server.cpp 176 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. struct slot_params {
  79. bool stream = true;
  80. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  81. bool return_tokens = false;
  82. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  83. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  84. int32_t n_predict = -1; // new tokens to predict
  85. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  86. int64_t t_max_prompt_ms = -1; // TODO: implement
  87. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  88. std::vector<common_adapter_lora_info> lora;
  89. std::vector<std::string> antiprompt;
  90. std::vector<std::string> response_fields;
  91. bool timings_per_token = false;
  92. bool post_sampling_probs = false;
  93. bool ignore_eos = false;
  94. struct common_params_sampling sampling;
  95. struct common_params_speculative speculative;
  96. // OAI-compat fields
  97. bool verbose = false;
  98. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  99. std::string oaicompat_model;
  100. std::string oaicompat_cmpl_id;
  101. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  102. json to_json() const {
  103. std::vector<std::string> samplers;
  104. samplers.reserve(sampling.samplers.size());
  105. for (const auto & sampler : sampling.samplers) {
  106. samplers.emplace_back(common_sampler_type_to_str(sampler));
  107. }
  108. json lora = json::array();
  109. for (size_t i = 0; i < this->lora.size(); ++i) {
  110. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  111. }
  112. std::vector<std::string> grammar_trigger_words;
  113. for (const auto & trigger : sampling.grammar_trigger_words) {
  114. grammar_trigger_words.push_back(trigger.word);
  115. }
  116. return json {
  117. {"n_predict", n_predict}, // Server configured n_predict
  118. {"seed", sampling.seed},
  119. {"temperature", sampling.temp},
  120. {"dynatemp_range", sampling.dynatemp_range},
  121. {"dynatemp_exponent", sampling.dynatemp_exponent},
  122. {"top_k", sampling.top_k},
  123. {"top_p", sampling.top_p},
  124. {"min_p", sampling.min_p},
  125. {"xtc_probability", sampling.xtc_probability},
  126. {"xtc_threshold", sampling.xtc_threshold},
  127. {"typical_p", sampling.typ_p},
  128. {"repeat_last_n", sampling.penalty_last_n},
  129. {"repeat_penalty", sampling.penalty_repeat},
  130. {"presence_penalty", sampling.penalty_present},
  131. {"frequency_penalty", sampling.penalty_freq},
  132. {"dry_multiplier", sampling.dry_multiplier},
  133. {"dry_base", sampling.dry_base},
  134. {"dry_allowed_length", sampling.dry_allowed_length},
  135. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  136. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  137. {"mirostat", sampling.mirostat},
  138. {"mirostat_tau", sampling.mirostat_tau},
  139. {"mirostat_eta", sampling.mirostat_eta},
  140. {"stop", antiprompt},
  141. {"max_tokens", n_predict}, // User configured n_predict
  142. {"n_keep", n_keep},
  143. {"n_discard", n_discard},
  144. {"ignore_eos", sampling.ignore_eos},
  145. {"stream", stream},
  146. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  147. {"n_probs", sampling.n_probs},
  148. {"min_keep", sampling.min_keep},
  149. {"grammar", sampling.grammar},
  150. {"grammar_trigger_words", grammar_trigger_words},
  151. {"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
  152. {"preserved_tokens", sampling.preserved_tokens},
  153. {"samplers", samplers},
  154. {"speculative.n_max", speculative.n_max},
  155. {"speculative.n_min", speculative.n_min},
  156. {"speculative.p_min", speculative.p_min},
  157. {"timings_per_token", timings_per_token},
  158. {"post_sampling_probs", post_sampling_probs},
  159. {"lora", lora},
  160. };
  161. }
  162. };
  163. struct server_task {
  164. int id = -1; // to be filled by server_queue
  165. int index = -1; // used when there are multiple prompts (batch request)
  166. server_task_type type;
  167. // used by SERVER_TASK_TYPE_CANCEL
  168. int id_target = -1;
  169. // used by SERVER_TASK_TYPE_INFERENCE
  170. slot_params params;
  171. llama_tokens prompt_tokens;
  172. int id_selected_slot = -1;
  173. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  174. struct slot_action {
  175. int slot_id;
  176. std::string filename;
  177. std::string filepath;
  178. };
  179. slot_action slot_action;
  180. // used by SERVER_TASK_TYPE_METRICS
  181. bool metrics_reset_bucket = false;
  182. // used by SERVER_TASK_TYPE_SET_LORA
  183. std::vector<common_adapter_lora_info> set_lora;
  184. server_task(server_task_type type) : type(type) {}
  185. static slot_params params_from_json_cmpl(
  186. const llama_context * ctx,
  187. const common_params & params_base,
  188. const json & data) {
  189. const llama_model * model = llama_get_model(ctx);
  190. const llama_vocab * vocab = llama_model_get_vocab(model);
  191. slot_params params;
  192. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  193. slot_params defaults;
  194. defaults.sampling = params_base.sampling;
  195. defaults.speculative = params_base.speculative;
  196. // enabling this will output extra debug information in the HTTP responses from the server
  197. params.verbose = params_base.verbosity > 9;
  198. params.timings_per_token = json_value(data, "timings_per_token", false);
  199. params.stream = json_value(data, "stream", false);
  200. params.cache_prompt = json_value(data, "cache_prompt", true);
  201. params.return_tokens = json_value(data, "return_tokens", false);
  202. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  203. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  204. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  205. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  206. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  207. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  208. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  209. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  210. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  211. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  212. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  213. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  214. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  215. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  216. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  217. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  218. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  219. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  220. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  221. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  222. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  223. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  224. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  225. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  226. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  227. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  228. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  229. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  230. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  231. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  232. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  233. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  234. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  235. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  236. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  237. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  238. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  239. // Use OpenAI API logprobs only if n_probs wasn't provided
  240. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  241. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  242. }
  243. if (data.contains("lora")) {
  244. if (data.at("lora").is_array()) {
  245. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  246. } else {
  247. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  248. }
  249. } else {
  250. params.lora = params_base.lora_adapters;
  251. }
  252. // TODO: add more sanity checks for the input parameters
  253. if (params.sampling.penalty_last_n < -1) {
  254. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  255. }
  256. if (params.sampling.dry_penalty_last_n < -1) {
  257. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  258. }
  259. if (params.sampling.penalty_last_n == -1) {
  260. // note: should be the slot's context and not the full context, but it's ok
  261. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  262. }
  263. if (params.sampling.dry_penalty_last_n == -1) {
  264. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  265. }
  266. if (params.sampling.dry_base < 1.0f) {
  267. params.sampling.dry_base = defaults.sampling.dry_base;
  268. }
  269. // sequence breakers for DRY
  270. {
  271. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  272. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  273. if (data.contains("dry_sequence_breakers")) {
  274. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  275. if (params.sampling.dry_sequence_breakers.empty()) {
  276. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  277. }
  278. }
  279. }
  280. // process "json_schema" and "grammar"
  281. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  282. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  283. }
  284. if (data.contains("json_schema") && !data.contains("grammar")) {
  285. try {
  286. auto schema = json_value(data, "json_schema", json::object());
  287. LOG_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  288. params.sampling.grammar = json_schema_to_grammar(schema);
  289. LOG_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  290. } catch (const std::exception & e) {
  291. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  292. }
  293. } else {
  294. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  295. LOG_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  296. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  297. LOG_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  298. }
  299. {
  300. auto it = data.find("chat_format");
  301. if (it != data.end()) {
  302. params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
  303. LOG_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
  304. } else {
  305. params.oaicompat_chat_format = defaults.oaicompat_chat_format;
  306. }
  307. }
  308. {
  309. const auto grammar_triggers = data.find("grammar_triggers");
  310. if (grammar_triggers != data.end()) {
  311. for (const auto & t : *grammar_triggers) {
  312. common_grammar_trigger trigger;
  313. trigger.word = t.at("word");
  314. trigger.at_start = t.at("at_start");
  315. auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
  316. if (ids.size() == 1) {
  317. LOG_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
  318. params.sampling.grammar_trigger_tokens.push_back(ids[0]);
  319. params.sampling.preserved_tokens.insert(ids[0]);
  320. continue;
  321. }
  322. LOG_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
  323. params.sampling.grammar_trigger_words.push_back(trigger);
  324. }
  325. }
  326. const auto preserved_tokens = data.find("preserved_tokens");
  327. if (preserved_tokens != data.end()) {
  328. for (const auto & t : *preserved_tokens) {
  329. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  330. if (ids.size() == 1) {
  331. LOG_DBG("Preserved token: %d\n", ids[0]);
  332. params.sampling.preserved_tokens.insert(ids[0]);
  333. } else {
  334. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  335. LOG_WRN("Not preserved because more than 1 token (wrong chat template override?): %s\n", t.get<std::string>().c_str());
  336. }
  337. }
  338. }
  339. if (params.sampling.grammar_lazy) {
  340. GGML_ASSERT(params.sampling.grammar_trigger_tokens.size() > 0 || params.sampling.grammar_trigger_words.size() > 0);
  341. }
  342. }
  343. {
  344. params.sampling.logit_bias.clear();
  345. params.ignore_eos = json_value(data, "ignore_eos", false);
  346. const auto & logit_bias = data.find("logit_bias");
  347. if (logit_bias != data.end() && logit_bias->is_array()) {
  348. const int n_vocab = llama_vocab_n_tokens(vocab);
  349. for (const auto & el : *logit_bias) {
  350. // TODO: we may want to throw errors here, in case "el" is incorrect
  351. if (el.is_array() && el.size() == 2) {
  352. float bias;
  353. if (el[1].is_number()) {
  354. bias = el[1].get<float>();
  355. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  356. bias = -INFINITY;
  357. } else {
  358. continue;
  359. }
  360. if (el[0].is_number_integer()) {
  361. llama_token tok = el[0].get<llama_token>();
  362. if (tok >= 0 && tok < n_vocab) {
  363. params.sampling.logit_bias.push_back({tok, bias});
  364. }
  365. } else if (el[0].is_string()) {
  366. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  367. for (auto tok : toks) {
  368. params.sampling.logit_bias.push_back({tok, bias});
  369. }
  370. }
  371. }
  372. }
  373. }
  374. }
  375. {
  376. params.antiprompt.clear();
  377. const auto & stop = data.find("stop");
  378. if (stop != data.end() && stop->is_array()) {
  379. for (const auto & word : *stop) {
  380. if (!word.empty()) {
  381. params.antiprompt.push_back(word);
  382. }
  383. }
  384. }
  385. }
  386. {
  387. const auto samplers = data.find("samplers");
  388. if (samplers != data.end()) {
  389. if (samplers->is_array()) {
  390. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  391. } else if (samplers->is_string()){
  392. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  393. }
  394. } else {
  395. params.sampling.samplers = defaults.sampling.samplers;
  396. }
  397. }
  398. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  399. params.oaicompat_model = json_value(data, "model", model_name);
  400. return params;
  401. }
  402. // utility function
  403. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  404. std::unordered_set<int> ids(tasks.size());
  405. for (size_t i = 0; i < tasks.size(); i++) {
  406. ids.insert(tasks[i].id);
  407. }
  408. return ids;
  409. }
  410. };
  411. struct result_timings {
  412. int32_t prompt_n = -1;
  413. double prompt_ms;
  414. double prompt_per_token_ms;
  415. double prompt_per_second;
  416. int32_t predicted_n = -1;
  417. double predicted_ms;
  418. double predicted_per_token_ms;
  419. double predicted_per_second;
  420. json to_json() const {
  421. return {
  422. {"prompt_n", prompt_n},
  423. {"prompt_ms", prompt_ms},
  424. {"prompt_per_token_ms", prompt_per_token_ms},
  425. {"prompt_per_second", prompt_per_second},
  426. {"predicted_n", predicted_n},
  427. {"predicted_ms", predicted_ms},
  428. {"predicted_per_token_ms", predicted_per_token_ms},
  429. {"predicted_per_second", predicted_per_second},
  430. };
  431. }
  432. };
  433. struct server_task_result {
  434. int id = -1;
