
  18456. case GGUF_TYPE_INT16:
  18457. case GGUF_TYPE_UINT32:
  18458. case GGUF_TYPE_INT32:
  18459. case GGUF_TYPE_FLOAT32:
  18460. case GGUF_TYPE_UINT64:
  18461. case GGUF_TYPE_INT64:
  18462. case GGUF_TYPE_FLOAT64:
  18463. case GGUF_TYPE_BOOL:
  18464. {
  18465. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18466. } break;
  18467. case GGUF_TYPE_STRING:
  18468. {
  18469. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18470. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18471. }
  18472. } break;
  18473. case GGUF_TYPE_ARRAY:
  18474. default: GGML_ASSERT(false && "invalid type"); break;
  18475. }
  18476. } break;
  18477. default: GGML_ASSERT(false && "invalid type");
  18478. }
  18479. }
  18480. // write tensor infos
  18481. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18482. struct gguf_tensor_info * info = &ctx->infos[i];
  18483. gguf_bwrite_str(buf, &info->name);
  18484. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18485. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18486. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18487. }
  18488. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18489. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18490. }
  18491. // we require the data section to be aligned, so take into account any padding
  18492. {
  18493. const size_t offset = buf->offset;
  18494. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18495. if (offset_pad != offset) {
  18496. uint8_t pad = 0;
  18497. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18498. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18499. }
  18500. }
  18501. }
  18502. if (only_meta) {
  18503. return;
  18504. }
  18505. size_t offset = 0;
  18506. // write tensor data
  18507. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18508. struct gguf_tensor_info * info = &ctx->infos[i];
  18509. const size_t size = info->size;
  18510. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18511. gguf_bwrite_el(buf, info->data, size);
  18512. if (size_pad != size) {
  18513. uint8_t pad = 0;
  18514. for (size_t j = 0; j < size_pad - size; ++j) {
  18515. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18516. }
  18517. }
  18518. GGML_ASSERT(offset == info->offset);
  18519. offset += size_pad;
  18520. }
  18521. }
  18522. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18523. FILE * file = ggml_fopen(fname, "wb");
  18524. if (!file) {
  18525. GGML_ASSERT(false && "failed to open file for writing");
  18526. }
  18527. struct gguf_buf buf = gguf_buf_init(16*1024);
  18528. gguf_write_to_buf(ctx, &buf, only_meta);
  18529. fwrite(buf.data, 1, buf.offset, file);
  18530. gguf_buf_free(buf);
  18531. fclose(file);
  18532. }
  18533. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18534. // no allocs - only compute size
  18535. struct gguf_buf buf = gguf_buf_init(0);
  18536. gguf_write_to_buf(ctx, &buf, true);
  18537. return buf.offset;
  18538. }
  18539. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18540. struct gguf_buf buf = gguf_buf_init(16*1024);
  18541. gguf_write_to_buf(ctx, &buf, true);
  18542. memcpy(data, buf.data, buf.offset);
  18543. gguf_buf_free(buf);
  18544. }
  18545. ////////////////////////////////////////////////////////////////////////////////
  18546. int ggml_cpu_has_avx(void) {
  18547. #if defined(__AVX__)
  18548. return 1;
  18549. #else
  18550. return 0;
  18551. #endif
  18552. }
  18553. int ggml_cpu_has_avx_vnni(void) {
  18554. #if defined(__AVXVNNI__)
  18555. return 1;
  18556. #else
  18557. return 0;
  18558. #endif
  18559. }
  18560. int ggml_cpu_has_avx2(void) {
  18561. #if defined(__AVX2__)
  18562. return 1;
  18563. #else
  18564. return 0;
  18565. #endif
  18566. }
  18567. int ggml_cpu_has_avx512(void) {
  18568. #if defined(__AVX512F__)
  18569. return 1;
  18570. #else
  18571. return 0;
  18572. #endif
  18573. }
  18574. int ggml_cpu_has_avx512_vbmi(void) {
  18575. #if defined(__AVX512VBMI__)
  18576. return 1;
  18577. #else
  18578. return 0;
  18579. #endif
  18580. }
  18581. int ggml_cpu_has_avx512_vnni(void) {
  18582. #if defined(__AVX512VNNI__)
  18583. return 1;
  18584. #else
  18585. return 0;
  18586. #endif
  18587. }
  18588. int ggml_cpu_has_avx512_bf16(void) {
  18589. #if defined(__AVX512BF16__)
  18590. return 1;
  18591. #else
  18592. return 0;
  18593. #endif
  18594. }
  18595. int ggml_cpu_has_fma(void) {
  18596. #if defined(__FMA__)
  18597. return 1;
  18598. #else
  18599. return 0;
  18600. #endif
  18601. }
  18602. int ggml_cpu_has_neon(void) {
  18603. #if defined(__ARM_NEON)
  18604. return 1;
  18605. #else
  18606. return 0;
  18607. #endif
  18608. }
  18609. int ggml_cpu_has_sve(void) {
  18610. #if defined(__ARM_FEATURE_SVE)
  18611. // TODO: Currently, SVE 256 bit is only supported.