  435. int id_slot = -1;
  436. virtual bool is_error() {
  437. // only used by server_task_result_error
  438. return false;
  439. }
  440. virtual bool is_stop() {
  441. // only used by server_task_result_cmpl_*
  442. return false;
  443. }
  444. virtual int get_index() {
  445. return -1;
  446. }
  447. virtual json to_json() = 0;
  448. virtual ~server_task_result() = default;
  449. };
  450. // using shared_ptr for polymorphism of server_task_result
  451. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  452. inline std::string stop_type_to_str(stop_type type) {
  453. switch (type) {
  454. case STOP_TYPE_EOS: return "eos";
  455. case STOP_TYPE_WORD: return "word";
  456. case STOP_TYPE_LIMIT: return "limit";
  457. default: return "none";
  458. }
  459. }
  460. struct completion_token_output {
  461. llama_token tok;
  462. float prob;
  463. std::string text_to_send;
  464. struct prob_info {
  465. llama_token tok;
  466. std::string txt;
  467. float prob;
  468. };
  469. std::vector<prob_info> probs;
  470. json to_json(bool post_sampling_probs) const {
  471. json probs_for_token = json::array();
  472. for (const auto & p : probs) {
  473. std::string txt(p.txt);
  474. txt.resize(validate_utf8(txt));
  475. probs_for_token.push_back(json {
  476. {"id", p.tok},
  477. {"token", txt},
  478. {"bytes", str_to_bytes(p.txt)},
  479. {
  480. post_sampling_probs ? "prob" : "logprob",
  481. post_sampling_probs ? p.prob : logarithm(p.prob)
  482. },
  483. });
  484. }
  485. return probs_for_token;
  486. }
  487. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  488. json out = json::array();
  489. for (const auto & p : probs) {
  490. std::string txt(p.text_to_send);
  491. txt.resize(validate_utf8(txt));
  492. out.push_back(json {
  493. {"id", p.tok},
  494. {"token", txt},
  495. {"bytes", str_to_bytes(p.text_to_send)},
  496. {
  497. post_sampling_probs ? "prob" : "logprob",
  498. post_sampling_probs ? p.prob : logarithm(p.prob)
  499. },
  500. {
  501. post_sampling_probs ? "top_probs" : "top_logprobs",
  502. p.to_json(post_sampling_probs)
  503. },
  504. });
  505. }
  506. return out;
  507. }
  508. static float logarithm(float x) {
  509. // nlohmann::json converts -inf to null, so we need to prevent that
  510. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  511. }
  512. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  513. std::vector<unsigned char> bytes;
  514. for (unsigned char c : str) {
  515. bytes.push_back(c);
  516. }
  517. return bytes;
  518. }
  519. };
  520. struct server_task_result_cmpl_final : server_task_result {
  521. int index = 0;
  522. std::string content;
  523. llama_tokens tokens;
  524. bool stream;
  525. result_timings timings;
  526. std::string prompt;
  527. bool truncated;
  528. int32_t n_decoded;
  529. int32_t n_prompt_tokens;
  530. int32_t n_tokens_cached;
  531. bool has_new_line;
  532. std::string stopping_word;
  533. stop_type stop = STOP_TYPE_NONE;
  534. bool post_sampling_probs;
  535. std::vector<completion_token_output> probs_output;
  536. std::vector<std::string> response_fields;
  537. slot_params generation_params;
  538. // OAI-compat fields
  539. bool verbose = false;
  540. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  541. std::string oaicompat_model;
  542. std::string oaicompat_cmpl_id;
  543. common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  544. virtual int get_index() override {
  545. return index;
  546. }
  547. virtual bool is_stop() override {
  548. return true; // in stream mode, final responses are considered stop
  549. }
  550. virtual json to_json() override {
  551. switch (oaicompat) {
  552. case OAICOMPAT_TYPE_NONE:
  553. return to_json_non_oaicompat();
  554. case OAICOMPAT_TYPE_COMPLETION:
  555. return to_json_oaicompat();
  556. case OAICOMPAT_TYPE_CHAT:
  557. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  558. default:
  559. GGML_ASSERT(false && "Invalid oaicompat_type");
  560. }
  561. }
  562. json to_json_non_oaicompat() {
  563. json res = json {
  564. {"index", index},
  565. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  566. {"tokens", stream ? llama_tokens {} : tokens},
  567. {"id_slot", id_slot},
  568. {"stop", true},
  569. {"model", oaicompat_model},
  570. {"tokens_predicted", n_decoded},
  571. {"tokens_evaluated", n_prompt_tokens},
  572. {"generation_settings", generation_params.to_json()},
  573. {"prompt", prompt},
  574. {"has_new_line", has_new_line},
  575. {"truncated", truncated},
  576. {"stop_type", stop_type_to_str(stop)},
  577. {"stopping_word", stopping_word},
  578. {"tokens_cached", n_tokens_cached},
  579. {"timings", timings.to_json()},
  580. };
  581. if (!stream && !probs_output.empty()) {
  582. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  583. }
  584. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  585. }
  586. json to_json_oaicompat() {
  587. std::time_t t = std::time(0);
  588. json logprobs = json(nullptr); // OAI default to null
  589. if (!stream && probs_output.size() > 0) {
  590. logprobs = json{
  591. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  592. };
  593. }
  594. json finish_reason = "length";
  595. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  596. finish_reason = "stop";
  597. }
  598. json res = json {
  599. {"choices", json::array({
  600. json{
  601. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  602. {"index", index},
  603. {"logprobs", logprobs},
  604. {"finish_reason", finish_reason},
  605. }
  606. })},
  607. {"created", t},
  608. {"model", oaicompat_model},
  609. {"system_fingerprint", build_info},
  610. {"object", "text_completion"},
  611. {"usage", json {
  612. {"completion_tokens", n_decoded},
  613. {"prompt_tokens", n_prompt_tokens},
  614. {"total_tokens", n_decoded + n_prompt_tokens}
  615. }},
  616. {"id", oaicompat_cmpl_id}
  617. };
  618. // extra fields for debugging purposes
  619. if (verbose) {
  620. res["__verbose"] = to_json_non_oaicompat();
  621. }
  622. if (timings.prompt_n >= 0) {
  623. res.push_back({"timings", timings.to_json()});
  624. }
  625. return res;
  626. }
  627. json to_json_oaicompat_chat() {
  628. std::string finish_reason = "length";
  629. common_chat_msg msg;
  630. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  631. LOG_DBG("Parsing chat message: %s\n", content.c_str());
  632. msg = common_chat_parse(content, oaicompat_chat_format);
  633. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  634. } else {
  635. msg.content = content;
  636. }
  637. json tool_calls;
  638. if (!msg.tool_calls.empty()) {
  639. tool_calls = json::array();
  640. for (const auto & tc : msg.tool_calls) {
  641. tool_calls.push_back({
  642. {"type", "function"},
  643. {"function", {
  644. {"name", tc.name},
  645. {"arguments", tc.arguments},
  646. }},
  647. {"id", tc.id},
  648. });
  649. }
  650. }
  651. json message {
  652. {"content", msg.content},
  653. {"tool_calls", tool_calls},
  654. {"role", "assistant"},
  655. };
  656. if (!msg.tool_plan.empty()) {
  657. message["tool_plan"] = msg.tool_plan;
  658. }
  659. json choice {
  660. {"finish_reason", finish_reason},
  661. {"index", 0},
  662. {"message", message},
  663. };
  664. if (!stream && probs_output.size() > 0) {
  665. choice["logprobs"] = json{
  666. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  667. };
  668. }
  669. std::time_t t = std::time(0);
  670. json res = json {
  671. {"choices", json::array({choice})},
  672. {"created", t},
  673. {"model", oaicompat_model},
  674. {"system_fingerprint", build_info},
  675. {"object", "chat.completion"},
  676. {"usage", json {
  677. {"completion_tokens", n_decoded},
  678. {"prompt_tokens", n_prompt_tokens},
  679. {"total_tokens", n_decoded + n_prompt_tokens}
  680. }},
  681. {"id", oaicompat_cmpl_id}
  682. };
  683. // extra fields for debugging purposes
  684. if (verbose) {
  685. res["__verbose"] = to_json_non_oaicompat();
  686. }
  687. if (timings.prompt_n >= 0) {
  688. res.push_back({"timings", timings.to_json()});
  689. }
  690. return res;
  691. }
  692. json to_json_oaicompat_chat_stream() {
  693. std::time_t t = std::time(0);
  694. std::string finish_reason = "length";
  695. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  696. finish_reason = "stop";
  697. }
  698. json choice = json {
  699. {"finish_reason", finish_reason},
  700. {"index", 0},
  701. {"delta", json::object()}
  702. };
  703. json ret = json {
  704. {"choices", json::array({choice})},
  705. {"created", t},
  706. {"id", oaicompat_cmpl_id},
  707. {"model", oaicompat_model},
  708. {"system_fingerprint", build_info},
  709. {"object", "chat.completion.chunk"},
  710. {"usage", json {
  711. {"completion_tokens", n_decoded},
  712. {"prompt_tokens", n_prompt_tokens},
  713. {"total_tokens", n_decoded + n_prompt_tokens},
  714. }},
  715. };
  716. if (timings.prompt_n >= 0) {
  717. ret.push_back({"timings", timings.to_json()});
  718. }
  719. return ret;
  720. }
  721. };
  722. struct server_task_result_cmpl_partial : server_task_result {
  723. int index = 0;
  724. std::string content;
  725. llama_tokens tokens;
  726. int32_t n_decoded;
  727. int32_t n_prompt_tokens;
  728. bool post_sampling_probs;
  729. completion_token_output prob_output;
  730. result_timings timings;
  731. // OAI-compat fields
  732. bool verbose = false;
  733. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  734. std::string oaicompat_model;
  735. std::string oaicompat_cmpl_id;
  736. virtual int get_index() override {
  737. return index;
  738. }
  739. virtual bool is_stop() override {
  740. return false; // in stream mode, partial responses are not considered stop
  741. }
  742. virtual json to_json() override {
  743. switch (oaicompat) {
  744. case OAICOMPAT_TYPE_NONE:
  745. return to_json_non_oaicompat();
  746. case OAICOMPAT_TYPE_COMPLETION:
  747. return to_json_oaicompat();
  748. case OAICOMPAT_TYPE_CHAT:
  749. return to_json_oaicompat_chat();
  750. default:
  751. GGML_ASSERT(false && "Invalid oaicompat_type");
  752. }
  753. }
  754. json to_json_non_oaicompat() {
  755. // non-OAI-compat JSON
  756. json res = json {
  757. {"index", index},
  758. {"content", content},
  759. {"tokens", tokens},
  760. {"stop", false},
  761. {"id_slot", id_slot},
  762. {"tokens_predicted", n_decoded},
  763. {"tokens_evaluated", n_prompt_tokens},
  764. };
  765. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  766. if (timings.prompt_n > 0) {
  767. res.push_back({"timings", timings.to_json()});
  768. }
  769. if (!prob_output.probs.empty()) {
  770. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  771. }
  772. return res;
  773. }
  774. json to_json_oaicompat() {
  775. std::time_t t = std::time(0);
  776. json logprobs = json(nullptr); // OAI default to null
  777. if (prob_output.probs.size() > 0) {
  778. logprobs = json{
  779. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  780. };
  781. }
  782. json res = json {
  783. {"choices", json::array({
  784. json{
  785. {"text", content},
  786. {"index", index},
  787. {"logprobs", logprobs},
  788. {"finish_reason", nullptr},
  789. }
  790. })},
  791. {"created", t},
  792. {"model", oaicompat_model},
  793. {"system_fingerprint", build_info},
  794. {"object", "text_completion"},
  795. {"id", oaicompat_cmpl_id}
  796. };
  797. // extra fields for debugging purposes
  798. if (verbose) {
  799. res["__verbose"] = to_json_non_oaicompat();
  800. }
  801. if (timings.prompt_n >= 0) {
  802. res.push_back({"timings", timings.to_json()});
  803. }
  804. return res;
  805. }
  806. json to_json_oaicompat_chat() {
  807. bool first = n_decoded == 0;
  808. std::time_t t = std::time(0);
  809. json choices;
  810. if (first) {
  811. if (content.empty()) {
  812. choices = json::array({json{{"finish_reason", nullptr},
  813. {"index", 0},
  814. {"delta", json{{"role", "assistant"}}}}});
  815. } else {
  816. // We have to send this as two updates to conform to openai behavior
  817. json initial_ret = json{{"choices", json::array({json{
  818. {"finish_reason", nullptr},
  819. {"index", 0},
  820. {"delta", json{
  821. {"role", "assistant"}
  822. }}}})},
  823. {"created", t},
  824. {"id", oaicompat_cmpl_id},
  825. {"model", oaicompat_model},
  826. {"object", "chat.completion.chunk"}};
  827. json second_ret = json{
  828. {"choices", json::array({json{{"finish_reason", nullptr},
  829. {"index", 0},
  830. {"delta", json {
  831. {"content", content}}}
  832. }})},
  833. {"created", t},
  834. {"id", oaicompat_cmpl_id},
  835. {"model", oaicompat_model},
  836. {"object", "chat.completion.chunk"}};
  837. return std::vector<json>({initial_ret, second_ret});
  838. }
  839. } else {
  840. choices = json::array({json{
  841. {"finish_reason", nullptr},
  842. {"index", 0},
  843. {"delta",
  844. json {
  845. {"content", content},
  846. }},
  847. }});
  848. }
  849. GGML_ASSERT(choices.size() >= 1);
  850. if (prob_output.probs.size() > 0) {
  851. choices[0]["logprobs"] = json{
  852. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  853. };
  854. }
  855. json ret = json {
  856. {"choices", choices},
  857. {"created", t},
  858. {"id", oaicompat_cmpl_id},
  859. {"model", oaicompat_model},
  860. {"system_fingerprint", build_info},
  861. {"object", "chat.completion.chunk"}
  862. };
  863. if (timings.prompt_n >= 0) {
  864. ret.push_back({"timings", timings.to_json()});
  865. }
  866. return std::vector<json>({ret});
  867. }
  868. };
  869. struct server_task_result_embd : server_task_result {
  870. int index = 0;
  871. std::vector<std::vector<float>> embedding;
  872. int32_t n_tokens;
  873. // OAI-compat fields
  874. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  875. virtual int get_index() override {
  876. return index;
  877. }
  878. virtual json to_json() override {
  879. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  880. ? to_json_oaicompat()
  881. : to_json_non_oaicompat();
  882. }
  883. json to_json_non_oaicompat() {
  884. return json {
  885. {"index", index},
  886. {"embedding", embedding},
  887. };
  888. }
  889. json to_json_oaicompat() {
  890. return json {
  891. {"index", index},
  892. {"embedding", embedding[0]},
  893. {"tokens_evaluated", n_tokens},
  894. };
  895. }
  896. };
  897. struct server_task_result_rerank : server_task_result {
  898. int index = 0;
  899. float score = -1e6;
  900. int32_t n_tokens;
  901. virtual int get_index() override {
  902. return index;
  903. }
  904. virtual json to_json() override {
  905. return json {
  906. {"index", index},
  907. {"score", score},
  908. {"tokens_evaluated", n_tokens},
  909. };
  910. }
  911. };
  912. // this function maybe used outside of server_task_result_error
  913. static json format_error_response(const std::string & message, const enum error_type type) {
  914. std::string type_str;
  915. int code = 500;
  916. switch (type) {
  917. case ERROR_TYPE_INVALID_REQUEST:
  918. type_str = "invalid_request_error";
  919. code = 400;
  920. break;
  921. case ERROR_TYPE_AUTHENTICATION:
  922. type_str = "authentication_error";
  923. code = 401;
  924. break;
  925. case ERROR_TYPE_NOT_FOUND:
  926. type_str = "not_found_error";
  927. code = 404;
  928. break;
  929. case ERROR_TYPE_SERVER:
  930. type_str = "server_error";
  931. code = 500;
  932. break;
  933. case ERROR_TYPE_PERMISSION:
  934. type_str = "permission_error";
  935. code = 403;
  936. break;
  937. case ERROR_TYPE_NOT_SUPPORTED:
  938. type_str = "not_supported_error";
  939. code = 501;
  940. break;
  941. case ERROR_TYPE_UNAVAILABLE:
  942. type_str = "unavailable_error";
  943. code = 503;
  944. break;
  945. }
  946. return json {
  947. {"code", code},
  948. {"message", message},
  949. {"type", type_str},
  950. };
  951. }
  952. struct server_task_result_error : server_task_result {
  953. int index = 0;
  954. error_type err_type = ERROR_TYPE_SERVER;
  955. std::string err_msg;
  956. virtual bool is_error() override {
  957. return true;
  958. }
  959. virtual json to_json() override {
  960. return format_error_response(err_msg, err_type);
  961. }
  962. };
  963. struct server_task_result_metrics : server_task_result {
  964. int n_idle_slots;
  965. int n_processing_slots;
  966. int n_tasks_deferred;
  967. int64_t t_start;
  968. int32_t kv_cache_tokens_count;
  969. int32_t kv_cache_used_cells;
  970. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  971. uint64_t n_prompt_tokens_processed_total = 0;
  972. uint64_t t_prompt_processing_total = 0;
  973. uint64_t n_tokens_predicted_total = 0;
  974. uint64_t t_tokens_generation_total = 0;
  975. uint64_t n_prompt_tokens_processed = 0;
  976. uint64_t t_prompt_processing = 0;
  977. uint64_t n_tokens_predicted = 0;
  978. uint64_t t_tokens_generation = 0;
  979. uint64_t n_decode_total = 0;
  980. uint64_t n_busy_slots_total = 0;
  981. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  982. // therefore, we use json to temporarily store the slot.to_json() result
  983. json slots_data = json::array();
  984. virtual json to_json() override {
  985. return json {
  986. { "idle", n_idle_slots },
  987. { "processing", n_processing_slots },
  988. { "deferred", n_tasks_deferred },
  989. { "t_start", t_start },
  990. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  991. { "t_tokens_generation_total", t_tokens_generation_total },
  992. { "n_tokens_predicted_total", n_tokens_predicted_total },
  993. { "t_prompt_processing_total", t_prompt_processing_total },
  994. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  995. { "t_prompt_processing", t_prompt_processing },
  996. { "n_tokens_predicted", n_tokens_predicted },
  997. { "t_tokens_generation", t_tokens_generation },
  998. { "n_decode_total", n_decode_total },
  999. { "n_busy_slots_total", n_busy_slots_total },
  1000. { "kv_cache_tokens_count", kv_cache_tokens_count },
  1001. { "kv_cache_used_cells", kv_cache_used_cells },
  1002. { "slots", slots_data },
  1003. };
  1004. }
  1005. };
  1006. struct server_task_result_slot_save_load : server_task_result {
  1007. std::string filename;
  1008. bool is_save; // true = save, false = load
  1009. size_t n_tokens;
  1010. size_t n_bytes;
  1011. double t_ms;
  1012. virtual json to_json() override {
  1013. if (is_save) {
  1014. return json {
  1015. { "id_slot", id_slot },
  1016. { "filename", filename },
  1017. { "n_saved", n_tokens },
  1018. { "n_written", n_bytes },
  1019. { "timings", {
  1020. { "save_ms", t_ms }
  1021. }},
  1022. };
  1023. } else {
  1024. return json {
  1025. { "id_slot", id_slot },
  1026. { "filename", filename },
  1027. { "n_restored", n_tokens },
  1028. { "n_read", n_bytes },
  1029. { "timings", {
  1030. { "restore_ms", t_ms }
  1031. }},
  1032. };
  1033. }
  1034. }
  1035. };
  1036. struct server_task_result_slot_erase : server_task_result {
  1037. size_t n_erased;
  1038. virtual json to_json() override {
  1039. return json {
  1040. { "id_slot", id_slot },
  1041. { "n_erased", n_erased },
  1042. };
  1043. }
  1044. };
  1045. struct server_task_result_apply_lora : server_task_result {
  1046. virtual json to_json() override {
  1047. return json {{ "success", true }};
  1048. }
  1049. };
  1050. struct server_slot {
  1051. int id;
  1052. int id_task = -1;
  1053. // only used for completion/embedding/infill/rerank
  1054. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1055. llama_batch batch_spec = {};
  1056. llama_context * ctx = nullptr;
  1057. llama_context * ctx_dft = nullptr;
  1058. common_speculative * spec = nullptr;
  1059. std::vector<common_adapter_lora_info> lora;
  1060. // the index relative to completion multi-task request
  1061. size_t index = 0;
  1062. struct slot_params params;
  1063. slot_state state = SLOT_STATE_IDLE;
  1064. // used to determine the slot that has been used the longest
  1065. int64_t t_last_used = -1;
  1066. // generation props
  1067. int32_t n_ctx = 0; // context size per slot
  1068. int32_t n_past = 0;
  1069. int32_t n_decoded = 0;
  1070. int32_t n_remaining = -1;
  1071. int32_t i_batch = -1;
  1072. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1073. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1074. int32_t n_prompt_tokens = 0;
  1075. int32_t n_prompt_tokens_processed = 0;
  1076. // input prompt tokens
  1077. llama_tokens prompt_tokens;
  1078. size_t last_nl_pos = 0;
  1079. std::string generated_text;
  1080. llama_tokens generated_tokens;
  1081. llama_tokens cache_tokens;
  1082. std::vector<completion_token_output> generated_token_probs;
  1083. bool has_next_token = true;
  1084. bool has_new_line = false;
  1085. bool truncated = false;
  1086. stop_type stop;
  1087. std::string stopping_word;
  1088. // sampling
  1089. json json_schema;
  1090. struct common_sampler * smpl = nullptr;
  1091. llama_token sampled;
  1092. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1093. // stats
  1094. size_t n_sent_text = 0; // number of sent text character
  1095. int64_t t_start_process_prompt;
  1096. int64_t t_start_generation;
  1097. double t_prompt_processing; // ms
  1098. double t_token_generation; // ms
  1099. std::function<void(int)> callback_on_release;
  1100. void reset() {
  1101. SLT_DBG(*this, "%s", "\n");
  1102. n_prompt_tokens = 0;
  1103. last_nl_pos = 0;
  1104. generated_text = "";
  1105. has_new_line = false;
  1106. truncated = false;
  1107. stop = STOP_TYPE_NONE;
  1108. stopping_word = "";
  1109. n_past = 0;
  1110. n_sent_text = 0;
  1111. task_type = SERVER_TASK_TYPE_COMPLETION;
  1112. generated_tokens.clear();
  1113. generated_token_probs.clear();
  1114. }
  1115. bool is_non_causal() const {
  1116. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1117. }
  1118. bool can_batch_with(server_slot & other_slot) {
  1119. return is_non_causal() == other_slot.is_non_causal()
  1120. && are_lora_equal(lora, other_slot.lora);
  1121. }
  1122. bool has_budget(const common_params & global_params) {
  1123. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1124. return true; // limitless
  1125. }
  1126. n_remaining = -1;
  1127. if (params.n_predict != -1) {
  1128. n_remaining = params.n_predict - n_decoded;
  1129. } else if (global_params.n_predict != -1) {
  1130. n_remaining = global_params.n_predict - n_decoded;
  1131. }
  1132. return n_remaining > 0; // no budget
  1133. }
  1134. bool is_processing() const {
  1135. return state != SLOT_STATE_IDLE;
  1136. }
  1137. bool can_speculate() const {
  1138. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1139. }
  1140. void add_token(const completion_token_output & token) {
  1141. if (!is_processing()) {
  1142. SLT_WRN(*this, "%s", "slot is not processing\n");
  1143. return;
  1144. }
  1145. generated_token_probs.push_back(token);
  1146. }
  1147. void release() {
  1148. if (is_processing()) {
  1149. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1150. t_last_used = ggml_time_us();
  1151. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1152. state = SLOT_STATE_IDLE;
  1153. callback_on_release(id);
  1154. }
  1155. }
  1156. result_timings get_timings() const {
  1157. result_timings timings;
  1158. timings.prompt_n = n_prompt_tokens_processed;
  1159. timings.prompt_ms = t_prompt_processing;
  1160. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1161. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1162. timings.predicted_n = n_decoded;
  1163. timings.predicted_ms = t_token_generation;
  1164. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1165. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1166. return timings;
  1167. }
  1168. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1169. size_t stop_pos = std::string::npos;
  1170. for (const std::string & word : params.antiprompt) {
  1171. size_t pos;
  1172. if (is_full_stop) {
  1173. const size_t tmp = word.size() + last_token_size;
  1174. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1175. pos = text.find(word, from_pos);
  1176. } else {
  1177. // otherwise, partial stop
  1178. pos = find_partial_stop_string(word, text);
  1179. }
  1180. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1181. if (is_full_stop) {
  1182. stop = STOP_TYPE_WORD;
  1183. stopping_word = word;
  1184. has_next_token = false;
  1185. }
  1186. stop_pos = pos;
  1187. }
  1188. }
  1189. return stop_pos;
  1190. }
  1191. void print_timings() const {
  1192. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1193. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1194. const double t_gen = t_token_generation / n_decoded;
  1195. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1196. SLT_INF(*this,
  1197. "\n"
  1198. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1199. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1200. " total time = %10.2f ms / %5d tokens\n",
  1201. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1202. t_token_generation, n_decoded, t_gen, n_gen_second,
  1203. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1204. }
  1205. json to_json() const {
  1206. return json {
  1207. {"id", id},
  1208. {"id_task", id_task},
  1209. {"n_ctx", n_ctx},
  1210. {"speculative", can_speculate()},
  1211. {"is_processing", is_processing()},
  1212. {"non_causal", is_non_causal()},
  1213. {"params", params.to_json()},
  1214. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1215. {"next_token",
  1216. {
  1217. {"has_next_token", has_next_token},
  1218. {"has_new_line", has_new_line},
  1219. {"n_remain", n_remaining},
  1220. {"n_decoded", n_decoded},
  1221. {"stopping_word", stopping_word},
  1222. }
  1223. },
  1224. };
  1225. }
  1226. };
  1227. struct server_metrics {
  1228. int64_t t_start = 0;
  1229. uint64_t n_prompt_tokens_processed_total = 0;
  1230. uint64_t t_prompt_processing_total = 0;
  1231. uint64_t n_tokens_predicted_total = 0;
  1232. uint64_t t_tokens_generation_total = 0;
  1233. uint64_t n_prompt_tokens_processed = 0;
  1234. uint64_t t_prompt_processing = 0;
  1235. uint64_t n_tokens_predicted = 0;
  1236. uint64_t t_tokens_generation = 0;
  1237. uint64_t n_decode_total = 0;
  1238. uint64_t n_busy_slots_total = 0;
  1239. void init() {
  1240. t_start = ggml_time_us();
  1241. }
  1242. void on_prompt_eval(const server_slot & slot) {
  1243. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1244. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1245. t_prompt_processing += slot.t_prompt_processing;
  1246. t_prompt_processing_total += slot.t_prompt_processing;
  1247. }
  1248. void on_prediction(const server_slot & slot) {
  1249. n_tokens_predicted_total += slot.n_decoded;
  1250. n_tokens_predicted += slot.n_decoded;
  1251. t_tokens_generation += slot.t_token_generation;
  1252. t_tokens_generation_total += slot.t_token_generation;
  1253. }
  1254. void on_decoded(const std::vector<server_slot> & slots) {
  1255. n_decode_total++;
  1256. for (const auto & slot : slots) {
  1257. if (slot.is_processing()) {
  1258. n_busy_slots_total++;
  1259. }
  1260. }
  1261. }
  1262. void reset_bucket() {
  1263. n_prompt_tokens_processed = 0;
  1264. t_prompt_processing = 0;
  1265. n_tokens_predicted = 0;
  1266. t_tokens_generation = 0;
  1267. }
  1268. };
  1269. struct server_queue {
  1270. int id = 0;
  1271. bool running;
  1272. // queues
  1273. std::deque<server_task> queue_tasks;
  1274. std::deque<server_task> queue_tasks_deferred;
  1275. std::mutex mutex_tasks;
  1276. std::condition_variable condition_tasks;
  1277. // callback functions
  1278. std::function<void(server_task)> callback_new_task;
  1279. std::function<void(void)> callback_update_slots;
  1280. // Add a new task to the end of the queue
  1281. int post(server_task task, bool front = false) {
  1282. std::unique_lock<std::mutex> lock(mutex_tasks);
  1283. GGML_ASSERT(task.id != -1);
  1284. // if this is cancel task make sure to clean up pending tasks
  1285. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1286. cleanup_pending_task(task.id_target);
  1287. }
  1288. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1289. if (front) {
  1290. queue_tasks.push_front(std::move(task));
  1291. } else {
  1292. queue_tasks.push_back(std::move(task));
  1293. }
  1294. condition_tasks.notify_one();
  1295. return task.id;
  1296. }
  1297. // multi-task version of post()
  1298. int post(std::vector<server_task> & tasks, bool front = false) {
  1299. std::unique_lock<std::mutex> lock(mutex_tasks);
  1300. for (auto & task : tasks) {
  1301. if (task.id == -1) {
  1302. task.id = id++;
  1303. }
  1304. // if this is cancel task make sure to clean up pending tasks
  1305. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1306. cleanup_pending_task(task.id_target);
  1307. }
  1308. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1309. if (front) {
  1310. queue_tasks.push_front(std::move(task));
  1311. } else {
  1312. queue_tasks.push_back(std::move(task));
  1313. }
  1314. }
  1315. condition_tasks.notify_one();
  1316. return 0;
  1317. }
  1318. // Add a new task, but defer until one slot is available
  1319. void defer(server_task task) {
  1320. std::unique_lock<std::mutex> lock(mutex_tasks);
  1321. QUE_DBG("defer task, id = %d\n", task.id);
  1322. queue_tasks_deferred.push_back(std::move(task));
  1323. condition_tasks.notify_one();
  1324. }
  1325. // Get the next id for creating a new task
  1326. int get_new_id() {
  1327. std::unique_lock<std::mutex> lock(mutex_tasks);
  1328. int new_id = id++;
  1329. return new_id;
  1330. }
  1331. // Register function to process a new task
  1332. void on_new_task(std::function<void(server_task)> callback) {
  1333. callback_new_task = std::move(callback);
  1334. }
  1335. // Register the function to be called when all slots data is ready to be processed
  1336. void on_update_slots(std::function<void(void)> callback) {
  1337. callback_update_slots = std::move(callback);
  1338. }