  18612. GGML_ASSERT(svcntb() == QK8_0);
  18613. return 1;
  18614. #else
  18615. return 0;
  18616. #endif
  18617. }
  18618. int ggml_cpu_has_arm_fma(void) {
  18619. #if defined(__ARM_FEATURE_FMA)
  18620. return 1;
  18621. #else
  18622. return 0;
  18623. #endif
  18624. }
  18625. int ggml_cpu_has_metal(void) {
  18626. #if defined(GGML_USE_METAL)
  18627. return 1;
  18628. #else
  18629. return 0;
  18630. #endif
  18631. }
  18632. int ggml_cpu_has_f16c(void) {
  18633. #if defined(__F16C__)
  18634. return 1;
  18635. #else
  18636. return 0;
  18637. #endif
  18638. }
  18639. int ggml_cpu_has_fp16_va(void) {
  18640. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18641. return 1;
  18642. #else
  18643. return 0;
  18644. #endif
  18645. }
  18646. int ggml_cpu_has_wasm_simd(void) {
  18647. #if defined(__wasm_simd128__)
  18648. return 1;
  18649. #else
  18650. return 0;
  18651. #endif
  18652. }
  18653. int ggml_cpu_has_blas(void) {
  18654. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18655. return 1;
  18656. #else
  18657. return 0;
  18658. #endif
  18659. }
  18660. int ggml_cpu_has_cuda(void) {
  18661. #if defined(GGML_USE_CUDA)
  18662. return 1;
  18663. #else
  18664. return 0;
  18665. #endif
  18666. }
  18667. int ggml_cpu_has_vulkan(void) {
  18668. #if defined(GGML_USE_VULKAN)
  18669. return 1;
  18670. #else
  18671. return 0;
  18672. #endif
  18673. }
  18674. int ggml_cpu_has_kompute(void) {
  18675. #if defined(GGML_USE_KOMPUTE)
  18676. return 1;
  18677. #else
  18678. return 0;
  18679. #endif
  18680. }
  18681. int ggml_cpu_has_sycl(void) {
  18682. #if defined(GGML_USE_SYCL)
  18683. return 1;
  18684. #else
  18685. return 0;
  18686. #endif
  18687. }
  18688. int ggml_cpu_has_rpc(void) {
  18689. #if defined(GGML_USE_RPC)
  18690. return 1;
  18691. #else
  18692. return 0;
  18693. #endif
  18694. }
  18695. int ggml_cpu_has_gpublas(void) {
  18696. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18697. }
  18698. int ggml_cpu_has_sse3(void) {
  18699. #if defined(__SSE3__)
  18700. return 1;
  18701. #else
  18702. return 0;
  18703. #endif
  18704. }
  18705. int ggml_cpu_has_ssse3(void) {
  18706. #if defined(__SSSE3__)
  18707. return 1;
  18708. #else
  18709. return 0;
  18710. #endif
  18711. }
  18712. int ggml_cpu_has_vsx(void) {
  18713. #if defined(__POWER9_VECTOR__)
  18714. return 1;
  18715. #else
  18716. return 0;
  18717. #endif
  18718. }
  18719. int ggml_cpu_has_matmul_int8(void) {
  18720. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18721. return 1;
  18722. #else
  18723. return 0;
  18724. #endif
  18725. }
  18726. ////////////////////////////////////////////////////////////////////////////////