  1339. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1340. void pop_deferred_task() {
  1341. std::unique_lock<std::mutex> lock(mutex_tasks);
  1342. if (!queue_tasks_deferred.empty()) {
  1343. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1344. queue_tasks_deferred.pop_front();
  1345. }
  1346. condition_tasks.notify_one();
  1347. }
  1348. // end the start_loop routine
  1349. void terminate() {
  1350. std::unique_lock<std::mutex> lock(mutex_tasks);
  1351. running = false;
  1352. condition_tasks.notify_all();
  1353. }
  1354. /**
  1355. * Main loop consists of these steps:
  1356. * - Wait until a new task arrives
  1357. * - Process the task (i.e. maybe copy data into slot)
  1358. * - Check if multitask is finished
  1359. * - Update all slots
  1360. */
  1361. void start_loop() {
  1362. running = true;
  1363. while (true) {
  1364. QUE_DBG("%s", "processing new tasks\n");
  1365. while (true) {
  1366. std::unique_lock<std::mutex> lock(mutex_tasks);
  1367. if (queue_tasks.empty()) {
  1368. lock.unlock();
  1369. break;
  1370. }
  1371. server_task task = queue_tasks.front();
  1372. queue_tasks.pop_front();
  1373. lock.unlock();
  1374. QUE_DBG("processing task, id = %d\n", task.id);
  1375. callback_new_task(std::move(task));
  1376. }
  1377. // all tasks in the current loop is processed, slots data is now ready
  1378. QUE_DBG("%s", "update slots\n");
  1379. callback_update_slots();
  1380. QUE_DBG("%s", "waiting for new tasks\n");
  1381. {
  1382. std::unique_lock<std::mutex> lock(mutex_tasks);
  1383. if (queue_tasks.empty()) {
  1384. if (!running) {
  1385. QUE_DBG("%s", "terminate\n");
  1386. return;
  1387. }
  1388. condition_tasks.wait(lock, [&]{
  1389. return (!queue_tasks.empty() || !running);
  1390. });
  1391. }
  1392. }
  1393. }
  1394. }
  1395. private:
  1396. void cleanup_pending_task(int id_target) {
  1397. // no need lock because this is called exclusively by post()
  1398. auto rm_func = [id_target](const server_task & task) {
  1399. return task.id_target == id_target;
  1400. };
  1401. queue_tasks.erase(
  1402. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1403. queue_tasks.end());
  1404. queue_tasks_deferred.erase(
  1405. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1406. queue_tasks_deferred.end());
  1407. }
  1408. };
  1409. struct server_response {
  1410. // for keeping track of all tasks waiting for the result
  1411. std::unordered_set<int> waiting_task_ids;
  1412. // the main result queue (using ptr for polymorphism)
  1413. std::vector<server_task_result_ptr> queue_results;
  1414. std::mutex mutex_results;
  1415. std::condition_variable condition_results;
  1416. // add the id_task to the list of tasks waiting for response
  1417. void add_waiting_task_id(int id_task) {
  1418. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1419. std::unique_lock<std::mutex> lock(mutex_results);
  1420. waiting_task_ids.insert(id_task);
  1421. }
  1422. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1423. std::unique_lock<std::mutex> lock(mutex_results);
  1424. for (const auto & task : tasks) {
  1425. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1426. waiting_task_ids.insert(task.id);
  1427. }
  1428. }
  1429. // when the request is finished, we can remove task associated with it
  1430. void remove_waiting_task_id(int id_task) {
  1431. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1432. std::unique_lock<std::mutex> lock(mutex_results);
  1433. waiting_task_ids.erase(id_task);
  1434. // make sure to clean up all pending results
  1435. queue_results.erase(
  1436. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1437. return res->id == id_task;
  1438. }),
  1439. queue_results.end());
  1440. }
  1441. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1442. std::unique_lock<std::mutex> lock(mutex_results);
  1443. for (const auto & id_task : id_tasks) {
  1444. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1445. waiting_task_ids.erase(id_task);
  1446. }
  1447. }
  1448. // This function blocks the thread until there is a response for one of the id_tasks
  1449. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1450. while (true) {
  1451. std::unique_lock<std::mutex> lock(mutex_results);
  1452. condition_results.wait(lock, [&]{
  1453. return !queue_results.empty();
  1454. });
  1455. for (size_t i = 0; i < queue_results.size(); i++) {
  1456. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1457. server_task_result_ptr res = std::move(queue_results[i]);
  1458. queue_results.erase(queue_results.begin() + i);
  1459. return res;
  1460. }
  1461. }
  1462. }
  1463. // should never reach here
  1464. }
  1465. // same as recv(), but have timeout in seconds
  1466. // if timeout is reached, nullptr is returned
  1467. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1468. while (true) {
  1469. std::unique_lock<std::mutex> lock(mutex_results);
  1470. for (int i = 0; i < (int) queue_results.size(); i++) {
  1471. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1472. server_task_result_ptr res = std::move(queue_results[i]);
  1473. queue_results.erase(queue_results.begin() + i);
  1474. return res;
  1475. }
  1476. }
  1477. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1478. if (cr_res == std::cv_status::timeout) {
  1479. return nullptr;
  1480. }
  1481. }
  1482. // should never reach here
  1483. }
  1484. // single-task version of recv()
  1485. server_task_result_ptr recv(int id_task) {
  1486. std::unordered_set<int> id_tasks = {id_task};
  1487. return recv(id_tasks);
  1488. }
  1489. // Send a new result to a waiting id_task
  1490. void send(server_task_result_ptr && result) {
  1491. SRV_DBG("sending result for task id = %d\n", result->id);
  1492. std::unique_lock<std::mutex> lock(mutex_results);
  1493. for (const auto & id_task : waiting_task_ids) {
  1494. if (result->id == id_task) {
  1495. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1496. queue_results.emplace_back(std::move(result));
  1497. condition_results.notify_all();
  1498. return;
  1499. }
  1500. }
  1501. }
  1502. };
  1503. struct server_context {
  1504. common_params params_base;
  1505. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1506. common_init_result llama_init;
  1507. common_init_result llama_init_dft;
  1508. llama_model * model = nullptr;
  1509. llama_context * ctx = nullptr;
  1510. const llama_vocab * vocab = nullptr;
  1511. llama_model * model_dft = nullptr;
  1512. llama_context_params cparams_dft;
  1513. llama_batch batch = {};
  1514. bool clean_kv_cache = true;
  1515. bool add_bos_token = true;
  1516. bool has_eos_token = false;
  1517. int32_t n_ctx; // total context for all clients / slots
  1518. // slots / clients
  1519. std::vector<server_slot> slots;
  1520. json default_generation_settings_for_props;
  1521. server_queue queue_tasks;
  1522. server_response queue_results;
  1523. server_metrics metrics;
  1524. // Necessary similarity of prompt for slot selection
  1525. float slot_prompt_similarity = 0.0f;
  1526. common_chat_templates chat_templates;
  1527. ~server_context() {
  1528. // Clear any sampling context
  1529. for (server_slot & slot : slots) {
  1530. common_sampler_free(slot.smpl);
  1531. slot.smpl = nullptr;
  1532. llama_free(slot.ctx_dft);
  1533. slot.ctx_dft = nullptr;
  1534. common_speculative_free(slot.spec);
  1535. slot.spec = nullptr;
  1536. llama_batch_free(slot.batch_spec);
  1537. }
  1538. llama_batch_free(batch);
  1539. }
  1540. bool load_model(const common_params & params) {
  1541. SRV_INF("loading model '%s'\n", params.model.c_str());
  1542. params_base = params;
  1543. llama_init = common_init_from_params(params_base);
  1544. model = llama_init.model.get();
  1545. ctx = llama_init.context.get();
  1546. if (model == nullptr) {
  1547. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1548. return false;
  1549. }
  1550. vocab = llama_model_get_vocab(model);
  1551. n_ctx = llama_n_ctx(ctx);
  1552. add_bos_token = llama_vocab_get_add_bos(vocab);
  1553. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1554. if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
  1555. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1556. auto params_dft = params_base;
  1557. params_dft.devices = params_base.speculative.devices;
  1558. params_dft.hf_file = params_base.speculative.hf_file;
  1559. params_dft.hf_repo = params_base.speculative.hf_repo;
  1560. params_dft.model = params_base.speculative.model;
  1561. params_dft.model_url = params_base.speculative.model_url;
  1562. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1563. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1564. params_dft.n_parallel = 1;
  1565. llama_init_dft = common_init_from_params(params_dft);
  1566. model_dft = llama_init_dft.model.get();
  1567. if (model_dft == nullptr) {
  1568. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1569. return false;
  1570. }
  1571. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1572. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1573. return false;
  1574. }
  1575. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1576. cparams_dft = common_context_params_to_llama(params_dft);
  1577. cparams_dft.n_batch = n_ctx_dft;
  1578. // force F16 KV cache for the draft model for extra performance
  1579. cparams_dft.type_k = GGML_TYPE_F16;
  1580. cparams_dft.type_v = GGML_TYPE_F16;
  1581. // the context is not needed - we will create one for each slot
  1582. llama_init_dft.context.reset();
  1583. }
  1584. if (params_base.chat_template.empty() && !validate_builtin_chat_template(params.use_jinja)) {
  1585. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1586. chat_templates = common_chat_templates_from_model(model, "chatml");
  1587. } else {
  1588. chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
  1589. }
  1590. GGML_ASSERT(chat_templates.template_default.get() != nullptr);
  1591. return true;
  1592. }
  1593. bool validate_builtin_chat_template(bool use_jinja) const {
  1594. llama_chat_message chat[] = {{"user", "test"}};
  1595. if (use_jinja) {
  1596. auto templates = common_chat_templates_from_model(model, "");
  1597. common_chat_inputs inputs;
  1598. inputs.messages = json::array({{
  1599. {"role", "user"},
  1600. {"content", "test"},
  1601. }});
  1602. GGML_ASSERT(templates.template_default);
  1603. try {
  1604. common_chat_params_init(*templates.template_default, inputs);
  1605. if (templates.template_tool_use) {
  1606. common_chat_params_init(*templates.template_tool_use, inputs);
  1607. }
  1608. return true;
  1609. } catch (const std::exception & e) {
  1610. SRV_ERR("failed to apply template: %s\n", e.what());
  1611. return false;
  1612. }
  1613. } else {
  1614. const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
  1615. const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
  1616. return chat_res > 0;
  1617. }
  1618. }
  1619. void init() {
  1620. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1621. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1622. for (int i = 0; i < params_base.n_parallel; i++) {
  1623. server_slot slot;
  1624. slot.id = i;
  1625. slot.ctx = ctx;
  1626. slot.n_ctx = n_ctx_slot;
  1627. slot.n_predict = params_base.n_predict;
  1628. if (model_dft) {
  1629. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1630. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1631. if (slot.ctx_dft == nullptr) {
  1632. SRV_ERR("%s", "failed to create draft context\n");
  1633. return;
  1634. }
  1635. slot.spec = common_speculative_init(slot.ctx_dft);
  1636. if (slot.spec == nullptr) {
  1637. SRV_ERR("%s", "failed to create speculator\n");
  1638. return;
  1639. }
  1640. }
  1641. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1642. slot.params.sampling = params_base.sampling;
  1643. slot.callback_on_release = [this](int) {
  1644. queue_tasks.pop_deferred_task();
  1645. };
  1646. slot.reset();
  1647. slots.push_back(slot);
  1648. }
  1649. default_generation_settings_for_props = slots[0].to_json();
  1650. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1651. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1652. {
  1653. const int32_t n_batch = llama_n_batch(ctx);
  1654. // only a single seq_id per token is needed
  1655. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1656. }
  1657. metrics.init();
  1658. }
  1659. server_slot * get_slot_by_id(int id) {
  1660. for (server_slot & slot : slots) {
  1661. if (slot.id == id) {
  1662. return &slot;
  1663. }
  1664. }
  1665. return nullptr;
  1666. }
  1667. server_slot * get_available_slot(const server_task & task) {
  1668. server_slot * ret = nullptr;
  1669. // find the slot that has at least n% prompt similarity
  1670. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1671. int lcs_len = 0;
  1672. float similarity = 0;
  1673. for (server_slot & slot : slots) {
  1674. // skip the slot if it is not available
  1675. if (slot.is_processing()) {
  1676. continue;
  1677. }
  1678. // skip the slot if it does not contains cached tokens
  1679. if (slot.cache_tokens.empty()) {
  1680. continue;
  1681. }
  1682. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1683. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1684. // fraction of the common subsequence length compared to the current slot's prompt length
  1685. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1686. // select the current slot if the criteria match
  1687. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1688. lcs_len = cur_lcs_len;
  1689. similarity = cur_similarity;
  1690. ret = &slot;
  1691. }
  1692. }
  1693. if (ret != nullptr) {
  1694. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1695. }
  1696. }
  1697. // find the slot that has been least recently used
  1698. if (ret == nullptr) {
  1699. int64_t t_last = ggml_time_us();
  1700. for (server_slot & slot : slots) {
  1701. // skip the slot if it is not available
  1702. if (slot.is_processing()) {
  1703. continue;
  1704. }
  1705. // select the current slot if the criteria match
  1706. if (slot.t_last_used < t_last) {
  1707. t_last = slot.t_last_used;
  1708. ret = &slot;
  1709. }
  1710. }
  1711. if (ret != nullptr) {
  1712. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1713. }
  1714. }
  1715. return ret;
  1716. }
  1717. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1718. slot.reset();
  1719. slot.id_task = task.id;
  1720. slot.index = task.index;
  1721. slot.task_type = task.type;
  1722. slot.params = std::move(task.params);
  1723. slot.prompt_tokens = std::move(task.prompt_tokens);
  1724. if (!are_lora_equal(task.params.lora, slot.lora)) {
  1725. // if lora is changed, we cannot reuse cached tokens
  1726. slot.cache_tokens.clear();
  1727. slot.lora = task.params.lora;
  1728. }
  1729. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1730. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1731. // Might be better to reject the request with a 400 ?
  1732. slot.params.n_predict = slot.n_predict;
  1733. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1734. }
  1735. if (slot.params.ignore_eos && has_eos_token) {
  1736. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1737. }
  1738. {
  1739. if (slot.smpl != nullptr) {
  1740. common_sampler_free(slot.smpl);
  1741. }
  1742. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1743. if (slot.smpl == nullptr) {
  1744. // for now, the only error that may happen here is invalid grammar
  1745. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1746. return false;
  1747. }
  1748. }
  1749. if (slot.ctx_dft) {
  1750. llama_batch_free(slot.batch_spec);
  1751. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1752. }
  1753. slot.state = SLOT_STATE_STARTED;
  1754. SLT_INF(slot, "%s", "processing task\n");
  1755. return true;
  1756. }
  1757. void kv_cache_clear() {
  1758. SRV_DBG("%s", "clearing KV cache\n");
  1759. // clear the entire KV cache
  1760. llama_kv_cache_clear(ctx);
  1761. clean_kv_cache = false;
  1762. }
  1763. bool process_token(completion_token_output & result, server_slot & slot) {
  1764. // remember which tokens were sampled - used for repetition penalties during sampling
  1765. const std::string token_str = result.text_to_send;
  1766. slot.sampled = result.tok;
  1767. slot.generated_text += token_str;
  1768. if (slot.params.return_tokens) {
  1769. slot.generated_tokens.push_back(result.tok);
  1770. }
  1771. slot.has_next_token = true;
  1772. // check if there is incomplete UTF-8 character at the end
  1773. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1774. // search stop word and delete it
  1775. if (!incomplete) {
  1776. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1777. const std::string str_test = slot.generated_text.substr(pos);
  1778. bool send_text = true;
  1779. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1780. if (stop_pos != std::string::npos) {
  1781. slot.generated_text.erase(
  1782. slot.generated_text.begin() + pos + stop_pos,
  1783. slot.generated_text.end());
  1784. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1785. } else if (slot.has_next_token) {
  1786. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1787. send_text = stop_pos == std::string::npos;
  1788. }
  1789. // check if there is any token to predict
  1790. if (send_text) {
  1791. // no send the stop word in the response
  1792. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1793. slot.n_sent_text += result.text_to_send.size();
  1794. // add the token to slot queue and cache
  1795. } else {
  1796. result.text_to_send = "";
  1797. }
  1798. slot.add_token(result);
  1799. if (slot.params.stream) {
  1800. send_partial_response(slot, result);
  1801. }
  1802. }
  1803. if (incomplete) {
  1804. slot.has_next_token = true;
  1805. }
  1806. // check the limits
  1807. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1808. slot.stop = STOP_TYPE_LIMIT;
  1809. slot.has_next_token = false;
  1810. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1811. }
  1812. if (slot.has_new_line) {
  1813. // if we have already seen a new line, we stop after a certain time limit
  1814. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1815. slot.stop = STOP_TYPE_LIMIT;
  1816. slot.has_next_token = false;
  1817. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1818. }
  1819. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1820. if (slot.params.n_indent > 0) {
  1821. // check the current indentation
  1822. // TODO: improve by not doing it more than once for each new line
  1823. if (slot.last_nl_pos > 0) {
  1824. size_t pos = slot.last_nl_pos;
  1825. int n_indent = 0;
  1826. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1827. n_indent++;
  1828. pos++;
  1829. }
  1830. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1831. slot.stop = STOP_TYPE_LIMIT;
  1832. slot.has_next_token = false;
  1833. // cut the last line
  1834. slot.generated_text.erase(pos, std::string::npos);
  1835. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1836. }
  1837. }
  1838. // find the next new line
  1839. {
  1840. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1841. if (pos != std::string::npos) {
  1842. slot.last_nl_pos = pos + 1;
  1843. }
  1844. }
  1845. }
  1846. }
  1847. // check if there is a new line in the generated text
  1848. if (result.text_to_send.find('\n') != std::string::npos) {
  1849. slot.has_new_line = true;
  1850. }
  1851. // if context shift is disabled, we stop when it reaches the context limit
  1852. if (slot.n_past >= slot.n_ctx) {
  1853. slot.truncated = true;
  1854. slot.stop = STOP_TYPE_LIMIT;
  1855. slot.has_next_token = false;
  1856. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1857. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1858. }
  1859. if (llama_vocab_is_eog(vocab, result.tok)) {
  1860. slot.stop = STOP_TYPE_EOS;
  1861. slot.has_next_token = false;
  1862. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1863. }
  1864. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1865. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1866. slot.truncated = true;
  1867. slot.stop = STOP_TYPE_LIMIT;
  1868. slot.has_next_token = false; // stop prediction
  1869. SLT_WRN(slot,
  1870. "n_predict (%d) is set for infinite generation. "
  1871. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1872. slot.params.n_predict, n_ctx_train);
  1873. }
  1874. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1875. return slot.has_next_token; // continue
  1876. }
  1877. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1878. size_t n_probs = slot.params.sampling.n_probs;
  1879. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1880. if (post_sampling) {
  1881. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1882. const size_t max_probs = cur_p->size;
  1883. // set probability for sampled token
  1884. for (size_t i = 0; i < max_probs; i++) {
  1885. if (cur_p->data[i].id == result.tok) {
  1886. result.prob = cur_p->data[i].p;
  1887. break;
  1888. }
  1889. }
  1890. // set probability for top n_probs tokens
  1891. result.probs.reserve(max_probs);
  1892. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1893. result.probs.push_back({
  1894. cur_p->data[i].id,
  1895. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1896. cur_p->data[i].p
  1897. });
  1898. }
  1899. } else {
  1900. // TODO: optimize this with min-p optimization
  1901. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1902. // set probability for sampled token
  1903. for (size_t i = 0; i < n_vocab; i++) {
  1904. // set probability for sampled token
  1905. if (cur[i].id == result.tok) {
  1906. result.prob = cur[i].p;
  1907. break;
  1908. }
  1909. }
  1910. // set probability for top n_probs tokens
  1911. result.probs.reserve(n_probs);
  1912. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1913. result.probs.push_back({
  1914. cur[i].id,
  1915. common_detokenize(ctx, {cur[i].id}, special),
  1916. cur[i].p
  1917. });
  1918. }
  1919. }
  1920. }
  1921. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1922. send_error(task.id, error, type);
  1923. }
  1924. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1925. send_error(slot.id_task, error, type);
  1926. }
  1927. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1928. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1929. auto res = std::make_unique<server_task_result_error>();
  1930. res->id = id_task;
  1931. res->err_type = type;
  1932. res->err_msg = error;
  1933. queue_results.send(std::move(res));
  1934. }
  1935. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1936. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1937. res->id = slot.id_task;
  1938. res->index = slot.index;
  1939. res->content = tkn.text_to_send;
  1940. res->tokens = { tkn.tok };
  1941. res->n_decoded = slot.n_decoded;
  1942. res->n_prompt_tokens = slot.n_prompt_tokens;
  1943. res->post_sampling_probs = slot.params.post_sampling_probs;
  1944. res->verbose = slot.params.verbose;
  1945. res->oaicompat = slot.params.oaicompat;
  1946. res->oaicompat_model = slot.params.oaicompat_model;
  1947. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1948. // populate res.probs_output
  1949. if (slot.params.sampling.n_probs > 0) {
  1950. res->prob_output = tkn; // copy the token probs
  1951. }
  1952. // populate timings if this is final response or timings_per_token is enabled
  1953. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1954. res->timings = slot.get_timings();
  1955. }
  1956. queue_results.send(std::move(res));
  1957. }
  1958. void send_final_response(server_slot & slot) {
  1959. auto res = std::make_unique<server_task_result_cmpl_final>();
  1960. res->id = slot.id_task;
  1961. res->id_slot = slot.id;
  1962. res->index = slot.index;
  1963. res->content = std::move(slot.generated_text);
  1964. res->tokens = std::move(slot.generated_tokens);
  1965. res->timings = slot.get_timings();
  1966. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1967. res->response_fields = std::move(slot.params.response_fields);
  1968. res->truncated = slot.truncated;
  1969. res->n_decoded = slot.n_decoded;
  1970. res->n_prompt_tokens = slot.n_prompt_tokens;
  1971. res->n_tokens_cached = slot.n_past;
  1972. res->has_new_line = slot.has_new_line;
  1973. res->stopping_word = slot.stopping_word;
  1974. res->stop = slot.stop;
  1975. res->post_sampling_probs = slot.params.post_sampling_probs;
  1976. res->verbose = slot.params.verbose;
  1977. res->stream = slot.params.stream;
  1978. res->oaicompat = slot.params.oaicompat;
  1979. res->oaicompat_model = slot.params.oaicompat_model;
  1980. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1981. res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
  1982. // populate res.probs_output
  1983. if (slot.params.sampling.n_probs > 0) {
  1984. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1985. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1986. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1987. res->probs_output = std::vector<completion_token_output>(
  1988. slot.generated_token_probs.begin(),
  1989. slot.generated_token_probs.end() - safe_offset);
  1990. } else {
  1991. res->probs_output = std::vector<completion_token_output>(
  1992. slot.generated_token_probs.begin(),
  1993. slot.generated_token_probs.end());
  1994. }
  1995. }
  1996. res->generation_params = slot.params; // copy the parameters
  1997. queue_results.send(std::move(res));
  1998. }
  1999. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2000. auto res = std::make_unique<server_task_result_embd>();
  2001. res->id = slot.id_task;
  2002. res->index = slot.index;
  2003. res->n_tokens = slot.n_prompt_tokens;
  2004. res->oaicompat = slot.params.oaicompat;
  2005. const int n_embd = llama_model_n_embd(model);
  2006. std::vector<float> embd_res(n_embd, 0.0f);
  2007. for (int i = 0; i < batch.n_tokens; ++i) {
  2008. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2009. continue;
  2010. }
  2011. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2012. if (embd == NULL) {
  2013. embd = llama_get_embeddings_ith(ctx, i);
  2014. }
  2015. if (embd == NULL) {
  2016. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2017. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2018. continue;
  2019. }
  2020. // normalize only when there is pooling
  2021. // TODO: configurable
  2022. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2023. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2024. res->embedding.push_back(embd_res);
  2025. } else {
  2026. res->embedding.push_back({ embd, embd + n_embd });
  2027. }
  2028. }
  2029. SLT_DBG(slot, "%s", "sending embeddings\n");
  2030. queue_results.send(std::move(res));
  2031. }
  2032. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2033. auto res = std::make_unique<server_task_result_rerank>();
  2034. res->id = slot.id_task;
  2035. res->index = slot.index;
  2036. res->n_tokens = slot.n_prompt_tokens;
  2037. for (int i = 0; i < batch.n_tokens; ++i) {
  2038. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2039. continue;
  2040. }
  2041. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2042. if (embd == NULL) {
  2043. embd = llama_get_embeddings_ith(ctx, i);
  2044. }
  2045. if (embd == NULL) {
  2046. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2047. res->score = -1e6;
  2048. continue;
  2049. }
  2050. res->score = embd[0];
  2051. }
  2052. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2053. queue_results.send(std::move(res));
  2054. }
  2055. //
  2056. // Functions to create new task(s) and receive result(s)
  2057. //
  2058. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2059. std::vector<server_task> cancel_tasks;
  2060. cancel_tasks.reserve(id_tasks.size());
  2061. for (const auto & id_task : id_tasks) {
  2062. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2063. server_task task(SERVER_TASK_TYPE_CANCEL);
  2064. task.id_target = id_task;
  2065. queue_results.remove_waiting_task_id(id_task);
  2066. cancel_tasks.push_back(task);
  2067. }
  2068. // push to beginning of the queue, so it has highest priority
  2069. queue_tasks.post(cancel_tasks, true);
  2070. }
  2071. // receive the results from task(s)
  2072. void receive_multi_results(
  2073. const std::unordered_set<int> & id_tasks,
  2074. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2075. const std::function<void(json)> & error_handler,
  2076. const std::function<bool()> & is_connection_closed) {
  2077. std::vector<server_task_result_ptr> results(id_tasks.size());
  2078. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2079. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2080. if (is_connection_closed()) {
  2081. cancel_tasks(id_tasks);
  2082. return;
  2083. }
  2084. if (result == nullptr) {
  2085. i--; // retry
  2086. continue;
  2087. }
  2088. if (result->is_error()) {
  2089. error_handler(result->to_json());
  2090. cancel_tasks(id_tasks);
  2091. return;
  2092. }
  2093. GGML_ASSERT(
  2094. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2095. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2096. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2097. );
  2098. const size_t idx = result->get_index();
  2099. GGML_ASSERT(idx < results.size() && "index out of range");
  2100. results[idx] = std::move(result);
  2101. }
  2102. result_handler(results);
  2103. }
  2104. // receive the results from task(s), in stream mode
  2105. void receive_cmpl_results_stream(
  2106. const std::unordered_set<int> & id_tasks,
  2107. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2108. const std::function<void(json)> & error_handler,
  2109. const std::function<bool()> & is_connection_closed) {
  2110. size_t n_finished = 0;
  2111. while (true) {
  2112. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2113. if (is_connection_closed()) {
  2114. cancel_tasks(id_tasks);
  2115. return;
  2116. }
  2117. if (result == nullptr) {
  2118. continue; // retry
  2119. }
  2120. if (result->is_error()) {
  2121. error_handler(result->to_json());
  2122. cancel_tasks(id_tasks);
  2123. return;
  2124. }
  2125. GGML_ASSERT(
  2126. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2127. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2128. );
  2129. if (!result_handler(result)) {
  2130. cancel_tasks(id_tasks);
  2131. break;
  2132. }
  2133. if (result->is_stop()) {
  2134. if (++n_finished == id_tasks.size()) {
  2135. break;
  2136. }
  2137. }
  2138. }
  2139. }
  2140. //
  2141. // Functions to process the task
  2142. //
  2143. void process_single_task(server_task task) {
  2144. switch (task.type) {
  2145. case SERVER_TASK_TYPE_COMPLETION:
  2146. case SERVER_TASK_TYPE_INFILL:
  2147. case SERVER_TASK_TYPE_EMBEDDING:
  2148. case SERVER_TASK_TYPE_RERANK:
  2149. {
  2150. const int id_slot = task.id_selected_slot;
  2151. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2152. if (slot == nullptr) {
  2153. // if no slot is available, we defer this task for processing later
  2154. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2155. queue_tasks.defer(task);
  2156. break;
  2157. }
  2158. if (slot->is_processing()) {
  2159. // if requested slot is unavailable, we defer this task for processing later
  2160. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2161. queue_tasks.defer(task);
  2162. break;
  2163. }
  2164. if (!launch_slot_with_task(*slot, task)) {
  2165. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2166. break;
  2167. }
  2168. } break;
  2169. case SERVER_TASK_TYPE_CANCEL:
  2170. {
  2171. // release slot linked with the task id
  2172. for (auto & slot : slots) {
  2173. if (slot.id_task == task.id_target) {
  2174. slot.release();
  2175. break;
  2176. }
  2177. }
  2178. } break;
  2179. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2180. {
  2181. // do nothing
  2182. } break;
  2183. case SERVER_TASK_TYPE_METRICS:
  2184. {
  2185. json slots_data = json::array();
  2186. int n_idle_slots = 0;
  2187. int n_processing_slots = 0;
  2188. for (server_slot & slot : slots) {
  2189. json slot_data = slot.to_json();
  2190. if (slot.is_processing()) {
  2191. n_processing_slots++;
  2192. } else {
  2193. n_idle_slots++;
  2194. }
  2195. slots_data.push_back(slot_data);
  2196. }
  2197. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2198. auto res = std::make_unique<server_task_result_metrics>();
  2199. res->id = task.id;
  2200. res->slots_data = std::move(slots_data);
  2201. res->n_idle_slots = n_idle_slots;
  2202. res->n_processing_slots = n_processing_slots;
  2203. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2204. res->t_start = metrics.t_start;
  2205. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2206. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2207. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2208. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2209. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2210. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2211. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2212. res->t_prompt_processing = metrics.t_prompt_processing;
  2213. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2214. res->t_tokens_generation = metrics.t_tokens_generation;
  2215. res->n_decode_total = metrics.n_decode_total;
  2216. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2217. if (task.metrics_reset_bucket) {
  2218. metrics.reset_bucket();
  2219. }
  2220. queue_results.send(std::move(res));
  2221. } break;
  2222. case SERVER_TASK_TYPE_SLOT_SAVE:
  2223. {
  2224. int id_slot = task.slot_action.slot_id;
  2225. server_slot * slot = get_slot_by_id(id_slot);
  2226. if (slot == nullptr) {
  2227. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2228. break;
  2229. }
  2230. if (slot->is_processing()) {
  2231. // if requested slot is unavailable, we defer this task for processing later
  2232. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2233. queue_tasks.defer(task);
  2234. break;
  2235. }
  2236. const size_t token_count = slot->cache_tokens.size();
  2237. const int64_t t_start = ggml_time_us();
  2238. std::string filename = task.slot_action.filename;
  2239. std::string filepath = task.slot_action.filepath;
  2240. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2241. const int64_t t_end = ggml_time_us();
  2242. const double t_save_ms = (t_end - t_start) / 1000.0;
  2243. auto res = std::make_unique<server_task_result_slot_save_load>();
  2244. res->id = task.id;
  2245. res->id_slot = id_slot;
  2246. res->filename = filename;
  2247. res->is_save = true;
  2248. res->n_tokens = token_count;
  2249. res->n_bytes = nwrite;
  2250. res->t_ms = t_save_ms;
  2251. queue_results.send(std::move(res));
  2252. } break;
  2253. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2254. {
  2255. int id_slot = task.slot_action.slot_id;
  2256. server_slot * slot = get_slot_by_id(id_slot);
  2257. if (slot == nullptr) {
  2258. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2259. break;
  2260. }
  2261. if (slot->is_processing()) {
  2262. // if requested slot is unavailable, we defer this task for processing later
  2263. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2264. queue_tasks.defer(task);
  2265. break;
  2266. }
  2267. const int64_t t_start = ggml_time_us();
  2268. std::string filename = task.slot_action.filename;
  2269. std::string filepath = task.slot_action.filepath;
  2270. slot->cache_tokens.resize(slot->n_ctx);
  2271. size_t token_count = 0;
  2272. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2273. if (nread == 0) {
  2274. slot->cache_tokens.resize(0);
  2275. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2276. break;
  2277. }
  2278. slot->cache_tokens.resize(token_count);
  2279. const int64_t t_end = ggml_time_us();
  2280. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2281. auto res = std::make_unique<server_task_result_slot_save_load>();
  2282. res->id = task.id;
  2283. res->id_slot = id_slot;
  2284. res->filename = filename;
  2285. res->is_save = false;
  2286. res->n_tokens = token_count;
  2287. res->n_bytes = nread;
  2288. res->t_ms = t_restore_ms;
  2289. queue_results.send(std::move(res));
  2290. } break;
  2291. case SERVER_TASK_TYPE_SLOT_ERASE:
  2292. {
  2293. int id_slot = task.slot_action.slot_id;
  2294. server_slot * slot = get_slot_by_id(id_slot);
  2295. if (slot == nullptr) {
  2296. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2297. break;
  2298. }
  2299. if (slot->is_processing()) {
  2300. // if requested slot is unavailable, we defer this task for processing later
  2301. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2302. queue_tasks.defer(task);
  2303. break;
  2304. }
  2305. // Erase token cache
  2306. const size_t n_erased = slot->cache_tokens.size();
  2307. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2308. slot->cache_tokens.clear();
  2309. auto res = std::make_unique<server_task_result_slot_erase>();
  2310. res->id = task.id;
  2311. res->id_slot = id_slot;
  2312. res->n_erased = n_erased;
  2313. queue_results.send(std::move(res));
  2314. } break;
  2315. case SERVER_TASK_TYPE_SET_LORA:
  2316. {
  2317. params_base.lora_adapters = std::move(task.set_lora);
  2318. auto res = std::make_unique<server_task_result_apply_lora>();
  2319. res->id = task.id;
  2320. queue_results.send(std::move(res));
  2321. } break;
  2322. }
  2323. }
  2324. void update_slots() {
  2325. // check if all slots are idle
  2326. {
  2327. bool all_idle = true;
  2328. for (auto & slot : slots) {
  2329. if (slot.is_processing()) {
  2330. all_idle = false;
  2331. break;
  2332. }
  2333. }
  2334. if (all_idle) {
  2335. SRV_INF("%s", "all slots are idle\n");
  2336. if (clean_kv_cache) {
  2337. kv_cache_clear();
  2338. }
  2339. return;
  2340. }
  2341. }
  2342. {
  2343. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2344. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2345. task.id = queue_tasks.get_new_id();
  2346. queue_tasks.post(task);
  2347. }
  2348. // apply context-shift if needed
  2349. // TODO: simplify and improve
  2350. for (server_slot & slot : slots) {
  2351. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2352. if (!params_base.ctx_shift) {
  2353. // this check is redundant (for good)
  2354. // we should never get here, because generation should already stopped in process_token()
  2355. slot.release();
  2356. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2357. continue;
  2358. }
  2359. // Shift context
  2360. const int n_keep = slot.params.n_keep + add_bos_token;
  2361. const int n_left = slot.n_past - n_keep;
  2362. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2363. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2364. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2365. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2366. if (slot.params.cache_prompt) {
  2367. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2368. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2369. }
  2370. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2371. }
  2372. slot.n_past -= n_discard;
  2373. slot.truncated = true;
  2374. }
  2375. }
  2376. // start populating the batch for this iteration
  2377. common_batch_clear(batch);
  2378. // track if given slot can be batched with slots already in the batch
  2379. server_slot * slot_batched = nullptr;
  2380. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2381. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2382. };
  2383. // frist, add sampled tokens from any ongoing sequences
  2384. for (auto & slot : slots) {
  2385. if (slot.state != SLOT_STATE_GENERATING) {
  2386. continue;
  2387. }
  2388. // check if we can batch this slot with the previous one
  2389. if (!slot_batched) {
  2390. slot_batched = &slot;
  2391. } else if (!slot_batched->can_batch_with(slot)) {
  2392. continue;
  2393. }
  2394. slot.i_batch = batch.n_tokens;
  2395. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2396. slot.n_past += 1;
  2397. if (slot.params.cache_prompt) {
  2398. slot.cache_tokens.push_back(slot.sampled);
  2399. }
  2400. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2401. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2402. }
  2403. // process in chunks of params.n_batch
  2404. int32_t n_batch = llama_n_batch(ctx);
  2405. int32_t n_ubatch = llama_n_ubatch(ctx);
  2406. // next, batch any pending prompts without exceeding n_batch
  2407. if (params_base.cont_batching || batch.n_tokens == 0) {
  2408. for (auto & slot : slots) {
  2409. // check if we can batch this slot with the previous one
  2410. if (slot.is_processing()) {
  2411. if (!slot_batched) {
  2412. slot_batched = &slot;
  2413. } else if (!slot_batched->can_batch_with(slot)) {
  2414. continue;
  2415. }
  2416. }
  2417. // this slot still has a prompt to be processed
  2418. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2419. auto & prompt_tokens = slot.prompt_tokens;
  2420. // TODO: maybe move branch to outside of this loop in the future
  2421. if (slot.state == SLOT_STATE_STARTED) {
  2422. slot.t_start_process_prompt = ggml_time_us();
  2423. slot.t_start_generation = 0;
  2424. slot.n_past = 0;
  2425. slot.n_prompt_tokens = prompt_tokens.size();
  2426. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2427. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2428. // print prompt tokens (for debugging)
  2429. if (1) {
  2430. // first 16 tokens (avoid flooding logs)
  2431. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2432. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2433. }
  2434. } else {
  2435. // all
  2436. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2437. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2438. }
  2439. }
  2440. // empty prompt passed -> release the slot and send empty response
  2441. if (prompt_tokens.empty()) {
  2442. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2443. slot.release();
  2444. slot.print_timings();
  2445. send_final_response(slot);
  2446. continue;
  2447. }
  2448. if (slot.is_non_causal()) {
  2449. if (slot.n_prompt_tokens > n_ubatch) {
  2450. slot.release();
  2451. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2452. continue;
  2453. }
  2454. if (slot.n_prompt_tokens > slot.n_ctx) {
  2455. slot.release();
  2456. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2457. continue;
  2458. }
  2459. } else {
  2460. if (!params_base.ctx_shift) {
  2461. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2462. // TODO: there should be a separate parameter that control prompt truncation
  2463. // context shift should be applied only during the generation phase
  2464. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2465. slot.release();
  2466. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2467. continue;
  2468. }
  2469. }
  2470. if (slot.params.n_keep < 0) {
  2471. slot.params.n_keep = slot.n_prompt_tokens;
  2472. }
  2473. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2474. // if input prompt is too big, truncate it
  2475. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2476. const int n_left = slot.n_ctx - slot.params.n_keep;
  2477. const int n_block_size = n_left / 2;
  2478. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2479. llama_tokens new_tokens(
  2480. prompt_tokens.begin(),
  2481. prompt_tokens.begin() + slot.params.n_keep);
  2482. new_tokens.insert(
  2483. new_tokens.end(),
  2484. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2485. prompt_tokens.end());
  2486. prompt_tokens = std::move(new_tokens);
  2487. slot.truncated = true;
  2488. slot.n_prompt_tokens = prompt_tokens.size();
  2489. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2490. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2491. }
  2492. if (slot.params.cache_prompt) {
  2493. // reuse any previously computed tokens that are common with the new prompt
  2494. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2495. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2496. if (params_base.n_cache_reuse > 0) {
  2497. size_t head_c = slot.n_past; // cache
  2498. size_t head_p = slot.n_past; // current prompt
  2499. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2500. while (head_c < slot.cache_tokens.size() &&
  2501. head_p < prompt_tokens.size()) {
  2502. size_t n_match = 0;
  2503. while (head_c + n_match < slot.cache_tokens.size() &&
  2504. head_p + n_match < prompt_tokens.size() &&
  2505. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2506. n_match++;
  2507. }
  2508. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2509. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2510. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2511. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2512. //}
  2513. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2514. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2515. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2516. for (size_t i = 0; i < n_match; i++) {
  2517. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2518. slot.n_past++;
  2519. }
  2520. head_c += n_match;
  2521. head_p += n_match;
  2522. } else {
  2523. head_c += 1;
  2524. }
  2525. }
  2526. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2527. }
  2528. }
  2529. }
  2530. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2531. // we have to evaluate at least 1 token to generate logits.
  2532. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2533. slot.n_past--;
  2534. }
  2535. slot.n_prompt_tokens_processed = 0;
  2536. }
  2537. // non-causal tasks require to fit the entire prompt in the physical batch
  2538. if (slot.is_non_causal()) {
  2539. // cannot fit the prompt in the current batch - will try next iter
  2540. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2541. continue;
  2542. }
  2543. }
  2544. // keep only the common part
  2545. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2546. // could not partially delete (likely using a non-Transformer model)
  2547. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2548. // there is no common part left
  2549. slot.n_past = 0;
  2550. }
  2551. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2552. // remove the non-common part from the cache
  2553. slot.cache_tokens.resize(slot.n_past);
  2554. // add prompt tokens for processing in the current batch
  2555. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2556. // without pooling, we want to output the embeddings for all the tokens in the batch
  2557. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2558. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2559. if (slot.params.cache_prompt) {
  2560. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2561. }
  2562. slot.n_prompt_tokens_processed++;
  2563. slot.n_past++;
  2564. }
  2565. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2566. // entire prompt has been processed
  2567. if (slot.n_past == slot.n_prompt_tokens) {
  2568. slot.state = SLOT_STATE_DONE_PROMPT;
  2569. GGML_ASSERT(batch.n_tokens > 0);
  2570. common_sampler_reset(slot.smpl);
  2571. // Process all prompt tokens through sampler system
  2572. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2573. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2574. }
  2575. // extract the logits only for the last token
  2576. batch.logits[batch.n_tokens - 1] = true;
  2577. slot.n_decoded = 0;
  2578. slot.i_batch = batch.n_tokens - 1;
  2579. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2580. }
  2581. }
  2582. if (batch.n_tokens >= n_batch) {
  2583. break;
  2584. }
  2585. }
  2586. }
  2587. if (batch.n_tokens == 0) {
  2588. SRV_WRN("%s", "no tokens to decode\n");
  2589. return;
  2590. }
  2591. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2592. if (slot_batched) {
  2593. // make sure we're in the right embedding mode
  2594. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2595. // apply lora, only need to do it once per batch
  2596. common_set_adapter_lora(ctx, slot_batched->lora);
  2597. }
  2598. // process the created batch of tokens
  2599. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2600. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2601. llama_batch batch_view = {
  2602. n_tokens,
  2603. batch.token + i,
  2604. nullptr,
  2605. batch.pos + i,
  2606. batch.n_seq_id + i,
  2607. batch.seq_id + i,
  2608. batch.logits + i,
  2609. };
  2610. const int ret = llama_decode(ctx, batch_view);
  2611. metrics.on_decoded(slots);
  2612. if (ret != 0) {
  2613. if (n_batch == 1 || ret < 0) {
  2614. // if you get here, it means the KV cache is full - try increasing it via the context size
  2615. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2616. for (auto & slot : slots) {
  2617. slot.release();
  2618. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2619. }
  2620. break; // break loop of n_batch
  2621. }
  2622. // retry with half the batch size to try to find a free slot in the KV cache
  2623. n_batch /= 2;
  2624. i -= n_batch;
  2625. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2626. continue; // continue loop of n_batch
  2627. }
  2628. for (auto & slot : slots) {
  2629. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2630. continue; // continue loop of slots
  2631. }
  2632. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2633. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2634. // prompt evaluated for embedding
  2635. send_embedding(slot, batch_view);
  2636. slot.release();
  2637. slot.i_batch = -1;
  2638. continue; // continue loop of slots
  2639. }
  2640. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2641. send_rerank(slot, batch_view);
  2642. slot.release();
  2643. slot.i_batch = -1;
  2644. continue; // continue loop of slots
  2645. }
  2646. // prompt evaluated for next-token prediction
  2647. slot.state = SLOT_STATE_GENERATING;
  2648. } else if (slot.state != SLOT_STATE_GENERATING) {
  2649. continue; // continue loop of slots
  2650. }
  2651. const int tok_idx = slot.i_batch - i;
  2652. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2653. slot.i_batch = -1;
  2654. common_sampler_accept(slot.smpl, id, true);
  2655. slot.n_decoded += 1;
  2656. const int64_t t_current = ggml_time_us();
  2657. if (slot.n_decoded == 1) {
  2658. slot.t_start_generation = t_current;
  2659. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2660. metrics.on_prompt_eval(slot);
  2661. }
  2662. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2663. completion_token_output result;
  2664. result.tok = id;
  2665. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2666. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2667. if (slot.params.sampling.n_probs > 0) {
  2668. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2669. }
  2670. if (!process_token(result, slot)) {
  2671. // release slot because of stop condition
  2672. slot.release();
  2673. slot.print_timings();
  2674. send_final_response(slot);
  2675. metrics.on_prediction(slot);
  2676. continue;
  2677. }
  2678. }
  2679. // do speculative decoding
  2680. for (auto & slot : slots) {
  2681. if (!slot.is_processing() || !slot.can_speculate()) {
  2682. continue;
  2683. }
  2684. if (slot.state != SLOT_STATE_GENERATING) {
  2685. continue;
  2686. }
  2687. // determine the max draft that fits the current slot state
  2688. int n_draft_max = slot.params.speculative.n_max;
  2689. // note: n_past is not yet increased for the `id` token sampled above
  2690. // also, need to leave space for 1 extra token to allow context shifts
  2691. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2692. if (slot.n_remaining > 0) {
  2693. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2694. }
  2695. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2696. if (n_draft_max < slot.params.speculative.n_min) {
  2697. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2698. continue;
  2699. }
  2700. llama_token id = slot.sampled;
  2701. struct common_speculative_params params_spec;
  2702. params_spec.n_draft = n_draft_max;
  2703. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2704. params_spec.p_min = slot.params.speculative.p_min;
  2705. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2706. // ignore small drafts
  2707. if (slot.params.speculative.n_min > (int) draft.size()) {
  2708. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2709. continue;
  2710. }
  2711. // construct the speculation batch
  2712. common_batch_clear(slot.batch_spec);
  2713. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2714. for (size_t i = 0; i < draft.size(); ++i) {
  2715. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2716. }
  2717. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2718. llama_decode(ctx, slot.batch_spec);
  2719. // the accepted tokens from the speculation
  2720. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2721. slot.n_past += ids.size();
  2722. slot.n_decoded += ids.size();
  2723. slot.cache_tokens.push_back(id);
  2724. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2725. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2726. for (size_t i = 0; i < ids.size(); ++i) {
  2727. completion_token_output result;
  2728. result.tok = ids[i];
  2729. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2730. result.prob = 1.0f; // set later
  2731. // TODO: set result.probs
  2732. if (!process_token(result, slot)) {
  2733. // release slot because of stop condition
  2734. slot.release();
  2735. slot.print_timings();
  2736. send_final_response(slot);
  2737. metrics.on_prediction(slot);
  2738. break;
  2739. }
  2740. }
  2741. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2742. }
  2743. }
  2744. SRV_DBG("%s", "run slots completed\n");
  2745. }
  2746. json model_meta() const {
  2747. return json {
  2748. {"vocab_type", llama_vocab_type (vocab)},
  2749. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2750. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2751. {"n_embd", llama_model_n_embd (model)},
  2752. {"n_params", llama_model_n_params (model)},
  2753. {"size", llama_model_size (model)},
  2754. };
  2755. }
  2756. };
  2757. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2758. // skip GH copilot requests when using default port
  2759. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2760. return;
  2761. }
  2762. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2763. LOG_DBG("request: %s\n", req.body.c_str());
  2764. LOG_DBG("response: %s\n", res.body.c_str());
  2765. }
  2766. std::function<void(int)> shutdown_handler;
  2767. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2768. inline void signal_handler(int signal) {
  2769. if (is_terminating.test_and_set()) {
  2770. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2771. // this is for better developer experience, we can remove when the server is stable enough
  2772. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2773. exit(1);
  2774. }
  2775. shutdown_handler(signal);
  2776. }
  2777. int main(int argc, char ** argv) {
  2778. // own arguments required by this example
  2779. common_params params;
  2780. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2781. return 1;
  2782. }
  2783. common_init();
  2784. // struct that contains llama context and inference
  2785. server_context ctx_server;
  2786. llama_backend_init();
  2787. llama_numa_init(params.numa);
  2788. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2789. LOG_INF("\n");
  2790. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2791. LOG_INF("\n");
  2792. std::unique_ptr<httplib::Server> svr;
  2793. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2794. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2795. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2796. svr.reset(
  2797. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2798. );
  2799. } else {
  2800. LOG_INF("Running without SSL\n");
  2801. svr.reset(new httplib::Server());
  2802. }
  2803. #else
  2804. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2805. LOG_ERR("Server is built without SSL support\n");
  2806. return 1;
  2807. }
  2808. svr.reset(new httplib::Server());
  2809. #endif
  2810. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2811. svr->set_default_headers({{"Server", "llama.cpp"}});
  2812. svr->set_logger(log_server_request);
  2813. auto res_error = [](httplib::Response & res, const json & error_data) {
  2814. json final_response {{"error", error_data}};
  2815. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2816. res.status = json_value(error_data, "code", 500);
  2817. };
  2818. auto res_ok = [](httplib::Response & res, const json & data) {
  2819. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2820. res.status = 200;
  2821. };
  2822. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2823. std::string message;
  2824. try {
  2825. std::rethrow_exception(ep);
  2826. } catch (const std::exception & e) {
  2827. message = e.what();
  2828. } catch (...) {
  2829. message = "Unknown Exception";
  2830. }
  2831. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2832. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2833. res_error(res, formatted_error);
  2834. });
  2835. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2836. if (res.status == 404) {
  2837. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2838. }
  2839. // for other error codes, we skip processing here because it's already done by res_error()
  2840. });
  2841. // set timeouts and change hostname and port
  2842. svr->set_read_timeout (params.timeout_read);
  2843. svr->set_write_timeout(params.timeout_write);
  2844. std::unordered_map<std::string, std::string> log_data;
  2845. log_data["hostname"] = params.hostname;
  2846. log_data["port"] = std::to_string(params.port);
  2847. if (params.api_keys.size() == 1) {
  2848. auto key = params.api_keys[0];
  2849. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2850. } else if (params.api_keys.size() > 1) {
  2851. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2852. }
  2853. // Necessary similarity of prompt for slot selection
  2854. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2855. //
  2856. // Middlewares
  2857. //
  2858. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2859. static const std::unordered_set<std::string> public_endpoints = {
  2860. "/health",
  2861. "/models",
  2862. "/v1/models",
  2863. };
  2864. // If API key is not set, skip validation
  2865. if (params.api_keys.empty()) {
  2866. return true;
  2867. }
  2868. // If path is public or is static file, skip validation
  2869. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2870. return true;
  2871. }
  2872. // Check for API key in the header
  2873. auto auth_header = req.get_header_value("Authorization");
  2874. std::string prefix = "Bearer ";
  2875. if (auth_header.substr(0, prefix.size()) == prefix) {
  2876. std::string received_api_key = auth_header.substr(prefix.size());
  2877. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2878. return true; // API key is valid
  2879. }
  2880. }
  2881. // API key is invalid or not provided
  2882. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2883. LOG_WRN("Unauthorized: Invalid API Key\n");
  2884. return false;
  2885. };
  2886. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2887. server_state current_state = state.load();
  2888. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2889. auto tmp = string_split<std::string>(req.path, '.');
  2890. if (req.path == "/" || tmp.back() == "html") {
  2891. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2892. res.status = 503;
  2893. } else {
  2894. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2895. }
  2896. return false;
  2897. }
  2898. return true;
  2899. };
  2900. // register server middlewares
  2901. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2902. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2903. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2904. if (req.method == "OPTIONS") {
  2905. res.set_header("Access-Control-Allow-Credentials", "true");
  2906. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2907. res.set_header("Access-Control-Allow-Headers", "*");
  2908. res.set_content("", "text/html"); // blank response, no data
  2909. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2910. }
  2911. if (!middleware_server_state(req, res)) {
  2912. return httplib::Server::HandlerResponse::Handled;
  2913. }
  2914. if (!middleware_validate_api_key(req, res)) {
  2915. return httplib::Server::HandlerResponse::Handled;
  2916. }
  2917. return httplib::Server::HandlerResponse::Unhandled;
  2918. });
  2919. //
  2920. // Route handlers (or controllers)
  2921. //
  2922. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2923. // error and loading states are handled by middleware
  2924. json health = {{"status", "ok"}};
  2925. res_ok(res, health);
  2926. };
  2927. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2928. if (!params.endpoint_slots) {
  2929. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2930. return;
  2931. }
  2932. // request slots data using task queue
  2933. server_task task(SERVER_TASK_TYPE_METRICS);
  2934. task.id = ctx_server.queue_tasks.get_new_id();
  2935. ctx_server.queue_results.add_waiting_task_id(task.id);
  2936. ctx_server.queue_tasks.post(task, true); // high-priority task
  2937. // get the result
  2938. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2939. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2940. if (result->is_error()) {
  2941. res_error(res, result->to_json());
  2942. return;
  2943. }
  2944. // TODO: get rid of this dynamic_cast
  2945. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2946. GGML_ASSERT(res_metrics != nullptr);
  2947. // optionally return "fail_on_no_slot" error
  2948. if (req.has_param("fail_on_no_slot")) {
  2949. if (res_metrics->n_idle_slots == 0) {
  2950. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2951. return;
  2952. }
  2953. }
  2954. res_ok(res, res_metrics->slots_data);
  2955. };
  2956. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2957. if (!params.endpoint_metrics) {
  2958. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2959. return;
  2960. }
  2961. // request slots data using task queue
  2962. server_task task(SERVER_TASK_TYPE_METRICS);
  2963. task.id = ctx_server.queue_tasks.get_new_id();
  2964. task.metrics_reset_bucket = true;
  2965. ctx_server.queue_results.add_waiting_task_id(task.id);
  2966. ctx_server.queue_tasks.post(task, true); // high-priority task
  2967. // get the result
  2968. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2969. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2970. if (result->is_error()) {
  2971. res_error(res, result->to_json());
  2972. return;
  2973. }
  2974. // TODO: get rid of this dynamic_cast
  2975. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2976. GGML_ASSERT(res_metrics != nullptr);
  2977. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2978. json all_metrics_def = json {
  2979. {"counter", {{
  2980. {"name", "prompt_tokens_total"},
  2981. {"help", "Number of prompt tokens processed."},
  2982. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2983. }, {
  2984. {"name", "prompt_seconds_total"},
  2985. {"help", "Prompt process time"},
  2986. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2987. }, {
  2988. {"name", "tokens_predicted_total"},
  2989. {"help", "Number of generation tokens processed."},
  2990. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2991. }, {
  2992. {"name", "tokens_predicted_seconds_total"},
  2993. {"help", "Predict process time"},
  2994. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2995. }, {
  2996. {"name", "n_decode_total"},
  2997. {"help", "Total number of llama_decode() calls"},
  2998. {"value", res_metrics->n_decode_total}
  2999. }, {
  3000. {"name", "n_busy_slots_per_decode"},
  3001. {"help", "Average number of busy slots per llama_decode() call"},
  3002. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  3003. }}},
  3004. {"gauge", {{
  3005. {"name", "prompt_tokens_seconds"},
  3006. {"help", "Average prompt throughput in tokens/s."},
  3007. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3008. },{
  3009. {"name", "predicted_tokens_seconds"},
  3010. {"help", "Average generation throughput in tokens/s."},
  3011. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3012. },{
  3013. {"name", "kv_cache_usage_ratio"},
  3014. {"help", "KV-cache usage. 1 means 100 percent usage."},
  3015. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  3016. },{
  3017. {"name", "kv_cache_tokens"},
  3018. {"help", "KV-cache tokens."},
  3019. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  3020. },{
  3021. {"name", "requests_processing"},
  3022. {"help", "Number of requests processing."},
  3023. {"value", (uint64_t) res_metrics->n_processing_slots}
  3024. },{
  3025. {"name", "requests_deferred"},
  3026. {"help", "Number of requests deferred."},
  3027. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3028. }}}
  3029. };
  3030. std::stringstream prometheus;
  3031. for (const auto & el : all_metrics_def.items()) {
  3032. const auto & type = el.key();
  3033. const auto & metrics_def = el.value();
  3034. for (const auto & metric_def : metrics_def) {
  3035. const std::string name = metric_def.at("name");
  3036. const std::string help = metric_def.at("help");
  3037. auto value = json_value(metric_def, "value", 0.);
  3038. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3039. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3040. << "llamacpp:" << name << " " << value << "\n";
  3041. }
  3042. }
  3043. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3044. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3045. res.status = 200; // HTTP OK
  3046. };
  3047. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3048. json request_data = json::parse(req.body);
  3049. std::string filename = request_data.at("filename");
  3050. if (!fs_validate_filename(filename)) {
  3051. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3052. return;
  3053. }
  3054. std::string filepath = params.slot_save_path + filename;
  3055. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3056. task.id = ctx_server.queue_tasks.get_new_id();
  3057. task.slot_action.slot_id = id_slot;
  3058. task.slot_action.filename = filename;
  3059. task.slot_action.filepath = filepath;
  3060. ctx_server.queue_results.add_waiting_task_id(task.id);
  3061. ctx_server.queue_tasks.post(task);
  3062. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3063. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3064. if (result->is_error()) {
  3065. res_error(res, result->to_json());
  3066. return;
  3067. }
  3068. res_ok(res, result->to_json());
  3069. };
  3070. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3071. json request_data = json::parse(req.body);
  3072. std::string filename = request_data.at("filename");
  3073. if (!fs_validate_filename(filename)) {
  3074. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3075. return;
  3076. }
  3077. std::string filepath = params.slot_save_path + filename;
  3078. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3079. task.id = ctx_server.queue_tasks.get_new_id();
  3080. task.slot_action.slot_id = id_slot;
  3081. task.slot_action.filename = filename;
  3082. task.slot_action.filepath = filepath;
  3083. ctx_server.queue_results.add_waiting_task_id(task.id);
  3084. ctx_server.queue_tasks.post(task);
  3085. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3086. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3087. if (result->is_error()) {
  3088. res_error(res, result->to_json());
  3089. return;
  3090. }
  3091. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3092. res_ok(res, result->to_json());
  3093. };
  3094. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3095. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3096. task.id = ctx_server.queue_tasks.get_new_id();
  3097. task.slot_action.slot_id = id_slot;
  3098. ctx_server.queue_results.add_waiting_task_id(task.id);
  3099. ctx_server.queue_tasks.post(task);
  3100. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3101. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3102. if (result->is_error()) {
  3103. res_error(res, result->to_json());
  3104. return;
  3105. }
  3106. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3107. res_ok(res, result->to_json());
  3108. };
  3109. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3110. if (params.slot_save_path.empty()) {
  3111. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3112. return;
  3113. }
  3114. std::string id_slot_str = req.path_params.at("id_slot");
  3115. int id_slot;
  3116. try {
  3117. id_slot = std::stoi(id_slot_str);
  3118. } catch (const std::exception &) {
  3119. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3120. return;
  3121. }
  3122. std::string action = req.get_param_value("action");
  3123. if (action == "save") {
  3124. handle_slots_save(req, res, id_slot);
  3125. } else if (action == "restore") {
  3126. handle_slots_restore(req, res, id_slot);
  3127. } else if (action == "erase") {
  3128. handle_slots_erase(req, res, id_slot);
  3129. } else {
  3130. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3131. }
  3132. };
  3133. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3134. // this endpoint is publicly available, please only return what is safe to be exposed
  3135. json data = {
  3136. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3137. { "total_slots", ctx_server.params_base.n_parallel },
  3138. { "model_path", ctx_server.params_base.model },
  3139. { "chat_template", ctx_server.chat_templates.template_default->source() },
  3140. { "bos_token", ctx_server.chat_templates.template_default->bos_token() },
  3141. { "eos_token", ctx_server.chat_templates.template_default->eos_token() },
  3142. { "build_info", build_info },
  3143. };
  3144. if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
  3145. data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
  3146. }
  3147. res_ok(res, data);
  3148. };
  3149. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3150. if (!ctx_server.params_base.endpoint_props) {
  3151. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3152. return;
  3153. }
  3154. json data = json::parse(req.body);
  3155. // update any props here
  3156. res_ok(res, {{ "success", true }});
  3157. };
  3158. // handle completion-like requests (completion, chat, infill)
  3159. // we can optionally provide a custom format for partial results and final results
  3160. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3161. server_task_type type,
  3162. json & data,
  3163. std::function<bool()> is_connection_closed,
  3164. httplib::Response & res,
  3165. oaicompat_type oaicompat) {
  3166. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3167. if (ctx_server.params_base.embedding) {
  3168. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3169. return;
  3170. }
  3171. auto completion_id = gen_chatcmplid();
  3172. std::vector<server_task> tasks;
  3173. try {
  3174. const auto & prompt = data.at("prompt");
  3175. LOG_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3176. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3177. tasks.reserve(tokenized_prompts.size());
  3178. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3179. server_task task = server_task(type);
  3180. task.id = ctx_server.queue_tasks.get_new_id();
  3181. task.index = i;
  3182. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3183. task.params = server_task::params_from_json_cmpl(
  3184. ctx_server.ctx,
  3185. ctx_server.params_base,
  3186. data);
  3187. task.id_selected_slot = json_value(data, "id_slot", -1);
  3188. // OAI-compat
  3189. task.params.oaicompat = oaicompat;
  3190. task.params.oaicompat_cmpl_id = completion_id;
  3191. // oaicompat_model is already populated by params_from_json_cmpl
  3192. tasks.push_back(task);
  3193. }
  3194. } catch (const std::exception & e) {
  3195. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3196. return;
  3197. }
  3198. ctx_server.queue_results.add_waiting_tasks(tasks);
  3199. ctx_server.queue_tasks.post(tasks);
  3200. bool stream = json_value(data, "stream", false);
  3201. const auto task_ids = server_task::get_list_id(tasks);
  3202. if (!stream) {
  3203. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3204. if (results.size() == 1) {
  3205. // single result
  3206. res_ok(res, results[0]->to_json());
  3207. } else {
  3208. // multiple results (multitask)
  3209. json arr = json::array();
  3210. for (auto & res : results) {
  3211. arr.push_back(res->to_json());
  3212. }
  3213. res_ok(res, arr);
  3214. }
  3215. }, [&](const json & error_data) {
  3216. res_error(res, error_data);
  3217. }, is_connection_closed);
  3218. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3219. } else {
  3220. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3221. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3222. json res_json = result->to_json();
  3223. if (res_json.is_array()) {
  3224. for (const auto & res : res_json) {
  3225. if (!server_sent_event(sink, "data", res)) {
  3226. // sending failed (HTTP connection closed), cancel the generation
  3227. return false;
  3228. }
  3229. }
  3230. return true;
  3231. } else {
  3232. return server_sent_event(sink, "data", res_json);
  3233. }
  3234. }, [&](const json & error_data) {
  3235. server_sent_event(sink, "error", error_data);
  3236. }, [&sink]() {
  3237. // note: do not use req.is_connection_closed here because req is already destroyed
  3238. return !sink.is_writable();
  3239. });
  3240. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3241. static const std::string ev_done = "data: [DONE]\n\n";
  3242. sink.write(ev_done.data(), ev_done.size());
  3243. }
  3244. sink.done();
  3245. return false;
  3246. };
  3247. auto on_complete = [task_ids, &ctx_server] (bool) {
  3248. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3249. };
  3250. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3251. }
  3252. };
  3253. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3254. json data = json::parse(req.body);
  3255. return handle_completions_impl(
  3256. SERVER_TASK_TYPE_COMPLETION,
  3257. data,
  3258. req.is_connection_closed,
  3259. res,
  3260. OAICOMPAT_TYPE_NONE);
  3261. };
  3262. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3263. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3264. return handle_completions_impl(
  3265. SERVER_TASK_TYPE_COMPLETION,
  3266. data,
  3267. req.is_connection_closed,
  3268. res,
  3269. OAICOMPAT_TYPE_COMPLETION);
  3270. };
  3271. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3272. // check model compatibility
  3273. std::string err;
  3274. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3275. err += "prefix token is missing. ";
  3276. }
  3277. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3278. err += "suffix token is missing. ";
  3279. }
  3280. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3281. err += "middle token is missing. ";
  3282. }
  3283. if (!err.empty()) {
  3284. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3285. return;
  3286. }
  3287. json data = json::parse(req.body);
  3288. // validate input
  3289. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3290. // prompt is optional
  3291. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3292. }
  3293. if (!data.contains("input_prefix")) {
  3294. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3295. }
  3296. if (!data.contains("input_suffix")) {
  3297. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3298. }
  3299. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3300. // input_extra is optional
  3301. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3302. return;
  3303. }
  3304. json input_extra = json_value(data, "input_extra", json::array());
  3305. for (const auto & chunk : input_extra) {
  3306. // { "text": string, "filename": string }
  3307. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3308. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3309. return;
  3310. }
  3311. // filename is optional
  3312. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3313. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3314. return;
  3315. }
  3316. }
  3317. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3318. std::string prompt = json_value(data, "prompt", std::string());
  3319. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3320. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3321. data["prompt"] = format_infill(
  3322. ctx_server.vocab,
  3323. data.at("input_prefix"),
  3324. data.at("input_suffix"),
  3325. data.at("input_extra"),
  3326. ctx_server.params_base.n_batch,
  3327. ctx_server.params_base.n_predict,
  3328. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3329. ctx_server.params_base.spm_infill,
  3330. tokenized_prompts[0]
  3331. );
  3332. return handle_completions_impl(
  3333. SERVER_TASK_TYPE_INFILL,
  3334. data,
  3335. req.is_connection_closed,
  3336. res,
  3337. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3338. };
  3339. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3340. LOG_DBG("request: %s\n", req.body.c_str());
  3341. if (ctx_server.params_base.embedding) {
  3342. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3343. return;
  3344. }
  3345. auto body = json::parse(req.body);
  3346. json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
  3347. return handle_completions_impl(
  3348. SERVER_TASK_TYPE_COMPLETION,
  3349. data,
  3350. req.is_connection_closed,
  3351. res,
  3352. OAICOMPAT_TYPE_CHAT);
  3353. };
  3354. // same with handle_chat_completions, but without inference part
  3355. const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3356. auto body = json::parse(req.body);
  3357. json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
  3358. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3359. };
  3360. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3361. json models = {
  3362. {"object", "list"},
  3363. {"data", {
  3364. {
  3365. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3366. {"object", "model"},
  3367. {"created", std::time(0)},
  3368. {"owned_by", "llamacpp"},
  3369. {"meta", ctx_server.model_meta()}
  3370. },
  3371. }}
  3372. };
  3373. res_ok(res, models);
  3374. };
  3375. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3376. const json body = json::parse(req.body);
  3377. json tokens_response = json::array();
  3378. if (body.count("content") != 0) {
  3379. const bool add_special = json_value(body, "add_special", false);
  3380. const bool with_pieces = json_value(body, "with_pieces", false);
  3381. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3382. if (with_pieces) {
  3383. for (const auto& token : tokens) {
  3384. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3385. json piece_json;
  3386. // Check if the piece is valid UTF-8
  3387. if (is_valid_utf8(piece)) {
  3388. piece_json = piece;
  3389. } else {
  3390. // If not valid UTF-8, store as array of byte values
  3391. piece_json = json::array();
  3392. for (unsigned char c : piece) {
  3393. piece_json.push_back(static_cast<int>(c));
  3394. }
  3395. }
  3396. tokens_response.push_back({
  3397. {"id", token},
  3398. {"piece", piece_json}
  3399. });
  3400. }
  3401. } else {
  3402. tokens_response = tokens;
  3403. }
  3404. }
  3405. const json data = format_tokenizer_response(tokens_response);
  3406. res_ok(res, data);
  3407. };
  3408. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3409. const json body = json::parse(req.body);
  3410. std::string content;
  3411. if (body.count("tokens") != 0) {
  3412. const llama_tokens tokens = body.at("tokens");
  3413. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3414. }
  3415. const json data = format_detokenized_response(content);
  3416. res_ok(res, data);
  3417. };
  3418. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3419. const json body = json::parse(req.body);
  3420. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3421. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3422. return;
  3423. }
  3424. // for the shape of input/content, see tokenize_input_prompts()
  3425. json prompt;
  3426. if (body.count("input") != 0) {
  3427. prompt = body.at("input");
  3428. } else if (body.contains("content")) {
  3429. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3430. prompt = body.at("content");
  3431. } else {
  3432. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3433. return;
  3434. }
  3435. bool use_base64 = false;
  3436. if (body.count("encoding_format") != 0) {
  3437. const std::string& format = body.at("encoding_format");
  3438. if (format == "base64") {
  3439. use_base64 = true;
  3440. } else if (format != "float") {
  3441. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3442. return;
  3443. }
  3444. }
  3445. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3446. for (const auto & tokens : tokenized_prompts) {
  3447. // this check is necessary for models that do not add BOS token to the input
  3448. if (tokens.empty()) {
  3449. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3450. return;
  3451. }
  3452. }
  3453. // create and queue the task
  3454. json responses = json::array();
  3455. bool error = false;
  3456. {
  3457. std::vector<server_task> tasks;
  3458. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3459. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3460. task.id = ctx_server.queue_tasks.get_new_id();
  3461. task.index = i;
  3462. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3463. // OAI-compat
  3464. task.params.oaicompat = oaicompat;
  3465. tasks.push_back(task);
  3466. }
  3467. ctx_server.queue_results.add_waiting_tasks(tasks);
  3468. ctx_server.queue_tasks.post(tasks);
  3469. // get the result
  3470. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3471. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3472. for (auto & res : results) {
  3473. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3474. responses.push_back(res->to_json());
  3475. }
  3476. }, [&](const json & error_data) {
  3477. res_error(res, error_data);
  3478. error = true;
  3479. }, req.is_connection_closed);
  3480. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3481. }
  3482. if (error) {
  3483. return;
  3484. }
  3485. // write JSON response
  3486. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3487. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3488. : json(responses);
  3489. res_ok(res, root);
  3490. };
  3491. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3492. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3493. };
  3494. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3495. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3496. };
  3497. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3498. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3499. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3500. return;
  3501. }
  3502. const json body = json::parse(req.body);
  3503. // TODO: implement
  3504. //int top_n = 1;
  3505. //if (body.count("top_n") != 1) {
  3506. // top_n = body.at("top_n");
  3507. //} else {
  3508. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3509. // return;
  3510. //}
  3511. json query;
  3512. if (body.count("query") == 1) {
  3513. query = body.at("query");
  3514. if (!query.is_string()) {
  3515. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3516. return;
  3517. }
  3518. } else {
  3519. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3520. return;
  3521. }
  3522. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3523. if (documents.empty()) {
  3524. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3525. return;
  3526. }
  3527. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3528. // create and queue the task
  3529. json responses = json::array();
  3530. bool error = false;
  3531. {
  3532. std::vector<server_task> tasks;
  3533. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3534. tasks.reserve(tokenized_docs.size());
  3535. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3536. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3537. task.id = ctx_server.queue_tasks.get_new_id();
  3538. task.index = i;
  3539. task.prompt_tokens = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3540. tasks.push_back(task);
  3541. }
  3542. ctx_server.queue_results.add_waiting_tasks(tasks);
  3543. ctx_server.queue_tasks.post(tasks);
  3544. // get the result
  3545. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3546. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3547. for (auto & res : results) {
  3548. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3549. responses.push_back(res->to_json());
  3550. }
  3551. }, [&](const json & error_data) {
  3552. res_error(res, error_data);
  3553. error = true;
  3554. }, req.is_connection_closed);
  3555. }
  3556. if (error) {
  3557. return;
  3558. }
  3559. // write JSON response
  3560. json root = format_response_rerank(body, responses);
  3561. res_ok(res, root);
  3562. };
  3563. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3564. json result = json::array();
  3565. const auto & loras = ctx_server.params_base.lora_adapters;
  3566. for (size_t i = 0; i < loras.size(); ++i) {
  3567. auto & lora = loras[i];
  3568. result.push_back({
  3569. {"id", i},
  3570. {"path", lora.path},
  3571. {"scale", lora.scale},
  3572. });
  3573. }
  3574. res_ok(res, result);
  3575. res.status = 200; // HTTP OK
  3576. };
  3577. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3578. const json body = json::parse(req.body);
  3579. if (!body.is_array()) {
  3580. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3581. return;
  3582. }
  3583. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3584. task.id = ctx_server.queue_tasks.get_new_id();
  3585. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3586. ctx_server.queue_results.add_waiting_task_id(task.id);
  3587. ctx_server.queue_tasks.post(task);
  3588. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3589. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3590. if (result->is_error()) {
  3591. res_error(res, result->to_json());
  3592. return;
  3593. }
  3594. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3595. res_ok(res, result->to_json());
  3596. };
  3597. //
  3598. // Router
  3599. //
  3600. if (!params.webui) {
  3601. LOG_INF("Web UI is disabled\n");
  3602. } else {
  3603. // register static assets routes
  3604. if (!params.public_path.empty()) {
  3605. // Set the base directory for serving static files
  3606. bool is_found = svr->set_mount_point("/", params.public_path);
  3607. if (!is_found) {
  3608. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3609. return 1;
  3610. }
  3611. } else {
  3612. // using embedded static index.html
  3613. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3614. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3615. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3616. } else {
  3617. res.set_header("Content-Encoding", "gzip");
  3618. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3619. }
  3620. return false;
  3621. });
  3622. }
  3623. }
  3624. // register API routes
  3625. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3626. svr->Get ("/metrics", handle_metrics);
  3627. svr->Get ("/props", handle_props);
  3628. svr->Post("/props", handle_props_change);
  3629. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3630. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3631. svr->Post("/completion", handle_completions); // legacy
  3632. svr->Post("/completions", handle_completions);
  3633. svr->Post("/v1/completions", handle_completions_oai);
  3634. svr->Post("/chat/completions", handle_chat_completions);
  3635. svr->Post("/v1/chat/completions", handle_chat_completions);
  3636. svr->Post("/infill", handle_infill);
  3637. svr->Post("/embedding", handle_embeddings); // legacy
  3638. svr->Post("/embeddings", handle_embeddings);
  3639. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3640. svr->Post("/rerank", handle_rerank);
  3641. svr->Post("/reranking", handle_rerank);
  3642. svr->Post("/v1/rerank", handle_rerank);
  3643. svr->Post("/v1/reranking", handle_rerank);
  3644. svr->Post("/tokenize", handle_tokenize);
  3645. svr->Post("/detokenize", handle_detokenize);
  3646. svr->Post("/apply-template", handle_apply_template);
  3647. // LoRA adapters hotswap
  3648. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3649. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3650. // Save & load slots
  3651. svr->Get ("/slots", handle_slots);
  3652. svr->Post("/slots/:id_slot", handle_slots_action);
  3653. //
  3654. // Start the server
  3655. //
  3656. if (params.n_threads_http < 1) {
  3657. // +2 threads for monitoring endpoints
  3658. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3659. }
  3660. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3661. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3662. // clean up function, to be called before exit
  3663. auto clean_up = [&svr]() {
  3664. svr->stop();
  3665. llama_backend_free();
  3666. };
  3667. // bind HTTP listen port
  3668. bool was_bound = false;
  3669. if (params.port == 0) {
  3670. int bound_port = svr->bind_to_any_port(params.hostname);
  3671. if ((was_bound = (bound_port >= 0))) {
  3672. params.port = bound_port;
  3673. }
  3674. } else {
  3675. was_bound = svr->bind_to_port(params.hostname, params.port);
  3676. }
  3677. if (!was_bound) {
  3678. //LOG_ERROR("couldn't bind HTTP server socket", {
  3679. // {"hostname", params.hostname},
  3680. // {"port", params.port},
  3681. //});
  3682. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3683. clean_up();
  3684. return 1;
  3685. }
  3686. // run the HTTP server in a thread
  3687. std::thread t([&]() { svr->listen_after_bind(); });
  3688. svr->wait_until_ready();
  3689. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3690. // load the model
  3691. LOG_INF("%s: loading model\n", __func__);
  3692. if (!ctx_server.load_model(params)) {
  3693. clean_up();
  3694. t.join();
  3695. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3696. return 1;
  3697. }
  3698. ctx_server.init();
  3699. state.store(SERVER_STATE_READY);
  3700. LOG_INF("%s: model loaded\n", __func__);
  3701. // print sample chat example to make it clear which template is used
  3702. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  3703. ctx_server.chat_templates.template_default->source().c_str(),
  3704. common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
  3705. ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
  3706. ctx_server.process_single_task(task);
  3707. });
  3708. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  3709. ctx_server.update_slots();
  3710. });
  3711. shutdown_handler = [&](int) {
  3712. ctx_server.queue_tasks.terminate();
  3713. };
  3714. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3715. ctx_server.queue_tasks.start_loop();
  3716. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3717. struct sigaction sigint_action;
  3718. sigint_action.sa_handler = signal_handler;
  3719. sigemptyset (&sigint_action.sa_mask);
  3720. sigint_action.sa_flags = 0;
  3721. sigaction(SIGINT, &sigint_action, NULL);
  3722. sigaction(SIGTERM, &sigint_action, NULL);
  3723. #elif defined (_WIN32)
  3724. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3725. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3726. };
  3727. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3728. #endif
  3729. clean_up();
  3730. t.join();
  3731. return 0;
  3732. }